

flood risk assessment

Land east of Henderson Road, Thorpe-le-Soken, Essex

CCE/S771/FRA2-01

July 2021

For M Scott Properties Ltd

Document Review Sheet:

This document has been prepared for use by M Scott Properties Ltd. Its content should not be relied upon by others without the written authority of Cannon Consulting Engineers. If any unauthorised third party makes use of this report they do so at their own risk and Cannon Consulting Engineers owes them no duty of care or skill.

Reference	Date	Auth or	Checked
CCE/S771/FRA2-01	July 2021	JH	RT

Contents

- 1. Introduction
- 2. Forms of Flooding
- 3. Surface Water Management
- 4. Conclusions

Appendices

A. Existing Site

Topographical Survey
Anglian Water Sewer Plans
Infiltration SuDS GeoReport
Infiltration Tests

B. Proposed Site

Masterplan Surface Water Management Plan Flow Calculations Maintenance Schedules

Summary Table

Site location Land to the east of Henderson Road, Thorpe

le-Soken, Essex.

Grid reference - 618700, 222604

Planning application Full

Existing site Greenfield (agricultural)

Application area Approximately 2.0 ha

Proposed development Residential dwellings

Flood Zone Flood Zone 1

Reservoir In undation Zone None

Surface water flooding Shallow bands of primarily low risk

Surface water management Greenfield discharge to the boundary

ditch.

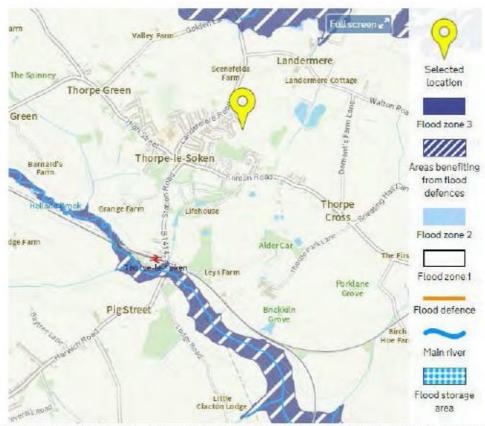
On-site storage to manage the 1 in 100 annual probability storm plus 40 % climate

change.

1.0 Introduction

1.1 This Flood Risk Assessment (FRA) has been prepared on behalf of M Scott Properties Ltd to support a planning application for residential development of land to the east of Henderson Road in Thorpe-le-Soken, Essex (see approximate site location below).

Approximate site location © Crown copyright and database rights 2021 Ordnance Survey 100047325


- 1.2 The development proposal comprises 28 residential dwellings (refer to the masterplan in Appendix B).
- 1.3 The report is based on findings of a site visit, discussions with the landowner and a review of the Tendring Strategic Flood Risk Assessment (SFRA) and SFRA addendum (2017), and the Essex County Council (ECC) flood risk and asset map.
- 1.4 This assessment takes account of the National Planning Policy Framework (NPPF) and the definitions of sources of flooding within the Flood and Water Management Act (FWMA) 2010.
- 1.5 The site is approximately centred on Ordnance Survey grid reference 618625,222605. The site is triangular (pointing northwards) and extends to approximately 2.0 ha. The current land use is agricultural.

- 1.6 The land to the north and east of the site is open agricultural land. The land to the west comprises recently constructed residential development. The land to the south is undeveloped grassland with residential development beyond.
- 1.7 The dominant slope of the site is from south to north. Levels fall from approximately 25.9 m AOD in the south to approximately 20.8 m AOD in the north (a topographical survey is included in Appendix A).
- 1.8 Part of western site boundary is marked by a drainage ditch. The ditch forms part of a wider network which (from Ordnance Survey mapping) flow northwards into Landermere Creek (a tidally influenced water body to the north of the site). The eastern boundary ditch is linked to the downstream network by a 150 mm diameter pipe.
- 1.9 The western boundary ditch receives flows from an Anglian Water surface water sewer network which serves the residential development to the south-west of the site (Rolph Close, Beldams Close etc). The sewer is shown on both the Anglian Water asset plans and topographical survey in Appendix A. There is also an "outgoing pipe" near to the outfall from the Anglian Water sewer (see headwall and 150 mm diameter pipe shown on the topographical survey) which is understood (from the landowner) to convey some of the flows from the sewer to an agricultural reservoir approximately 600 m to the east of the site. The route of the outgoing pipe will be realigned as part of the development of the site.
- 1.10 Geological mapping (refer to the Infiltration SuDS GeoReport in Appendix A) shows that the site is underlain by the silty clays of the Thames Group. The presence of clay beneath topsoil was confirmed during infiltration testing (refer to Appendix A for trial pit logs and test results).
- 1.11 Although wastewater does not form part of a FRA it is worth noting that the current proposal is to pump wastewater to the adopted wastewater network in the area. The layout includes an allowance for a pumping station (adjacent the site access).

2.0 Forms of Flooding

Watercourses

2.1 The site lies in Flood Zone 1 (see below) and is not therefore considered to be at risk of flooding from a main river or other watercourse with a significantly sized catchment.

Flood Map for Planning (21/07/2021) © Crown copyright and database rights 2021 Ordnance Survey 100047325

Surface Water

2.2 As discussed in Section 1, the surface water flood map (overleaf) shows bands of primarily low risk, sub 300 mm deep, surface water flooding crossing east-west through the site. The water is primarily the result of localised rural runoff from the field to the east of the site and is not considered to pose a notable threat to the site. In order to help direct any incoming rural flows northwards ground levels along the northern half of the eastern boundary of the site (the gardens of units 1 to 7) will be set slightly higher than existing (200 to 300 mm).

Surface water flood map (21/07/2021) © Crown copyright and database rights 2021 Ordnance Survey 100047325

Surface Water Sewers

2.3 A simple comparison of inlet and outlet diameters to and from the western boundary ditch suggests that the capacity of the Anglian Water surface water sewer feeding the ditch (at 400 mm diameter) may exceed the capacity of the outlets from the ditch (both at 150 mm diameter). However, in the event that eastern boundary ditch becomes overloaded, ground levels are such that overtopping would occur from the northern end of the ditch, with water flowing away from the site rather than presenting a risk to the proposed dwellings.

Groundwater

2.4 The Infiltration SuDS GeoReport (Appendix A) shows that groundwater may be between 3 and 5 m below ground level under the majority of the site, with levels being potentially closer to ground level in the north. These levels are not considered to present a notable threat to the proposed units. However were groundwater to reach a point where it emerged at the surface it would tend to flow northwards, around the proposed units rather than pooling around them.

Reservoirs

2.5 The site is not shown to lie within a reservoir inundation area.

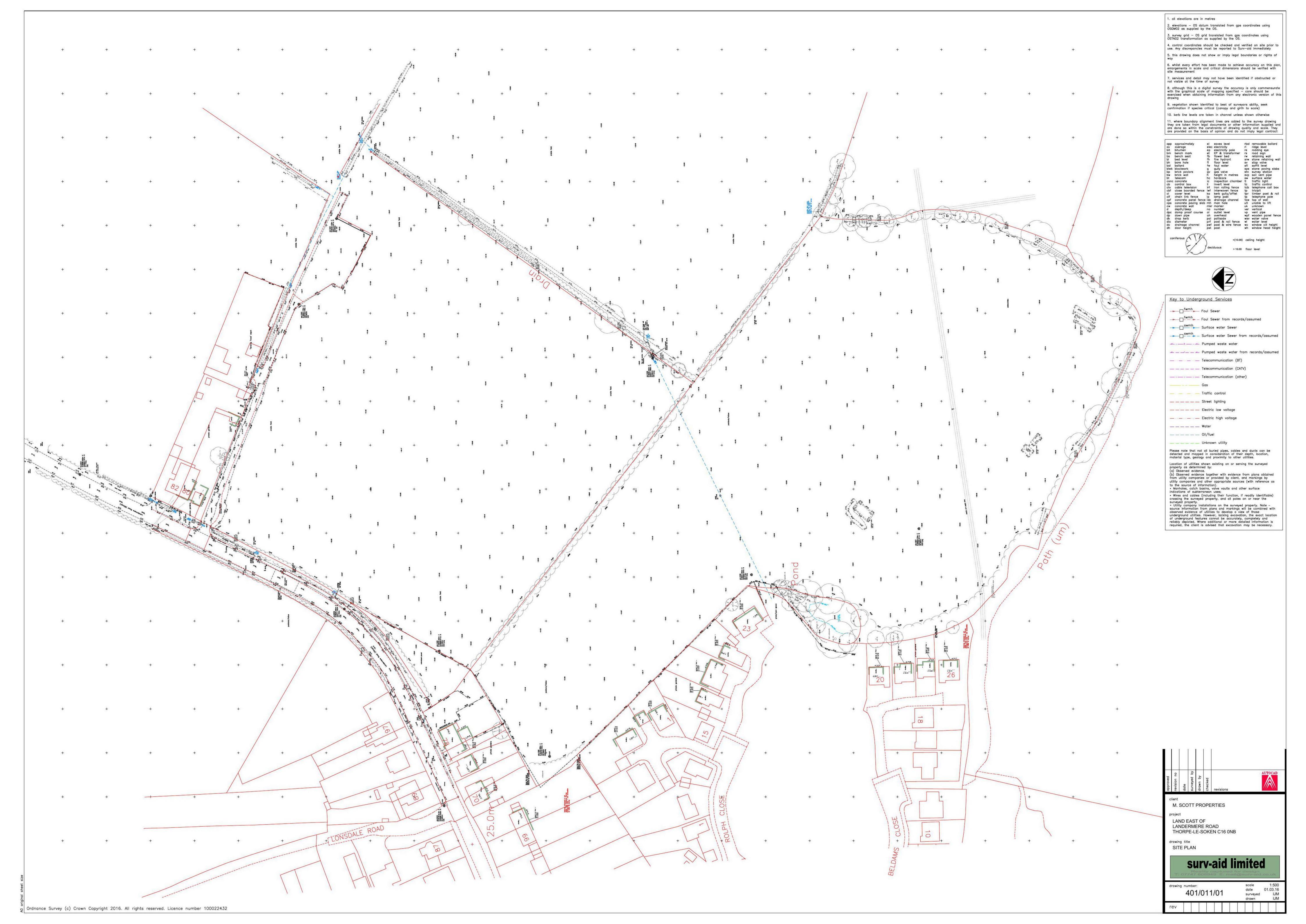
3.0 Surface Water Management

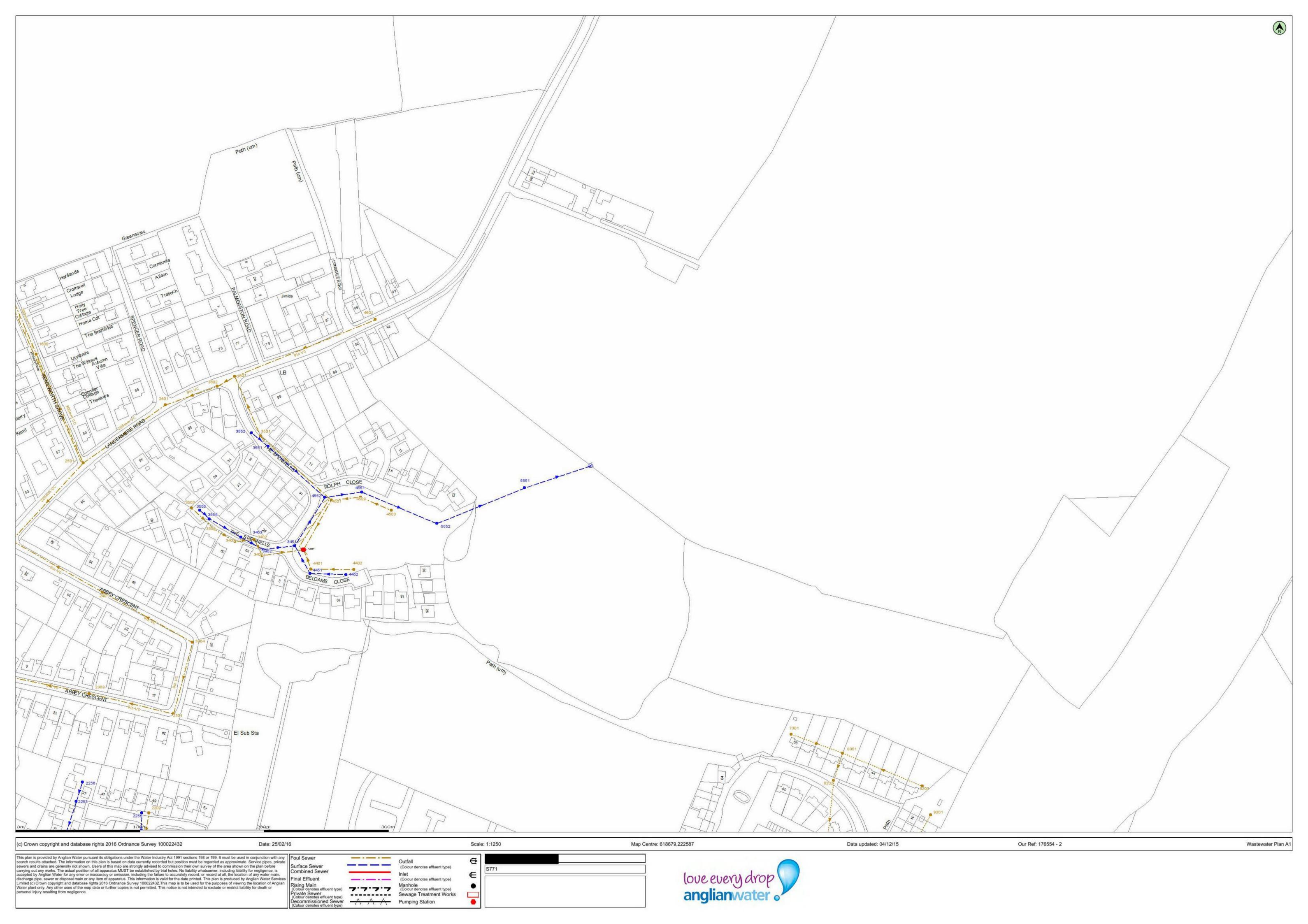
- 3.1 Infiltration testing in the area was unsuccessful with all tests reported as failures (refer to the results in Appendix A). It is therefore proposed to discharge surface water runoff from the development to the boundary ditch. Flows will be limited to the 1 in 1 annual probability greenfield rate (the Q1 rate) calculated for the area.
- 3.2 Sufficient surface water storage will be provided in order to manage the 1 in 100 year storm including a 40 % allowance for climate change. Surface water runoff calculations, and a surface water management plan are included in Appendix B. The attenuation has been run with both the proposed approximate impermeable area. The scheme has also been tested with an additional allowance for creep (applied as a 10 % increase).
- 3.3 The 1 in 1 annual probability greenfield rate for the site is 3.1 l/s/ha. The approximate impermeable catchment area of the proposed development is 0.92 ha. This translates to a pro-rate discharge rate of 2.85 l/s.
- 3.4 The proposed scheme relies on a single attenuation basin in the allocated space in the north of the site. The basin is 1.5 m deep with 1 in 3 side slopes with a maximum depth (during the 1 in 100 annual probability storm plus 40 % climate change and 10 % creep) of a little over 1.0 m. The depth in the basin for the 1 in 30 annual probability storm is a little less than 0.5 m (i.e. less than half full). Flows will be restricted with an orifice control housed in a chamber with in-chamber protection (a perforated plate, tube etc). Additional protection for the control will be provided at the outlet from the basin (a gabion filter box) which will prevent debris from entering the chamber.
- 3.5 The short section of road in the north of the site will drain to a roadside planter/grassed filer drain (200 mm deep). The planter/filter drain will be connected to the basin by a perforated underdrain.
- 3.6 All proposals and rates are subject to detailed design and the approval of relevant parties.

Treatment

3.7 The C753 pollution hazard level for the development is low. The basin therefore provides sufficient treatment for the proposals.

Maintenance


3.8 All elements of the surface water management scheme will be offered to Anglian Water for adoption. If Anglian Water do not take on the scheme then it would be managed by a communally funded private management company


4.0 Conclusions

- 4.1 The proposed development is not considered to be liable to significant or unmanageable flooding from the sources identified in the Flood and Water Management Act 2010.
- 4.2 Surface water runoff from the proposed development will be discharged at the 1 in 1 annual probability greenfield rate of 3.1 l/s/ha to the local watercourse network.
- 4.3 Surface water management facilities will be sized to manage the 1 in 100 annual probability storm inclusive of 40 % climate change.
- 4.4 The proposed surface water management scheme includes sufficient treatment.
- 4.5 It is envisaged that maintenance of the surface water scheme will be undertaken by Anglian Water, or failing that a communally funded private management company.

A Existing Site

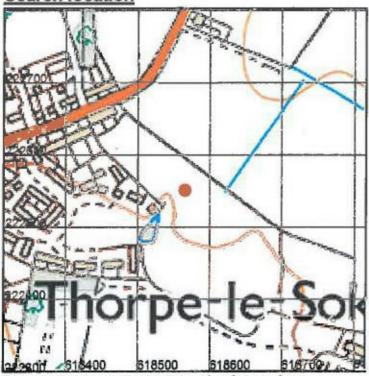
Topographical Survey Anglian Water Sewer Plans Infiltration SuDS GeoReport Infiltration Tests

Mannele Reference Elasting N	Northing	Liquid Type Cover Level Invert Level Depth to Invert	Manno e Referenci	Easting Northing Liquid Type Cover Level Invent Level Depth to Invent	Manhole Reference Easting Northing Liquid Type	Cover Leve InvertiLevel	Depth to invert	Mannole Reference Easting Northing	Liquid Type Cover Level Invert Level Depth to Invert
1800 818182 9	222848	F							
	222274 222354	F							
2302 818225 2	222370	F							
	222452 222558	F							
2801 818266 2	222802	F - 1							
S402 818867 S	222481 222484	F							
N. 10.110 (20.110.110.110.110.110.110.110.110.110.1	222492 222412	F							
S501 818868 S	222577	F							
	222502 222519	F							
	22282 6 222817	F							
4401 818408 2	222470	F							
	222470 222526	F							
	222528 222517	F							
4601 813466 2	222871	F							
	222338 222300	F							
	222296 222322	F							
9201 818901 2	222278	F							
	222288 222274	S							
2258 818219 2	222299	S							
S452 818866 S	222488 222488	S							
	922486 922588	S							
S552 818866 S	222580	S							
	222510 222517	S							
	222487 222488	S							
4551 813444 2	222532	S							
	222528 222536	S							
5552 81B5C4 S	222507	S							

GeoReports

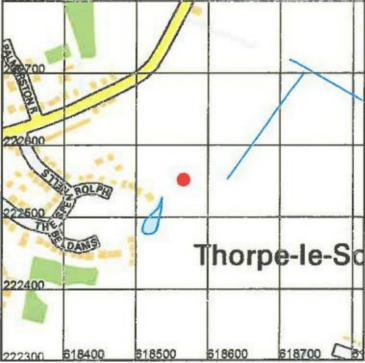
James Howard
Cambridge House
Lanwades Business Park
Kentford
Newmarket
Suffolk
CB8 7PN

Infiltration SuDS GeoReport:


This report provides information on the suitability of the subsurface for the installation of infiltration sustainable drainage systems (SuDS). It provides information on the properties of the subsurface with respect to significant constraints, drainage, ground stability and groundwater quality protection.

Report Id: GR_213283/1

Client reference: S771 BGS JOH



Search location

This product includes mapping data licensed from Ordnance Survey.

© Crown Copyright and/or database right 2016. Licence number 100021290 EUL Scale: 1:5 000 (1cm = 50 m)

Contains Ordnance Survey data © Crown Copyright and database right 2016 OS Street View: Scale: 1:5 000 (1cm = 50 m)

Point centred at: 618565.222552

Search location indicated in red

Assessment for an infiltration sustainable drainage system

Introduction

Sustainable drainage systems (SuDS) are drainage solutions that manage the volume and quality of <u>surface water</u> close to where it falls as rain. They aim to reduce flow rates to rivers, increase local water storage capacity and reduce the transport of pollutants to the water environment. There are four main types of SuDS, which are often designed to be used in sequence. They comprise:

- o source control: systems that control the rate of runoff
- o pre-treatment: systems that remove sediments and pollutants
- o retention: systems that delay the discharge of water by providing surface storage
- o Infiltration: systems that mimic natural recharge to the ground.

This report focuses on infiltration SuDS. It provides subsurface information on the properties of the ground with respect to drainage, ground stability and groundwater quality protection. It is intended principally for those involved in the preliminary assessment of the suitability of the ground for infiltration SuDS, and those involved in assessing proposals from others for sustainable drainage, but it may also be useful to help house-holders judge whether or not further professional advice should be sought. If in doubt, users should consult a suitably-qualified professional about the results in this report before making any decisions based upon it.

This GeoReport is structured in two parts:

Part 1. Summary data.

Comprises three maps that summarise the data contained within Part 2.

Part 2. Detailed data.

Comprises a further 24 maps in four thematic sections:

- Very significant constraints. Maps highlight areas where infiltration may result in adverse impacts due to factors including: ground instability (soluble rocks, non-coal shallow mining and landslide hazards); persistent shallow groundwater, or the presence of made ground, which may represent a ground stability or contamination hazard.
- Drainage potential. Maps indicate the drainage potential of the ground, by considering subsurface permeability, depth to groundwater and the presence of floodplain deposits.
- Ground stability. Maps indicate the presence of hazards that have the
 potential to cause ground instability resulting in damage to some buildings
 and structures, if water is infiltrated to the ground.
- Groundwater protection. Maps provide key indicators to help determine whether the groundwater may be susceptible to deterioration in quality as a result of infiltration.

This report considers the suitability of the subsurface for the installation of infiltration SuDS, such as soakaways, infiltration basins or permeable pavements. It provides subsurface data to indicate whether, and which type of infiltration system may be appropriate. It does not state that infiltration SuDS are, or are not, appropriate as this is highly dependent on the design of the individual system. This report therefore describes the subsurface conditions at the site, allowing the reader to determine the suitability of the site for infiltration SuDS.

The map and text data in this report is similar to that provided in the 'Infiltration SuDS Map: Detailed' national map product. For further information about the data, consult the 'User Guide for the Infiltration SuDS Map: Detailed', available from http://nora.nerc.ac.uk/16618/.

PART 1: SUMMARY DATA

This section provides a summary of the data on the following pages. In terms of the drainage potential, is the ground suitable for infiltration SuDS? Highly compatible for infiltration SuDS. The subsurface is likely to be suitable for free-draining infiltration SuDS. Probably compatible for infiltration SuDS. 22500 The subsurface is probably suitable although the design may be influenced by the ground conditions. Opportunities for bespoke infiltration SuDS. The subsurface is potentially suitable although the design 000 Crown Copyright and/or database will be influenced by the ground conditions. right 2016. All rights reserved. Licence number 100021290 EUL Very significant constraints are indicated. There is a very significant potential for one or more hazards associated with infiltration. is ground instability likely to be a problem? Increased infiltration is very unlikely to result in ground instability. Ground instability problems may be present or anticipated, but increased infiltration is unlikely to result in ground instability Ground instability problems are probably present. Increased infiltration may result in ground instability. There is a very significant potential for one or more geohazards associated with infiltration. Crown Copyright and/or database right 2016. All rights reserved. Licence number 100021290 EUL is the groundwater susceptible to deterioration in quality? The groundwater is not expected to be especially 203000 vulnerable to contamination. The groundwater may be vulnerable to contamination. nore 222500 The groundwater is likely to be vulnerable to contaminants. Made ground is present at the surface. Infiltration may 618500 6190 Crown Copyright and/or database increase the possibility of remobilising pollutants. right 2016. All rights reserved. Licence number 100021290 EUL

PART 2: DETAILED DATA

This section provides further information about the properties of the ground and will help assess the suitability of the ground for infiltration SuDS.

Section 1. Very significant constraints

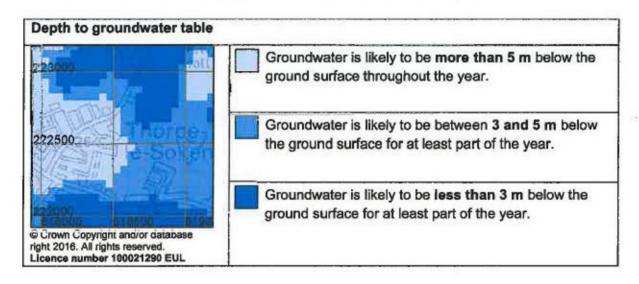
Where maps are overlain by grey polygons, geological or hydrogeological hazards may exist that could be made worse by infiltration. The following hazards are considered:

- soluble rocks
- landslides
- shallow mining
- shallow groundwater
- made ground

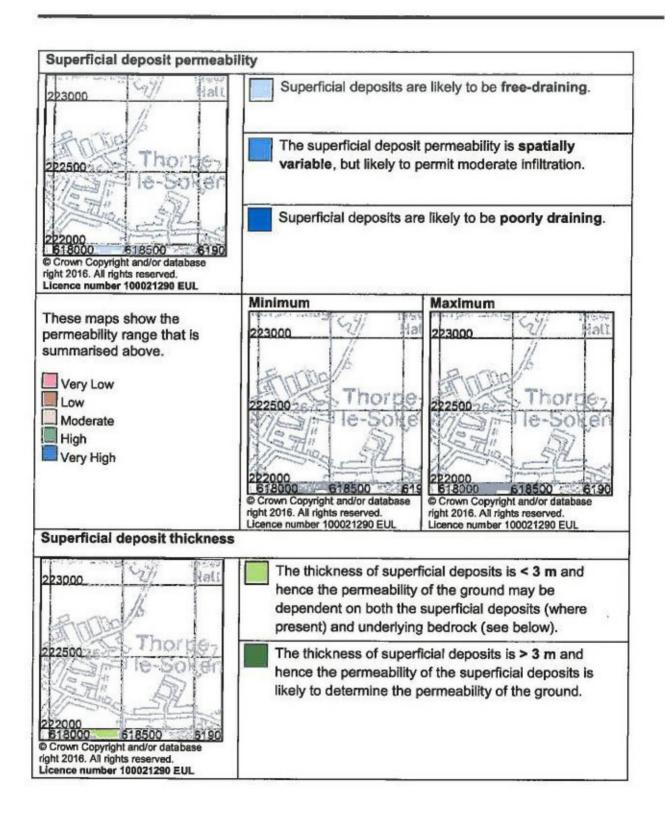
For more information read 'Explanation of terms' at the end of this report.

Soluble rock hazard	
222500 15 Thorne-	Very significant soluble rock hazard. Soluble rocks are present with a very significant possibility of localised subsidence that could be initiated or made worse by infiltration. The site investigation should consider whether the potential for or the consequences of subsidence as a result of infiltration are significant.
222000 618500 619 © Crown Copyright and/or database right 2016. All rights reserved. Licence number 100021290 EUL	Very significant soluble rock hazards are not present; however this hazard may still need to be considered. See Part 3.
Landslide hazard	Very significant landslide hazard.
222500 Thorpe-	Slope instability problems are almost certainly present and may be active. An increase in moisture content as a result of
222000 618500 6190 © Crown Copyright and/or database right 2016. All rights reserved. Licence number 100021290 EUL	Very significant landslide hazards are not present; however this hazard may still need to be considered. See Part 3.

Shallow mining hazard	T
222500 Thorred Page 100021290 EUL	Shallow mining is likely to be present with a very significant possibility of localised subsidence that could be initiated or made worse by increased infiltration. Also, infiltration may increase the possibility of remobilising pollutants. The site investigation should consider whether the potential for or consequences of subsidence and/or remobilisation of pollutants as a result of infiltration are significant. Very significant mining hazards are not present; however this hazard may still need to be considered. See Part 3.
Persistent shallow groundw	ater
222000 Thortes 222000 618500 6190 © Crown Copyright and/or database right 2016. All rights reserved. Licence number 100021290 EUL Made ground	Very high likelihood of persistent or seasonally shallow groundwater. Persistent or seasonally shallow groundwater is likely to be present. Infiltration may increase the likelihood of soakaway inundation, or groundwater emergence at the surface. The site investigation should consider whether the potential for or the consequences of groundwater level rise as a result of infiltration are significant. See Part 2 for the likely depth to water table.
223000 Thorney 222500 Thorney 222000 E18500 6190 © Crown Copyright and/or database right 2016. All rights reserved. Licence number 100021290 EUL	Made ground is present at the surface. Infiltration may affect ground stability or increase the possibility of remobilising pollutants. The site investigation should consider whether the potential for or consequences of ground instability and/or pollutant leaching as a result of infiltration are significant. None recorded

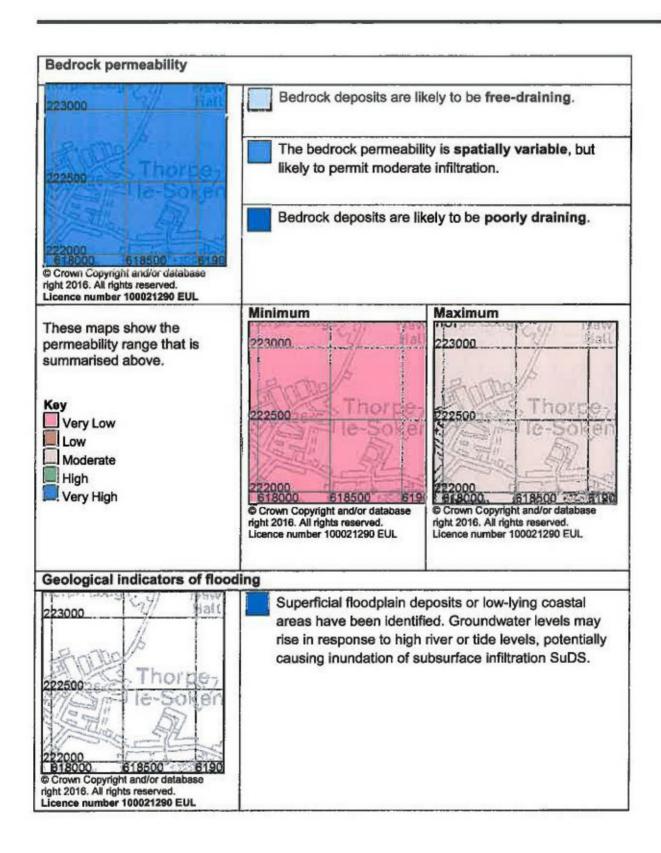

Section 2. Drainage potential

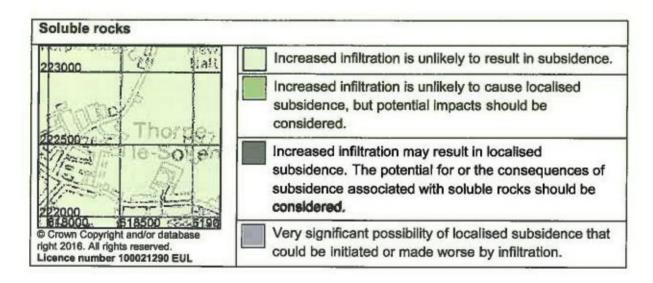
The following pages contain maps that will help you assess the drainage potential of the ground by considering the:


- depth to water table
- permeability of the superficial deposits
- thickness of the superficial deposits
- permeability of the bedrock
- presence of floodplains

Superficial deposits are not present everywhere and therefore some areas of the superficial deposit permeability map may not be coloured. Where this is the case, the bedrock permeability map shows the likely permeability of the ground. Superficial deposits in some places are very thin and hence in these places you may wish to consider both the permeability of the superficial deposits and the permeability of the bedrock. The superficial thickness map will tell you whether the superficial deposits are thin (< 3 m thick) or thick (>3 m). Where they are over 3 m thick, the permeability of the bedrock may not be relevant.

For more information read 'Explanation of terms' at the end of this report.





Section 3. Ground stability

The following pages contain maps that will help you assess whether infiltration may impact the stability of the ground. They consider hazards associated with:

- soluble rocks
- landslides
- shallow mining
- running sands
- swelling clays
- compressible ground, and
- collapsible ground

In the following maps, geohazards that are identified in green are unlikely to prevent infiltration SuDS from being installed, but they should be considered during design. For more information read 'Explanation of terms' at the end of this report.

Landslides	
223000 Hatt	Increased infiltration is unlikely to lead to slope instability.
22250026 Thorpe-	Slope instability problems may be present or anticipated, but increased infiltration is unlikely to cause instability
272000	Slope instability problems are probably present or have occurred in the past, and increased infiltration may result in slope instability.
© Crown Copyright and/or database right 2016. All rights reserved. Licence number 100021290 EUL	Slope instability problems are almost certainly present and may be active. An increase in moisture content as a result of infiltration may cause the slope to fail.
Shallow mining	Part of the Committee o
223000 C24 latt	Increased infiltration is unlikely to lead to subsidence.
Thousand Thousand	Shallow mining is possibly present. Increased infiltration is unlikely to cause a geohazard, but potential impacts should be considered.
202500 P	Shallow mining could be present with a significant possibility that localised subsidence could be initiated or made worse by increased infiltration.
272000 618500 61800 © Crown Copyright and/or database right 2016. All rights reserved. Licence number 100021290 EUL	Shallow mining is likely to be present, with a very significant possibility that localised subsidence may be initiated or made worse by increased infiltration.
Running sand	
223000 (att	Increased infiltration is unlikely to cause ground collapse associated with running sands.
22250020 Thorpe-	Running sand is possibly present. Increased infiltration is unlikely to cause a geohazard, but potential impacts should be considered.
272000 18500 5190 © Crown Copyright and/or database	Significant possibility for running sand problems. Increased infiltration may result in a geohazard.
right 2016. All rights reserved. Licence number 100021290 EUL.	

Swelling clays			
223000 Hatt	Increased infiltration is unlikely to cause shrink-swell ground movement.		
Thorpe,	Ground is susceptible to shrink-swell ground movement. Increased infiltration is unlikely to cause a geohazard, but potential impacts should be considered.		
222000 618000 518500 6193 © Crown Copyright and/or database right 2016. All rights reserved. Licence number 100021290 EUL	Ground is susceptible to shrink-swell ground movement. Increased infiltration may result in a geohazard.		
Compressible ground			
223000 Hali	Increased infiltration is unlikely to lead to ground compression.		
222500 Th. 222000 518500 6190 6 Crown Copyright and/or database right 2016. All rights reserved. Licence number 100021290 EUL	Compressibility and uneven settlement hazards are probably present. Increased infiltration may result in a geohazard.		
Collapsible ground			
223000 Hail	Increased infiltration is unlikely to result in subsidence.		
Thornes lessonen	Deposits with potential to collapse when loaded and saturated are possibly present in places. Increased infiltration is unlikely to cause a geohazard, but potential impacts should be considered.		
272000 \$18500 \$6190 \$18000 \$18500 \$6190 © Crown Copyright and/or database ight 2016. All rights reserved. Licence number 100021290 EUL	Deposits with potential to collapse when loaded and saturated are probably present in places. Increased infiltration may result in a geohazard.		

Section 4. Groundwater quality protection

The following pages contain maps showing some of the information required to ensure the protection of groundwater quality. Data presented includes:

- groundwater source protection zones (Environment Agency data)
- predominant flow mechanism
- made ground

For more information read 'Explanation of terms' at the end of this report.

Groundwater source protec	tion zones
223000 9/ jiati	Groundwater is not within a source protection zone.
a make	Source protection zone IV
Thorne,	Source protection zone III
le-Sollen	Source protection zone II
222000 618000 618500 61900 Crown Copyright and/or database ight 2016. All rights reserved. Licence number 100021290 EUL Derived in part from Source Protection cone data provided under licence from the province of the control of the	
23000 7 fatt	Water is likely to percolate through the unsaturated zone to the groundwater through either the pore space in granular media or through porespace and fractures; these processes have some potential for contaminant removal and breakdown.
22000 618000 518500 5190 0 Crown Copyright and/or database ght 2016. All rights reserved.	Water is likely to percolate through the unsaturated zone to the groundwater through fractures, a process which has little potential for contaminant removal and breakdown.

Made ground	
2223000 Thorder 2223000 Thorder 16-Solien 222000 618500 5190	Made ground is present at the surface. Infiltration may increase the possibility of remobilising pollutants.
© Crown Copyright and/or database right 2016. All rights reserved. Licence number 100021290 EUL	

Section 5. Geological Maps

The following maps show the artificial, superficial and bedrock geology within the area of interest.

Artificial deposits

223000 Hatt

ThorpeP225002e ThorpeP22000 618000 61800

© Crown Copyright and/or database right 2016. All rights reserved. Licence number 100021290 EUL Superficial deposits

223000

Thorpe

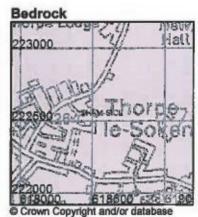
Person

In the Solvent

Person

In the Solvent

Person


In the Solvent

Person

In the Solvent

In the S

© Crown Copyright and/or database right 2016. All rights reserved. Licence number 100021290 EUL

 Crown Copyright and/or database right 2016. All rights reserved.
 Licence number 100021290 EUL

Fault

Coal, ironstone or mineral vein

Note: Faults and Coals, ironstone & mineral veins are shown for illustration and to aid interpretation of the map. Not all such features are shown and their absence on the map face does not necessarily mean that none are present

Key to Artificial deposits:

No deposits recorded by BGS in the search area

Key to Superficial deposits:

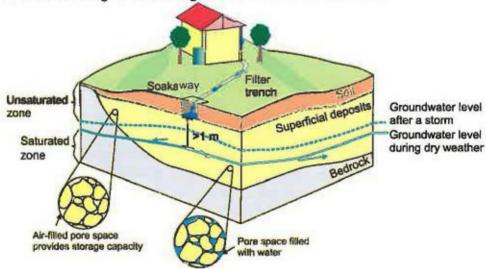
Map colour	Computer Code	Rock name	Rock type
	KGCA-XSV	KESGRAVE CATCHMENT SUBGROUP	SAND AND GRAVEL [UNLITHIFIED DEPOSITS CODING SCHEME]

Key to Bedrock geology:

Map colour	Computer Code	Rock name	Rock type	
	THAM-SICL	THAMES GROUP	CLAY, SILTY	

Limitations of this report:

- This report is concerned with the potential for infiltration-to-the-ground to be used as a SuDS technique at the site described. It only considers the subsurface beneath the search area and does NOT consider potential surface or subsurface impacts outside of that area.
- This report is NOT an alternative for an on-site investigation or soakaway test, which might reach a different conclusion.
- . This report must NOT be used to justify disposal of foul waste or grey water.
- This report is based on and limited to an interpretation of the records held by the British Geological Survey (BGS) at the time the search is performed. The datasets used (with the exception of that showing depth to water table) are based on 1:50 000 digital geological maps and not site-specific data.
- Other more specific and detailed ground instability information for the site may be held by BGS, and an assessment of this could result in a modified assessment.
- . To interpret the maps correctly, the report must be viewed and printed in colour.
- . The search does NOT consider the suitability of sites with regard to:
 - o previous land use.
 - o potential for, or presence of contaminated land
 - presence of perched water tables
 - shallow mining hazards relating to coal mining. Searches of coal mining should be carried out via The Coal Authority Mine Reports Service: www.coalminingreports.co.uk.
 - o made ground, where not recorded
 - proximity to landfill sites (searches for landfill sites or contaminated land should be carried out through consultation with local authorities/Environment Agency)
 - zones around private water supply boreholes that are susceptible to groundwater contamination.
- This report is supplied in accordance with the GeoReports Terms & Conditions available separately, and the copyright restrictions described at the end of this report



Explanation of terms

Depth to groundwater

In the shallow subsurface, the ground is commonly unsaturated with respect to water. Air fills the spaces within the soil and the underlying superficial deposits and bedrock. At some depth below the ground surface, there is a level below which these spaces are full of water. This level is known as the groundwater level, and the water below it is termed the groundwater. When water is infiltrated, the groundwater level may rise temporarily. To ensure that there is space in the unsaturated zone to accommodate this, there should be a minimum thickness of 1 m between the <u>base</u> of the infiltration system and the <u>water table</u>. An estimate of the *depth to groundwater* is therefore useful in determining whether the ground is suitable for infiltration.

Groundwater flooding

Groundwater flooding occurs when a rise in groundwater level results in very shallow groundwater or the emergence of groundwater at the surface. If infiltration systems are installed in areas that are susceptible to groundwater flooding, it is possible that the system could become inundated. The susceptibility map seeks to identify areas where the geological conditions and water tables indicate that groundwater level rise could occur under certain circumstances. A high susceptibility to groundwater flooding classification does not mean that groundwater flooding has ever occurred in the past, or will do so in the future as the susceptibility maps do not contain information on how often flooding may occur. The susceptibility maps are designed for planning; identifying areas where groundwater flooding might be an issue that needs to be taken into account.

Page: 18 of 24

BGS Report No: GR_213283/1

Geological indicators of flooding

In floodplain deposits, groundwater level can be influenced by the water level in the adjacent river. Groundwater level may increase during periods of fluvial flood and therefore this should be taken into account when designing infiltration systems on such deposits. The geological indicators of flooding dataset shows where there is geological evidence (floodplain deposits) that flooding has occurred in the past.

For further information on flood-risk, the likely frequency of its recurrence in relation to any proposed development of the site, and the status of any flood prevention measures in place, you are advised to contact the local office of the Environment Agency (England and Wales) at www.environment-agency.gov.uk/ or the Scottish Environment Protection Agency (Scotland) at www.sepa.org.uk/.

Artificial ground

Artificial ground comprises deposits and excavations that have been created or modified by human activity. It includes ground that is worked (quarries and road cuttings), infilled (back-filled quarries), landscaped (surface re-shaping), disturbed (near surface mineral workings) or classified as made ground (embankments and spoil heaps). The composition and properties of artificial ground are often unknown. In particular, the permeability and chemical composition of the artificial ground should be determined to ensure that the ground will drain and that any contaminants present will not be remobilised.

Superficial permeability

Superficial deposits are those geological deposits that were formed during the most recent period of geological time (as old as 2.6 million years before present). They generally comprise relatively thin deposits of gravel, sand, silt and clay and are present beneath the pedological soil in patches or larger spreads over much of Britain. The ease with which water can percolate through these deposits is controlled by their permeability and varies widely depending on their composition. Those deposits comprising clays and silts are less permeable and thus infiltration is likely to be slow, such that water may pool on the surface. In comparison, deposits comprising sands and gravels are more permeable allowing water to percolate freely.

Bedrock permeability

Bedrock forms the main mass of rock forming the Earth. It is present everywhere, commonly beneath superficial deposits. Where the superficial deposits are thin or absent, the ease with which water will percolate into the ground depends on the permeability of the bedrock.

Natural ground instability

Natural ground instability refers to the propensity for upward, lateral or downward movement of the ground that can be caused by a number of natural geological hazards (e.g. ground dissolution/compressible ground). Some movements associated with particular hazards may be gradual and of millimetre or centimetre scale, whilst others may be sudden and of metre or tens of metres scale. Significant natural ground instability has the potential to cause damage to buildings and structures, especially when the drainage characteristics of a site are altered. It should be noted, however, that many buildings, particularly more modern ones, are built to such a standard that they can remain unaffected in areas of significant ground movement.

Shrink-swell

A shrinking and swelling clay changes volume significantly according to how much water it contains. All clay deposits change volume as their water content varies, typically swelling in winter and shrinking in summer, but some do so to a greater extent than others. Contributory circumstances could include drought, leaking service pipes, tree roots drying-out the ground or changes to local drainage patterns, such as the creation of soakaways. Shrinkage may remove support from the foundations of buildings and structures, whereas clay expansion may lead to uplift (heave) or lateral stress on part or all of a structure; any such movements may cause cracking and distortion.

Landslides (slope stability)

A landslide is a relatively rapid outward and downward movement of a mass of ground on a slope, due to the force of gravity. A slope is under stress from gravity but will not move if its strength is greater than this stress. If the balance is altered so that the stress exceeds the strength, then movement will occur. The stability of a slope can be reduced by removing ground at the base of the slope, by placing material on the slope, especially at the top, or by increasing the water content of the materials forming the slope. Increase in subsurface water content beneath a soakaway could increase susceptibility to landslide hazards. The assessment of landslide hazard refers to the stability of the present land surface. It does not encompass a consideration of the stability of excavations.

Soluble rocks (dissolution)

Some rocks are soluble in water and can be progressively removed by the flow of water through the ground. This process tends to create cavities, potentially leading to the collapse of overlying materials and possibly subsidence at the surface. The release of water into the subsurface from infiltration systems may increase the dissolution of rock or destabilise material above or within a cavity. Dissolution cavities may create a pathway for rapid transport of contaminated water to an aquifer or water course.

Page: 20 of 24

BGS Report No: GR_213283/1

Compressible ground

Many ground materials contain water-filled pores (the spaces between solid particles). Ground is compressible if a building (or other load) can cause the water in the pore space to be squeezed out, causing the ground to decrease in thickness. If ground is extremely compressible the building may sink. If the ground is not uniformly compressible, different parts of the building may sink by different amounts, possibly causing tilting, cracking or distortion. The compressibility of the ground may alter as a result of changes in subsurface water content caused by the release of water from soakaways.

Collapsible deposits

Collapsible ground comprises certain fine-grained materials with large pore spaces (the spaces between solid particles). It can collapse when it becomes saturated by water and/or a building (or other structure) places too great a load on it. If the material below a building collapses it may cause the building to sink. If the collapsible ground is variable in thickness or distribution, different parts of the building may sink by different amounts, possibly causing tilting, cracking or distortion. The subsurface underlying a soakaway will experience an increase in water content that may affect the stability of the ground. This hazard is most likely to be encountered only in parts of southern England.

Running sand

Running sand conditions occur when loosely-packed sand, saturated with water, flows into an excavation, borehole or other type of void. The pressure of the water filling the spaces between the sand grains reduces the contact between the grains and they are carried along by the flow. This can lead to subsidence of the surrounding ground. Running sand is potentially hazardous during the drainage system installation. During installation, excavation of the ground may create a space into which sand can flow, potentially causing subsidence of surrounding ground.

Shallow mining hazards (non coal)

Current or past underground mining for coal or for other commodities can give rise to cavities at shallow or intermediate depths, which may cause fracturing, general settlement, or the formation of crown-holes in the ground above. Spoil from mineral workings may also present a pollution hazard. The release of water into the subsurface from soakaways may destabilise material above or within a cavity. Cavities arising as a consequence of mining may also create a pathway for rapid transport of contaminated water to an aquifer or watercourse. The mining hazards map is derived from the geological map and considers the potential for subsidence associated with mining on the basis of geology type. Therefore if mining is known to occur within a certain rock, the map will highlight the potential for a hazard within the area covered by that geology.

For more information regarding underground and opencast **coal mining**, the location of mine entries (shafts and adits) and matters relating to subsidence or other ground movement induced by **coal mining** please contact the Coal Authority, Mining Reports, 200 Lichfield Lane, Mansfield, Nottinghamshire, NG18 4RG; telephone 0845 762 6848 or at www.coal.gov.uk. For more information regarding other types of mining (i.e. non-coal), please contact the British Geological Survey.

Groundwater source protection zones

In England and Wales, the Environment Agency has defined areas around wells, boreholes and springs that are used for the abstraction of public drinking water as source protection zones. In conjunction with Groundwater Protection Policy the zones are used to restrict activities that may impact groundwater quality, thereby preventing pollution of underlying aquifers, such that drinking water quality is upheld. The Environment Agency can provide advice on the location and implications of source protection zones in your area (www.environment-agency.gov.uk/)

Page: 22 of 24

BGS Report No: GR_213283/1

Contact Details

Keyworth (KW) Office

British Geological Survey

Environmental Science Centre

Nicker Hill

Keyworth

Nottingham

NG12 5GG

Tel: 0115 9363143

Fax: 0115 9363276

Email: enquiries@bgs.ac.uk

Wallingford (WL) Office

British Geological Survey Maclean Building Wallingford Oxford OX10 8BB

Tel: 01491 838800 Fax: 01491 692345

Email: hydroenq@bgs.ac.uk

Murchison House (MH) Office

British Geological Survey Murchison House West Mains Road Edinburgh EH9 3LA

Tel: 0131 650 0207 Fax: 0131 650 0252

Email: enquiry@bgs.ac.uk

Terms and Conditions

General Terms & Conditions

This Report is supplied in accordance with the GeoReports Terms & Conditions available on the BGS website at https://shop.bgs.ac.uk/georeports and also available from the BGS Central Enquiries Desk at the above address.

Important notes about this Report

- The data, information and related records supplied in this Report by BGS can only be indicative and should not
 be taken as a substitute for specialist interpretations, professional advice and/or detailed site investigations.
 You must seek professional advice before making technical interpretations on the basis of the materials
 provided.
- Geological observations and interpretations are made according to the prevailing understanding of the subject at
 the time. The quality of such observations and interpretations may be affected by the availability of new data, by
 subsequent advances in knowledge, improved methods of interpretation, and better access to sampling
 locations.
- Raw data may have been transcribed from analogue to digital format, or may have been acquired by means of automated measuring techniques. Although such processes are subjected to quality control to ensure reliability where possible, some raw data may have been processed without human intervention and may in consequence contain undetected errors.
- Detail, which is clearly defined and accurately depicted on large-scale maps, may be lost when small-scale maps are derived from them.
- Although samples and records are maintained with all reasonable care, there may be some deterioration in the long term.
- The most appropriate techniques for copying original records are used, but there may be some loss of detail and dimensional distortion when such records are copied.
- Data may be compiled from the disparate sources of information at BGS's disposal, including material donated to BGS by third parties, and may not originally have been subject to any verification or other quality control process.
- Data, information and related records, which have been donated to BGS, have been produced for a specific
 purpose, and that may affect the type and completeness of the data recorded and any interpretation. The
 nature and purpose of data collection, and the age of the resultant material may render it unsuitable for certain
 applications/uses. You must verify the suitability of the material for your intended usage.
- If a report or other output is produced for you on the basis of data you have provided to BGS, or your own data
 input into a BGS system, please do not rely on it as a source of information about other areas or geological
 features, as the report may omit important details.
- The topography shown on any map extracts is based on the latest OS mapping and is not necessarily the same
 as that used in the original compilation of the BGS geological map, and to which the geological linework
 available at that time was fitted.
- Note that for some sites, the latest available records may be quite historical in nature, and while every effort is
 made to place the analysis in a modern geological context, it is possible in some cases that the detailed geology
 at a site may differ from that described.

Copyright:

Copyright in materials derived from the British Geological Survey's work, is owned by the Natural Environment Research Council (NERC) and/ or the authority that commissioned the work. You may not copy or adapt this publication, or provide it to a third party, without first obtaining NERC's permission, but if you are a consultant purchasing this report solely for the purpose of providing advice to your own individual client you may incorporate it unaltered into your report to that client without further permission, provided you give a full acknowledgement of the source. Please contact the BGS Copyright Manager, British Geological Survey, Environmental Science Centre, Nicker Hill, Keyworth, Nottingham NG12 5GG. Telephone: 0115 936 3100.

This product includes mapping data licensed from the Ordnance Survey® with the permission of the Controller of Her Majesty's Stationery Office. © Crown Copyright 2016. All rights reserved. Licence number 100021290 EUL

Page: 24 of 24

BGS Report No: GR_213283/1

Report issued by BGS Enquiry Service

LEGEND:

Site boundary

Trial pit location

geosphere environmental ltd

Brightwell Ipswich Brightwell, Suffolk, IP10 OBJ

SITE

Landermere Road, Thorpe-le-Soken, CO16 0LW

TITLE **Exploratory Hole Location Plan**

CLIENT Scott Properties Ltd PROJECT NO. 1696, EC, AR, DS, SK DRAWN BY PC

DRAWING NO. 002 / Rev 0 CHECKED


DATE March 2016 SCALE Not to scale

Project			LANCE OF THE STREET	Client	colline of the Decor				TRIAL PIT No
	ermere R	oad, Thorpe-le-Sol		Scott Properties					TP1
Job No 1696,EC,A	AR.DS.SK	Date 12-03-16 12-03-16	Groun	d Level (m)	Co-Ordinate	es ()			
Fieldwork B		12 03 10	Li	Logged By					Sheet
DRIL				SG					1 of 1
Depth	454 NASSA (A45 455 558)		DESCRIPT			Legend	Depth	No	
-		rown very clayey sand							No groundwater encountered during excavation No collapse of sidewalls during excavation
-									Trial pit completed at 1.5
All dimensio	- 1.6	→				202			
All dimension	ns in metro	0.35 L es Method Trial Pit/	trench	Plant	Sh St UsedMECHAN EXCAVA		upport: Stable	Non	e Checked By

Project				Client					TRIAL PIT No
Lar	dermere R	toad, Thorpe-le-Sol		Scott Properties					TD2
Job No		Date 12-03-16	Groun	d Level (m)	Co-Ordinates	s ()			TP2
2	,AR,DS,SK	12-03-16		45.	-15				
Fieldwork				Logged By					Sheet
DR	ILLT			SG					1 of 1
Depth			DESCRIPT			Legend	Depth	No	
0.30-1.00					tlets)			NO	No groundwater encountered during excavation No collapse of sidewalls during excavation Trial pit completed at 1.0m
3S TP BETA 1696, EC. AR, DS, SK LANDERMERE RD, THORPE LE SOKEN, 17-03-2016.6	1.6	0,35		Tax	Sta	bility: !	upport: Stable	Non	
Scale 1:14.1	ions in metri 16666666666	es Method Trial Pit/ 667	trench	Plant	UsedMECHAN EXCAVAT	Checked By			

		00	- 8	INIALITI					38
Project				Client					TRIAL PIT No
	dermere R	Road, Thorpe-le-Sol			roperties	Λ.			TP3
Job No 1696.EC	,AR,DS,SK	Date 12-03-16 12-03-16	Ground	Level (m)	Co-Ordinates	()			
Fieldwork				Logged By					Sheet
DRI	LLT			SG					1 of 1
Depth	11		DESCRIPTION	ON		Legend	Depth	No	Remarks/Tests
0.00-0.40	TOPSOIL (V	ery clayey sand)			85		7.201		No groundwater encountered during excavation
All dimens	Pale brown	n/yellow/grey mottled	CLAY						No collapse of sidewalls during excavation Trial pit completed at 1.0m
 -	1.6	_ +							
		0.35		Tarana	Stat	oility: S	upport: Stable	Non	
All dimens Scale 1:14.1	ions in metro .6666666666	es Method Trial Pit/ 667	trench	Plant	UsedMECHANI EXCAVATO				Checked By

Project				Client					TRIAL PIT No
	dermere P	Road, Thorpe-le-Sol	ken	Scott	Properties				ANTICONOMIC TO SECURITION OF THE PERSON OF T
Job No		Date 12-03-16		nd Level (m)	Co-Ordinates	s ()			TP4
1696,EC	,AR,DS,SK	12-03-16							
Fieldwork			10	Logged By					Sheet
DRI	LLT			SG					1 of 1
Depth	ii.		DESCRIP	TION		Legend	Depth	No	Remarks/Tests
0.00-0.40	TOPSOIL (V	ery clayey sand)							No groundwater encountered during
-	-				8	-			excavation
	_				9.]			80 VI SW1325 3V
									No collapse of sidewalls during excavation
	-				-				===044500
0.40-1.50	Pale brown	CLAV							
0.40-1.50	- raic blowi	CLAT			5				
					98				
	-				8.	+===			
	_								
						===			
1	-					===			
-					-				
	_					두극			
	-				8				
5	-				33	===			
						===			
									Trial pit completed at 1.5m
	7					1			
	ia.								
2									
á l									
1									
6									
5	1.7								
	1,7	-10							
					Ch.	i/C.		Man	
5		0.35			Sta	oring/Stability: S	upport: Stable	NON	е
All dimens	ions in metr	es Method Trial Pit/	trench	Plant	UsedMECHAN	ICAL			Checked By
Scale 1:14.1	66666666666	667	A SHALL		EXCAVAT				

Project				Client					TRIAL PIT No
Lan	dermere F	Road, Thorpe-le-Sol	ken	Scott	Properties				Market Street
Job No		Date 12-03-16		nd Level (m)	Co-Ordinate:	s ()			TP5
1696,EC	,AR,DS,SK	12-03-16	1800,000,000		. 150 010 0154-100-100-100				
Fieldwork		1	19	Logged By					Sheet
DRI	ILLT			SG					1 of 1
Depth			DESCRIP	TION		Legend	Depth	No	Remarks/Tests
0.00-0.40	TOPSOIL (V	/ery clayey sand)					Deptil	110	No groundwater encountered during
43	-					-			encountered during excavation
L									VO 10
.0.0									No collapse of sidewalls during excavation
23	-					1			
0.40-1.30	Pale brown	CLAV							
0.40-1.30	Pale brown	ICLAT							
						1			
*	-					士士			
2	-					+===			
2.5	-					七三			
_	_								
	-					1			
1 00	-								
									Trial pit completed at 1.3m
	7					1			
1	_					-			
-37	_					4			
-	1.6	-							
		Ŧ				1 20			
		0.35			Sh	oring/Su ability: S	upport:	Non	e
					Sle	omity: 3	stable		
All dimens	ions in metr	es Method Trial Pit/	trench	Plant	UsedMECHAN	IICAL			Checked By
Scale 1:14.1	16666666666	567			EXCAVAT	OR			

Project				Client					TRIAL PIT No
	dermere F	load, Thorpe-le-Sol	ken	2.000 (200)	Properties				Assistance Annual Control of the Con
Job No		Date 12-03-16		nd Level (m)	Co-Ordinates	()			TP6
1696,EC	,AR,DS,SK	12-03-16							
Fieldwork			100	Logged By					Sheet
DR	ILLT			SG					1 of 1
Depth			DESCRIPT	TION		Legend	Depth	No	
0.00-0.30 0.30-1.50	TOPSOIL (V	rery clayey sand)	DESCRIP	TION			Бертп	NO	No groundwater encountered during excavation No collapse of sidewalls during excavation
									Trial pit completed at 1.5m
-	1.6	▼ 0.35 ↓			Sho	oring/Subility: S	upport: Stable	Non	e
All dimens Scale 1:14.1	ions in metr 166666666666	es Method Trial Pit/	trench	Plant	UsedMECHAN EXCAVAT	ICAL OR			Checked By

1696,EC,AR,DS,SK 12-03-16	Project	dermere P	Road Thorne-le-So	kon	Client Scott P	TRIAL PIT No				
Fieldwork By DRILLT Depth DESCRIPTION Depth Clogend Depth No Remarks/Tests D.00-0.30 TOPSOIL (Very clayey sand) Depth DESCRIPTION DESCRIPTION Depth No Remarks/Tests No groundwater encountered during excavation No collapse of sidewalls during excavation No collapse of sidewalls during excavation Trial pit completed at 1.	Job No		Date 12-03-16				s ()			TP7
DRILLT Depth DESCRIPTION DESCRIPTION DESCRIPTION Legend Depth No Remarks/Tests No groundwater encountered during excavation No collapse of sidewalls during excavation Pale brown CLAY Trial pit completed at 1.			12-03-10		Logged By					Sheet
No groundwater encountered during excavation No collapse of sidewalls during excavation Pale brown CLAY Trial pit completed at 1.										12 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
excavation No collapse of sidewalls during excavation Pale brown CLAY Trial pit completed at 1.				DESCRIPT	ION		Legend	Depth	No	Remarks/Tests
	0.30-1.50									excavation No collapse of sidewalls
All dimensions in metres Method Trial Pit/trench Plant Used MECHANICAL Checked By	I	1.65	→			Sho	pring/S	upport:	Non	Trial pit completed at 1.5
cale 1:14.166666666667 EXCAVATOR	All dimensi	ons in metr	es Method Trial Pit/	trench	Plant	UsedMECHAN	ICAL			Checked By

Project				Client					TRIAL PIT No
	dermere R	load, Thorpe-le-Sol		Scott Properties					TP8
Job No		Date 12-03-16	Groun	d Level (m)	Co-Ordinates	()			IFO
	AR,DS,SK	12-03-16							
Fieldwork 8				Logged By					Sheet
DRIL	.LT			SG				_	1 of 1
Depth			DESCRIPT	ION		Legend	Depth	No	Remarks/Tests
0.00-0.30	0.00-0.30 TOPSOIL (Very clayey sand) O.30-1.50 Pale brown CLAY								No groundwater encountered during excavation No collapse of sidewalls during excavation Trial pit completed at 1.5m
Selades in 1703-2016, Sk. LANDERMEHE RD. THORPE LE SOKEN, 17-03-2016, Sp. 150D 177316 Scale 1:14-116	1.9	0.35 L			Sho	oring/Si bility: \$	upport: Stable	Non-	e
All dimension	ons in metro 5666666666	Method Trial Pit/	trench	Plant	UsedMECHAN EXCAVAT	ICAL OR			Checked By

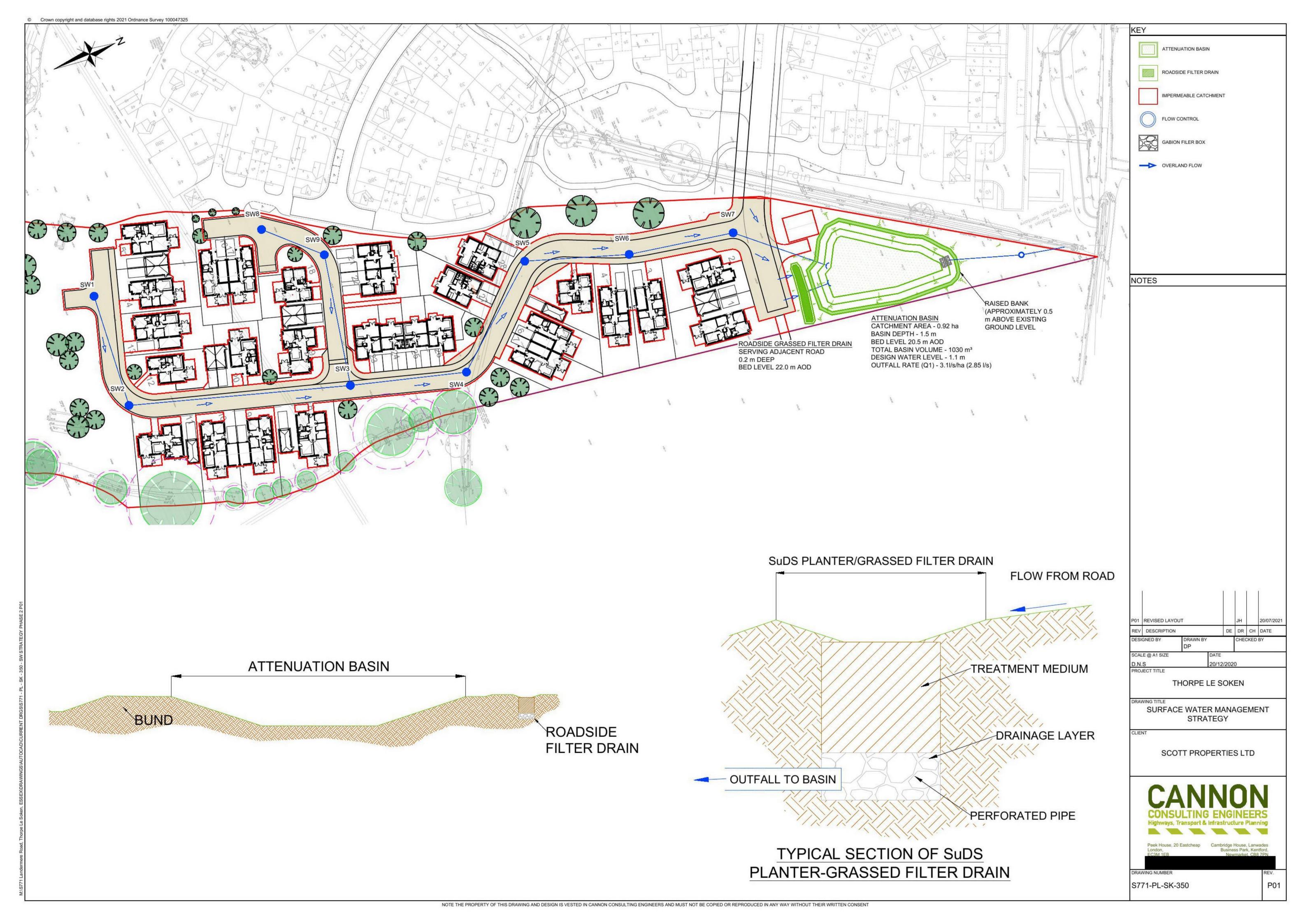
Project	ndermere F	Road, Thorpe-le-So	ken	Client Scott		TRIAL PIT No			
Job No	,AR,DS,SK	Date 12-03-16 12-03-16		d Level (m)	Co-Ordinate	s ()			TP9
Fieldwork		12 03 10	-	Logged By	-				Sheet
Provide and the first of	ILLT			SG					1 of 1
Depth		ewillia 200 V	DESCRIPTI		Tell C	Legend	Depth	No	
Depth 0.00-0.35	Orange brobrown/pale	Dark grey clay with occording to the property of the grey partings of pale of the surface with pale blue.	Y with occa	vel of fine flin	ange ne present with		Depth	No	Remarks/Tests No groundwater encountered during excavation No collapse of sidewalls during excavation Trial pit completed at 1.5m
All dimens	1.7	▼				oring/Subility:	upport:	Non	e
	2000 validores de 2000	-		- I	1317496				Ch. J. J.
Scale 1:14.	ions in metr 166666666666	es Method Trial Pit/ 567	trench	Plant	UsedMECHAN EXCAVAT				Checked By

Project				Client					TRIAL PIT No
Lan	dermere P	Road, Thorpe-le-Sol	ken	Scott	Properties				17. 10 (16.00 Apr. 17.00
Job No		Date 12-03-16		nd Level (m)	Co-Ordinates	()			TP10
1696,EC	,AR,DS,SK	12-03-16	140000000						
Fieldwork				Logged By					Sheet
DR	ILLT			SG					1 of 1
Depth	ļi.		DESCRIPT	TION		Legend	Depth	No	Remarks/Tests
0.30-1.50	Pale brown	rery clayey sand)	DESCRIF				Depth	NO	No groundwater encountered during excavation No collapse of sidewalls during excavation
-	- 1.7	▼ 0.35 <u>†</u>			Sho	oring/Subility:	upport: Stable	Non	Trial pit completed at 1.5m
All dimens Scale 1:14.1	ions in metr 16666666666	es Method Trial Pit/	trench	Plant	UsedMECHAN EXCAVAT				Checked By

Project				Client					TRIAL PIT No
Lan	dermere P	Road, Thorpe-le-Sol	ken	Scott	Properties				TD11
Job No		Date 12-03-16	Grou	nd Level (m)	Co-Ordinates	s ()			TP11
1696,EC	AR,DS,SK	12-03-16		×.	-0.5				
Fieldwork				Logged By					Sheet
DRI	LLT			SG					1 of 1
Depth		4.5 - 15	DESCRIP'	TION		Legend	Depth	No	
0.00-0.30	Pale brown	r CLAY	DESCRIP				Бери	NO	No groundwater encountered during excavation No collapse of sidewalls during excavation
						F==1			Trial pit completed at 1.5m
+	1.6	→ 0,35 ↓			She Sta	oring/Subility:	upport: Stable	Non	e
All dimens Scale 1:14.1	ions in metro 66666666666	es Method Trial Pit/	trench	Plant	UsedMECHAN EXCAVAT	ICAL OR			Checked By

Project	dormoro P	Road, Thorpe-le-So	kon	Client Scott P	TRIAL PIT No				
Job No	AR,DS,SK	Date 12-03-16 12-03-16		d Level (m)	Co-Ordinates	()			TP12
Fieldwork		12-03-16		Logged By					Sheet
DRI				SG					1 of 1
Depth		A	DESCRIPT	ION		Legend	Depth	No	Remarks/Tests
0.30-1.50	Pale brown	r CLAY							No groundwater encountered during excavation No collapse of sidewalls during excavation
									Trial pit completed at 1.5r
H	0ns în metro	_							
All dimensi	ons in metro	es Method Trial Pit/	trench/	Plant	Sta UsedMECHAN EXCAVAT	bility: !	upport: Stable	NOI	Checked By

	Pit Size [m]					Pit		TP	2		R	un	3	1 of	1	-340			
Length	Width	Depth				Tes	Date							12/0	3/201	6			
1.60	0.35	1.50				Gro	undw	ater	Enco	unter	ed at:		1	n/a					
Time [min]	Depth to Water [mbgl]						arks as no		ssible	to ur	idertak	ke full-depth	soal	kaw	ay tes	st. Ma	xim	num wate	er depth
0.0	0.87					ach	eved	in th	e test	t = 0.8	37mbg	I							
0.5	0.87																		
1.0	0.87								C	naka	ge Rate	0					Tin	ne [min]	
2.0	0.87								3	Vakd	ge real	C							
3.0	0.87																		
4.0	0.87			3	0	50	1	00	150)	200	250	00		350	40	00	450	
5.0	0.87			0.00												,,,			
10.0	0.87			0.10	1000														
15.0	0.87			0.20						Щ				Ш					
20.0	0.87			0.30															
30.0	0.87			0.40							100								
45.0	0.87																		
60.0	0.87			0.50															
120.0	0.87		lg light	0.60															
180.0	0.87		m du	0.70					m	m									
240.0	0.87		Depth [mbgl]	0.80														g may	
300.0	0.87		dec	0.90															
360.0	0.87			1.00															
420.0	0.87			1.10															
				1.20															
				1.30										Щ					
-1.				1.40										Ш					
				1.50	100														
				1.00						→ V	Vater D)enth							
								mbi				ound level							
			i											i			9	i	
TE ndermere Roa	d, Thorpe-le-Soke	n	Scott Proper	ties					ORT N			TE SUPERVISIO		CHEC SG	CKED I	ВҮ		DATE 17 March	h 2016


	Pit Size [m]					Pit		TF	8		R	tun		1 0	of 1	Sec. 10.34			
Length	Width	Depth				Tes	t Date	9						12/	03/2	016			
1.90	0.35	1.50				Gro	undv	ater	Enc	ounte	red at:			n/a	1				
Time [min]	Depth to Water [mbgl]						as no		ssibl	e to u	nderta	ke full-dep	th so	akav	way 1	test.	Maxi	mun	n water dept
0.0	0.730					ach	ieved	in t	he te	st = 0	.735mb	bgl							
0.5	0.730											- R							
1.0	0.730									Cooks	as Bal	40					T	ime [min
2.0	0.730									JUAK	age Rat	le							and a second
3.0	0.730																		
4.0	0.735		1		0	50		00	4	50	200	250	300		350		400		450
5.0	0.735			0.00				1	,		200	200	300		330		700		
10.0	0.735			0.10 -															- 1
15.0	0.735			0.20 -			Ш							Щ					
20.0	0.735			0.30															
30.0	0.735			0.40 -															02-8
45.0	0.735																		
60.0	0.735			0.50															
120.0	0.735		lg li	0.60 -															
180.0	0.735		m du	0.70	****							-	+			•		•	
240.0	0.735		Depth [mbgl]	0.80 -															
300.0	0.735		də	0.90 -											++				
360.0	0.735			1.00 -			-				-8 00								66 86
420.0	0.735			1.10															
				1.20 -				1											
				1.30 -				-					4		4			4	
-1.				1.40 -															
				1.50 -															
				1.50						-	Water [Denth							
								mh	ngl - n			round level							
								4											//
TE ndermere Roa	d, Thorpe-le-Soke	n	Scott Proper	ties					PORT 96,EC	NO AR,DS		ITE SUPERVIS	SION	SG	ECKE	D BY		DA 17	TE March 2016

	Pit Size [m]					P	it	87	rP9			Rui	n			1 of	1					
Length	Width	Depth				T	est D	ate								12/0	3/20	16				
1.70	0.35	1.50				G	rour	dwat	er E	ncount	ered	at:				n/a						
Time [min]	Depth to Water [mbgl]					It		not p					e full-c	lepth	soa	kaw	ay te	est.	Maxii	mun	n water d	dept
0.0	0.760					a	chiev	ed in	the	test =	0.76r	nbgl										
0.5	0.760																					
1.0	0.760									Soak	200	Pata							Ti	me [min]	
2.0	0.760									SUdk	aye	rate										
3.0	0.760		7																			
4.0	0.760				0	50)	100		150	20	00	250	1	300		350		400		450	
5.0	0.760			0.00		1																
10.0	0.760			0.10	300																	
15.0	0.760			0.20												Щ						
20.0	0.760			0.30																		
30.0	0.760			0.40							-										64	
45.0	0.760					III																
60.0	0.760		7.5	0.50																		
120.0	0.760		[]8	0.60							and the same of											
180.0	0.760		E.	0.70	-													П		•		
240.0	0.760		Depth [mbgl]	0.80																		
300.0	0.760		Jep	0.90		+									-	H						
360.0	0.760			1.00			1				100				1						192	
420.0	0.760			1.10											-	H				+		
			25	1.20																		
				1.30												4						
				1.40												Ш						
				1.50				100		A CONTRACTOR	land.											
<u></u>				1.00						-	Wat	er De	epth									
								r	nbgl	meters				vel								
TE			CLIENT					F	REPO	RT NO		SITE	SUPE	RVISIC	N !	CHE	CKED	ВУ		DA	TE	
	ad, Thorpe-le-Soke	n	Scott Proper	rties						EC,AR,D	S,SK	SG				SG	-100.003				March 20	16

	Pit Size [m]					Pit	TP1	0	R	tun			of 1				
Length	Width	Depth				Test	Date					12	/03/20	16			
1.70	0.35	1.50				Grou	ndwater I	Encounter	ed at:			n/a	3				
Time [min]	Depth to Water [mbgl]						s not pos				pth so	aka	way te	st. Ma	xim	um water	dep
0.0	0.910					achie	eved in the	e test = 0.9	91mb	gl							
0.5	0.910																
1.0	0.910		44					Soaka	ge Ra	te					Tim	e [min]	
2.0	0.910							Count	90 110	9/47							
3.0	0.910		1														
4.0	0.910			0		50	100	150	200	250	300		350	40	0	450	
5.0	0.910			0.00													
10.0	0.910		100	0.10											-		
15.0	0.910			0.20													
20.0	0.910			0.30													
30.0	0.910			0.40			-		44					rain a	-	4442	
45.0	0.910			0.50													
60.0	0.910		100	0.60													
120.0	0.910		[lgc	50/8/58					and the								
180.0	0.910		E	0.70								П	4116		П		
240.0	0.910		Depth [mbgl]	0.80													
300.0	0.910		Jeb	0.90	****												
360.0	0.910			1.00			+-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1				0 22 23 -			50 7 60	-		
420.0	0.910			1.10							-				-		
			24	1.20											-		
				1.30													
				1.40 -											-		
				1.50		0 0 0 0	1000000			L losses with	10/0				100		
								→ -V	Vater I	Depth							
							mbg	l - meters b	elow g	round leve	1						
TE ndermere Ro	ad, Thorpe-le-Soke	n	CLIENT Scott Proper	rties				ORT NO S,EC,AR,DS,		ITE SUPER\	/ISION	CH SG	ECKED	ву		DATE 17 March 20	016

B Proposed Site Masterplan Surface Water Management Plan Flow Calculations Maintenance Schedules

Rainfall Methodology FEH-13 Return Period (years) Additional Flow (%) 40 0.950 CV 5.00

Time of Entry (mins) Maximum Time of Concentration (mins) 30.00 Maximum Rainfall (mm/hr) 500.0

CAUSEWAY

Minimum Velocity (m/s) 1.00 Connection Type Level Soffits Minimum Backdrop Height (m) 0.200 Preferred Cover Depth (m) 1.200 Include Intermediate Ground \(\sqrt{} \) Enforce best practice design rules ✓

Nodes

Area (ha)	T of E (mins)	Cover Level (m)	Diameter (mm)	Depth (m)
0.092	5.00	25.750	1500	1.850
0.092	5.00	25.600	1500	1.850
0.092	5.00	25.000	1900	2.350
0.092	5.00	24.700	1900	2.350
0.092	5.00	24.150	1900	2.350
0.092	5.00	23.750	1900	2.350
0.092	5.00	22.800	1900	2.050
0.092	5.00	25.650	1500	1.760
0.092	5.00	25.500	1500	1.860
0.092		22.000	1900	1.306
	(ha) 0.092 0.092 0.092 0.092 0.092 0.092 0.092 0.092	(ha) (mins) 0.092 5.00 0.092 5.00 0.092 5.00 0.092 5.00 0.092 5.00 0.092 5.00 0.092 5.00 0.092 5.00 0.092 5.00	(ha) (mins) Level (m) 0.092 5.00 25.750 0.092 5.00 25.600 0.092 5.00 25.000 0.092 5.00 24.700 0.092 5.00 24.150 0.092 5.00 23.750 0.092 5.00 25.650 0.092 5.00 25.650 0.092 5.00 25.500	(ha) (mins) Level (m) 0.092 5.00 25.750 1500 0.092 5.00 25.600 1500 0.092 5.00 25.000 1900 0.092 5.00 24.700 1900 0.092 5.00 24.150 1900 0.092 5.00 23.750 1900 0.092 5.00 22.800 1900 0.092 5.00 25.650 1500 0.092 5.00 25.500 1500

Links

Name	US Node	DS Node	Length (m)	ks (mm) / n	US IL (m)	DS IL (m)	Fall (m)	Slope (1:X)	Dia (mm)	T of C (mins)	Rain (mm/hr)
1	SW1	SW2	35.000	0.030	23.900	23.750	0.150	233.3	500	5.32	146.1
2	SW2	SW3	70.000	0.030	23,750	23.150	0.600	116.7	500	5.77	141.7
3	SW3	SW4	37.000	0.030	22.650	22.350	0.300	123.3	600	5.99	139.6
4	SW4	SW5	39.000	0.030	22.350	21.800	0.550	70.9	600	6.17	138.1
5	SW5	SW6	33.000	0.030	21.800	21.400	0.400	82.5	600	6.32	136.7
6	SW6	SW7	33.000	0.030	21,400	21.334	0.066	500.0	600	6.73	133.2
7	SW7	BASIN	28.000	0.030	20.750	20,694	0.056	500.0	600	7.08	130.3
8	SW8	SW9	21.000	0.030	23.890	23.740	0.150	140.0	500	5.15	147.9
9	SW9	SW3	42.000	0.030	23.640	23.050	0.590	71.2	600	5.33	146.0

Name	Vel (m/s)	Cap (I/s)	Flow (I/s)	US Depth (m)	DS Depth (m)	Σ Area (ha)	Σ Add Inflow (I/s)
1	1.800	353.4	64.6	1.350	1.350	0.092	0.0
2	2.594	509.3	125.3	1.350	1.350	0.184	0.0
3	2.821	797.7	308.6	1.750	1.750	0.460	0.0
4	3.767	1065.0	366.3	1.750	1.750	0.552	0.0
5	3.481	984.2	423.2	1.750	1.750	0.644	0.0
6	1.346	380.7	471.1	1.750	0.866	0.736	0.0
7	1.346	380.7	518.5	1.450	0.706	0.828	0.0
8	2.357	462.8	65.4	1.260	1.260	0.092	0.0
9	3.759	1062.8	129.2	1.260	1.350	0.184	0.0

Network: Storm Network James Howard 20/07/2021 Page 2

Pipeline Schedule

Link	Length (m)	Slope (1:X)	Dia (mm)	Link Type	US CL (m)	US IL (m)	US Depth (m)	DS CL (m)	DS IL (m)	DS Depth (m)
1	35.000	233.3	500	Box 1.5 by 2.4	25.750	23.900	1.350	25.600	23.750	1.350
2	70.000	116.7	500	Box 1.5 by 2.4	25.600	23.750	1.350	25.000	23.150	1.350
3	37.000	123.3	600	Box 1.5 by 2.4	25.000	22.650	1.750	24.700	22.350	1.750
4	39.000	70.9	600	Box 1.5 by 2.4	24.700	22.350	1.750	24.150	21.800	1.750
5	33.000	82.5	600	Box 1.5 by 2.4	24.150	21.800	1.750	23.750	21.400	1.750
6	33.000	500.0	600	Box 1.5 by 2.4	23.750	21.400	1.750	22.800	21.334	0.866
7	28.000	500.0	600	Box 1.5 by 2.4	22.800	20.750	1.450	22.000	20.694	0.706
8	21.000	140.0	500	Box 1.5 by 2.4	25.650	23.890	1.260	25.500	23.740	1.260
9	42.000	71.2	600	Box 1.5 by 2.4	25.500	23,640	1.260	25.000	23.050	1.350

Link	US	Dia	Node	MH	DS	Dia	Node	MH
	Node	(mm)	Type	Type	Node	(mm)	Type	Type
1	SW1	1500	Manhole	Adoptable	SW2	1500	Manhole	Adoptable
2	SW2	1500	Manhole	Adoptable	SW3	1900	Manhole	Adoptable
3	SW3	1900	Manhole	Adoptable	SW4	1900	Manhole	Adoptable
4	SW4	1900	Manhole	Adoptable	SW5	1900	Manhole	Adoptable
5	SW5	1900	Manhole	Adoptable	SW6	1900	Manhole	Adoptable
6	SW6	1900	Manhole	Adoptable	SW7	1900	Manhole	Adoptable
7	SW7	1900	Manhole	Adoptable	BASIN	1900	Manhole	Adoptable
8	SW8	1500	Manhole	Adoptable	SW9	1500	Manhole	Adoptable
9	SW9	1500	Manhole	Adoptable	SW3	1900	Manhole	Adoptable

Manhole Schedule

Node	CL (m)	Depth (m)	Dia (mm)	Connections	Link	IL (m)	Dia (mm)
SW1	25.750	1.850	1500				
				\circ			
				C	1	23.900	500
SW2	25.600	1.850	1500	1	. 1	23.750	500
				\circ			
				C	2	23.750	500
SW3	25.000	2.350	1900	1	. 9	23.050	600
				\bigcirc 2	2	23.150	500
				C	3	22.650	600
SW4	24.700	2.350	1900	1	. 3	22.350	600
				0			
				C	4	22.350	600
SW5	24.150	2.350	1900	1	4	21.800	600
				\circ			
				C	5	21.800	600
SW6	23.750	2.350	1900	1	. 5	21.400	600
				\circ			
				C	6	21.400	600

CAUSEWAY

Network: Storm Network James Howard

James Howard 20/07/2021 Page 3

Manhole Schedule

Node	CL (m)	Depth (m)	Dia (mm)	Connections	Link	IL (m)	Dia (mm)
SW7	22.800	2.050	1900	1	6	21.334	600
				0	7	20.750	600
SW8	25.650	1.760	1500	\bigcirc			
				0	8	23.890	500
SW9	25.500	1.860	1500	1	8	23.740	500
				0	9	23.640	600
BASIN	22.000	1.306	1900		7	20.694	600

Simulation Settings

Rainfall Methodology	FEH-13	Skip Steady State	x	1 year (I/s)	3.1
Summer CV	0.950	Drain Down Time (mins)	240	30 year (I/s)	7.1
Winter CV	0.950	Additional Storage (m³/ha)	20.0	100 year (I/s)	9.0
Analysis Speed	Detailed	Check Discharge Rate(s)	1	Check Discharge Volume	x

Storm Durations

15	60	180	360	600	960	2160	4320	7200	10080
30	120	240	480	720	1440	2880	5760	8640	

Return Period (years)	Climate Change (CC %)	Additional Area (A %)	Additional Flow (Q %)
2	0	0	0
30	0	0	0
100	0	0	0
100	40	0	0
100	40	10	0

Pre-development Discharge Rate

Site Makeup	Greenfield	Growth Factor 30 years	1.95
Greenfield Method	IH124	Growth Factor 100 years	2.48
Positively Drained Area (ha)	1.000	Betterment (%)	0
SAAR (mm)	550	QBar	3.6
Soil Index	4	Q 1 year (I/s)	3.1
SPR	0.47	Q 30 year (I/s)	7.1
Region	1	Q 100 year (I/s)	9.0
Growth Factor 1 year	0.85		

Node BASIN Online Orifice Control

Flap Valve	x	Design Depth (m)	1.500	Discharge Coefficient	0.600
Replaces Downstream Link	1	Design Flow (I/s)	2.8		
Invert Level (m)	20.300	Diameter (m)	0.033		

CAUSEWAY

File: S771 NETWORK.pfd Network: Storm Network

James Howard 20/07/2021 Page 4

più Pag

Node BASIN Depth/Area Storage Structure

Base Inf Coefficient (m/hr) 0.00000 Safety Factor 2.0 Invert Level (m) 20.500 Side Inf Coefficient (m/hr) 0.00000 Porosity 1.00 Time to half empty (mins)

 Depth
 Area
 Inf Area
 Depth
 Area
 Inf Area

 (m)
 (m²)
 (m²)
 (m²)
 (m²)

 0.000
 460.0
 0.0
 1.500
 950.0
 0.0

	Intensity	Average
	IIIICIIIIICY	Intensity
	(mm/hr)	(mm/hr)
2 year 15 minute summer	98.952	28.000
2 year 15 minute winter	69.440	28.000
2 year 30 minute summer	63.223	17.890
2 year 30 minute winter	44.367	17.890
2 year 60 minute summer	41.794	11.045
2 year 60 minute winter	27.767	11.045
2 year 120 minute summer	30.650	8.100
2 year 120 minute winter	20.363	8.100
2 year 180 minute summer	24.905	6.409
2 year 180 minute winter	16.189	6.409
2 year 240 minute summer	20.150	5.325
2 year 240 minute winter	13.387	5.325
2 year 360 minute summer	15.544	4.000
2 year 360 minute winter	10.104	4.000
2 year 480 minute summer	12.178	3.218
2 year 480 minute winter	8.091	3.218
2 year 600 minute summer	9.884	2.704
2 year 600 minute winter	6.754	2.704
2 year 720 minute summer	8.723	2.338
2 year 720 minute winter	5.863	2.338
2 year 960 minute summer	7.028	1.851
2 year 960 minute winter	4.656	1.851
2 year 1440 minute summer	4.964	1.330
2 year 1440 minute winter	3.336	1.330
2 year 2160 minute summer	3.482	0.962
2 year 2160 minute winter	2.400	0.962
2 year 2880 minute summer	2.877	0.771
2 year 2880 minute winter	1.933	0.771
2 year 4320 minute summer	2.203	0.576
2 year 4320 minute winter	1.450	0.576
2 year 5760 minute summer	1.857	0.475
2 year 5760 minute winter	1.202	0.475
2 year 7200 minute summer	1.624	0.414
2 year 7200 minute winter	1.048	0.414
2 year 8640 minute summer	1.463	0.373
2 year 8640 minute winter	0.944	0.373
2 year 10080 minute summer	1.347	0.344
2 year 10080 minute winter	0.869	0.344
30 year 15 minute summer	249.213	70.519
30 year 15 minute winter	174.886	70.519
30 year 30 minute summer	162.769	46.058
30 year 30 minute winter	114.224	46.058
30 year 60 minute summer	108.534	28.682

CAUSEWAY 😜

Event	Peak Intensity	Average Intensity	
	(mm/hr)	(mm/hr)	
30 year 60 minute winter	72.107	28.682	
30 year 120 minute summer	69.182	18.283	
30 year 120 minute winter	45.963	18.283	
30 year 180 minute summer	53.300	13.716	
30 year 180 minute winter	34.646	13.716	
30 year 240 minute summer	41.875	11.066	
30 year 240 minute winter	27.820	11.066	
30 year 360 minute summer	31.281	8.050	
30 year 360 minute winter	20.334	8.050	
30 year 480 minute summer	24.048	6.355	
30 year 480 minute winter	15.977	6.355	
30 year 600 minute summer	19.267	5.270	
30 year 600 minute winter	13.165	5.270	
30 year 720 minute summer	16.842	4.514	
30 year 720 minute winter	11.319	4.514	
30 year 960 minute summer	13.395	3.527	
30 year 960 minute winter	8.873	3.527	
30 year 1440 minute summer	9.265	2.483	
30 year 1440 minute winter	6.227	2.483	
30 year 2160 minute summer	6.349	1.755	
30 year 2160 minute winter	4.375	1.755	
30 year 2880 minute summer	5.145	1.379	
30 year 2880 minute winter	3.458	1.379	
30 year 4320 minute summer	3.807	0.995	
30 year 4320 minute winter	2.507	0.995	
30 year 5760 minute summer	3.121	0.799	
30 year 5760 minute winter	2.020	0.799	
30 year 7200 minute summer	2.665	0.680	
30 year 7200 minute winter	1.720	0.680	
30 year 8640 minute summer	2.352	0.600	
30 year 8640 minute winter	1.518	0.600	
30 year 10080 minute summer	2.126	0.542	
30 year 10080 minute winter	1.372	0.542	
100 year 15 minute summer	315.868	89.380	
100 year 15 minute winter	221.662	89.380	
100 year 30 minute summer	207.868	58.819	
100 year 30 minute winter	145.872	58.819	
100 year 60 minute summer	139.458	36.855	
100 year 60 minute winter	92.653	36.855	
100 year 120 minute summer	87.770	23.195	
100 year 120 minute winter	58.312	23.195	
100 year 180 minute summer	67.647	17.408	
100 year 180 minute winter	43.972	17.408	
100 year 240 minute summer	53.284	14.081	
100 year 240 minute sunner	35.400	14.081	
100 year 360 minute summer	40.031	10.301	
100 year 360 minute winter	26.021	10.301	
100 year 480 minute summer	30.952	8.180	
100 year 480 minute winter	20.564	8.180	
100 year 600 minute summer	24.893	6.809	
100 year 600 minute winter	17.008	6.809	
100 year 720 minute summer	21.810	5.845	
200 year /20 minute summer	21.010	5.645	

CAUSEWAY 😜

File: S771 NETWORK.pfd Network: Storm Network

James Howard 20/07/2021

Page 6

Event	Peak Intensity (mm/hr)	Average Intensity (mm/hr)
100 year 720 minute winter	14.658	5.845
100 year 960 minute summer	17.366	4.573
100 year 960 minute winter	11.504	4.573
100 year 1440 minute summer	11.986	3.213
100 year 1440 minute winter	8.056	3.212
100 year 2160 minute summer	8.131	2.247
100 year 2160 minute winter	5.602	2.247
100 year 2880 minute summer	6.517	1.747
100 year 2880 minute winter	4.380	1.747
100 year 4320 minute summer	4.718	1.234
100 year 4320 minute winter	3.107	1.234
100 year 5760 minute summer	3.795	0.971
100 year 5760 minute winter	2.456	0.971
100 year 7200 minute summer	3.192	0.814
100 year 7200 minute winter	2.060	0.814
100 year 8640 minute summer	2.780	0.709
100 year 8640 minute winter	1.794	0.709
100 year 10080 minute summer	2.486	0.709
100 year 10080 minute summer	1.604	0.634
100 year +40% CC 15 minute summer	442.216	125.132
100 year +40% CC 15 minute summer	310.327	125.132
100 year +40% CC 13 minute winter	291.015	82.347
100 year +40% CC 30 minute summer	204.221	82.347
100 year +40% CC 60 minute summer	195.241	51.596
100 year +40% CC 60 minute summer	129.714	51.596
100 year +40% CC 120 minute summer	122.878	32.473
100 year +40% CC 120 minute summer	81.637	32.473
100 year +40% CC 120 minute winter	94.705	24.371
100 year +40% CC 180 minute summer	61.561	24.371
100 year +40% CC 240 minute winter	74.597	19.714
100 year +40% CC 240 minute summer	49.561	19.714
100 year +40% CC 360 minute summer	56.043	14.422
100 year +40% CC 360 minute summer	36.429	14.422
	43.333	11.452
100 year +40% CC 480 minute summer 100 year +40% CC 480 minute winter	28.790	11.452
100 year +40% CC 480 minute winter	34.850	9.532
100 year +40% CC 600 minute summer	23.812	9.532
[1] [1] 이 [1] [1] [1] [1] [1] [1] [1] [1] [1] [1]		
100 year +40% CC 720 minute summer 100 year +40% CC 720 minute winter	30.535	8.184
100 year +40% CC 720 minute winter	20.521	8.184
100 year +40% CC 960 minute summer 100 year +40% CC 960 minute winter	24.313	6.402
200 THE ROLL OF THE SECOND SHEET	16.105	6.402 4.498
100 year +40% CC 1440 minute summer	16.781	
100 year +40% CC 1440 minute winter	11.278	4.498
100 year +40% CC 2160 minute summer	11.383	3.146
100 year +40% CC 2160 minute winter	7.843	3.146
100 year +40% CC 2880 minute summer	9.124	2.445
100 year +40% CC 2880 minute winter	6.132	2.445
100 year +40% CC 4320 minute summer	6.606	1.727
100 year +40% CC 4320 minute winter	4.350	1.727
100 year +40% CC 5760 minute summer	5.312	1.360
100 year +40% CC 5760 minute winter	3.438	1.360
100 year +40% CC 7200 minute summer	4.468	1.140

CAUSEWAY

File: S771 NETWORK.pfd Network: Storm Network

James Howard 20/07/2021 Page 7

Event	Peak Intensity (mm/hr)	Average Intensity (mm/hr)
100 year +40% CC 7200 minute winter	2.884	1.140
100 year +40% CC 8640 minute summer	3.892	0.993
100 year +40% CC 8640 minute winter	2.512	0.993
100 year +40% CC 10080 minute summer	3.480	0.888
100 year +40% CC 10080 minute winter	2.246	0.888
100 year +40% CC +10% A 15 minute summe	15.000000000000000000000000000000000000	125.132
100 year +40% CC +10% A 15 minute winter	310.327	125.132
100 year +40% CC +10% A 30 minute summe		82.347
100 year +40% CC +10% A 30 minute summer	204.221	82.347
100 year +40% CC +10% A 60 minute summe		51.596
100 year +40% CC +10% A 60 minute sunme	129.714	51.596
100 year +40% CC +10% A 00 minute winter		32.473
100 year +40% CC +10% A 120 minute summ		32.473
100 year +40% CC +10% A 120 minute winter		24.371
100 year +40% CC +10% A 180 minute summ		24.371
100 year +40% CC +10% A 180 minute winter		19.714
(3.0.1.) IS 10.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.		19.714
100 year +40% CC +10% A 240 minute winter		14.422
100 year +40% CC +10% A 360 minute summ		
100 year +40% CC +10% A 360 minute winter		14.422
100 year +40% CC +10% A 480 minute summ		11.452
100 year +40% CC +10% A 480 minute winter		11.452
100 year +40% CC +10% A 600 minute summ		9.532
100 year +40% CC +10% A 600 minute winter		9.532
100 year +40% CC +10% A 720 minute summ		8.184
100 year +40% CC +10% A 720 minute winter		8.184
100 year +40% CC +10% A 960 minute summ		6.402
100 year +40% CC +10% A 960 minute winter		6.402
100 year +40% CC +10% A 1440 minute sumr		4.498
100 year +40% CC +10% A 1440 minute winte		4.498
100 year +40% CC +10% A 2160 minute sumr		3.146
100 year +40% CC +10% A 2160 minute winte		3.146
100 year +40% CC +10% A 2880 minute sumr		2.445
100 year +40% CC +10% A 2880 minute winter		2.445
100 year +40% CC +10% A 4320 minute summ		1.727
100 year +40% CC +10% A 4320 minute winte		1.727
100 year +40% CC +10% A 5760 minute summ		1.360
100 year +40% CC +10% A 5760 minute winte		1.360
100 year +40% CC +10% A 7200 minute sumn		1.140
100 year +40% CC +10% A 7200 minute winter		1.140
100 year +40% CC +10% A 8640 minute summ	mer 3.892	0.993
100 year +40% CC +10% A 8640 minute winte	er 2.512	0.993
100 year +40% CC +10% A 10080 minute sum	nmer 3.480	0.888
100 year +40% CC +10% A 10080 minute win	ter 2.246	0.888

CAUSEWAY

Network: Storm Network James Howard

20/07/2021

Results for 2 year Critical Storm Duration. Lowest mass balance: 99.79%

Node Event	US Node	Peak (mins)	Level (m)	Depth (m)	Inflow (I/s)	Node Vol (m³)	Flood (m³)	Status
15 minute summer	SW1	10	23.961	0.061	14.1	0.1695	0.0000	OK
15 minute summer	SW2	11	23.822	0.072	28.1	0.1977	0.0000	OK
15 minute summer	SW3	11	22.764	0.114	68.8	0.4116	0.0000	OK
15 minute summer	SW4	11	22.456	0.106	82.7	0.3820	0.0000	OK
15 minute summer	SW5	11	21.918	0.118	96.6	0.4272	0.0000	OK
15 minute summer	SW6	11	21.611	0.211	110.6	0.7621	0.0000	OK
15 minute summer	SW7	11	20.975	0.225	123.4	0.8413	0.0000	OK
15 minute summer	SW8	10	23.946	0.056	14.1	0.1582	0.0000	OK
15 minute summer	SW9	10	23.702	0.062	28.0	0.1697	0.0000	OK
600 minute winter	BASIN	600	20.862	0.168	16.0	188.8043	0.0000	OK

Link Event	US	Link	DS	Outflow	Velocity	Flow/Cap	Link	Discharge
(Outflow)	Node		Node	(I/s)	(m/s)		Vol (m³)	Vol (m³)
15 minute summer	SW1	1	SW2	14.0	0.920	0.040	0.5343	
15 minute summer	SW2	2	SW3	27.7	1.654	0.054	1.1715	
15 minute summer	SW3	3	SW4	69.2	1.968	0.087	1.3009	
15 minute summer	SW4	4	SW5	83.1	2.300	0.078	1.4106	
15 minute summer	SW5	5	SW6	97.1	1.553	0.099	2.1000	
15 minute summer	SW6	6	SW7	109.9	1.371	0.289	2.6766	
15 minute summer	SW7	7	BASIN	123.0	1.404	0.323	2.4684	
15 minute summer	SW8	8	SW9	13.9	1.224	0.030	0.2395	
15 minute summer	SW9	9	SW3	27.6	1.899	0.026	0.6138	
600 minute winter	BASIN	Orifice		1.7				71.0

Results for 30 year Critical Storm Duration. Lowest mass balance: 99.79%

Node Event	US Node	Peak (mins)	Level (m)	Depth (m)	Inflow (I/s)	Node Vol (m³)	Flood (m³)	Status
15 minute summer	SW1	10	24.000	0.100	35.6	0.2772	0.0000	OK
15 minute summer	SW2	10	23.865	0.115	70.9	0.3189	0.0000	OK
15 minute summer	SW3	10	22.842	0.192	174.5	0.6944	0.0000	OK
15 minute summer	SW4	10	22.526	0.176	208.9	0.6359	0.0000	OK
15 minute summer	SW5	11	22.019	0.219	244.6	0.7913	0.0000	OK
15 minute summer	SW6	11	21.761	0.361	280.7	1.3078	0.0000	OK
600 minute winter	SW7	600	21.190	0.440	28.8	1.6437	0.0000	OK
15 minute summer	SW8	10	23.982	0.092	35.6	0.2574	0.0000	OK
15 minute summer	SW9	10	23.739	0.099	70.8	0.2733	0.0000	OK
600 minute winter	BASIN	600	21.190	0.496	31.5	397.7379	0.0000	OK

Link Event (Outflow)	US Node	Link	DS Node	Outflow (I/s)	Velocity (m/s)	Flow/Cap	Link Vol (m³)	Discharge Vol (m³)
15 minute summer	SW1	1	SW2	35.3	1.139	0.100	1.0858	300000000000000000000000000000000000000
15 minute summer	SW2	2	SW3	70.2	2.146	0.138	2.2907	
15 minute summer	SW3	3	SW4	174.8	2.411	0.219	2.7063	
15 minute summer	SW4	4	SW5	210.7	2.635	0.198	3.1449	
15 minute summer	SW5	5	SW6	246.8	1.829	0.251	4.4582	
15 minute summer	SW6	6	SW7	281.5	1.737	0.739	5.3580	
15 minute summer	SW7	7	BASIN	314.6	1.779	0.826	4.9630	
15 minute summer	SW8	8	SW9	35.2	1.565	0.076	0.4734	
15 minute summer	SW9	9	SW3	70.1	2.455	0.066	1.2052	
600 minute winter	BASIN	Orifice		2.1				86.9

CAUSEWAY

James Howard 20/07/2021 Page 10

Results for 100 year Critical Storm Duration. Lowest mass balance: 99.79%

Node Event	US	Peak	Level	Depth	Inflow	Node	Flood	Status
	Node	(mins)	(m)	(m)	(I/s)	Vol (m³)	(m ³)	
15 minute summer	SW1	10	24.015	0.115	45.1	0.3166	0.0000	OK
15 minute summer	SW2	10	23.881	0.131	89.8	0.3630	0.0000	OK
15 minute summer	SW3	10	22.871	0.221	221.7	0.8006	0.0000	OK
15 minute summer	SW4	10	22.553	0.203	265.6	0.7356	0.0000	OK
15 minute summer	SW5	11	22.062	0.262	310.1	0.9494	0.0000	OK
15 minute summer	SW6	11	21.821	0.421	356.0	1.5248	0.0000	OK
960 minute summer	SW7	975	21.370	0.620	37.8	2.3132	0.0000	SURCHARGED
15 minute summer	SW8	10	23.994	0.104	45.1	0.2928	0.0000	OK
15 minute summer	SW9	10	23.753	0.113	89.7	0.3102	0.0000	OK
960 minute summer	BASIN	975	21.370	0.676	41.3	526.6974	0.0000	OK

Link Event (Outflow)	US Node	Link	DS Node	Outflow (I/s)	Velocity (m/s)	Flow/Cap	Link Vol (m³)	Discharge Vol (m³)
15 minute summer	SW1	1	SW2	44.7	1.198	0.127	1.3082	
15 minute summer	SW2	2	SW3	89.0	2.286	0.175	2.7265	
15 minute summer	SW3	3	SW4	221.6	2.519	0.278	3.2990	
15 minute summer	SW4	4	SW5	267.1	2.689	0.251	3.9360	
15 minute summer	SW5	5	SW6	313.0	1.887	0.318	5.4443	
15 minute summer	SW6	6	SW7	357.1	1.838	0.938	6.4072	
15 minute summer	SW7	7	BASIN	398.7	1.876	1.047	5.9698	
15 minute summer	SW8	8	SW9	44.6	1.662	0.096	0.5651	
15 minute summer	SW9	9	SW3	89.0	2.612	0.084	1.4373	
960 minute summer	BASIN	Orifice		2.3				132.3

CAUSEWAY

Results for 100 year +40% CC Critical Storm Duration. Lowest mass balance: 99.79%

Node Event	US Node	Peak (mins)	Level (m)	Depth (m)	Inflow (I/s)	Node Vol (m³)	Flood (m³)	Status
15 minute summer	SW1	10	24.039	0.139	63.1	0.3847	0.0000	ОК
15 minute summer	SW2	10	23.909	0.159	125.7	0.4380	0.0000	ОК
15 minute summer	SW3	10	22.923	0.273	311.1	0.9889	0.0000	ОК
15 minute summer	SW4	10	22.604	0.254	372.9	0.9198	0.0000	ОК
15 minute summer	SW5	10	22.143	0.343	434.3	1.2416	0.0000	OK
15 minute summer	SW6	11	21.973	0.573	499.1	2.0733	0.0000	OK
960 minute summer	SW7	975	21.685	0.935	53.1	3.4909	0.0000	SURCHARGED
15 minute summer	SW8	10	24.016	0.126	63.1	0.3532	0.0000	OK
15 minute summer	SW9	10	23.775	0.135	125.6	0.3726	0.0000	OK
960 minute summer	BASIN	975	21.671	0.977	63.3	767.0258	0.0000	OK

Link Event (Outflow)	US Node	Link	DS Node	Outflow (I/s)	Velocity (m/s)	Flow/Cap	Link Vol (m³)	Discharge Vol (m³)
15 minute summer	SW1	1	SW2	62.6	1.283	0.177	1.7101	2007/100000
15 minute summer	SW2	2	SW3	124.6	2.496	0.245	3.5075	
15 minute summer	SW3	3	SW4	310.0	2.660	0.389	4.4121	
15 minute summer	SW4	4	SW5	374.1	2.716	0.351	5.4633	
15 minute summer	SW5	5	SW6	439.0	1.934	0.446	7.2830	
15 minute summer	SW6	6	SW7	499.4	1.938	1.312	8.4251	
15 minute summer	SW7	7	BASIN	559.8	2.039	1.470	7.3800	
15 minute summer	SW8	8	SW9	62.5	1.807	0.135	0.7278	
15 minute summer	SW9	9	SW3	124.7	2.847	0.117	1.8463	
960 minute summer	BASIN	Orifice		2.6				148.3

File: S771 NETWORK.pfd Network: Storm Network James Howard 20/07/2021

Results for 100 year +40% CC +10% A Critical Storm Duration. Lowest mass balance: 99.79%

Node Event	US	Peak	Level	Depth	Inflow	Node	Flood	Status
	Node	(mins)	(m)	(m)	(I/s)	Vol (m³)	(m ³)	
15 minute summer	SW1	10	24.047	0.147	69.4	0.4218	0.0000	OK
15 minute summer	SW2	10	23.917	0.167	138.2	0.4789	0.0000	OK
15 minute summer	SW3	10	22.941	0.291	342.4	1.0757	0.0000	OK
15 minute summer	SW4	10	22.622	0.272	410.3	1.0055	0.0000	OK
15 minute summer	SW5	11	22.165	0.365	477.5	1.3488	0.0000	OK
15 minute summer	SW6	11	22.025	0.625	547.3	2.3106	0.0000	SURCHARGED
960 minute winter	SW7	945	21.776	1.026	51.4	3.9228	0.0000	SURCHARGED
15 minute summer	SW8	10	24.023	0.133	69.4	0.3866	0.0000	OK
15 minute summer	SW9	10	23.783	0.143	138.1	0.4072	0.0000	OK
960 minute winter	BASIN	945	21.764	1.070	69.0	846.9742	0.0000	OK

Link Event (Outflow)	US Node	Link	DS Node	Outflow (I/s)	Velocity (m/s)	Flow/Cap	Link Vol (m³)	Discharge Vol (m³)
15 minute summer	SW1	1	SW2	68.9	1.308	0.195	1.8465	
15 minute summer	SW2	2	SW3	137.1	2.557	0.269	3.7697	
15 minute summer	SW3	3	SW4	341.0	2.694	0.427	4.8019	
15 minute summer	SW4	4	SW5	411.3	2.751	0.386	5.8930	
15 minute summer	SW5	5	SW6	481.1	1.946	0.489	7.6068	
15 minute summer	SW6	6	SW7	549.8	2.021	1.444	8.6674	
15 minute summer	SW7	7	BASIN	617.6	2.208	1.622	7.5127	
15 minute summer	SW8	8	SW9	68.7	1.850	0.149	0.7822	
15 minute summer	SW9	9	SW3	137.2	2.917	0.129	1.9838	
960 minute winter	BASIN	Orifice		2.7				153.2

Basin Maintenance

Maintenance schedule	Required action	Frequency
Regular maintenance	Removal of litter and debris	Mo nthly
	Cut grass	Half yearly
	Manage other vegetation	Monthly then as required
	Inspect and clear inlets, outlets, overflows etc	Mo nthly
	Inspect and repair banks, pipes, headwalls etc	Mo nthly
	Inspect inlets and basin for silt accumulation	Monthly until able to establish the required silt removal frequency, then in accordance with established frequency
	Manage vegetation in wetter areas (micro-pools etc)	Annually or as established by ecologist/landscape architect
	Tidy dead growth	Annually (as per growing season)
	Remove sediment from traps, forebays etc	Annually
Occasional	Reseed	As required.
maintenance	Prune adjacent trees	Every 2 years, or as otherwise advised
	Silt removal	Every 5 years (depending on the requirement for regular maintenance)
Remedial actions	Repair erosion or other damage	As required
	Repair inlets, outlets and overflows	As required

(Based on advice in CIRIA C753)

Filter Drain Maintenance

Maintenance schedule	Required action	Frequency
Regular	Litter and debris removal	Monthly, as required
maintenance	Inspect surface, inlet and outlets and controls for waterlogging/pooling, silt build up/clogs, and damage	Monthly
	Inspect pre-treatment systems, inlets, perforated pipes for silt (to establish the required silt removal regime)	6 monthly
	Remove silt	6 monthly or as required (see above)
Remedial actions	Remove/control tree roots should they threaten the filter drain	As required.
	Replace and/or clean geotextiles, stone filter layer from areas which demonstrate high pollution loads	Five yearly, or as required (established via inspection).
	Clear perforated pipes of any blockages	As required.

(Based on advice in CIRIA C753)