Solum House Unit 1 Elliott Court St Johns Road Meadowfield Durham DH7 8PN

Tel: (0191) 378 6380 Fax: (0191) 378 0494

e-mail: admin@arc-environmental.com

PHASE 2: GROUND INVESTIGATION REPORT

AMETHYST HOMES PROPOSED RESIDENTIAL DEVELOPMENT SPRING VILLE

EAST SLEEKBURN

BEDLINGTON

NORTHUMBERLAND

<u>NE22 7AZ</u>

Project No: 21-168

Prepared By:

Darren M^cGrath

Date: 03/07/2021

Approved By: John Ditchburn

IP. Dut

Date: 03/07/2021

The information and/or advice contained in this Ground Investigation Report is based solely on, and is limited to, the boundaries of the site, the immediate area around the site, and the historical use(s) unless otherwise stated. This 'Report' has been prepared in order to collate information relating to the physical, environmental and industrial setting of the site, and to highlight, where possible, the likely problems that might be encountered when considering the future development of this site for the proposed end use. All comments, opinions, diagrams, cross sections and/or sketches contained within the report, and/or any configuration of the findings is conjectural and given for guidance only and confirmation of the anticipated ground conditions should be considered before development proceeds. Agreement for the use or copying of this report by any Third Party must be obtained in writing from Arc Environmental Limited (ARC). If a change in the proposed land use is envisaged, then a reassessment of the site should be carried out.

CONTENTS

1.0	INTRODUC	TION	Page 3
2.0	SITE DETA	ILS	Page 3
3.0	SCOPE OF V	WORKS	Page 3
4.0	INVESTIGA	TION RATIONALE	Page 4
	4.1 – Contam	ination Related Sampling & Site Protocols	Page 4
5.0		ONDITIONS	Page 4
	5.1 – Soil Profi	ile	Page 4
	5.2 – Groundv		Page 5
6.0	INSITU TES	STING	Page 5
	6.1 – Insitu H	and Shear Vane Tests	Page 5
	6.2 – Insitu Ca	alifornia Bearing Ratio (CBR) Tests	Page 6
7.0	LABORATO	RY TESTING	Page 6
	7.1 – Determin	nation of pH & SO ₄	Page 6
	7.2 – Determin	nation of Liquid & Plastic Limits	Page 7
	7.3 – Contami	nation Screening / Screening Strategy	Page 7
8.0	LEVEL 1 GR	OUND CONTAMINATION RISK ASSESSMENT	Page 8
	8.1 – Methodo	logy	Page 8
	8.2 – Concept	ual Site Model (CSM)	Page 9
	8.3 – Level 1 F	Risk Assessment (Soils)	Page 10
	8.4 – Level 1 F	Risk Assessment (Controlled Waters)	Page 13
9.0	CONCLUSIO	ONS & RECOMMENDATIONS	Page 14
	9.1 – Ground	Conditions	Page 14
	9.2 – Groundv	vater	Page 14
	9.3 – Gas Prot	ection Measures	Page 14
	9.4 – Foundat	ion Options	Page 14
	9.5 – Ground	Contamination	Page 15
	9.6 – General	Comments	Page 15
	Appendix I	Location Plan, Aerial Photograph, Existing Site Layout Plan & Proposed Development Layout Plan	
	Appendix II	Borehole & Trial Pit Location Plan and Borehole & Trial Pit Record Sheets	
	Appendix III	Laboratory Testing Results (Geotechnical & Ground Contamination)	
	Appendix IV	Statutory Service Plans	

1.0 Introduction

July 2021

As requested by Amethyst Homes, ground investigation works have been carried out on an area of undeveloped land accessed from Brock Lane, East Sleekburn, Bedlington, where it is proposed to develop the site in the near future for housing. The proposed development will comprise the construction of residential dwellings with private gardens, an area of public open space and associated infrastructure.

A Phase 1 Desk Top Study Report (ref 13-554 – November 2013) & Phase 2 Ground Investigation Report (ref 13-554 January 2013) have previously been completed for this site by Arc Environmental Ltd in 2013, no change in terms of development etc., have occurred on site since the completion of the previous reports with this being confirmed during these supplementary works with the site remaining undeveloped. The previous borehole and trial pit logs along with the laboratory results (geotechnical and ground contamination) have been included within this updated Phase 2 Ground Investigation Report.

The previous intrusive investigation works comprised 5 no. windowless sampling boreholes (BH01 – BH05), and 12 no. mechanically excavated trial pits (TP01 – TP12). These supplementary investigation works comprised 16 no. mechanically excavated trial pits (TP101 – TP116). The positions of all the exploratory locations can be seen on the Borehole & Trial Pit Location Plan, a copy of which can be seen in Appendix II. It should be noted that although these recent trial pit locations have been surveyed in and are accurately marked up on the Borehole & Trial Pit Location Plan, the previous exploratory locations shown are approximate. Therefore, this plan should be used for orientating purposes only.

2.0 Site Details

Table 2.1	N = north, $S = south$, $E = east$, $W = west$			
Site Name & Address:	Spring Ville – Land off Brock Lane, East Sleekburn, Bedlington, Northumberland,			
	NE22 7AZ.			
OS Grid Reference:	428740, 583590 (representative of central portion of the site).			
Description of Location	Site situated within a mixed rural/residential setting on the northern outskirts of			
	the village of East Sleekburn.			
Site Boundaries:	N & E = Brock Lane, , S = Housing and allotment gardens, W = Dual			
	Carriageway and slip road (A189).			
Site Shape, Size & Development	Irregular shaped site with an area of c.1.42 Ha. The proposed development will			
Details:	comprise the construction of 48 no. residential dwellings with private gardens,			
	public open space and associated infrastructure.			
General Topography:	The site is generally level.			
Approximate Ground Levels:	c.13.00m to c.13.75m AOD.			
Site Surface(s):	Predominantly rural grassland.			
Above Ground Structures:	None present on site.			
Sub-surface Structures:	There are no buildings on site although overhead and underground electrical			
	cables are recorded on the statutory service plans obtained (See Appendix IV)			

3.0 Scope of Works

Table 3.1

Client:	Amethyst Homes.			
Project Type:	Proposed Residential Development.			
Site Location Plans:	See Appendix I.			
Layout Plan (Existing):	See Appendix I.			
Layout Plan (Proposed):	See Appendix I.			
Laboratory Testing:	Geotechnical & Generic Ground Contamination.			
CLEA Classification:	Residential.			
Reporting:	Factual & Interpretative.			

3.0 Scope of Works (Cont'd)

The information contained in this report is limited to the area of the site as indicated on the Existing Site Plan shown in Appendix I, and to those areas accessible during the ground investigation. The depths of strata on the record sheets are recorded from current ground level.

4.0 Investigation Rationale

This ground investigation has been designed to provide information on the general ground and groundwater conditions around the proposed development areas and potential areas of geotechnical concern. The rationale behind the location of each exploratory hole is summarised in Table 4.1 below.

<u>Table 4.1</u>

Potential issue	Exploratory hole
Geotechnical considerations around areas of proposed development	BH01 – BH10, TP01 – TP12 & TP101 – TP116
General site wide contamination assessment	BH01 – BH10, TP01 – TP12 & TP101 – TP116

4.1 Contamination Related Sampling & Site Protocols: -

All works associated with this ground contamination assessment and investigations have generally been completed in accordance with BS10175:2011 + A2:2017: British Standard Code of Practice for the Investigation of Potentially Contaminated Sites (2011) & Environment Agency (EA) Land Contamination Risk Management (LCRM), October 2020, which superseded CLR11, with the following precautions specific to this project.

4.1.1 Ground Contamination Sampling: -

Samples were recovered by a representative of ARC Environmental Ltd. during the intrusive investigation works. All samples were stored at approximately 2°C - 8°C using cool boxes and ice packs prior to delivery to a UKAS/MCERTS accredited laboratory. Sampling was carried out in accordance with 'Technical Policy Statement 63: UKAS Policy on Deviating Samples'.

4.1.2 Avoiding Cross-Contamination between Sample Locations: -

To avoid possible cross-contamination of materials between soil horizons in the boreholes, drill casing was used to seal off the made ground. In addition, disposable plastic liners were used to collect samples from the windowless sampling boreholes carried out. With regards to the trial pits, the samples were recovered manually using dedicated disposable plastic gloves, replaced between each sample recovery.

5.0 Ground Conditions

For an accurate description of the ground conditions encountered at each investigation position, reference should be made to the borehole & trial pit record sheets attached in Appendix II. It should be noted that there is always the possibility of variation in the ground conditions around and between the investigation locations.

5.1 Soil Profile:-

A summary of the soil profile for this site can be found in Table 5.1, on the following page.

5.0 Ground Conditions (Cont'd)

5.1 Soil Profile (Cont'd):-

Table 5.1 BGL = Below ground								
Type of Strata	Depths Recorded (BGL)	Description & General Comments						
MADE GROUND:	From 0.00m up to c.0.20m to c.2.50m**	Made ground typically comprised unmanaged grass overlying sandy soil and sandy gravelly clay with brick, slate and concrete fragments. An ash filled service trench was noted within TP11. Some ash was also noted within BH02.						
		The made ground was typically c.<0.60m thick. ** Zones of deeper made ground were recorded within BH02 (2.10m) and BH05 (2.80m) which appeared to be associated with infilled trenches for drain runs, although no drainage networks were recorded on site from the statutory service plans obtained (See Appendix IV).						
DRIFT DEPOSITS: (Glacial Till)	From c.0.20m to c.2.80m up to c.>5.00m	The drift deposits comprised stiff locally firm (high strength) sandy gravelly CLAY with occasional coal and sandstone fragments/cobbles.						
SOLID GEOLOGY: (Middle Coal Measures)	Greater than c.20m	Not encountered.						

There was no visual evidence of significant ground contamination (i.e. fuel-derived contaminants, etc.) present within the majority of the exploratory positions undertaken across the site. However, fragments of ash were recorded within the made ground at TP11, TP111 and BH02 only. There was anecdotal evidence that the site was historically used as temporary site compound associated with the construction of the adjacent by-pass resulting in red shale and contaminated spoil possibly being present. However, from the results of the intrusive investigation there was no evidence of red shale or significant contamination.

5.2 Groundwater:-

No water ingresses/strikes were recorded with the majority of the exploratory positions remaining dry. However, water ingress was recorded within BH05, at c.2.50m, & TP111 at c.1.90m bcgl (associated with suspected relic drains). A standing level was recorded at a depth of c.1.30m within TP111 after c.10 mins. A minor ingress was also noted within TP05 at c.2.00m from an unrecorded relic drain.

6.0 Insitu Testing

6.1 Insitu Hand Shear Vane Tests:-

Insitu hand vane tests were carried out using a portable Controls insitu hand vane tester on the cohesive made ground (re-worked clays) and natural clay deposits encountered. The insitu hand vane tester takes direct readings of shear strength.

Three vane sizes allow for the direct determination of undrained shear strength of extremely low to high strength clays. The peak vane value is determined by a calibrated scale ring built into the head assembly. The cross handle is used both to push the vane to the desired test depth and apply the shearing torque.

The results are summarised in Table 6.1 on the following page and can also be found adjacent to the appropriate sample level, on the graphic borehole record sheets in Appendix II.

6.0 Insitu Testing (Cont'd)

6.1 Insitu Hand Shear Vane Tests (Cont'd):-

Table 6.1

Type of Strata	Range of Shear Strength Values (kN/m ²)	Result Details
MADE GROUND	$80N/m^2 \& 90kN/m^2$	Stiff deposits
SANDY GRAVELLY CLAY	$78N/m^2$ to $>120kN/m^2$	High strength deposits
	(upper limit of testing equipment)	

6.2 Insitu Equivalent California Bearing Ratio (CBR) Tests:-

Insitu equivalent CBR tests were carried out using a MEXE Cone Penetrometer, in accordance with the manufacturer's instructions, in order to estimate the insitu CBR values of the initial natural clay deposits, noted within the trial pits at depths of between c.0.50m and c.0.75m below ground level. In each case a series of tests were carried out and an average of the results noted can been seen on the graphic trial pit record sheets, adjacent to the appropriate sample level.

In summary, from the results of the tests completed, CBR values ranging from 3.5% to 5% were recorded. Therefore, where the initial natural clay deposits are to be used as an undisturbed subgrade, it is felt that a characteristic design CBR value of 4.0% should be taken.

7.0 Laboratory Testing

All geotechnical testing was carried out in accordance with BS1377-1:2016 unless otherwise stated, at a UKAS accredited laboratory. Ground contamination screening was undertaken by a suitably experienced and qualified laboratory (UKAS and MCERTS accredited, unless otherwise stated).

7.1 Determination of pH & SO4:-

Eighteen representative samples of the made ground and natural clays encountered in the investigation were tested in order to determine their acidic (pH) and soluble sulphate (SO₄) levels. The results are shown in Table 7.1 below and are also contained in the Chemtech Environmental Limited Analytical Reports Ref nos. 49557(1) & 97483, copies of which can be seen in Appendix III.

Position	<u>Depth (m)</u>	<u>pH</u>	<u>SO₄(mg/l)</u>	<u>Design SO4 Class</u>	ACEC Class
BH01	1.00-2.00	8.2	36	DS-1	AC-1
TP01	0.50	6.9	24	DS-1	AC-1
TP02	1.50	8.2	53	DS-1	AC-1
TP04	0.30	6.8	<10	DS-1	AC-1
TP06	0.30	5.6	12	DS-1	AC-2z
TP07	1.00	8.1	38	DS-1	AC-1
TP08	0.30	6.3	20	DS-1	AC-2z
TP10	0.75	7.1	35	DS-1	AC-1
TP11	0.25	6.2	20	DS-1	AC-2z
TP12	0.20	6.8	11	DS-1	AC-1
TP101	0.00-0.20	7.6	20	DS-1	AC-1
TP102	0.30-0.50	8.6	48	DS-1	AC-1
TP103	0.10-0.30	8.4	39	DS-1	AC-1
TP105	0.00-0.20	8.0	22	DS-1	AC-1
TP106	0.00-0.30	8.2	68	DS-1	AC-1
TP111	0.40-0.60	8.0	46	DS-1	AC-1
TP113	0.20-0.40	8.4	51	DS-1	AC-1
TP115	0.10-0.30	6.7	35	DS-1	AC-1

ACEC = Aggressive Chemical Environment for Concrete site classification

7.0 Laboratory Testing (Cont'd)

7.1 Determination of pH & SO4 (Cont'd):-

From these results it can be seen that the pH values for the samples tested range from 5.6 up to 8.6 and the amount of soluble sulphate present falls within the negligible range (i.e. <500mg/l).

Therefore, in accordance with BRE Special Digest 1: 2005 (3rd Edition), the site can be given a classification of Class DS-1. When considering the acidic nature of the materials tested and assuming mobile groundwater the assessment of the Aggressive Chemical Environment for Concrete (ACEC) for the site overall, is AC-2z, due to the acidic nature of some of the soils tested.

7.2 Determination of Liquid & Plastic Limits:-

Six representative samples of the natural clay deposits recorded were tested in order to determine their liquid and plastic limits, so these materials could be classified. The results can be seen in Table 7.2 below and also within the PSL analytical report ref no. PSL13/4560 in Appendix III.

1 abic	<u>1 abc 7.2</u>									
Pos	<u>sition</u>	Depth(m)	<u>M/C (%)</u>	<u>LL</u>	<u>PL</u>	<u>PI</u>	<u>Class</u>	<u>% Passing 425µm Sieve</u>		
Т	P01	1.00	19	50	21	29	СН	72		
Т	P02	1.50	19	48	20	28	CI	75		
Т	P05	1.00	22	54	23	31	СН	78		
Т	P06	2.50	17	47	20	27	CI	72		
Т	P09	1.50	20	46	20	26	CI	76		
В	H04	3.00-4.00	20	46	27	27	CI	82		

Table 7.2

M/C = Moisture Content, LL = Liquid Limit, PL = Plastic Limit, PI = Plasticity Index

From these results, the samples tested are generally of an inorganic nature, and when plotted on the plasticity chart, fall within intermediate and high plasticity ranges, and from the resulting plasticity indices, have a moderate volume change potential, when taking into account the amount passing the 425 μ m sieve. When comparing the moisture contents to the plastic limits there is evidence that the glacial soils have moisture contents equal to or less than the plastic limits i.e. the soils appear over-consolidated and are in a semi-plastic or solid state.

It can be seen that some of these materials may undergo significant changes in volume, if large changes in their natural moisture content were to occur due to seasonal variations or the like, and if new foundations were to be based within these materials, they would need to be taken down to a minimum depth of c.0.90m below finished ground levels.

However, an increase in founding depth below the influencing depth of trees/vegetation or an alternative foundation solution may be required if dwellings are within close proximity to existing or envisaged vegetation. This is to ensure that, even if trees/vegetation are removed, any additional future shrinkage and swelling will not affect foundations. Reference should be made to BS5837: 2012, "Trees in Relation to Design, Demolition and Construction" along with the NHBC Standards, "Building near trees'.

7.3 Contamination Screening/Screening Strategy:-

Representative samples of the made ground were passed onto Chemtech Environmental of Consett, Co. Durham, so that generic and targeted soil contamination screening could be carried out. The results of all the testing (both form the original and these supplementary works can be found in the Chemtech Environmental Limited Reports (Ref Nos. 49557(1) & 97483), copies of which are attached in Appendix III.

7.0 Laboratory Testing (Cont'd)

7.3 Contamination Screening/Screening Strategy (Cont'd):-

In total 14 no. samples were screened using a standard generic contamination suite (based on the current CLEA SGV listed analytes with historical additions), which is used to assess typical made ground (disturbed natural strata mixed with anthropogenic debris), of an unknown source. In addition, these results can be used to help with a preliminary assessment for off-site disposal classification.

Although no significant evidence of any fuel /oil type contamination was noted within the exploratory positions carried out, fragments of ash were noted along with some demolition type materials i.e. brick and concrete. Therefore, for completeness samples of the made ground were targeted for Speciated PAH (Polycyclic Aromatic Hydrocarbons), Speciated TPH (Total Petroleum Hydrocarbons) and asbestos screening.

Taking into account the former agricultural land use representative samples of made ground were also screened for pesticides.

The generic and targeted contamination results have been used to carryout Level 1 Quantitative Human Health Risk Assessment for the ground contamination present and are discussed in Section 8.0. The total analysis carried out is summarised below:

- 14 no. Generic Soils Suite (suite comprises; Arsenic, Cadmium, Chromium III & VI, Copper, Lead, Mercury, Nickel, Selenium, Zinc, pH, Soluble Sulphate, Total Sulphur, free Cyanide, and Total Organic Carbon (TOC)).
- 14 no. soil samples targeted for speciated PAH (USEPA 16).
- 6 no. soil samples targeted for speciated TPH (8 carbon band split).
- 8 no. samples screened for Speciated Total Petroleum Hydrocarbons (full Aliphatic & Aromatic split)
- 8 no. samples screened for BTEX (Benzene, Toluene, Ethylbenzene, m & p-Xylene & o-Xylene)
- 14 no. soil samples targeted for Asbestos.
- 2 no. soil samples targeted for Organochlorine and Organophosphate Pesticides.

8.0 Level 1 Ground Contamination Risk Assessment

8.1 Methodology: -

Following completion of the contamination screening undertaken on various samples from this site, a Level 1 generic quantitative ground contamination risk assessment has been undertaken, generally in accordance with Environment Agency (EA) Land Contamination Risk Management (LCRM), October 2020, which superseded CLR11: Model Procedures for the Management of Land Contamination.

This quantitative ground contamination risk assessment uses the current UK practice for assessing the risks from land contamination, which is based on the established *source-pathway-receptor* pollutant linkage methodology and 'suitable for use' approach (Part IIA, EPA 1990 - inserted through Section 57 EA 1995).

Based Conceptual Site Model (CSM) for this site (described further in the following Section 8.2), a site specific screening strategy for the site has been developed (see Section 7.3) and the risks from potential contaminants have been assessed for both human health and controlled waters.

The results of the risk assessments can be found in Sections 8.3 (Human Health) and 8.4 (Controlled Waters).

8.2 Conceptual Site Model (CSM): -

From the findings of the intrusive investigation works, a Conceptual Site Model (CSM) has been developed for this site, Table 8.1 below summarises the various contaminant *sources*, plausible migration *pathways* and potentially sensitive *receptors* identified for this site, assuming no remediation, additional protection measures and/or removal of the *sources* contamination takes place

T	able	<u>7.1</u>					
		<u>Sources (S)</u>			<u>Pathways (P)</u>		<u>Receptors (R)</u>
5	51	Made ground	F	P1	Ingestion	R 1	Human health: Site Occupants
		comprising disturbed			_		(residents and construction
		natural strata with	P	P2	Plant uptake and attached		workers*)
		anthropogenic debris			soils.		
		(i.e. brick, ash, etc).					
5	52	Agricultural uses (most	P	P3	Air-inhalation of vapours	R2	Building materials*
		significantly pesticides)			and direct contact with dust.		_
			P	P4	Migration through existing	R 3	Adjacent sites*
					services		,
			P	P5	Direct contact with building	R 4	Flora and fauna*
					materials	R 5	Controlled waters**
			P	P6	Infiltration & surface runoff		(Groundwater)

* = Not considered within the Human Health and Controlled Waters Risk Assessment

** = The >20m of low permeability drift deposits (Boulder Clay), will afford significant protection to the underlying Secondary A Aquifer

8.2.1 Sources: -

The site is covered by a layer of made ground (typically <0.60m in thickness) which represents the primary potential source of ground contamination for this site. The majority of the made ground contains some anthropogenic debris mixed with disturbed natural strata, and these materials have been assessed using the standard generic soil suites, with the site considered as a single averaging area for these analytes.

There was no significant visual, olfactory or analytical evidence of significant heavy or gross contamination, such as waste oils, fuels, etc. However, fragments of ash were locally noted within the made ground therefore, for completeness and to aid in an assessment for off site disposal classification, the potential for organic based contamination (PAH's & TPH's) for this site have also been assessed. Similarly, due to some demolition type materials (i.e. brick and concrete) being noted, screening for asbestos has also been undertaken.

Although not suspected, from the results of the fieldworks, given the former agricultural nature of the site, representative samples of the made ground were screened for pesticides.

8.2.2 Pathways: -

When considering the proposed end use (*Residential*), without considering treatment, removal or protection measures, there are some potential plausible pathways available for inhalation, wind (dust / particulate) and volatilization within the proposed structure.

Within the CLEA Risk Assessment Model for Human Health, there are 3 exposure mediums considered for on site receptors, comprising ingestion of soil containing contaminants, inhalation of contaminated dust/vapours and dermal contact, with up to 10 no. exposure pathways considered, as show below.

8.2 Conceptual Site Model (CSM) (Cont'd): -

8.2.2 Pathways (Cont'd): -

• 1. Ingestion of soil and indoor dust 2. Consumption of homegrown produce and attached soil 3. Dermal contact (indoor) 4. Dermal contact (outdoor) 5. Inhalation of dust (indoor) 6. Inhalation of dust (outdoor) 7. Inhalation of vapour (indoor) 8. Inhalation of vapour (outdoor) 9. Oral background intake 10. Inhalation background intake.

Where the future site has hard cover and below new structures and areas of hardstanding, a number of these pathways may not be available.

When considering the potential pathways for leachate migration, where either hard cover and/or future surface water drainage systems are present, the potential effects of surface infiltration or contaminated surface water runoff will be greatly reduced. Similarly, when considering the construction work force, exposure pathways through direct contact, ingestion and dust inhalation will be available during part of the construction process, and therefore adequate PPE should be provided to protect the work force during this period.

8.2.3 Receptors: -

Within the CLEA Risk Assessment Model for Human Health, the potential receptors are assessed initially on site end use, followed by a delineation of age category (i.e. child or adult), with default settings for *Residential*, *Allotment* and *Public Open Space (Park)* end uses based on a child aged 0 to 6 years, *Public Open Space (Residential)* based on a child aged 3 to 9 and *Commercial* end uses based upon a working exposure period of up to 49 years (i.e. 16 to 65).

Key generic assumptions for *Residential* and *Public Open Space (Residential)* are based upon a typical residential property, consisting of a two-storey small terraced house, with private garden, and a *Commercial* end use based upon a typical commercial or light industrial property, consisting of a three-storey office building (pre-1970). No buildings are anticipated for *Allotment* or *Public Open Space (Park)* end uses. Within the CLEA Risk Assessment Model for Human Health there are 6 no. generic end use categories presently in use, as follows;

Residential - with home grown produce, 2) Residential - without home grown produce, 3) Allotments, 4) Commercial
 Public Open Space - Residential, 6) Public Open Space - Park

Therefore, for this Level 1 Risk Assessment, the best fit end use category for this site has been taken as:

1) Residential - with home grown produce

For controlled waters, the primary receptor for the Level 1 Risk Assessment is the groundwater at depth within the solid geology.

8.3 Level 1 Risk Assessment (Soils):-

8.3.1 Human Health – Heavy Metals:-

The generic soil screening results have been assessed by comparing the maximum values recorded for each analyte to the critical concentration values chosen for this site. The results of the analysis and risk assessment have been summarised in Table 8.2 on the following page and have identified the following:

8.3 Level 1 Risk Assessment (Soils) (Cont'd):-

8.3.1 Human Health - Heavy Metals (Cont'd):-

Table 8.2

Analyte	Critical Conc. (C _C) mg/kg	No. of Samples Screened	Max. Conc. (C _M) recorded mg/kg	Does C _M exceed <u>C</u> C	No. of Samples > C _C
Arsenic	37(1)	14	18	NO	0
Cadmium	11(1)	14	1.4	NO	0
Chromium III	910(1)	14	80	NO	0
Chromium VI	6(1)	14	<1*	NO	0
Copper	2400(1)	14	105	NO	0
Lead	200(2)	14	173	NO	0
Mercury	40(1)	14	<0.5*	NO	0
Nickel	130(1)	14	70	NO	0
Selenium	250(1)	14	2.5	NO	0
Zinc	3700(1)	14	556	NO	0
Cyanide	34(3)	14	<1*	NO	0

 $^{(1)}$ = LQM CIEH Suitable 4 Use Levels (S4UL Nov 2014 (Revised August 2015)) – (Residential with homegown produce, $^{(2)}$ = C4SL Values (Residential with homegown produce), $^{(3)}$ = ATRISK^{SOIL} SSV. * = Site Value (C_M) less than analytical detection limit

- The maximum concentration (C_M) values for all of the analytes screened for fall below the critical concentration values (C_C) for this site.
- When considering these results, the made ground below the site does not represent a potential risk to the end users from heavy metals, and therefore no treatment, removal, protection measures and / or further detailed quantitative risk assessment will be required.

8.3.2 Human Health - PAH, TPH & Pesticide Screening:-

Although no visual, olfactory or analytical evidence of significant heavy or gross contamination, such as waste oils, fuels, etc. was noted, fragments of ash were recorded within the made ground. Therefore, representative samples of the made ground were recovered and screened for Speciated PAH's & Speciated TPHs. A summary of the results for the Level 1 Risk Assessment based on the results of the soil concentrations for the end users can be seen in Tables 8.3 & 8.4 below and on the following page and have identified the following:

		No. of	Max. Conc. (C _M)	Has C _M exceeded	No. of
	$(\mathbf{C}_{\mathbf{C}})$ mg/kg	samples tested	(mg/kg)	Cc	Samples >Cc
Acenaphthene	510(1)	14	0.16	NO	0
Acenaphthylene	420(1)	14	0.06	NO	0
Anthracene	5400(1)	14	0.53	NO	0
Benzo(a)anthracene	11(1)	14	1.93	NO	0
Benzo(a)pyrene	2.7(1)	14	1.63	NO	0
Benzo(b)fluoranthene	3.3(1)	14	2.11	NO	0
Benzo(ghi)perylene	340(1)	14	1.08	NO	0
Benzo(k)fluoranthene	93(1)	14	0.85	NO	0
Chrysene	22(1)	14	2.08	NO	0
Dibenz(ah)anthracene	0.28(1)	14	0.25	NO	0
Fluoranthene	560(1)	14	3.92	NO	0
Fluorene	400(1)	14	0.22	NO	0
Indeno(123cd)pyrene	36(1)	14	1.34	NO	0
Naphthalene	5.6(1)	14	0.09	NO	0
Phenanthrene	220(1)	14	2.17	NO	0
Pyrene	1200(1)	14	3.21	NO	0

Table 8.3 – PAH Screening

8.3 Level 1 Risk Assessment (Soils) (Cont'd):-

8.3.2 Human Health - PAH, TPH & Pesticide Screening (Cont'd):-

Table 8.4 – TPH & Pesticide Screening

<u>Analyte</u>	<u>Critical</u>	<u>No. of</u>	Max. Conc.	<u>Has C_M</u>	<u>No. of</u>
	<u>Conc. (C_C)</u>	<u>samples</u>	<u>(См)</u>	exceeded	<u>Samples > C_C</u>
	<u>mg/kg</u>	tested	<u>(mg/kg)</u>	<u>C</u>	_
BTEX					
Benzene	0.17(1)	8	< 0.01*	NO	0
Toluene	290(1)	8	< 0.01*	NO	0
Ethylbenzene	110(1)	8	< 0.01*	NO	0
m & p-Xylene	130(1)	8	< 0.02*	NO	0
o-Xylene	140(1)	8	< 0.01*	NO	0
Speciated TPH (8 Band)					
C5-C7	78(1)	6	< 0.1	NO	0
C6-C8	230(1)	6	< 0.1	NO	0
C8-C10	65(1)	6	0.3	NO	0
C10-C12	180(1)	6	1	NO	0
C12-C16	330(1)	6	6	NO	0
C16-C21	540(1)	6	15	NO	0
C21-C35	1500(1)	6	18	NO	0
C35-C44	1500(1)	6	<1	NO	0
Speciated TPH Ali / Aro Split					
VPH Aliphatic (>C5-C6)	78(1)	8	< 0.1*	NO	0
VPH Aliphatic (>C6-C8)	230(1)	8	<0.1*	NO	0
VPH Aliphatic (>C8-C10)	65(1)	8	<0.1*	NO	0
EPH Aliphatic (>C10-C12)	330(1)	8	<4*	NO	0
EPH Aliphatic (>C12-C16)	2400(1)	8	30	NO	0
EPH Aliphatic (>C16-C35)	92000(1)	8	509	NO	0
EPH Aliphatic (>C35-C44)	92000(1)	8	92	NO	0
VPH Aromatic (>EC5-EC7)	140(1)	8	< 0.01*	NO	0
VPH Aromatic (>EC7-EC8)	290(1)	8	< 0.01*	NO	0
VPH Aromatic (>EC8-EC10)	83(1)	8	< 0.01*	NO	0
EPH Aromatic (>EC10-EC12)	180(1)	8	<1*	NO	0
EPH Aromatic (>EC12-EC16)	330(1)	8	<1*	NO	0
EPH Aromatic (>EC16-EC21)	540(1)	8	11	NO	0
EPH Aromatic (>EC21-EC35)	1500(1)	8	11	NO	0
EPH Aromatic (>EC35-EC44)	1500(1)	8	<1*	NO	0
Pesticides					
Organochlorine pesticides	0.01 ⁽²⁾	2	< 0.01	NO	0
Organophosphate pesticides	0.01 ⁽²⁾	2	<0.01	NO	0

(1) = LQM/CIEH S4UL's - Residential with homegrown produce (2.5% SOM), (2) = Analytical detection limit. * = Site Value (CM) less than analytical detection limit

- None of the individual PAH, TPH or Pesticide maximum concentration (C_M) values exceed the chosen critical concentration (C_C) values for this site.
- When considering these results, the made ground has not been impacted by hydrocarbon or pesticide type contaminants and does not represent a risk to the end users. As a result, the made ground can remain on site without the requirement for treatment, protection measures and / or further detailed quantitative risk assessment.

8.3 Level 1 Risk Assessment (Soils) (Cont'd):-

8.3.3 Human Health - Asbestos Screening:-

When considering the presence of demolition type material within the made ground present on site, representative samples have been screened for asbestos fibres, to determine whether any unidentified asbestos was present within these materials. The results are summarised in Table 8.5 below and have identified the following:

<u>Table 8.5 –</u>	Asbestos Sc	reening				NAD	D = No Asbestos Detected
Position	Depth	Chrysotile	Amosite	Crocidolite	Anthophyllite	Actinolite	Tremolite
	(m)	(white)	(brown)	(blue)			
TP01	0.50	NAD	NAD	NAD	NAD	NAD	NAD
TP04	0.30	NAD	NAD	NAD	NAD	NAD	NAD
TP06	0.30	NAD	NAD	NAD	NAD	NAD	NAD
TP08	0.30	NAD	NAD	NAD	NAD	NAD	NAD
TP11	0.25	NAD	NAD	NAD	NAD	NAD	NAD
TP12	0.20	NAD	NAD	NAD	NAD	NAD	NAD
TP101	0.00-0.20	NAD	NAD	NAD	NAD	NAD	NAD
TP102	0.30-0.50	NAD	NAD	NAD	NAD	NAD	NAD
TP103	0.10-0.30	NAD	NAD	NAD	NAD	NAD	NAD
TP105	0.00-0.20	NAD	NAD	NAD	NAD	NAD	NAD
TP106	0.00-0.30	NAD	NAD	NAD	NAD	NAD	NAD
TP111	0.40-0.60	NAD	NAD	NAD	NAD	NAD	NAD
TP113	0.20-0.40	NAD	NAD	NAD	NAD	NAD	NAD
TP115	0.10-0.30	NAD	NAD	NAD	NAD	NAD	NAD

• No asbestos fibres have been detected and therefore the made ground below the proposed development area is not felt to represent a risk with regards to asbestos.

8.4 Level 1 Risk Assessment (Controlled Waters): -

The following hydrogeological and hydrological issues have been taken into consideration when assessing the risks towards controlled waters;

- A shallow continuous groundwater surface (water table) is not anticipated to be present below this site.
- No water samples were able to be obtained from the trial pits and boreholes as no shallow groundwater was encountered.
- The site is covered by at least 20m of low permeability drift deposits.
- Groundwater is anticipated at depth within the solid deposits (Secondary A Aquifer).
- The site is not located within a Source Protection Zone (SPZ).
- There are no groundwater abstractions recorded within c.500m of the site.
- The River Blyth is located c.88m south west of the site on the other side of East Sleekburn Village.
- Low soils results.

When taking into account the above site setting and based on the soil screening results the risk of significant contamination being present below the site and impacting groundwater is felt to be very low/negligible and therefore no leachate screening was deemed necessary.

9.0 Conclusions & Recommendations

9.1 Ground Conditions:-

From the information gained during the previous and recent intrusive ground investigation works undertaken by Arc Environmental Ltd, made ground has been recorded to typical depths of <0.60m. Zones of deeper made ground were recorded within BH02 (2.10m) and BH05 (2.50m) which appeared to be associated with infilled trenches for drain runs, although no drainage networks were recorded on site from the Statutory service plans obtained.

The made ground generally comprised unmanaged grass overlying sandy soil and sandy gravelly clay with brick, slate and concrete fragments. Ashy soils and an ash filled service trench was noted within TP11. Some ash was also noted within BH02 & TP111. There was anecdotal evidence that the site was historically used as temporary site compound associated with the construction of the adjacent by-pass resulting in red shale and contaminated spoil possibly being present. However, from the results of the intrusive investigation there was no evidence of red shale or significant contamination.

The underlying natural clay deposits comprised stiff locally firm (high strength) sandy gravelly clay (Glacial Till) with occasional coal and sandstone fragments/cobbles to depths of at least c.5.00m, the terminal depth of the boreholes.

From the results of the Phase 1: Desk Top Study Report previously carried out, the site is not considered to be at risk from shallow coal mining activities, as the thickness of overlying competent rock cover is felt to be sufficient as to prevent any possible crown hole migration resulting from potential mine working collapses. Taking this into account, no further intrusive works or remedial works were deemed necessary.

9.2 Groundwater:-

No water ingresses/strikes were recorded with the majority of the exploratory positions remaining dry. However, water ingress was recorded within BH05, at c.2.50m, & TP111 at c.1.90m bcgl (associated with suspected relic drains). A minor ingress was also noted within TP05 at c.2.00m from an unrecorded relic drain. Subsequently, significant shallow water ingress should not be problematic with regards to future excavations. However, it would be prudent to allow for the introduction of suitable groundwater control measures, in order to take care of any localised ingresses of groundwater which may occur during the construction period, especially during the wetter periods of the year.

9.3 Gas Protection Measures:-

Following the results of the Phase 1: Desk Top Study Report there are no potential sources of significant ground gas recorded on or within plausible migration distance to this site and as such the site is not considered to be at significant risk from hazardous ground gas migration. However, when considering Northumberland County Councils (NCC) methodology and approach for sites in the Northumberland Coalfield, gas protection measures will be required within the proposed development. Correspondence with NCC should be sought with regards to the level of protection required (likely CS2 / Amber 1 classification).

9.4 Foundation Options:-

When considering the ground conditions recorded and proposed development, it is felt that strip or pad foundations should be suitable for the proposed development with foundations taken down through the full thickness of made ground and be based within the stiff sandy gravelly clays at a minimum depth of c.0.90m below finished ground levels were a maximum allowable bearing pressure of 175kN/m² is available. Where housing plots may be influenced by existing or proposed trees and vegetation then reference should be made to BS5837: 2012, "Trees in Relation to Design, Demolition and Construction" along with the NHBC Standards, 'Building near trees'.

9.0 Conclusions & Recommendations (Cont'd)

9.4 Foundation Options (Cont'd):-

When considering the design of hardstanding areas it is recommended that a characteristic design CBR value of 4% can be taken for the natural clay where it is to be utilised as an undisturbed sub-grade

From the results of the pH and soluble sulphate testing, it can be seen that future foundations and buried concrete should be constructed utilising a concrete design class of DS-1 and ACEC class of AC-2z. For proposed buried services routes, recourse to the relevant utility supplier should be made for their advice/comments regarding pipe material/backfill selection.

9.5 Ground Contamination:-

From the results of the contamination screening carried out, the made ground can remain on site without representing a risk to the end users and will not require any removal, treatment or protection measures to be installed. Similarly, the made ground does not represent a risk towards controlled waters and adjacent sites.

When considering the risks to the construction workforce, adequate PPE will be required to provide protection against the levels of contaminants recorded during these investigation works. Similarly, the results can also be used by the Main Contractor / Project Coordinator, when devising an adequate Site Health & Safety Plan, in accordance with current CDM Regulations. If during future redevelopment works, any excavated materials are to be removed from this site as a waste and disposed of at a landfill, reference should be made to the notes on off-site disposal within Appendix IV, particularly when assessing the likely classification of these materials prior to disposal.

9.6 General Comments:-

When considering the potential for a Sustainable Urban Drainage System (SUDS) to be incorporated into the proposed development, due to the presence of deep impermeable drift deposits, soakaways will not be suitable for the proposed development.

Where possible, removal of materials from site as a 'waste' should be kept to a minimum and ideally excavated materials should all be reused on site. However, if excavated materials have to be discarded to accommodate finished ground levels etc., it should be noted that additional analysis and screening is likely to be required once each specific waste stream has been identified and the volume of material to be disposed of has been calculated, since the amount of screening required, including any pre-disposal WAC screening, will be dependent upon the final volume of material to be disposed of.

Where we have sampled and tested for asbestos this is discussed in the report. Whilst we would target any asbestos sampling and testing in accordance with a Conceptual Site Model and site findings, there is always the possibility, along with other contamination, that undiscovered asbestos exists between sample locations and the possibility of unknown asbestos exists on all sites, particularly brownfield sites where previous buildings have been demolished, where there were previous features that were infilled (old hollows, pits etc) or where significant quantities of materials such as demolition and brick rubble exist.

It is not uncommon for historical asbestos wastes to be deliberately buried on derelict sites or imported old demolition rubble which could contain asbestos to be imported for use as hardstanding / hardcore. Unless otherwise stated we have not assessed any above or below ground features such as existing buildings, service ducts, basements, culverts, partly demolished or dilapidated structures, spoil heaps, fly tipped materials, security bunds, etc.

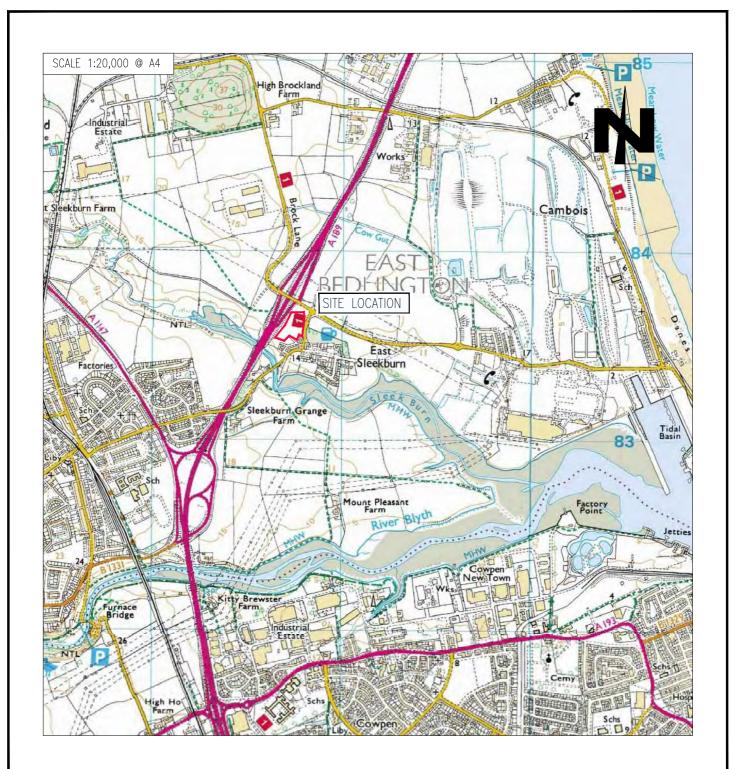
9.0 Conclusions & Recommendations (Cont'd)

9.6 General Comments (Cont'd):-

Adequate lateral trench support will be required for excavations, to prevent trench wall collapse or over excavations, as well as to create a safe working environment, and any excavations on this site should remain open for as short a period as possible, since some of these materials may be susceptible to deterioration, if left open to the natural elements for any significant period.

It is also recommended for any new developments, adequate surface drainage should be designed and installed by a competent contractor, to prevent surface water 'ponding' or collection, during and post construction, particularly where the existing surface drainage system is disrupted or damaged.

END OF REPORT


APPENDIX I

Location Plan

Aerial Photograph

Existing Site Layout Plan

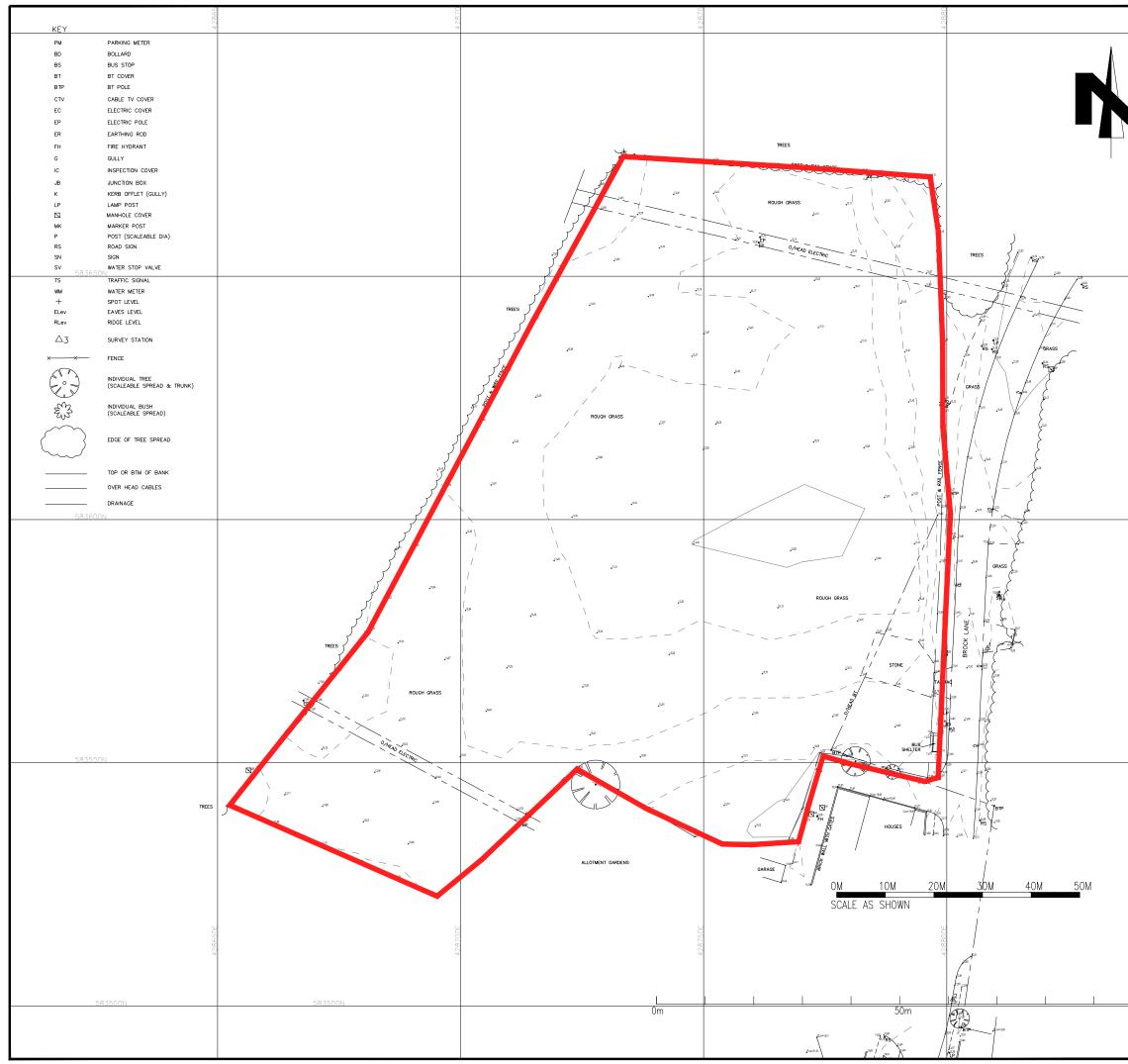
Proposed Development Layout Plan

Client:

.

Project Title: Proposed Residential	Development	Drawing Title:					
Land at Springville , East Sleekburn, North		Location Plan					
Job Reference: 21-168	Drawing Nu	mber:	Revision: _				
Drawn by: P.D	Date: 01.07.21		Scale at A4: As Shown				
Checked by: D.M	Approved by D.M	/:	The contractor shall check all dimensions or site before commencement of any works. No dimensions to be scaled off this drawing O Copyright Reserved				

VOT LIONEO

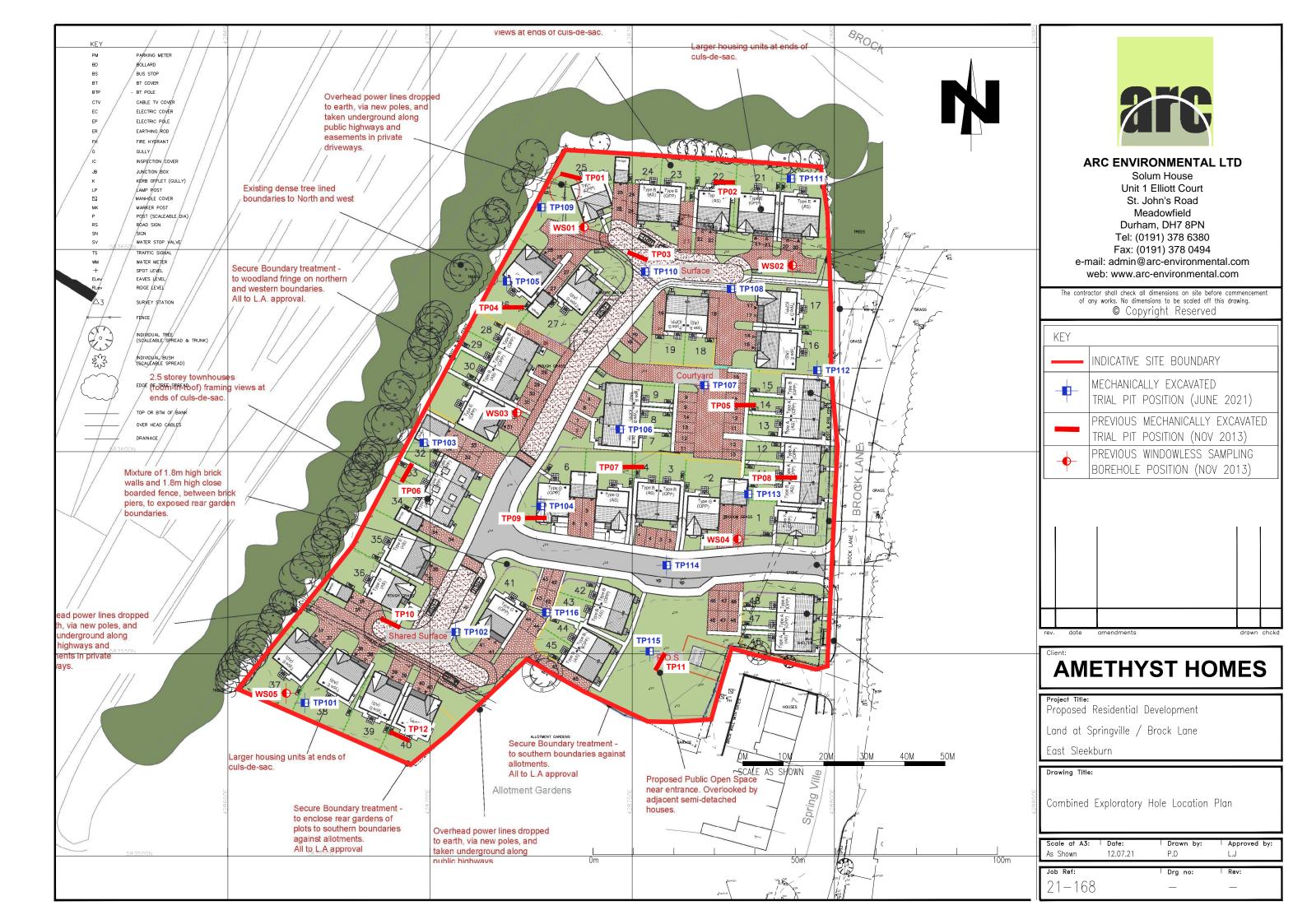


ARC ENVIRONMENTAL LTD Solum House Unit 1 Elliott Court St. John's Road Meadowfield Durham DH7 8PN Tel: (0191) 378 6380 Fax: (0191) 378 0494 e-mail: admin@arc-environmental.com web: www.arc-environmental.com

BACE ENVIRONMENTAL LTD Solum House Unit 1 Elliott Court St. John's Road Meadowfield Durham, DH7 8PN Tei: (0191) 378 6380 Fax: (0191) 378 0494 e-mail: admin@arc-environmental.com Web: www.arc-environmental.com
© Copyright Reserved
KEY INDICATIVE SITE BOUNDARY
rev. date amendments drawn chckd
Project Title: Proposed Residential Development Land at Springville / Brock Lane East Sleekburn
Drawing Title: Aerial Photograph
Scale at A3: Date: Drawn by: Approved by: As Shown 11.06.21 P.D D.M Job Ref: Drg no: Rev: 21-168 - -

02	
200 7 7	ARC ENVIRONMENTAL LTD Solum House Unit 1 Elliott Court St. John's Road Meadowfield Durham, DH7 8PN
	Tel: (0191) 378 6380 Fax: (0191) 378 0494 e-mail: admin@arc-environmental.com web: www.arc-environmental.com
	The contractor shall check all dimensions on site before commencement of any works. No dimensions to be scaled off this drawing. © Copyright Reserved
	KEY
	INDICATIVE SITE BOUNDARY
	rev. date amendments drawn.chckd
	AMETHYST HOMES
	Project Title: Proposed Residential Development
	Land at Springville / Brock Lane
	East Sleekburn Drawing Title:
4.28850E	Existing Site Layout Plan
	Scale at A3: Date: Drawn by: Approved by: As Shown 11.06.21 P.D D.M
100m	Job Ref: Drg no: Rev: 21-168

3851	
42	
	ARC ENVIRONMENTAL LTD
	Solum House Unit 1 Elliott Court St. John's Road
	Meadowfield Durham, DH7 8PN
	Tel: (0191) 378 6380 Fax: (0191) 378 0494 e-mail: admin@arc-environmental.com
	web: www.arc-environmental.com The contractor shall check all dimensions on site before commencement
	of any works. No dimensions to be scaled off this drawing. © Copyright Reserved
	KEY
	INDICATIVE SITE BOUNDARY
	rev. date amendments drawn chckd
	AMETHYST HOMES
	Proposed Residential Development Land at Springville / Brock Lane
	East Sleekburn
E	Drawing Title:
428850	Proposed Development Layout Plan
	Scale at A3: Date: Drawn by: Approved by: As Shown 11.06.21 P.D D.M
100m	Job Ref: Drg no: Rev: 21-168
	21 100 -



APPENDIX II

Borehole & Trial Pit Location Plan

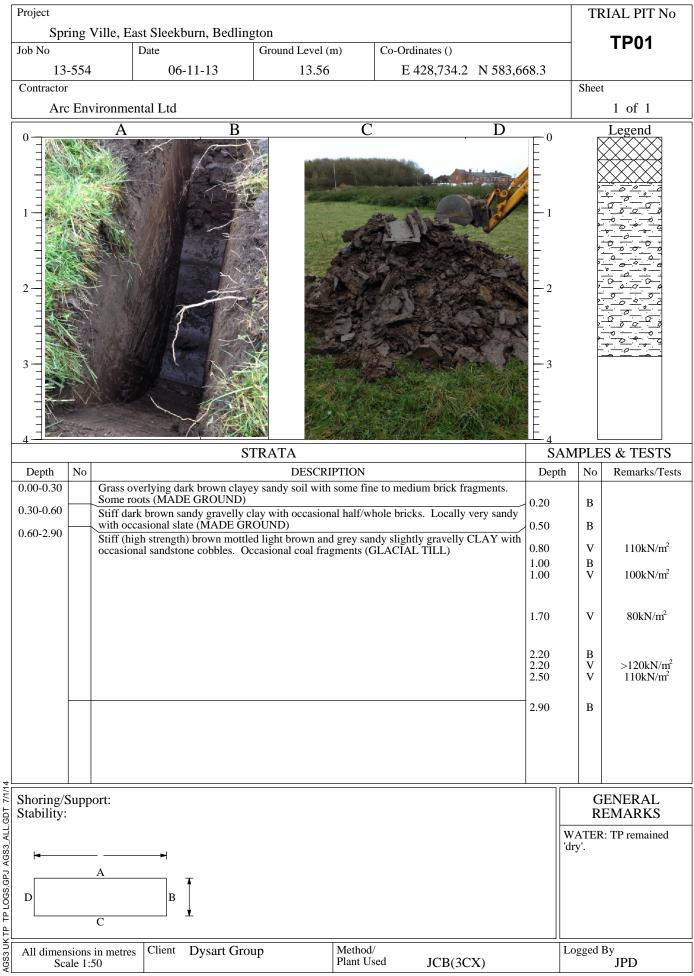
Borehole Record Sheets

Trial Pit Record Sheets

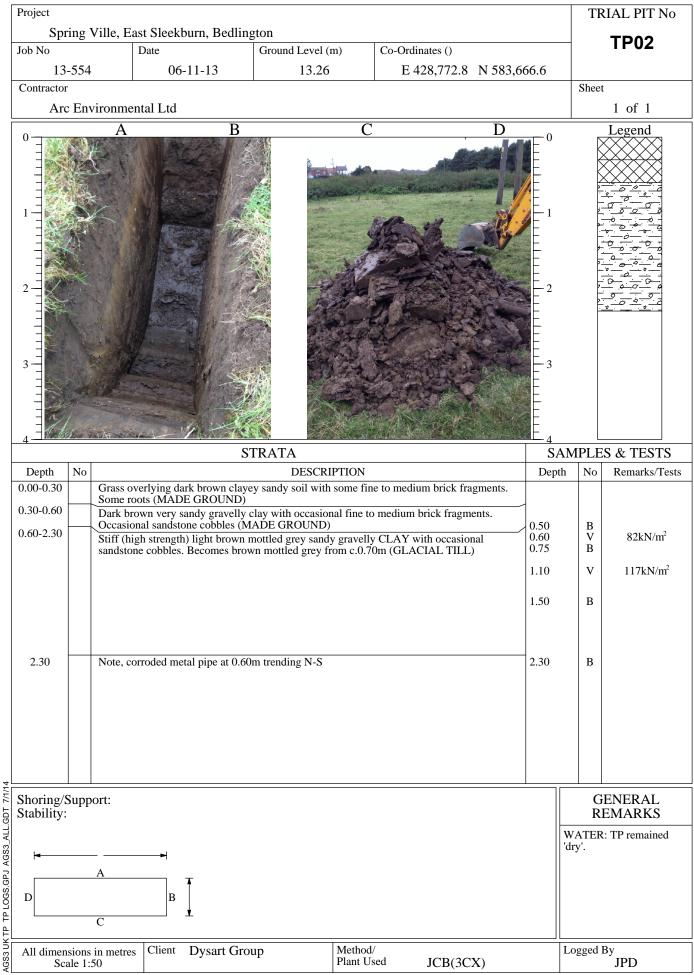
Project	Spring Ville East Sleekburn Bedlington													
Spri: Job No	ng Vill	e, East S		kburn, I	Bedling	ton Ground L	aval (m)	CoO	rdinates ()			– BH	101	
13-:	554	Da		6-11-13			3.41		E 428,738	1 N 58	3 655 5			
Contractor	554			0-11-13		1	.5.71	L	2 420,730	.1 10.50.	3,035.5	Sheet		
Arc	Enviro	nmental	Ltd	l								1 0	of 1	
SAMPLE	ES & T	ESTS								ent/				
Donth	Туре	Test	Water	Reduced	Lagand	Depth (Thick-			DESCI	DIDTION			Geology	Instrument/ Backfill
Depth	No	Result		Level	Legend	ness)				RIPTION			Geo	Inst Bac
0.00-0.40	D				\bigotimes	(0.40)	Grass over	lying dark	brown clay	yey sandy s	oil (MADE	E GROUND)		
-				13.01		0.40		-4		1. 11. 1. 1. 1. 1.				-
0.40-1.00	D					- -	Stiff (high slightly gra Occasional	avelly CLA	AY with oc	casional sa	ndstone col	bles.		
-						€ €	Occasiona	l coal fragi	nents (GLA	ACIAL TIL	L)			
1.00-2.00	D				-0-0-									
1.00	V >	120kN/r	n ²			- 								
-														
-														
-														
2.00-3.00	D	100131	2			• 								
- 2.00	V >	120kN/r	'n											
-														
-						(4.60)								
-														
3.00-4.00 - 3.00	D V	120kN/m	2											
						- -								
-														
-														
-	- D					-								
4.00-5.00 4.00	D V	100kN/m	1 ²			4								
-						-								
-														
-														
5.00	v	100kN/m	1 ²	8.41	<u> </u>	5.00								-
-														
-						-								
-						-								
Borir	Ig Prog	ress an	d W	ater Ob	servati	lons		Chisellin	σ	Water	Added	GENE	DAT	
	Time	Depth		Casir Casir Depth I			From	То	Hours	From	То	REMA		
		-			<u> 71a. 11111</u>							WATER: BH r	emain	ed
												'dry'.		
All dimens	ions in m	netres (lient	Dvsa	rt Grou	 ID	Meth	l				Logged By		
	e 1:37.5			1 y 3 a	5100	·r	Plant		Dynamic	Sampling	5	AD	S	

Project Spri	Spring Ville, East Sleekburn, Bedlington													No
Job No	0	Date					evel (m)	Co-Or	dinates ()			- BH	102	
	554		06	5-11-13		1	3.47	E	2 428,789	.6 N 583	3,646.1			
Contractor								Sheet						
		mental	Ltd					1						
SAMPL	ES & TI	ESTS	ter			Denth		STRATA						nent
Depth	Type No	Test Result	Water	Reduced Level Le	gend (Depth Thick- less)				RIPTION			Geology	Instrument/ Backfill
0.00-0.20	D			13.27		0.20		-	-			GROUND)		
. 0.20-0.70	D			12.77		(0.50) 0.70	Black and re GROUND)	eddish bro	own sandy	ash and bri	ck fragmen	ts (MADE		
0.70-1.00	D		-	12.47		(0.30) 1.00	Dark brown	sandy gra	avelly clay	(MADE G	ROUND)			_
1.00-2.10 1.00	D V	80kN/m ²	-	X			Stiff brown cobbles. Oc	sandy slig ccasional	ghtly grave coal fragme	lly clay wit ents (MAD	h occasion: E GROUN	al sandstone D)		
- - - -						(1.10)								
2.00 2.10-3.00	V D	80kN/m ²	-			2.10	Stiff (high s slightly grav Occasional	elly CLA	Y with occ	casional sai	idstone cob	ey sandy bles.		-
3.00-4.00	D V >	120kN/m	2			(2.90)								
4.00-5.00 4.00	D V	120kN/m²												
5.00	V	110kN/m²	-	8.47 - c		5.00								-
- - - -														
	Ť			ater Obser				hiselling		Water		GENE		
Date	Time	Depth	D	Casing epth Dia.	mm	Water Dpt	From	То	Hours	From	То	REMA WATER: BH 1		
												'dry'.	eman	eu
All dimens		etres Cl	ient	Dysart (Group		Metho		<u> </u>	C]	Logged By	с С	
Scale	e 1:37.5						Plant	Used [Dynamic	Sampling		AD	5	

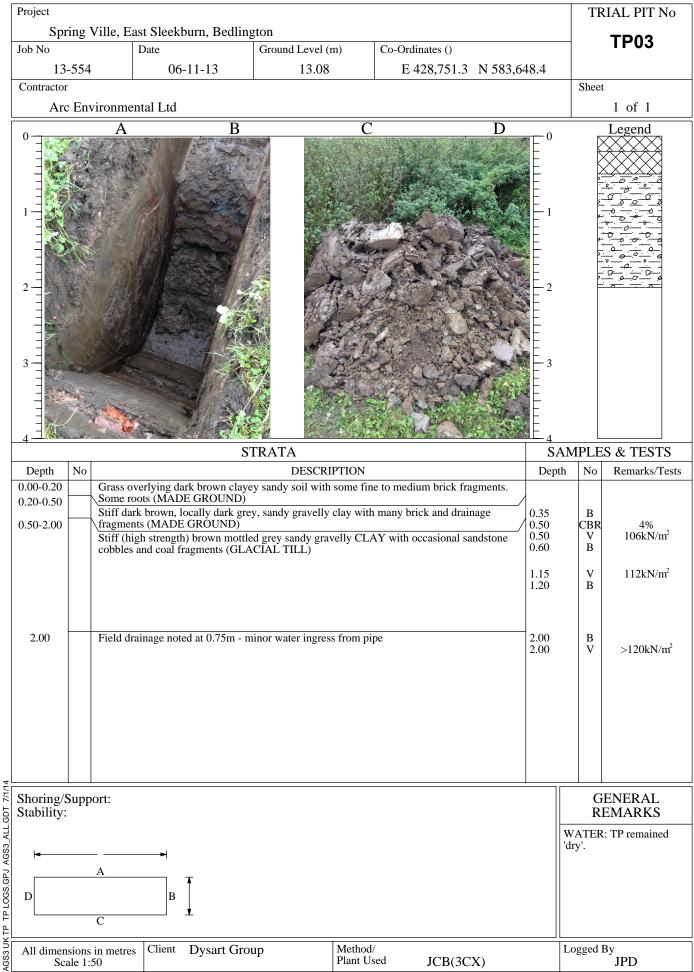
Project	Spring Ville, East Sleekburn, Bedlington														
Job No	ng ville, i	Date	еекы	ırn, вес		ton Ground L	evel (m)	Co-O	rdinates ()			BH03			
13-	554		06-1	11-13			3.10		E 428,721	.5 N 58	3,609.6				
Contractor							Sheet								
Arc	Environm	nental I	Ltd										f 1		
SAMPL	ES & TES	STS	er					STRA			y,	nent/ II			
Depth	No F	Test Result	Re L	educed Level	egend	Depth (Thick- ness)				RIPTION			Geology	Instrument/ Backfill	
0.00-0.30	D				\bigotimes	(0.30) 0.30	Grass ove	rlying dark	brown clay	yey sandy s	oil (MADE	E GROUND)			
0.30-1.00	D					<u>0.30</u>	Stiff (high slightly g	n strength) b ravelly CLA al coal fragi	orown mott AY with oco nents (GLA	led light br casional sar ACIAL TIL	own and gr ndstone cot L)	ey sandy bbles.			
1.00-2.00	D V >12	20kN/m ²													
2.00-3.00	D V >12	20kN/m²													
- 3.00-4.00 - 3.00	D V 110	0kN/m ²		╏┩╻┚ _┪ ╹┪╹╅╹╷╹╷╹╷╹╷╵		(4.70)									
- 4.00-5.00 - 4.00	D V 90	/kN/m ²													
- 5.00	V 90	/kN/m ²		8.10		- 5.00								-	
- - - -		1	Wete			-	11	<u>Chievilia</u>		Weter	L				
Date	ng Progre Time I	ss and Depth		er Obse Casing th Dia		Ons Water Dpt	From	Chisellin To	g Hours	Water From	Added To	GENE REMA			
Borin Date		Jepun	Dept	th Dia	<u>. mm</u>	Dpt	FIOII	10	Hours	FIOIII	10	WATER: BH r 'dry'.			
All dimens	sions in met	res Cli	ent]	Dysart	Grou	p	Met	hod/		Course 1'		Logged By	с С		
Scale	e 1:37.5						Plai	nt Used]	Dynamic	Sampling	5	AD	8		

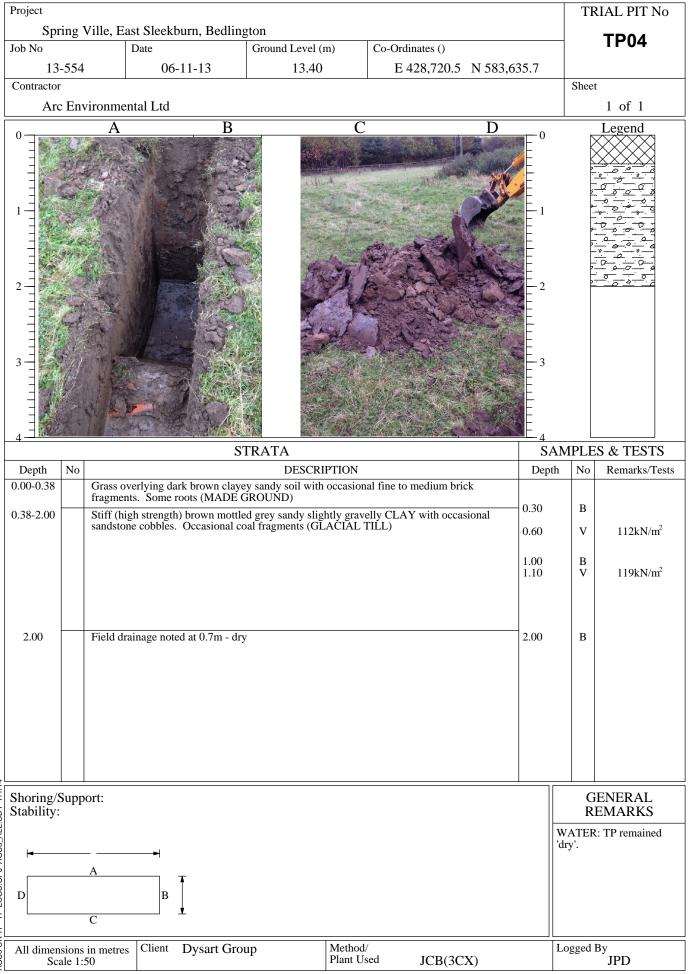


Project		Spring Ville Fast Sleekburn Bedlington													
Job No	ng ville,	Date		courn, B	edling	ton Ground L	evel (m)	Co-O	rdinates ()			BH04			
	554			5-11-13			3.27		E 428,776	5.2 N 58	3,578.4				
Contractor												Sheet			
Arc	Environn	nental I	Ltd					1 0	f 1						
SAMPL	ES & TES	STS	r					STRA			y	lent/			
Depth	Type No F	Test Result	Water	Reduced Level	Legend	Depth (Thick- ness)			DESCI	RIPTION			Geology	Instrument/ Backfill	
0.00-0.30	D			10.05	$\times\!\!\!\times\!\!\!\times$	(0.30) 0.30	Grass ove	rlying dark	brown clay	yey sandy s	oil (MADE	E GROUND)			
0.30-1.00	D			12.97		0.30	Stiff (high slightly g	n strength) b ravelly CLA al coal fragi	orown mott AY with oco nents (GLA	led light br casional sa ACIAL TIL	own and gr ndstone cob L)	ey sandy bbles.			
- 1.00-2.00 - 1.00	D V >12	20kN/m ²													
2.00-3.00	D V >12	20kN/m²													
3.00-4.00	D V 110	0kN/m ²				(4.70)									
- 4.00-5.00 - 4.00	D V 90	/kN/m ²													
- 5.00	V 90	/kN/m ²		8.27		- 5.00								-	
- - -		1				- - - -	11	<u></u>		337.4	<u></u>				
Date	ng Progre Time I	ss and Depth		ater Ob Casing epth D		ONS Water Dpt	From	Chisellin To	g Hours	Water From	Added To	GENE REMA			
Borin Date		Deptn	D	epth D	<u>йа. mm</u>	Dpt	From	10	HOURS	riom	10	WATER: BH r 'dry'.			
All dimens	ions in met	res Cli	ent	Dysar	rt Grou	p	Met	hod/	<u> </u>	Correct!		Logged By	с С		
Scale	e 1:37.5						Plai	nt Used]	Dynamic	Sampling	5	AD	S		



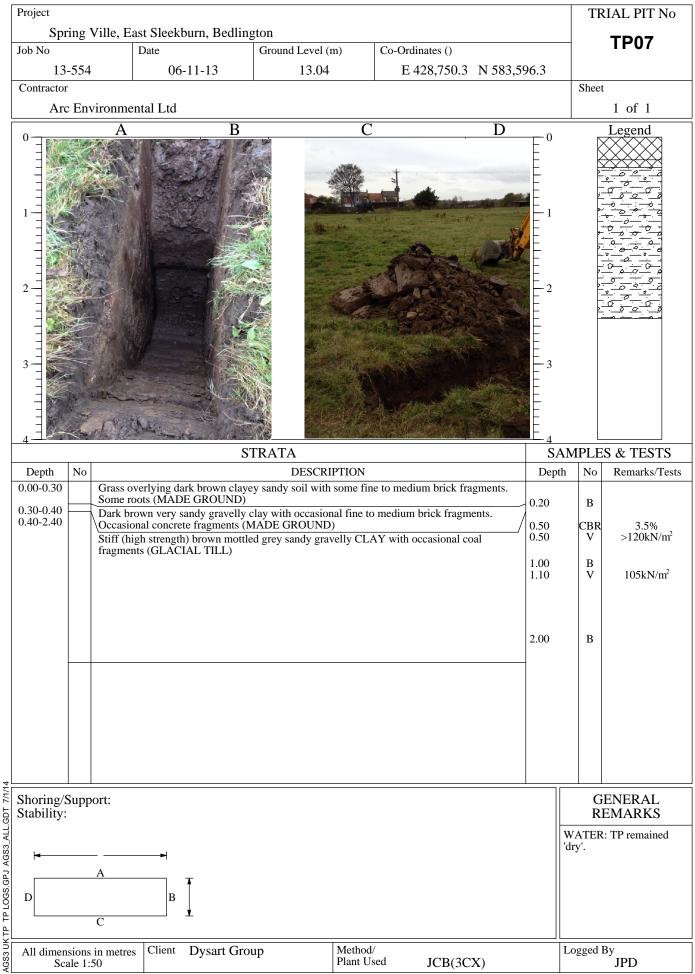
Project	BOREHO													OLE	No	
-	ing Vill			kburn, l	Bedling								BL	BH05		
Job No		D	ate			Ground L		n)		rdinates ()				105		
	554		0	6-11-13	3	1	3.59 E 428,664.4 N 583,540.3 Sheet									
Contractor	Б .		1											C 1		
L	Enviro		_	1									10	of 1	1	
SAMPL	ES & 1	TESTS	er –	STRATA									23	nent/		
Depth	Type No	Test Result	Water	Reduced Level	^d Legend	Depth (Thick- ness)					RIPTION			Geology	Instrument/ Backfill	
0.00-0.30	D			12.00		(0.30) 0.30	Grass	s over	lying dark	brown clay	yey sandy s	soil (MADE	E GROUND)			
0.30-1.00	D			13.29		- 0.30 - - - -	Stiff (MA	browr DE Gl	n sandy gra ROUND)	avelly clay	with brick	and coal fra	agments		-	
- 1.00-2.00 - 1.00	D V	90kN/n	m ²			(2.20)										
2.00-2.50	D V	80kN/n	m ²	11.00												
2.50-2.80	D			11.09		2.50 (0.30) 2.80	Brow	Brown saturated gravel with possible drainage fragments (MADE GROUND) Stiff (high strength) brown sandy slightly gravelly CLAY with							-	
2.80-4.00	D			10.79		2.80									-	
3.00	V	80kN/n	m ²				occas	ccasional coal fragments (GLACIAL TILL)								
4.00-5.00	D V	90kN/n		8.55		(2.20)										
5.00	V	90kN/n	n ²			-									1	
- - - - -						-										
Bori	ng Prog	gress at		ater Ol				(Chisellin	g	Water	Added	GENE			
Date	Time	Depth		Casii Depth	ng Dia. mm	Water Dpt	Fr	om	То	Hours	From	То	REMA	RKS		
Bori Date All dimens													WATER: Watt from suspected at 2.50m.			
All dimen		netres	Client	t Dysa	art Grou	ıp		Meth		·		·J	Logged By	a		
Scal	e 1:37.5			-				Plant	Used I	Dynamic	Sampling	3	AD	S		



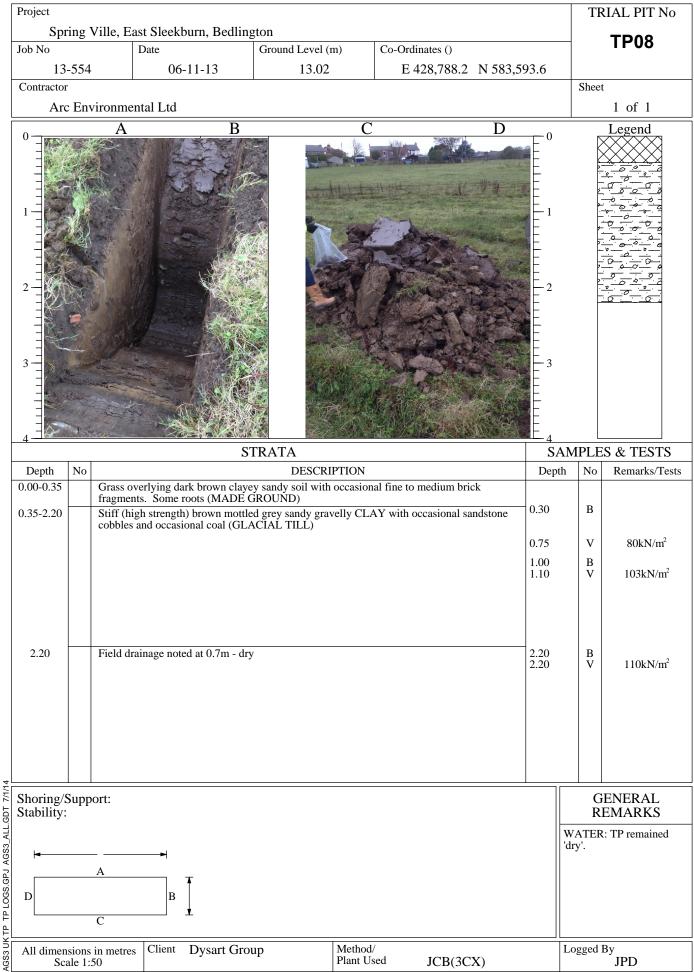


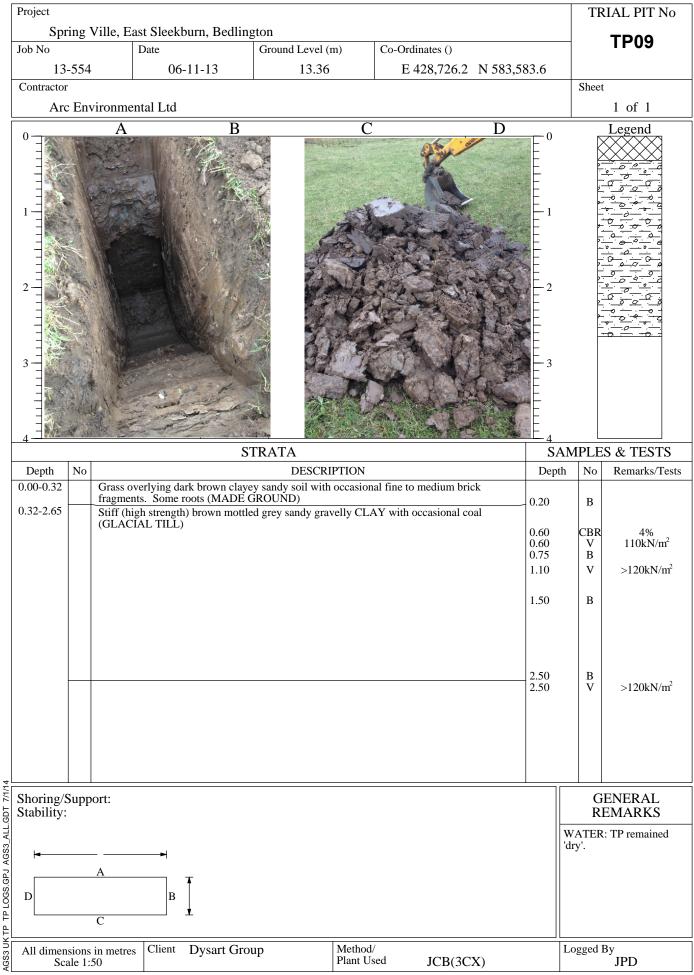

TRIAL PIT LOG

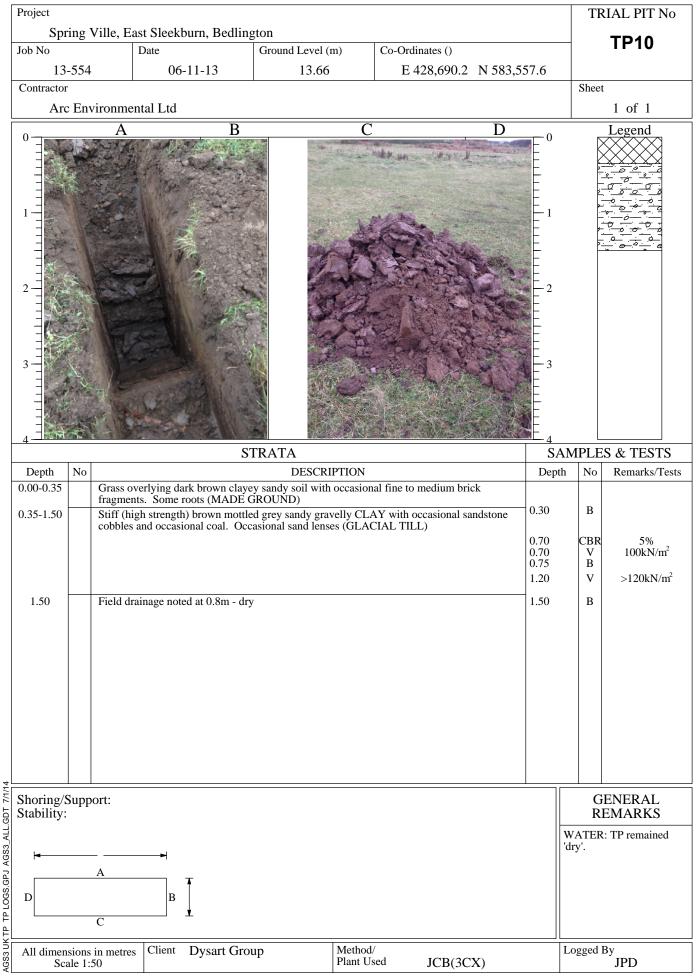
AGS3 UK TP TP LOGS.GPJ AGS3_ALL.GDT 7/1/1

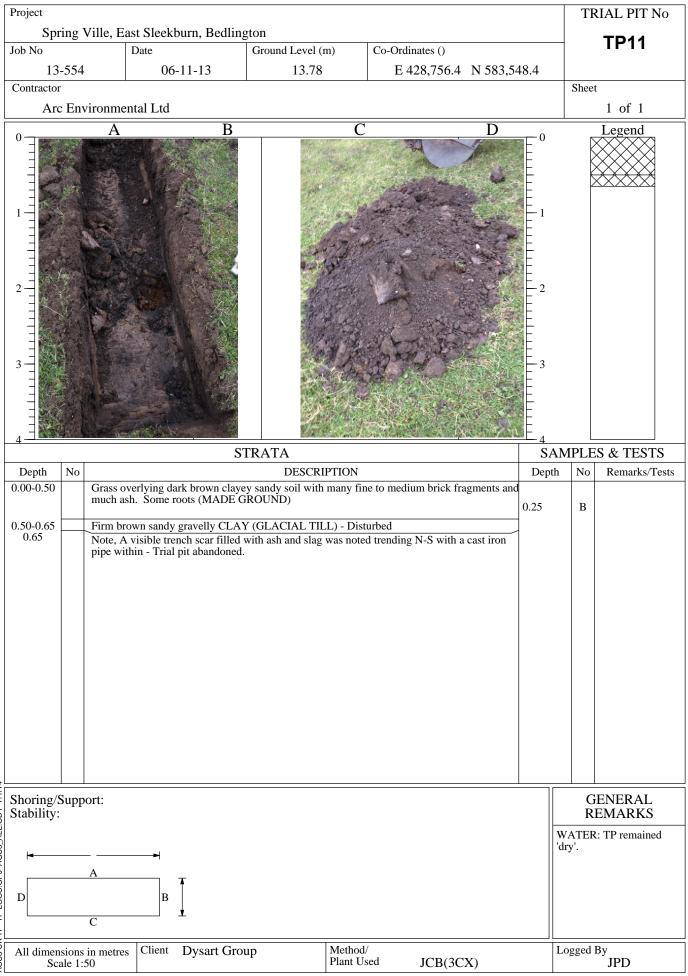


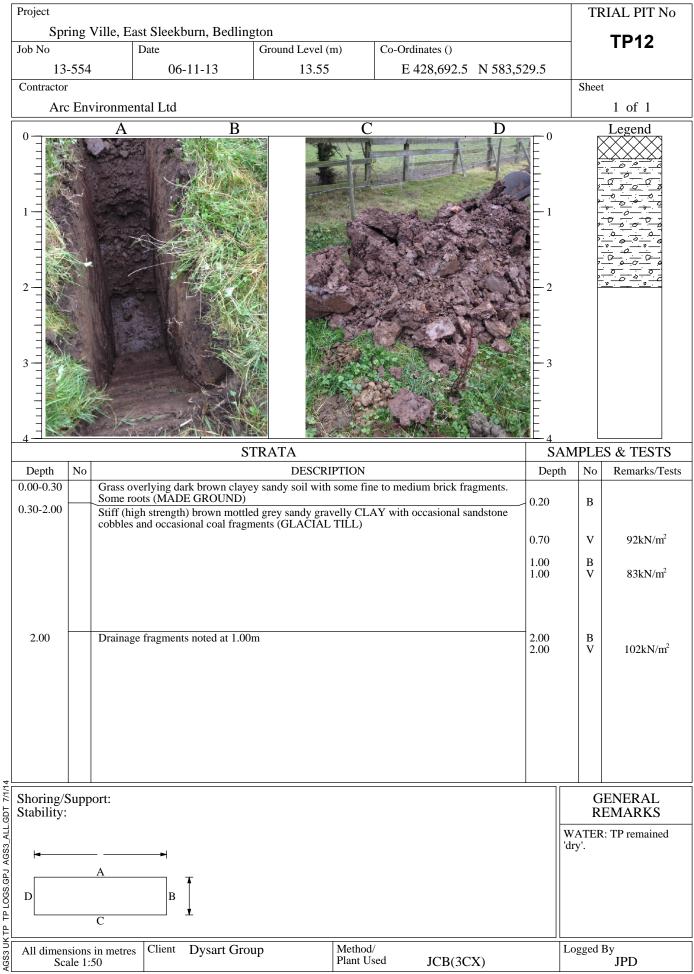
UKTP TP LOGS.GPJ AGS3_ALL.GDT 7/1/1











TRIAL PIT LOG

AGS3 UK TP TP LOGS.GPJ AGS3_ALL.GDT 7/1/14

TRIAL PIT LOG

Project								TI	RIAL PIT No
	pringville, East Sl	eekburn							TP101
Job No	Date	- 01	Ground Level (n		o-Ordinates ()	NI 502 57			
21-168 Contractor	07-06	9-21	13.70		E 428,669.0	N 383,32	57.5	Shee	t
	onmental Ltd							Shee	1 of 1
	A	В		С		D			Legend
							0		
								ء • •	
								2 2 2	
							-2	- - -	
								• •	
								-	0-0-
							-3		
		S	TRATA				SA	MPLE	ES & TESTS
Depth No	DESCRIPTION Dep								Remarks/Tests
	Unmanaged grass over						0.00-0.2	0 J	
0.20-2.70	Stiff (high strength) br cobbles and fragments	of coal (GL	grey sandy gravel ACIAL TILL)	lly CLAY wi	th occasional sands	stone			
							0.60	CBR	3.0%
							1.00-1.2 1.00	0 B V	82kN/m ²
							2.00	V	>120kN/m ²
							-		
Shoring/Suppor Stability:	t:							R	ENERAL EMARKS
·					N A		`	WATER	: Trial pit dry.
					Ŧ				
D	B				A				
All dimensions in Scale 1:43.7	metres Client A	methyst H	omes	Method/ Plant Used	Mechanically e	avoavatad	l	Logged	By DM
Scale 1.43.7	5				with the main carry t	LACAVATED			DIM

AGS3 UK TP 21-168 LOGS.GPJ AGS3_ALL.GDT 8/6/21

Project								TI	RIAL PIT No	
	t Springvi	lle, East Sle	eekburn							TP102
Job No		Date		Ground Level (n		Co-Ordinates ()				17102
21-168	3	07-06	5-21	13.54		E 428,706.3	N 583,5	55.4		
Contractor									Sheet	
Arc En	vironmen	tal Ltd								1 of 1
	A		B		C		D			
3-								-3		
			57	TRATA					L MPI F	ES & TESTS
Depth No		DESCRIPTION Depth								Remarks/Tests
0.00-0.75	Unmanag and half	ed grass over pricks (MAD)	rlying dark br E GROUND)	own clayey sandy	y soil with	fine roots and occasi	ional whole	0.30-0.5		
0.75-2.80	Stiff (hig cobbles a	Stiff (high strength) brown mottled grey sandy gravelly CLAY with occasional sandstone cobbles and fragments of coal (GLACIAL TILL) 1.00 1.40-1.6								90kN/m ²
								2.50	v	>120kN/m ²
Shoring/Supp Stability: D All dimensions Scale 1:4	Shoring/Support: Stability: N WATER: Trial pit dry.									
D	A C	В				Ĭ				
All dimensions Scale 1:4	in metres 3.75	Client A	methyst H	omes	Method/ Plant Use	ed Mechanically	excavated	I	logged]	By DM

Project	TF	RIAL PIT No						
	Springville, East Slo					_	TP103	
Job No	Date		d Level (m)	Co-Ordinates ()			11 100	
21-168	07-06	-21	13.57	E 428,698.4	N 583,602.2	Sheet		
Contractor	ironmental Ltd					Sheet	1 of 1	
		D	C		D			
	A	B	C		D 0			
		STRAT						
			CS & TESTS Remarks/Tests					
Depth No 0.00-0.30	Unmanaged grass over	DESCRIPTION Dep Unmanaged grass overlying dark brown clayey sandy soil with fine roots and occasional fragments of brick (MADE GROUND)						
0.30-2.60	fragments of brick (M/ Stiff (high strength) br cobbles and fragments	ADE GROUND) own mottled grey sa of coal (GLACIAL	ndy gravelly CLAY TILL)	with occasional sand	stone			
					0.80 1.00-1.	20 V 8	100kN/m ²	
					1.60	V	>120kN/m ²	
Shoring/Support: Stability:							ENERAL EMARKS	
Shoring/Suppo Stability: D All dimensions i Scale 1:43	A B C			N - 		WATER	: Trial pit dry.	
All dimensions in metres Scale 1:43.75 Client Amethyst Homes Method/ Plant Used L							By DM	

Project						TRIAL PIT No
	Springville, East Slo					TP104
Job No	Date	Ground I		Co-Ordinates ()		
21-168	07-06	-21	13.32	E 428,727.4	N 583,586.5	
Contractor	ironmental Ltd					Sheet 1 of 1
		D	<u> </u>			
	A	B	C		D 0	
		STRATA			E SA	MPLES & TESTS
Depth No		D	ESCRIPTION		Depth	
0.00-0.30	Unmanaged grass over fragments of brick (M/ Stiff (high strength) bro cobbles and fragments	lying dark brown claye ADE GROUND) wn mottled grey sand of coal (GLACIAL TI	y gravelly CLAY LL)	with occasional sands	0.70 0.80-1.0 1.00	00 B B V >120kN/m ²
Shoring/Suppo Stability:	ort: A C			N 4 1		GENERAL REMARKS WATER: Trial pit dry.
All dimensions i Scale 1:43	Logged By DM					

TRIAL PIT LOG

Project									TF	RIAL PIT No
	Spring	ville, East Sle	ekburn							TP105
Job No		Date 07.06	01	Ground Level (n		Co-Ordinates ()	NI 502 (/	10.1		
21-168 Contractor		07-06	-21	13.48		E 428,719.0	N 383,64	2.1	Sheet	+
Arc Env	vironme	ntal Ltd							Silee	1 of 1
	A		В		С		D			Legend
	A		D				D			
			S	FRATA					-	S & TESTS
Depth No 0.00-0.20	Linmon	and areas over	wing dark h	DESCRI		rge roots and occas	ional	Depth 0.00-0.20	No J J	Remarks/Tests
0.20-2.70	fragmer Stiff (hi cobbles	nts of brick (MA	ADE GROU	ND)		th occasional sands	/	0.60	CBR V B	86kN/m ²
Shoring/Supp Stability:	ort:								R	ENERAL EMARKS
	A C	B Client A	methurt 11	omes	Method/	N + + *				:: Trial pit dry.
All dimensions Scale 1:43	All dimensions in metres Scale 1:43.75 Client Amethyst Homes Method/ Plant Used Mechanically excavated DM									

AGS3 UK TP 21-168 LOGS.GPJ AGS3_ALL.GDT 8/6/21

Project	Project							
	Springville, East Sle						TP106	
Job No	Date		ound Level (m)	Co-Ordinates ()				
21-168	07-06	-21	13.01	E 428,746.9	N 583,605.5			
Contractor						Shee		
Arc Envi	ronmental Ltd						1 of 1	
	A	В		C	D 0	C < 2 ≥ 2 ≥ 2 ≥ 2 ≥ 2 ≥ 2 ≥ 2 ≥ 2 ≥ 2 ≥ 2		
3					-3			
		STRA	ATA		S	AMPLE	ES & TESTS	
Depth No		th No	Remarks/Tests					
0.00-0.25	Unmanaged grass over fragments of brick (MA Stiff (high strength) bro cobbles and fragments	ying dark brown <u>ADE GROUND</u> own mottled grey of coal (GLACL	n clayey sandy soil w v sandy gravelly CLA AL TILL)	ith fine roots and occasi	ional 0.00-(Istone 0.50	0.25 J CBR	4.0%	
					1.00	.70 B	100kN/m ²	
					2.00	v	>120kN/m ²	
Shoring/Suppo Stability:	rt: A C			N 		R	GENERAL EMARKS t: Trial pit dry.	
Shoring/Support: Stability: A D C All dimensions in metres Scale 1:43.75 Client Amethyst Homes Method/ Plant Used Mechanically excavated Method/ Plant Used Mechanically excavated DM								

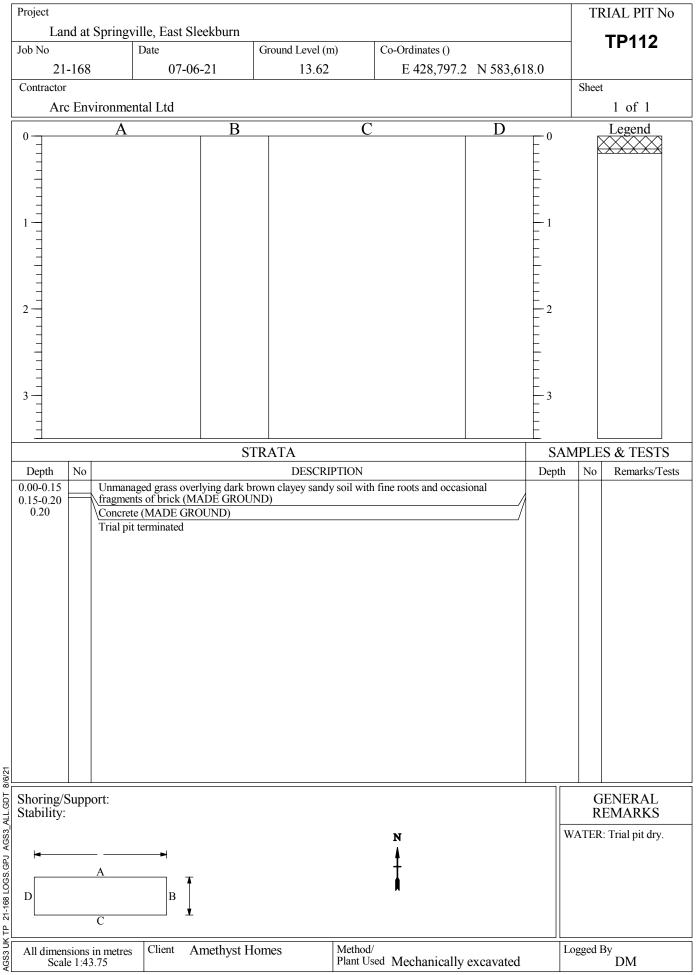
Project									TF	RIAL PIT No
		lle, East Sle	ekburn							TP107
Job No		Date		Ground Level (n		Co-Ordinates ()				11 107
21-168		07-06	-21	13.16		E 428,767.8	N 583,61	6.4		
Contractor									Sheet	
Arc Env	vironmen	tal Ltd			~					1 of 1
	A		B		С		D			Legend
3									/PLE	S & TESTS
Depth No		DESCRIPTION Dept								Remarks/Tests
0.00-0.20 0.20-0.55 0.55-3.00	Unmanaged grass overlying dark brown clayey sandy soil with fine roots and occasional fragments of brick (MADE GROUND) Red brick rubble (MADE GROUND) Stiff (high strength) brown mottled grey sandy gravelly CLAY with occasional sandstone cobbles and fragments of coal (GLACIAL TILL)							0.30-0.50 0.80-1.00 1.00 1.60		98kN/m² >120kN/m²
Shoring/Supp Stability: D	ort: A C					N 4 1 8		- - - - -	R	ENERAL EMARKS : Trial pit dry.
Shoring/Support: Stability: A D C All dimensions in metres Scale 1:43.75 Client Amethyst Homes Method/ Plant Used Mechanically excavated Lc								ogged I	^{By} DM	

Project	-							
	Springville, East Sl			1		_	TP108	
Job No	Date		ound Level (m)	Co-Ordinates ()				
21-168 Contractor	07-06	-21	13.14	E 428,774.4	N 583,640.2	Shee		
	rironmental Ltd					Snee	1 of 1	
		D		1	D			
	A	B	C		D 0			
		STRA	ΤΑ			MPLE	ES & TESTS	
Depth No		5110	DESCRIPTION		Dept	1	Remarks/Tests	
0.00-0.50	Unmanaged grass over fragments of brick (M.	40 J						
0.50-2.60	Stiff (high strength) br cobbles and fragments	own mottled grey of coal (GLACIA	sandy gravelly CLAY AL TILL)	with occasional sand	lstone 0.60	CBR	3.5%	
					1.20-1. 1.20	40 B V	80kN/m ²	
					2.00	V	>120kN/m ²	
Shoring/Suppo Stability:	R	ENERAL EMARKS						
D	A B C			N 4 1		WATER	t: Trial pit dry.	
Shoring/Support: Stability: A D C All dimensions in metres Scale 1:43.75 Client Amethyst Homes Method/ Plant Used Mechanically excavated							By DM	

TRIAL PIT LOG

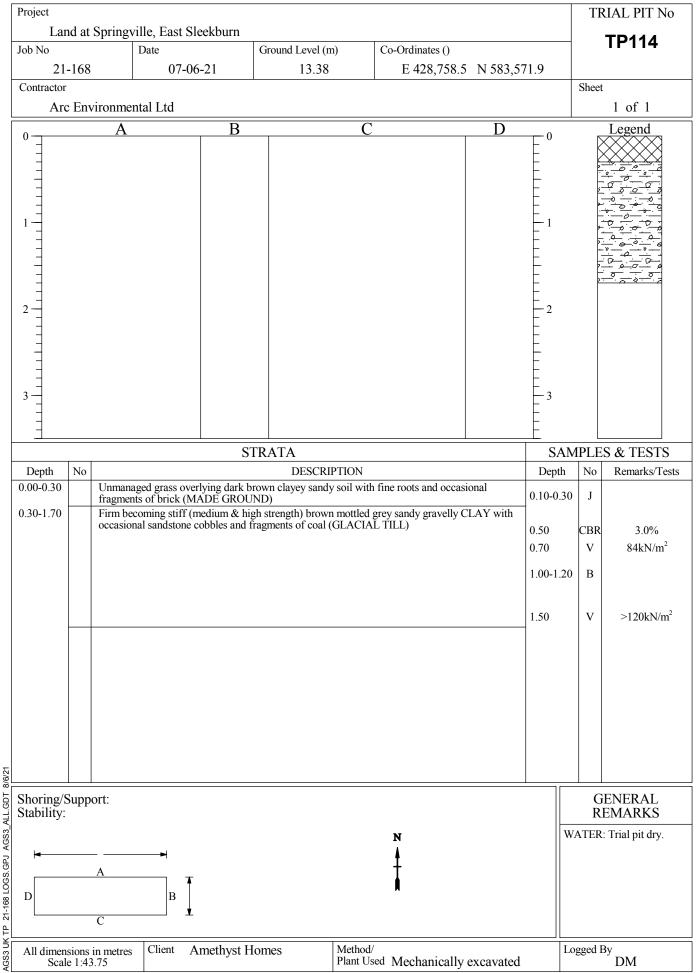
Project									TI	RIAL PIT No
	Springvill	-	ekburn							TP109
Job No		ate	21	Ground Level (n	n) C	o-Ordinates ()	NI 502 (4	CO 4		
21-168 Contractor		07-06-	-21	13.67		E 428,727.5	N 383,60	00.4	Shee	•
	vironmenta	l Ltd							Shee	1 of 1
	A		В		С		D			Legend
3-								3		
Depth No										CS & TESTS Remarks/Tests
0.00-0.40	Unmanage fragments of	d grass overl of brick (MA	ying dark bi DE GROU			e roots and occasio	onal	Depth 0.20-0.40	No	Kelliarks/Tests
0.40-2.95	Stiff (high cobbles and	strength) bro	wn mottled of coal (GL/	grey sandy gravel ACIAL TILL)	ly CLAY wi	h occasional sands	stone	1.00 1.20-1.40 1.50	V B V	78kN/m² >120kN/m²
Shoring/Supp Stability:	A C								R /ATER	ENERAL EMARKS :: Trial pit dry.
All dimensions in metres Scale 1:43.75ClientAmethyst HomesMethod/ Plant UsedLogged									^{By} DM	

AGS3 UK TP 21-168 LOGS.GPJ AGS3_ALL.GDT 8/6/21



Project	TF	RIAL PIT No					
	Springville, East Sl			1		_	TP110
Job No	Date		d Level (m)	Co-Ordinates ()			
21-168 Contractor	07-06	-21	13.26	E 428,753.2	N 583,644.5	Sheet	
	ironmental Ltd					Sheet	1 of 1
	A	В	С	1	Do		Legend
	<u>A</u>	В	<u> </u>		D 0		
		STRAT	A		E		S & TESTS
Depth No		h No	Remarks/Tests				
0.00-0.30	Unmanaged grass over fragments of brick (M Stiff (high strength) br cobbles and fragments	Iying dark brown cla ADE GROUND) own mottled grey sa of coal (GLACIAL	ayey sandy soil with ndy gravelly CLAY TILL)	with occasional sands	0.50 0.50 1.00 1.20-1.	CBR V 40 B	4.0% 110kN/m ²
Shoring/Suppo Stability:	ort: A C			N 4 1		R	ENERAL EMARKS : Trial pit dry.
Shoring/Support: Stability: A D C All dimensions in metres Scale 1:43.75 Client Amethyst Homes Method/ Plant Used Mechanically excavated						Logged I	^{By} DM

Project	Project								
	Springville, East S						TP111		
Job No	Date		ound Level (m)	Co-Ordinates ()			16111		
21-168	07-0	06-21	13.65	E 428,789.2	N 583,667.5				
Contractor						1	Sheet		
Arc Env	vironmental Ltd						1 of 1		
	A	B		C	D	- 0 - 1 - 2			
3		STR				- 3 	PLES & TESTS		
Depth No		DESCRIPTION Dept							
0.00-0.40		Unmanaged grass overlying dark brown clayey sandy soil with fine roots and occasional fragments of brick (MADE GROUND)							
0.40-0.75	Black ashy coal with	occasional fragm	ents of brick (MADE	GROUND)	0.4	40-0.60	J		
0.75-2.00	Stiff (high strength) l cobbles and fragmen Relic c.0.20m dia dra	00-1.20 20	B V 86kN/m ²						
Shoring/Supp Stability:	ort:			N 4 1 1		WA fror Star c.1.	GENERAL REMARKS TER: Ingress of water n relic drain c.1.90m. nding level recorded at 30m after c.10 mins.		
Shoring/Support: Stability: A D C All dimensions in metres Scale 1:43.75 Client Amethyst Homes Method/ Plant Used Mechanically excavated Lo							ged By DM		



Project	Project								TI	RIAL PIT No
		ille, East Sle	ekburn							TP113
Job No		Date		Ground Level (n		Co-Ordinates ()				
21-168 Contractor		07-06-	-21	13.16		E 428,778.7	N 583,589	9.5	Sheet	
	vironmen	tal I td							Snee	1 of 1
			D		\overline{C}					
	A		B		C		D			
			ST	RATA				E SAI		S & TESTS
Depth No		DESCRIPTION Dep								Remarks/Tests
0.00-0.40		Unmanaged grass overlying dark brown clayey sandy soil with fine roots and occasional fragments of brick (MADE GROUND) 0.20							No D J	
0.40-2.80	Stiff (hig cobbles a	th strength) broad	own mottled of coal (GLA	grey sandy grave CIAL TILL)	lly CLAY	with occasional sand	lstone	0.50	CBR	4.5%
								1.00	v	88kN/m ²
								1.40-1.60 1.50	0 B V	115kN/m ²
Shoring/Support: Stability:								R	ENERAL EMARKS	
D	A	B L				N + 		V	VATER	:: Trial pit dry.
Shoring/Support: Stability: A D C All dimensions in metres Scale 1:43.75 Client Amethyst Homes Method/ Plant Used Mechanically excavated							L	ogged	^{By} DM	

TRIAL PIT LOG

Project	TI	RIAL PIT No					
	ingville, East Slee						TP115
Job No	Date			Co-Ordinates ()			11 113
21-168	07-06-2	21	13.82	E 428,754.3	N 583,550.6	~	
Contractor	. 1 1					Shee	
Arc Enviro	nmental Ltd		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~				1 of 1
	A	B	C		D 0	<	Tedend 1 <td< td=""></td<>
		STRATA					ES & TESTS
Depth No 0.00-0.30 U	managad grage overly		DESCRIPTION	ina roots and appagi	De	oth No	Remarks/Tests
0.30-2.60 St	managed grass overly gments of brick (MAI ff (high strength) brow obles and fragments of	DE GROUND) n mottled grey sand	dy gravelly CLAY v	vith occasional sands	0.10-	0.30 J	
co	bles and fragments of	coal (GLĂCIAL T	IĹĽ)		0.60	0.90 CBR	4.0%
					1.00	V	102kN/m ²
Shoring/Support Stability:						C	JENERAL EMARKS
A D C	►			N + +			t: Trial pit dry.
All dimensions in r Scale 1:43.75	etres Client Am	ethyst Homes	Method/ Plant Used	d Mechanically e	excavated	Logged	By DM

AGS3 UK TP 21-168 LOGS.GPJ AGS3_ALL.GDT 8/6/21

TRIAL PIT LOG

Project		TI	RIAL PIT No						
	pringville, East Sl	eekburn							TP116
Job No	Date	- 01	Ground Level (m	n) C	o-Ordinates ()	NI 602 64	co o		
21-168 Contractor	07-06	5- 21	13.48		E 428,728.7	N 383,30	00.2	Shee	+
	onmental Ltd							Silce	1 of 1
	A	В		С		D			Legend
	A	B				D			
			TRATA					APLE	S & TESTS
Depth No			DESCRI				Depth	No	Remarks/Tests
0.00-0.30	Unmanaged grass over ragments of brick (M	rlying dark bi ADE GROU	own clayey sandy	soil with fir	ne roots and occasion	onal	0.10-0.30	J	
0.30-2.95	Stiff (high strength) bi cobbles and fragments	rown mottled	grey sandy gravel ACIAL TILL)	lly CLAY wi	th occasional sands	stone	0.50	CBR	4.0%
							1.00 1.10-1.30	V B	86kN/m ²
							2.00	V	>120kN/m ²
Shoring/Suppor Stability:	t:							R	ENERAL EMARKS
							W	/ATER	: Trial pit dry.
All dimensions in Scale 1:43.7	metres Client A	methyst H	omes	Method/ Plant Used	Mechanically e	excavated	L	ogged	^{By} DM

AGS3 UK TP 21-168 LOGS.GPJ AGS3_ALL.GDT 8/6/21

APPENDIX III

Laboratory Results

LABORATORY REPORT

4043

Contract Number: PSL13/4560

Client's Reference:

Report Date: 25 November 2013

Client Name: Arc Environmental Solum House Unit 1 Elliott Court St Johns Road, Meadowfield Durham DH7 8PN

For the attention of: John Ditchburn

Contract Title: Spring Ville, East Sleekburn, Bedlington

 Date Received:
 14/11/2013

 Date Commenced:
 14/11/2013

 Date Completed:
 25/11/2013

Notes: Observations and Interpretations are outside the UKAS Accreditation

A copy of the Laboratory Schedule of accredited tests as issued by UKAS is attached to this report. This certificate is issued in accordance with the accreditation requirements of the United Kingdom Accreditation Service. The results reported herein relate only to the material supplied to the laboratory. This certificate shall not be reproduced in full, without the prior written approval of the laboratory.

A Watkins

(Director)

Checked and Approved Signatories:

M.bur

M Beastall (Laboratory Manager)

5 – 7 Hexthorpe Road, Hexthorpe, Doncaster DN4 0AR tel: +44 (0)844 815 6641 fax: +44 (0)844 815 6642 e-mail: rgunson@prosoils.co.uk awatkins@prosoils.co.uk

R Gunson

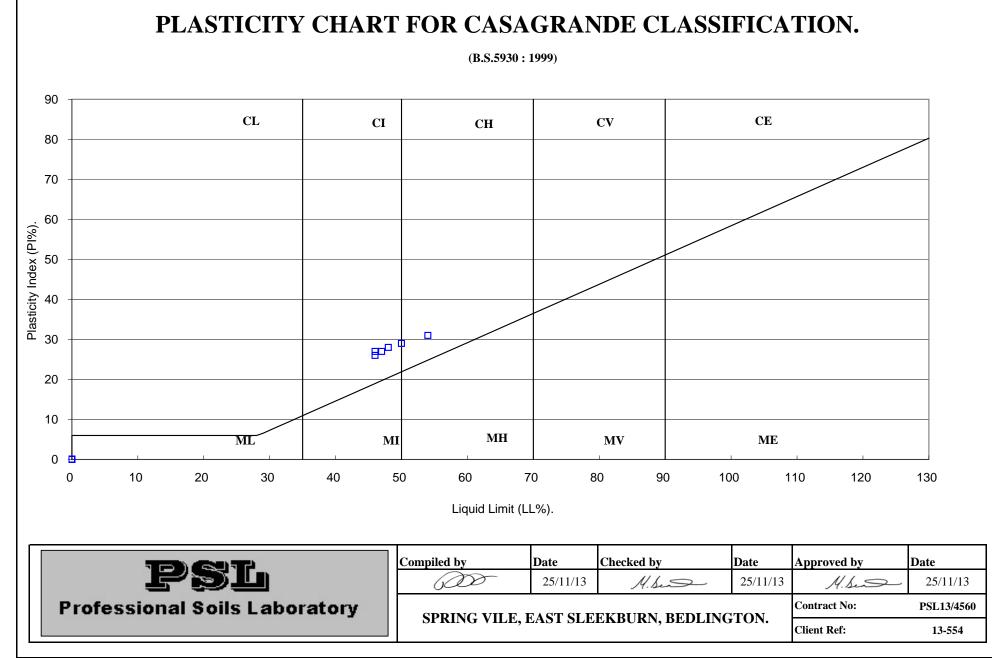
(Director)

Page 1 of

SUMMARY OF LABORATORY SOIL DESCRIPTIONS

Hole Number	Sample Number	Sample Type	Depth m	Description of Sample
TP01			1.00	Brown gravelly sandy CLAY.
TP02			1.50	Brown gravelly sandy CLAY.
TP05			1.00	Brown mottled grey slightly gravelly sandy CLAY.
TP06			2.50	Brown mottled grey slightly gravelly sandy CLAY.
TP09			1.50	Brown gravelly sandy CLAY.
BH04			3.00-4.00	Brown slightly gravelly sandy CLAY.

	Compiled by	Date	Checked by	Date	Approved by	Date
fal	$\mathcal{O}\mathcal{O}\mathcal{O}$	25/11/13	M.S.	25/11/13	M.Sur	25/11/13
Professional Soils Laboratory	SPRING VILE,	EASTSIE		Contract No:	PSL13/4560	
	SPRING VILE,	LASI SLE	Client Ref:	13-554		


SUMMARY OF SOIL CLASSIFICATION TESTS

(B.S. 1377 : PART 2 : 1990)

Hole Number	Sample Number	Sample Type	Depth m	Moisture Content %	Bulk Density Mg/m ³	Dry Density Mg/m ³	Particle Density Mg/m ³	Liquid Limit %	Plastic Limit %	Plasticity Index %	% Passing .425mm	Remarks
TP01			1.00	Clause 3.2 19	Clause 7.2	Clause 7.2	Clause 8.	Clause 4.3/4.4 50	Clause 5.	Clause 5.4 29	72	High placticity CH
TP01 TP02				19 19				48	21	29 28	72	High plasticity CH.
			1.50									Intermediate plasticity CI.
TP05			1.00	22				54	23	31		High plasticity CH.
TP06			2.50	17				47	20	27	72	Intermediate plasticity CI.
TP09			1.50	20				46	20	26	76	Intermediate plasticity CI.
BH04			3.00-4.00	20				46	19	27	82	Intermediate plasticity CI.

SYMBOLS : NP : Non Plastic

	Compiled by	Date	Checked by	Date	Approved by	Date
est.	$\partial \mathcal{D}$	25/11/13	M.ber	25/11/13	M.S.	25/11/13
Professional Soils Laboratory	SPRING VILE,	EAST SI FI		Contract No:	PSL13/4560	
	SFRING VILE,	Client Ref:	13-554			

PSLR002

ANALYTICAL TEST REPORT

Contract no:	49557(1)
Contract name:	Spring Ville, East Sleekburn, Bedlington
Client reference:	13-554
Clients name:	ARC Environmental
Clients address:	Solum House Unit 1 Elliott Court St Johns Road, Meadowfield DH7 8PN
Samples received:	13 November 2013
Analysis started:	13 November 2013
Analysis completed	10 December 2013
Report issued:	11 December 2013
Notes:	This is a supplementary report to report number 49557 issued 21 November 2013. Opinions and interpretations expressed herein are outside the UKAS accreditation scope. Unless otherwise stated, Chemtech Environmental Ltd was not responsible for sampling. Methods, procedures and performance data are available on request. Results reported herein relate only to the material supplied to the laboratory. This report shall not be reproduced except in full, withour prior written approval. Samples will be disposed of 6 weeks from initial receipt unless otherwise instructed.
Key:	U UKAS accredited test M MCERTS & UKAS accredited test \$ Test carried out by an approved subcontractor I/S Insufficient sample to carry out test N/S Sample not suitable for testing NAD No Asbestos Detected
Approved by:	K Campbell

Karan Campbell Director John Campbell Director

SAMPLE INFORMATION

MCERTS (Soils):

Soil descriptions are only intended to provide a log of sample matrices with respect to MCERTS validation. They are not intended as full geological descriptions. MCERTS accreditation applies for sand, clay and loam/topsoil, or combinations of these whether these are derived from naturally occurring soils or from made ground, as long as these materials constitute the major part of the sample. Other materials such as concrete, gravel and brick are not accredited if they comprise the major part of the sample.

All results are reported on a dry basis. Samples dried at no more than 30°C in a drying cabinet. Analytical results are exclusive of stones.

Lab ref	Sample id	Depth (m)	Soil description Description of material		% Retained	Moisture
			passing 2mm sieve	retained on 2mm sieve	on 2mm sieve	(%)
49557-1	BH 1	1.00-2.00	Clay	N/A	<1	14.6
49557-2	TP 1	0.50	Loamy Clay	N/A	<1	14.5
49557-3	TP 2	1.50	Clay	Stones & Gravel	20.9	14.3
49557-4	TP 4	0.30	Clay	N/A	<1	23.1
49557-5	TP 6	0.30	Clay	N/A	<1	19.9
49557-6	TP 7	1.00	Clay	N/A	<1	17.4
49557-7	TP 8	0.30	Loamy Clay	Gravel	17.0	20.0
49557-8	TP 10	0.75	Clay	Stones & Gravel	22.2	17.0
49557-9	TP 11	0.25	Sandy Loamy Clay	Slag & Gravel	32.1	22.7
49557-10	TP 12	0.20	Sandy Loamy Clay	Gravel	12.4	18.9

Lab number			49557-1	49557-2	49557-3	49557-4	49557-5	49557-6
Sample id			49557-1 BH 1	49557-2 TP 1	49557-5 TP 2	49557-4 TP 4	49557-5 TP 6	49557-6 TP 7
Depth (m)			0.00	0.00	0.00	0.00	0.00	0.00
Date sampled			06/11/2013	06/11/2013	06/11/2013	06/11/2013	06/11/2013	06/11/2013
Test	Method	Units						
Arsenic (total)	CE054 ^M	mg/kg As	-	5.7	-	6.8	9.1	-
Cadmium (total)	CE054 ^M	mg/kg Cd	-	<0.2	-	<0.2	<0.2	-
Chromium (total)	CE054 ^M	mg/kg Cr	-	34	-	32	30	-
Chromium (III)	-	mg/kg CrIII	-	34	-	32	30	-
Chromium (VI)	CE050	mg/kg CrVI	-	<1	-	<1	<1	-
Copper (total)	CE054 ^M	mg/kg Cu	-	13	-	14	15	-
Lead (total)	CE054 ^M	mg/kg Pb	-	24	-	47	44	-
Mercury (total)	CE054	mg/kg Hg	-	<0.5	-	<0.5	<0.5	-
Nickel (total)	CE054 ^M	mg/kg Ni	-	28	-	20	18	-
Selenium (total)	CE054 ^M	mg/kg Se	-	1.2	-	1.2	1.0	-
Zinc (total)	CE054 ^M	mg/kg Zn	-	56	-	62	65	-
рН	CE004 ^M	units	8.2	6.9	8.2	6.8	5.6	8.1
Sulphate (2:1 water soluble)	CE049 ^U	mg/l SO ₄	36	24	53	<10	12	38
Cyanide (free)	CE077	mg/kg CN	-	<2	-	<2	<2	-
Total Organic Carbon (TOC)	CE072 ^M	% w/w C	-	1.03	-	2.77	2.45	-
РАН								
Acenaphthene	CE087	mg/kg	-	<0.1	-	<0.1	<0.1	-
Acenaphthylene	CE087	mg/kg	-	<0.1	-	<0.1	<0.1	-
Anthracene	CE087	mg/kg	-	<0.1	-	<0.1	<0.1	-
Benzo(a)anthracene	CE087	mg/kg	-	<0.1	-	<0.1	<0.1	-
Benzo(a)pyrene	CE087	mg/kg	-	<0.1	-	<0.1	<0.1	-
Benzo(b)fluoranthene	CE087	mg/kg	-	<0.1	-	<0.1	<0.1	-
Benzo(ghi)perylene	CE087	mg/kg	-	<0.1	-	<0.1	<0.1	-
Benzo(k)fluoranthene	CE087	mg/kg	-	<0.1	-	<0.1	<0.1	-
Chrysene	CE087	mg/kg	-	<0.1	-	<0.1	<0.1	-
Dibenz(ah)anthracene	CE087	mg/kg	-	<0.1	-	<0.1	<0.1	-
Fluoranthene	CE087	mg/kg	-	<0.1	-	<0.1	<0.1	-
Fluorene	CE087	mg/kg	-	<0.1	-	<0.1	<0.1	-
Indeno(123cd)pyrene	CE087	mg/kg	-	<0.1	-	<0.1	<0.1	-
Naphthalene	CE087	mg/kg	-	<0.1	-	<0.1	<0.1	-
Phenanthrene	CE087	mg/kg	-	<0.1	-	<0.1	<0.1	-
Pyrene	CE087	mg/kg	-	<0.1	-	<0.1	<0.1	-
PAH (total of USEPA 16)	CE087	mg/kg	-	<5	-	<5	<5	-
Benzo(j)fluoranthene	CE087	mg/kg	-	<0.1	-	<0.1	<0.1	-
PAH (total of OIL 8)	CE087	mg/kg	-	<5	-	<5	<5	-
трн	•	*			-	-	-	
ТРН (С5-С7)	CE067	mg/kg	-	<0.1	-	<0.1	<0.1	-
TPH (C7-C8)	CE067	mg/kg	-	<0.1	-	<0.1	<0.1	-
TPH (C8-C10)	CE067	mg/kg	-	0.3	-	<0.1	0.3	-
TPH (C10-C12)	CE033	mg/kg	-	<1	-	<1	1	-

Lab number			49557-1	49557-2	49557-3	49557-4	49557-5	49557-6
Sample id			BH 1	TP 1	TP 2	TP 4	TP 6	TP 7
Depth (m)	0.00	0.00	0.00	0.00	0.00	0.00		
Date sampled					06/11/2013	06/11/2013	06/11/2013	06/11/2013
Test	Method	Units						
TPH (C12-C16)	CE033	mg/kg	-	<1	-	<1	1	-
TPH (C16-C21)	CE033	mg/kg	-	<1	-	2	4	-
TPH (C21-C35)	CE033	mg/kg	-	2	-	5	12	-
TPH (C35-C44)	CE033	mg/kg	-	<1	-	<1	<1	-
Subcontracted analysis								
Asbestos	\$	-	-	NAD	-	NAD	NAD	-
Pesticides								
Organochlorine pesticides	CE065	mg/kg	-	-	<0.01	-	-	-
Organophosphate pesticides	CE065	mg/kg	-	-	<0.01	-	-	-

Lab number			49557-7	49557-8	49557-9	49557-10
Sample id			TP 8	TP 10	TP 11	TP 12
Depth (m)			0.00	0.00	0.00	0.00
Date sampled	1	1	06/11/2013	06/11/2013	06/11/2013	06/11/2013
Test	Method	Units				
Arsenic (total)	CE054 ^M	mg/kg As	8.8	-	11	6.9
Cadmium (total)	CE054 ^M	mg/kg Cd	0.6	-	0.7	<0.2
Chromium (total)	CE054 ^M	mg/kg Cr	32	-	38	32
Chromium (III)	-	mg/kg CrIII	32	-	38	32
Chromium (VI)	CE050	mg/kg CrVI	<1	-	<1	<1
Copper (total)	CE054 ^M	mg/kg Cu	31	-	61	18
Lead (total)	CE054 ^M	mg/kg Pb	128	-	173	41
Mercury (total)	CE054	mg/kg Hg	<0.5	-	<0.5	<0.5
Nickel (total)	CE054 ^M	mg/kg Ni	34	-	62	24
Selenium (total)	CE054 ^M	mg/kg Se	1.4	-	2.0	1.2
Zinc (total)	CE054 ^M	mg/kg Zn	275	-	300	69
рН	CE004 ^M	units	6.3	7.1	6.2	6.8
Sulphate (2:1 water soluble)	CE049 ^U	mg/I SO ₄	20	35	20	11
Cyanide (free)	CE077	mg/kg CN	<2	-	<2	<2
Total Organic Carbon (TOC)	CE072 ^M	% w/w C	4.87	-	14.32	2.09
РАН						
Acenaphthene	CE087	mg/kg	<0.1	-	<0.1	<0.1
Acenaphthylene	CE087	mg/kg	<0.1	-	<0.1	<0.1
Anthracene	CE087	mg/kg	<0.1	-	<0.1	<0.1
Benzo(a)anthracene	CE087	mg/kg	<0.1	-	<0.1	<0.1
Benzo(a)pyrene	CE087	mg/kg	<0.1	-	<0.1	<0.1
Benzo(b)fluoranthene	CE087	mg/kg	<0.1	-	<0.1	<0.1
Benzo(ghi)perylene	CE087	mg/kg	<0.1	-	<0.1	<0.1
Benzo(k)fluoranthene	CE087	mg/kg	<0.1	-	<0.1	<0.1
Chrysene	CE087	mg/kg	<0.1	-	<0.1	<0.1
Dibenz(ah)anthracene	CE087	mg/kg	<0.1	-	<0.1	<0.1
Fluoranthene	CE087	mg/kg	0.1	-	<0.1	<0.1
Fluorene	CE087	mg/kg	<0.1	-	<0.1	<0.1
Indeno(123cd)pyrene	CE087	mg/kg	<0.1	-	<0.1	<0.1
Naphthalene	CE087	mg/kg	<0.1	-	<0.1	<0.1
Phenanthrene	CE087	mg/kg	0.1	-	0.1	<0.1
Pyrene	CE087	mg/kg	0.1	-	<0.1	<0.1
PAH (total of USEPA 16)	CE087	mg/kg	<5	-	<5	<5
Benzo(j)fluoranthene	CE087	mg/kg	<0.1	-	<0.1	<0.1
PAH (total of OIL 8)	CE087	mg/kg	<5	-	<5	<5
ТРН	ļ	ļ <u></u>		<u> </u>	<u> </u>	<u> </u>
ТРН (С5-С7)	CE067	mg/kg	<0.1	-	<0.1	<0.1
TPH (C7-C8)	CE067	mg/kg	<0.1	-	<0.1	<0.1
TPH (C8-C10)	CE067	mg/kg	0.3	-	0.3	0.3
ТРН (С10-С12)	CE033	mg/kg	<1		<1	<1

Lab number			49557-7	49557-8	49557-9	49557-10
Sample id			TP 8	TP 10	TP 11	TP 12
Depth (m)			0.00	0.00	0.00	0.00
Date sampled			06/11/2013	06/11/2013	06/11/2013	06/11/2013
Test	Method	Units				
TPH (C12-C16)	CE033	mg/kg	4	-	6	<1
TPH (C16-C21)	CE033	mg/kg	10	-	15	<1
ТРН (С21-С35)	CE033	mg/kg	16	-	18	<1
ТРН (С35-С44)	CE033	mg/kg	<1	-	<1	1
Subcontracted analysis						
Asbestos	\$	-	NAD	-	NAD	NAD
Pesticides						
Organochlorine pesticides	CE065	mg/kg	<0.01	-	-	-
Organophosphate pesticides	CE065	mg/kg	<0.01	-	-	-

METHOD DETAILS

METHOD	SOILS	METHOD SUMMARY	SAMPLE	STATUS	LOD	UNITS
CE054	Arsenic (total)	Aqua regia digest, ICP-OES	Dry	м	1	mg/kg As
CE054	Cadmium (total)	Aqua regia digest, ICP-OES	Dry	м	0.2	mg/kg Cd
CE054	Chromium (total)	Aqua regia digest, ICP-OES	Dry	м	1	mg/kg Cr
-	Chromium (III)	Calculation: Cr (total) - Cr (VI)	Dry		1	mg/kg CrIII
CE050	Chromium (VI)	Acid extraction, Colorimetry	Dry		1	mg/kg CrVI
CE054	Copper (total)	Aqua regia digest, ICP-OES	Dry	м	1	mg/kg Cu
CE054	Lead (total)	Aqua regia digest, ICP-OES	Dry	м	1	mg/kg Pb
CE054	Mercury (total)	Aqua regia digest, ICP-OES	Dry		0.5	mg/kg Hg
CE054	Nickel (total)	Aqua regia digest, ICP-OES	Dry	м	1	mg/kg Ni
CE054	Selenium (total)	Aqua regia digest, ICP-OES	Dry	м	0.3	mg/kg Se
CE054	Zinc (total)	Aqua regia digest, ICP-OES	Dry	м	3	mg/kg Zn
CE004	рН	Based on BS 1377, pH Meter	Wet	м	-	units
CE049	Sulphate (2:1 water soluble)	Aqueous extraction, IC-COND	Dry	U	10	mg/I SO ₄
CE077	Cyanide (free)	Extraction, Continuous Flow Colorimetry	Wet		2	mg/kg CN
CE072	Total Organic Carbon (TOC)	Removal of IC by acidification, Carbon Analyser	Dry	м	0.1	% w/w C
CE087	PAH (speciated)	Solvent extraction, GC-MS	Wet		0.1	mg/kg
CE087	PAH (total)	Solvent extraction, GC-MS	Wet		5	mg/kg
CE067	TPH (C5-C10) speciation	Headspace GC-FID	Wet		0.1	mg/kg
CE033	TPH (C10-C40) speciation	Solvent extraction, GC-FID	Wet		1	mg/kg
\$	Asbestos (qualitative)	HSG 248, Microscopy	Dry	U	-	-
CE065	Organochlorine pesticides	Solvent extraction, GC-MS	Wet		0.01	mg/kg
CE065	Organophosphate pesticides	Solvent extraction, GC-MS	Wet		0.01	mg/kg

DEVIATING SAMPLE INFORMATION

Comments

Sample deviation is determined in accordance with the UKAS note "Guidance on Deviating Samples" and based on reference standards and laboratory trials.

For samples identified as deviating, test result(s) may be compromised and may not be representative of the sample at the time of sampling.

Chemtech Environmental Ltd cannot be held responsible for the integrity of sample(s) received if Chemtech Environmental Ltd did not undertake the sampling. Such samples may be deviating.

Key

- N No (not deviating sample)
- Y Yes (deviating sample)
- A Sampling date not provided
- B Sampling time not provided (waters only)
- C Sample exceeded holding time(s)
- D Sample not received in appropriate containers
- E Headspace present in sample container
- F Sample not chemically fixed (where appropriate)
- G Sample not cooled
- H Other (specify)

Lab ref	Sample id	Depth (m)	Deviating	Tests (Reason for deviation)
49557-1	BH 1	1.00-2.00	Ν	
49557-2	TP 1	0.50	Ν	
49557-3	TP 2	1.50	Ν	
49557-4	TP 4	0.30	Ν	
49557-5	TP 6	0.30	Ν	
49557-6	TP 7	1.00	Ν	
49557-7	TP 8	0.30	Ν	
49557-8	TP 10	0.75	Ν	
49557-9	TP 11	0.25	Ν	
49557-10	TP 12	0.20	Ν	

ANALYTICAL TEST REPORT

Contract no:	97483
Contract name:	Springville, East Sleekburn
Client reference:	21-168
Clients name:	ARC Environmental
Clients address:	Solum House, Unit 1 Elliott Court St Johns Road Meadowfield DH7 8PN
Samples received:	17 June 2021
Analysis started:	17 June 2021
Analysis completed	: 24 June 2021
Report issued:	24 June 2021

Notes:

Opinions and interpretations expressed herein are outside the UKAS accreditation scope.
Unless otherwise stated, Chemtech Environmental Ltd was not responsible for sampling.
All testing carried out at Unit 6 Parkhead, Stanley, DH9 7YB, except for subcontracted testing.
Methods, procedures and performance data are available on request.
Results reported herein relate only to the material supplied to the laboratory.
This report shall not be reproduced except in full, without prior written approval.
Samples will be disposed of 6 weeks from initial receipt unless otherwise instructed.
BTEX compounds are identified by retention time only and may include interference from co-eluting compounds.

Key: U UKAS accredited test M MCERTS & UKAS accredited test \$ Test carried out by an approved subcontractor I/S Insufficient sample to carry out test N/S Sample not suitable for testing NAD No Asbestos Detected

Approved by:

Rachael Burton Customer Support Squad Leader

SAMPLE INFORMATION

MCERTS (Soils):

Soil descriptions are only intended to provide a log of sample matrices with respect to MCERTS validation. They are not intended as full geological descriptions. MCERTS accreditation applies for sand, clay and loam/topsoil, or combinations of these whether these are derived from naturally occurring soils or from made ground, as long as these materials constitute the major part of the sample. Other materials such as concrete, gravel and brick are not accredited if they comprise the major part of the sample.

All results are reported on a dry basis. Samples dried at no more than 30°C in a drying cabinet. Analytical results are inclusive of stones.

Lab ref	Sample id	Depth (m)	Sample description	Material removed	% Removed	% Moisture
97483-1	TP101	0.00-0.20	Loamy Sand with Gravel & Roots	-	-	17.6
97483-2	TP102	0.30-0.50	Sandy Clay with Gravel	-	-	14.9
97483-3	TP103	0.10-0.30	Sandy Clay with Gravel	-	-	15.9
97483-4	TP105	0.00-0.20	Loamey Sand with Gravel & Roots	-	-	20.4
97483-5	TP106	0.00-0.30	Clayey Sand with Gravel	-	-	16.5
97483-6	TP111	0.40-0.60	Loamey Sand with Gravel	-	-	19.5
97483-7	TP113	0.20-0.40	Sandy Clay With Gravel	-	-	16.7
97483-8	TP115	0.10-0.30	Sandy Clay With Gravel	-	-	19.2

SOLLS

			07400.4	07400.0	07400.0	07400.4	07400 5	07400 (
Lab number Sample id			97483-1 TP101	97483-2 TP102	97483-3 TP103	97483-4 TP105	97483-5 TP106	97483-6 TP111
Sample id Depth (m)			0.00-0.20	0.30-0.50	0.10-0.30	0.00-0.20	0.00-0.30	0.40-0.60
Date sampled			07/06/2021	07/06/2021	07/06/2021	07/06/2021	07/06/2021	07/06/2021
Test	Method	Units						
Arsenic (total)	CE127 ^M	mg/kg As	6.6	5.8	5.9	6.8	6.4	18
Cadmium (total)	CE127 ^M	mg/kg Cd	<0.2	<0.2	<0.2	<0.2	< 0.2	1.4
Chromium (total)	CE127 ^M	mg/kg Cr	67	66	62	80	74	51
Chromium (III)	CE208	mg/kg CrIII	67	66	62	80	74	51
Chromium (VI)	CE146	mg/kg CrVI	<1	<1	<1	<1	< 1	<1
Copper (total)	CE127 ^M	mg/kg Cu	29	23	24	21	26	105
Lead (total)	CE127 ^M	mg/kg Pb	48	16	17	45	20	143
Mercury (total)	CE127 ^M	mg/kg Hg	<0.5	<0.5	<0.5	< 0.5	< 0.5	<0.5
Nickel (total)	CE127 ^M	mg/kg Ni	31	45	46	28	49	70
Selenium (total)	CE127 ^M	mg/kg Se	1.1	1.2	1.2	1.1	1.1	2.5
Zinc (total)	CE127 ^M	mg/kg Zn	90	57	59	79	62	556
рН	CEOO4 M	units	7.6	8.6	8.4	8.0	8.2	8.0
Sulphate (2:1 water soluble)	CE061 ^M	mg/I SO4	20	48	39	22	68	46
Cyanide (free)	CE077	mg/kg CN	<1	<1	<1	<1	< 1	<1
Total Organic Carbon (TOC)	CE197	% w/w C	3.7	1.2	1.4	3.3	1.3	33.6
РАН	I				I	I		
Acenaphthene	CE087 M	mg/kg	< 0.02	< 0.02	< 0.02	<0.02	< 0.02	0.16
Acenaphthylene	CE087 M	mg/kg	< 0.02	< 0.02	<0.02	<0.02	<0.02	0.06
Anthracene	CE087 ^U	mg/kg	0.05	< 0.02	< 0.02	<0.02	< 0.02	0.53
Benzo(a)anthracene	CE087 ^U	mg/kg	0.33	< 0.02	< 0.02	0.04	<0.02	1.93
Benzo(a)pyrene	CE087 ^U	mg/kg	0.37	< 0.02	< 0.02	0.05	<0.02	1.63
Benzo(b)fluoranthene	CE087 M	mg/kg	0.52	< 0.02	< 0.02	0.05	<0.02	2.11
Benzo(ghi)perylene	CE087 M	mg/kg	0.34	< 0.02	< 0.02	0.03	<0.02	1.08
Benzo(k)fluoranthene	CE087 M	mg/kg	0.20	< 0.03	< 0.03	<0.03	<0.03	0.85
Chrysene	CE087 M	mg/kg	0.35	< 0.03	< 0.03	0.05	<0.03	2.08
Dibenz(ah)anthracene	CE087 M	mg/kg	0.07	< 0.02	< 0.02	<0.02	<0.02	0.25
Fluoranthene	CE087 ^M	mg/kg	0.68	0.03	< 0.02	0.10	<0.02	3.92
Fluorene	CE087 ^U	mg/kg	0.02	< 0.02	< 0.02	<0.02	<0.02	0.22
Indeno(123cd)pyrene	CE087 ^M	mg/kg	0.40	< 0.02	<0.02	0.03	< 0.02	1.34
Naphthalene	CE087 M	mg/kg	< 0.02	< 0.02	< 0.02	<0.02	< 0.02	0.09
Phenanthrene	CE087 M	mg/kg	0.27	0.05	< 0.02	0.05	< 0.02	2.17
Pyrene	CE087 M	mg/kg	0.60	0.03	< 0.02	0.08	< 0.02	3.21
PAH (total of USEPA 16)	CE087	mg/kg	4.20	< 0.34	< 0.34	0.49	< 0.34	21.6
Benzo(j)fluoranthene	CE087	mg/kg	0.07	< 0.02	< 0.02	<0.02	<0.02	0.28
PAH (total of OIL 8)	CE087	mg/kg	2.31	< 0.18	<0.18	0.22	<0.18	10.5
BTEX & TPH	1	<u>ı</u>		1	1	1	1	1
Benzene	CE192 ^U	mg/kg	< 0.01	< 0.01	< 0.01	<0.01	< 0.01	<0.01
Toluene	CE192 ^U	mg/kg	<0.01	< 0.01	<0.01	<0.01	<0.01	<0.01
Ethylbenzene	CE192 ^U	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Ethylbenzene m & p-Xylene	CE192 ^U CE192 ^U	mg/kg mg/kg	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01

SOLLS

Lab number			97483-1	97483-2	97483-3	97483-4	97483-5	97483-6
Sample id			TP101	TP102	TP103	TP105	TP106	TP111
Depth (m)			0.00-0.20	0.30-0.50	0.10-0.30	0.00-0.20	0.00-0.30	0.40-0.60
Date sampled			07/06/2021	07/06/2021	07/06/2021	07/06/2021	07/06/2021	07/06/2021
Test	Method	Units						
VPH Aliphatic (>C5-C6)	CE067	mg/kg	<0.1	<0.1	< 0.1	< 0.1	< 0.1	<0.1
VPH Aliphatic (>C6-C8)	CE067	mg/kg	<0.1	<0.1	<0.1	< 0.1	< 0.1	<0.1
VPH Aliphatic (>C8-C10)	CE067	mg/kg	<0.1	<0.1	< 0.1	< 0.1	< 0.1	<0.1
EPH Aliphatic (>C10-C12)	CE068	mg/kg	< 4	< 4	< 4	< 4	< 4	< 4
EPH Aliphatic (>C12-C16)	CE068	mg/kg	< 4	22	< 4	< 4	< 4	30
EPH Aliphatic (>C16-C35)	CE068	mg/kg	20	73	< 4	29	20	509
EPH Aliphatic (>C35-C44)	CE068	mg/kg	<10	< 10	<10	<10	<10	92
VPH Aromatic (>EC5-EC7)	CE067	mg/kg	< 0.01	< 0.01	< 0.01	<0.01	<0.01	< 0.01
VPH Aromatic (>EC7-EC8)	CE067	mg/kg	< 0.01	< 0.01	< 0.01	<0.01	<0.01	<0.01
VPH Aromatic (>EC8-EC10)	CE067	mg/kg	< 0.01	< 0.01	< 0.01	<0.01	<0.01	<0.01
EPH Aromatic (>EC10-EC12)	CE068	mg/kg	<1	<1	<1	< 1	< 1	<1
EPH Aromatic (>EC12-EC16)	CE068	mg/kg	<1	<1	<1	< 1	< 1	<1
EPH Aromatic (>EC16-EC21)	CE068	mg/kg	3	<1	<1	<1	<1	11
EPH Aromatic (>EC21-EC35)	CE068	mg/kg	3	<1	<1	<1	<1	11
EPH Aromatic (>EC35-EC44)	CE068	mg/kg	<1	<1	<1	<1	<1	2
Subcontracted analysis	•							
Asbestos (qualitative)	\$	-	NAD	NAD	NAD	NAD	NAD	NAD

SOLLS

Lab number			97483-7	97483-8
Sample id			TP113	TP115
Depth (m)			0.20-0.40	0.10-0.30
Date sampled	r		07/06/2021	07/06/2021
Test	Method	Units		
Arsenic (total)	CE127 ^M	mg/kg As	6.9	7.2
Cadmium (total)	CE127 ^M	mg/kg Cd	<0.2	0.5
Chromium (total)	CE127 ^M	mg/kg Cr	68	73
Chromium (III)	CE208	mg/kg CrIII	68	73
Chromium (VI)	CE146	mg/kg CrVI	<1	<1
Copper (total)	CE127 ^M	mg/kg Cu	25	27
Lead (total)	CE127 ^M	mg/kg Pb	26	75
Mercury (total)	CE127 ^M	mg/kg Hg	<0.5	<0.5
Nickel (total)	CE127 ^M	mg/kg Ni	47	33
Selenium (total)	CE127 ^M	mg/kg Se	1.1	1.3
Zinc (total)	CE127 ^M	mg/kg Zn	74	178
рН	CE004 M	units	8.4	6.7
Sulphate (2:1 water soluble)	CE061 ^M	mg/l SO4	51	35
Cyanide (free)	CE077	mg/kg CN	<1	<1
Total Organic Carbon (TOC)	CE197	% w/w C	2.0	7.0
РАН	•			
Acenaphthene	CE087 ^M	mg/kg	<0.02	< 0.02
Acenaphthylene	CE087 ^M	mg/kg	<0.02	< 0.02
Anthracene	CE087 ^U	mg/kg	<0.02	< 0.02
Benzo(a)anthracene	CE087 ^U	mg/kg	<0.02	0.08
Benzo(a)pyrene	CE087 ^U	mg/kg	<0.02	0.09
Benzo(b)fluoranthene	CE087 ^M	mg/kg	0.02	0.12
Benzo(ghi)perylene	CE087 ^M	mg/kg	<0.02	0.07
Benzo(k)fluoranthene	CE087 ^M	mg/kg	<0.03	0.05
Chrysene	CE087 ^M	mg/kg	< 0.03	0.09
Dibenz(ah)anthracene	CE087 ^M	mg/kg	<0.02	< 0.02
Fluoranthene	CE087 ^M	mg/kg	0.03	0.16
Fluorene	CE087 ^U	mg/kg	< 0.02	< 0.02
Indeno(123cd)pyrene	CE087 ^M	mg/kg	<0.02	0.08
Naphthalene	CE087 ^M	mg/kg	<0.02	< 0.02
Phenanthrene	CE087 ^M	mg/kg	0.04	0.08
Pyrene	CE087 ^M	mg/kg	0.03	0.13
PAH (total of USEPA 16)	CE087	mg/kg	< 0.34	0.94
Benzo(j)fluoranthene	CE087	mg/kg	<0.02	< 0.02
PAH (total of OIL 8)	CE087	mg/kg	<0.18	0.51
BTEX & TPH	I	1		1
Benzene	CE192 ^U	mg/kg	<0.01	< 0.01
Toluene	CE192 ^U	mg/kg	<0.01	< 0.01
Ethylbenzene	CE192 U	mg/kg	<0.01	< 0.01
m & p-Xylene	CE192 ^U	mg/kg	<0.02	< 0.02
o-Xylene	CE192 U	mg/kg	< 0.01	< 0.01
	02172	61.10	L	

SOLLS

Lab number			97483-7	97483-8
Sample id			TP113	TP115
Depth (m)			0.20-0.40	0.10-0.30
Date sampled			07/06/2021	07/06/2021
Test	Method	Units		
VPH Aliphatic (>C5-C6)	CE067	mg/kg	<0.1	<0.1
VPH Aliphatic (>C6-C8)	CE067	mg/kg	<0.1	<0.1
VPH Aliphatic (>C8-C10)	CE067	mg/kg	<0.1	<0.1
EPH Aliphatic (>C10-C12)	CE068	mg/kg	< 4	< 4
EPH Aliphatic (>C12-C16)	CE068	mg/kg	< 4	< 4
EPH Aliphatic (>C16-C35)	CE068	mg/kg	< 4	30
EPH Aliphatic (>C35-C44)	CE068	mg/kg	<10	11
VPH Aromatic (>EC5-EC7)	CE067	mg/kg	<0.01	< 0.01
VPH Aromatic (>EC7-EC8)	CE067	mg/kg	<0.01	< 0.01
VPH Aromatic (>EC8-EC10)	CE067	mg/kg	<0.01	< 0.01
EPH Aromatic (>EC10-EC12)	CE068	mg/kg	<1	<1
EPH Aromatic (>EC12-EC16)	CE068	mg/kg	<1	< 1
EPH Aromatic (>EC16-EC21)	CE068	mg/kg	<1	<1
EPH Aromatic (>EC21-EC35)	CE068	mg/kg	<1	<1
EPH Aromatic (>EC35-EC44)	CE068	mg/kg	<1	<1
Subcontracted analysis	· · · ·			
Asbestos (qualitative)	\$	-	NAD	NAD

METHOD DETAILS

METHOD	SOILS	METHOD SUMMARY	SAMPLE	STATUS	LOD	UNITS
CE127	Arsenic (total)	Aqua regia digest, ICP-MS	Dry	М	1	mg/kg As
CE127	Cadmium (total)	Aqua regia digest, ICP-MS	Dry	М	0.2	mg/kg Cd
CE127	Chromium (total)	Aqua regia digest, ICP-MS	Dry	М	1	mg/kg Cr
CE208	Chromium (III)	Calculation: Cr (total) - Cr (VI)	Dry		1	mg/kg CrIII
CE146	Chromium (VI)	Acid extraction, Colorimetry	Dry		1	mg/kg CrVI
CE127	Copper (total)	Aqua regia digest, ICP-MS	Dry	М	1	mg/kg Cu
CE127	Lead (total)	Aqua regia digest, ICP-MS	Dry	М	1	mg/kg Pb
CE127	Mercury (total)	Aqua regia digest, ICP-MS	Dry	М	0.5	mg/kg Hg
CE127	Nickel (total)	Aqua regia digest, ICP-MS	Dry	М	1	mg/kg Ni
CE127	Selenium (total)	Aqua regia digest, ICP-MS	Dry	М	0.3	mg/kg Se
CE127	Zinc (total)	Aqua regia digest, ICP-MS	Dry	М	5	mg/kg Zn
CE004	рН	Based on BS 1377, pH Meter	As received	М	-	units
CE061	Sulphate (2:1 water soluble)	Aqueous extraction, ICP-OES	Dry	М	10	mg/I SO4
CE077	Cyanide (free)	Extraction, Continuous Flow Colorimetry	As received		1	mg/kg CN
CE197	Total Organic Carbon (TOC)	Carbon Analyser	Dry		0.1	% w/w C
CE087	Acenaphthene	Solvent extraction, GC-MS	As received	М	0.02	mg/kg
CE087	Acenaphthylene	Solvent extraction, GC-MS	As received	М	0.02	mg/kg
CE087	Anthracene	Solvent extraction, GC-MS	As received	U	0.02	mg/kg
CE087	Benzo(a)anthracene	Solvent extraction, GC-MS	As received	U	0.02	mg/kg
CE087	Benzo(a)pyrene	Solvent extraction, GC-MS	As received	U	0.02	mg/kg
CE087	Benzo(b)fluoranthene	Solvent extraction, GC-MS	As received	М	0.02	mg/kg
CE087	Benzo(ghi)perylene	Solvent extraction, GC-MS	As received	М	0.02	mg/kg
CE087	Benzo(k)fluoranthene	Solvent extraction, GC-MS	As received	М	0.03	mg/kg
CE087	Chrysene	Solvent extraction, GC-MS	As received	М	0.03	mg/kg
CE087	Dibenz(ah)anthracene	Solvent extraction, GC-MS	As received	М	0.02	mg/kg
CE087	Fluoranthene	Solvent extraction, GC-MS	As received	М	0.02	mg/kg
CE087	Fluorene	Solvent extraction, GC-MS	As received	U	0.02	mg/kg
CE087	Indeno(123cd)pyrene	Solvent extraction, GC-MS	As received	М	0.02	mg/kg
CE087	Naphthalene	Solvent extraction, GC-MS	As received	М	0.02	mg/kg
CE087	Phenanthrene	Solvent extraction, GC-MS	As received	М	0.02	mg/kg
CE087	Pyrene	Solvent extraction, GC-MS	As received	М	0.02	mg/kg
CE087	PAH (total of USEPA 16)	Solvent extraction, GC-MS	As received		0.34	mg/kg
CE087	Benzo(j)fluoranthene	Solvent extraction, GC-MS	As received		0.02	mg/kg
CE087	PAH (total of OIL 8)	Solvent extraction, GC-MS	As received		0.18	mg/kg
CE192	Benzene	Headspace GC-FID	As received	U	0.01	mg/kg
CE192	Toluene	Headspace GC-FID	As received	U	0.01	mg/kg
CE192	Ethylbenzene	Headspace GC-FID	As received	U	0.01	mg/kg
CE192	m & p-Xylene	Headspace GC-FID	As received	U	0.02	mg/kg
CE192	o-Xylene	Headspace GC-FID	As received	U	0.01	mg/kg
CE067	VPH Aliphatic (>C5-C6)	Headspace GC-FID	As received		0.1	mg/kg
CE067	VPH Aliphatic (>C6-C8)	Headspace GC-FID	As received		0.1	mg/kg
CE067	VPH Aliphatic (>C8-C10)	Headspace GC-FID	As received		0.1	mg/kg
CE068	EPH Aliphatic (>C10-C12)	Solvent extraction, GC-FID	As received		4	mg/kg
CE068	EPH Aliphatic (>C12-C16)	Solvent extraction, GC-FID	As received		4	mg/kg

METHOD DETAILS

METHOD	SOILS	METHOD SUMMARY	SAMPLE	STATUS	LOD	UNITS
CE068	EPH Aliphatic (>C16-C35)	Solvent extraction, GC-FID	As received		4	mg/kg
CE068	EPH Aliphatic (>C35-C44)	Solvent extraction, GC-FID	As received		10	mg/kg
CE067	VPH Aromatic (>EC5-EC7)	Headspace GC-FID	As received		0.01	mg/kg
CE067	VPH Aromatic (>EC7-EC8)	Headspace GC-FID	As received		0.01	mg/kg
CE067	VPH Aromatic (>EC8-EC10)	Headspace GC-FID	As received		0.01	mg/kg
CE068	EPH Aromatic (>EC10-EC12)	Solvent extraction, GC-FID	As received		1	mg/kg
CE068	EPH Aromatic (>EC12-EC16)	Solvent extraction, GC-FID	As received		1	mg/kg
CE068	EPH Aromatic (>EC16-EC21)	Solvent extraction, GC-FID	As received		1	mg/kg
CE068	EPH Aromatic (>EC21-EC35)	Solvent extraction, GC-FID	As received		1	mg/kg
CE068	EPH Aromatic (>EC35-EC44)	Solvent extraction, GC-FID	As received		1	mg/kg
\$	Asbestos (qualitative)	HSG 248, Microscopy	Dry	U	-	-

DEVIATING SAMPLE INFORMATION

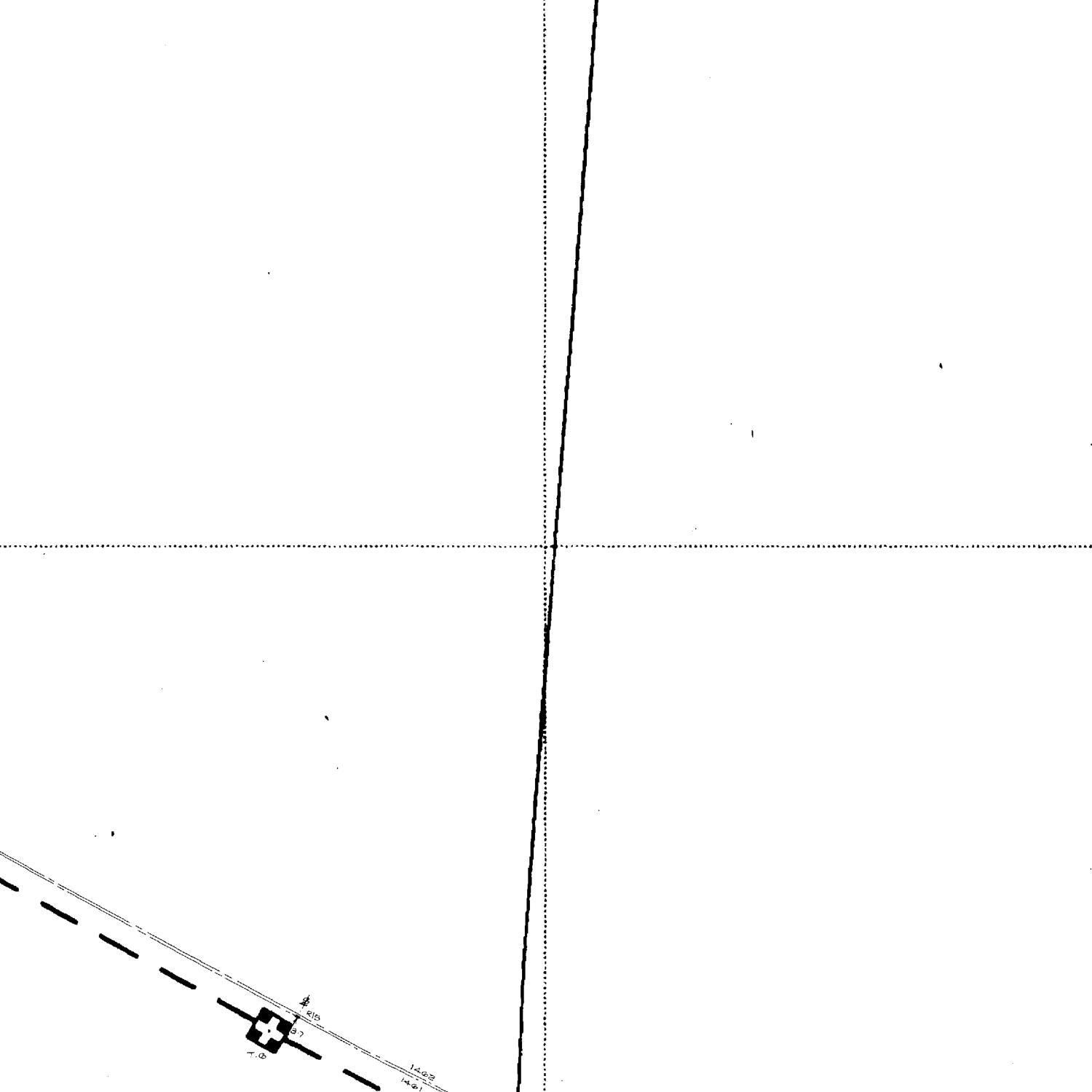
Comments

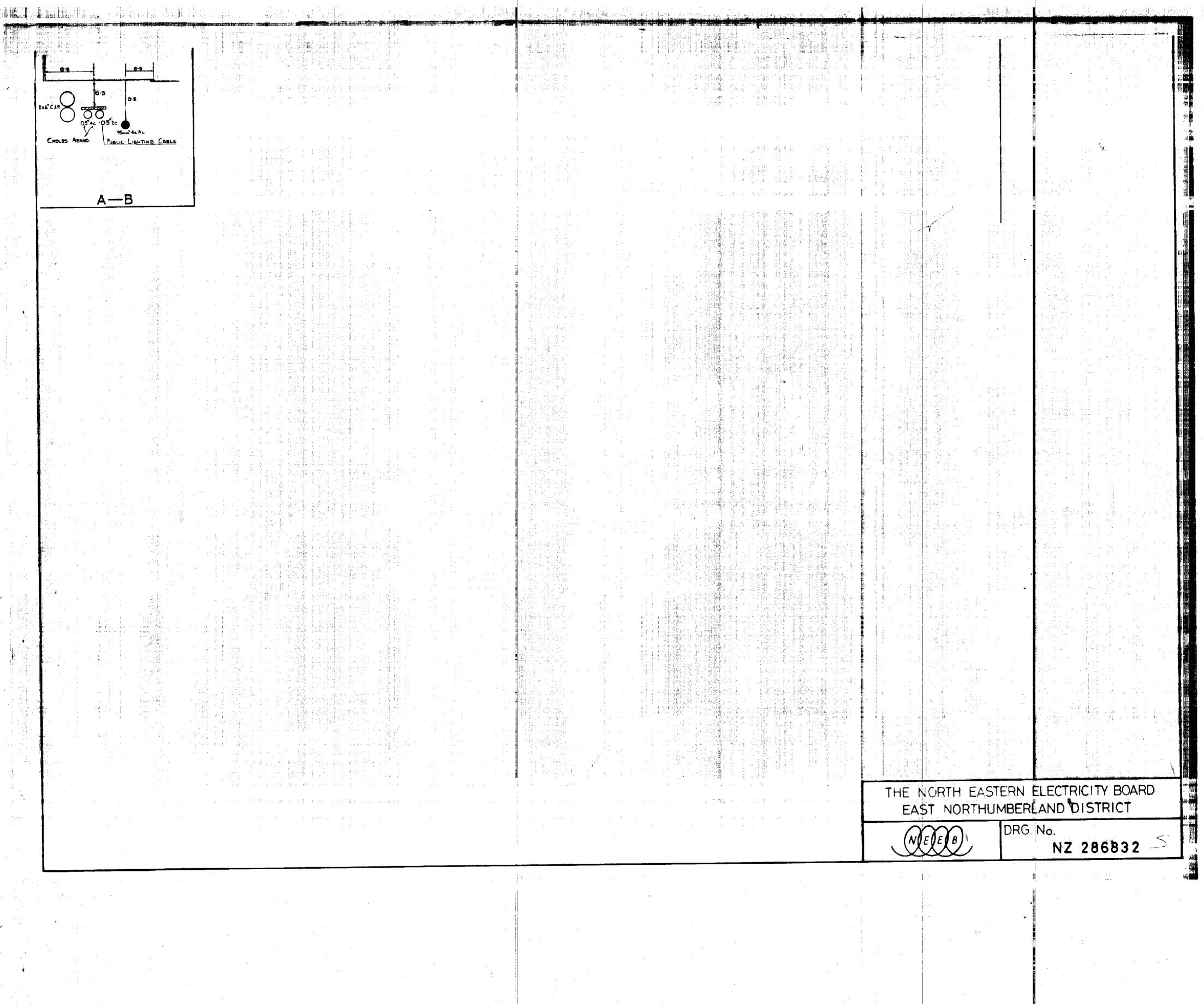
Sample deviation is determined in accordance with the UKAS note "Guidance on Deviating Samples" and based on reference standards and laboratory trials.

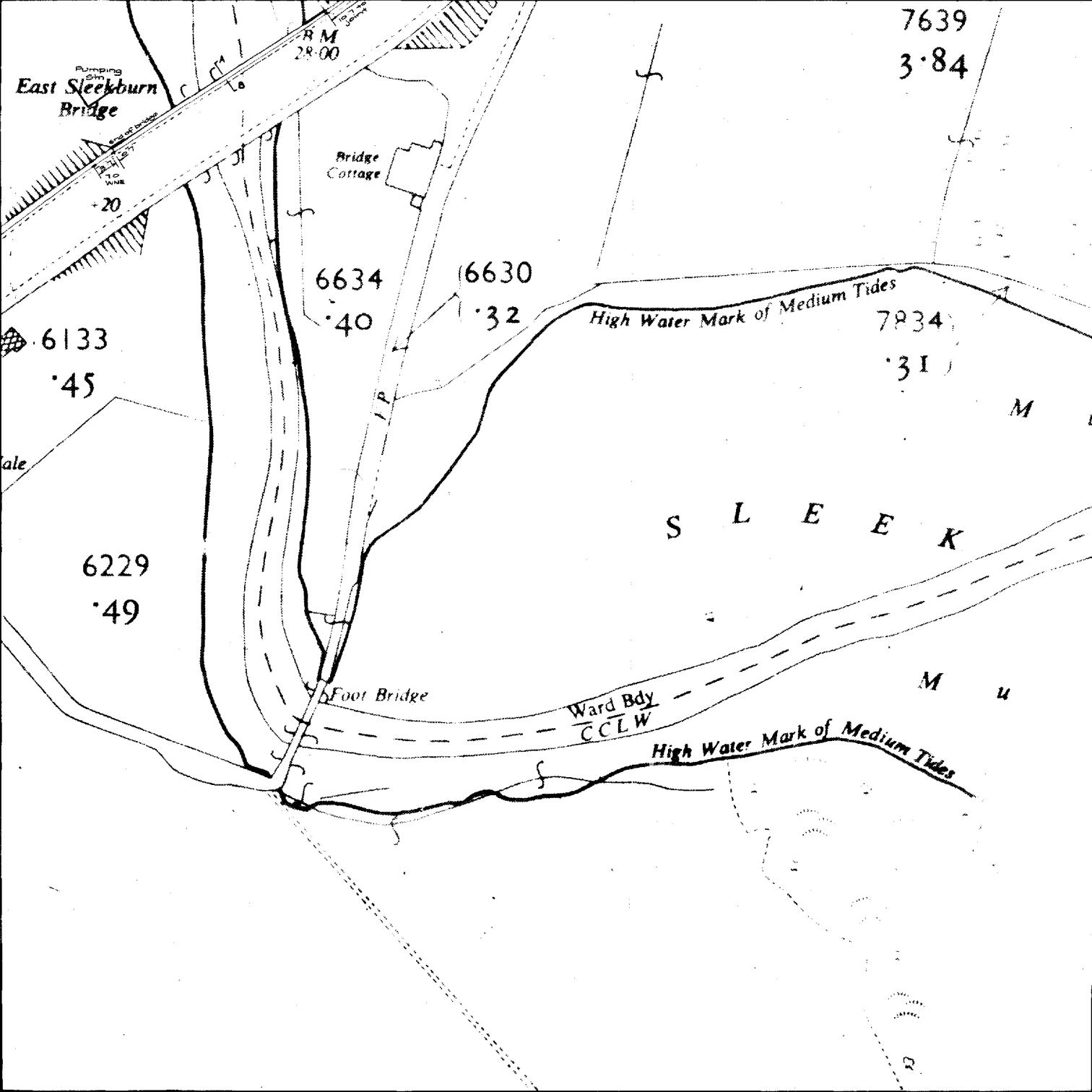
For samples identified as deviating, test result(s) may be compromised and may not be representative of the sample at the time of sampling.

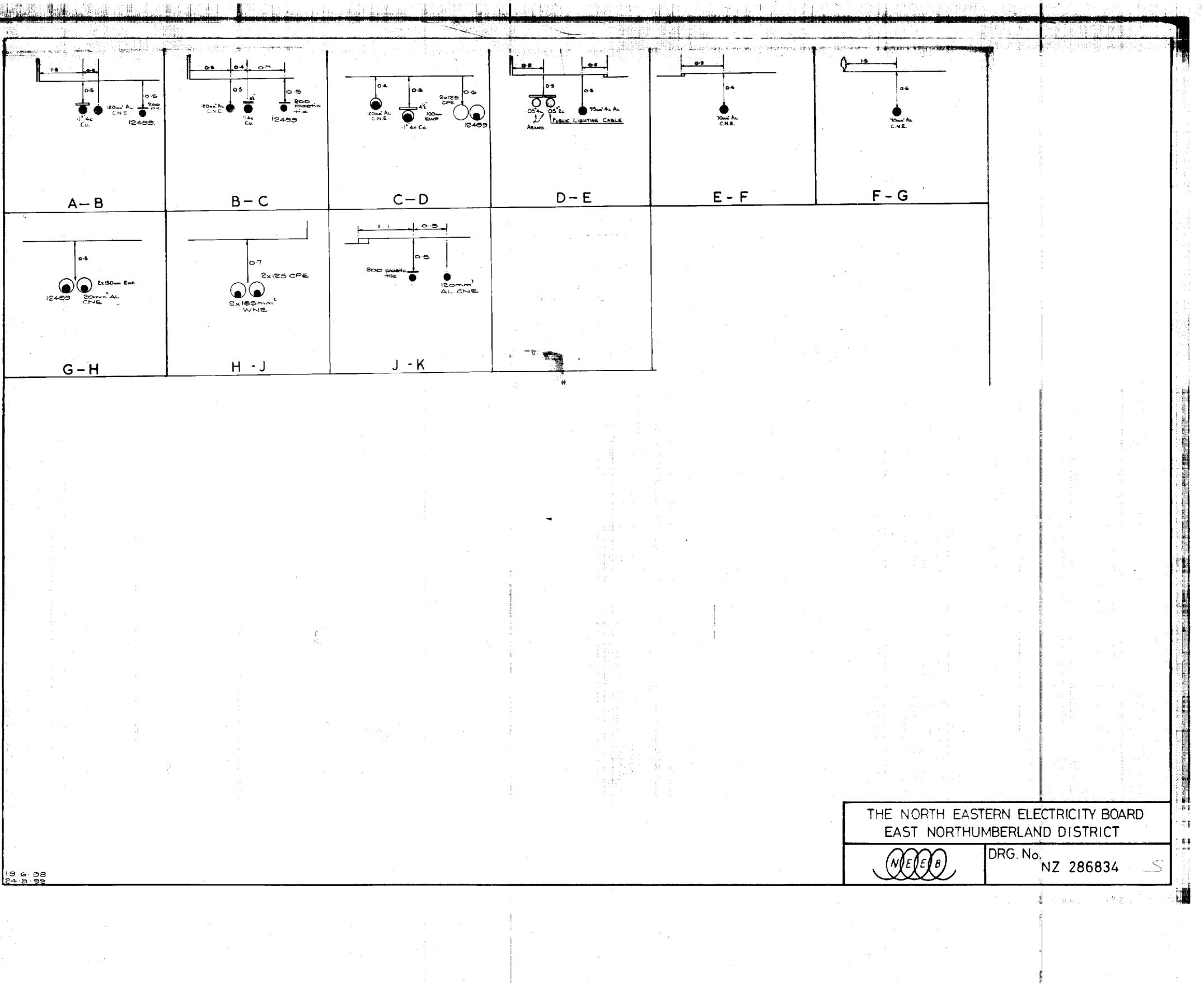
Chemtech Environmental Ltd cannot be held responsible for the integrity of sample(s) received if Chemtech Environmental Ltd did not undertake the sampling. Such samples may be deviating.

Key

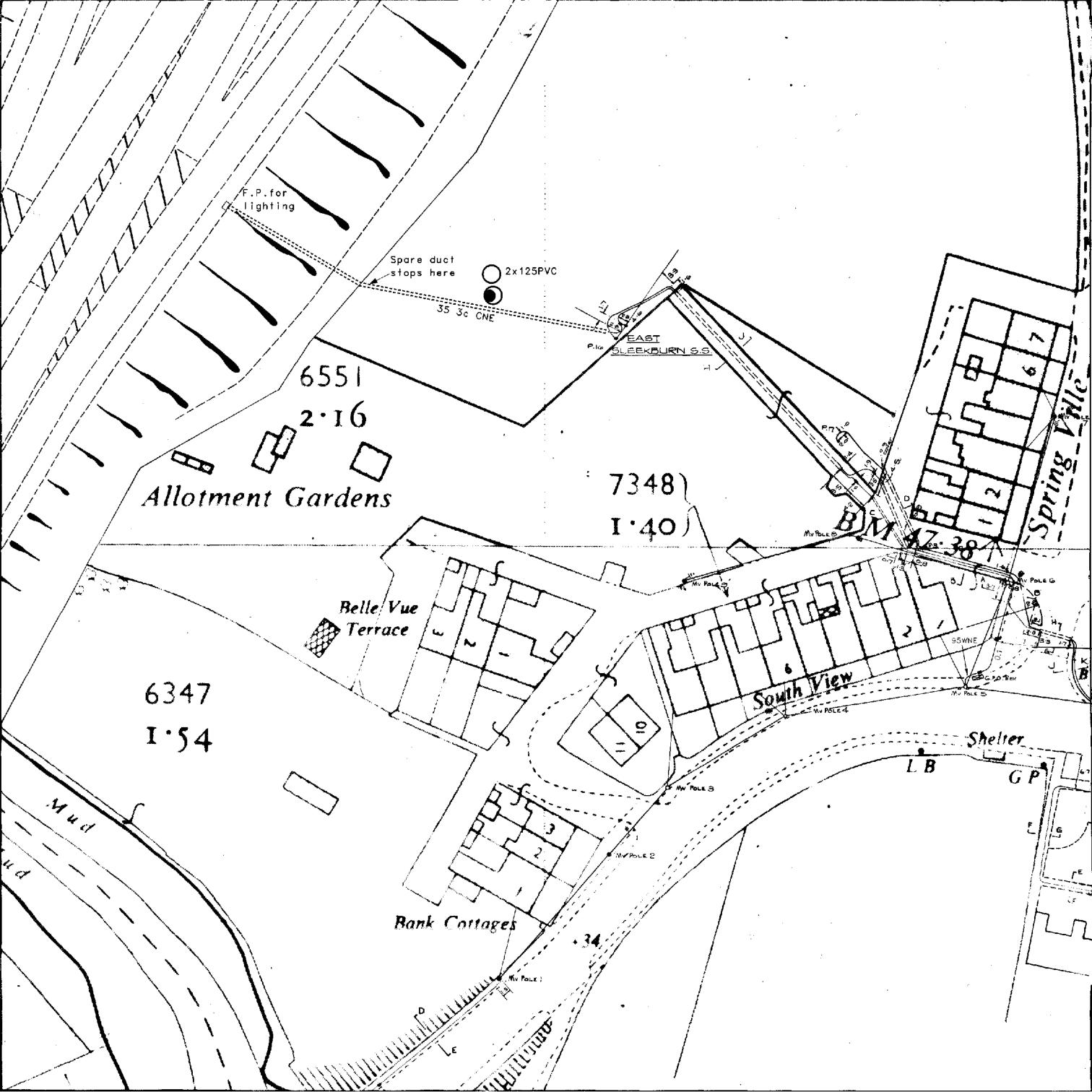

- N No (not deviating sample)
- Y Yes (deviating sample)
- NSD Sampling date not provided
- NST Sampling time not provided (waters only)
- EHT Sample exceeded holding time(s)
- IC Sample not received in appropriate containers
- HP Headspace present in sample container
- NCF Sample not chemically fixed (where appropriate)
- OR Other (specify)

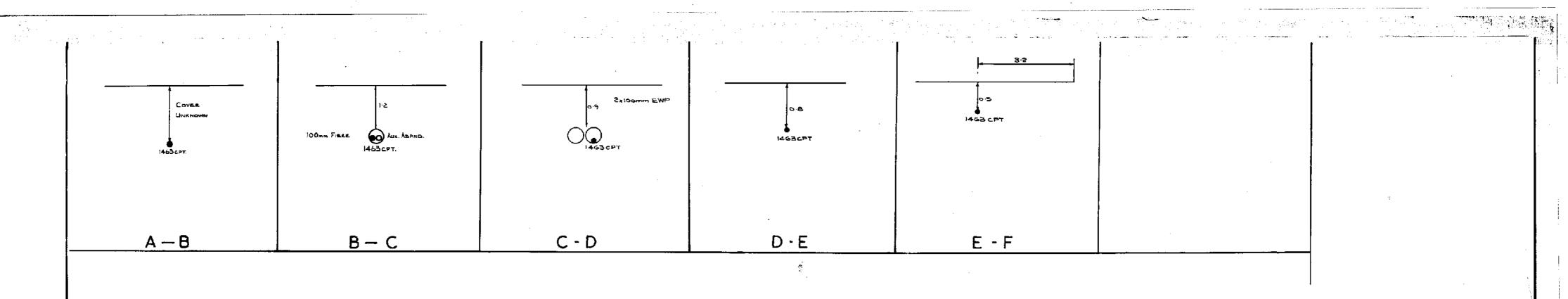

Lab ref	Sample id	Depth (m)	Deviating	Tests (Reason for deviation)
97483-1	TP101	0.00-0.20	Ν	
97483-2	TP102	0.30-0.50	Ν	
97483-3	TP103	0.10-0.30	Ν	
97483-4	TP105	0.00-0.20	Ν	
97483-5	TP106	0.00-0.30	Ν	
97483-6	TP111	0.40-0.60	Ν	
97483-7	TP113	0.20-0.40	Ν	
97483-8	TP115	0.10-0.30	Ν	



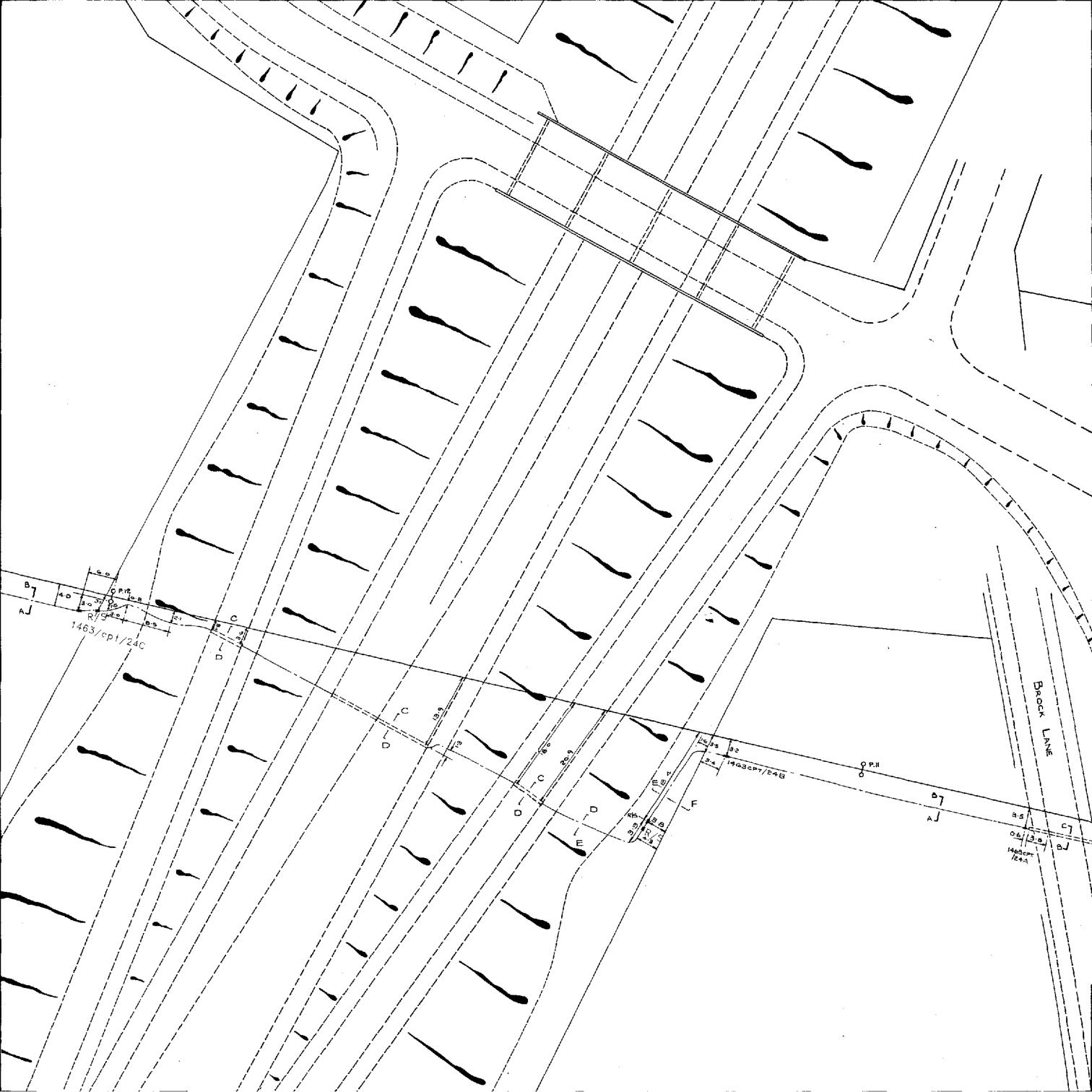

APPENDIX IV

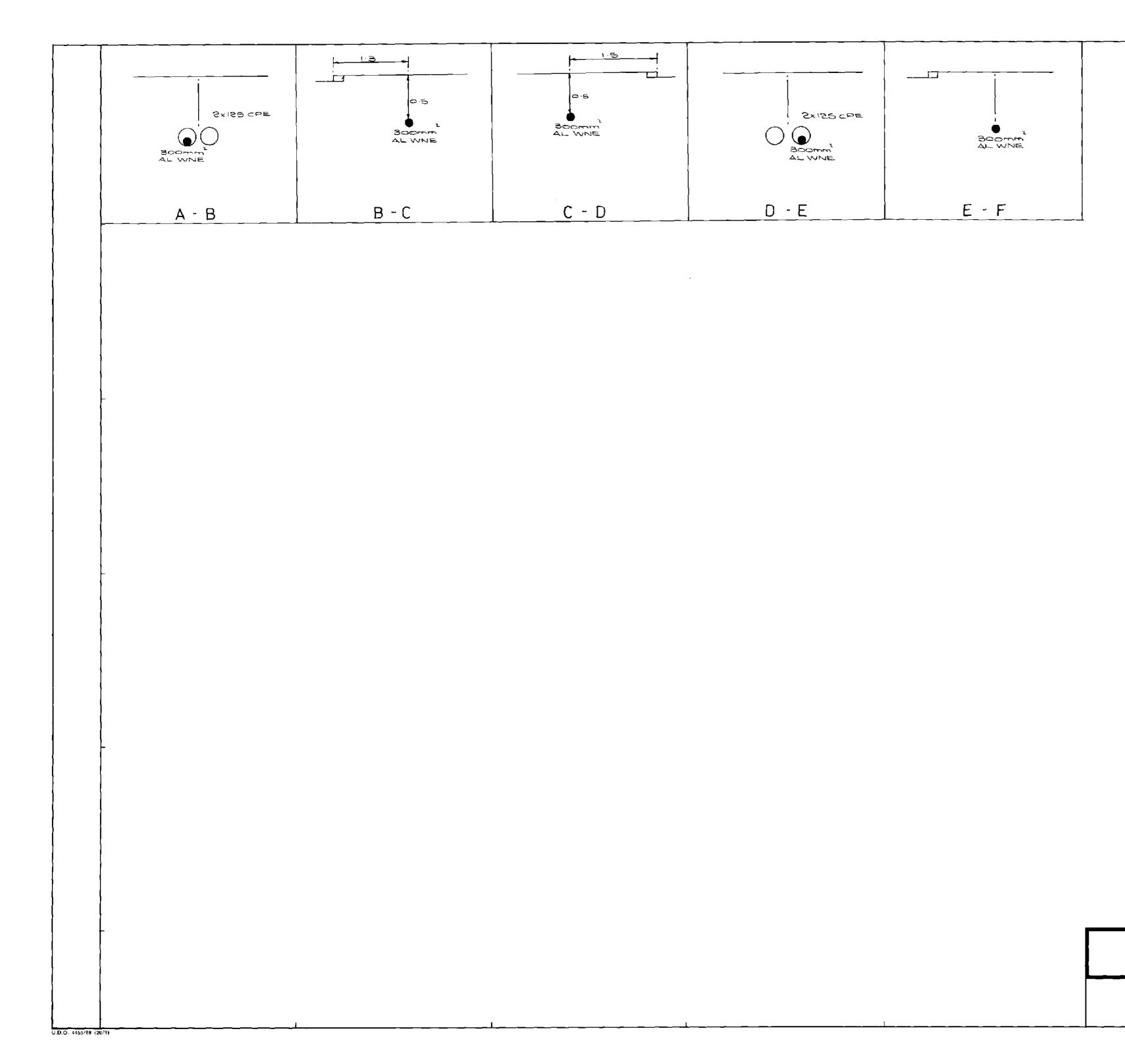
Statutory Service Plans





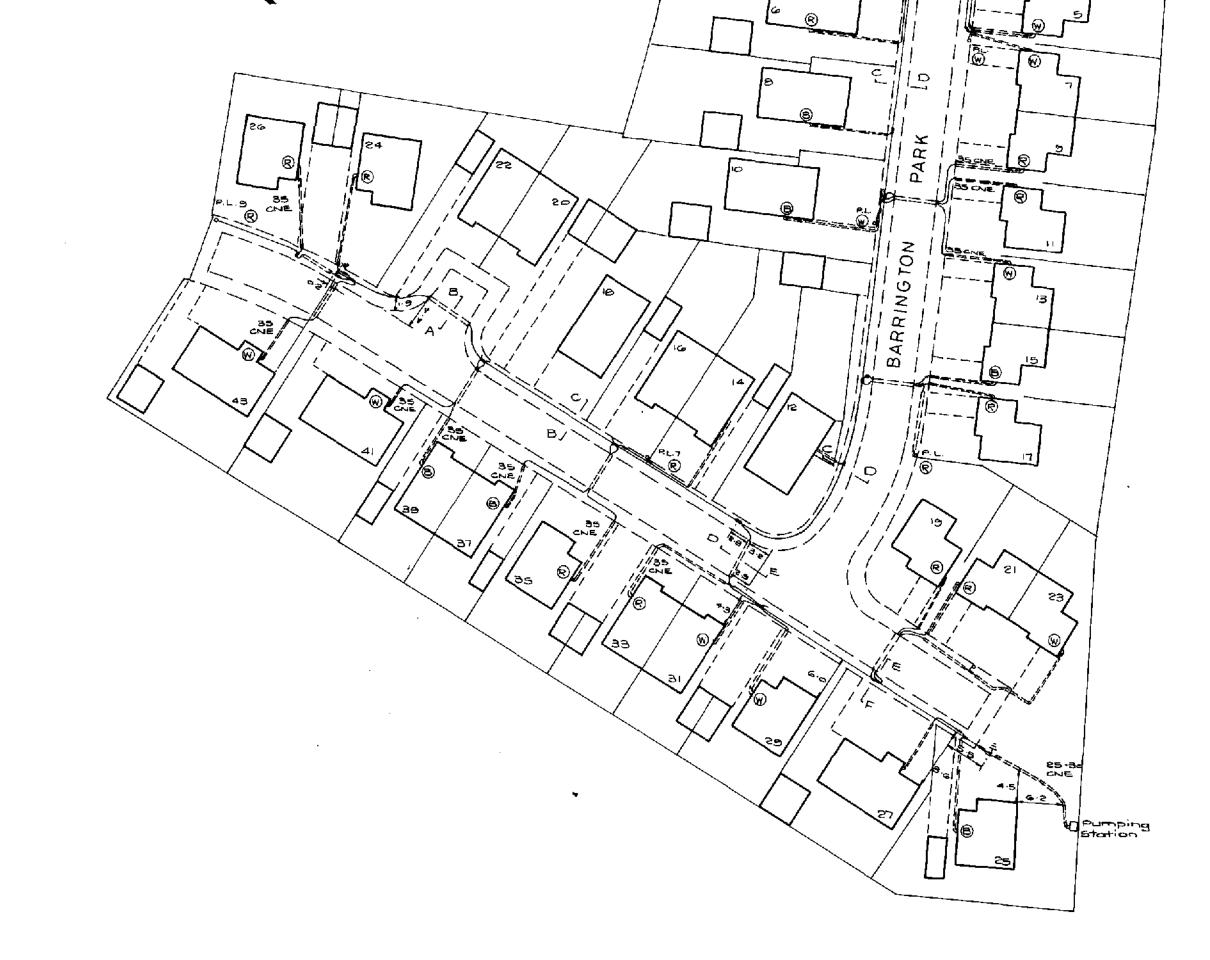
. C.

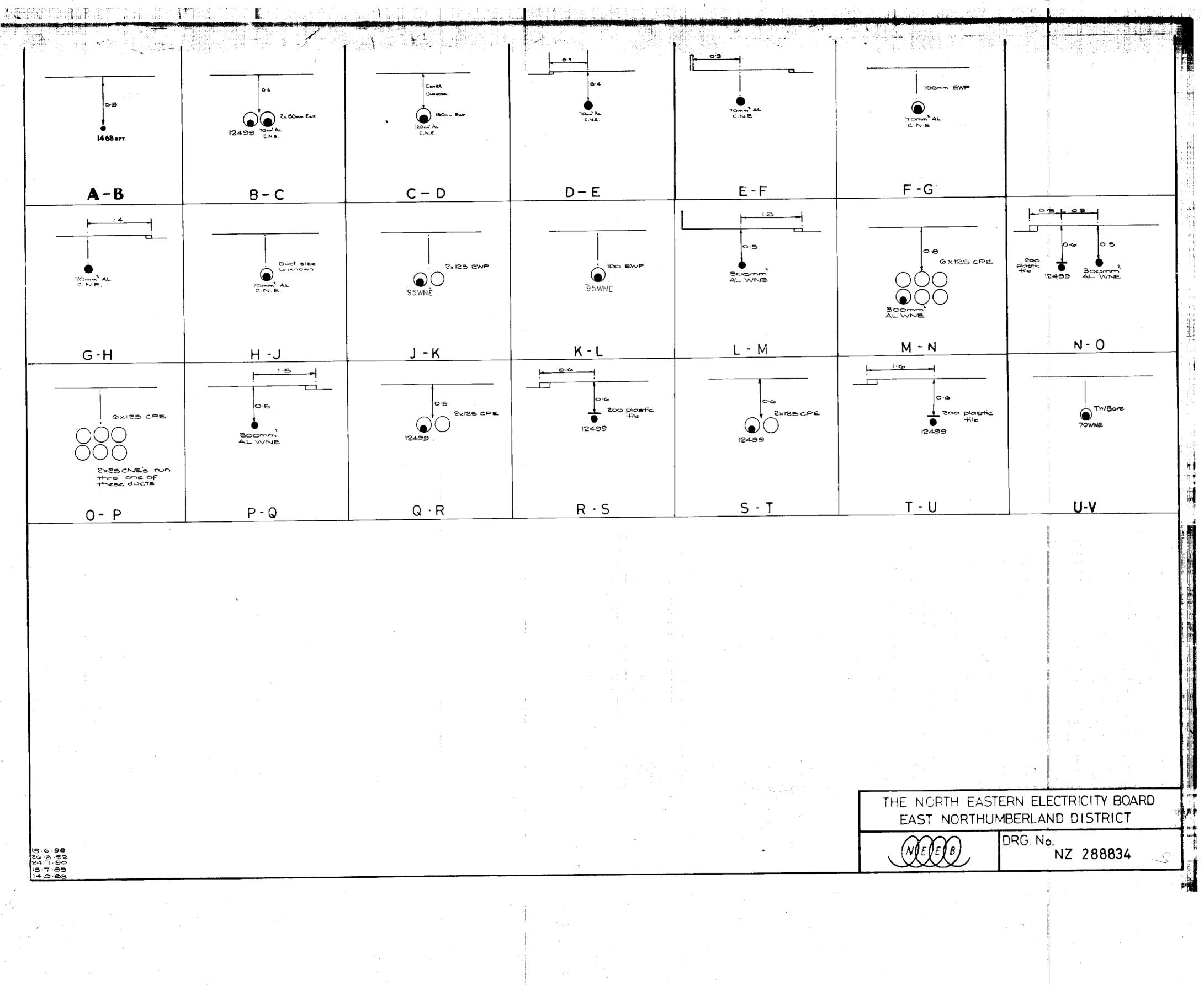

·• . .

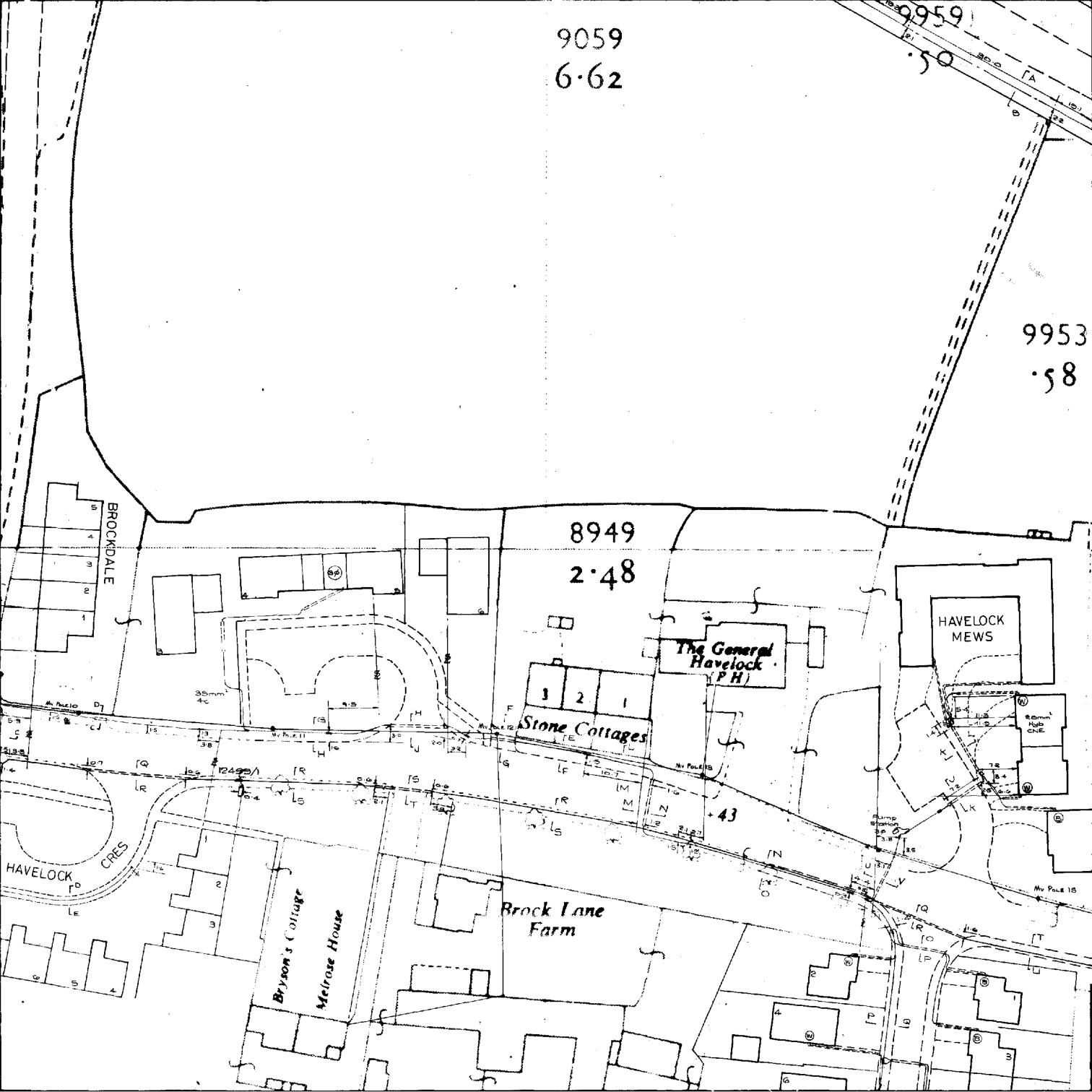


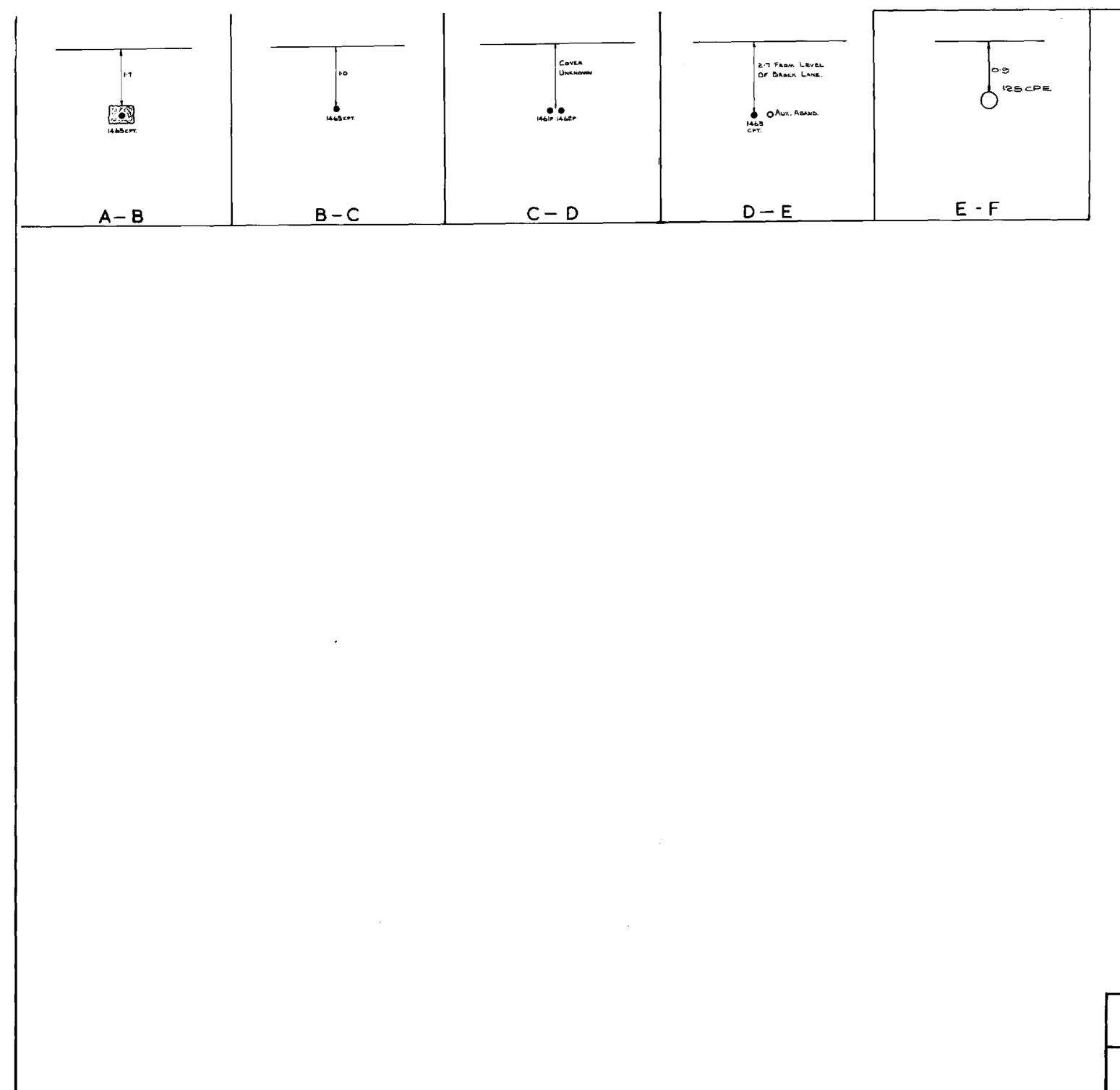
i |

· · · · · · · · · · · · · · · · · · ·	
THE NORTH EAST	ERN ELECTRICITY BOARD
EAST NORTHUN	BERLAND DISTRICT
(NUEVERB)	DRG. No.
	NZ 286836

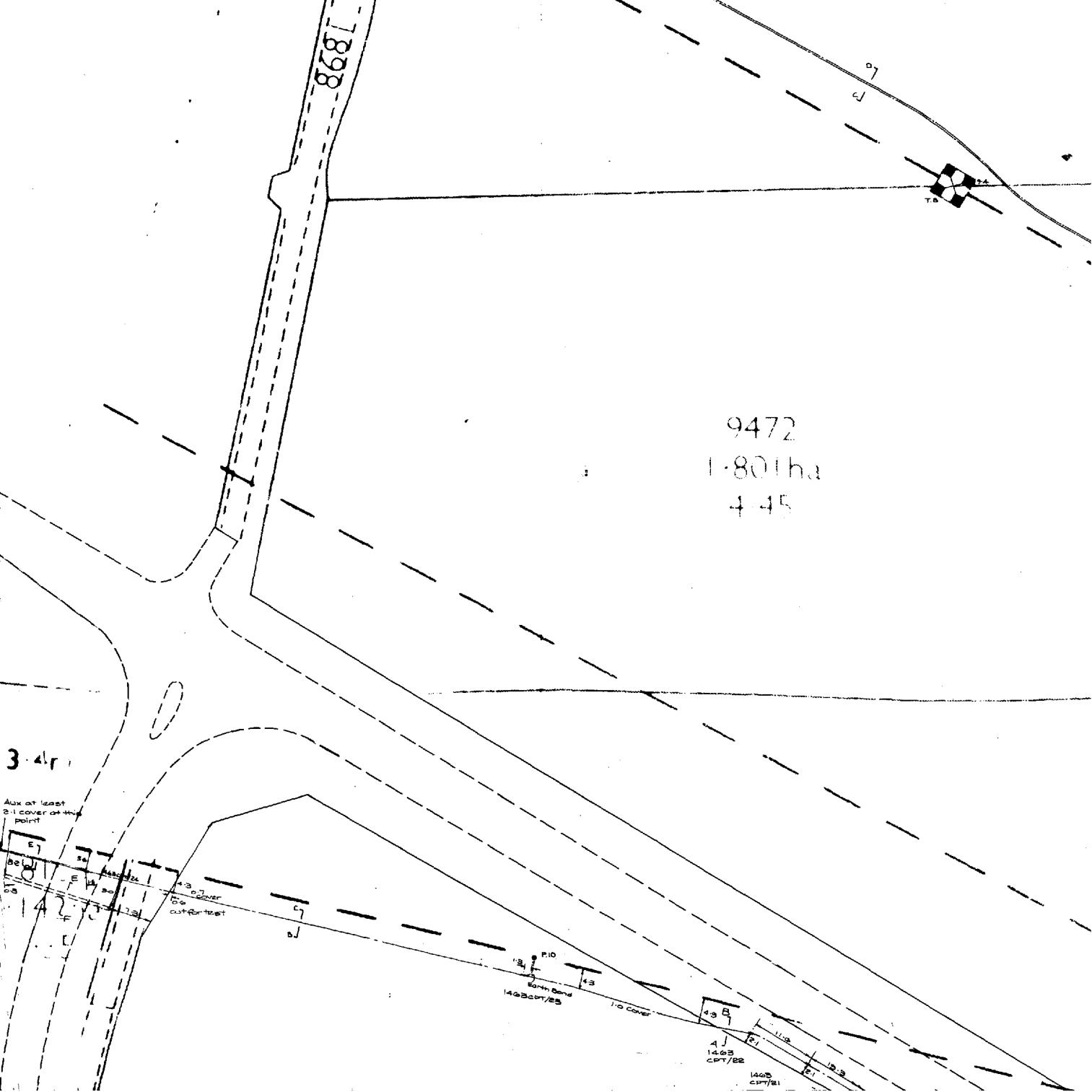


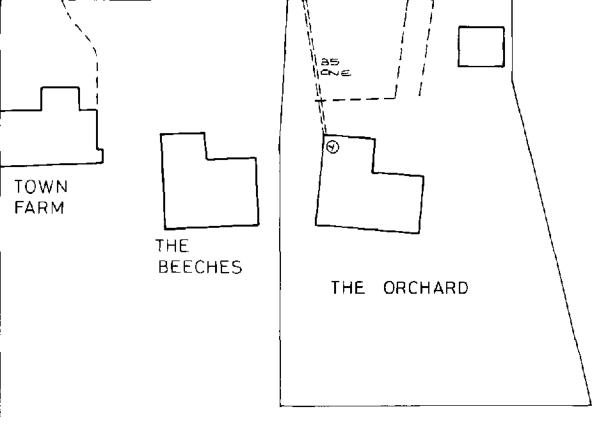

THE NORTH EASTERN ELECTRICITY BOARD
NORTH TYNE DISTRICT

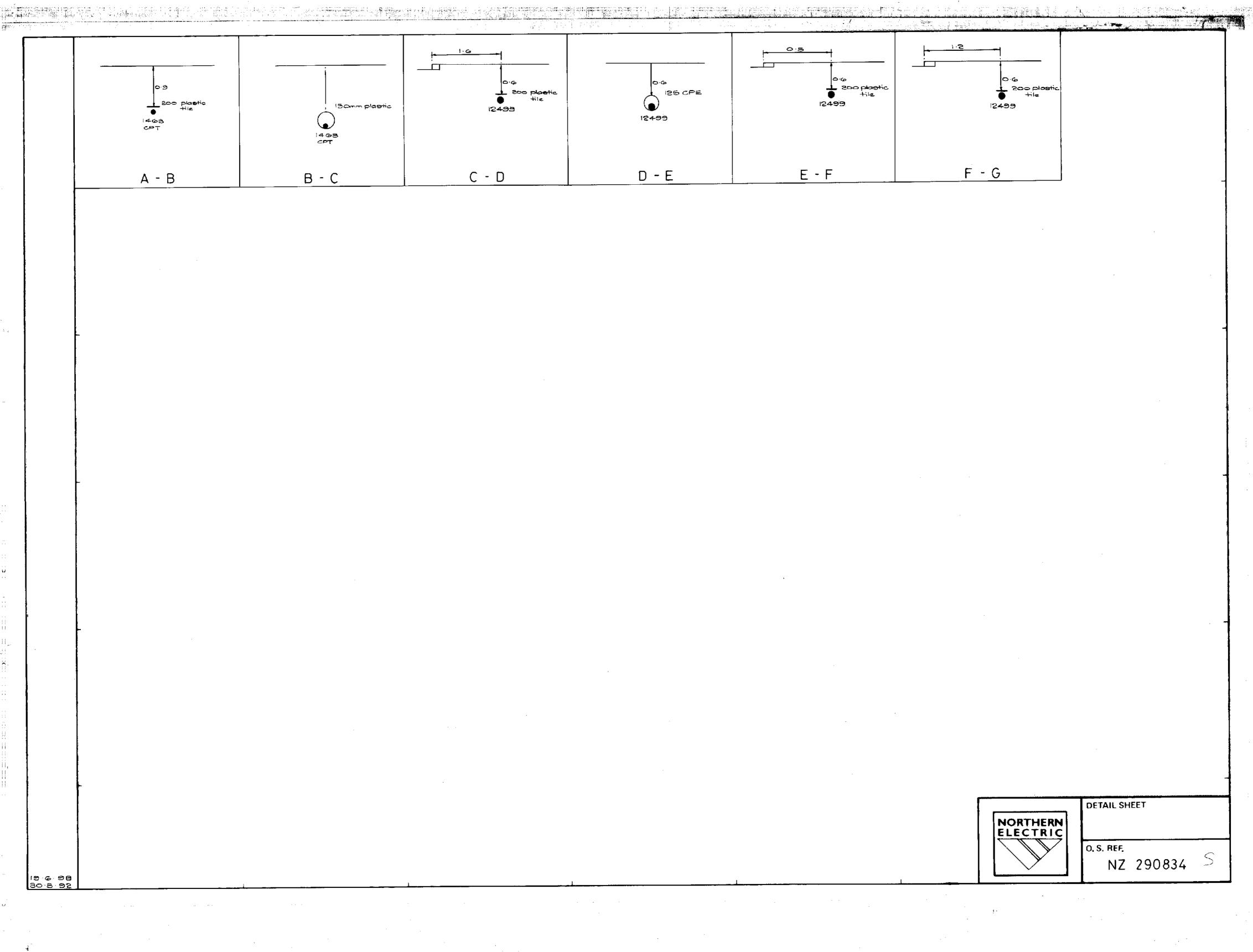

DETAIL SHEET OF O.S. REF. NZ 288832


5

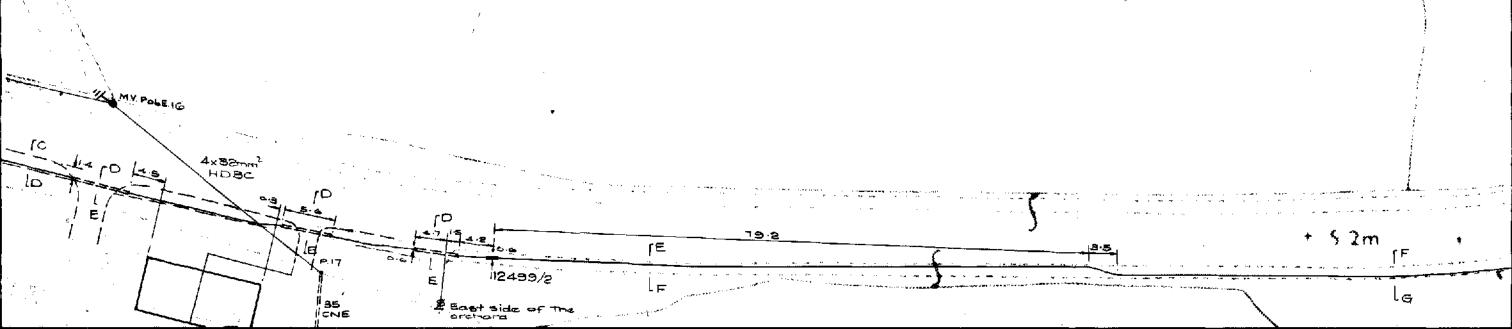
. .




THE NORTH EASTERN ELECTRICITY BOARD EAST NORTHUMBERLAND DISTRICT DRG. No. NZ 288836 S


`

r

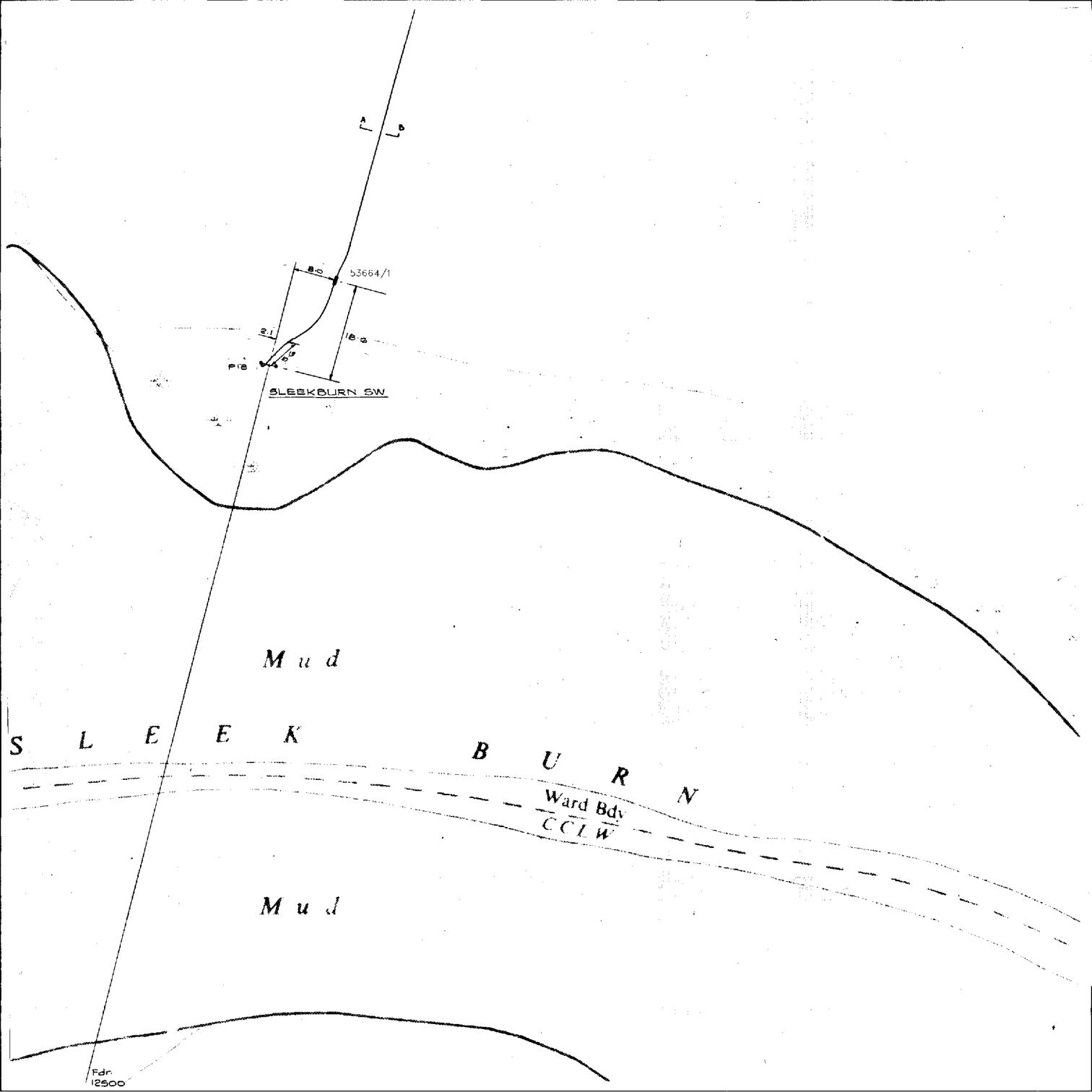


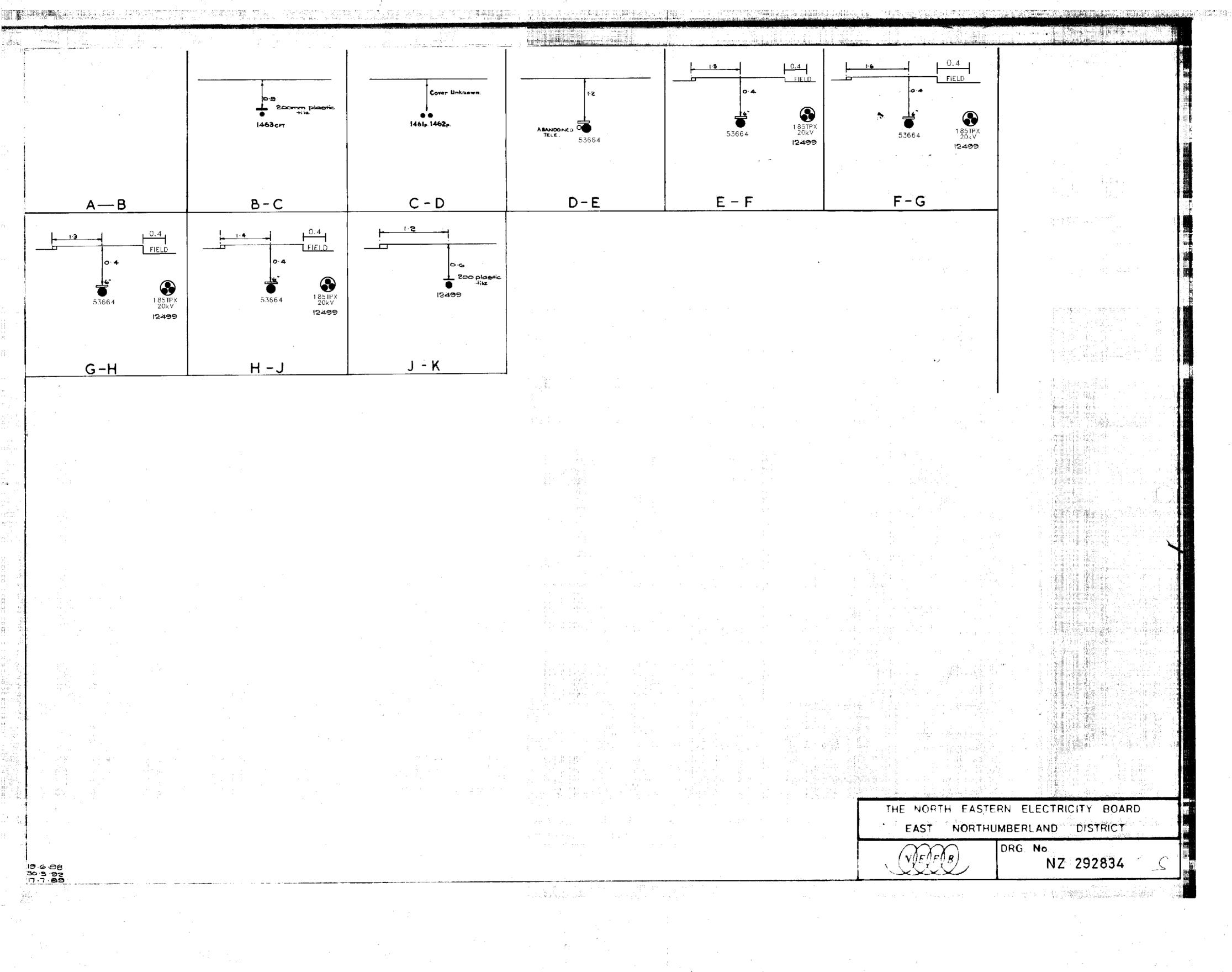
1 A.

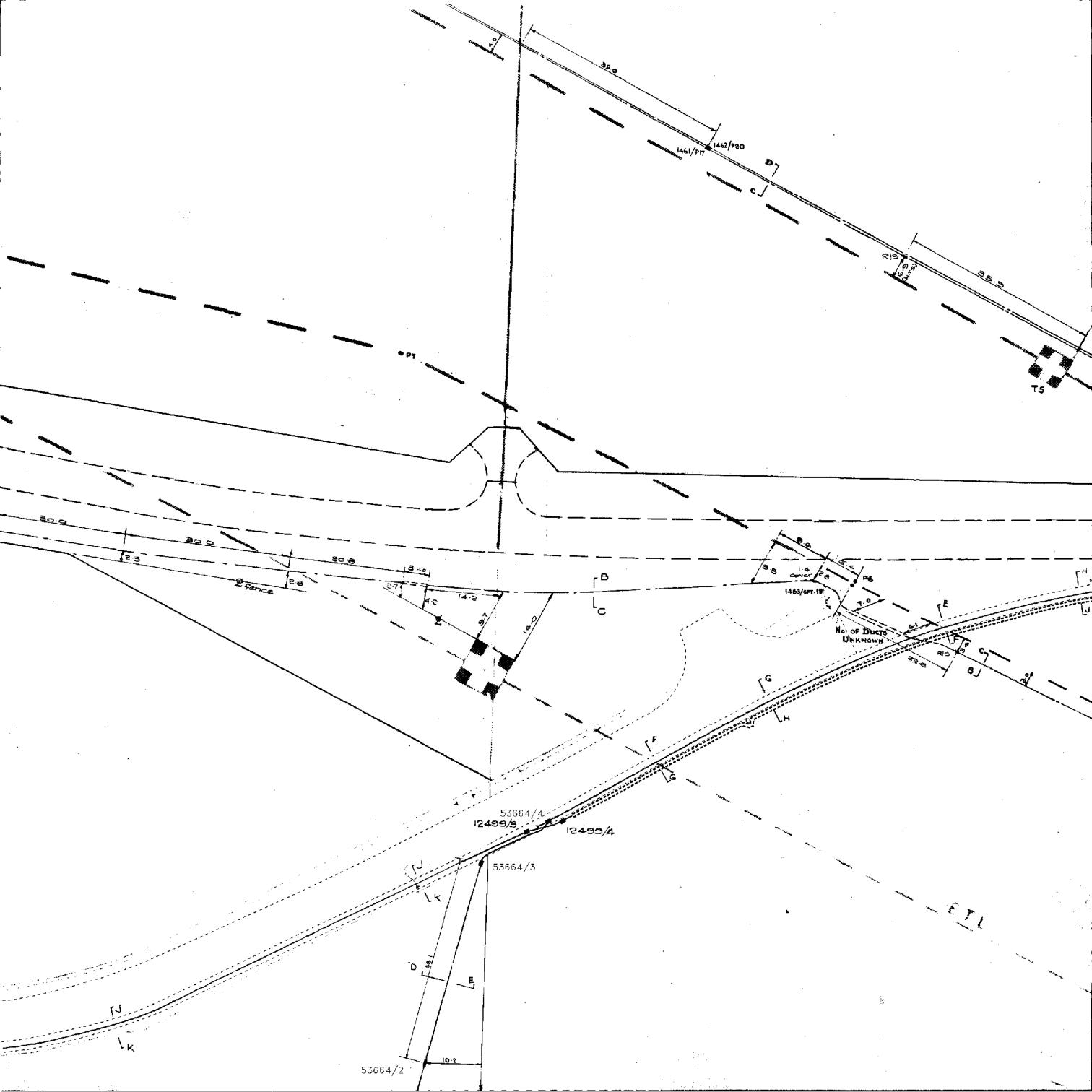
¥.

0850 2·533ha 6·26

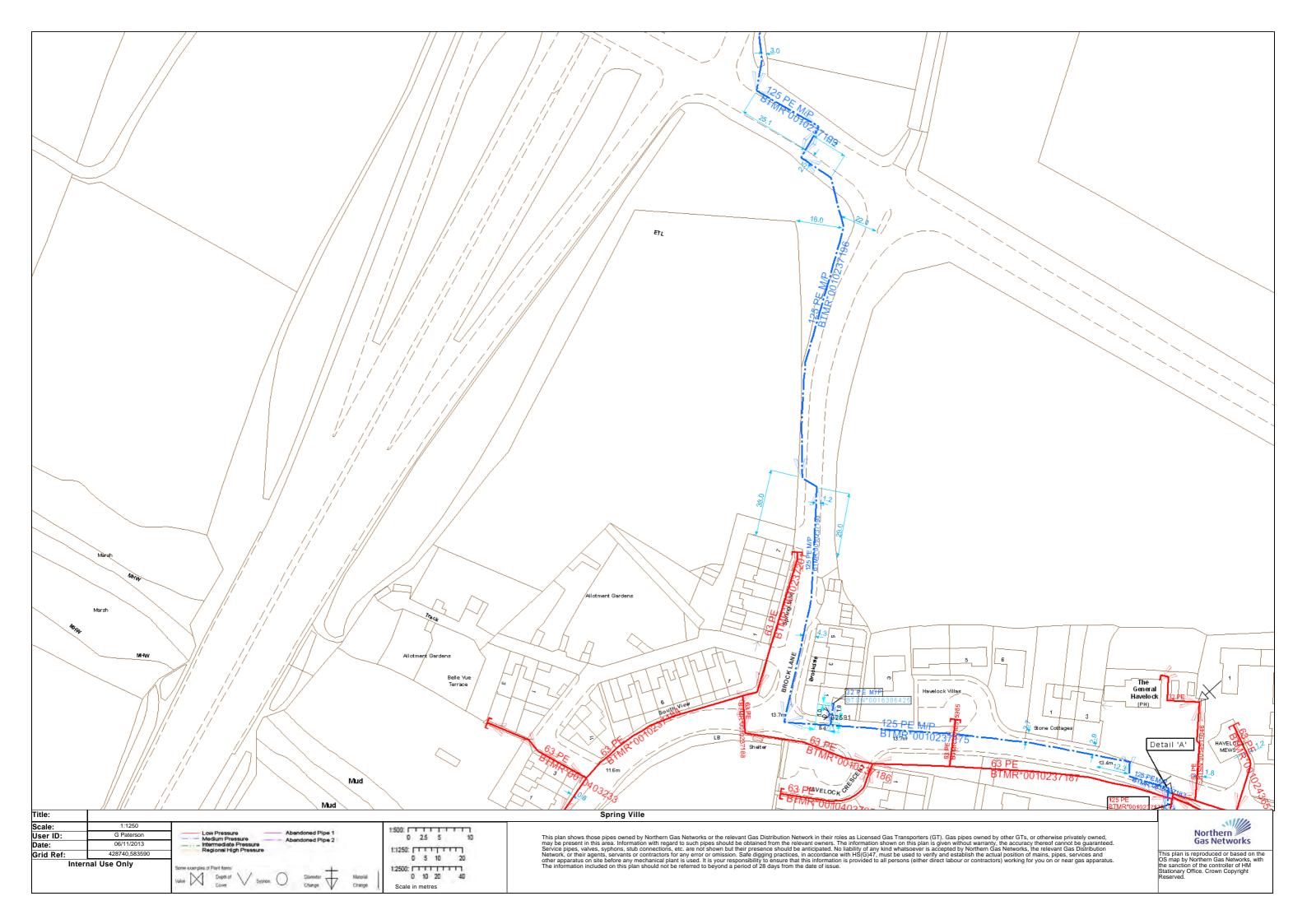
1463CPT/20

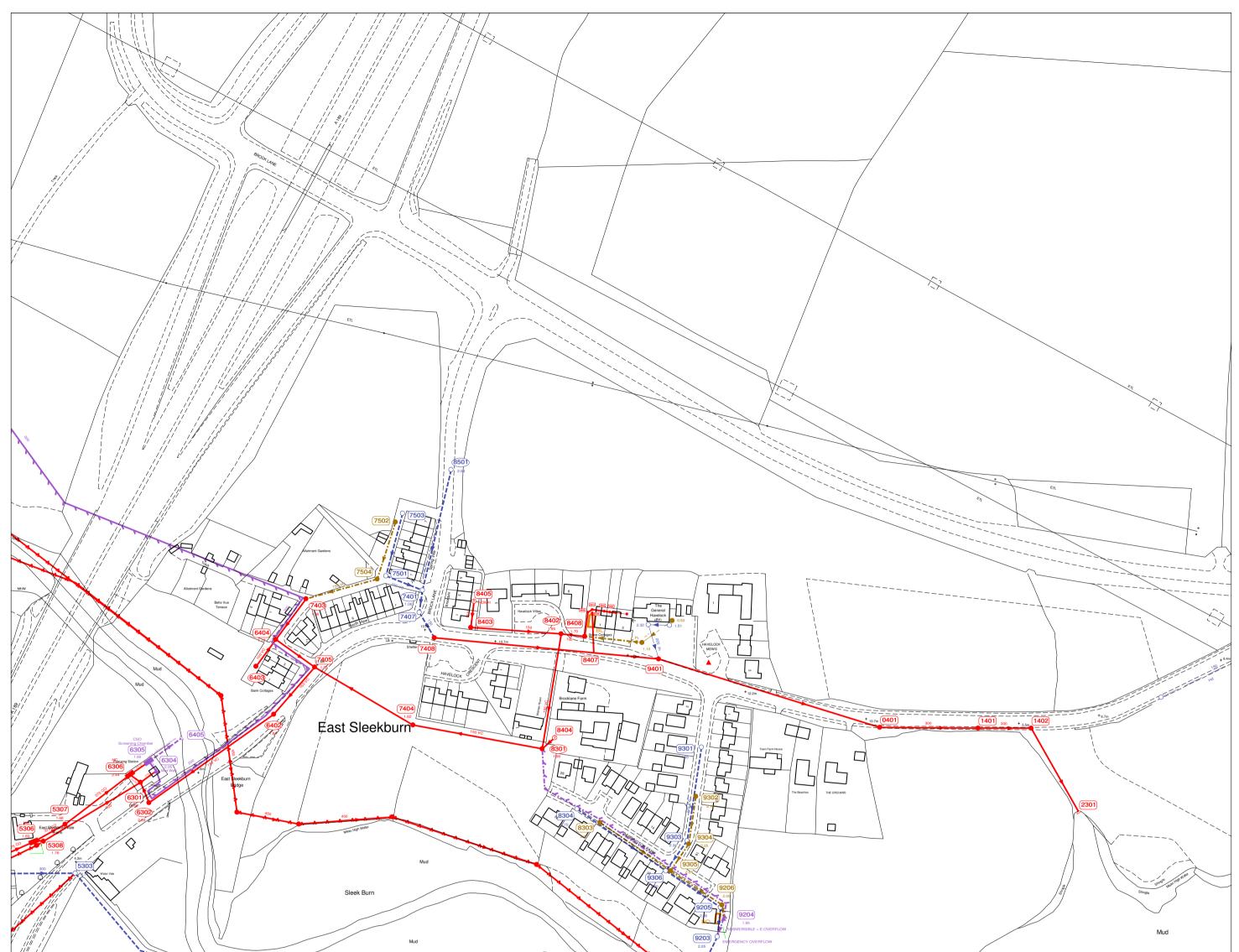



	COVER UNKNOWN WOOD BOARD O TELE, ABANDONED 53664			1997) 1997) 1997) 1997)			an an an Angalan an Angalan Angalan an Angalan Angalan an Angalan	
e. R								
	А—В							
						THE NOR	TH EASTERI NORTHUM	N ELECTRICITY BOARD BERLAND DISTRICT
· 38	and An An		ан на н ^{а н}	a sana ngang sa pang tang bang sanah T		(MA)		DRG. No. NZ 292832


4 **at** 2 - 2 2 4 3 4 3 5. S. S.

											、(N	efi	e (l	3)	,		DR	G.				29	28	32			5	١.
		ta e				:	:			• .	5 (14 5 (2		ST			RT	:					· · · ·	· (di lan	₹IC	, 140 J			: .
· .				•	•					on denie (o	TH		IOE	?тн	F	AS ¹	TFC	2N	, FI	F۲		2IC	1 		₽∩				
:	· · · · ·	· · ·						• : •	 	· ··· · · · ·								:		• • •							internet 12. de la composition 10. de la com		
	1	:								. :		·						-		· . · .	. I. 								
· • • •							•			· · ·			•.	:					· · · . · ·									на 1941 г. н. с. 1944 г. с. с.	
· · · ·		: 	:	··· ···			· · · ·	· · ·				: . : .																	
							· · · · · · · · · · · · · · · · · · ·							· .															
					•	÷	: : :	· · · · ·		· · ·				•				-											
••			•				· · · ·			 		···· ·	: • • .		•														
•	. ·		•	· · · ·	:			•	· · · · ·	2 		•.		:	. <u>i</u> i 			: 	· . ·										
	· · ·	·· · ·	•	. :		•	· · ·													- 									and a strategy of
	· · · ·	:		· ··· ·									· · · ·															: : :	 1 1
-	· · · ·	::. 		. ·		· .							. ,	• •.			and a second				M								:: :::::::::::::::::::::::::::::::::::
		 			· .	. :		 						•									alan sa sengera sa Sa sangga sa sa Sa sangga sa sa sa						
	: 			· · ·		· · : ·		· · · ·		· .				:															
		· · ·		•				•					: 																
		۰ ۲۰۰۰ ۰۰۰۰		:			• • • •		. 194			1 -	ج	. · .													en († 1999) Alfreds Alfreds	1.1 : 1 :	
	· · ·																											· · ·	
-	· ·	:	· .				۰.															•					• • • • • • •		
																										تر			
														· · ·										· · ·	ur Rolig Long Rolig	· · · · · ·	•		
												:		· ·	· · · ·						:				· · ·				
																											2		
				• •										-	• •	• •										• .		:	J


sa na ki



6201 5204 5207	Mad 205 ELERGENCY OVERPLOW	Sleek Burn Mud
Combined Pr Private	Abandoned	
Foul <u>Hd</u> Highwa	y Drain Manhole	
Surface Water Rising I	S104 Adaption	
Watercourse — Backdr	Agreement	
	14-11-2013 NZ2883SE	
_	1:2000 Connections and former private drains and sewers transferred to Northumbrian Water on 01/10/11 may not be shown but their presence should be anticipated. WARNINGWhere indicated on the plan there could be abandoned asbestos cement materials or shards of pipe. If excavating in the vicinity of these abandoned asbestos cement materials, the appropriate Health & Safety precautions should be taken. Northumbrian Water accepts no liability in respect of claims, costs, losses or other liabilities which arise as the result of the presence of the pipes or any failure to take adequate precautions. Emergency Telephone Number: 0845 717 1100	WATER

Gill Paterson THREE SITES AT EAST SLEEKBURN NE22 7AZ

Site Enquiry

Plan

We enclose plan(s) showing the location of any Company apparatus in the vicinity of the area of your enquiry.

If your request for plan(s) is part of a C2 enquiry, or makes reference to development, it has been forwarded to our New Development department for further consultation. If you require any further information regarding this please contact the following:

Northumbrian Water New Development Leat House Pattinson Road District 15 Washington NE38 8LB Tel: 0191 4196584

1. The company is not responsible for private water supply pipes, private drains and sewers that connect the property to the public sewerage system and does not hold details of these.

General Notes

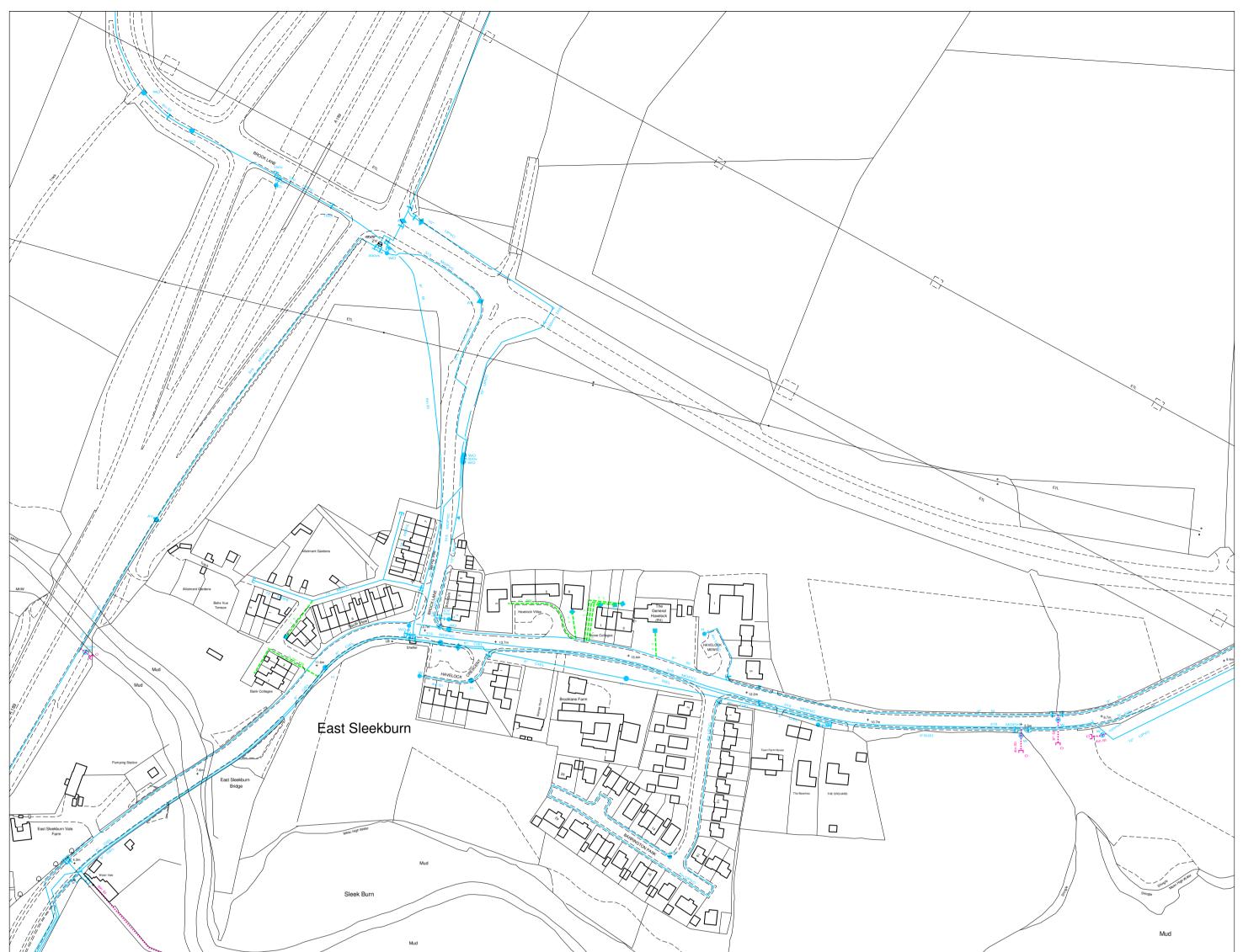
A copy of the standard conditions for working near Company apparatus is enclosed for your information. If you require any further assistance to identify Company apparatus, then do not hesitate to make contact with the Area Office at the contact number shown in the standard conditions.

Signed.

P. They

For Northumbrian Water Limited Date: 15/NOV/2013 Ref: 1086684

Northumbrian Water Limited Registered in England & Wales No. 2366703. Registered Office: Northumbria House, Abbey Road, Pity Me, Durham, DH1 5FJ


STANDARD CONDITIONS FOR WORKING NEAR NORTHUMBRIAN WATER APPARATUS

THE FOLLOWING CONDITIONS WILL APPLY TO ALL WORKS IN THE VICINITY OF COMPANY APPARATUS

- 1. Contact should be made with the appropriate Company Area Office prior to the commencement of any work. Arrangements can then be made for the local representative to visit the site and assist in the location and protection of any apparatus affected. The Company must be given two working days notice before any works, including trial holes, are carried out within their easements. Contact **0845 717 1100.**
- 2. The information shown on any plan provided by the Company is for general guidance only. The position of apparatus shown should not be relied upon as being precise. No service pipes are shown on plans.
- 3. The actual position of apparatus must be established by taking trial holes in all cases. No machine excavation will be permitted within 1 metre side of a main. The actual position of any apparatus must be found by hand excavation.
- 4. Where Company apparatus is exposed by excavation, support and protection measures are to be agreed on site. Where excavations are taken out below the invert of a main, adequate support is to be provided to prevent collapse of the excavation and subsequent undermining of the main. Special attention is to be given to the compaction of selected backfill material under the main and the company may require the use of lean mix concrete to replace inadequately compacted or unsuitable support backfill material. The compaction of selected backfill material under, around and up to a level of 300mm above the top of any main shall be carried out by hand. Upon completion of operations, any excavation is to be left open until after inspection by Company's representative.
- 5. No installation of plant may take place within the Company's easements without the prior consent of the Company and with all special conditions and arrangements being finalised before commencement of work.
- 6. Indiscriminate crossing of the main by heavy construction plant will not be permitted. Where applicable, Crossing Points must be agreed by the Company and any protective measures necessary taken before work begins.
- 7. Surface boxes and covers should not be removed without obtaining prior consent of the Company. All surface covers to washouts, valves, air valves, hydrants, stopcocks etc., are to be kept clear of obstruction and with free access at all times. If surface boxes or covers have been temporarily removed, positions should be clearly marked.
- 8. Where the levels of carriageway and footpath surfaces are raised or lowered, then the Company's surface covers must be adjusted as appropriate.
- 9. No pipes or cables are to be laid or structures placed directly over the line of Company apparatus.
- 10. Where drains, pipes or cables cross over or under any mains, a minimum clearance of 300mm must be maintained. Where it is necessary for any plant to lay parallel to the pipelines, a minimum distance of 1 metre shall be maintained between the outside of the pipeline and any plant being installed, except in the case of small diameter plant where N.J.U.G 7 dimensions apply. The Company must agree exceptions to these conditions in writing.
- 11. All crossing of the company's pipelines and easements shall be at right angles where possible. Where skew crossings are necessary, no more than 3 metres of the Company's pipeline shall be exposed at any time.
- 12. The Company will require three copies of proposal drawings showing the details of any proposed crossing of pipelines above 300mm diameter. The drawings must show the Company's pipelines in relation to the proposed works, to a scale of no less than 1:500 and no work shall commence until the Company has given approval.
- 13. Where it is necessary to carry out piling works closer than 6m to the Company' apparatus, or to carry out works using plant that is likely to damage the integrity of the Company's apparatus, the Company will require a method statement of the works shall be consulted before work commences.
- 14. Where the Company's pipeline is protected by a cathodic protection system, the Company will require a suitable joint testing programme to be agreed before the application of any cathodic protection scheme proposed by another authority or utility undertaking. If any bond-wires or test leads associated with the Company's cathodic protection system are damaged, disconnected or found to be in poor condition, the Company should be notified so that repairs can be made.
- 15. In the case of Trunk mains which cross development sites, no development is to take place within an agreed distance either side of the pipeline. A guide showing the easement widths for the various diameters and depths of pipe is available from the RASWA department.
- 16. No tree planting or landscaping work is done in close proximity to Company apparatus unless otherwise agreed in writing by the Company. A planting guide is available from the RASWA department.
- 17. In the event of any damage to any of the Company's plant the Company must be informed immediately. Where any damage occurs to Company apparatus, the appropriate remedial work will be carried out by the Company and charged to the promoter of the works.
- 18. Every effort should be made to secure the site against vandalism of the Company's plant.
- 19. A copy of these conditions is to be made available to all Contractors or Sub-Contractors working in the vicinity of Company apparatus.

Issue: RASWA 2. Oct. 02

	Mean High Water	Sleek Burn
		Mud
	·	Mem Figh Waar
Tra		
Distribu	tion Main Private N	1ain
Raw Wa	ater Main — - — - — - — Out of C	ommission Main
Trunk M	lain Abandor	ned Asbestos Main
Propose	ed Main / / / Abandor	ned Main
Author : THRAG	Date : 14-11-2013	The material contained on this plot has been reproduced from an Ordnance Survey map with permission of the controller of H.M.S.O. Crown Copyright Reserved. Licence No.WU298506. The information shown on this plan should be regarded as approximate and is intended for guidance only. No Liability of any kind whatsoever is accepted by Northumbrian Water, it's servants or
Title : Centara	a_W Sheet: NZ2883SE	agents for any omission. The actual position of any water mains or sewers shown on the plan must be established by taking trial holes in all cases. In the case of water mains Northumbrian Water must be given two working days notice of their intention to excavate trial holes. Private connections and former private drains and sewers transferred to Northumbrian Water on 01/10/11
Centre Point : 428913	583386 Scale : 1:2000	may not be shown but their presence should be anticipated. WARNINGWhere indicated on the plan there could be abandoned asbestos cement materials or shards of pipe. If excavating in the vicinity of these abandoned asbestos cement materials, the appropriate Health & Safety precautions should be taken. Northumbrian Water accepts no liability in respect of claims, costs, losses or other liabilities which arise as the result of the presence of the pipes or any failure to take adequate precautions. Emergency Telephone Number: 0845 717 1100