

Job No:21035DateJob Name:Aston Hall Barns, Aston MunslowSite PhotographsClient:Mr. & Mrs. D. Cleevely

Plate I TP01. Plate 2 TP02.

Plate 3 Concrete gulley at TP02. Plate 4 Line of gulley along E elevation of barn to drain.

Plate 5 TP03. Plate 6 TP04.

GEOLOGICAL ● GEOTECHNICAL ● ENVIRONMENTAL ● ENGINEERING

Intégrale is a trading name of Integrale Limited

Suite 7, Westway Farm Business Park
Wick Road
Bishop Sutton
BS39 5XP
Tel: 01275 333 036

www.integrale.uk.com

Job No:21035DateJob Name:Aston Hall Barns, Aston MunslowSite PhotographsClient:Mr. & Mrs. D. Cleevely

Plate 7 TP05. Plate 8 TP06.

Plate 9 TP07. Plate 10 TP08.

Plate I I TP09. Plate I 2 TP10.

GEOLOGICAL ● GEOTECHNICAL ● ENVIRONMENTAL ● ENGINEERING

Intégrale is a trading name of Integrale Limited

Job No:	21035		Date
Job Name	Aston Hall Barns, Aston Munslow	Site Photographs	06/07/2021
Client:	Mr. & Mrs. D. Cleevely		06/07/2021

Plate 13 TP11. Plate 14 TP12.

Plate 15 TP13. Plate 16 TP14.

Plate 17 TP15. Plate 18 TP16.

GEOLOGICAL ● GEOTECHNICAL ● ENVIRONMENTAL ● ENGINEERING

Intégrale is a trading name of Integrale Limited

Registered Office: The Granary, Chewton Fields, Ston Easton, Somerset, BA3 4BX, United Kingdom

Company Registration No. 2855366 England VAT Reg. No. 609 7402 37

Job No:	21035		Date
Job Name:	Aston Hall Barns, Aston Munslow	Site Photographs	06/07/2021
Client:	Mr. & Mrs. D. Cleevely		06/07/2021

Plate 19 TP18. Plate 20 TP19.

Plate 21 TP20. Plate 22

Plate 23 TP22. Plate 24 TP23.

GEOLOGICAL ● GEOTECHNICAL ● ENVIRONMENTAL ● ENGINEERING

Intégrale is a trading name of Integrale Limited

Job No:21035DateJob Name:Aston Hall Barns, Aston MunslowSite PhotographsClient:Mr. & Mrs. D. Cleevely

Plate 25 TP23. Plate 26 TP24.

Plate 27 TP25. Plate 28 TP26.

Plate 29 TP27. Plate 30 TP28.

GEOLOGICAL ● GEOTECHNICAL ● ENVIRONMENTAL ● ENGINEERING

Intégrale is a trading name of Integrale Limited

Job No:	21035		Date
Job Name:	Aston Hall Barns, Aston Munslow	Site Photographs	06/07/2021
Client:	Mr. & Mrs. D. Cleevely		06/07/2021

Plate 3 I TP30. Plate 32 TP31.

Plate 33 | TP31. | Plate 34 | TPA.

Plate 35 TPA, post-soakaway testing, structure of the rock more visible with some tight fractures.

TPA. The dip of the bedding planes measures at c.18° down to the E.

GEOLOGICAL ● GEOTECHNICAL ● ENVIRONMENTAL ● ENGINEERING

Plate 36

Intégrale is a trading name of Integrale Limited

	Job No:	21035		Date
	Job Name:	Aston Hall Barns, Aston Munslow	Site Photographs	06/07/2021
-	Client:	Mr. & Mrs. D. Cleevely		06/07/2021

Plate 37 TPA arisings. Plate 38 TPB, rock was more 'crumbly'.

Plate 39 TPB arisings. Plate 40 TPC

Plate 41 TPD. Plate 42 TPE.

GEOLOGICAL ● GEOTECHNICAL ● ENVIRONMENTAL ● ENGINEERING

Intégrale is a trading name of Integrale Limited

Registered Office: The Granary, Chewton Fields, Ston Easton, Somerset, BA3 4BX, United Kingdom

Company Registration No. 2855366 England VAT Reg. No. 609 7402 37

7	In:	tén	rale			Tri	ol Dit Log	Trialpit N	
						1 []	al Pit Log	TPA	
Project		anding Grou	and Conditions	Projec	t No		Co-ords: -	Sheet 1 c	of 1
Name:		Hall Barns,	Aston Munslow	21035			Level: 157.00	09/07/20	21
Locatio	n: Aston l	Hall, Aston	Munslow, Shropshire	e, SY7 9I	ΞR		Dimensions 1.8	Scale	
Cliant	NA- 0 N	Ara D Clas					(m): Depth ω	1:10 Logged	d
Client:		/Irs. D. Clee				I	0.85	JB	
Water Strike	Samp Depth	Type	Situ Testing Results	Depth (m)	Level (m)	Legend	Stratum Description		
	0.10	ES		0.22	156.78			aneous ghout. rounded rare	1 —
Remar Stabilit	No vi Break Ease	er required from of excavation: I	v contamination noted. m 0.25m depth.						

				rale			Tri	al Pit Log	Trialpit N	3
Projec	-t			und Conditions	Projec	t No.		Co-ords: -	Sheet 1 o	
Name		ston Hall E	Barns,	Aston Munslow	21035			Level: 156.80	09/07/20	
Locati	ion: As	ston Hall, A	Aston	Munslow, Shropshire	e, SY7 9E	ΞR		Dimensions 2.1 (m):	Scale 1:10	!
Client	: M	r. & Mrs. D). Cle	evely				Depth O.80	Logge	d
<u></u> 0	5	Samples a	nd In	Situ Testing	Depth	Level			JB	
Water Strike	Dep		/ре	Results	(m)	(m)	Legend	Stratum Description		
W _t	0.1		/pe ES	Results	0.20 0.80	(m) 156.60		Grass over TOPSOIL: (Comprising soft brown s sandy slightly gravelly clayey Silt with rare extra material and abundant fine fibrous roosts throug Sand if fine to medium. Gravel is angular to sub fine to medium of siltstone, quartzite, brick and incharcoal.) Extremely weak thinly bedded olive green grey SILTSTONE. (UPPER LUDLOW SHALES)	neous ghout. rounded	1
										2 —
Rema Stabili		No visual	or olfa	encountered. ctory contamination no ion: Rock was 'crumbly	ted. ' and ripp	ed out fai	rly easily	by bucket.		

		ıtég	rale			Tri	ial Pit Log	Trialpit N	
		rstanding Gro	und Conditions					Sheet 1 d	of 1
Project Name:		n Hall Barns,	, Aston Munslow	Project 21035			Co-ords: - Level:	Date 09/07/20	21
Locati	on: Asto	n Hall. Aston	Munslow, Shropshir				Dimensions 1.45	Scale	
							(m): 9 O	1:10 Logged	
Client:		Mrs. D. Cle			T	1	0.72	JB	
Water Strike			Situ Testing	Depth (m)	Level (m)	Legend	Stratum Description		
<u>⊗</u> ₩	Depth 0.10	Type ES	Results	0.15	(,		Grass over TOPSOIL: (Comprising loosely combrown slightly sandy silty angular medium Gravbasalt.) Possible MADE GROUND: (Comprising soft gravetly sand is fine to coarse. Gravel is angular to subfine to medium typically fine of brick, siltstone a charcoal.)	ey brown ilty Clay. angular	-
	0.40	ES							-
				0.60		××××× ××××× ××××× ××××× ×××××	(UPPER LUDLOW SHALES)	STONE.	-
Rema	rks: N	o groundwater	r encountered.				End of pit at 0.72 m		1 —
Stabili	No Ea	o visual or olfa	actory contamination notion: Hard. Bucket scra		g base of	pit.			

		+60	حمام					Trialpit N	No
			<u>rale</u>			Tri	al Pit Log	TPD	
		standing Gro	und Conditions	Daria	4 NI -		On and a	Sheet 1 c	of 1
Projec Name:		ı Hall Barns,	Aston Munslow	Projec 21035			Co-ords: - Level:	Date 09/07/20	121
		Lall Aston	Munalaw Chranabira	SV7 9ER			Dimensions 1.05	Scale	
Location	on: Astor	Hall, Asion	Munslow, Shropshire	51795	-K		(m):	1:10	
Client:		Mrs. D. Clee			I		Depth 0.85	Logged JB	d
Water Strike		Type	Situ Testing Results	Depth (m)	Level (m)	Legend	Stratum Description		
≶ Ø	Depth		Results		,		Grass over TOPSOIL: (Comprising soft brown	slightly	
	0.05	ES		0.10			sandy clayey Silt with abundant fine fibrous roc throughout.)		
				0.10			Possible MADE GROUND: (Comprising soft ye brown mottled grey slightly sandy slightly grave	llow lly clayey	_
	0.20	ES					Silt. Sand is fine to medium. Gravel is angular t medium of siltstone.)		-
				0.25			Possible MADE GROUND: (Comprising soft br	own	-
							slightly sandy gravelly Clay. Sand is fine to med Gravel is angular fine to coarse of siltstone and	l rare	_
							charcoal.) At 0.35m depth: Mexecone - 1, Refusal.		_
									_
				0.50		×××××	Very weak thinly bedded olive green grey SILT	STONE.	_
						× × × × × × × × × × × × × × × × × × ×	(UPPER LUDLÓW SHALES)		-
						× × × × × × × × × × × × × × × × × × ×			-
						× × × × × × × × × × × × × × × × × × ×			_
						× × × × × × × × × × × × × × × × × × ×			
						× × × × × × × × × × × × × × × × × × ×			_
				0.85		*****			_
									-
									1 —
									_
									-
									-
									_
									-
									-
									_
									_
									-
									-
									-
									-
									2 —
Remar	No	visual or olfa	encountered.	ed.	L L I .				
Stabilit		se of excavat able.	ion: Moderate. Ripped o	out as col	obles.				

	<u>Intégrale</u>					Tri	ial Pit Log	Trialpit No TPE
			round Conditions			• •		Sheet 1 of 1
Projec		n Hall Barn	s, Aston Munslow	Projec			Co-ords: -	Date
Name	; <u>.</u>			21035			Level: Dimensions 2.1	09/07/2021 Scale
Locati	ion: Asto	n Hall, Asto	on Munslow, Shropshire,	SY7 9E	ER		(m):	1:10
Client	:: Mr. 6	& Mrs. D. Cl	eevely				Depth	Logged JB
er	Sai	nples and	In Situ Testing	Depth	Level		Otractions Description	, , , , , , , , , , , , , , , , , , ,
Water Strike	Sai Depth	-	Results	Depth (m) 0.40	Level (m)	Legend	Grass over MADE GROUND: (Comprising soft slightly sandy slightly gravelly clayey Silt with a fine fibrous roots throughout. Sand is fine to co Gravel is angular to subangular fine to coarse of siltstone and rare charcoal.) Very weak olive green grey SILTSTONE recover angular tabular cobbles with much silty sandy a subangular medium to coarse gravel. (UPPER LUDLOW SHALES) Between 0.40-0.90m depth: Made Ground locally deeper wide strip around pipework. C.0.80m depth: 32mmØ water pipe exposed running E-Water Strip around silty sandy a subangular medium to coarse gravel.	bundant arse. of brick, - ered as angular to in c.0.30m
				1.20		****		2 —
Rema Stabili	N E	o visual or ol	ler encountered. Ifactory contamination note ation: Moderate, no breake	ed. er requir	ed.	1	1	

		+40						Trialpit No
			grale			Tr	ial Pit Log	TPF
		standing Gr	ound Conditions	Projec	ot No		Co-ords: -	Sheet 1 of 1 Date
Projec Name:	t Astor	n Hall Barns	s, Aston Munslow	21035			Level:	09/07/2021
Location		Hall Actor	n Munslow, Shropshire				Dimensions 0.3	Scale
Localio	UII. ASIUI	T Hall, ASIOI		, 317 91			(m): Depth တ	1:10
Client:		Mrs. D. Cle				1	Depth 6 0.30	Logged JB
ater			n Situ Testing	Depth (m)	Level	Legend	Stratum Description	
Water Strike	Depth	Type	Results	0.30	(m)	Legend	Grass over TOPSOIL: (Comprising soft brown s sandy slightly gravelly clayey Silt with fine fibroithroughout. Sand is fine to medium. Gravel is a subangular fine of siltstone.) End of pit at 0.30 m	us roots
								2 —
Remar Stabilit	No Ha	o groundwate o visual or olf and excavate able.	er encountered. factory contamination no ed.	ted.				

		140						Trialpit No	
			rale			Tri	ial Pit Log	TPG	
		standing Gro	ound Conditions	Dunia	· 81_		la .	Sheet 1 of 1	1
Projec Name:	t Aston	ı Hall Barns	, Aston Munslow	Project 21035			Co-ords: - Level:	Date 09/07/2021	
		LISH Actor	- Manadau Chronobire	_			Dimensions 0.3	Scale	
Location	On: Asion	Hali, Asion	n Munslow, Shropshire), Sii əl	=K 		(m):	1:10	
Client:		Mrs. D. Cle					Depth 6	Logged JB	
Water Strike			n Situ Testing	Depth (m)	Level	Legend	d Stratum Description		
Wai Stri	Depth	Type	Results	(m) 0.30	(m)	Legend	Grass over TOPSOIL: (Comprising soft brown sandy slightly gravelly clayey Silt with abundant fibrous roots throughout. Sand is fine to mediun is angular fine of siltstone.) End of pit at 0.30 m	t fine n. Gravel	1
								2	2 —
Remar	No Ha	groundwater visual or olfaind excavated	r encountered. actory contamination no d.	ted.					

Appendix E

Soakaway Analyses

Suite 7, Westway Farm Business Park Wick Road, Bishop Sutton, Somerset, BS39 5XP, United Kingdom

Tel: 01275 333036 www.integrale.uk.com

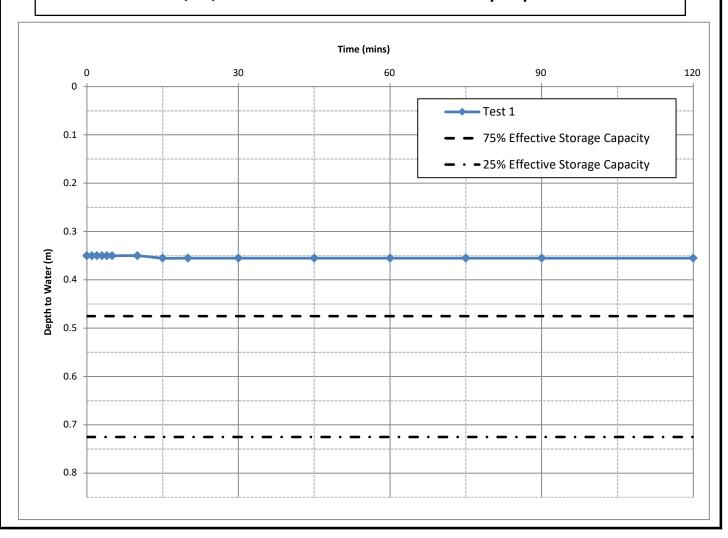
STANDARD METHODOLOGY FOR SOAKAWAY TESTING

Some trial pits also include soakaway testing in order to assess the soils permeability for design of stormwater drainage. The soakaway tests were completed in accordance with BRE Digest 365 (September 1991). This included excavation of pits to generally 1-2m depth, which were then filled with water on one to three occasions depending on the rate of infiltration. The water was supplied by a water bowser and discharged into the pits using a centrifugal pump. The falling head was recorded and therefore the rate of infiltration into the soils beneath.

The soakaway results have been prepared using a Microsoft Excel spreadsheet.

Job No:	21035	Soil Infi	Soil Infiltration Rate Test							
		BRE 36 !	5 (2007) Soakawa	y Design						
Job Name:	Aston Hall Barns, Aston N	1unslow		Hole:	TPA					
Prepared By:	JB	Date:	02/09/2021	Sheet:	I of 2					
Checked By:		Date:								

Date of Test: 9th July 2021


Length (m): 1.80 Width (m): 0.60 Depth (m): 0.85

Remarks: Testing terminated after negligible infiltration recorded in 2 hours.

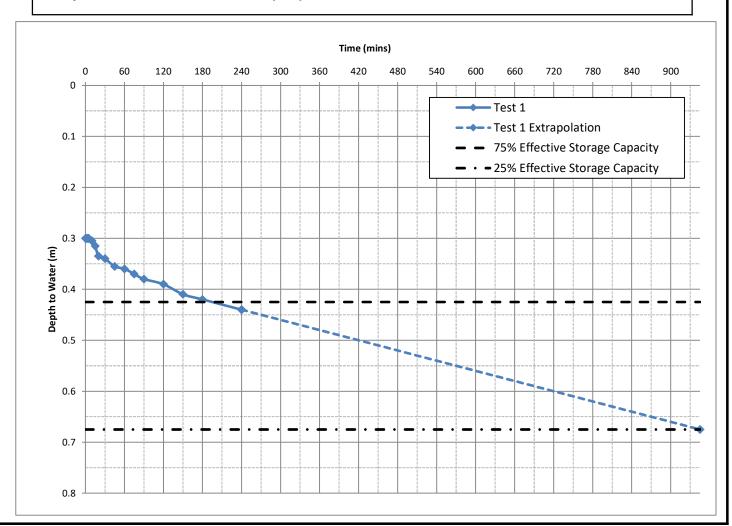
	Test I	Test 2	Test 3
Effective Storage Depth _{75-25%} (m)	0.25	-	-
A = Surface Area _{50%} (m ²)	2.28	-	-
V = Effective Storage Volume _{75-25%} (m ³)	0.27	-	-
t = Time _{75-25%} (mins)	-	-	-
Soil Infiltration Rate (m/s)	N/A	-	-

Soil Infiltration Rate (m/s)

Practically Impervious

Job No:	21035	Soil Inf	Soil Infiltration Rate Test						
		BRE 36	5 (2007) Soakawa	y Design					
Job Name:	Aston Hall Barns,	Aston Munslow	Hole:	ТРВ					
Prepared By:	JB	Date:	Sheet:	2 of 2					
Checked By:		Date:							

Date of Test: 9th July 2021


Length (m): 2.10 Width (m): 0.60 Depth (m): 0.80

Remarks:

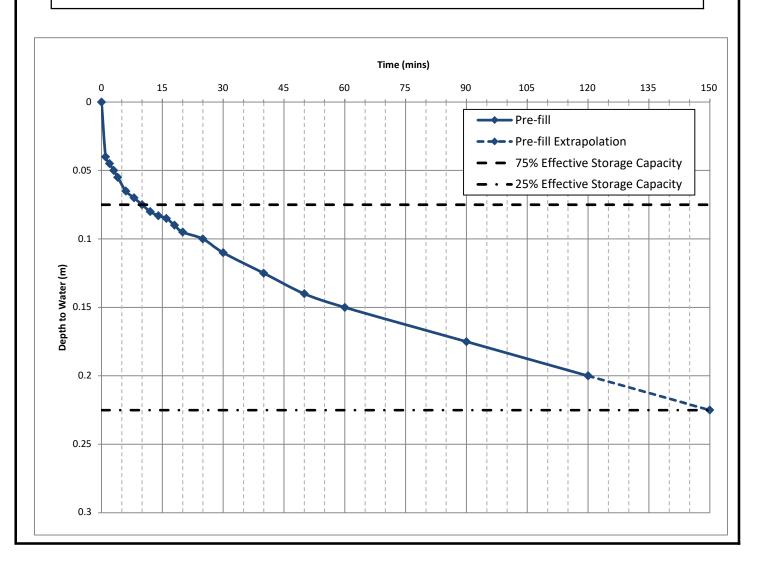
	Test I	Test 2	Test 3
Effective Storage Depth _{75-25%} (m)	0.25	-	-
A = Surface Area _{50%} (m ²)	2.61	-	-
V = Effective Storage Volume _{75-25%} (m ³)	0.32	-	-
t = Time _{75-25%} (mins)	750.0	-	-
Soil Infiltration Rate (m/s)	2.68E-06	-	-

Extrapolated Soil Infiltration Rate (m/s)

2.68E-06

Job No:	21035	Soil Infiltration Rate Test						
		Building	g Regulations Par	t H (2010)				
Job Name:	Aston Hall Barns, Aston N	1unslow		Hole:	TPF			
Prepared By:	JB	Date:	02/09/2021	Sheet:	I of 2			
Checked By:		Date:						

Date of Test: 9th July 2021


Length (m): 0.30 Width (m): 0.30 Depth (m): 0.30

Remarks: Pre-fill run only. No formal testing undertaken in time allowed on-site. Pit dug within Topsoil, due to shallow rockhead precluding deeper

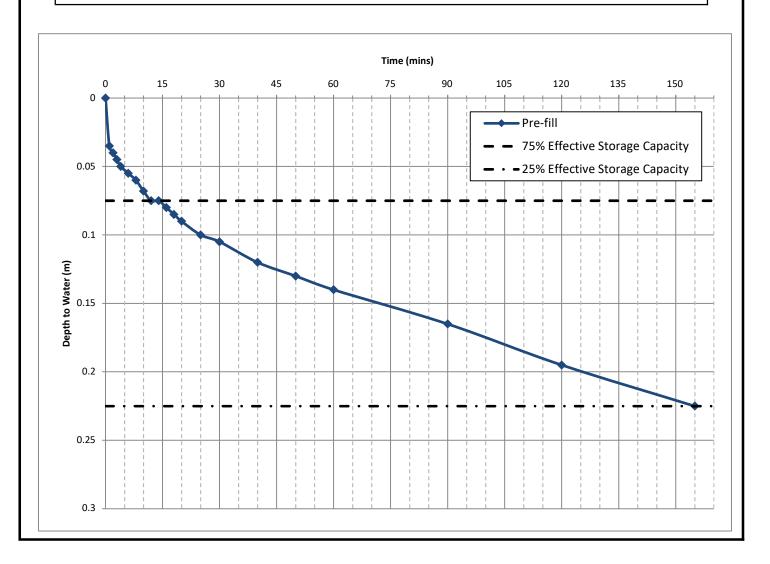
excavation by hand.

	Pre-fill	
Effective Storage Depth _{75-25%} (m)	0.150	
t = Time _{75-25%} (secs)	8400.0	
Vp (s/mm)	56.0	

Extrapolated VP (s/mm) 18.67

Job No:	21035	Soil Infiltration Rate Test							
		Building	Building Regulations Part H (2010)						
Job Name:	Aston Hall Barns, Aston N	1unslow		Hole:	TPG				
Prepared By:	ЈВ	Date:	02/09/2021	Sheet:	2 of 2				
Checked By:		Date:							

Date of Test: 9th July 2021


Length (m): 0.30 Width (m): 0.30 Depth (m): 0.30

Remarks: Pre-fill run only. No formal testing undertaken in time allowed on-site. Pit dug within Topsoil, due to shallow rockhead precluding deeper

excavation by hand.

	Pre-fill	
Effective Storage Depth _{75-25%} (m)	0.150	
t = Time _{75-25%} (secs)	8580.0	
Vp (s/mm)	57.2	

Recorded VP (s/mm) 19.07

Appendix F

Rotary Borehole Logs & Photographs

Suite 7, Westway Farm Business Park Wick Road, Bishop Sutton, Somerset, BS39 5XP, United Kingdom

Tel: 01275 333036 www.integrale.uk.com

STANDARD METHODOLOGY FOR ROTARY CORED BOREHOLES

Boreholes were sunk utilising double core barrel rotary drilling techniques. Details of the drilling rig and techniques used are provided on each of the borehole records included as a separate appendix. The locations are given in Figure I and selected using information on the proposed redevelopment, existing buried services and structures, ongoing site use, reinstatement requirements and time constraints.

In general open holing or dry core drilling is utilised through soils and superficial strata, with casing used where necessary to prevent collapse of the unconsolidated material. The first core run is then commenced and core run lengths amended to suit the quality of rock returns being achieved.

Groundwater observations are given on the borehole records. The depth of initial groundwater strikes and standing levels on completion are recorded.

The probing was directed and supervised full-time by an experienced geologist who logged the rock cores including details of recover and rock quality as Total Core Recovery, Solid Core Recovery and Rock Quality Designation. Colour photographs were taken of the cores and are available on request.

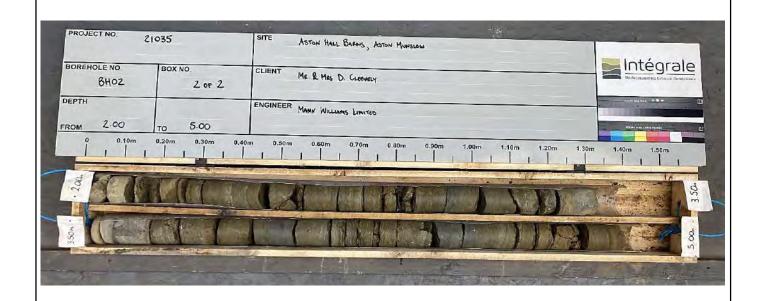
On completion the boreholes were either backfilled with their spoil, or a standpipe installation fitted.

EXPLORATORY HOLE EXPLANATION SHEET

	SAMPLES AND TESTS									
BLK C	Amalgamated sample Bulk disturbed sample Block sample Core sample CBR mould sample Small disturbed sample Environmental sample Environmental water sample Gas sample	LB M SPTLS TW U UT	Jar sample Large bulk disturbed samp Mazier type sample Standard penetration samp Thin-walled push in sampl Undisturbed sample - ope Thin wall open drive tube Water sample	ole HSV F MEX N ple PID F e n drive	Hand-held shear vane test Hand-held shear vane test Mexicone penetrometer test Photoionization detector (gas)					
	SOILS		SEDIMENTARY		<u>IGNEOUS</u>					
	Topsoil		Chalk	+++++	Coarse Grained Igneous					
	Concrete		Limestone	++++	Medium Grained Igneous					
	Made Ground (Fill)		Conglomerate		Fine Grained Igneous					
য়াহ এছ এছ এই এই এই	Peat		Breccia							
	Clay		Sandstone		<u>METAMORPHIC</u>					
$\times \times $	Silt	×××××× ××××××	Siltstone		Coarse Grained Metamorphic					
	Sand		Mudstone		Medium Grained Metamorphic					
, , , , , , , , , , , , , , , , , , , ,	Gravel		Shale		Fine Grained Metamorphic					
0 0 0 0	Cobbles		Coal	.હ						
0,00	Boulders		Pyroclastic (Volcanic As	sh)	STALLATIONS న					
	nposite soil types will be	$\left\langle \Diamond_{-}^{\vee} O$	Gypsum, Rocksalt, etc.	sh) Upstanting cover	STALLATIONS FILEST CONES					
signified b	y combined soil types e.g. Silty Sand		Void/Broken Ground		Concrete					
	WATER SYMBOL	<u>.S</u>		Plain Pipe	Bentonite Pipe					
	Water Level (after 20) minutes)		Slotted Pipe	Sand Filter					
	Water Strike			Pipe	Gravel Filter					
					Arisings					
					Grout					

	<u></u>		١٥					Borehole No.	٦
	ntég	JI a	ie		Bo	reho	ole Log	BH01	
	derstanding Gr						.	Sheet 1 of 1	
Project Name:	Aston Hall	Barns, A		Project No. 21035		Co-ords:	-	Hole Type RO	
			· ·				455.75	Scale	_
Location:	Aston Hall	, Aston N	Munslow, Shrop	shire, SY7 9i	EK	Level:	155.75	1:20	
Client:	Mr. & Mrs.	D. Clee	vely			Dates:	06/07/2021 - 06/07/2021	Logged By JB	
Well Water Strikes	-		Situ Testing Results	Depth (m)	Level (m)	Legend	Stratum Description	ı	
Strikes	Depth (m) 0.05 0.20 1.50	ES ES D	Results	(m) 0.10 0.60	(m) 155.65	xxxxxxx xxxxxxx xxxxxxx xxxxxxx xxxxxxx	Grass over TOPSOIL: (Comprising brown slightly sandy slightly gravell with little extraneous material and a fibrous roots throughout. Sand is fir Gravel is angular to subangular fine quartzite and charcoal.) MADE GROUND: (Comprising soft slightly sandy slightly gravelly silty cobble content and occasional fine throughout. Sand is fine to medium angular of brick and charcoal with rifragment. Cobbles are angular of bit Very weak olive green grey SILTST (recovered as silt with some fine su gravel). (UPPER LUDLOW SHALES)	soft dark y silty Clay bundant fine te to coarse. or brick, dark brown Clay with low roots Gravel is are metal ick.) ONE	
Remarks Slight seepage at No visual or olfac Hand excavated p	tory contamination							4	

	ntéc			_		R	ota	ry (Core Log	Borehole No BH02 Sheet 1 of 1	
Project Name:					IOW/	oject No. 035		Co-ords:	-	Hole Type RC	
ocation:	Aston Hall	I, Aston	Muns	low, Sl			ER	Level:	158.20	Scale 1:30	
Client:	Mr. & Mrs.	. D. Cle	evely					Dates:	06/07/2021 - 06/07/2021	Logged By JB	/
Water Strikes	Depth (m)	Type / FI		Coring		Depth (m)	Level (m)	Legend	Stratum Description		
Suikes	0.00 - 0.50	711	TCR 100	70	RQD 30	0.09	158.11		Grass over TOPSOIL: (Comprising brown slightly sandy slightly gravell fine fibrous roots throughout. Sand medium. Gravel is angular fine of si rare sandstone.)	y Clay with is fine to litstone and	
	0.50 - 2.00		73	60	14				MADE GROUND: (Comprising mod compact orange mottled brown slig sandy angular fine to coarse Grave lesser siltstone and rare limestone. Very weak thickly laminated olive g SILTSTONE with occasional marins. Slightly weathered. Discontinuities: to closely, horizontal locally sub-hor planar, rough locally smooth, open wide with occasional gravel infill an staining on fracture surfaces. (UPPER LUDLOW SHALES) From 0.35-0.50m depth: Highly fractured, recarse gravel and cobbles. From 0.74-0.79m depth: Sub-vertical, unduragen fracture. No infill. At 0.5m depth: CPT (25 for 60mm/50 for 70 At 1.0m depth: Becoming weak.	htly silty I of brick with Teen grey fossils. Very closely rizontal, to moderately d rare iron accovered as lating, rough,	1
	2.00 - 3.50		91	69	17			X X X X X X X X X X X X X X X X X X X	At 2.0m depth: Becoming medium strong. At 2.0m depth: CPT (25 for 50mm/50 for 60 Below 2.95m depth: Locally with bands of consists one.		3
	3.50 - 5.00		95	79	31	F .05	450.55		At 3.50m depth: CPT (25 for 50mm/50 for 6	90mm) N*=250	4
						5.00	153.20	*****	At 5.0m depth: CPT (25 for 60mm/50 for 50 End of borehole at 5.00 m)mm) N*=300,^	5


	<u></u>									Borehole No.
Intégrale Rotary Core Log							Core Log	BH03		
נט	nderstanding Gr	ound C	onditio	ns				<u> </u>		Sheet 1 of 1
roject Name	e: Aston Hall	l Barns	, Astor	n Muns	10/1/	oject No.		Co-ords:	-	Hole Type
					21	035				RC Scale
ocation:	Aston Hall	l, Astor	n Muns	low, SI	nropsh	ire, SY7 9I	ER	Level:	155.70	1:30
NI: 4-	N- 0 N	D 01-						Datas	00/07/0004 00/07/0004	Logged By
Client:	Mr. & Mrs.	. D. CIE	eevely					Dates:	06/07/2021 - 06/07/2021	JB
Well Water		Туре		Coring	9	Depth	Level	Legend	Stratum Description	
Strikes	(m)	/FI	TCR	SCR	RQD	(m)	(m)	Legend	Stratum Description	
	0.00 - 0.50		100			0.15	155.55 155.20		Grass over TOPSOIL: (Comprising brown slightly sandy slightly gravelly fine fibrous roots throughout. Sand i medium. Gravel is angular fine of si MADE GROUND: (Comprising loos dark grey angular fine to medium G	y CLay with s fine to ltstone.)
	0.50 - 2.00		80	41	0				crystalline limestone.) Very weak thickly laminated olive gr SILTSTONE with occasional marine Slightly weathered. Discontinuities: to closely spaced, horizontal locally horizontal, planar, rough locally smc moderately wide with occasional fin and rare iron staining on fracture fact (UPPER LUDLOW SHALES) At 1.0m depth: Becoming weak.	een grey fossils. Very closely sub- ooth, open to e gravel infill ces.
	2.00 - 3.50		93	80	7			X X X X X X X X X X X X X X X X X X X	At 2.0m depth: Becoming medium strong. From 2.28-2.71m depth: Sub-vertical, rough with occasional iron staining and fine gravel Below 3.0m depth: Locally with bands of da	infill.
	3.50 - 5.00		95	73	38	5.00	150.70			4
Remarks						5.00	150.70		End of borehole at 5.00 m	5

Job No:	21035				Hole ID
Job Name:	Aston Hall E	Barns, Aston	Munslow	Rock Core	BH02
Client:	Mr. & Mrs. [D. Cleevely		Photographs	Sheet No.
Logged By:	JB	Date:	06/07/2021		l of l

Box No: I of 2 Depth: 0.00-2.00m Details:

Box No: 2 of 2 | Depth: 2.00-5.00m | Details:

GEOLOGICAL ● GEOTECHNICAL ● ENVIRONMENTAL ● ENGINEERING

Intégrale is a trading name of Integrale Limited

Registered Office: The Granary, Chewton Fields, Ston Easton, Somerset, BA3 4BX, United Kingdon

Company Registration No. 2855366 England VAT Reg. No. 609 7402 37

Job No:	21035				Hole ID
Job Name:	Aston Hall E	Barns, Aston	Munslow	Rock Core	BH03
Client:	Mr. & Mrs. [D. Cleevely		Photographs	Sheet No.
Logged By:	JB	Date:	06/07/2021		I of 2

Box No: I of 2 Depth: 0.50-3.50m Details:

Box No: 2 of 2 | Depth: 3.50-5.00m | Details:

GEOLOGICAL ● GEOTECHNICAL ● ENVIRONMENTAL ● ENGINEERING

Intégrale is a trading name of Integrale Limited

Registered Office: The Granary, Chewton Fields, Ston Easton, Somerset, BA3 4BX, United Kingdon

Company Registration No. 2855366 England VAT Reg. No. 609 7402 37

Appendix G

Gas & Groundwater Monitoring

Suite 7, Westway Farm Business Park Wick Road, Bishop Sutton, Somerset, BS39 5XP, United Kingdom

Tel: 01275 333036 www.integrale.uk.com

STANDARD METHODOLOGIES FOR STANDPIPE INSTALLATIONS, SAMPLING and MONITORING FOR GAS AND GROUNDWATER

Standpipe Installations in Trial Pits

Simple 30-50mm diameter plastic standpipes are installed in trial pits during backfilling. These consist of slotted pipe throughout the buried length to within 0.5m of the ground surface, with unslotted pipe above. These are capped off with removable stop-ends above ground level. They provide a useful guide to soil gas conditions within the backfilled trial pit, however some soil gas will be lost by dispersal within the loose backfill at the surface of the pit. They are commonly used for monitoring standing groundwater levels which would develop within excavations, however careful consideration has to be given to the possible infiltration of rainfall and throughflow into the sump created by the excavated pit.

Standpipe Installations in Boreholes

Simple standpipes to measure the hydrostatic head of groundwater are formed in boreholes using 50mm diameter pipe. The details of individual installations are provided on borehole records. Typically the lower length is formed in slotted pipe, with the upper Im unslotted. The annulus between the riser pipe and the borehole wall is filled with clean granular material. Details of any bentonite seals or grouting are given on the borehole records. A removable gas tap is fitted where gas monitoring is required and standpipes typically have a metal access cover concreted in at ground level.

Standpipe piezometers are formed by using a Casagrande type piezometer tip at the base of the pipe, set in a granular response zone of sand or pea gravel. The response zone is isolated from the strata above and below by placing 500mm thick bentonite seals. The remaining annulus above the bentonite seal is filled with a cement bentonite grout or similar.

Groundwater Monitoring & Sampling

Details of return monitoring visits are included in this appendix. Groundwater standing levels are measured by inserting an electrically operated dip meter into the standpipe and recording the level to 2 decimal places, relative to existing ground level. Where groundwater levels are critical to calculation of hydraulic gradients or flow directions, the measurement is taken to 3 decimal places and to a marked point on the standpipe cover. That point is then surveyed and levelled to provide accurate calculations.

Groundwater samples are recovered using either Waterra valves and sample tubing or by manually lifting water from the standpipe using a bailer. For contamination analyses, the boreholes are initially purged by removing up to 3 borehole volumes of water, allowing the rest level to redevelop and taking a sufficient sample into custom containers. If groundwater does not recover sufficiently, the purged water may be used as the sample.

Gas Monitoring

Monitoring is usually completed in standpipes prior to groundwater measurements, using portable instruments. Details are given on the monitoring tables, and typically using a PhoCheck Tiger photoionisation detector to measure volatile organic compounds in ppm and a GA5000 Gas meter to measure oxygen, carbon dioxide and methane, both by % Lower Explosive Limit and % Volume. Atmospheric pressure and temperature are also recorded. Measurements are taken immediately on opening the gas valve and the highest to lowest levels recorded. If levels fluctuate, then this is recorded, with the maximum reading and a more typical or rest level given.

Suite 7, Westway Farm Business Park Wick Road, Bishop Sutton, Somerset, BS39 5XP, United Kingdom

Tel: 01275 333036 www.integrale.uk.com

Site	Aston Hall Barns, Aston Munslow				
Client Mr. & Mrs. D. Cleevely					
Date Thursday, August 19, 2021					

Weather	Overcast
Air Temperature (°C)	17

Job No.	21035
Monitored By	GS
Visit No	I

Atmospheric Pressure (mbar)	994
Ground Conditions	Dry

Position ID	Time Elapsed (secs)	Gas Flow (I/hr)	%LEL	Methane (%/vol)	Carbon Dioxide (%/vol)	Oxygen (%/vol)	VOC (ppm)	Depth to Product (mbgl)	Depth to Water (mbgl)	Product Thickness (mm)	Well Depth (mbgl)
	0	0.0				, ,	,			, ,	
BH01	30	0.1	0	0.0 2.3	2.3	2.3 17.0	1.5	-	2.23	-	3.00
	60 0.1										
Comments:											
	0	0.1									
BH02	30	0.1	0	0.0	3.3	4.6	0.0	-	4.40	-	5.00
	60	0.1									
Comments: Carbon dioxide stable at 2.8%.											

Suite 7, Westway Farm Business Park Wick Road, Bishop Sutton, Somerset, BS39 5XP, United Kingdom

Tel: 01275 333036 www.integrale.uk.com

Site	Aston Hall Barns, Aston Munslow				
Client	Mr. & Mrs. D. Cleevely				
Date	Thursday, August 26, 2021				

Weather	Sunny
Air Temperature (°C)	21

Job No.	21035			
Monitored By	GS			
Visit No	2			

Atmospheric Pressure (mbar)	1005
Ground Conditions	Dry

Position ID	Time Elapsed (secs)	Gas Flow (I/hr)	%LEL	Methane (%/vol)	Carbon Dioxide (%/vol)	Oxygen (%/vol)	VOC (ppm)	Depth to Product (mbgl)	Depth to Water (mbgl)	Product Thickness (mm)	Well Depth (mbgl)
	0	0.0									
BH01	30	0.1	0	0.0	2.4	17.2	-	-	2.25	-	3.00
	60	0.1									
Comments:											
	0	0.0									
BH02	30	0.0	0	0.0	2.8	5.0	-	-	4.26	-	5.00
	60	0.0									
Comments:										•	

Suite 7, Westway Farm Business Park Wick Road, Bishop Sutton, Somerset, BS39 5XP, United Kingdom

Tel: 01275 333036 www.integrale.uk.com

Site	Aston Hall Barns, Aston Munslow				
Client	Mr. & Mrs. D. Cleevely				
Date	Thursday, September 02, 2021				

Weather	Overcast w. sunny spells				
Air Temperature (°C)	16				

Job No.	21035			
Monitored By	GS			
Visit No	3			

Atmospheric Pressure (mbar)	1012		
Ground Conditions	Dry		

Position ID	Time Elapsed (secs)	Gas Flow (I/hr)	%LEL	Methane (%/vol)	Carbon Dioxide (%/vol)	Oxygen (%/vol)	VOC (ppm)	Depth to Product (mbgl)	Depth to Water (mbgl)	Product Thickness (mm)	Well Depth (mbgl)
	0	0.0									
BH01	30	0.2	0	0.0	2.5	17.6	-	-	2.26	-	3.00
	60	0.2									
Comments:											
	0	0.1									
BH02	30	0.1	0	0.0	2.9	5.5	-	-	4.43	-	5.00
	60	0.1									
Comments:											

Appendix H

Results of Geotechnical Laboratory Testing

Suite 7, Westway Farm Business Park Wick Road, Bishop Sutton, Somerset, BS39 5XP, United Kingdom

Tel: 01275 333036 www.integrale.uk.com

STANDARD METHODOLOGY FOR GEOTECHNICAL SAMPLING

Soil samples are recovered from trial pits or borehole samples using a stainless steel trowel and immediately placed into airtight plastic tubs or bags, as appropriate for the testing. If required the soil samples may be wrapped in cling film, particularly in suspected desiccated soils. Samples are labelled with the site name, investigation location and depth and placed into either cool boxes or large bulk bags for transit from site. An analytical schedule is drawn up in line with the actual ground conditions proven, proposed site use and likely design parameters.

Samples are sent to a specialist testing laboratory. Testing is completed in line with BS1377 as far as possible and details of the test method and UKAS accreditation are provided by the laboratory on the results sheets in a separate appendix.

TEST CERTIFICATE

Liquid and Plastic Limits

i2 Analytical Ltd Unit 8 Harrowden Road Brackmills Industrial Estate Northampton NN4 7EB

Tested in Accordance with: BS 1377-2: 1990: Clause 4.3 and 5

Client: Integrale Limited

Client Address: Unit 7, Westway Farm Business Park,

Wick Road, Bishop Sutton, Somerset, BS39 5XP

Contact: Joseph Begaj

Site Address: Aston Hall Barns, Aston Munslow

Testing carried out at i2 Analytical Limited, ul. Pionierow 39, 41-711 Ruda Slaska, Poland

Client Reference: 21035

Job Number: 21-88006

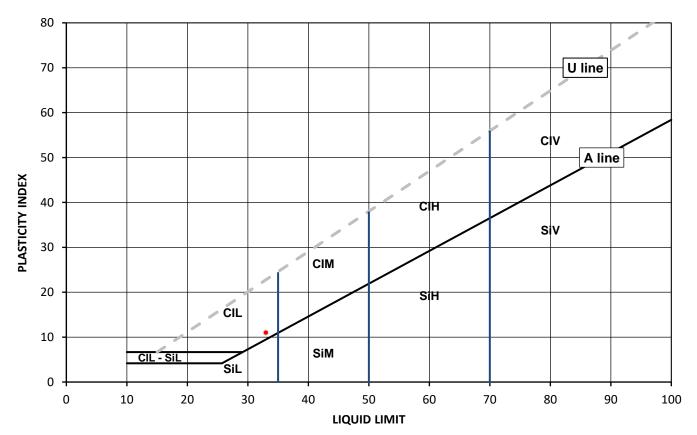
Date Sampled: 06/07/2021

Date Received: 20/07/2021

Date Tested: 26/07/2021

Sampled By: Client - JB

resting carried out at 12 Arialytical Elimited, di. 1 Johnerow 35, 41 111 Nada Glaska, 1 Gland


Test Results:

Laboratory Reference:1944662Depth Top [m]: 1.00Hole No.:TP3Depth Base [m]: Not GivenSample Reference:D3Sample Type: D

Soil Description: Greyish brown slightly gravelly very sandy CLAY

Sample Preparation: Tested after washing to remove >425um

As Received Moisture	Liquid Limit	Plastic Limit	Plasticity Index	% Passing 425µm
Content [W] %	[WL] %	[Wp]%	[lp] %	BS Test Sieve
23	33	22	11	78

Legend, based on BS EN ISO 14688 2:2018 Geotechnical investigation and testing - Identification and classification of soil

Plasticity Liquid Limit below 35 CI Clay L Low Si Silt Medium 35 to 50 М Н High 50 to 70 ٧ Very high exceeding 70

O Organic append to classification for organic material (eg CIHO)

Note: Moisture Content by BS 1377-2: 1990: Clause 3.2

Remarks:

Signed:

Szczepan Bielatowicz

PL Deputy Head of Geotechnical Section for and on behalf of i2 Analytical Ltd

TEST CERTIFICATE

Liquid and Plastic Limits

i2 Analytical Ltd Unit 8 Harrowden Road Brackmills Industrial Estate Northampton NN4 7EB

Tested in Accordance with: BS 1377-2: 1990: Clause 4.3 and 5

Client: Integrale Limited

Client Address: Unit 7, Westway Farm Business Park,

Wick Road, Bishop Sutton, Somerset, BS39 5XP

Contact: Joseph Begaj

Site Address: Aston Hall Barns, Aston Munslow

Testing carried out at i2 Analytical Limited, ul. Pionierow 39, 41-711 Ruda Slaska, Poland

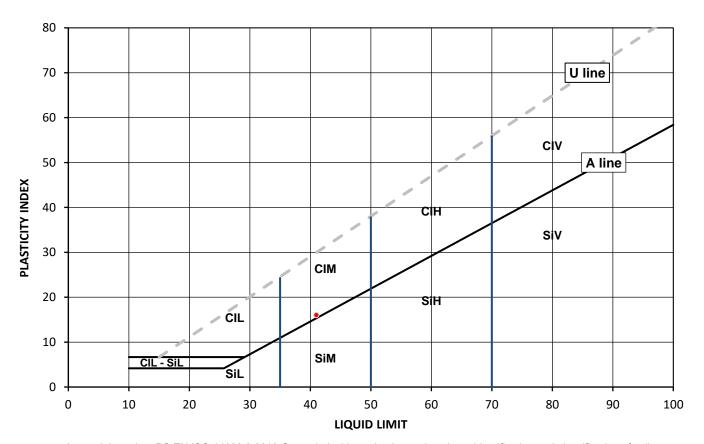
Client Reference: 21035

Job Number: 21-88006

Date Sampled: 07/07/2021

Date Received: 20/07/2021

Date Tested: 26/07/2021 Sampled By: Client - JB


Test Results:

Laboratory Reference:1944665Depth Top [m]: 1.50Hole No.:TP22Depth Base [m]: Not GivenSample Reference:D3Sample Type: D

Soil Description: Greyish brown slightly gravelly sandy CLAY

Sample Preparation: Tested after washing to remove >425um

As Received Moisture	Liquid Limit	Plastic Limit	Plasticity Index	% Passing 425μm
Content [W] %	[WL] %	[Wp] %	[lp] %	BS Test Sieve
30	41	25	16	83

Legend, based on BS EN ISO 14688 2:2018 Geotechnical investigation and testing – Identification and classification of soil

Plasticity Liquid Limit below 35 CI Clay L Low Si Silt Medium 35 to 50 M Н High 50 to 70 ٧ Very high exceeding 70

O Organic append to classification for organic material (eg CIHO)

Note: Moisture Content by BS 1377-2: 1990: Clause 3.2

Opinions and interpretations expressed herein are outside of the scope of the UKAS Accreditation. This

Remarks:

Signed:

Szczepan Bielatowicz PL Deputy Head of Geotechnical Section

for and on behalf of i2 Analytical Ltd

Client Address:

Summary of Classification Test Results

Tested in Accordance with:

Client: Integrale Limited

Moisture Content by BS 1377-2: 1990: Clause 3.2; Water Content by BS EN 17892-1: 2014; Atterberg by BS 1377-2: 1990: Clause 4.3 (4 Point Test), Clause 4.4 (1 Point Test) and 5; PD by BS 1377-2: 1990: Clause 8.2

Wick Road, Bishop Sutton,

Somerset, BS39 5XP

Contact: Joseph Begaj

Site Address: Aston Hall Barns, Aston Munslow

Testing carried out at i2 Analytical Limited, ul. Pionierow 39, 41-711 Ruda Slaska, Poland

Unit 7, Westway Farm Business Park,

i2 Analytical Ltd Unit 8 Harrowden Road Brackmills Industrial Estate Northampton NN4 7EB

Client Reference: 21035

Job Number: 21-88006

Date Sampled: 06/07 - 07/07/2021

Date Received: 20/07/2021 Date Tested: 26/07/2021

Sampled By: Client - JB

Test results

			Sample	9				ntent	tent		Atte	rberg			Density		#	
Laboratory Reference	Hole No.	Reference	Depth Top m	Depth Base m	Туре	Description	Remarks	Moisture Content [W]	Water Content [W]	% Passing 425um %	WL %	Wp %	lp %	bulk Mg/m3	dry Mg/m3	PD Mg/m3	Total % Porosity#	
1944663	TP13	D2	0.50	Not Given	D	Greyish brown very gravelly very sandy CLAY		12										
1944664	TP22	D2	1.00	Not Given	D	Brown gravelly sandy CLAY		36										
1944665	TP22	D3	1.50	Not Given	D	Greyish brown slightly gravelly sandy CLAY	Atterberg 4 Point	30		83	41	25	16					
1944662	TP3	D3	1.00	Not Given	D	Greyish brown slightly gravelly very sandy CLAY	Atterberg 4 Point	23		78	33	22	11					

Note: # Non accredited; NP - Non plastic

Comments:

Signed:

Gregor

Szczepan Bielatowicz PL Deputy Head of Geotechnical Section for and on behalf of i2 Analytical Ltd

Opinions and interpretations expressed herein are outside of the scope of the UKAS Accreditation. This report may not be reproduced other than in full without the prior written approval of the issuing laboratory. The results included within the report relate only to the sample(s) submitted for testing.

Joseph Begaj

Integrale Limited Unit 7 Westway Farm Business Park Wick Road Bishop Sutton Somerset BS39 5XP

e: josephbegaj@integrale.uk.com

i2 Analytical Ltd.
7 Woodshots Meadow,
Croxley Green
Business Park,
Watford,
Herts,
WD18 8YS

t: 01923 225404 **f:** 01923 237404

e: reception@i2analytical.com

20/07/2021

Analytical Report Number: 21-88011

Project / Site name: Aston Hall Barns, Aston Munslow Samples received on: 20/07/2021

Your job number: 21035 Samples instructed on/

Analysis started on:

Your order number: 21035-1877 Analysis completed by: 02/08/2021

Report Issue Number: 1 Report issued on: 04/08/2021

Samples Analysed: 3 soil samples

Signed: Va Calminiskik

Agnieszka Czerwińska Technical Reviewer (Reporting Team) For & on behalf of i2 Analytical Ltd.

Standard Geotechnical, Asbestos and Chemical Testing Laboratory located at: ul. Pionierów 39, 41 -711 Ruda Śląska, Poland.

Accredited tests are defined within the report, opinions and interpretations expressed herein are outside the scope of accreditation.

Standard sample disposal times, unless otherwise agreed with the laboratory, are : soils

soils - 4 weeks from reporting leachates - 2 weeks from reporting

waters - 2 weeks from reporting asbestos - 6 months from reporting

Excel copies of reports are only valid when accompanied by this PDF certificate.

Any assessments of compliance with specifications are based on actual analytical results with no contribution from uncertainty of measurement. Application of uncertainty of measurement would provide a range within which the true result lies.

An estimate of measurement uncertainty can be provided on request.

Analytical Report Number: 21-88011 Project / Site name: Aston Hall Barns, Aston Munslow

Your Order No: 21035-1877

Lab Sample Number				1944677	1944678	1944679
Sample Reference				BH1	TP14	TP31
Sample Number				D3	D3	D1
Depth (m)				1.50	0.75	1.20
Date Sampled				06/07/2021	07/07/2021	08/07/2021
Time Taken				None Supplied	None Supplied	None Supplied
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status			
Stone Content	%	0.1	NONE	< 0.1	< 0.1	< 0.1
Moisture Content	%	0.01	NONE	4.3	12	8.7
Total mass of sample received	kg	0.001	NONE	0.50	0.50	0.50

General Inorganics

pH - Automated	pH Units	N/A	MCERTS	8.5	6.9	7.6
Total Sulphate as SO4	%	0.005	MCERTS	0.019	0.069	0.067
Water Soluble SO4 16hr extraction (2:1 Leachate Equivalent)	g/l	0.00125	MCERTS	0.013	0.18	0.18
Water Soluble SO4 16hr extraction (2:1 Leachate Equivalent)	mg/l	1.25	MCERTS	13.1	175	182
Total Sulphur	%	0.005	MCERTS	0.009	0.028	0.025

U/S = Unsuitable Sample I/S = Insufficient Sample

Analytical Report Number : 21-88011

Project / Site name: Aston Hall Barns, Aston Munslow

* These descriptions are only intended to act as a cross check if sample identities are questioned. The major constituent of the sample is intended to act with respect to MCERTS validation. The laboratory is accredited for sand, clay and loam (MCERTS) soil types. Data for unaccredited types of solid should be interpreted with care.

Stone content of a sample is calculated as the % weight of the stones not passing a 10 mm sieve. Results are not corrected for stone content.

Lab Sample Number	Sample Reference	Sample Number	Depth (m)	Sample Description *
1944677	BH1	D3	1.5	Brown loam and clay with gravel and vegetation.
1944678	TP14	D3	0.75	Brown loam and clay with gravel and vegetation.
1944679	TP31	D1	1.2	Brown loam and clay with gravel.

Analytical Report Number: 21-88011

Project / Site name: Aston Hall Barns, Aston Munslow

Water matrix abbreviations: Surface Water (SW) Potable Water (PW) Ground Water (GW)

Analytical Test Name	Analytical Method Description	Analytical Method Reference	Method number	Wet / Dry Analysis	Accreditation Status
Moisture Content	Moisture content, determined gravimetrically. (30 oC)	In house method.	L019-UK/PL	W	NONE
pH in soil (automated)	Determination of pH in soil by addition of water followed by automated electrometric measurement.	In house method.	L099-PL	D	MCERTS
Stones content of soil	Standard preparation for all samples unless otherwise detailed. Gravimetric determination of stone > 10 mm as % dry weight.	In-house method based on British Standard Methods and MCERTS requirements.	L019-UK/PL	D	NONE
Total Sulphate in soil as %	Determination of total sulphate in soil by extraction with 10% HCl followed by ICP-OES.	In house method.	L038-PL	D	MCERTS
Total Sulphur in soil as %	Determination of total sulphur in soil by extraction with aqua-regia, potassium bromide/bromate followed by ICP-OES.	In house method.	L038-PL	D	MCERTS
Sulphate, water soluble, in soil (16hr extraction)	Determination of water soluble sulphate by ICP-OES. Results reported directly (leachate equivalent) and corrected for extraction ratio (soil equivalent).	In house method.	L038-PL	D	MCERTS
Sulphate, water soluble, in soil	Determination of water soluble sulphate by ICP-OES. Results reported directly (leachate equivalent) and corrected for extraction ratio (soil equivalent).	In house method.	L038-PL	D	MCERTS

 $For method \ numbers \ ending \ in \ 'UK' \ analysis \ have \ been \ carried \ out \ in \ our \ laboratory \ in \ the \ United \ Kingdom.$

For method numbers ending in 'PL' analysis have been carried out in our laboratory in Poland.

Soil analytical results are expressed on a dry weight basis. Where analysis is carried out on as-received the results obtained are multiplied by a moisture correction factor that is determined gravimetrically using the moisture content which is carried out at a maximum of 30oC.

Unless otherwise indicated, site information, order number, project number, sampling date, time, sample reference and depth are provided by the client. The instructed on date indicates the date on which this information was provided to the laboratory.

Summary of Point Load Strength Index Tests Results

Tested in Accordance with: ISRM: 2007, pages 125-132

Client: Integrale Limited

Client Address: Unit 7, Westway Farm Business Park,

Wick Road, Bishop Sutton,

Somerset, BS39 5XP

Joseph Begaj Site Address: Aston Hall Barns, Aston Munslow

Testing carried out at i2 Analytical Limited, ul. Pionierow 39, 41-711 Ruda Slaska, Poland

i2 Analytical Ltd Unit 8 Harrowden Road Brackmills Industrial Estate Northampton NN4 7EB

GF 134.12

Client Reference: 21035

Job Number: 21-95788 Date Sampled: 06/07/2021

Date Received: 11/08/2021

Date Tested: 02/09/2021

Sampled By: Not Given

Test results

Contact:

			Sample)				ence		Type ISRM			Dime	nsions			nt De		t Load th Index
Laboratory Reference	Hole No.	Reference	Depth Top m	Depth Base m	Туре	Description	Remarks # (including water content if measured)	Specimen Reference	Type (D, A, I, B)	Direction (L, P or U)	Failure Valid (Y/N)	Lne	W	Dps	Dps'	Force P kN	Equivalent a diameter, De	Is MPa	Is(50) MPa
1989885	BH02	D1	2.40	2.50	U	Brownish grey SILTSTONE	WC = 4.0%	1	Α	U	YES	-	85.8	46.0	40.0	7.2	66.1	1.64	1.86

Note: # non accredited; Test Type: D - Diametral, A - Axial, I - Irregular Lump, B - Block; Direction: L - parallel to planes of weakness, P - perpendicular to planes of weakness, U - unknown or random; Dimensions: Dps - Distance between platens (platen separation), Dps' - at failure (see ISRM note 6), Lne - Length from platens to nearest free end W - Width of shortest dimension perpendicular to load, P; Detailed legend for test and dimensions, based on ISRM, is shown above; Size factor, F = (Del50)0.45 for all tests

Comments:

Signed:

Monika Janoszek PL Deputy Geotechnical Laboratory Manager

for and on behalf of i2 Analytical Ltd

Summary of Uniaxial Compression Test on Rock Test Results

Tested in Accordance with: ISRM, 2007, p153, part 1

i2 Analytical Ltd Unit 8 Harrowden Road Brackmills Industrial Estate Northampton NN4 7EB

Client: Integrale Limited

Client Address: Unit 7, Westway Farm Business Park,

> Wick Road, Bishop Sutton, Somerset, BS39 5XP

Contact: Joseph Begaj

Site Address: Aston Hall Barns, Aston Munslow

Testing carried out at i2 Analytical Limited, ul. Pionierow 39, 41-711 Ruda Slaska, Poland

Client Reference: 21035

Job Number: 21-95788 Date Sampled: 06/07/2021 Date Received: 11/08/2021

Date Tested: 02/09/2021

Sampled By: Not Given

Test results

			Sample	e					Specime	en Dimen	sions (2)	D. III		Uniaxia	l Compre	ssion (3)	
Laboratory Reference	Hole No.	Reference	Depth Top	Depth Base	Туре	Description	Remarks	Diameter	Length	H/D	Orientation of sample	Bulk density (2)	Water Content (1)	Condition	Stress Rate	Mode of failure	ucs
			m	m				mm	mm			Mg/m3	%		Mpa/s		Мра
1989886	BH02	D2	5.00	5.10	U	Mottled grey SILTSTONE	Sample is below recommended length to diameter ratio.	85.6	118.9	1.4	Vertical	2.53	4.0	as received	0.0870	MS + AC	37.3
1989887	BH03	D1	3.60	3.75	U	Light grey SILTSTONE	Sample is below recommended length to diameter ratio.	85.7	82.5	1.0	Vertical	2.52	2.9	as received	0.0867	MS + AC	37.3

1 - ISRM p87 test 1, water content at 105 ± 3 oC, specimen as tested for UCS, 2 - ISRM p86 clause (vii), Caliper method used for determination of bulk volume and derivation of bulk density, 3 - ISRM p153 part 1, determination of Uniaxial Compressive Strength (UCS) of Rock Materials, above notes apply unless annotated otherwise in the remarks. Compaction machine: VJ Tech AUTOCON - VJT 51-3011; Mode of failure legend: S - Single shear, MS - multiple shear, AC - Axial cleavage, F - Fragmented

Comments:

Signed:

Monika Janoszek PL Deputy Geotechnical Laboratory Manager

GF 223.13 Page 1 of 1 Date Reported: 03/09/2021

Appendix I

Results of Contamination Analyses

Suite 7, Westway Farm Business Park Wick Road, Bishop Sutton, Somerset, BS39 5XP, United Kingdom

Tel: 01275 333036 www.integrale.uk.com

STANDARD METHODOLOGY FOR CONTAMINATION SAMPLING & SCHEDULING

Soil samples for contamination analyses are recovered from trial pits or borehole samples using a stainless steel trowel and immediately placed into airtight amber glass jars, vials, or plastic tubs, as appropriate for the testing. These samples are labelled with the site name, investigation location and depth and placed into cool boxes for transit from site. Groundwater samples recovered during subsequent monitoring visits are similarly treated.

An analytical schedule is drawn up in line with the desk study findings, guidance given in CLR 8 and any relevant industry information, the actual ground conditions proven and proposed site use.

Samples are sent via overnight courier to the specialist testing laboratory. Testing is scheduled for MCERTS accredited analyses as far as possible and details of the test method are provided by the laboratory on the results sheets in a separate appendix. A standard turnaround of 10 working days is adopted unless otherwise agreed with the client at the time of instruction.

Joseph Begaj Integrale Limited

Unit 7
Westway Farm Business Park
Wick Road
Bishop Sutton
Somerset
BS39 5XP

e: josephbegaj@integrale.uk.com

i2 Analytical Ltd.
7 Woodshots Meadow,
Croxley Green
Business Park,
Watford,
Herts,
WD18 8YS

t: 01923 225404 **f:** 01923 237404

e: reception@i2analytical.com

Analytical Report Number: 21-87398

Project / Site name: Aston Hall Barns Aston Munslow Samples received on: 14/07/2021

Your job number: 21035 Samples instructed on/ 16/07/2021

Analysis started on:

Your order number: 21035 1876 Analysis completed by: 27/07/2021

Report Issue Number: 1 Report issued on: 27/07/2021

Samples Analysed: 7 soil samples

tenradio

Signed:

Joanna Wawrzeczko Technical Reviewer (Reporting Team) For & on behalf of i2 Analytical Ltd.

Standard Geotechnical, Asbestos and Chemical Testing Laboratory located at: ul. Pionierów 39, 41 -711 Ruda Śląska, Poland.

Accredited tests are defined within the report, opinions and interpretations expressed herein are outside the scope of accreditation.

Standard sample disposal times, unless otherwise agreed with the laboratory, are : soils -4

soils - 4 weeks from reporting leachates - 2 weeks from reporting waters - 2 weeks from reporting asbestos - 6 months from reporting

Excel copies of reports are only valid when accompanied by this PDF certificate.

Any assessments of compliance with specifications are based on actual analytical results with no contribution from uncertainty of measurement. Application of uncertainty of measurement would provide a range within which the true result lies.

An estimate of measurement uncertainty can be provided on request.

Analytical Report Number: 21-87398 Project / Site name: Aston Hall Barns Aston Munslow

Your Order No: 21035 1876

Lab Sample Number				1940673	1940674	1940675	1940676	1940677
Sample Reference				TP3	TPC	TP11	TP15	TP17
Sample Number				ES1	ES2	ES1	ES2	ES1
Depth (m)				0.05	0.40	0.50	0.30	0.20
Date Sampled				06/07/2021	09/07/2021	06/07/2021	07/07/2021	07/07/2021
Time Taken				None Supplied				
		Ε.						
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status					
Stone Content	%	0.1	NONE	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Moisture Content	%	0.01	NONE	16	16	18	17	13
Total mass of sample received	kg	0.001	NONE	0.90	1.1	1.1	1.0	1.0
	-							-
Asbestos in Soil	Туре	N/A	ISO 17025	Not-detected	Not-detected	Not-detected	Not-detected	Not-detected
General Inorganics								
pH - Automated	pH Units	N/A	MCERTS	7.6	6.9	8.1	8.3	6.6
Total Cyanide	mg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Thiocyanate as SCN	mg/kg	5	NONE	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0
Total Sulphate as SO4	%	0.005	MCERTS	0.101	0.062	0.082	0.101	0.063
Sulphide	mg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Elemental Sulphur	mg/kg	5	MCERTS	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0
Organic Matter	%	0.1	MCERTS	9.1	3.1	2.2	3.5	4.6
Total Phenols								
Total Phenols (monohydric)	mg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Speciated PAHs								
Naphthalene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Acenaphthylene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Acenaphthene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Fluorene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Phenanthrene	mg/kg	0.05	MCERTS	1.9	< 0.05	< 0.05	< 0.05	< 0.05
Anthracene	mg/kg	0.05	MCERTS	0.43	< 0.05	< 0.05	< 0.05	< 0.05
Fluoranthene	mg/kg	0.05	MCERTS	4.0	< 0.05	< 0.05	< 0.05	< 0.05
Pyrene	mg/kg	0.05	MCERTS	3.5	< 0.05	< 0.05	< 0.05	< 0.05
Benzo(a)anthracene	mg/kg	0.05	MCERTS	2.4	< 0.05	< 0.05	< 0.05	< 0.05
Chrysene	mg/kg	0.05	MCERTS	2.0	< 0.05	< 0.05	< 0.05	< 0.05
Benzo(b)fluoranthene	mg/kg	0.05	MCERTS	2.9	< 0.05	< 0.05	< 0.05	< 0.05
Benzo(k)fluoranthene	mg/kg	0.05	MCERTS	1.8	< 0.05	< 0.05	< 0.05	< 0.05
Benzo(a)pyrene	mg/kg	0.05	MCERTS	2.9	< 0.05	< 0.05	< 0.05	< 0.05
Indeno(1,2,3-cd)pyrene	mg/kg	0.05	MCERTS	1.6	< 0.05	< 0.05	< 0.05	< 0.05
Dibenz(a,h)anthracene	mg/kg	0.05	MCERTS	0.42	< 0.05	< 0.05	< 0.05	< 0.05
Benzo(ghi)perylene	mg/kg	0.05	MCERTS	1.5	< 0.05	< 0.05	< 0.05	< 0.05
Total PAH								
Speciated Total EPA-16 PAHs	mg/kg	0.8	MCERTS	25.4	< 0.80	< 0.80	< 0.80	< 0.80

Analytical Report Number: 21-87398

Project / Site name: Aston Hall Barns Aston Munslow

Your Order No: 21035 1876

Lab Sample Number				1940673	1940674	1940675	1940676	1940677
Sample Reference				TP3	TPC	TP11	TP15	TP17
Sample Number				ES1	ES2	ES1	ES2	ES1
Depth (m)				0.05	0.40	0.50	0.30	0.20
Date Sampled				06/07/2021	09/07/2021	06/07/2021	07/07/2021	07/07/2021
Time Taken				None Supplied				
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status					
Heavy Metals / Metalloids								
Arsenic (aqua regia extractable)	mg/kg	1	MCERTS	8.6	11	7.7	12	9.2
Barium (aqua regia extractable)	mg/kg	1	MCERTS	100	65	84	97	43
Beryllium (aqua regia extractable)	mg/kg	0.06	MCERTS	1.2	0.82	1.1	1.2	0.74
Boron (water soluble)	mg/kg	0.2	MCERTS	1.6	0.4	2.7	0.6	1.5
Cadmium (aqua regia extractable)	mg/kg	0.2	MCERTS	0.7	0.3	0.4	0.5	0.5
Chromium (hexavalent)	mg/kg	4	MCERTS	< 4.0	< 4.0	< 4.0	< 4.0	< 4.0
Chromium (aqua regia extractable)	mg/kg	1	MCERTS	34	35	30	24	31
Copper (aqua regia extractable)	mg/kg	1	MCERTS	29	18	18	27	19
Lead (aqua regia extractable)	mg/kg	1	MCERTS	69	45	45	140	43
Mercury (aqua regia extractable)	mg/kg	0.3	MCERTS	< 0.3	< 0.3	< 0.3	< 0.3	< 0.3
Nickel (aqua regia extractable)	mg/kg	1	MCERTS	28	33	35	25	31
Selenium (aqua regia extractable)	mg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Vanadium (aqua regia extractable)	mg/kg	1	MCERTS	51	37	31	34	31
Zinc (aqua regia extractable)	mg/kg	1	MCERTS	380	95	120	130	98
Petroleum Hydrocarbons								
TPH C10 - C40	mg/kg	10	MCERTS	51	< 10	< 10	< 10	12
TPH2 (C6 - C10)	mg/kg	0.1	MCERTS	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1

U/S = Unsuitable Sample I/S = Insufficient Sample

Analytical Report Number: 21-87398 Project / Site name: Aston Hall Barns Aston Munslow

Your Order No: 21035 1876

Lab Sample Number					1940678	1940679
Sample Reference					TP25	TP29
Sample Number					ES1	ES1
Depth (m)					0.20	0.10
Date Sampled					08/07/2021	08/07/2021
Time Taken					None Supplied	None Supplied
Analytical Parameter (Soil Analysis)	UNITS		Limit of detection	Accreditation Status		
Stone Content	9/	6	0.1	NONE	< 0.1	< 0.1
Moisture Content	9/	6	0.01	NONE	11	19
Total mass of sample received	k	g	0.001	NONE	0.90	0.90

Asbestos in Soil	Type	N/A	ISO 17025	Not-detected	Not-detected

General Inorganics

pH - Automated	pH Units	N/A	MCERTS	5.2	6.3
Total Cyanide	mg/kg	1	MCERTS	1.8	< 1.0
Thiocyanate as SCN	mg/kg	5	NONE	< 5.0	< 5.0
Total Sulphate as SO4	%	0.005	MCERTS	0.456	0.063
Sulphide	mg/kg	1	MCERTS	< 1.0	12
Elemental Sulphur	mg/kg	5	MCERTS	< 5.0	< 5.0
Organic Matter	%	0.1	MCERTS	4.5	4.2

Total Phenois

Total Phenols (monohydric)	mg/kg	1	MCERTS	< 1.0	< 1.0

Speciated PAHs

Naphthalene	mg/kg	0.05	MCERTS	< 0.05	< 0.05
Acenaphthylene	mg/kg	0.05	MCERTS	< 0.05	< 0.05
Acenaphthene	mg/kg	0.05	MCERTS	< 0.05	< 0.05
Fluorene	mg/kg	0.05	MCERTS	< 0.05	< 0.05
Phenanthrene	mg/kg	0.05	MCERTS	< 0.05	< 0.05
Anthracene	mg/kg	0.05	MCERTS	< 0.05	< 0.05
Fluoranthene	mg/kg	0.05	MCERTS	0.35	< 0.05
Pyrene	mg/kg	0.05	MCERTS	0.33	< 0.05
Benzo(a)anthracene	mg/kg	0.05	MCERTS	< 0.05	< 0.05
Chrysene	mg/kg	0.05	MCERTS	< 0.05	< 0.05
Benzo(b)fluoranthene	mg/kg	0.05	MCERTS	< 0.05	< 0.05
Benzo(k)fluoranthene	mg/kg	0.05	MCERTS	< 0.05	< 0.05
Benzo(a)pyrene	mg/kg	0.05	MCERTS	< 0.05	< 0.05
Indeno(1,2,3-cd)pyrene	mg/kg	0.05	MCERTS	< 0.05	< 0.05
Dibenz(a,h)anthracene	mg/kg	0.05	MCERTS	< 0.05	< 0.05
Benzo(ghi)perylene	mg/kg	0.05	MCERTS	< 0.05	< 0.05

Total PAH

Speciated Total EPA-16 PAHs	mg/kg	0.8	MCERTS	< 0.80	< 0.80

Analytical Report Number: 21-87398 Project / Site name: Aston Hall Barns Aston Munslow

Your Order No: 21035 1876

Lab Sample Number	1940678	1940679				
Sample Reference	TP25	TP29				
Sample Number	ES1	ES1				
Depth (m)	0.20	0.10				
Date Sampled	08/07/2021	08/07/2021				
Time Taken	None Supplied	None Supplied				
Analytical Parameter (Soil Analysis)	Units		Limit of detection	Accreditation Status		
Heavy Metals / Metalloids						
Arsenic (aqua regia extractable)	mg/	kg	1	MCERTS	9.2	8.6
Barium (aqua regia extractable)	mg/	kg	1	MCERTS	57	68
Beryllium (aqua regia extractable)	mg/	kg	0.06	MCERTS	0.80	0.78
Boron (water soluble)	mg/	kg	0.2	MCERTS	1.5	0.3
Cadmium (aqua regia extractable)	mg/	kg	0.2	MCERTS	0.3	0.6
Chromium (hexavalent)	mg/	kg	4	MCERTS	< 4.0	< 4.0
Chromium (aqua regia extractable)	mg/	kg	1	MCERTS	39	31
Copper (aqua regia extractable)	mg/	kg	1	MCERTS	42	18
Lead (aqua regia extractable)	mg/	kg	1	MCERTS	29	61
Mercury (aqua regia extractable)	mg/	kg	0.3	MCERTS	< 0.3	< 0.3
Nickel (aqua regia extractable)	mg/	kg	1	MCERTS	37	27
Selenium (aqua regia extractable)	mg/	kg	1	MCERTS	< 1.0	< 1.0
Vanadium (aqua regia extractable)	mg/	kg	1	MCERTS	41	33
Zinc (aqua regia extractable)	mg/	kg	1	MCERTS	86	320
Petroleum Hydrocarbons	l ma/	ka I	10	MCEDTS	-	
TPH C10 - C40	mg/	kg	10	MCERTS	42	18

mg/kg

MCERTS

< 0.1

< 0.1

U/S = Unsuitable Sample I/S = Insufficient Sample

TPH2 (C6 - C10)

Analytical Report Number: 21-87398

Project / Site name: Aston Hall Barns Aston Munslow

* These descriptions are only intended to act as a cross check if sample identities are questioned. The major constituent of the sample is intended to act with respect to MCERTS validation. The laboratory is accredited for sand, clay and loam (MCERTS) soil types. Data for unaccredited types of solid should be interpreted with care.

Stone content of a sample is calculated as the % weight of the stones not passing a 10 mm sieve. Results are not corrected for stone content.

Lab Sample Number	Sample Reference	Sample Number	Depth (m)	Sample Description *
1940673	TP3	ES1	0.05	Brown loam and clay with gravel and vegetation.
1940674	TPC	ES2	0.4	Brown clay and loam with gravel and vegetation.
1940675	TP11	ES1	0.5	Brown clay and loam with gravel and vegetation.
1940676	TP15	ES2	0.3	Brown loam and clay with gravel and vegetation.
1940677	TP17	ES1	0.2	Brown loam and clay with gravel and vegetation.
1940678	TP25	ES1	0.2	Brown loam and clay with gravel and vegetation.
1940679	TP29	ES1	0.1	Brown loam and clay with gravel and vegetation.

Analytical Report Number : 21-87398 Project / Site name: Aston Hall Barns Aston Munslow

Water matrix abbreviations: Surface Water (SW) Potable Water (PW) Ground Water (GW)

Analytical Test Name	Analytical Method Description	Analytical Method Reference	Method number	Wet / Dry Analysis	Accreditation Status	
Metals in soil by ICP-OES	Determination of metals in soil by aqua-regia digestion followed by ICP-OES.	In-house method based on MEWAM 2006 Methods for the Determination of Metals in Soil.	L038-PL	D	MCERTS	
Asbestos identification in soil	Asbestos Identification with the use of polarised light microscopy in conjunction with disperion staining techniques.	In house method based on HSG 248	A001-PL	D	ISO 17025	
Boron, water soluble, in soil	Determination of water soluble boron in soil by hot water extract followed by ICP-OES.	In-house method based on Second Site Properties version 3	L038-PL	D	MCERTS	
Hexavalent chromium in soil	Determination of hexavalent chromium in soil by extraction in water then by acidification, addition of 1,5 diphenylcarbazide followed by colorimetry.	In-house method	L080-PL	W	MCERTS	
Elemental sulphur in soil	Determination of elemental sulphur in soil by extraction in acetonitrile followed by HPLC.	In-house method based on Secondsite Property Holdings Guidance for Assessing and Managing Potential	L021-PL	D	MCERTS	
Moisture Content	Moisture content, determined gravimetrically. (30 oC)	In house method.	L019-UK/PL	w	NONE	
Monohydric phenols in soil	Determination of phenols in soil by extraction with sodiun hydroxide followed by distillation followed by colorimetry.	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton (skalar)	L080-PL	W	MCERTS	
Organic matter (Automated) in soil	Determination of organic matter in soil by oxidising with potassium dichromate followed by titration with iron (II) sulphate.	In house method.	L009-PL	D	MCERTS	
Speciated EPA-16 PAHs in soil	Determination of PAH compounds in soil by extraction in dichloromethane and hexane followed by GC-MS with the use of surrogate and internal standards.	In-house method based on USEPA 8270	L064-PL	D	MCERTS	
pH in soil (automated)	Determination of pH in soil by addition of water followed by automated electrometric measurement.	In house method.	L099-PL	D	MCERTS	
Sulphide in soil	Determination of sulphide in soil by acidification and heating to liberate hydrogen sulphide, trapped in an alkaline solution then assayed by ion selective electrode.	In-house method	L010-PL	D	MCERTS	
Thiocyanate in soil	Determination of thiocyanate in soil by extraction in water followed by acidification followed by addition of ferric nitrate followed by discrete analyser (spectrophotometer).	In-house method	L082-PL	D	NONE	
Stones content of soil	Standard preparation for all samples unless otherwise detailed. Gravimetric determination of stone > 10 mm as % dry weight.	In-house method based on British Standard Methods and MCERTS requirements.	L019-UK/PL	D	NONE	
TPH2 (Soil)	Determination of hydrocarbons C6-C10 by headspace GC-MS.	In-house method based on USEPA8260	L088-PL	w	MCERTS	
Total cyanide in soil	Determination of total cyanide by distillation followed by colorimetry.	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton (Skalar)	L080-PL	W	MCERTS	
TPH Banding in Soil by FID	Determination of hexane extractable hydrocarbons in soil by GC-FID.	In-house method, TPH with carbon banding and silica gel split/cleanup.	L076-PL	w	MCERTS	
Total Sulphate in soil as %	Determination of total sulphate in soil by extraction with 10% HCl followed by ICP-OES.	In house method.	L038-PL	D	MCERTS	

Analytical Report Number: 21-87398

Project / Site name: Aston Hall Barns Aston Munslow

Water matrix abbreviations: Surface Water (SW) Potable Water (PW) Ground Water (GW)

Analytical Test Name	Analytical Method Description	Analytical Method Reference	Method number	Wet / Dry Analysis	Accreditation Status
D.O. for Gravimetric Quant if Screen/ID positive	Dependent option for Gravimetric Quant if Screen/ID positive scheduled.	In house asbestos methods A001 & A006.	A006-PL	D	NONE

For method numbers ending in 'UK' analysis have been carried out in our laboratory in the United Kingdom.

For method numbers ending in 'PL' analysis have been carried out in our laboratory in Poland.

Soil analytical results are expressed on a dry weight basis. Where analysis is carried out on as-received the results obtained are multiplied by a moisture correction factor that is determined gravimetrically using the moisture content which is carried out at a maximum of 30oC.

Unless otherwise indicated, site information, order number, project number, sampling date, time, sample reference and depth are provided by the client. The instructed on date indicates the date on which this information was provided to the laboratory.

Sample Deviation Report

Analytical Report Number: 21-87398

Project / Site name: Aston Hall Barns Aston Munslow

Sample ID	Other ID	Sample Type	Lab Sample Number	Sample Deviation	Test Name	Test Ref	Test Deviation
TP11	ES1	S	1940675	С	Sulphide in soil	L010-PL	С
TP11	ES1	S	1940675	С	Total cyanide in soil	L080-PL	С
TP15	ES2	S	1940676	С	Sulphide in soil	L010-PL	С
TP15	ES2	S	1940676	С	Total cyanide in soil	L080-PL	С
TP17	ES1	S	1940677	С	Sulphide in soil	L010-PL	С
TP17	ES1	S	1940677	С	Total cyanide in soil	L080-PL	С
TP25	ES1	S	1940678	С	Sulphide in soil	L010-PL	С
TP25	ES1	S	1940678	С	Total cyanide in soil	L080-PL	С
TP29	ES1	S	1940679	С	Sulphide in soil	L010-PL	С
TP29	ES1	S	1940679	С	Total cyanide in soil	L080-PL	С
TP3	ES1	S	1940673	С	Sulphide in soil	L010-PL	С
TP3	ES1	S	1940673	С	Total cyanide in soil	L080-PL	С
TPC	ES2	S	1940674	С	Sulphide in soil	L010-PL	С
TPC	ES2	S	1940674	С	Total cyanide in soil	L080-PL	С

Analytical Report Number: 21-87398				GAC Exc	ceedance		
Project / Site name: Aston Hall Barns Ast	on Munslow			WRAS EX	ceedance		
Your Order No: 21035 1876				Phytotoxic	Exceedance		
Lab Sample Number				1940673	1940674	1940675	1940676
Sample Reference				TP3	TPC	TP11	TP15
Sample Number				ES1	ES2	ES1	ES2
Depth (m)				0.05	0.40	0.50	0.30
Date Sampled				06/07/2021	09/07/2021	06/07/2021	07/07/2021
Time Taken			None Supplied	None Supplied	None Supplied	None Supplied	
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status				•
Stone Content	%	0.1	NONE	< 0.1	< 0.1	< 0.1	< 0.1
Moisture Content	%	0.01	NONE	16	16	18	17
Total mass of sample received	kg	0.001	NONE	0.90	1.1	1.1	1.0
Asbestos in Soil	Туре	N/A	ISO 17025	Not-detected	Not-detected	Not-detected	Not-detected
	-				-		
General Inorganics							
pH - Automated	pH Units	N/A	MCERTS	7.6	6.9	8.1	8.3
Total Cyanide	mg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0
Thiocyanate as SCN	mg/kg	5	NONE	< 5.0	< 5.0	< 5.0	< 5.0
Total Sulphate as SO4	%	0.005	MCERTS	0.101	0.062	0.082	0.101
Sulphide	mg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0
Elemental Sulphur	mg/kg	5	MCERTS	< 5.0	< 5.0	< 5.0	< 5.0
Organic Matter	%	0.1	MCERTS	9.1	3.1	2.2	3.5
Total Phenois	ma/ka	1	MCERTS				
Total Phenols (monohydric)	mg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0
Speciated PAHs							
Naphthalene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05
Acenaphthylene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05
Acenaphthene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05
Fluorene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05
Phenanthrene	mg/kg	0.05	MCERTS	1.9	< 0.05	< 0.05	< 0.05
Anthracene	mg/kg	0.05	MCERTS	0.43	< 0.05	< 0.05	< 0.05
Fluoranthene	mg/kg	0.05	MCERTS	4.0	< 0.05	< 0.05	< 0.05
Pyrene	mg/kg	0.05	MCERTS	3.5	< 0.05	< 0.05	< 0.05
Benzo(a)anthracene	mg/kg	0.05	MCERTS	2.4	< 0.05	< 0.05	< 0.05
Chrysene	mg/kg	0.05	MCERTS	2.0	< 0.05	< 0.05	< 0.05
Benzo(b)fluoranthene	mg/kg	0.05	MCERTS	2.9	< 0.05	< 0.05	< 0.05
Benzo(k)fluoranthene	mg/kg	0.05	MCERTS	1.8	< 0.05	< 0.05	< 0.05
Benzo(a)pyrene	mg/kg	0.05	MCERTS	2.9	< 0.05	< 0.05	< 0.05
Indeno(1,2,3-cd)pyrene	mg/kg	0.05	MCERTS	1.6	< 0.05	< 0.05	< 0.05
Dibenz(a,h)anthracene	mg/kg	0.05	MCERTS	0.42	< 0.05	< 0.05	< 0.05
	mg/kg	0.05	MCERTS	1.5	< 0.05	< 0.05	< 0.05
Benzo(ghi)perylene							
Benzo(ghi)perylene Total PAH	<u> </u>				-		

Analytical Report Number: 21-87398			GAC Exc	ceedance			
Project / Site name: Aston Hall Barns Aston	Munslow			WRAS Ex	ceedance		
Your Order No: 21035 1876				Phytotoxic	Exceedance		
Lab Sample Number				1940673	1940674	1940675	1940676
Sample Reference				TP3	TPC	TP11	TP15
Sample Number			ES1	ES2	ES1	ES2	
Depth (m)				0.05	0.40	0.50	0.30
Date Sampled				06/07/2021	09/07/2021	06/07/2021	07/07/2021
Time Taken				None Supplied	None Supplied	None Supplied	None Supplied
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status				
Heavy Metals / Metalloids	-						
Arsenic (aqua regia extractable)	mg/kg	1	MCERTS	8.6	11	7.7	12
Barium (aqua regia extractable)	mg/kg	1	MCERTS	100	65	84	97
Beryllium (aqua regia extractable)	mg/kg	0.06	MCERTS	1.2	0.82	1.1	1.2
Boron (water soluble)	mg/kg	0.2	MCERTS	1.6	0.4	2.7	0.6
Cadmium (aqua regia extractable)	mg/kg	0.2	MCERTS	0.7	0.3	0.4	0.5
Chromium (hexavalent)	mg/kg	4	MCERTS	< 4.0	< 4.0	< 4.0	< 4.0
Chromium (aqua regia extractable)	mg/kg	1	MCERTS	34	35	30	24
Copper (aqua regia extractable)	mg/kg	1	MCERTS	29	18	18	27
Lead (aqua regia extractable)	mg/kg	1	MCERTS	69	45	45	140
Mercury (aqua regia extractable)	mg/kg	0.3	MCERTS	< 0.3	< 0.3	< 0.3	< 0.3
Nickel (aqua regia extractable)	mg/kg	1	MCERTS	28	33	35	25
Selenium (aqua regia extractable)	mg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0
Vanadium (aqua regia extractable)	mg/kg	1	MCERTS	51	37	31	34
Zinc (aqua regia extractable)	mg/kg	1	MCERTS	380	95	120	130
Petroleum Hydrocarbons							
TPH C10 - C40	mg/kg	10	MCERTS	51	< 10	< 10	< 10
			MOEDTO				
TPH2 (C6 - C10)	mg/kg	0.1	MCERTS	< 0.1	< 0.1	< 0.1	< 0.1

U/S = Unsuitable Sample I/S = Insufficient Sample

Analytical Report Number: 21-87398				GAC Exc	eedance	
Project / Site name: Aston Hall Barns Aston	Munslow			WRAS Ex		
Your Order No: 21035 1876				Phytotoxic	Exceedance	
Lab Sample Number				1940677	1940678	1940679
Sample Reference				TP17	TP25	TP29
Sample Number				ES1	ES1	ES1
Depth (m)				0.20	0.20	0.10
Date Sampled				07/07/2021	08/07/2021	08/07/2021
Time Taken				None Supplied	None Supplied	None Supplied
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status			
Stone Content	%	0.1	NONE	< 0.1	< 0.1	< 0.1
Moisture Content	%	0.01	NONE	13	11	19
Total mass of sample received	kg	0.001	NONE	1.0	0.90	0.90
Asbestos in Soil	Туре	N/A	ISO 17025	Not-detected	Not-detected	Not-detected
General Inorganics						
pH - Automated	pH Units	N/A	MCERTS	6.6	5.2	6.3
Total Cyanide	mg/kg	1	MCERTS	< 1.0	1.8	< 1.0
Thiocyanate as SCN	mg/kg	5	NONE	< 5.0	< 5.0	< 5.0
Total Sulphate as SO4	%	0.005	MCERTS	0.063	0.456	0.063
Sulphide	mg/kg	1	MCERTS	< 1.0	< 1.0	12
Elemental Sulphur	mg/kg	5	MCERTS	< 5.0	< 5.0	< 5.0
Organic Matter	%	0.1	MCERTS	4.6	4.5	4.2
Total Phenois	ma/ka	1	MCERTS		1.0	
Total Phenols (monohydric)	mg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0
Speciated PAHs			_			
Naphthalene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05
Acenaphthylene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05
Acenaphthene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05
Fluorene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05
Phenanthrene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05
Anthracene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05
Fluoranthene	mg/kg	0.05	MCERTS	< 0.05	0.35	< 0.05
Pyrene	mg/kg	0.05	MCERTS	< 0.05	0.33	< 0.05
Benzo(a)anthracene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05
Chrysene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05
Benzo(b)fluoranthene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05
Benzo(k)fluoranthene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05
Benzo(a)pyrene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05
Indeno(1,2,3-cd)pyrene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05
Dibenz(a,h)anthracene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05
Benzo(ghi)perylene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05
Total PAH						

Analytical Report Number: 21-87398 Project / Site name: Aston Hall Barns Aston Munslow Your Order No: 21035 1876				GAC Exceedance WRAS Exceedance		
				Phytotoxic Exceedance		
Lab Sample Number				1940677	1940678	1940679
Sample Reference				TP17	TP25	TP29
Sample Number	ES1	ES1	ES1			
Depth (m)	0.20	0.20	0.10			
Date Sampled	07/07/2021	08/07/2021	08/07/2021			
Time Taken				None Supplied	None Supplied	None Supplied
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status			
Heavy Metals / Metalloids					-	
Arsenic (aqua regia extractable)	mg/kg	1	MCERTS	9.2	9.2	8.6
Barium (aqua regia extractable)	mg/kg	1	MCERTS	43	57	68
Beryllium (aqua regia extractable)	mg/kg	0.06	MCERTS	0.74	0.80	0.78
Boron (water soluble)	mg/kg	0.2	MCERTS	1.5	1.5	0.3
Cadmium (aqua regia extractable)	mg/kg	0.2	MCERTS	0.5	0.3	0.6
Chromium (hexavalent)	mg/kg	4	MCERTS	< 4.0	< 4.0	< 4.0
Chromium (aqua regia extractable)	mg/kg	1	MCERTS	31	39	31
Copper (aqua regia extractable)	mg/kg	1	MCERTS	19	42	18
Lead (aqua regia extractable)	mg/kg	1	MCERTS	43	29	61
Mercury (aqua regia extractable)	mg/kg	0.3	MCERTS	< 0.3	< 0.3	< 0.3
Nickel (aqua regia extractable)	mg/kg	1	MCERTS	31	37	27
Selenium (aqua regia extractable)	mg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0
Vanadium (aqua regia extractable)	mg/kg	1	MCERTS	31	41	33
Zinc (aqua regia extractable)	mg/kg	1	MCERTS	98	86	320
Petroleum Hydrocarbons						
TPH C10 - C40	mg/kg	10	MCERTS	12	42	18
TPH2 (C6 - C10)	mg/kg	0.1	MCERTS	< 0.1	< 0.1	< 0.1

 $\label{eq:U/S} \text{U/S} = \text{Unsuitable Sample} \qquad \text{I/S} = \ \text{Insufficient Sample}$

Analytical Report Number: 21-88011 Project / Site name: Aston Hall Barns, Aston Munslow

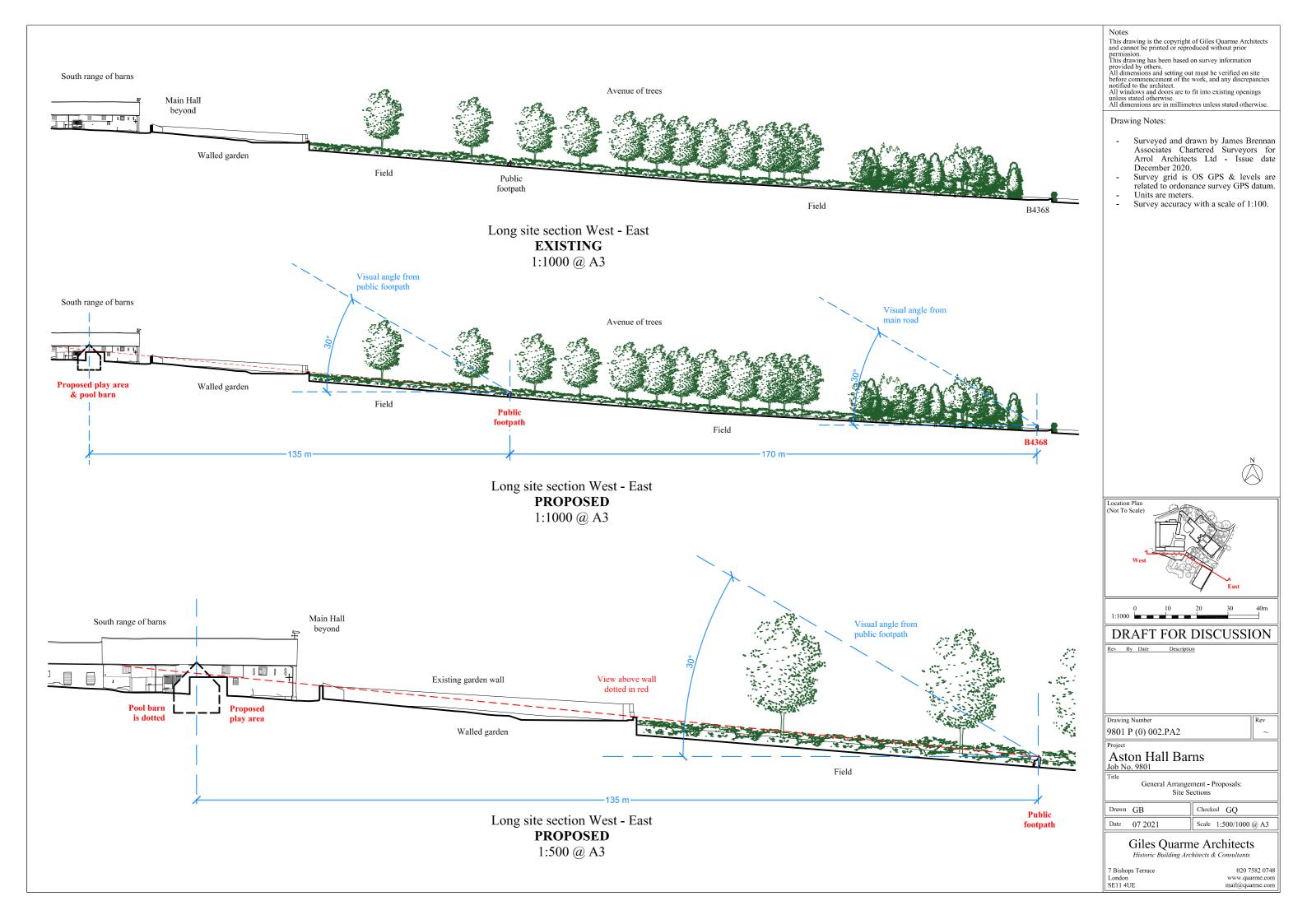
Your Order No: 21035-1877

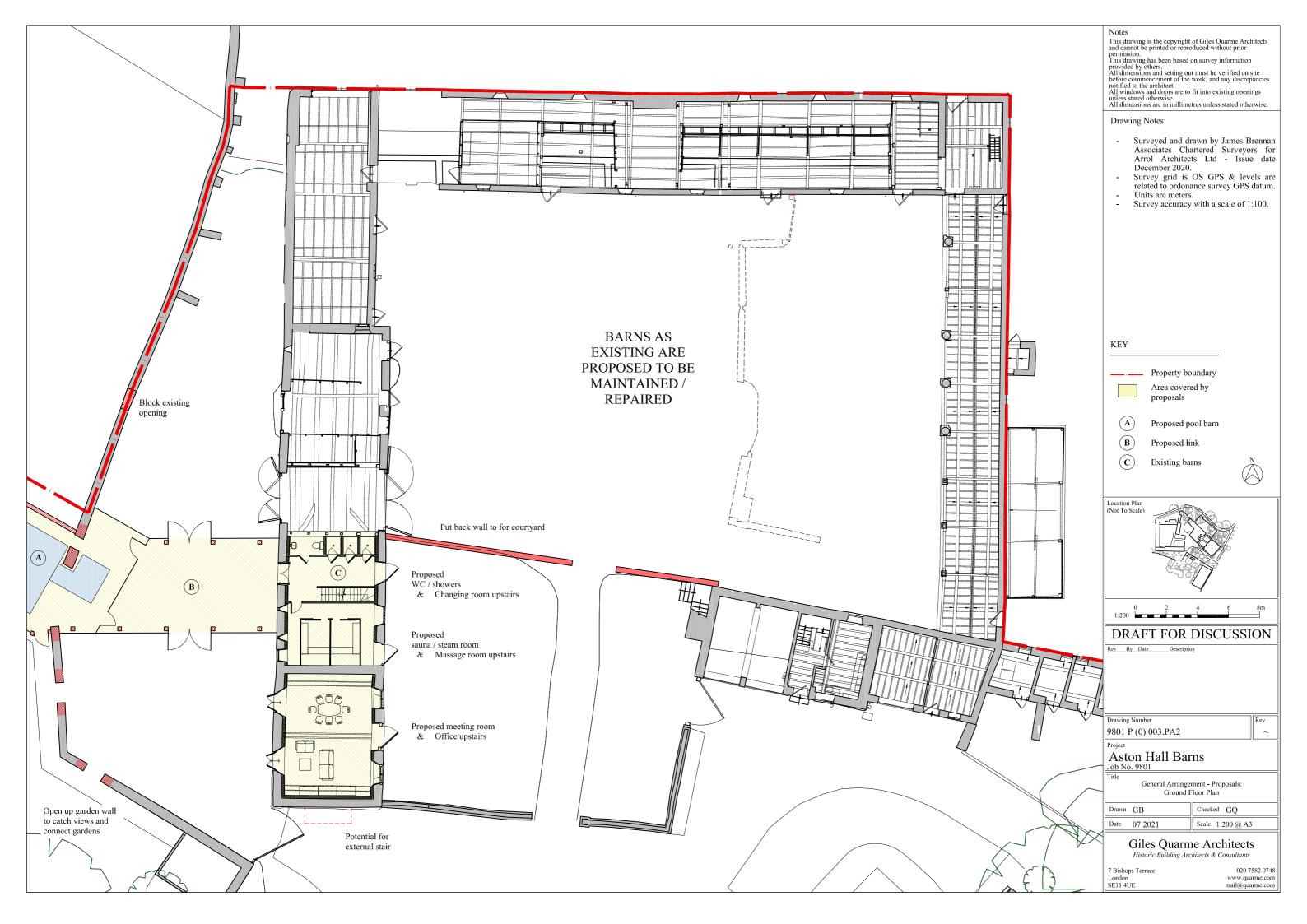
GAC Exceedance	
WRAS Exceedance	
Phytotoxic Exceedance	

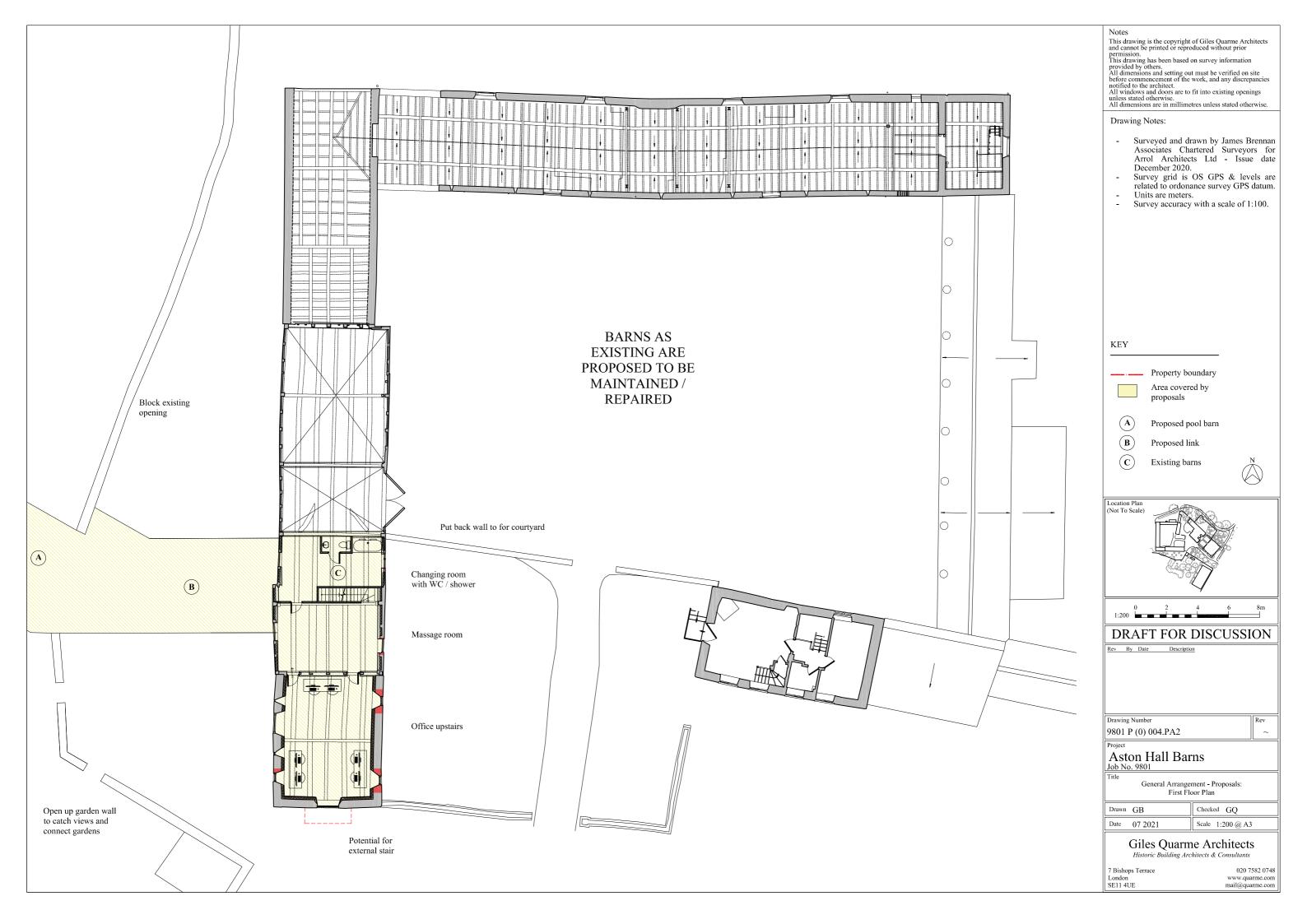
Lab Sample Number			1944677	1944678	1944679	
Sample Reference				BH1	TP14	TP31
Sample Number				D3	D3	D1
Depth (m)				1.50	0.75	1.20
Date Sampled				06/07/2021	07/07/2021	08/07/2021
Time Taken			None Supplied	None Supplied	None Supplied	
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status			
Stone Content	%	0.1	NONE	< 0.1	< 0.1	< 0.1
Moisture Content	%	0.01	NONE	4.3	12	8.7
Total mass of sample received	kg	0.001	NONE	0.50	0.50	0.50

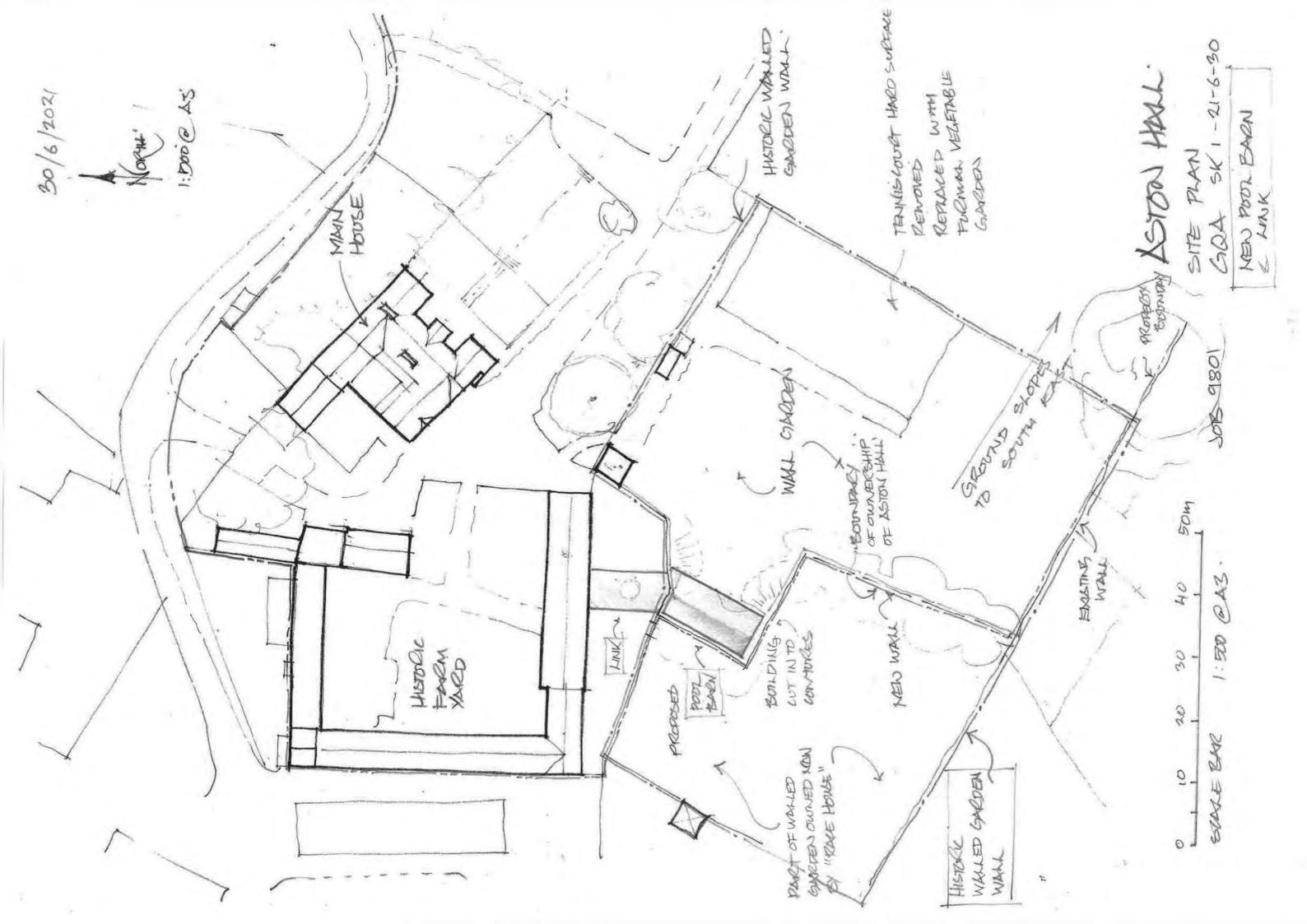
General Inorganics

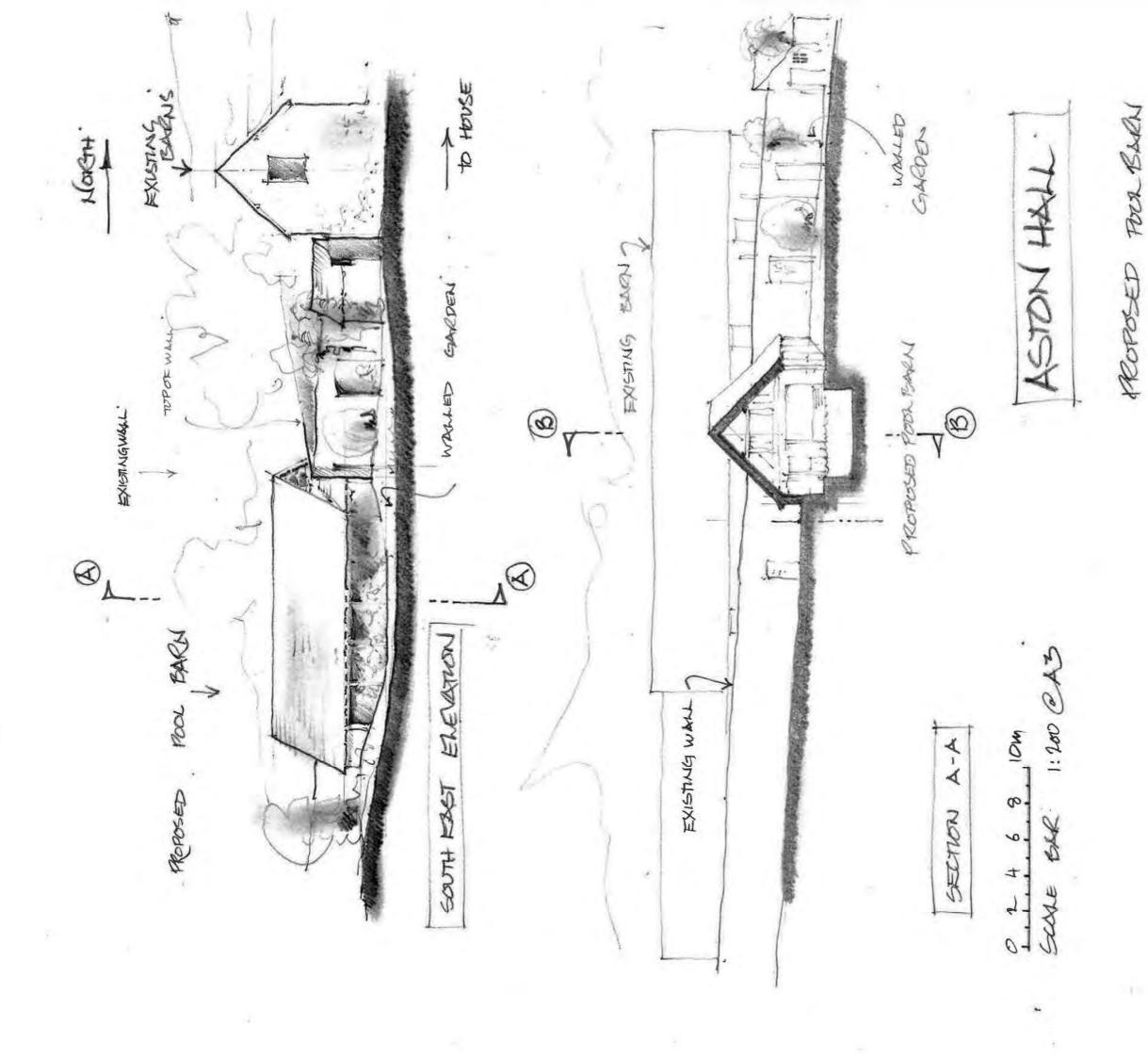
pH - Automated	pH Units	N/A	MCERTS	8.5	6.9	7.6
Total Sulphate as SO4	%	0.005	MCERTS	0.019	0.069	0.067
Water Soluble SO4 16hr extraction (2:1 Leachate				0.010	0.10	0.40
Equivalent)	g/l	0.00125	MCERTS	0.013	0.18	0.18
Water Soluble SO4 16hr extraction (2:1 Leachate				10.1	4.7.5	400
Equivalent)	mg/l	1.25	MCERTS	13.1	175	182
Total Sulphur	%	0.005	MCERTS	0.009	0.028	0.025


U/S = Unsuitable Sample I/S = Insufficient Sample




Appendix J


Proposed Redevelopment



108/30

SACTION ATA
SOUTH RISET THEVARION
GRA 2X. 3-11-6-