

DESIGNERS F	RESIDUAL	RISK	SCHEDULE
CONSTRUCTION			

Surface water drair

Ì

Foul water drain

DRAINAGE STRATEGY LEGEND

 \bigcirc

Surface water inspection chamber

Surface water ab

oove ground pipe.

Foul water inspection chamber

Surface water catchpit manhole

- EXISTING SEWERS / DRAINAGE / SERVICES:
 Refer to existing services layout (ref: 13730:03) / topographical survey (ref: 6546BW/6) / statutory undertaker's records for location of existing drainage / services & overhead cables.
 Works in close proximity to existing sewers / services. Contractor's Construction Health & Safety Plan should include method statement outlining safe method of working agreed with relevant statutory undertaker where necessary.
 Works affected by existing services. Contractor should arrange for diversion / lowering / protection by statutory undertaker where necessary prior to commencement of works.
- <u>a</u> .2

urface water man

Foul water manhole

ıgwork headwall.

- CAVATIONS & EARTHWORKS afer to ground investigation report (ref: RML 5949) for details of aderlying soils. Where ground conditions are found to deviate from lose reported in the site investigation report, the engineer should be syntacted immediately for advice on how to proceed. (cavations where access is required should be temporary supported with opes battered well back and maintained at a safe angle. antractor's Construction Health & Safety Plan should include method atement outlining safe method of working in or adjacent to deep (cavations adjacent to boundaries / structures / embankments / bulk arthworks.

+57.0

Spot level taken from NBW planning drawings

land Flow Route

- Juater may be encountered in excavations. contractor's uction Health & Safety Plan should include method statement ng safe method for dewatering excavations during groundworks.
- the that throut S ON OR ADJACENT TO EXISTING CAR PARK tractor should ensure site personnel have appropriate training & use copriate PPE when carrying out works adjacent to the car park and Construction Health & Safety Plan should include method statement adopts best practice health and safety policies for all site personnel ughout the duration of the works on / adjacent to existing vehicular es.
- CONNECTING TO EXISTING DRAINAGE Contractor's Construction Health & Safety Plan should include method statement that adopts best practice health and safety policies for all site personnel throughout the duration of such works. Contractor should ensure site personnel have appropriate training & use appropriate PPE when making connections to existing drainage.
- σ

ENGINEERING NOTES

- .____ This drawing to be read in conjunction with all relevant Architects, Engineers and Subcontractors drawings and details
- This drawing is based on topogr On Centre Surveys: survey by
- Drawing Number 6546BW/6 Dated June 2016
- ω. 4.
- ъ All levels relate to levels given on survey drawing. Refer to Architects drawings for details of all soft landscaping, fences, gates & bollards. For lighting, service supplies & ducting requirements, M&E drawings. refer to
- <u></u>б All works to be carried out in accordance with BS EN 752 "Drain and sewer systems outside buildings" and the current edition of The Building Regulations "Approved document H".
- 7. New drainage connections are to be made with appr lengths of rocker pipes & couplings.
- <u>.</u>00
- .9 All manhole chamber covers to be installed parallel to final kerbs, edgings, paving joints or building lines as appropriate.
- This drawing details all below ground drainage up to finished floor level. For details of drainage above finished floor level, refer to Architects drawings.
- 10. A stack connections under buildings to be minimum 100mm ameter solid PVC-U to BS EN 1401-1/BS4660 & laid at a nimum gradient of 1 in 80 unless otherwise noted. If the ack is greater than 100mm then the diameter of the nnection is to be increased to match it
- $\stackrel{\sim}{\rightarrow}$ RWP connections to be minimum 100mm diameter solid C-U to BS EN 1401-1/BS4660 & laid at a minimum adient of 1 in 80 unless otherwise noted. If the RWP is ater than 100mm then the diameter of the connection is be increased to match it.

MK P1

REVISION

 BCT
 22.10.21

 BY
 DATE

FIRST ISSUE

FINAL

RAWING TITLE

DRAINAGE LAYOUT SHEET 2 OF 2

DRAWING STATUS

- 12. All private foul water pipework up to 150mm in diameter to be PVC-U to BS EN 1401-1/BS4660.
- 13. 2 tó₿) pri
- private surface water pipework up to 150mm in diameter be solid PVC-U to BS EN 1401-1/BS4660. All private 'ace water pipework 225mm and above to be structured plastic sewer pipe complying with clause 518 of the plication for highway works.
- 14 . Concrete m 5911-3. shall cor ply with BS EN 1917 and BS
- tic ch ers shall cor
- 16. 15.
- completion of development all drainage shall be jet aned and CCTV surveyed.
- c∣e On

CHESSINGTON WORLD OF ADVENTURES LODGES

17.

1 be

dundant drainage & services marked to be removed are to dug out with chambers demolished & void filled with Type material to clause 803 & 806.

 $\overrightarrow{\infty}$

On ≚i

All by pro pits

Il existing services shown are based on topographical survey y On Centre Surveys. Location of all services in close roximity to works should be confirmed by means of trial its under supervision of statutory undertaker & in ccordance with HSE document "Avoiding Danger from nderground Services"

Smpson two

8 Friday Street Henley on Thames Oxfordshire RG9 1AH T.01491 576221

LOSI Regional Area

London, Henley-on Thames and Gloucester
Drawn
BCT
MC
Scales
Date
Date
Date
Date
Date
DISCHARGE OF CONDITIONS

13730 : 501

P1

London, Drawn BCT

- nply with BS 7158.

ROJECT

Project Number 13730

Image: Second	54.33 452.76 51.82 54.33 100 10.100 452.76 51.82 54.33 100	2.254 grass 24 grass	9.4.3 49.13 49.15 49
	452.85 452.85 452.85 452.85 452.85 52.22+ 452.85 52.22+ 452.85 52.22+ 52.00 51.95 52.22+ 52.00 51.95 52.00 51.95 52.22+ 52.00 52.00 51.95 52.00 52.00 52.00 52.00 52.00 52.00 52.00 52.00 52.00 51.95 52.00 52.00 51.95 52.00 52.00 52.00 51.95 52.00 52.00 52.00 51.95 52.00 52.00 51.95 52.22+ 52.00 52.00 51.95 52.00 52.00 51.95 52.22+ 52.00 52	51.28 +50.15 51.28 +50.15 1000 - 000 1000 - 000 10	+49.30 +49.30 +49.30 +49.30 +49.30 +49.30 +49.30 +49.74 +40
U 56.44 U 50.44 U 5	453.07 454.01 453.02 452.94 52.94	5) 45, 100 2039 91,15 gross 91,15 gross 90,15 gross 90,15 gross 90,15 gross 91,10 gross 9	
	45 15397 45148 45121 452.76 9 Ef52.29		49.09 48.95 18.99 +49.09 48.95 18.99 +40.09 18.95 18.99 +40.09 18.95 18.90 +40.09 18.95 18.90 +40.09 18.95 18.90 +40.09

| ₂₁

LEGEND Overland Flow Rou

DRAINAGE NOTES

- This drawing is to be read in conjunction with all relevant architect's, engineers and subcontractors drawings and details.
- 4. $\stackrel{\text{N}}{\cdot}$ Dimensions not to be scaled.

- Refer to drainage schedule for grade of cover and frame.

- Hard landscaping (Footpath/parking bay/yard)

- U. Refer to Arch all paving typ landscaping, Architects drawings for details of g types & patterns, soft ing, fences & gates.
- All works to be carried out in accordance BS EN 752 "Drain and sewer systems outside buildings" and the current edition of The Building Regulations "Approved document H".
- , С New drainage connections are to be made with appropriate lengths of rocker pipes & couplings.

(Min)

- 225mm deep GEN concrete plinth to support cover and frame.

S

 $\overrightarrow{}$ All manhole chamber covers to be installed parallel to final kerbs, edgings, paving joints or building lines as appropriate.

-150mm thick bed and surround of well compacted granular material.

- .0 . All stack connections under buildings to be minimum 100mm diameter solid PVC-U to BS EN 1401-1/BS4660 & laid at a minimum gradient of 1 in 80 unless otherwise noted. If the stack is greater than 100mm then the diameter of the connection is to be increased to match it
- 10 .

LANDSCAPING

D. All RWP connections to be minimum 100mm diameter solid PVC-U to BS EN 1401-1/BS4660 & laid at a minimum gradient of 1 in 80 unless otherwise noted. If the RWP is greater than 100mm then the diameter of the connection is to be increased to match it.

Bagwork to be constructed to suit profile of bank.

Pipe to be cut flush to angle of bank.

Existing ditch

- All private foul water pipework up to 150mm in diameter to be PVC-U to BS EN 1401-1/BS4660.
- 12. 2. All private surface water pipework up to 150mm in diameter to be solid PVC-U to BS EN 1401-1/BS4660. All private surface water pipework 225mm and above to be structured wall plastic sewer pipe complying with clause 518 of the specification for highway works.
- _____ ____ Plastic chambers shall comply with BS EN 1917 and BS 5911-3.

BAG

HEADWALL

- (Plan)
- above by-60. (Section) F -pass doc 150 . ۲ Gen 3 concrete mounting block Intake 0 Hydrobrake or similar approved installed in accordance with manufacturer's requirements. Outlet spigot

surface

ater

catchpit

0|e

constructior

13730:505

Ď

501 for details

of Hydro

-Brak

Of

control

dev

used.

DISCHARGE OF CONDITIONS

13730:506

P<u>1</u>

Jy-on Th Ch'kd MC

Scales SHOWN

Date OCT '21

				NAL VERTICAL BACKDROP	To channel.	ound).	Concrete	junction.	<u>m</u>			rse sand base ompacted.	impermeable geomembrane to create a watertight seal. xtile laver.	A A A A A A A A A A A A A A A A A A A		Type 1 granular material suitably compacted.	Road construction.	
Simpson two B Friday Street Henley on Thames Oxfordshire RG9 1AH T.01491 576221	CHESSINGTON WORLD OF ADVENTURES LODGES	SUDS DETAILS SHEET 2 OF 2	P1 ISSUED FOR DISCHARGE OF CONDITION 10 BCT 22.10.21 MK REVISION BY DATE DRAWING STATUS FINAL FINAL		- Concrete base.	 Inside face of manhole. Straight outlet pipe for 150mm and 225mm diameters only. For larger diameter pipes bends are to be built through the manhole wall. Banching 	 Rodding eye. Invert of rodding eye to be not greater than 1.5m above top of benching (unless specific man access requirements are provided). 		3. Plastic chambers shall comply with BS EN 1917 and BS 5911-3.	2. All private surface water pipework up to 150mm in diameter to be solid PVC-U to BS EN 1401-1/BS4660. All private surface water pipework 225mm and above to be structured wall plastic sewer pipe complying with clause 518 of the specification for highway works.	1. All private foul water pipework up to 150mm in diameter to be PVC-U to BS EN $1401-1/BS4660$.	0. All RWP connections to be minimum 100mm diameter solid PVC-U to BS EN 1401-1/BS4660 & laid at a minimum gradient of 1 in 80 unless otherwise noted. If the RWP is greater than 100mm then the diameter of the connection is to be increased to match it.	BS EN 1401-1/BS4660 & laid at a minimum gradient of 1 in 80 unless otherwise noted. If the stack is greater than 100mm then the diameter of the connection is to be increased to match it	 All manhole chamber covers to be installed parallel to final kerbs, edgings, paving joints or building lines as appropriate. All stack connections under buildings to be minimum 100mm diameter solid PVC-U to 	3. New drainage connections are to be made with appropriate lengths of rocker pipes & couplings.	5. All works to be carried out in accordance BS EN 752 "Drain and sewer systems outside buildings" and the current edition of The Building Regulations "Approved document H".	 Refer to Architects drawings for details of all paving types & patterns, soft landscaping, fences & gates. 	DIFFERENCE TO LE SCAFEA.

DRAINAGE NOTES

This drawing is to be read in conjunction with all relevant architect's, engineers and subcontractors drawings and details.

.____`

car park. car park used by HGV's.

N · Dimensions not to be scaled.

APPENDIX F SURFACE WATER DESIGN CALCULATIONS

Simpson Associates	Page 1
1 Market Place Mews	
Henley-on-Thames	The second secon
RG9 2AH	Designed by Drup Touton Micro
Date 21/10/2021 11:31	Checked by Bryn. Tawton Drainage
Micro Drainage	Network 2017 1 2
STORM SEWER DESIGN 1	by the Modified Rational Method
Design	Criteria for Storm
Pipe Sizes STA	IDARD Manhole Sizes STANDARD
FSR Rainfall	Model - England and Wales
Return Period (years)	1 PIMP (%) 100 20 000 Add Flow / Climate Change (%) 0
Ratio R	0.400 Minimum Backdrop Height (m) 0.200
Maximum Rainfall (mm/hr)	50 Maximum Backdrop Height (m) 1.500
Maximum Time of Concentration (mins) Foul Sewage (1/s/ha)	0.000 Min Vel for Auto Design only (m/s) 1.00
Volumetric Runoff Coeff.	0.750 Min Slope for Optimisation (1:X) 500
Designe	d with Level Soffits
Network D	esign Table for Storm
PN Length Fall Slope I.Area T.E (m) (m) (1:X) (ha) (mir	. Base k HYD DIA Section Type Auto s) Flow (1/s) (mm) SECT (mm) Design
1.000 24.900 0.250 99.6 0.028 4.	00 0.0 0.600 o 150 Pipe/Conduit 🔒
2.000 24.900 0.250 99.6 0.028 4.	00 0.0 0.600 o 150 Pipe/Conduit 🔒
1.001 56.700 2.150 26.4 0.088 0.	00 0.0 0.600 o 225 Pipe/Conduit 🔒
3.000 17.400 0.870 20.0 0.015 4.	00 0.0 0.600 o 150 Pipe/Conduit 🔒
4.000 9.400 0.118 79.7 0.015 4.	00 0.0 0.600 o 150 Pipe/Conduit 🔒
5.000 53.410 2.100 25.4 0.035 4.	00 0.0 0.600 o 150 Pipe/Conduit 🔒
1.002 9.600 0.100 96.0 0.000 0.	00 0.0 0.600 o 300 Pipe/Conduit 🔒
Netwo	rk Results Table
PN Rain T.C. US/IL Σ I.A: (mm/hr) (mins) (m) (ha	rea ΣBase Foul Add Flow Vel Cap Flow Flow (l/s) (l/s) (l/s) (m/s) (l/s) (l/s)
1.000 50.00 4.41 59.400 0.0	0.0 0.0 0.0 1.01 17.8 3.8
2.000 50.00 4.41 59.400 0.0	0.0 0.0 0.0 1.01 17.8 3.8
1.001 50.00 4.78 59.100 0.3	44 0.0 0.0 0.0 2.56 101.7 19.5
3.000 50.00 4.13 59.300 0.1	0.0 0.0 0.0 2.26 40.0 2.0
4.000 50.00 4.14 56.970 0.0	0.0 0.0 0.0 1.13 19.9 2.0
5.000 50.00 4.44 59.100 0.	0.0 0.0 0.0 2.00 35.4 4.7
1.002 50.00 4.88 56.700 0.3 ©1982-	209 0.0 0.0 0.0 1.60 113.4 28.3 2017 XP Solutions

Simpso	on Asso	ciate	S									Page	e 2
1 Marl	ket Pla	ce Mer	WS										
Henley	y-on-Th	ames										4	A
RG9 22	AH											MB	Jun
Date 2	21/10/2	021 1	1:31		Des	signe	d by	Brvn.	Tawto	on			uu
File M	Main Ne	twork	Simula	ation.	Che	ecked	by	1				Ufa	linage
Micro	Draina	ge			Net	work	2017	.1.2					
			1	letwork	Desig	gn Ta	ble f	for St	orm				
PN	Length	Fall	Slope	I.Area	T.E.	Ba	se	k	HYD	DIA	Secti	ion Type	a Auto
	(m)	(m)	(1:X)	(ha)	(mins)	Flow	(l/s)	(mm)	SECT	(mm)			Design
1.003	143.000	2.400	59.6	0.000	0.00		0.0	0.600	0	300	Pipe/	/Condui	t 🐴
1.004	29.860	2.600	11.5	0.000	0.00		0.0	0.600	0	300	Pipe/	/Conduit	t 🖌
1.005	23.480	2.110	11.1	0.000	0.00		0.0	0.600	0	300	Pipe/	/Conduit	t 🦰
6.000	57.200	2.860	20.0	0.032	4.00		0.0	0.600	0	300	Pipe	/Conduit	t 🔒
6.001	51.230	0.171	300.0	0.000	0.00		0.0	0.600	0	300	Pipe/	/Conduit	t 🐴
6.002	51.230	0.171	300.0	0.000	0.00		0.0	0.600	0	300	Pipe,	/Conduit	t 🖌
6.003	10.000	0.033	300.0	0.000	0.00		0.0	0.600	0	300	Pipe/	/Condui	t 💣
7.000	78.100	3.800	20.6	0.022	4.00		0.0	0.600	0	150	Pipe,	/Conduit	t 🖰
7.001	14.260	1.120	12.7	0.000	0.00		0.0	0.600	0	150	Pipe/	/Conduit	t 💣
6.004	1.085	0.002	500.0	0.000	0.00		0.0	0.600	0	150	Pipe,	/Conduit	t 🐴
6.005	16.460	0.206	80.0	0.000	0.00		0.0	0.600	0	150	Pipe,	/Conduit	t 🍎
6.006	53.770	2.920	18.4	0.038	0.00		0.0	0.600	0	150	Pipe,	/Conduit	t 🦰
6.007	8.120	2.610	3.1	0.000	0.00		0.0	0.600	0	150	Pipe/	/Conduit	t
1.006	11.980	0.040	299.5	0.000	0.00		0.0	0.600	0	300	Pipe,	/Condui	t 🦰
1.007	11.020	0.010	1081.8	0.000	0.00		0.0	0.600	0	375	Pipe/	/Conduit	t 🗗
1.008	14.600	0.290	50.3	0.000	0.00		0.0	0.600	0	375	Pipe/	/Conduit	t ੌ
				Ne	twork	Resu	lts T	able					
				110	CHOTIC	1.000	100 1	<u></u>					
1	PN Rai	in T	.c. បន	S/IL E	I.Area	ΣВ	ase	Foul	Add F	low	Vel	Cap 1	Flow

111	INGLII	1.0.	00/11	a r.mea		Juse	LOUT	Had LTOM	Ver	cap	1104	
	(mm/hr)	(mins)	(m)	(ha)	Flow	(l/s)	(l/s)	(l/s)	(m/s)	(l/s)	(l/s)	
1.003	50.00	6.05	56.600	0.209		0.0	0.0	0.0	2.04	144.2	28.3	
1.004	49.76	6.16	54.200	0.209		0.0	0.0	0.0	4.66	329.7	28.3	
1.005	49.44	6.24	51.600	0.209		0.0	0.0	0.0	4.74	335.0	28.3	
6.000	50.00	4.27	60.320	0.032		0.0	0.0	0.0	3.53	249.6	4.3	
6.001	50.00	5.22	55.870	0.032		0.0	0.0	0.0	0.90	63.8	4.3	
6.002	49.73	6.16	55.699	0.032		0.0	0.0	0.0	0.90	63.8	4.3	
6.003	49.04	6.35	55.528	0.032		0.0	0.0	0.0	0.90	63.8	4.3	
7.000	50.00	4.58	60.320	0.022		0.0	0.0	0.0	2.23	39.4	3.0	
7.001	50.00	4.67	56.520	0.022		0.0	0.0	0.0	2.84	50.2	3.0	
6.004	48.88	6.39	55.400	0.054		0.0	0.0	0.0	0.44	7.8	7.1	
6.005	48.00	6.63	55.380	0.054		0.0	0.0	0.0	1.12	19.9	7.1	
6.006	46.70	7.01	55.170	0.092		0.0	0.0	0.0	2.36	41.7	11.6	
6.007	46.62	7.03	52.250	0.092		0.0	0.0	0.0	5.76	101.7	11.6	
1.006	45.90	7.26	49.490	0.301		0.0	0.0	0.0	0.90	63.8	37.4	
1.007	44.85	7.59	49.375	0.301		0.0	0.0	0.0	0.54	59.9	37.4	
1.008	44.56	7.69	49.365	0.301		0.0	0.0	0.0	2.56	282.6	37.4	

Simpson Associates		Page 3
1 Market Place Mews		
Henley-on-Thames		L
RG9 2AH		Micco
Date 21/10/2021 11:31	Designed by Bryn.Tawton	
File Main Network Simulation	Checked by	Diamaye
Micro Drainage	Network 2017.1.2	
Free Flowing	Outfall Details for Storm	
Outfall Outfall C	. Level I. Level Min D,L W	
1.008	51.100 49.075 49.150 525 0	
Simulatio	on Criteria for Storm	
	STICETTA TOT SCOTIN	
Volumetric Runoff Coeff (0.750 Additional Flow - % of Total Fl	ow 0.000
Areal Reduction Factor	1.000 MADD Factor * 10m ³ /ha Stora	ge 2.000
Hot Start (mins)	0 Inlet Coeffiecie	nt 0.800
Hot Start Level (mm)	U Flow per Person per Day (l/per/da	y) 0.000
Foul Sewage per hectare (1/s) (0.000 Output Interval (min	s) 60 s) 1
		. –
Number of Input Hydrogr	aphs 0 Number of Storage Structures 2	
Number of Online Cont	rols 2 Number of Time/Area Diagrams 0	
	TOTS O NUMBER OF REAL TIME CONCLOSS O	
Synthet	ic Rainfall Details	
Rainfall Model	FSR Profile Type Summ	ner
Return Period (years)	1 Cv (Summer) 0.7	750
M5-60 (mm)	20,000 Storm Duration (mins)	30
Ratio R	0.400	

ll'impaon Aggagatat					Dago /
					Fage 4
I Market Place Mews					
Henley-on-Thames					Ly m
RG9 2AH					Micco
Date 21/10/2021 11:31	Designed	by Bryn	n.Tawton		Desinado
File Main Network Simulation	Checked k	су			Dialiage
Micro Drainage	Network 2	2017.1.2	2		
Online	Controls	for Sto	rm		
	0011010	101 000			
Hydro-Brake® Optimum Manho	le• 17. D	s/pn· 6	005. Vo	lume (m³)	• 0 9
	10, 1, 2	0, 11. 0		201110 (111)	
Unit	Reference	MD-SHE-0	103-4000-0	400-4000	
Desig	n Head (m)			0.400	
Design	Flow (l/s)			4.0	
	Flush-Flo™		Ca	alculated	
	Objective	Minimis	e upstrear	n storage	
P	pplication			Surface	
Sump	Available			Yes	
Dia -	meter (mm)			103	
Minimum Outlot Pino Dia	meter (m)			JJ.38U 150	
Suggested Manhole Dia	meter (mm)			1200	
	miceer (mm)			1200	
Control Po	ints 1	Head (m)	Flow (l/s)	
Design Point (C	alculated)	0.400	4.	0	
	Flush-Flo™	0.156	4.	0	
	Kick-Flo®	0.306	3.	5	
Mean Flow over 1	Head Range	-	3.	2	
The hydrological calculations have k	een based c	on the He	ad/Dischar	ge relatio	onship for the
The hydrological calculations have h Hydro-Brake® Optimum as specified.	een based o Should anot	on the He	ad/Dischar of contro	ge relation device c	onship for the other than a
The hydrological calculations have h Hydro-Brake® Optimum as specified. Hydro-Brake Optimum® be utilised the invalidated	peen based c Should anot en these sto	on the He cher type orage rou	ad/Dischar of contro ting calcu	rge relation device c lations wi	onship for the other than a .ll be
The hydrological calculations have h Hydro-Brake® Optimum as specified. Hydro-Brake Optimum® be utilised the invalidated	peen based o Should anot en these sto	on the He Cher type orage rou	ad/Dischar of contro ting calcu	rge relatic ol device c ulations wi	onship for the other than a ll be
The hydrological calculations have h Hydro-Brake® Optimum as specified. Hydro-Brake Optimum® be utilised the invalidated Depth (m) Flow (1/s) Depth (m) Flow	peen based o Should anot en these sto w (l/s) Dep	on the He ther type orage rou th (m) F	ad/Dischan of contro ting calcu Low (l/s)	rge relatio ol device c alations wi Depth (m)	nship for the ther than a ll be Flow (1/s)
The hydrological calculations have h Hydro-Brake® Optimum as specified. Hydro-Brake Optimum® be utilised the invalidated Depth (m) Flow (1/s) Depth (m) Flow	w (l/s) Dep	on the He ther type orage rou th (m) F:	ad/Dischar of contro ting calcu Low (l/s)	cge relatic ol device c llations wi Depth (m)	nship for the ther than a ll be Flow (1/s)
The hydrological calculations have h Hydro-Brake® Optimum as specified. Hydro-Brake Optimum® be utilised the invalidated Depth (m) Flow (1/s) Depth (m) Flow 0.100 3.5 1.200	w (1/s) Dep	th the He ther type prage rou th (m) F: 3.000	ad/Dischar of contro ting calcu Low (l/s)	cge relatic ol device c llations wi Depth (m) 7.000 7 500	nship for the ther than a ll be Flow (1/s) 15.5 16 1
The hydrological calculations have h Hydro-Brake® Optimum as specified. Hydro-Brake Optimum® be utilised the invalidated Depth (m) Flow (1/s) Depth (m) Flow 0.100 3.5 1.200 0.200 4.0 1.400 0 300 3 6 1 600	w (1/s) Dep 6.7 7.2 7.6	th (m) F: 3.000 4.000	ad/Dischar of contro ting calcu low (1/s) 10.3 11.1 11 8	cge relatic ol device c ulations wi Depth (m) 7.000 7.500 8.000	<pre>ponship for the other than a ll be Flow (1/s) 15.5 16.1 16.6</pre>
The hydrological calculations have h Hydro-Brake® Optimum as specified. Hydro-Brake Optimum® be utilised the invalidated Depth (m) Flow (1/s) Depth (m) Flow 0.100 3.5 1.200 0.200 4.0 1.400 0.300 3.6 1.600 0.400 4.0 1.800	w (1/s) Dep 6.7 7.2 7.6 8.1	on the He ther type prage rou th (m) F: 3.000 3.500 4.000 4.500	ad/Dischar of contro ting calcu low (1/s) 10.3 11.1 11.8 12.4	rge relation ol device of alations wi Depth (m) 7.000 7.500 8.000 8.500	nship for the other than a ll be Flow (1/s) 15.5 16.1 16.6 17.1
The hydrological calculations have here Hydro-Brake® Optimum as specified. Hydro-Brake Optimum® be utilised the invalidated Depth (m) Flow (1/s) Depth (m) Flow (1/s) 0.100 3.5 0.200 4.0 0.300 3.6 0.400 4.0 0.500 4.4	Deeen based c Should anot anot en these sto ø (1/s) Dep 6.7 7.2 7.6 7.6 8.1 8.5	th (m) F: 3.000 3.500 4.000 5.000	ad/Dischar of contro ting calcu low (1/s) 10.3 11.1 11.8 12.4 13.1	rge relation ol device of alations wi Depth (m) 7.000 7.500 8.000 8.500 9.000	nship for the other than a ll be Flow (1/s) 15.5 16.1 16.6 17.1 17.6
Depth (m) Flow (1/s) Depth (m) Flow 0.100 3.5 1.200 0.200 4.0 1.400 0.300 3.6 1.600 0.400 4.0 1.800 0.500 4.4 2.000 0.600 4.8 2.200	been based of Should anot en these sto an (1/s) Dep 6.7 7.2 7.6 8.1 8.5 8.9	th (m) F: 3.000 3.500 4.000 4.500 5.000 5.500	ad/Dischar of contro ting calcu low (l/s) 10.3 11.1 11.8 12.4 13.1 13.7	rge relation ol device of alations with Depth (m) 7.000 7.500 8.000 8.500 9.000 9.500	nship for the other than a ll be Flow (1/s) 15.5 16.1 16.6 17.1 17.6 18.1
The hydrological calculations have be Hydro-Brake® Optimum as specified. Hydro-Brake Optimum® be utilised the invalidated Depth (m) Flow (1/s) Depth (m) Flow 0.100 3.5 1.200 0.200 4.0 1.400 0.300 3.6 1.600 0.400 4.0 1.800 0.500 4.4 2.000 0.600 4.8 2.200 0.800 5.5 2.400	<pre>opeen based of Should anot en these sto w (l/s) Dep 6.7 7.2 7.6 8.1 8.5 8.9 9.2</pre>	<pre>n the He her type prage rou th (m) F: 3.000 3.500 4.000 4.500 5.000 5.500 6.000</pre>	ad/Dischar of contro ting calcu 10.3 11.1 11.8 12.4 13.1 13.7 14.4	rge relation ol device of alations wi Depth (m) 7.000 7.500 8.000 8.500 9.000 9.500	nship for the other than a ll be Flow (1/s) 15.5 16.1 16.6 17.1 17.6 18.1
The hydrological calculations have here Hydro-Brake® Optimum as specified. Hydro-Brake Optimum® be utilised the invalidated Depth (m) Flow (1/s) Depth (m) Flow 0.100 3.5 0.200 4.0 0.300 3.6 0.400 4.0 0.500 4.4 2.000 0.600 4.8 2.200 0.800 5.5 2.400 1.000 6.1	been based of Should anot en these sto m (1/s) Dep 6.7 7.2 7.6 8.1 8.5 8.9 9.2 9.6	n the He her type rage rou th (m) F: 3.000 3.500 4.000 4.500 5.500 6.000 6.500	ad/Dischar of contro ting calcu low (1/s) 10.3 11.1 11.8 12.4 13.1 13.7 14.4 15.0	rge relatic ol device c ulations wi Depth (m) 7.000 7.500 8.000 8.500 9.000 9.500	nship for the other than a ll be Flow (1/s) 15.5 16.1 16.6 17.1 17.6 18.1
The hydrological calculations have here Hydro-Brake® Optimum as specified. Hydro-Brake Optimum® be utilised the invalidated Depth (m) Flow (1/s) Depth (m) Flow 0.100 3.5 1.200 0.200 4.0 1.400 0.300 3.6 1.600 0.400 4.0 1.800 0.500 4.4 2.000 0.600 4.8 2.200 0.800 5.5 2.400 1.000 6.1 2.600	been based of Should anot en these store m (1/s) Dep 6.7 7.2 7.6 8.1 8.5 8.9 9.2 9.6	n the He cher type orage rou th (m) F: 3.000 3.500 4.000 4.500 5.000 5.500 6.000 6.500	ad/Dischar of contro ting calco 10.3 11.1 11.8 12.4 13.1 13.7 14.4 15.0	rge relatic ol device c ulations wi Depth (m) 7.000 7.500 8.000 8.500 9.000 9.500	nship for the other than a ll be Flow (1/s) 15.5 16.1 16.6 17.1 17.6 18.1
The hydrological calculations have here Hydro-Brake® Optimum as specified. Hydro-Brake Optimum® be utilised the invalidated Depth (m) Flow (1/s) Depth (m) Flow 0.100 3.5 1.200 0.200 4.0 1.400 0.300 3.6 1.600 0.400 4.0 1.800 0.500 4.4 2.000 0.600 4.8 2.200 0.800 5.5 2.400 1.000 6.1 2.600	Deeen based of Should anot en these store w (1/s) Dep 6.7 7.2 7.6 8.1 8.5 8.9 9.2 9.6	<pre>n the He cher type rage rou th (m) F: 3.000 3.500 4.000 4.500 5.500 6.000 6.500 S/PN: 1</pre>	ad/Dischar of contro ting calcu 10.3 11.1 11.8 12.4 13.1 13.7 14.4 15.0	rge relatic ol device c ulations wi Depth (m) 7.000 7.500 8.000 8.500 9.000 9.500	<pre>nship for the ther than a ll be Flow (1/s)</pre>
The hydrological calculations have here Hydro-Brake® Optimum as specified. Hydro-Brake Optimum® be utilised the invalidated Depth (m) Flow (1/s) Depth (m) Flow 0.100 3.5 1.200 0.200 4.0 1.400 0.300 3.6 1.600 0.400 4.0 1.800 0.500 4.4 2.000 0.600 4.8 2.200 0.800 5.5 2.400 1.000 6.1 2.600	Deen based of Should anot en these store 6.7 7.2 7.6 8.1 8.5 8.9 9.2 9.6 1e: 22, Data	<pre>n the He cher type rage rou th (m) F: 3.000 3.500 4.000 4.500 5.000 5.500 6.000 6.500 S/PN: 1</pre>	ad/Dischar of contro ting calcu 10.3 11.1 11.8 12.4 13.1 13.7 14.4 15.0	rge relatic ol device c llations wi Depth (m) 7.000 7.500 8.000 8.500 9.000 9.500	<pre>enship for the other than a ll be Flow (1/s)</pre>
The hydrological calculations have here Hydro-Brake® Optimum as specified. Hydro-Brake Optimum® be utilised the invalidated Depth (m) Flow (1/s) Depth (m) Flow 0.100 3.5 1.200 0.200 4.0 1.400 0.300 3.6 1.600 0.400 4.0 1.800 0.500 4.4 2.000 0.600 4.8 2.200 0.800 5.5 2.400 1.000 6.1 2.600 Hydro-Brake® Optimum Manhor Unit	been based of Should anot en these sto w (1/s) Dep 6.7 7.2 7.6 8.1 8.5 8.9 9.2 9.6	<pre>m the He cher type rage rou th (m) F: 3.000 3.500 4.000 4.500 5.500 6.000 6.500 S/PN: 1 MD-SHE-0</pre>	ad/Dischar of contro ting calcu 10.3 11.1 11.8 12.4 13.1 13.7 14.4 15.0 .008, Vo	rge relatic l device c lations wi Depth (m) 7.000 7.500 8.000 8.500 9.000 9.500 lume (m ³)	enship for the other than a ll be Flow (1/s) 15.5 16.1 16.6 17.1 17.6 18.1 : 5.0
The hydrological calculations have here Hydro-Brake® Optimum as specified. Hydro-Brake Optimum® be utilised the invalidated Depth (m) Flow (1/s) Depth (m) Flow 0.100 3.5 1.200 0.200 4.0 1.400 0.300 3.6 1.600 0.400 4.0 1.800 0.500 4.4 2.000 0.600 4.8 2.200 0.800 5.5 2.400 1.000 6.1 2.600 Hydro-Brake® Optimum Manhor Unit Design Design	been based of Should anot en these sto m (1/s) Dep 6.7 6.7 7.2 7.6 8.1 8.5 8.9 9.2 9.6 1e: 22, D 2 c. Reference (n Head (m) D Dep (1) (1)	<pre>m the He cher type rage rou th (m) F: 3.000 3.500 4.000 4.500 5.500 6.000 6.500 S/PN: 1 MD-SHE-0</pre>	ad/Dischar of contro ting calcu 10.3 11.1 11.8 12.4 13.1 13.7 14.4 15.0	rge relation l device of lations wi Depth (m) 7.000 7.500 8.000 8.500 9.000 9.500 lume (m ³) 1.585-1400 1.585	<pre>mship for the other than a ll be Flow (1/s) 15.5 16.1 16.6 17.1 17.6 18.1 : 5.0</pre>
The hydrological calculations have here Hydro-Brake® Optimum as specified. Hydro-Brake Optimum® be utilised the invalidated Depth (m) Flow (1/s) Depth (m) Flow 0.100 3.5 1.200 0.200 4.0 1.400 0.300 3.6 1.600 0.400 4.0 1.800 0.500 4.4 2.000 0.600 4.8 2.200 0.800 5.5 2.400 1.000 6.1 2.600 Hydro-Brake® Optimum Manhor Unit Design Design	Deen based of Should anot en these stores x (1/s) Dep 0.7 7.2 7.6 8.1 8.5 8.9 9.2 9.6 1e: 22, Dep 1e: 22	<pre>m the He cher type rage rou th (m) F: 3.000 3.500 4.000 4.500 5.500 6.000 6.500 S/PN: 1 MD-SHE-0</pre>	ad/Dischar of contro ting calcu low (1/s) 10.3 11.1 11.8 12.4 13.1 13.7 14.4 15.0 .008, Vo 050-1400-1	rge relation l device of lations wi Depth (m) 7.000 7.500 8.000 8.500 9.000 9.500 lume (m ³) 1.585-1400 1.585 1.4	<pre>mship for the other than a ll be Flow (1/s)</pre>
The hydrological calculations have here Hydro-Brake® Optimum® be utilised the invalidated Depth (m) Flow (1/s) Depth (m) Flow 0.100 3.5 1.200 0.200 4.0 1.400 0.300 3.6 1.600 0.400 4.0 1.800 0.500 4.4 2.000 0.600 4.8 2.200 0.800 5.5 2.400 1.000 6.1 2.600 Hydro-Brake® Optimum Manhop Unit Design Design	Deen based of Should anot en these sto an (1/s) Dep (6.7) 6.7 7.2 7.6 8.1 8.5 8.9 9.2 9.6 1e: 22, D c Reference (n Head (m)) Flow (1/s) Flush-Flow Objective	m the He her type orage rou th (m) F: 3.000 3.500 4.000 4.500 5.500 6.000 6.500 S/PN: 1 MD-SHE-0	ad/Dischar of contro ting calcu low (1/s) 10.3 11.1 11.8 12.4 13.1 13.7 14.4 15.0 .008, Vo 050-1400-1	rge relation l device of lations wi Depth (m) 7.000 7.500 8.000 8.500 9.000 9.500 lume (m ³) 1.585-1400 1.585 1.4 alculated	<pre>mship for the other than a ll be Flow (1/s) 15.5 16.1 16.6 17.1 17.6 18.1 : 5.0</pre>
The hydrological calculations have here Hydro-Brake® Optimum® be utilised the invalidated Depth (m) Flow (1/s) Depth (m) Flow 0.100 3.5 1.200 0.200 4.0 1.400 0.300 3.6 1.600 0.400 4.0 1.800 0.500 4.4 2.000 0.600 4.8 2.200 0.800 5.5 2.400 1.000 6.1 2.600 Hydro-Brake® Optimum Manhoo Unit Design Design	been based of Should anotShould anotan these storean these storean (1/s)Dep6.77.27.68.18.58.99.29.6	n the He her type orage rou th (m) F: 3.000 3.500 4.000 4.500 5.500 6.000 6.500 S/PN: 1 MD-SHE-0 Minimis	ad/Dischar of contro ting calcu 10.3 11.1 11.8 12.4 13.1 13.7 14.4 15.0 008, Vo 050-1400-1 Ca e upstrear	rge relation l device of lations wi Depth (m) 7.000 7.500 8.000 8.500 9.000 9.500 lume (m ³) 585-1400 1.585 1.4 alculated a storage Surface	<pre>mship for the other than a ll be Flow (1/s) 15.5 16.1 16.6 17.1 17.6 18.1 : 5.0</pre>
The hydrological calculations have here Hydro-Brake® Optimum® be utilised the Invalidated Depth (m) Flow (1/s) Depth (m) Flow 0.100 3.5 1.200 0.200 4.0 1.400 0.300 3.6 1.600 0.400 4.0 1.800 0.500 4.4 2.000 0.600 4.8 2.200 0.800 5.5 2.400 1.000 6.1 2.600 Hydro-Brake® Optimum Manho Unit Design 2.200	been based of Should anot en these sto (1/s) Dep (6.7) 7.2 7.6 8.1 8.5 8.9 9.2 9.6 (1e: 22, D) (1e: 22, D) (1e: 22, D) (1e: 1/s) Flow (1/s) Flow (1/s) Flow (1/s) Flow (1/s) Cojective (1/s)	n the He cher type orage rou th (m) F: 3.000 3.500 4.000 4.000 5.000 5.500 6.000 6.500 S/PN: 1 MD-SHE-0 Minimis	ad/Dischar of contro ting calcu 10.3 11.1 11.8 12.4 13.1 13.7 14.4 15.0 050-1400-1 Ca e upstrear	rge relation l device of lations wi Depth (m) 7.000 7.500 8.000 8.500 9.000 9.500 lume (m ³) 1.585-1400 1.585 1.4 alculated a storage Surface Yes	enship for the other than a a a a a a a a a a a a a a a a a a
The hydrological calculations have hydro-Brake® Optimum as specified. Hydro-Brake Optimum® be utilised the invalidated Depth (m) Flow (1/s) Depth (m) Flow 0.100 3.5 1.200 0.200 4.0 1.400 0.300 3.6 1.600 0.400 4.0 1.800 0.500 4.4 2.000 0.600 4.8 2.200 0.800 5.5 2.400 1.000 6.1 2.600 Hydro-Brake® Optimum Manho Unit Design Unit	been based of Should anot en these sto (1/s) Dep (6.7) 7.2 7.6 8.1 8.5 8.9 9.2 9.6 (1e: 22, D) Cle: 22, D) Cle: 22, D) Cle: 22, D) Cle: 1/s) Flow (1/s) Flow (1/s) Flow (1/s) Flow-Flo™ Objective opplication o Available imeter (mm)	n the He cher type orage rou th (m) F: 3.000 3.500 4.000 4.500 5.500 6.000 6.500 S/PN: 1 MD-SHE-0 Minimis	ad/Dischar of contro ting calcu 10.3 11.1 11.8 12.4 13.1 13.7 14.4 15.0 050-1400-1 Ca e upstrear	rge relation l device of lations wi Depth (m) 7.000 7.500 8.000 8.500 9.000 9.500 lume (m ³) 585-1400 1.585 1.4 alculated a storage Surface Yes 50	<pre>enship for the other than a ll be Flow (1/s) 15.5 16.1 16.6 17.1 17.6 18.1 : 5.0</pre>
The hydrological calculations have h Hydro-Brake® Optimum as specified. Hydro-Brake Optimum® be utilised the invalidated Depth (m) Flow (1/s) Depth (m) Flow 0.100 3.5 1.200 0.200 4.0 1.400 0.300 3.6 1.600 0.400 4.0 1.800 0.500 4.4 2.000 0.600 4.8 2.200 0.800 5.5 2.400 1.000 6.1 2.600 Hydro-Brake® Optimum Manhoo Unit Design Jia Invert	been based of Should anot en these stores an these stores block block <tr< td=""><td>n the He cher type orage rou th (m) F: 3.000 3.500 4.000 4.500 5.500 6.000 6.500 S/PN: 1 MD-SHE-0 Minimis</td><td>ad/Dischar of contro ting calcu 10.3 11.1 11.8 12.4 13.1 13.7 14.4 15.0 050-1400-2 ca e upstrear</td><td>rge relation l device of lations wi Depth (m) 7.000 7.500 8.000 8.500 9.000 9.500 lume (m³) 1.585-1400 1.585 1.4 alculated a storage Surface Yes 50 49.365</td><td><pre>enship for the other than a .11 be Flow (1/s)</pre></td></tr<>	n the He cher type orage rou th (m) F: 3.000 3.500 4.000 4.500 5.500 6.000 6.500 S/PN: 1 MD-SHE-0 Minimis	ad/Dischar of contro ting calcu 10.3 11.1 11.8 12.4 13.1 13.7 14.4 15.0 050-1400-2 ca e upstrear	rge relation l device of lations wi Depth (m) 7.000 7.500 8.000 8.500 9.000 9.500 lume (m ³) 1.585-1400 1.585 1.4 alculated a storage Surface Yes 50 49.365	<pre>enship for the other than a .11 be Flow (1/s)</pre>
The hydrological calculations have here Hydro-Brake® Optimum® be utilised the invalidated Depth (m) Flow (1/s) Depth (m) Flow 0.100 3.5 1.200 0.200 4.0 1.400 0.300 3.6 1.600 0.400 4.0 1.800 0.500 4.4 2.000 0.600 4.8 2.200 0.800 5.5 2.400 1.000 6.1 2.600 Hydro-Brake® Optimum Manhoo Unit Design Dia Invert Minimum Outlet Pipe Dia	Description Should anot Should anot en these store Ø Dep 6.7 7.2 7.6 8.1 8.5 8.9 9.2 9.6 Lle: 22, D D c Reference m Head (m) Flow (1/s) Flush-Flo™ Objective opplication Available meter (mm) Level (m) meter (mm)	n the He cher type grage rou th (m) F: 3.000 3.500 4.000 4.500 5.500 6.000 6.500 S/PN: 1 MD-SHE-0 Minimis	ad/Dischar of contro ting calcu 10.3 11.1 11.8 12.4 13.1 13.7 14.4 15.0 050-1400-2 ca e upstrear	rge relation l device of lations wi Depth (m) 7.000 7.500 8.000 8.500 9.000 9.500 lume (m ³) 585-1400 1.585 1.4 alculated a storage Surface Yes 50 49.365 75	<pre>enship for the other than a ll be Flow (1/s) 15.5 16.1 16.6 17.1 17.6 18.1 : 5.0</pre>
The hydrological calculations have he Hydro-Brake® Optimum as specified. Hydro-Brake Optimum® be utilised the invalidated Depth (m) Flow (1/s) Depth (m) Flow 0.100 3.5 1.200 0.200 4.0 1.400 0.300 3.6 1.600 0.400 4.0 1.800 0.500 4.4 2.000 0.600 4.8 2.200 0.800 5.5 2.400 1.000 6.1 2.600 Hydro-Brake® Optimum Manhod Unit Design Minimum Outlet Pipe Dia Suggested Manhole Dia	Description Should anot Should anot en these sto Ø Dep 6.7 7.2 7.6 8.1 8.5 8.9 9.2 9.6 1e: 22, D 0.6 c. Reference m Head (m) Flow (1/s) Flush-Flo™ Objective 0.00000000000000000000000000000000000	<pre>m the He cher type rage rou th (m) F: 3.000 3.500 4.000 4.500 5.500 6.000 6.500 S/PN: 1 MD-SHE-0 Minimis</pre>	ad/Dischar of contro ting calcu 10.3 11.1 11.8 12.4 13.1 13.7 14.4 15.0 050-1400-3 ca e upstrear	rge relation l device of lations wi Depth (m) 7.000 7.500 8.000 8.500 9.000 9.500 lume (m ³) 585-1400 1.585 1.4 alculated a storage Surface Yes 50 49.365 75 1200	<pre>enship for the other than a ll be Flow (1/s) 15.5 16.1 16.6 17.1 17.6 18.1 : 5.0</pre>
The hydrological calculations have here hydro-Brake® Optimum as specified. Hydro-Brake Optimum® be utilised the invalidated Depth (m) Flow (1/s) Depth (m) Flow 0.100 3.5 1.200 0.200 4.0 1.400 0.300 3.6 1.600 0.400 4.0 1.800 0.500 4.4 2.000 0.600 4.8 2.200 0.800 5.5 2.400 1.000 6.1 2.600 Hydro-Brake® Optimum Manhod Unit Design P Sump Dia Invert Minimum Outlet Pipe Dia Suggested Manhole Dia	x (1/s) Dep 6.7 7.2 7.6 8.1 8.5 8.9 9.2 9.6 Dec Reference m Head (m) Flow (1/s) Flush-Flo™ Objective upplication Available meter (mm) Level (m) meter (mm)	<pre>m the He cher type rage rou th (m) F: 3.000 3.500 4.000 4.500 5.000 6.500 6.500 S/PN: 1 MD-SHE-0 Minimis</pre>	ad/Dischar of contro ting calcu 10.3 11.1 11.8 12.4 13.1 13.7 14.4 15.0 050-1400-1 Ca e upstrear	rge relation l device of lations wi Depth (m) 7.000 7.500 8.000 8.500 9.000 9.500 lume (m ³) 585-1400 1.585 1.4 alculated a storage Surface Yes 50 49.365 75 1200	<pre>enship for the other than a ll be Flow (1/s)</pre>
The hydrological calculations have he Hydro-Brake® Optimum as specified. Hydro-Brake Optimum® be utilised the invalidated Depth (m) Flow (1/s) Depth (m) Flow 0.100 3.5 1.200 0.200 4.0 1.400 0.300 3.6 1.600 0.400 4.0 1.800 0.500 4.4 2.000 0.600 4.8 2.200 0.800 5.5 2.400 1.000 6.1 2.600 Hydro-Brake® Optimum Manhod Unit Design Dia Invert Minimum Outlet Pipe Dia Suggested Manhole Dia	been based of Should anot en these sto m (1/s) Dep 6.7 7.2 7.6 8.1 8.5 8.9 9.2 9.6	<pre>m the He cher type rage rou th (m) F: 3.000 3.500 4.000 4.500 5.000 6.500 6.500 S/PN: 1 MD-SHE-0 Minimis</pre>	ad/Dischar of contro ting calcu 10.3 11.1 11.8 12.4 13.1 13.7 14.4 15.0 050-1400-1 Ca e upstrear	rge relation l device of lations wi Depth (m) 7.000 7.500 8.000 8.500 9.000 9.500 lume (m ³) 585-1400 1.585 1.4 alculated a storage Surface Yes 50 49.365 75 1200	enship for the other than a a a a a a a a a a a a a a a a a a

Simpson Associates					Page 5
1 Market Place Mews					
Henley-on-Thames					4
RG9 2AH					Micco
Date 21/10/2021 11:3	31	Designed	by Bryn.I	awton	
File Main Network S:	imulation	. Checked	by		Diamaye
Micro Drainage		Network	2017.1.2		
Hydro-Brake® (Optimum Manh	nole: 22, I	DS/PN: 1.00)8, Volume ((m ³): 5.0
	Control 1	Points	Head (m) Flo	ow (1/s)	
I	Design Point (Calculated)	1.585	1.4	
		Flush-Flo™	0.219	1.0	
N	Mean Flow over	Head Range	U.446 _	0.8 1.0	
The hydrological calc Hydro-Brake® Optimum Hydro-Brake Optimum® invalidated	ulations have as specified. be utilised t	been based Should ano hen these st	on the Head/ ther type of orage routin	Discharge rel control devi g calculation	ationship for the ce other than a s will be
Depth (m) Flow (l/s)	Depth (m) Fl	ow (l/s) Dep	oth (m) Flow	(1/s) Depth	(m) Flow (l/s)
0.100 0.9	1.200	1.2	3.000	1.9 7.	000 2.8
0.200 1.0	1.400	1.3	3.500	2.0 7.	500 2.9
0.300 1.0	1.600	1.4	4.000	2.1 8.	500 <u>2.9</u>
0.500 0.8	2.000	1.6	5.000	2.4 9.	000 3.1
0.600 0.9	2.200	1.6	5.500	2.5 9.	500 3.2
0.800 1.0	2.400	1.7	6.000	2.6	
1.000 1.1	2.600	1.7	6.500	2.7	

Simpson Associates		Page 6
1 Market Place Mews		
Henley-on-Thames		L
RG9 2AH		Micco
Date 21/10/2021 11:31	Designed by Bryn.Tawton	
File Main Network Simulation	Checked by	Diamaye
Micro Drainage	Network 2017.1.2	
Storage	Structures for Storm	
Terels are Devel	Markeles 16 DO (DNs 6 004	
	Mannole: 16, DS/PN: 0.004	
Inve	rt Level (m) 55.400	
Depth (m) Are	ea (m²) Depth (m) Area (m²)	
0.000	60.0 0.200 98.0	
Cellular Storag	e Manhole: 22, DS/PN: 1.008	
Inver Infiltration Coefficient	rt Level (m) 49.440 Safety Factor 2.0	
Infiltration Coefficient	Side (m/hr) 0.00000 F0103129 0.93	
Depth (m) Area (m²) Inf. Are	ea (m²) Depth (m) Area (m²) Inf. Area ((m²)
0.000 150.0	150.0 1.501 0.0 22	25.0
1.500 150.0	225.0	
©1982-	-2017 XP Solutions	

Simpson	Associates					Page 7
1 Market	Place Mew	S				
Henley-o	n-Thames					L
RG9 2AH						Micco
Date 21/	10/2021 11	:31	Designed by	y Bryn.Taw	rton	Dcainago
File Mai	n Network	Simulation	Checked by			Diamaye
Micro Dr	ainage		Network 201	17.1.2		
1 year 1	Return Per:	iod Summary o	f Critical Re	esults by	Maximum I	Level (Rank 1)
		<u> </u>	for Storm	#		
	Areal R	eduction Factor	imulation Crite	eria onal Flow -	s % of ⊤otal	Flow 0 000
	H	ot Start (mins)	0 MA	ADD Factor *	10m³/ha St	orage 2.000
Manh	Hot S ole Headloss	tart Level (mm) Coeff (Global)	0 0.500 Flow per	Ir. Person per	let Coeffie Dav (l/per	cient 0.800 (dav) 0.000
Fo	ul Sewage pe	r hectare (1/s)	0.000			,, ,
	Number	of Input Hydrog	raphs 0 Number	of Storage	Structures	2
	Numbe Number	er of Online Con of Offline Con	trols 2 Number trols 0 Number	of Time/Are of Real Tim	ea Diagrams me Controls	0 0
		Synth	etic Rainfall i	Details		
	Ra	infall Model	FSI	R Ratio	R 0.400	
		Region En	gland and Wale:	s Cv (Summe: O Cv (Winter	r) 0.750	
		145 00 (nun)	20.000	U CV (WINCE	1) 0.040	
	Margin	for Flood Risk	Warning (mm) 1	150.0 D' Fine Thert	VD Status O	N
		Allar	DTS Status	ON	ia Status O	LN
	Durat	Profile(s) ion(s) (mins)	15, 30, 60, 3	120, 180, 24	Summer and 40, 360, 480	Winter 0, 600,
			720, 960,	1440, 2160,	2880, 4320	, 5760,
	Return Perio	od(s) (years)			/200, 8640	, 10080 30, 100
	Climat	ce Change (%)			, (р, о, о
119	-/MU	Poturn Climat	o First (V)	First (V)	First (7)	Water
PN Na	ame Storm	Period Change	e Surcharge	Flood	Overflow	Act. (m)
1 000	1 15 Winte	r 1 +0	ç.			59 450
2.000	2 15 Winte	r 1 +0	00			59.450
1.001	3 15 Winte	r 1 +0	00			59.167
3.000	4 15 Summe	r 1 +0	010			59.324
4.000	5 15 Summe	r 1 +0	0			57.005
5.000	6 15 Winte	r 1 +0	° 100/1⊑ 0			59.139
1 002	o is Winte	r 1 +0	s IUU/15 Summe.	Ľ		56.824
1 004	/ IC Winte	r 1 10	٥ ٩			30.091 54 260
1 005	9 15 Winte	⊥ ⊥ +0 r 1 ⊥^	0			51 660
6 000	10 15 Winte	r 1 +0	े २			51.000 60 349
6.001	11 15 Winte	r 1 +0	् २			55.926
6.002	12 15 Winte	r 1 +0	00			55.753
6.003	13 15 Winte	r 1 +0	00			55.587
7.000	14 15 Winte	r 1 +0	00			60.349
7.001	15 15 Winte	r 1 +0	9			56.546
6.004	16 60 Winte	r 1 +0	90			55.447
6.005	17 60 Winte	r 1 +0	% 100/30 Winte	r		55.445
6.006	18 15 Winte	r 1 +0	00			55.204
		©1982	-2017 XP Sol	utions		

Simpson Associates		Page 8
1 Market Place Mews		
Henley-on-Thames		L
RG9 2AH		Micco
Date 21/10/2021 11:31	Designed by Bryn.Tawton	
File Main Network Simulation	Checked by	Diamaye
Micro Drainage	Network 2017.1.2	

<u>1 year Return Period Summary of Critical Results by Maximum Level (Rank 1)</u> <u>for Storm</u>

	US/MH	Surcharged Depth	Flooded Volume	Flow /	Overflow	Pipe Flow		Level
PN	Name	(m)	(m³)	Cap.	(1/s)	(l/s)	Status	Exceeded
1.000	1	-0.100	0.000	0.25		4.2	OK	
2.000	2	-0.100	0.000	0.25		4.2	OK	
1.001	3	-0.158	0.000	0.19		18.6	OK	
3.000	4	-0.126	0.000	0.06		2.2	OK	
4.000	5	-0.115	0.000	0.13		2.2	OK	
5.000	6	-0.111	0.000	0.15		5.2	OK	
1.002	6	-0.176	0.000	0.35		28.0	OK	
1.003	7	-0.209	0.000	0.19		26.4	OK	
1.004	8	-0.240	0.000	0.09		26.5	OK	
1.005	9	-0.240	0.000	0.09		26.5	OK	
6.000	10	-0.271	0.000	0.02		4.8	OK	
6.001	11	-0.244	0.000	0.08		4.5	OK	
6.002	12	-0.246	0.000	0.07		4.3	OK	
6.003	13	-0.241	0.000	0.09		4.2	OK	
7.000	14	-0.121	0.000	0.08		3.2	OK	
7.001	15	-0.124	0.000	0.07		3.2	OK	
6.004	16	-0.103	0.000	0.18		1.9	OK	
6.005	17	-0.085	0.000	0.10		1.9	OK	
6.006	18	-0.116	0.000	0.11		4.6	OK	

Simpson Associates		Page 9
1 Market Place Mews		
Henley-on-Thames		L
RG9 2AH		Micco
Date 21/10/2021 11:31	Designed by Bryn.Tawton	Desinado
File Main Network Simulation	Checked by	Dialitaye
Micro Drainage	Network 2017.1.2	

<u>1 year Return Period Summary of Critical Results by Maximum Level (Rank 1)</u> <u>for Storm</u>

									Water
	US/MH		Return	Climate	First (X)	First (Y)	First (Z)	Overflow	Level
PN	Name	Storm	Period	Change	Surcharge	Flood	Overflow	Act.	(m)
6.007	19	15 Winter	1	+0응					52.272
1.006	20	240 Winter	1	+0%	30/15 Summer				49.672
1.007	21	240 Winter	1	+0%	30/15 Summer				49.671
1.008	22	240 Winter	1	+0%	30/30 Summer				49.671

PN	US/MH Name	Surcharged Depth (m)	Flooded Volume (m³)	Flow / Cap.	Overflow (1/s)	Pipe Flow (l/s)	Status	Level Exceeded
6.007	19	-0.128	0.000	0.05		4.6	OK	
1.006	20	-0.118	0.000	0.16		8.2	OK	
1.007	21	-0.079	0.000	0.17		8.1	OK	
1.008	22	-0.069	0.000	0.00		0.9	OK	

Simpso	on Ass	sociates						Page	: 10			
1 Marł	ket Pl	ace Mews										
Henley	/-on-1	hames						4				
RG9 24	ΑH							Mic	Jun			
Date 2	21/10/	/2021 11 : 3	1		Designed by	Bryn.Taw	ton		.iu			
File M	Main N	Network Si	mulati	on	Checked by	-		Ura	inage			
Micro	Drair	nage			Network 201	7.1.2						
		2										
30 ye	ar Re	turn Perio	d Summ	nary of	Critical R	esults by	Maximum	Level (F	≀ank 1)			
					for Storm							
		Arcal Rod	ation T	Sim	ulation Crite	ria enal Elevi	° of Total	Elerr 0 (200			
		Hot	Start ((mins)	0000 Additi 0 MA	DD Factor *	10m³/ha St	corage 2.0	000			
Hot Start Level (mm) 0 Inlet Coefficient 0.800												
М	anhole	Headloss C	oeff (Gl	obal) O	.500 Flow per	Person per	Day (l/per	c/day) 0.0	000			
	Foul	Sewage per 1	nectare	(l/s) 0	.000							
		Number of	Input	Hvdrogra	phs 0 Number	of Storage	Structures	2				
		Number	of Onli	ne Contr	ols 2 Number	of Time/Are	ea Diagrams	0				
		Number c	f Offli	ne Contr	ols 0 Number	of Real Tir	me Controls	0				
				Crupthat	ia Deinfell 1							
		Rain	fall Mo	del del	<u>IC KAINIAII I</u> FSF	Ratio	B 0.400					
		1.0.11	Reg	ion Engl	and and Wales	Cv (Summe:	r) 0.750					
			M5-60 (1	mm)	20.000) Cv (Winte:	r) 0.840					
				1 5 1 1 1		F.O. 0						
		Margin I	or F100	a Risk W Analvs	arning (mm) . is Timesten	50.0 D'	VD Status O ia Status O	N				
				rmary0	DTS Status	ON	La beacab o					
			Profile	·(s)			Summer and	Winter				
		Duration	n(s) (mi	.ns)	15, 30, 60, 3	20, 180, 24	10, 360, 48	0, 600,				
					720, 960, 2	440, 2160,	2880, 4320	, 5760,				
	De	burne Devied	(-) (7200, 8640	, 10080				
	Re	Climate	(s) (yea Change	.rs) (%)			±,	30, 100 0. 0. 0				
		011macc	onunge	(0)				0, 0, 0				
	IIS /MH		Return	Climate	First (X)	First (V)	First (7)	Overflow	Water			
PN	Name	Storm	Period	Change	Surcharge	Flood	Overflow	Act.	(m)			
	-											
1.000	1	15 Winter	30	+0%					59.484			
1.001	23	15 Winter 15 Winter	30 30	+03					59.217			
3.000	4	15 Winter	30	+0%					59.338			
4.000	5	15 Summer	30	+0읭					57.027			
5.000	6	15 Winter	30	+0%					59.163			
1.002	6	15 Winter	30	+0%	100/15 Summe	r			56.934			
1 004	/	15 Winter 15 Winter	30 30	+0종 +0%					56./5/ 54 299			
1.005	9	15 Winter	30	+0%					51.700			
6.000	10	15 Winter	30	+0%					60.363			
6.001	11	15 Winter	30	+0%					55.959			
6.002	12	15 Winter	30	+0%					55.785			
7 000	1J 1/	15 Winter	20 20	+U% +N%					33.622 60 366			
7.001	15	15 Winter	30	+0%					56.562			
6.004	16	60 Winter	30	+0%					55.506			
6.005	17	120 Winter	30	+0%	100/30 Winte	r			55.513			
6.006	18	15 Winter	30	+0%					55.233			
				©1982-	2017 XP Sol	utions						

Simpson Associates		Page 11
1 Market Place Mews		
Henley-on-Thames		L
RG9 2AH		Micco
Date 21/10/2021 11:31	Designed by Bryn.Tawton	
File Main Network Simulation	Checked by	Diamaye
Micro Drainage	Network 2017.1.2	

30 year Return Period Summary of Critical Results by Maximum Level (Rank 1) for Storm

		Surcharged	Flooded			Pipe		
	US/MH	Depth	Volume	Flow /	Overflow	Flow		Level
PN	Name	(m)	(m³)	Cap.	(1/s)	(l/s)	Status	Exceeded
1 000	1	0.066	0 000	0 60		10.0	OV	
1.000	1 1	-0.000	0.000	0.00		10.2	ON.	
2.000	2	-0.066	0.000	0.60		10.2	OK	
1.001	3	-0.108	0.000	0.53		52.1	OK	
3.000	4	-0.112	0.000	0.15		5.5	OK	
4.000	5	-0.093	0.000	0.31		5.5	OK	
5.000	6	-0.087	0.000	0.37		12.8	OK	
1.002	6	-0.066	0.000	0.95		75.5	OK	
1.003	7	-0.143	0.000	0.50		70.3	OK	
1.004	8	-0.201	0.000	0.24		70.3	OK	
1.005	9	-0.200	0.000	0.24		70.8	OK	
6.000	10	-0.257	0.000	0.05		11.7	OK	
6.001	11	-0.211	0.000	0.18		11.1	OK	
6.002	12	-0.214	0.000	0.18		10.6	OK	
6.003	13	-0.207	0.000	0.21		10.4	OK	
7.000	14	-0.104	0.000	0.20		7.9	OK	
7.001	15	-0.108	0.000	0.17		7.9	OK	
6.004	16	-0.044	0.000	0.37		4.0	OK	
6.005	17	-0.017	0.000	0.18		3.4	OK	
6.006	18	-0.087	0.000	0.35		14.3	OK	

Simpson Associates		Page 12
1 Market Place Mews		
Henley-on-Thames		L
RG9 2AH		Micco
Date 21/10/2021 11:31	Designed by Bryn.Tawton	Dcainago
File Main Network Simulation	Checked by	Diamaye
Micro Drainage	Network 2017.1.2	

30 year Return Period Summary of Critical Results by Maximum Level (Rank 1) for Storm

									Water
	US/MH		Return	Climate	First (X)	First (Y)	First (Z)	Overflow	Level
PN	Name	Storm	Period	Change	Surcharge	Flood	Overflow	Act.	(m)
C 007	1.0	15 57	2.0						F0 001
6.00/	19	15 Winter	30	+0%					52.291
1.006	20	480 Winter	30	+0%	30/15 Summer				50.127
1.007	21	480 Winter	30	+0읭	30/15 Summer				50.126
1.008	22	480 Winter	30	+0%	30/30 Summer				50.126

PN	US/MH Name	Surcharged Depth (m)	Flooded Volume (m³)	Flow / Cap.	Overflow (l/s)	Pipe Flow (l/s)	Status	Level Exceeded
6.007	19	-0.109	0.000	0.16		14.2	OK	
1.006	20	0.337	0.000	0.21		11.0	SURCHARGED	
1.007	21	0.376	0.000	0.23		10.8	SURCHARGED	
1.008	22	0.386	0.000	0.00		1.0	SURCHARGED	

Simpso	on Ass	sociates						Page	13				
1 Marl	ket Pl	Lace Mews											
Henley	y-on-I	Thames						z	~				
RG9 22	ΑH							Mic	Jun				
Date 2	21/10/	/2021 11 : 3	1		Designed by	/ Bryn.Taw	rton		in ago				
File M	Main N	Network Si	mulati	on	Checked by			DId	naye				
Micro	Drair	nage			Network 201	7.1.2							
100	year l	Return Per	riod Su	ummary	of Critical	Results	by Maximu	m Level	(Rank				
				1) for Stor	<u>n</u>							
				Sim	ulation Crite	ria							
		Areal Red	uction E	actor 1	.000 Additi	onal Flow -	- % of Total	l Flow 0.0	000				
		Hot	Start	(mins)	0 MA	.DD Factor *	f 10m³/ha St	torage 2.0	000				
	Hot Start Level (mm) 0 Inlet Coefficient 0.800												
M	Manhole Headloss Coeff (Global) 0.500 Flow per Person per Day (1/per/day) 0.000 Foul Sewage per bectare (1/s) 0.000												
	1001	bonago por .		(1)0) 0									
		Number of	Input	Hydrogra	phs 0 Number	of Storage	Structures	2					
		Number	of Onli	ne Contr no Contr	ols 2 Number	of Time/Ar	ea Diagrams mo Controls	0					
		Number C	U UIIII	ne conci	OIS 0 NUMBEL	OI Real II	me concrors	0					
				Synthet	ic Rainfall 1	Details							
		Rain	fall Mo	del	FSI	Ratio	R 0.400						
			Keg M5-60 (1	ion Engl mm)	and and Wales) Cv (Summe	r) 0.750						
			110 00 (.	,	20.000		1, 0.010						
		Margin f	or Floo	d Risk W	arning (mm) 1	_50.0 D	VD Status C	N					
				Analys	DTS Status	Fine Inert	ia Status C	N					
					DIS Status	ON							
		Duratio	Profile	(S)	15 30 60 7	20 190 2	Summer and	Winter					
		Duración	1(5) (1111	.115)	720, 960, 1	120, 180, 2 [.] 1440, 2160,	2880, 4320	, 5760,					
							7200 , 8640	, 10080					
	Ret	turn Period	(s) (yea	rs)			1,	30, 100					
		Climate	Change	(8)				0, 0, 0					
									Water				
DN	US/MH	C t a a a a	Return	Climate	First (X)	First (Y)	First (Z)	Overflow	Level				
PN	Name	Storm	Period	Change	Surcharge	F100a	Overiiow	ACL.	(111)				
1.000	1	15 Winter	100	+0%					59.501				
2.000	2	15 Winter	100	+0%					59.501				
3 000	3	15 Winter 15 Winter	100	+0% +0%					59.239 59.344				
4.000	5	15 Summer	100	+0%					57.070				
5.000	6	15 Winter	100	+0%					59.173				
1.002	6	15 Summer	100	+0%	100/15 Summe	r			57.046				
1.003	7	15 Summer	100	+0%					56.786				
1.004	0 9	15 Winter	100	+0%					51.714				
6.000	10	15 Winter	100	+0%					60.369				
6.001	11	15 Winter	100	+0%					55.972				
6.002	12	15 Winter	100	+0응					55.798				
7.000	13 14	15 Winter	100	+0%					60.373				
7.001	15	15 Winter	100	+0%					56.568				
6.004	16	60 Winter	100	+0%					55.543				
6.005	17	120 Winter	100	+0%	100/30 Winte	r			55.570				
0.000	Tβ	ij winter	TOO	+0%	0.01				JJ.244				
1				©1982-	2017 XP Sol	utions							

Simpson Associates		Page 14
1 Market Place Mews		
Henley-on-Thames		L
RG9 2AH		Micco
Date 21/10/2021 11:31	Designed by Bryn.Tawton	
File Main Network Simulation	Checked by	Dialitaye
Micro Drainage	Network 2017.1.2	

100 year Return Period Summary of Critical Results by Maximum Level (Rank 1) for Storm

	110 /MH	Surcharged	Flooded	Flow /	Overflow	Pipe		I orrol
PN	Name	(m)	(m ³)	Cap.	(1/s)	(1/s)	Status	Exceeded
				- - ·	· · - ·	· · · ·		
1.000	1	-0.049	0.000	0.78		13.2	OK	
2.000	2	-0.049	0.000	0.78		13.2	OK	
1.001	3	-0.086	0.000	0.69		67.1	OK	
3.000	4	-0.106	0.000	0.19		7.1	OK	
4.000	5	-0.050	0.000	0.40		7.0	OK	
5.000	6	-0.077	0.000	0.48		16.6	OK	
1.002	6	0.046	0.000	1.23		97.1	SURCHARGED	
1.003	7	-0.114	0.000	0.63		88.7	OK	
1.004	8	-0.186	0.000	0.30		91.2	OK	
1.005	9	-0.186	0.000	0.31		91.7	OK	
6.000	10	-0.251	0.000	0.06		15.2	OK	
6.001	11	-0.198	0.000	0.24		14.4	OK	
6.002	12	-0.201	0.000	0.23		13.7	OK	
6.003	13	-0.194	0.000	0.27		13.5	OK	
7.000	14	-0.097	0.000	0.27		10.3	OK	
7.001	15	-0.102	0.000	0.22		10.2	OK	
6.004	16	-0.007	0.000	0.39		4.2	OK	
6.005	17	0.040	0.000	0.20		3.8	SURCHARGED	
6.006	18	-0.076	0.000	0.46		18.9	OK	

Simpson Associates		Page 15
1 Market Place Mews		
Henley-on-Thames		L
RG9 2AH		Micco
Date 21/10/2021 11:31	Designed by Bryn.Tawton	Dcainago
File Main Network Simulation	Checked by	Diamaye
Micro Drainage	Network 2017.1.2	

100 year Return Period Summary of Critical Results by Maximum Level (Rank 1) for Storm

									Water
	US/MH		Return	Climate	First (X)	First (Y)	First (Z)	Overflow	Level
PN	Name	Storm	Period	Change	Surcharge	Flood	Overflow	Act.	(m)
C 007	1.0	15 Minter	100	100					F0 007
6.007	19	15 Winter	100	+08					52.297
1.006	20	600 Winter	100	+0%	30/15 Summer				50.377
1.007	21	600 Winter	100	+0%	30/15 Summer				50.377
1.008	22	600 Winter	100	+0%	30/30 Summer				50.376

	PN	US/MH Name	Surcharged Depth (m)	Flooded Volume (m³)	Flow / Cap.	Overflow (l/s)	Pipe Flow (l/s)	Status	Level Exceeded
(6.007	19	-0.103	0.000	0.21		18.7	OK	
-	1.006	20	0.587	0.000	0.23		11.8	SURCHARGED	
-	1.007	21	0.627	0.000	0.25		11.7	SURCHARGED	
-	1.008	22	0.636	0.000	0.01		1.1	SURCHARGED	

Simpso	n Assoc	ciates	5							Pag	e 1
1 Mark	et Plac	ce Mer	٧S							5	
Henley	-on-Tha	ames								2	4
RG9 2A	H									Mi	
Date 2	1/10/20	021 13	L:44		De	signed by	Bryn.	Tawton		De	ainado
File M	ain Net	twork	Simu	lation	Ch	ecked by				DIG	maye
Micro	Drainag	ge			Ne	twork 2017	7.1.2				
		STOR	া ওদাআ	FR DESI	GN by	the Modif	ied R	ational	Metho	d	
		01010			Jon by	che nour.			110 0110	<u>u</u>	
				Networ	k Desi	gn Table :	for S	torm			
PN	Length	Fall	Slop	e I.Area	T.E.	Base	k	HYD DI	A Sect	ion Type	Auto
	(m)	(m)	(1:X) (ha)	(mins)	Flow (l/s)	(mm)	SECT (m	m)		Design
1.000	24.900	0.250	99.	6 0.028	4.00	0.0	0.600	o 1	50 Pipe	/Conduit	ð
2.000	24.900	0.250	99.	6 0.028	4.00	0.0	0.600	o 1	50 Pipe	/Conduit	ð
1.001	56.700	2.150	26.	4 0.088	0.00	0.0	0.600	o 2	<mark>25</mark> Pipe	/Conduit	ð
3.000	17.400	0.870	20.	0 0.015	4.00	0.0	0.600	o 1	50 Pipe	/Conduit	ð
4.000	9.400	0.118	79.	7 0.015	4.00	0.0	0.600	o 1	50 Pipe	/Conduit	ð
5.000	53.410	2.100	25.	4 0.035	4.00	0.0	0.600	o 1	50 Pipe	/Conduit	ð
1.002	9.600	0.100	96.	0.000	0.00	0.0	0.600	o <mark>3</mark>	00 Pipe	/Conduit	.
1.003	143.000	2.400	59.	6 0.000	0.00	0.0	0.600	o <u>3</u>	00 Pipe	/Conduit	- 8
1.004	29.860	2.600	11.	5 0.000	0.00	0.0	0.600	o 3	00 Pipe	/Conduit	- 6
1.005	23.480	2.110	11.	1 0.000	0.00	0.0	0.600	o <u>3</u>	00 Pipe	/Conduit	
6.000	57.200	2.860	20.	0 0.032	4.00	0.0	0.600	o 3	00 Pipe	/Conduit	a
6.001	51.230	0.171	300.	0.000	0.00	0.0	0.600	o 3	00 Pipe	/Conduit	Ä
6.002	51.230	0.171	300.	0.000	0.00	0.0	0.600	o <u>3</u>	00 Pipe	/Conduit	. Ă
6.003	10.000	0.033	300.	0.000	0.00	0.0	0.600	o 3	00 Pipe	/Conduit	. .
				N	etwork	Results T	able				
					ceworn	1000100 1	abic				
P	N Rai	.n T	.c.	US/IL Σ	I.Area	Σ Base	Foul	Add Flow	w Vel	Cap 1	Flow
	(mm/)	hr) (m	ins)	(m)	(ha)	Flow (l/s)	(l/s)	(1/s)	(m/s)	(l/s) (1/s)
1.0	00 50	.00	4.41	59.400	0.028	0.0	0.0	0.	0 1.01	17.8	3.8
2.0	00 50	.00	4.41	59.400	0.028	0.0	0.0	0.	0 1.01	17.8	3.8

2.000	50.00	4.41	59.400	0.028	0.0	0.0	0.0	1.01	17.8	3.8	
1.001	50.00	4.78	59.100	0.144	0.0	0.0	0.0	2.56	101.7	19.5	
3.000	50.00	4.13	59.300	0.015	0.0	0.0	0.0	2.26	40.0	2.0	
4.000	50.00	4.14	56.970	0.015	0.0	0.0	0.0	1.13	19.9	2.0	
5.000	50.00	4.44	59.100	0.035	0.0	0.0	0.0	2.00	35.4	4.7	
1.002	50.00	4.88	56.700	0.209	0.0	0.0	0.0	1.60	113.4	28.3	
1.003	50.00	6.05	56.600	0.209	0.0	0.0	0.0	2.04	144.2	28.3	
1.004	49.76	6.16	54.200	0.209	0.0	0.0	0.0	4.66	329.1	28.3	
1.005	49.44	6.24	51.600	0.209	0.0	0.0	0.0	4.74	335.0	28.3	
6.000	50.00	4.27	60.320	0.032	0.0	0.0	0.0	3.53	249.6	4.3	
6.001	50.00	5.22	55.870	0.032	0.0	0.0	0.0	0.90	63.8	4.3	
6.002	49.73	6.16	55.699	0.032	0.0	0.0	0.0	0.90	63.8	4.3	
6.003	49.04	6.35	55.528	0.032	0.0	0.0	0.0	0.90	63.8	4.3	
		2.00					2.0		00.0		
			©198	82-2017 XP	Solut:	ions					

Simpso	on Asso	ciate	es								Pa	ge 2
1 Mark	ket Pla	ace Me	ews									
Henley	y-on-Th	names									4	4
RG9 2 <i>A</i>	ΔH										M	licro
Date 2	21/10/2	2021 1	1:44		De	signed by	Bryn.	.Tawt	on			cainado
File M	1ain Ne	etwork	s Simu	lation	Ch	ecked by					U	amaye
Micro	Draina	ige			Ne	twork 2017	7.1.2					
		STOR	M SEWI	ER DESI	GN by	the Modif	ied Ra	ation	al M	letho	d	
				NT - 1 -	1							
				Networ	rk Desi	gn Table :	IOF S	LOIM				
PN	Length	Fall	Slope	I.Area	T.E.	Base	k	HYD	DIA	Sect:	ion Typ	pe Auto
	(m)	(m)	(1:X)	(ha)	(mins)	Flow (l/s)	(mm)	SECT	(mm)			Design
7.000	78.100	3.800	20.6	5 0.022	4.00	0.0	0.600	0	150	Pipe,	/Condu	it 🔒
7.001	14.260	1.120	12.7	0.000	0.00	0.0	0.600	0	150	Pipe,	/Condu	it 💣
6 004	1 0.85	0 002	500 0		0 00	0 0	0 600	0	150	Pine	/Condu-	it a
6.005	16.460	0.206	80.0	0.000	0.00	0.0	0.600	0	150	Pipe,	/Condui	it 🔒
6.006	53.770	2.920	18.4	0.038	0.00	0.0	0.600	0	150	Pipe,	/Condu	it 👸
6.007	8.120	2.610	3.1	0.000	0.00	0.0	0.600	0	150	Pipe,	/Condui	it 🖰
1.006	11.980	0.040	299.5	5 0.000	0.00	0.0	0.600	0	300	Pipe	/Condu ⁺	it 🗛
1.007	11.020	0.010	1081.8	0.000	0.00	0.0	0.600	0	375	Pipe,	/Condui	it 🔐
1.008	14.600	0.290	50.3	0.000	0.00	0.0	0.600	0	375	Pipe,	/Condu	it 🕜
						- 1						
				N	etwork	Results 'I	able					
P	'N Ra	in	т.с.	US/IL Σ	I.Area	Σ Base	Foul	Add F	'low	Vel	Cap	Flow
	(mm,	/hr) (mins)	(m)	(ha)	Flow (l/s)	(l/s)	(1/:	s)	(m/s)	(l/s)	(1/s)
7.0	000 50	0.00	4.58 6	50.320	0.022	0.0	0.0		0.0	2.23	39.4	3.0
7.0	001 50	0.00	4.67 5	56.520	0.022	0.0	0.0		0.0	2.84	50.2	3.0
6.1	004 48	8.88	6.39 5	55.400	0.054	0.0	0.0		0.0	0.44	7.8	7.1
6.0	005 48	B.00	6.63 5	55.380	0.054	0.0	0.0		0.0	1.12	19.9	7.1
6.0	006 40	6.70	7.01 5	55.170	0.092	0.0	0.0		0.0	2.36	41.7	11.6
6.0	007 40	6.62	7.03 5	52.250	0.092	0.0	0.0		0.0	5.76	101.7	11.6
1.1	006 4	5.90	7.26 4	19.490	0.301	0.0	0.0		0.0	0.90	63.8	37.4
1.0	007 44	4.85	7.59 4	19.375	0.301	0.0	0.0		0.0	0.54	59.9	37.4
1.0	008 44	4.56	7.69 4	19.365	0.301	0.0	0.0		0.0	2.56	282.6	37.4
						fall Data	41 - E	O+				
			11.66	= FIOW1	ing Out	iall Deta	TTR I(UL ST	OTIU			
		0	utfall	Outfa	11 C. L	evel I. Leve	el M	lin	D,L	w		
		Pip	e Numbe	er Name	e (m	i) (m)	I. 1 (Level m)	(mm)	(mm)		
			1 00	18	⊑ 1	100 /00	75 /	9 150	525	0		
			1.00		51	.100 49.0	, 5 4		JZJ	U		
1												

Simpson Associates		Page 3
1 Market Place Mews		rage 5
I Maiket Flace Mews		2
Henrey-on-manes		~ m
RG9 ZAH		Micro
Date 21/10/2021 11:44	Designed by Bryn.'L'awton	Drainarre
File Main Network Simulation	Checked by	bremiergie
Micro Drainage	Network 2017.1.2	
File Main Network Simulation Micro Drainage Simulation Volumetric Runoff Coeff Areal Reduction Factor Hot Start (mins) Hot Start Level (mm) Manhole Headloss Coeff (Global) Foul Sewage per hectare (1/s) Number of Input Hydrogr Number of Online Cont Number of Offline Cont Synthet Rainfall Model Return Period (years) Region Engla M5-60 (mm) Ratio R	Checked by Network 2017.1.2 on Criteria for Storm 0.750 Additional Flow - % of Total Fl 1.000 MADD Factor * 10m ³ /ha Stora 0 Inlet Coefficcie 0 Flow per Person per Day (1/per/da 0.500 Run Time (min 0.000 Output Interval (min raphs 0 Number of Storage Structures 2 rols 2 Number of Time/Area Diagrams 0 rols 0 Number of Real Time Controls 0 <u>ic Rainfall Details</u> FSR Profile Type Sum 1 Cv (Summer) 0. 20.000 Storm Duration (mins) 0.400	ow 0.000 ge 2.000 nt 0.800 y) 0.000 s) 60 s) 1
0.1982-	-2017 XP Solutions	

Simpson Ass	ociates						Page 4
1 Market Pl	ace Mews						
Henley-on-T	hames						4
RG9 2AH							- Com
Date 21/10/	2021 11:44		Designe	d by Bry	n.Tawton		MICLO
Eilo Main N	otuork Cim	ulation	Chookoo	bu			Drainage
FILE MAIN N	etwork Sim		Checked				Annual of the second
Micro Drain	age		Network	2017.1.	. 2		
Hydro	-Brake® On	<u>Online</u>	Control	s for St	<u>.orm</u> 6 005 Vol	11me (m ³)	• 0 9
ilyaro	Diaxee op		10. 177	D0/11.	0.000, 101		<u> </u>
		IInit	Referenc	A MD-SHE-	0103-4000-0	400-4000	
		Desid	n Head (m		0103 1000 0	0.400	
		Design	Flow (l/s)		4.0	
			Flush-Flo	TM	Ca	lculated	
			Objectiv	e Minimi	se upstream	storage	
		A	pplicatio	n		Surface	
		Sump	Availabl	e		Yes	
		Dla Tovort	Level (mm)		1UJ 55 380	
	Minimum Ou	tlet Pine Dia	meter (mm)		150	
	Suggeste	d Manhole Dia	meter (mm)		1200	
				,			
		Control Po	ints	Head (m)	Flow (l/s)		
	Des	sign Point (Ca	alculated	0.400	9 4.0)	
	200]	Flush-Flo ¹	[™] 0.156	5 4.0		
			Kick-Flo	0.306	5 3.5	j.	
	Mea	an Flow over H	Head Range	- e	- 3.2		
The hydrolo	gical calcul	ations have b	een based	l on the H	ead/Dischar	ge relation	nship for the
Hydro-Brake	® Optimum as	s specified.	Should ar	other typ	e of contro	l device o	ther than a
invalidated	optimum® be	e utilised the	en these s	lorage ro	uting calcu	Lations wi	ii be
invariaacea	L.						
Depth (m)	Flow (l/s)	Oepth (m) Flow	w (l/s) D	epth (m) 1	Flow (l/s) 1	Depth (m)	Flow (l/s)
0 100	2 5	1 200	67	2 000	10.2	7 000	15 5
0.100	3.5	1 400	0.7	3.000	10.3	7.000	15.5
0.200	3.6	1 600	7.6	4 000	11 8	8 000	16.6
0.400	4.0	1.800	8.1	4.500	12.4	8.500	17.1
0.500	4.4	2.000	8.5	5.000	13.1	9.000	17.6
0.600	4.8	2.200	8.9	5.500	13.7	9.500	18.1
0.800	5.5	2.400	9.2	6.000	14.4		
1.000	6.1	2.600	9.6	6.500	15.0		
Hydro	-Brake® Op	timum Manho	le: 22,	DS/PN: 1	1.008, Vol	ume (m³)	: 5.0
		Unit	Referenc	e MD-SHE-	0050-1400-1	585-1400	
		Desig	n Head (m	.)		1.585	
		Design	FLOW (1/S) TM	Co	1.4	
			Objectiv	 Minimi	Ca.	storado	
		Z	oplicatio	e mitiitiit u	se upstream	Surface	
		Sumr	Availabl	e		Yes	
		Dia	meter (mn)		50	
		Invert	Level (m)		49.365	
	Minimum Ou	tlet Pipe Dia	meter (mn)		75	
	Suggeste	d Manhole Dia	meter (mm)		1200	
		@1922.	-2017 YD	Solutio	ns		
1		ST JOZ-		SOT UCTO			

Simpson Ass	ociates						Page 5
1 Market Pl	ace Mews						
Henley-on-T	hames						L
RG9 2AH							Micco
Date 21/10/	2021 11:4	4	Desig	ned by Bi	ryn.Tawton		
File Main N	letwork Si	mulation	. Check	ed by			Diamaye
Micro Drain	lage		Netwo	rk 2017.1	.2		
Hydro	-Brake® O	ptimum Man	hole: 22	, DS/PN:	1.008, Vo	lume (m³)): 5.0
		Control	Points	Head (1	n) Flow (l/s	;)	
	D	esign Point	(Calculate	ed) 1.5	35 1.	4	
		-	Flush-Fl	Lo™ 0.23	19 1.	0	
		oon Elere er	Kick-Fl	Lo® 0.4	46 0.	8	
	M	ean Flow ove	r Head Rar	ıge	- 1.	0	
The hydrold Hydro-Brake	ogical calcu ® Optimum a	lations hav s specified	e been bas . Should	ed on the another ty	Head/Dischar	rge relatio	onship for the other than a
Hydro-Brake	e Optimum® k 1	be utilised	then these	storage r	outing calcu	ulations wi	ill be
Depth (m)	Flow (l/s)	Depth (m) F	'low (l/s)	Depth (m)	Flow (l/s)	Depth (m)	Flow (l/s)
0.100	0.9	1.200	1.2	3.000	1.9	7.000	2.8
0.200	1.0	1.400	1.3	3.500	2.0	7.500	2.9
0.300	1.0	1.600	1.4	4.000	2.1	8.000	2.9
0.500	0.8	2.000	1.6	5.000	2.4	9.000	3.1
0.600	0.9	2.200	1.6	5.500	2.5	9.500	3.2
0.800	1.0	2.400	1.7	6.000	2.6		
1.000	1.1	2.600	1./	6.500	2.1		

Simpson Associates	Page 6
1 Market Place Mews	
Henley-on-Thames	L
RG9 2AH	Micco
Date 21/10/2021 11:44 Designed by Bryn.Tawton	Dcaipago
File Main Network Simulation Checked by	Diamaye
Micro Drainage Network 2017.1.2	
Storage Structures for Storm	
Tank or Pond Manhole: 16, DS/PN: 6.004	
Invert Level (m) 55.400	
Depth (m) Area (m ²) Depth (m) Area (m ²)	
0.000 60.0 0.200 98.0	
Cellular Storage Manhole: 22, DS/PN: 1.008	
Invert Level (m) 49.440 Safety Factor 2.0 Infiltration Coefficient Base (m/hr) 0.00000 Porosity 0.95 Infiltration Coefficient Side (m/hr) 0.00000) ;
Depth (m) Area (m ²) Inf. Area (m ²) Depth (m) Area (m ²) Inf. Area	(m²)
0.000 150.0 150.0 1.501 0.0 22 1.500 150.0 225.0	25.0
@1082-2017 VD Salutions	
SIGOZ-ZUII AF SULULIONS	

Simpson	Ass	ociates	3						Page	. 7
1 Marke	t Pl	ace Mev	IS							
Henley-	on-T	hames							4	~
RG9 2AH									Mic	Jun
Date 21	/10/	2021 11	:44		Design	ed by	Bryn.Taw	ton		IU
File Ma	in N	etwork	Simulat	ion	Checke	d by			DIa	inage
Micro D	rain	age			Networ	k 2017	.1.2			
<u>100 ye</u>	ear F	Return	Period S	Summary	of Cri	tical	Results	by Maximu	m Level	(Rank
				-	L) IOT	Storm				
				Sim	ulation	Criter	La			
		Areal H	Reduction	Factor 1	.000	Additio	nal Flow -	% of Total	Flow 0.0	000
		I	Hot Start	(mins)	0	MADI	D Factor *	10m³/ha St	orage 2.0	000
Man	holo	Hot S	Start Leve	el (mm) Slobal) O	0 500 El.	ou nor 1	In Corcor ror	let Coeffie	ecient 0.8	300
Man. F	nore oul s	Readios: Sewage pe	er hectare	(1/s) 0	.000 FI	ow per i	Person per	Day (1/per	(day) 0.0	100
		energe Fr		- (_, _, _						
		Number	of Input	Hydrogra	aphs 0 N	umber o	f Storage	Structures	2	
		Numb	er of Onl	ine Conti	cols 2 N	lumber o	f Time/Are	ea Diagrams	0	
		Numbe	r of UIII	ine Conti	COLS U N	umber o	I Real Tir	ne Controls	0	
				Synthe	tic Rain	fall De	tails			
		R	ainfall M	odel		FSR	Ratio	R 0.400		
			Re	gion Eng	land and	Wales	Cv (Summer	c) 0.750		
			M5-60	(mm)		20.000	Cv (Winter	c) 0.840		
		Marqi	n for Flo	od Risk V	Jarning	(mm) 15	0.0 DV	/D Status O	N	
		2		Analys	sis Time	step F	ine Inerti	la Status O	N	
					DTS St	atus	ON			
			Profil	e(s)				Summer and	Winter	
		Durat	ion(s) (n	nins)	15, 30,	60, 12	0, 180, 24	10, 360, 48	0, 600,	
					120,	960, 14	40, 2160,	2880, 4320 7200, 8640	, 5760, 10080	
	Ret	urn Peri	.od(s) (ye	ears)				,200, 0010	100	
		Clima	te Change	e (응)					40	
										Water
US	s/mh		Return	n Climate	Firs	t (X)	First (Y)	First (Z)	Overflow	Level
PN N	lame	Storm	Perio	d Change	Surc	harge	Flood	Overflow	Act.	(m)
1.000	1	15 Wint	er 100) +40%	100/15	Summer				59.584
2.000	2	15 Wint	er 100) +40%	100/15	Summer				59.585
1.001	3	15 Wint	er 100) +40왕						59.275
3.000	4	15 Wint	er 100) +40%	100/11-	~				59.353
4.000	5 6	15 Wint	er 100	J +40% D +40%	100/15	Summer				57.221 59 190
1.002	6	15 Wint	er 100) +40%	100/15	Summer				57.184
1.003	7	15 Wint	er 100) +40%						56.833
1.004	8	15 Wint	er 100) +40%						54.337
1.005	9	15 Wint	er 100) +40%						51.737
6.000	11	15 Wint 15 Wint	er 100) +40%) +40%						00.380 55.993
6.002	12	15 Wint	er 100) +40%						55.818
6.003	13	15 Wint	er 100) +40%						55.655
7.000	14	15 Wint	er 100) +40%						60.384
6,004	15 16	LO Wint 60 Wint	er 100) +40%) +40%	100/15	Winter				50.578 55.602
6.005	17	120 Summ	ner 100) +40%	100/15	Summer				55.623
6.006	18	15 Wint	er 100) +40%						55.262
	10									00.202

Simpso	on Assc	ciates	5						Page	8
1 Marl	ket Pla	ice Mev	VS							
Henley	y-on-Th	ames							4	100
RG9 27	л ДН									m
	21/10/2	0.01 11		T		d br Dr			— MIC	ſO
Date 4	21/10/2	.021 11	L:44	1	Jesigne	ed by Br	yn.Ta	WEON	Dra	inare
File 1	Main Ne	etwork	Simulatio	on (Checked	d by			Dia	nage
Micro	Draina	ıge		1	Networ	< 2017.1	.2			
100	year Re	eturn	Period Su	mmary c	of Crit	ical Res	sults	by Maximu	um Level	(Rank
	-			1) for (Storm				
					, -					
			Surcharged	Flooded			Pipe			
		US/MH	Depth	Volume	Flow /	Overflow	Flow		Level	
	PN	Name	(m)	(m³)	Cap.	(l/s)	(l/s)	Status	Exceeded	
	1 000	1	0 034	0 000	1 05		17 8	SUDCHARCED		
	2 000	2	0.034	0.000	1 05		17.8	SURCHARGED		
	1.001	3	-0.050	0.000	0.94		92.1	OK		
	3.000	4	-0.097	0.000	0.27		10.0	OK		
	4.000	5	0.101	0.000	0.56		9.8	SURCHARGED		
	5.000	6	-0.060	0.000	0.67		23.1	OK		
	1.002	6	0.184	0.000	1.69		133.6	SURCHARGED		
	1.003	7	-0.067	0.000	0.90		126.4	OK		
	1.004	8	-0.163	0.000	0.42		127.1	OK		
	1.005	9	-0.163	0.000	0.43		127.2	OK		
	6.000	10	-0.240	0.000	0.09		21.3	OK		
	6.001	11	-0.177	0.000	0.34		20.2	OK		
	6.002	12	-0.181	0.000	0.32		19.0	OK		
	6.003	13	-0.173	0.000	0.37		18.7	OK		
	7.000	14	-0.086	0.000	0.37		14.4	OK		
	7.001	15	-0.092	0.000	0.31		14.3	OK		
	6.004	16	0.052	0.000	0.40		4.3	SURCHARGED		
	6.005	17	0.093	0.000	0.21		3.8	SURCHARGED		
	6.006	18	-0.058	0.000	0.66		27.0	OK		

Simpson Associates		Page 9
1 Market Place Mews		
Henley-on-Thames		L
RG9 2AH		Micco
Date 21/10/2021 11:44	Designed by Bryn.Tawton	Desipado
File Main Network Simulation	Checked by	Dialitaye
Micro Drainage	Network 2017.1.2	

100 year Return Period Summary of Critical Results by Maximum Level (Rank 1) for Storm

PN	US/MH Name	Storm	Return Period	Climate Change	First (X) Surcharge	First (Y) Flood	First (Z) Overflow	Overflow Act.	Water Level (m)
6.007	19	15 Winter	100	+40%					52.307
1.006	20	960 Winter	100	+40%	100/15 Summer				50.844
1.007	21	960 Winter	100	+40%	100/15 Summer				50.843
1.008	22	960 Winter	100	+40%	100/15 Summer				50.842

PN	US/MH Name	Surcharged Depth (m)	Flooded Volume (m³)	Flow / Cap.	Overflow (1/s)	Pipe Flow (l/s)	Status	Level Exceeded
6.007	19	-0.093	0.000	0.30		26.7	OK	
1.006	20	1.054	0.000	0.22		11.6	SURCHARGED	
1.007	21	1.093	0.000	0.24		11.4	SURCHARGED	
1.008	22	1.103	0.000	0.01		1.4	SURCHARGED	

APPENDIX G SUDS IMPLEMENTATION PLAN

SUDS IMPLEMENTATION PLAN

CHESSINGTON WORLD OF ADVENTURES RESORT

LODGE ACCOMMODATION SCHEME

- 1.1 This SUDS Implementation Plan sets out measures to be implemented during construction of the surface water drainage system for the scheme to ensure the site and areas downstream are protected from runoff during construction of the development. It is recommended that the plan is incorporated into the Contractor's Construction Health and Safety Plan with the development carried out in accordance with the measures proposed.
- 1.2 To assist in managing construction runoff and help settle out the high volumes of sediments created during construction, the following additional measures should be implemented to ensure construction runoff is appropriately managed:
 - Protective coverings should be used to help prevent runoff stripping material stockpiles.
 - Plant and wheel washing should take place in a designated location. The area should be tanked and not allowed to discharge into the drainage system or infiltrate into the ground. Effluent should be treated as contaminated waste and disposed off site by a licensed waste management operator.
 - Surfaces used as access roads and storage areas during construction should be swept regularly to prevent the accumulation of dust and mud.
 - Should groundwater be encountered in excavations such water should not be discharged to the drainage system until the amount of suspended solids has been reduced though the controlled use of skips or tanks, which will act as stilling basins.
 - To prevent contamination associated with the use of oils and hydrocarbons during construction, the Contractor should ensure that the following precautionary measures are employed during construction:
 - Regular maintenance of machinery and plant.
 - Use of drip trays.
 - Regular checking of machinery and plant for oil leaks.
 - Use of correct storage facilities.
 - Regular checks for signs of wear and tear on tanks.
 - Specific procedures are followed when refuelling.
 - Use of a designated area for refuelling.
 - Emergency spill kit to be located near refuelling area.
 - Regular emptying of bunds.
 - Tanks should be located in secure areas to stop vandalism.

- 1.3 The above measures would help to ensure that untreated construction runoff would not be discharged to the surface water drainage system.
- 1.4 During construction all components of the drainage system should be constructed in accordance with relevant drawings, specifications and manufacturer's guidelines. Further to this Building Control should visit site on a regular basis to inspect completed works and ensure that the drainage system is installed correctly.

APPENDIX H SUDS MAINTENANCE PLAN

SUDS MAINTENANCE & MANAGEMENT PLAN

CHESSINGTON WORLD OF ADVENTURES RESORT LODGE ACCOMMODATION SCHEME

On occupation of the development, this maintenance and management plan should be incorporated into the sites Operation and Maintenance Manual with the as-built drainage system operated and maintained in accordance with the regime set out in the tables below.

The Site Manager should ensure that the Maintenance Contractor tasked with carrying out any maintenance works provides a risk assessment and method statement that adopts best practice health and safety policies for maintenance personnel throughout the duration of any maintenance works. Measures may include:

- Ensure the use of safe systems of work and procedures are followed.
- Certificated operatives only to be used for all confined space entry.
- Ensure appropriate PPE is worn at all times including the use of safety goggles, ear defenders and other relevant equipment when using high pressure jetting.
- Do not work in weather conditions where flooding or surging is likely.
- Erect barriers where appropriate and provide adequate lighting.
- No operations to be carried out by operatives working alone.
- Time maintenance to not conflict with other on-site activities.
- Method statement to be prepared and approved prior to entry into confined space.

Maintenance schedule	Required action	Frequency	
Deguler	Remove all litter and debris from external hard landscaped areas and adjacent landscaping, which may pose a risk to the performance of the system.	Monthly.	
maintenance	Remove build-up of sediment / silt in catch- pits and dispose of oils / petrol residues using safe standard practices. Stabilise and mow adjacent landscaped areas and remove weeds.	-	
Remedial actions	Repair or rehabilitate inlet and outlets to ensure they are in good condition and operating as designed. Remediate any landscaping, which has raised to within 50mm of the level of adjacent hard landscaping.	As required.	
Monitoring	Check of all inlets / outlets for blockages or evidence of physical damage with any necessary remedial action or clearance carried out if required.	On a monthly basis for the first 3 months of operation, thereafter every 6 months & following severe rainfall events.	
	Inspect all surfaces for ponding, or silt accumulation. Record areas where water is ponding for more than 48 hours and carry out any remedial work deemed necessary.	After severe storms.	

Table 1: Below Ground Drainage System - Operation and Maintenance Requirements

Maintenance schedule	Required action	Frequency		
	Litter and debris removal from trench surface, access chambers and pre- treatment devices.	Monthly (or as required).		
Regular	Removal and washing of exposed stones on the trench surface.	Annual (bi-annual the first year) or when silt is evident on the surface.		
	Trimming of any roots that may be causing blockages.	Annually (semi-annual the first year).		
	Remove weeds on the trench surface.	Monthly (at start, then as required)		
	Removal of sediment from pre-treatment devices.	Every 6 months.		
Occasional	Remove tree roots or trees that grow close to the trench.	As required.		
Maintenance	At locations with high pollution loads, remove surface geotextile and replace, and wash or replace filter media.	Every 5 years.		
Remedial actions	Clear perforated pipework of blockages. Rehabilitate infiltration or filtration surfaces. Excavate trench walls to expose clean soils if infiltration performance reduces to unacceptable levels. Replace geotextiles and clean and replace	As required.		
	filter media, if clogging occurs.			
	for blockages, clogging, standing water and structural damage.	Monthly		
Monitoring	Inspect pre-treatment systems, inlets, trench surfaces and perforated pipework for silt accumulation. Establish appropriate silt removal frequencies.	inlets, bework opriate Every 6 months.		

Table 2: Gravel Filter Drains - Operation and Maintenance Requirements

Maintenance schedule	Required action	Frequency		
	Inspect and identify any areas that are not operating correctly. If required, take remedial action.	Monthly for first 3 months of operation, then every 6 months.		
	Debris removal from catchment surface (where may cause risks to performance).	Monthly.		
Regular maintenance	Where rainfall infiltrates into blocks from above, check surface of filter for blockage by silt, algae or other matter. Remove and replace surface infiltration medium as necessary.	Monthly / after severe storms.		
	Remove sediment from pre-treatment structures.	Annually, or as required.		
Remedial actions	Repair/rehabilitation of inlets, outlet, overflows and vents.	As required.		
Monitoring	Inspect/check all inlets, outlets, vents and overflows to ensure that they are in good condition and operating as designed.	Annually and after large storms.		

Table 3: Geocellular Storage	Tanks - Operation	and Maintenance	Requirements
------------------------------	-------------------	-----------------	--------------

Maintenance schedule	Required action	Frequency	
	Litter and debris removal.	Monthly.	
	Grass cutting for landscaped areas.	Monthly (during growing season), or as required.	
Regular	Grass cutting of meadow grass in and around basin.	Every 6 months (spring - before nesting season, and autumn).	
maintenance	Manage other vegetation and remove nuisance plants.	Monthly (at start, then as required).	
	Tidy all dead growth before start of growing season.	Annually.	
	Remove sediment from inlets, outlet.	Annually or as required.	
	Re-seed areas of poor vegetation growth.	Annually or as required.	
Occasional	Prune and trim trees and remove cuttings.	Every 2 years or as required.	
Maintenance	Remove sediment from inlets, outlet and main basin.	3 – 10 years (or as required).	
	Repair of erosion or other damage by re- seeding or re-turfing.		
Remedial actions	Repair / rehabilitation of inlets and outlets	As required.	
	Re-level uneven surfaces and reinstate design levels.		
	Inspect inlets and outlets for blockages, and clear if required.	Monthly (for first year) /	
Monitorina	Inspect banksides, structures, pipework, etc for evidence of physical damage.	required.	
	Inspect inlets and facility surface for silt accumulation. Establish appropriate silt removal frequencies.	Every 6 months.	

Table 4: Detention Basin- Operation and Maintenance Requirements

Table 5: Flow Control Chamber / Non-Return Valves - Operation and Maintenance Requirements

Maintenance schedule	Required action	Frequency	
Regular maintenance	Cleaning off the flow control device of any debris/ sediment	As required	
Demodial	Flow control device repairs.		
Actions	Repair of erosion damage, or damage to chamber.	As required	
Monitoring	Inspection of the chamber for debris and sediment build up.	Monthly for first 3 months, thereafter, every 6 months and following severe storm events.	