

Residential Scheme

106 Bexley Road Erith DA8 3SP

Mechanical and Electrical Building Services Energy Strategy Report

FOR INFORMATION

 Job No:
 21081

 File Ref:
 21081-HAW-XX-XX-RP-MEP-0010

 Date:
 July 2021

 Rev:
 I03

(T) 01795 538527 (E) enquiries@hawden-mep.co.uk (W) www.hawden-mep.co.uk

Hawden MEP Limited, 1st Floor Office, Brogdale Enterprise Suite, Brogdale Farm, Brogdale Road, Faversham, Kent ME13 8XZ

Hawden MEP Limited is a company registered in England and Wales with company number 11894346 whose registered office is at 8a Alfred Square, Deal, Kent, CT14 6LU

Issue and Revision Record

Rev	Date	Originator	Signature	Checked	Signature	Description
101	16.07.2021	H Dady	H Dady	T Warner	T Warner	For Information
102	23.07.2021	H Dady	H Dady	T Warner	T Warner	For Information
103	27.09.2021	H Dady	H Dady	T Warner	T Warner	For Information

Contents

1.	EXECUTIVE SUMMARY	3
2.	INTRODUCTION	4
3.	SITE DESCRIPTION	4
4.	CALCULATION METHODS	5
5.	ENERGY HEIRARCHY - DWELLINGS	5
6.	ASSESSMENT OF CARBON DIOXIDE EMISSIONS - DWELLINGS	10
7.	COOLING AND OVERHEATING	12
8.	APPENDICES	13

This document has been prepared for the titled project or named thereof and should not be relied upon or used for any other project without an independent check being carried out as to its suitability and prior written authority of Hawden MEP being obtained. Hawden MEP accepts no responsibility or liability for the consequences of this document being used for a purpose other than the purposes for which it was commissioned. Any person using or relying on the document for such other purpose agrees, and will by such use or reliance be taken to confirm his agreement to indemnify Hawden MEP for all loss or damage resulting there from. Hawden MEP accepts no responsibility or liability for this document to any party other than the person by whom it was commissioned

T 01795 538527 E enquiries@hawden-mep.co.uk www.hawden-mep.co.uk

Hawden MEP Limited, 1st Floor Office, Brogdale Enterprise Suite, Brogdale Farm, Brogdale Road, Faversham, Kent ME13 8XZ Hawden MEP Limited is a company registered in England and Wales with company number 11894346 whose registered office is at 8a Alfred Square, Deal, Kent, CT14 6LU

1. EXECUTIVE SUMMARY

This energy strategy has been provided in response to the planning conditions relating to the proposed development at 106 Bexley Road, Erith, DA8 3SP.

The energy strategy has been prepared in line with the requirements set out within the London Plan 2021 energy policies, including the energy hierarchy. The London Plan 2021 requires that all major developments should be net zero, which means reducing greenhouse gas emissions in operation and minising both annual and peak energy demand in accordance with the following energy hierarchy:

Step 1. Be lean: use less energy and manage demand during operation

This has been achieved by passive design measures such as energy efficient lighting and ventilation, high levels of air tightness and increased insulating properties.

Step 2. Be Clean: exploit local energy resources and supply energy efficiently and cleanly

This has been reviewed and it has been demonstrated that heat networks or combined heat and power systems are not viable.

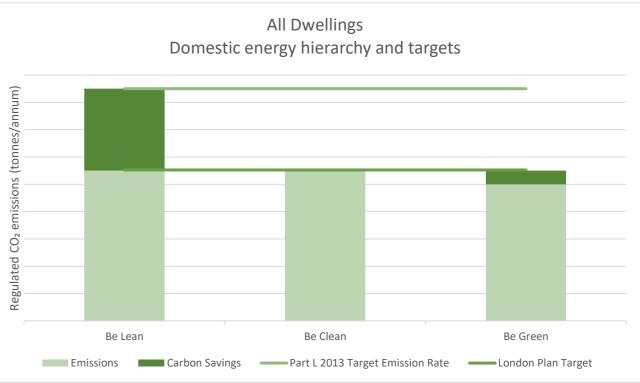
Step 3. Be Green: maximise opportunities for renewable energy by producing, storing and using renewable energy onsite. Note that a minimum on-site reduction of at least 35 per cent beyond Building Regulations is required. Where this cannot be achieved on-site, shortfalls should be made up through a cash in lieu contribution to the boroughs carbon offset fund or through off-site methods

This has been reviewed, with natural gas combination boilers complete with flue gas heat recovery serving the dwellings and photovoltaic technologies incorporated within the scheme.

A summary of the photovoltaic installations is shown below.

PV Area (m ²)	kWp	kWh/annum	Total CO ₂ Savings (kg CO ₂ /year)
24.5	4.95	4,145	965

Table 1 – Proposed photovoltaic installations


Note that CO2 savings are based upon SAP 10 carbon factors.

Step 4. Be Seen: monitor, verify and report on energy performance

Each property shall be complete with smart energy meters. This report also includes expected energy costs for each of the dwellings.

To summarise, the energy strategy achieves a 42% reduction of carbon emissions beyond 2013 Building Regulations

It should be noted that the scheme shall need to offset the remaining CO₂ emissions between 42% and 100% through a financial contribution to the Council's Carbon Offset Fund (COF) which equates to £1,800 per tonne. The total contribution for the domestic areas is £17,825.

T 01795 538527 E enquiries@hawden-mep.co.uk W www.hawden-mep.co.uk

Hawden MEP Limited, 1st Floor Office, Brogdale Enterprise Suite, Brogdale Farm, Brogdale Road, Faversham, Kent ME13 8XZ

2. INTRODUCTION

This report provides the energy strategy for the proposed development of a 16-dwelling apartment block at 106 Bexley Road, Erith, DA8 3SP. The energy strategy has been prepared in line with the requirements set out within the London Plan 2021 energy policies, including the energy hierarchy.

This report contains the following information, in accordance with the London Plan:

- A calculation of the energy demand and carbon emissions covered by Building Regulations;
- Proposals to reduce carbon emissions beyond Building Regulations, including offsetting arrangements
- The results of dynamic overheating modelling
- Proposals for demand side response
- Proposals explaining how the site has been future-proofed to achieve zero carbon on-site emissions by 2050
- Plans for monitoring and annual reporting of energy demand and carbon emissions post-construction
- Expected costs to occupants associated with the proposed energy strategy
- Feasibility of creating or connecting to heat networks.

This report shall be read in conjunction with all other relevant consultant's reports, including those associated with the air quality assessment.

3. SITE DESCRIPTION

The site currently has an existing building that shall be extended and converted to make way for the proposed 16 dwelling apartment block. The works are to be carried out in a single stage.

The provision of a 16-dwelling apartment block of four storeys including a basement floor. The apartments consist of 1bed 2-person and 2-bed 3-person units.

The proposed site is shown in figure 1 below.

Figure 2 – Extract of Urban and Rural drawing B1353-102

As part of the planning application for the site, London Borough of Bexley Planning Application Requirements (17th October 2018) that an energy strategy be provided in line with the requirements of the The London Plan. Note that the guidance makes reference to the previous London Plan. An extract of the planning requirements is shown below:

- For major development proposals there are a number of London Plan requirements in respect of energy assessments, reduction of carbon emissions, sustainable design and construction, decentralised and renewable energy. The GLA guidance on preparing energy assessments should be followed when preparing energy assessments. Major developments are expected to prepare an energy strategy based upon the Mayors energy hierarchy adopting lean, clean, green principles. The assessment should demonstrate how the need for energy is to be minimised, and how it will be supplied to the particular development proposed. In accordance with the energy hierarchy in policy 5.2 of the London Plan, updated following the implementation of the 2013 Building

T 01795 538527 E enquiries@hawden-mep.co.uk W www.hawden-mep.co.uk

Hawden MEP Limited, 1st Floor Office, Brogdale Enterprise Suite, Brogdale Farm, Brogdale Road, Faversham, Kent ME13 8XZ

Hawden MEP Limited is a company registered in England and Wales with company number 11894346 whose registered office is at 8a Alfred Square, Deal, Kent, CT14 6LU

Regulations, developments should provide a reduction in expected carbon dioxide emissions through the use of on-site renewable energy generation, where feasible. This applies to both residential and nondomestic buildings.

- As set out in the Mayor's Housing SPG (2016), a zero carbon standard will be applied to all new major residential development. The energy strategy shall include measures to achieve zero regulated carbon emissions.
- Where it is clearly demonstrated that the specific target cannot be fully achieved onsite, at least a 35% reduction in regulated carbon emissions beyond the baseline set out in the 2013 Building Regulations (Part L) must be demonstrated. The remaining regulated carbon emissions between this 35% and zero carbon (up to 100%) are to be off-set through a cash-in-lieu contribution of £60 per tonne of regulated CO2 over a 30 year period, as recommended by London Plan guidance. The cash in lieu contribution will be secured through a S106 for the delivery of carbon dioxide savings elsewhere.
- From 2019 non-domestic buildings will also be required to achieve zero carbon in accordance with London Plan policy 5.2.
- Options for producing renewable energy should also be assessed and should directly relate to the particular site and the feasibility of installing the various measures. The layout of the scheme should ensure that there is sufficient space on site for any equipment and fuel storage, if required, and should investigate implications of fuel delivery. The potential site and form of buildings and flues should be included in the information submitted with the application. In cases where the form of renewable energy cannot be fully determined at time of application, feasible options must still be presented. It is unlikely to be possible to submit details for the compliance of a condition regarding energy efficiency / renewable energy where additional permissions may be required (e.g. for flues or buildings not in the original application).
- Energy Assessments also need to demonstrate that connection to existing or planned district heating networks, including a future connection to the Riverside Resource Recovery Facility district heating network has been prioritised and should demonstrate that the development is designed to connect to the existing or future district heating network. Relevant correspondence with local heat network operators should be provided to support this.

The energy strategy has been produced in line with the following documents:

- The London Plan March 2021;
- Bexley Heat Map Study March 2021;
- Greater London Authority Energy Assessment Guidance (October 2018);
- Mayor's Sustainable Design and Construction Supplementary Planning Guidance (SPG);
- Domestic Building Services Compliance Guide (2013 Edition for use in England);
- GLA Carbon Emission Reporting Spreadsheet v1.1.

Note that the energy strategy within this report relates to the full planning application.

4. CALCULATION METHODS

Carbon dioxide emission rates have been calculated as follows:

Dwellings

- Dwelling CO₂ Emissions Rate (DER) calculated through the Part L 2013 of the Building Regulations methodology SAP 2012 and the GLA Carbon Emission Reporting Spreadsheet v1.1 to take into account SAP 10 carbon emission factors. This is multiplied by the cumulative floor area for the particular dwelling type in question to give the related CO₂ emissions;
- Separately, emissions associated with non-Building Regulation elements (i.e. cooking and appliances) established by using BREDEM (BRE Domestic Energy Model) or CIBSE Benchmark data.

A summary of the modelling work output (i.e. DER worksheets for dwellings) and domestic energy consumption and CO2 analysis screenshots have been provided within the appendix for each stage of the energy hierarchy.

The CO₂ emissions of all dwellings have then been summed to give the total regulated emissions for the domestic element of the development. These figures are expressed in tonnes per annum and included within the tables referenced GLA table 1 to 4.

5. ENERGY HEIRARCHY - DWELLINGS

To achieve the targets for minimising carbon dioxide emissions, the London Plan outlines a four-step energy hierarchy to guide developers on how they may design low or zero carbon development. The hierarchy consists of the following steps:

Step 1. Be lean: use less energy Step 2. Be clean: supply energy efficiently Step 3. Be green: use renewable energy Step 4. Be seen: monitor usage

These steps are detailed and expanded upon within the following sections.

5.1 Demand Reduction - Be Lean

The first step is to 'be lean' by seeking to minimise the carbon dioxide emissions of a development by minimising energy consumption during its construction and occupation. This can be achieved by passive design measures such as orientation and site layout, natural ventilation and lighting high thermal mass and solar shading. In line with the first step of the energy hierarchy, insulating properties (U-values) of the building fabric shall be increased, high levels of air tightness shall be achieved, and efficient services and lighting to reduce energy demand in dwellings shall be provided.

Site Orientation

The final location of the proposed building has already been agreed and therefore the repositioning of any areas is not feasible.

Building Fabric

In order to satisfy the target emission rate, the building specification shall be considerably better than the guidelines set of by Building Regulations. If financially viable, the guideline figures should be reduced as much as practicable in order to reduce building heat losses and the overall CO_2 emissions of the site. The target U-values are as follows:

	U-Value (W/m ² K)		
Element	Base	Be Lean	
Glazing	1.4	1.2	
Solid Doors	1.0	1.0	
External wall	0.18	0.16	
Exposed floors	0.13	0.11	
Roof	0.13	0.11	

Table 2 - Proposed U-Values

Thermal Bridging

Accredited Construction Details (ACD) shall be utilised to ensure the heat losses caused by thermal bridging are reduced as much as is practically possible. ACDs covering the lintels, sills, jambs, exposed floor, party floor between dwellings and party wall between dwellings shall be used as a minimum.

Air Tightness

Air tightness shall also affect the heat losses and therefore it is suggested that the building is constructed as 'tight' as possible. The target air permeability for the dwellings is $4m^3/h/m^2$ at 50Pa.

Water Usage

The water usage within the dwellings shall be designed to ensure that a maximum of 105 litres of water is consumed per person per day in line with the option requirement of Building Regulations Part G.

T 01795 538527 E enquiries@hawden-mep.co.uk W www.hawden-mep.co.uk

Hawden MEP Limited, 1st Floor Office, Brogdale Enterprise Suite, Brogdale Farm, Brogdale Road, Faversham, Kent ME13 8XZ

Hawden MEP Limited is a company registered in England and Wales with company number 11894346 whose registered office is at 8a Alfred Square, Deal, Kent, CT14 6LL

All showers and baths shall be provided with waste water heat recovery (WWHR).

Dwelling WWHR Heatrae Sadia Megaflo SHRU 60

 Table 3 – Proposed waste water heat recovery

Ventilation

The dwellings shall be provided with independent ventilation systems, comprising of a system 4 centralised heat recovery ventilation system with air being extracted from wet areas and kitchen via a network of ceiling mounted ductwork. Supply air shall be provided to the bedroom and living areas. The ventilation unit shall generally be located within a storage area and be complete with acoustic enclosure to ensure it does not cause nuisance to occupants.

The ventilation unit shall be complete with central controller that shall allow the user to set air flow rates accordingly.

The kitchen areas shall also be provided with recirculation hood, complete with the necessary filtration.

Dwelling MVHR	Vent Axia Sentinel Kinetic Advance S – Rigid insulated ductwork, approved installation
	scheme

 Table 4 – Proposed ventilation systems

Lighting

To maximise the energy efficiency of the lighting, and to help reduce overall building emissions, 100% low energy LED lighting will be selected throughout. There are now very few instances where LED's for this type of installation do not represent the most viable option, and therefore, any consideration for alternatives will need to have a strong argument for justification.

All lighting within the dwellings shall be controlled manually. External lighting shall be controlled automatically, by photocell and timeclock override.

Controls

The controls of the mechanical and electrical systems shall be provided in line with the domestic compliance guide and shall be as follows:

Heating systems	System controls shall be wired so that when there is no demand for space heating or			
	hot water, the boiler and pump are switched off;			
	Dwellings with a total floor area above 150m ² shall have at least two space heating			
	zones, each with an independently controlled heating circuit;			
	Dwellings with a total floor area ≤150m ² may have a single space heating zone			
	Each space heating circuit shall be provided with independent time control and			
	individual networked radiator controls in each room on the circuit			
	Where underfloor heating is provided, each room shall be a single heating zone wi			
	independent on/off time and temperature control.			
Domestic hot	Domestic hot water circuits shall be supplied instantaneously from the gas fired			
water systems	combination boiler and should be provided with independent time control and			
	temperature control.			
Ventilation	Time control.			

Table 5 – Proposed control systems

Metering

Metering shall be provided to each dwelling, accessible by the occupants to monitor energy usage. Energy meters will be of the smart type.

5.2 Heating Infrastructure – Be Clean

The second step is to 'be clean' by seeking to supply the expected energy demands of a development as cleanly and efficiently as possible. The London Plan requires development proposals to evaluate the feasibility of decentralised energy systems (which may be fed by combined heat and power systems), and where possible to connect to existing district heating networks.

Combined Heat and Power (CHP)

A CHP unit is essentially a type of engine that uses gas to drive the engine which in turn generates electricity and heat. The heat is what is used to provide LTHW, whilst the electricity generated can be fed back into the buildings electrical supply and because of this, with the consequential saving of grid electricity, is classed as a renewable and brings benefits to the Part L energy assessment.

A CHP unit is generally slightly larger than a standalone conventional gas boiler, but not in so much as it would not fit within a conventional plant room. Although CHP is slightly less efficient in terms of gas usage than a conventional gas boiler, the generation of electricity outweighs this small loss in efficiency.

Due to the measures undertaken during the 'Be Lean' stage, the buildings are to be constructed to minimise fabric heat losses, therefore, the heat load for each of the apartments should be relatively low.

A CHP system relies on a constant, large and stable heat load to function at its most efficient and therefore become a viable technology for consideration. Due to the low, intermittent losses, CHP is not considered suitable for integration within this scheme. The carbon savings from CHP are now declining as a result of national grid electricity decarbonizing and there is evidence of adverse air quality impacts.

Heat Network

Currently, there are no existing or planned heat networks in the vicinity of the site, however the site does sit within a heat network priority area, as confirmed on the Mayor of London Heat Map (shown in figure 3 below). London Borough of Bexley Planning Application Requirements states 'that energy assessments need to demonstrate that connection to existing or planned district heating networks, including a future connection to the Riverside Resource Recovery Facility district heating network has been prioritised and should demonstrate that the development is designed to connect to the existing or future district heating network'. The London Heat Map, as of July 2021, does not show any existing or proposed heat networks in the vicinity of the site. The site is also in excess of 2km away from the Riverside Resource Recovery Facility and therefore future connection to the district heat network is unlikely.

The adoption of a building community heating system has been rejected due to loss of accommodation due to an energy centre, requirement of a significant high rise flue in a residential area, infrastructure costs disproportionately high relative to number of units and the maintenance and administration costs for a small scale development represent an excessive service charge to occupants.

T 01795 538527 E enquiries@hawden-mep.co.uk W www.hawden-mep.co.uk

Hawden MEP Limited, 1st Floor Office, Brogdale Enterprise Suite, Brogdale Farm, Brogdale Road, Faversham, Kent ME13 8XZ

Hawden MEP Limited is a company registered in England and Wales with company number 11894346 whose registered office is at 8a Alfred Square, Deal, Kent, CT14 6LU

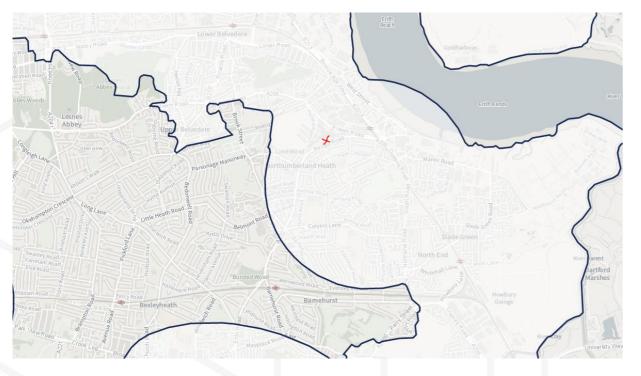


Figure 3 – Extract of London Heat Map

To ensure air quality standards are met any gas boilers to be installed shall be low Nitrogen Oxide (NOx) emitting in accordance with the GLA Appendix 6. Furthermore, this shall be coordinated with the air quality impact assessment or environmental impact assessment for the development where applicable. The following table shows the air quality impacts for the development.

Energy Source	Total Fuel Consumption (MWh/annum) Residential
Grid Electricity	78
Domestic / Communal Gas Boilers	43

Table 6 – Air quality impacts

5.3 Renewable Energy - Be Green

The third step of the hierarchy is to 'be green' by incorporating renewable energy technologies in developments. The Housing SPG states that developers should seek to utilise the following renewable energy technologies that are considered to be technically feasible in London, regardless of whether a 35% target has already been reached through earlier stages of the energy hierarchy:

Biomass

Biomass works in a similar way to a conventional boiler, except the fuel source used is generally wood chip or pellet based. The theory behind this type of system is that the CO_2 generated by the burning of the fuel, is offset by the 'plant matter' growing and absorbing CO_2 before it is cut down and turned into the chipping/pellet fuel. Again, this system does constitute as a renewable as the generated CO_2 is offset as described above and in fact, due to the carbon offset, is one of the best performing renewable alternatives available. Although this seems unlikely compared with for example an ASHP/GSHP that does not produce any CO_2 on site, these other options however run on grid electricity that is generally considered to be a 'dirty' alternative in the Part L energy assessment due to the 'embedded' CO_2 emitted from the power station generating the grid electricity.

Biomass systems have been rejected due to loss of accommodation for the provision of an energy centre, requirement of a significant high rise flue in a residential area, infrastructure costs disproportionately high relative to number of units and the maintenance and administration costs for a small scale development represent an excessive service charge to occupants.

Photovoltaics (PV)

Photovoltaics have a number of benefits, in that in terms of incorporating a renewable option, they can often be very competitive on cost against other methods. Additionally, as long as planning permits, and the site conditions are favorable, they are generally easily accommodated on the roof of the buildings they are serving. Additionally, PV panels are very low maintenance, and have a good life expectancy when compared to other technologies, which make them very popular where renewables are required. Against popular belief, PV will still work on cloudy days, though with much reduced efficiency.

Photovoltaic panels are proposed to maximise on-site renewable energy generation and further offset the development CO_2 emissions. The total photovoltaic array applied to the development is 4.95kWp (equating to an average of 0.3kWp per apartment). Figure 4 below shows the proposed PV layout facing south-east at an inclination of 30° mounted on the flat roof.

The London Plan states 'that all developments maximise opportunities for on-site electricity and heat production from solar technologies (photovoltaic and thermal) and use innovative building materials and smart technologies.' It is therefore recommended to provide photovoltaics at roof level.

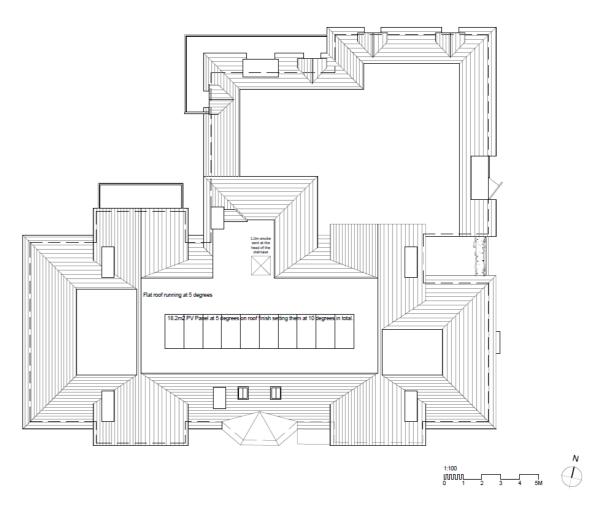


Figure 4 – Extract of Urban and Rural drawing A1353-108

T 01795 538527 E enquiries@hawden-mep.co.uk W www.hawden-mep.co.uk Hawden MEP Limited, 1st Floor Office, Brogdale Enterprise Suite, Brogdale Farm, Brogdale Road, Faversham, Kent ME13 8XZ

Hawden MEP Limited is a company registered in England and Wales with company number 11894346 whose registered office is at 8a Alfred Square, Deal, Kent, CT14 6LU

The area surrounding the proposed development is predominantly 2-storey dwellings, therefore, the proposed PV installation on the third-floor roof level shall not be subject to solar shading and reduced outputs, see Figure 5 and 6 below for further details.

Figure 5 – Extract of Urban and Rural drawing B1353-111

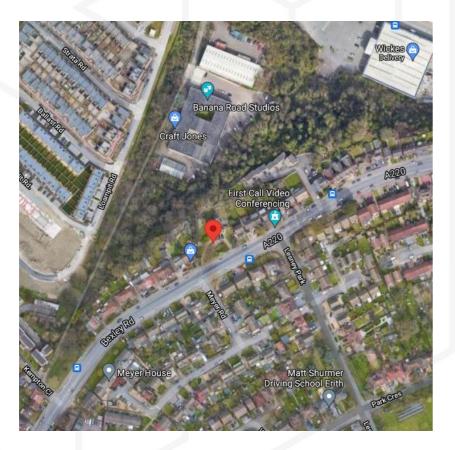


Figure 6 – Site location

Solar water heating

Solar water heating utilise solar thermal panels, capturing solar energy and transferring this to a thermal store to generate domestic hot water and to displace the demand on the heating plant. The peak periods for the solar thermal systems to operate are during the summer period. Solar water heating has been discounted due to the lack of an energy centre to integrate the systems into. Also, roof space has been prioritised for photovoltaics.

Wind

Wind turbines use the force of the wind to drive a rotor and generator to produce electricity. In order to yield high electrical output, wind turbines require consistent air speeds and smooth laminar wind flow. Where wind flow is turbulent, a wind turbine will not operate effectively.

Monitoring of wind turbines in urban and suburban locations has shown in practice that the outputs can be greatly reduced by local wind turbulence effects, leading to low electricity generation and low CO_2 savings. Factors to consider in addition to the above are visual impact on the surroundings, noise, flicker and the impact on birds and bats.

Wind turbines have been rejected due to the potential nuisance to neighboring properties and the presence of existing trees that will affect turbine performance.

Air source heat pump (ASHP)

An ASHP works by converting heat within the air, on a refrigerant cycle, to generate low temperature hot water and could have worked particularly well here especially as ASHP's are generally well suited where the LTHW generated by the ASHP is used to feed an underfloor heating system as proposed here as underfloor heating systems generally run at much lower temperatures than a traditional wet radiator system. An ASHP is classified as a renewable and therefore would help reduce CO₂ emissions, which ultimately reduce the burden on other elements for improvements such as U-Values, other MEP services and/or renewables.

However, the ASHP unit itself needs to be situated externally, and dependent on size, can take up sizeable space. Often in residential apartment buildings, the ground space immediately around the building is often used for private external areas and shared gardens, meaning the ASHP cannot be located at ground level. The ASHP can of course be located at roof level, but this then becomes an aesthetic and/or maintenance consideration. Being situated externally, there is also the potential for noise, and although generally the units are not particularly noisy (generally on a par with an external air conditioning unit), they will always contribute noise that will be noticed by more people than other plant hidden away within an internal plant room.

The ASHPs do require an electrical supply that, depending on the size of the unit, can put a sizeable extra burden on the electricity supply. Lastly, as the ASHP works by drawing heat from the air, there are large temperature fluctuations over the course of the year and therefore the efficiency of the system differs between summer and winter. On the coldest parts of the year, the heat drawn from the air may be insufficient to meet the demand load and therefore additional heat generation may be required from another source which may actually necessitate a small gas supply to a gas boiler to provide top up when the ASHP is unable to perform optimally.

Ground source heat pump (GSHP)

A GSHP works in a similar fashion to an ASHP, but instead of taking heat from the air, the pump works by removing heat from the ground. This is achieved by burying a number of loop coils, and these can either be vertical or horizontal loops. The end result is very similar to an ASHP in that LTHW is generated, which again is particularly suitable for underfloor heating systems, with the same benefits of no gas supply required and the GSHP being classified as a renewable. Additional benefits are that the ground temperature remains relatively stable throughout the year, with minimal fluctuations, and therefore the system is easier to set up and modulate. Finally, unlike the ASHP, the plant is generally housed internally, normally within the plant room.

Again, the GSHP is not without its drawbacks and these can be more significant than the ASHP option. A GSHP that utilises horizontal loops for example, require a lot of land for the loops to be installed in and unless the site has access to this land, often negates the use of this technology. Apart from the fundamental issue of lack of space, the other stumbling block to implementing this technology here is cost, as generally there is a disproportionately large up-front capital cost when compared to other options.

The second option is to use a GSHP in conjunction with vertical bore hole drive loops, with these loops typically installed to depths anywhere in the region of 10m-25m+ depth dependent on the size of the system. This system

T 01795 538527 E enquiries@hawden-mep.co.uk www.hawden-mep.co.uk

has benefits over the horizontal loop solution as the complete system can be installed within footprint of the building. However, as with the horizontal loop system, the main drawback is the significant up-front capital cost when compared to other options.

GSHP has been discounted due to the lack of an energy centre to integrate the systems into.

Conclusion

Based upon the technologies noted above, we would recommend the use of roof mounted photovoltaics combined with a gas boiler. The assessment of carbon dioxide emissions in the following section incorporates these proposed technologies within the 'Be Green' stage. Details of the input data for the photovoltaic and gas boilers are shown in the table below.

Gas boilers	Worcester Bosch Greenstar 32CDi Compact ErP condensing gas combination boiler with an annual seasonal efficiency of 89.8% - installed complete with Worcester Bosch Greenstar Xtra flue gas heat recovery unit and Worcester Bosch Sense II weather compensator
Photovoltaics	 4.95kWp (11No. 450Wp output PV panels), high efficiency panels, 30° tilt, south facing orientation, PV output goes to all apartments in proportion to floor area.

Table 7 - Proposed technologies

5.4 Monitor Usage - Be Seen

The final step of the hierarchy is 'be seen', which requires developments to verify and report on energy performance. This can be met through the provision of smart meters however the guidance also requests that a plan for monitoring and annual reporting of energy demand and carbon emissions post construction. To meet the final step of the hierarchy, the following is proposed.

Metering

Metering shall be provided to each dwelling, accessible by the occupants to monitor energy usage. Energy meters will be of the smart type.

Monitoring and Expected Costs

The London Plan requests a plan for monitoring and annual reporting of energy demand and carbon emissions post construction, however as these are residential dwellings with independent utility supplies there is no ability to enforce this. It is proposed to provide smart metering, which should allow the occupants to review their past usage (dependent on the energy supplier) and also include information within the homeowner manual on how to record and report energy usage.

The following benchmarks should be included within the homeowner manual for comparison purposes:

Unit/Plot	Energy	Energy	Energy cost	Energy Cost	Carbon	CO ₂
No.	Source	Consumption	(p/kWh)	(£/annum)	Factor	Emssions
		(kWh/annum)			(kgCO2/kWh)	(kg
						CO ₂ /year)
1	Electricity	4954	21.4	1060	0.233	1154
	Gas	2402	4.09	98	0.21	504
2	Electricity	4464	21.4	955	0.233	1040
	Gas	561	4.09	23	0.21	118
3	Electricity	5569	21.4	1192	0.233	1298
	Gas	699	4.09	29	0.21	147
4	Electricity	4464	21.4	955	0.233	1040
	Gas	561	4.09	23	0.21	118
5	Electricity	4464	21.4	955	0.233	1040
	Gas	561	4.09	23	0.21	118
6	Electricity	4063	21.4	869	0.233	947
	Gas	425	4.09	17	0.21	89
7	Electricity	4464	21.4	955	0.233	1040
	Gas	2595	4.09	106	0.21	545
8	Electricity	3695	21.4	791	0.233	861
	Gas	387	4.09	16	0.21	81
9	Electricity	4472	21.4	957	0.233	1042
	Gas	562	4.09	23	0.21	118
10	Electricity	4823	21.4	1032	0.233	1124
	Gas	606	4.09	25	0.21	127
11	Electricity	5240	21.4	1121	0.233	1221
	Gas	658	4.09	27	0.21	138
12	Electricity	4472	21.4	957	0.233	1042
	Gas	562	4.09	23	0.21	118
13	Electricity	4505	21.4	964	0.233	1050
	Gas	472	4.09	19	0.21	99
14	Electricity	8699	21.4	1862	0.233	2027
	Gas	4757	4.09	195	0.21	999
15	Electricity	5439	21.4	1164	0.233	1267
	Gas	570	4.09	23	0.21	120
16	Electricity	5064	21.4	1084	0.233	1180
	Gas	530	4.09	22	0.21	111

Table 8 – Expected Costs and Carbon Emissions

Hawden MEP Limited, 1st Floor Office, Brogdale Enterprise Suite, Brogdale Farm, Brogdale Road, Faversham, Kent ME13 8XZ

Hawden MEP Limited is a company registered in England and Wales with company number 11894346 whose registered office is at 8a Alfred Square, Deal, Kent, CT14 6LU

HAWDEN ENGINEERING MEP SOLUTIONS

All Dwellings

ASSESSMENT OF CARBON DIOXIDE EMISSIONS - DWELLINGS

The carbon dioxide emissions at each stage are shown in tables GLA table 1 and 2 and the associated graph below. These indicate that the passive design measures achieve a saving of 37% relative to the baseline. There is no saving associated with the 'Be Clean' stage due to heat networks and CHP technologies not being suitable for the site. Finally, the integration of photovoltaics provides a 6% saving relative to the 'Be Clean' stage.

		Carbon dioxide emis buildings (Tonnes	
		Regulated	Unregulated
Baseline: Part L 2013 of the Building Regulations Compliant	Α	17	70
Development			
After energy demand reduction	В	11	
After heat network/CHP	С	11	
After renewable energy	D	10	

GLA Table 1 - Carbon Dioxide Emissions after each stage of the Energy Hierarchy for domestic buildings

		Regulated domestic carbon diox savings	
		(Tonnes CO ₂ per annum)	(%)
Savings from energy demand reduction	A-B	6	37
Savings from heat network/CHP	B-C	0	0
Savings from renewable energy	C-D	1	6
Cumulative on-site savings	A-D=E	7	42
Annual Savings from off-set payment	A-E=F	10	
		(Tonnes CO ₂)	
Development's Service Life (30 years) CO ₂ Emissions	F x 30 years = G	297	
		(£)	
Offset payment per tonne	Н	£60	
Contribution to the Councils Carbon Offset Fund (COF)	GxH	£17,825	

GLA Table 2 - Regulated carbon dioxide savings from each stage of the Energy Hierarchy for domestic buildings

Note that the figures in the table above have been taken directly from the GLA Carbon Emission Report Spreadsheet, where they have been rounded up or down accordingly.

The cumulative savings provide a total carbon dioxide saving of 42%, which exceeds the 35% reduction of Part L 2013 as set out by the Mayor's London Plan. The scheme will need to "offset" any remaining CO₂ emissions between 42% and 100% through a financial contribution to the Council's Carbon Offset Fund (COF) which equates to £1800 per tonne (assumed 30-year lifetime of the developments services multiplied by the carbon dioxide offset price). The total contribution to the COF is £17,825.

A summary of the modelling work output is provided within the appendix.

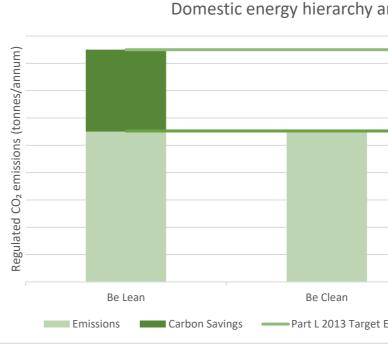


Figure 6 – Dwelling energy hierarchy and targets

Zero Carbon

As part of the requirements in London Plan, Policy SI 2 requests that proposals are made explaining how the site has been future proofed to achieve zero-carbon on-site emissions by 2050.

Indicative economic life expectancies of the proposed mechanical and electrical systems are noted in the table below:

Equipment	Economic life/ye
Pipework	40-50
Boiler	10
Radiators/towel rails	20
Underfloor Heating	30
Extract fans	15
Ductwork	15
Light fittings	20
Cabling	25 +

Table 9 – Plant Life Expectancy

As indicated in the table above, the majority of systems will be beyond their economic life and likely to have been replaced by 2050. The only exceptions are the pipework, underfloor heating and the cabling systems. The use of underfloor heating will allow the occupants to provide either heat pump or hydrogen boilers when the proposed heat source is beyond its economic life, without major disruptions.

The proposed Worcester Bosch boilers are also ready for the expected national natural gas/hydrogen blend network modification

Note that it is recommended to review the boiler selection prior to the procurement to ensure that any specified equipment is suitable for use with the proposed hydrogen/natural gas changeover.

T 01795 538527 E enquiries@hawden-mep.co.uk W www.hawden-mep.co.uk

Hawden MEP Limited, 1st Floor Office, Brogdale Enterprise Suite, Brogdale Farm, Brogdale Road, Faversham, Kent ME13 8XZ

Hawden MEP Limited is a company registered in England and Wales with company number 11894346 whose registered office is at 8a Alfred Square, Deal, Kent, CT14 6LU

nd targets		
1		
	Be Green	
Emission Rate	London Plan T	arget

ears	

It has also been proposed to allow for a future plant room in the event that heat networks have been extended to a suitable position for connection to the site in the future.

Overheating calculations (see Section 7 Cooling and Overheating) have been undertaken using 2050 weather files.

T 01795 538527 E enquiries@hawden-mep.co.uk www.hawden-mep.co.uk

Hawden MEP Limited, 1st Floor Office, Brogdale Enterprise Suite, Brogdale Farm, Brogdale Road, Faversham, Kent ME13 8XZ Hawden MEP Limited is a company registered in England and Wales with company number 11894346 whose registered office is at 8a Alfred Square, Deal, Kent, CT14 6LU

7. COOLING AND OVERHEATING

In accordance with Policy SI 4 of the London Plan, measures are to be incorporated to reduce the demand for cooling. The cooling hierarchy is as follows:

Minimising internal heat generation through energy efficient design

Energy efficient measures shall be as per the 'Be Lean' sections above. One of the more important aspects is the provision of highly efficient LED lighting throughout the dwellings. Power densities of the lighting shall be extremely low. Coupled with daylight zoning to perimeter zones, heat gains from services equipment should be minimal.

Reducing amount of heat entering the building in summer

Double glazed windows, complete with low G-values shall be provided throughout the new development to minimise solar gains. Additional solar films shall be added where deemed appropriate.

Due to the nature of the buildings, it is expected that blinds are to be added to all rooms.

Use of thermal mass and high ceilings to manage the heat within the building

The height of the building is restricted to the architect's proposals and therefore the use of high ceilings to manage heat gains is unavailable.

Passive ventilation

Although the domestic areas shall be predominantly ventilated by mechanical means, all windows shall be openable to limit overheating further and glazing mounted trickle ventilators shall be provided to ensure sufficient make-up air.

Mechanical ventilation

Continuous mechanical extract ventilation shall be provided to ensure sufficient air movement within each apartment in accordance with Approved Document Part F.

Overheating risk analysis – Domestic Dwellings

The SAP Assessment documents are within the appendix of this document. The SAP documents outline any dwellings which are at risk of overheating, in line with Criterion 3 of Part L1A.

SAP Assessment calculations produced as part of this report show solar gains are within acceptable limits.

Supplementary planning guidance encourages developers to undertake dynamic modelling to assess the risk of overheating in their development. Such an assessment is an expectation of Policy SI 4 Managing Heat Risk of the London Plan.

A TM59 overheating study utilising 2050 weather files has been carried out for the development using IES Virtual Environment dynamic modelling software. Apartments 15 and 16 on the second floor were chosen due to its south facing position. Apartment 12 on the first floor was also modelled. The assessment passed with the previously mentioned uvalues, sash windows, no blinds and windows open during the night.

Compliance is based upon passing both of the following two criteria:

- a. For living rooms, kitchen and bedrooms: the number of hours during which ΔT is greater than or equal to one degree (K) during the period May to September inclusive shall not be more than 3% of occupied hours. (CIBSE TM52 Criterion 1: Hours of exceedance);
- b. For bedrooms only: to guarantee comfort during the sleeping hours the operative temperature in the bedroom from 10pm to 7am shall not exceed 26°C for more than 1% of annual hours. (Note: 1% of the annual hours between 22:00 and 07:00 for bedrooms is 32hours, so 33 or more hours above 26°C will be recorded as a fail).

A summary of the results is shown in the table below:

1	~
	-
5	_
	K

Unit/Plot No.	Room	CIBSE TM52 Criterion 1: Hours of exceedance	Hours above 26°C (between 10pm and 7am)
12	Lounge/Dining/Kitchen	0	n/a
	Double Bedroom	0	0
	Single Bedroom	0	0
15	Lounge/Dining/Kitchen	0.5	n/a
	Double Bedroom	0	11
16	Lounge/Dining/Kitchen	0.6	n/a
	Double Bedroom	0	11

Table 10 – Overheating Analysis

(T) 01795 538527 (E) enquiries@hawden-mep.co.uk (W) www.hawden-mep.co.uk

Hawden MEP Limited, 1st Floor Office, Brogdale Enterprise Suite, Brogdale Farm, Brogdale Road, Faversham, Kent ME13 8XZ

8. APPENDICES

T 01795 538527 E enquiries@hawden-mep.co.uk W www.hawden-mep.co.uk

Hawden MEP Limited, 1st Floor Office, Brogdale Enterprise Suite, Brogdale Farm, Brogdale Road, Faversham, Kent ME13 8XZ Hawden MEP Limited is a company registered in England and Wales with company number 11894346 whose registered office is at 8a Alfred Square, Deal, Kent, CT14 GLU

Regulations Compliance Report

Printed on 15 July 2	2021 at 16:05:45	, England assessed by St	roma FSAP 2012 program, Ve	rsion: 1.0.5.41	
Project Information	n:				
Assessed By:	()		Building Type:	Flat	
Dwelling Details:					
NEW DWELLING	DESIGN STAGE		Total Floor Area: 6	67.3m ²	
Site Reference :	106 Bexley Road		Plot Reference:	Unit 1 - 1B 2P	- Be Green
Address :	106 Bexley Road ,	Erith, DA8 3SP			
Client Details:					
Name:	Kang				
Address :	Upna Ltd , 106 Be	kley Road , Erith , DA8 3S	P		
-	s items included wi e report of regulati	thin the SAP calculation ons compliance.	IS.		
1a TER and DER					
	ng system: Mains ga	IS			
Fuel factor: 1.00 (m	iains gas) kide Emission Rate ((TER)	17.08 kg/m²		
-	ioxide Emission Rate	. ,	9.67 kg/m ²		ок
1b TFEE and DFE					
-	gy Efficiency (TFEE)		39.4 kWh/m²		
Dwelling Fabric Ene	ergy Efficiency (DFE	:E)	31.0 kWh/m ²		ОК
2 Fabric U-values					UK
Element External w Party wall Floor	/all	Average 0.16 (max. 0.30) 0.00 (max. 0.20) 0.11 (max. 0.25)	Highest 0.16 (max. 0.70) - 0.11 (max. 0.70)		ок ок ок
Roof		(no roof)	0.11 (max. 0.10)		ON
Openings		1.16 (max. 2.00)	1.20 (max. 3.30)	_	ОК
2a Thermal bridg	ing				
Thermal b 3 Air permeability		om linear thermal transmi	ttances for each junction		
	ility at 50 pascals		4.00 (design val 10.0	ue)	ок
4 Heating efficier	псу				
Main Heating	g system:	Database: (rev 479, pro Boiler systems with radi Brand name: Worcester Model: Greenstar Model qualifier: 32CDi C (Combi) Efficiency 89.8 % SEDB Minimum 88.0 %	ators or underfloor heating - ma Compact ErP	ains gas	ОК
Secondary h	neating system:	None			

Regulations Compliance Report

ylinder insulation			
Hot water Storage:	No cylinder		
ontrols			
Space heating controls Hot water controls:	TTZC by plumbing and el No cylinder thermostat No cylinder	lectrical services	ок
Boiler interlock:	Yes		ОК
ow energy lights			
Percentage of fixed lights with lo Minimum	w-energy fittings	100.0% 75.0%	ОК
echanical ventilation			
Continuous supply and extract s Specific fan power:	ystem	0.39	
Maximum		1.5	OK
MVHR efficiency:		93%	
Minimum		70%	OK
ummertime temperature			
Overheating risk (South East En	gland):	Slight	OK
ed on:			
Overshading:		Average or unknown	
Windows facing: South		1.31m ²	
Windows facing: South		1.69m ²	
Windows facing: South		5.37m ²	
Ventilation rate:		3.00	
Blinds/curtains:		None	
Key features			
Thermal bridging		0.035 W/m²K	
Doors U-value		1 W/m²K	
Party Walls U-value		0 W/m²K	
Floors U-value		0.11 W/m²K	
Photovoltaic array			

SAP Input

Property Details: Unit 1 - 1B 2P - Be Green

Address: Located in:	106 Bexley Road , Erith , DA8 3SP England
Region:	South East England
UPRN:	-
Date of assessment:	13 July 2021
Date of certificate:	15 July 2021
Assessment type:	New dwelling design stage
Transaction type:	New dwelling
Tenure type:	Unknown
Related party disclosure:	No related party
Thermal Mass Parameter:	Indicative Value Medium
Water use <= 125 litres/person/da	ay: True
PCDF Version:	479

Property description	า:							
Dwelling type: Detachment:		Flat						
Year Completed:		2021						
Floor Location:		Floor a	area:					
					Storey height	:		
Basement floor	_	67.3 m ²			2.7 m			
Living area:		29.9 m ²	(fraction 0.444))				
Front of dwelling f	aces:	South						
Opening types:								
Name:	Source:	Ту	pe:	Glazing:		Argon:	Fram	e:
Fron <mark>t Door</mark>	Manufacturer	So	lid			Ŭ	W <mark>ood</mark>	
Sout <mark>h Win</mark> dow	SAP 2012		ndows		= 0.0 <mark>5, soft</mark> coat	Yes	PVC-U	
South Window 2	SAP 2012		ndows		0.05, soft coat	Yes	PVC-U	
South Window 3	SAP 2012	VVI	ndows	IOW-E, EN =	0.05, soft coat	Yes	PVC-U	
Name:	Gap:		Frame Facto	or: g-value:	U-value:	Area:	No. o	f Openings:
Front Door	mm		0.7	0	1	1.91	1	
South Window	16mm or		0.7	0.63	1.2	1.31	1	
South Window 2 South Window 3	16mm or		0.7 0.7	0.63 0.63	1.2 1.2	1.69 5.37	1 1	
South window 3	16mm or	more	0.7	0.03	1.2	5.57	I	
Name:	Type-Name	e: La	cation:	Orient:		Width:	Heigl	nt:
Front Door			ternal Wall	North		0.91	2.1	
South Window			ternal Wall	South		0.69	1.9	
South Window 2 South Window 3			ternal Wall ternal Wall	South South		0.9 2.3	1.875 2.335	
		LX		South		2.3	2.335	
Overshading:		Average	e or unknown					
Opaque Elements:		ritoluge						
51	Gross area:	Openings:	Net area:	U-value:	Ru value:	Curtain	wall:	Kappa:
External Elements	41.01	10.00	21.02	0.1/	0	Eal		N1 / A
External Wall Corridor Wall	41.31 16.74	10.28 0	31.03 16.74	0.16 0.16	0 0.4	False False		N/A N/A
External Floor	67.3	U	10.74	0.10	0.4	1 0130		N/A
Internal Elements	0							
Party Elements								
Party Wall	45.36							N/A
Party Ceiling	67.3							N/A

SAP Input

Thormal bridges:	Llear dofin	ad (individual [201_values	Y-Value = 0.0353
Thermal bridges:	Length	Psi-valu		1 - value = 0.0353
[Approved]	4.865	0.3	E2	Other lintels (including other steel lintels)
[Approved]	1.59	0.04	E3	Sill
[Approved]	16.47	0.05	E4	Jamb
[Approved]	16.8	0.06	E18	Party wall between dwellings
[, , , , , , , , , , , , , , , , , , ,	15.3	0.07	E22	Basement floor
Ventilation:				
Pressure test:	Yes (As de	signed)		
Ventilation:	Balanced v Number of Ductwork:	vith heat recov wet rooms: Ki Insulation, rigi	itchen + 1 id	
Number of chimneys:	0			
Number of open flues:	0			
Number of fans:	0			
Number of passive stacks:	0			
Number of sides sheltered:	3			
Pressure test:	4			
Main heating system:	·			
Main heating system:	Boiler syste	ems with radia	tors or und	lerfloor heating
Main heating Control:	Fuel: main Info Sourc Database: Brand nam Model: Gre Model qua (Combi boi Systems w Central hea Design flow Unknown Boiler inter Weather C	e: Boiler Datab (rev 479, prod e: Worcester eenstar ifier: 32CDi Co ler) ith radiators ating pump : 2 v temperature: lock: Yes ompensator	oase uct index (ompact ErP 013 or late : Design flo	
Vain heating Control:	services	emperature zo		by suitable an angement of plumbing and electrical
	Control cod	de: 2110		
Secondary heating system:				
Secondary heating system:	None			
Water heating:				
Water heating:	From main	heating syster	m	
3	Water code			
	Fuel :main			
		ter cylinder		
		eat Recovery S	System:	
		(rev 479, proc		060039)
		me: Alpha		
		•		
	Brand na Model: In	•	0GS+GasSa	aver-GS-1

SAP Input

Total rooms with shower and/or bath: 1 Product index: 080106, Megaflo SHRU 60 System B Number of mixer showers in rooms with a bath: 1 Number of mixer showers in rooms without a bath: 0 Solar panel: False

Others:

Electricity tariff: In Smoke Control Area: Conservatory: Low energy lights: Terrain type: EPC language: Wind turbine: Photovoltaics: Standard Tariff Unknown No conservatory 100% Low rise urban / suburban English No <u>Photovoltaic 1</u> Installed Peak power: 0.3 Tilt of collector: 30° Overshading: None or very little Collector Orientation: South No

Assess Zero Carbon Home:

User Details:											
Assessor Name: Software Name:	Stroma FSAP 201			Stroma Softwa Address:	re Ver	sion:	Be Gre		n: 1.0.5.41		
Address :	106 Bexley Road , I			1001033.			DC OIC	CIT			
1. Overall dwelling dime	•		0001								
Basement			-	a(m²) 67.3	(1a) x	r	ight(m) 2.7	(2a) =	Volume(m ³) 181.71	(3a)	
Total floor area TFA = (1a	a)+(1b)+(1c)+(1d)+(1e	e)+(1n) 6	67.3	(4)						
Dwelling volume					(3a)+(3b)	+(3c)+(3d	l)+(3e)+	.(3n) =	181.71	(5)	
2. Ventilation rate:				_		_					
Number of chimneys	heating h	econdary neating 0] + [0 0] = [total 0		40 =	m ³ per hour	(6a)	
Number of open flues	0 +	0	+	0] = [0	X 2	20 =	0	(6b)	
Number of intermittent fai	ns					0	x ^	10 =	0	(7a)	
Number of passive vents					Γ	0	x ´	10 =	0	(7b)	
Number of flueless gas fir	res				Ē	0	X 4	40 = Air ch	0 ange <mark>s per</mark> hou	(7c)	
Infiltration due to chimney					ontinue fro	0 om (9) to (÷ (5) =	0	(8)	
Number of storeys in th Additional infiltration Structural infiltration: 0.	e dw <mark>elling</mark> (ns)							-1]x0.1 =	0	(9) (10) (11)	
if both types of wall are pr deducting areas of openin If suspended wooden fl			-							-	
If no draught lobby, ent			i (seale	u), eise					0	(12) (13)	
Percentage of windows		ripped							0	(13)	
Window infiltration		nppou		0.25 - [0.2	x (14) ÷ 1	00] =			0	(15)	
Infiltration rate				(8) + (10) ·	+ (11) + (1	2) + (13) +	+ (15) =		0	(16)	
Air permeability value,	q50, expressed in cub	oic metres	s per ho	our per so	quare m	etre of e	nvelope	area	4	(17)	
If based on air permeabili	ty value, then (18) = [(1	7) ÷ 20]+(8), otherwi	se (18) = (16)			·	0.2	(18)	
Air permeability value applies		s been don	e or a deg	ree air pei	meability i	is being us	sed			-	
Number of sides sheltere	d			(20) = 1 - [0 075 v (1	0)1 -			3	(19)	
Shelter factor	ing chalter factor			(20) = (18)		9)] =			0.78	(20)	
Infiltration rate incorporati	-	J		(21) = (10)	x (20) -				0.16	(21)	
Infiltration rate modified fo	Mar Apr May	Jun	Jul	Aug	Sep	Oct	Nov	Dec			
			Jui	Aug	Oep	001		Dec			
Monthly average wind spo (22)m= 5.1 5	4.9 4.4 4.3	3.8	3.8	3.7	4	4.3	4.5	4.7			
	II		0.0	0.7	т	1.0	1.0	T. /			
Wind Factor $(22a)m = (22a)m $	2)m ÷ 4 1.23 1.1 1.08	0.95	0.95	0.92	1	1.08	1.12	1.18			
	I	II					I				

Adjust	ed infiltr	ation rat	e (allowi	ing for sh	nelter an	d wind s	peed) =	(21a) x	(22a)m	-			_	
• • •	0.2	0.19	0.19	0.17	0.17	0.15	0.15	0.14	0.16	0.17	0.17	0.18		
		al ventila	•	rate for t	ne appli	cable ca	se						0.5	(23a)
				endix N, (2	(23a) = (23a	ı) × Fmv (e	equation (N	N5)) . othei	wise (23b) = (23a)			0.5	
				iency in %						, , ,			79.0	
			-	-	-					2b)m + (2	23b) x [1	– (23c)		5 (200)
(24a)m=	r	0.3	0.29	0.28	0.27	0.25	0.25	0.25	0.26	0.27	0.28	0.29]	(24a)
b) If	balance	d mecha	anical ve	entilation	without	heat rec	covery (N	и ЛV) (24b)m = (22	2b)m + (2	 23b)		1	
(24b)m=	0	0	0	0	0	0	0	0	0	0	0	0]	(24b)
c) If	whole h	ouse ex	tract ver	tilation of	or positiv	e input v	ventilatio	n from c	outside					
	if (22b)n	n < 0.5 ×	(23b), t	then (24	c) = (23b); otherv	wise (24	c) = (22b	o) m + 0.	5 × (23b)			
(24c)m=	0	0	0	0	0	0	0	0	0	0	0	0	J	(24c)
,				ole hous	•	•				0 51				
	r – – –	n = 1, tn	en (24d) 0	m = (221	o)m otne	erwise (2	(4a)m = 0	0.5 + [(2	2b)m² x	0.5	0	0	1	(24d)
(24d)m=	_		-						-	0	0	0	J	(240)
⊂ne (25)m=	0.3	0.3	0.29	nter (24a	0.27	0.25	0.25	0.25	0.26	0.27	0.28	0.29]	(25)
(20)11-	0.0	0.0	0.20	0.20	0.21	0.20	0.20	0.20	0.20	0.21	0.20	0.20		()
				paramet						_				
ELEN		Gros area		Openin		Net Ar A ,n		U-valı W/m2		A X U (W/ł	<)	k-value		A X k kJ/K
Doors		aroa	()			1.91	x	1	=	1.91	-	110/111		(26)
Windo	ws Type	e 1				1.31		/[1/(1.2)+	0.04] =	1.5	Ħ			(27)
	ws Type					1.69		/[1/(1.2)+	Ļ	1.94	Ħ			(27)
	ws Type					5.37		/[1/(1.2)+	L	6.15	4			(27)
Floor	- 71					67.3		0.11	= [7.403	= г			(28)
Walls	Type1	41.3	11	10.2	8	31.03		0.16		4.96	╡╞		\dashv	(29)
	Type2	16.7		0		16.74		0.15		2.52	╡╞		\dashv	(29)
		lements				125.3		0.10	[2.02				(31)
Party			,			45.36		0	= [0				(32)
Party						67.3		0	[0			\dashv	(32b)
	-	roof wind	ows, use e	effective wi	indow U-va			formula 1	/[(1/U-valu	ıe)+0.04] a	s given in	paragraph		(020)
				nternal wal			0			, <u> </u>	0	, , ,		
Fabric	heat los	s, W/K :	= S (A x	U)				(26)(30)	+ (32) =				26.3	8 (33)
Heat c	apacity	Cm = S((Axk)						((28)	(30) + (32	2) + (32a).	(32e) =	17755	5.5 (34)
Therm	al mass	parame	ter (TMI	- Cm -	÷ TFA) ir	∩ kJ/m²K			Indica	tive Value:	Medium		250	(35)
	•	sments wh ad of a de			constructi	ion are not	t known pr	ecisely the	indicative	e values of	TMP in Te	able 1f		
Therm	al bridg	es : S (L	x Y) cal	culated	using Ap	pendix ł	<						4.43	3 (36)
			are not kr	nown (36) =	= 0.05 x (3	1)				(00)				
	abric he			marth	.,					(36) =			30.8	3 (37)
ventila	r	i	i			1	11	۸		$= 0.33 \times (100)$			1	
	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec		

(38)m=	18.13	17.9	17.67	16.51	16.27	15.11	15.11	14.88	15.58	16.27	16.74	17.2		(38)
Heat tr	ansfer o	coefficie	nt, W/K						(39)m	= (37) + (3	- 38)m			
(39)m=	48.94	48.7	48.47	47.31	47.08	45.92	45.92	45.68	46.38	47.08	47.54	48.01		
Heat lo	ss para	ameter (I	HLP), W	/m²K						Average = = (39)m ÷		12 /12=	47.25	(39)
(40)m=	0.73	0.72	0.72	0.7	0.7	0.68	0.68	0.68	0.69	0.7	0.71	0.71		
										Average =	Sum(40)1.	12 /12=	0.7	(40)
Numbe	-	/s in mo Feb	nth (Tab Mar	, 1	Max	lun	Jul	Aug	San	Oct	Nov	Dec		
(41)m=	Jan 31	28	31	Apr 30	May 31	Jun 30	31	Aug 31	Sep 30	31	30	31		(41)
(,	0.													,
4. Wa	ter hea	ting ene	rgy requ	irement:								kWh/ye	ar:	
A			NI											
if TF.	A > 13.		+ 1.76 x	[1 - exp	(-0.0003	849 x (TF	-A -13.9))2)] + 0.0	0013 x (TFA -13.		18		(42)
		9, N = 1 1e hot w:	ater usag	ne in litre	es per da	av Vd av	erage =	(25 x N)	+ 36		85	.95		(43)
Reduce	the annua	al average	hot water	usage by	5% if the a	lwelling is	designed t			se target o		.95		(40)
not more	e that 125		person per							_				
Hot wate	Jan ar usage i	Feb	Mar r day for ea	Apr Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec		
	94.54	91.1	87.67	84.23	80.79	77.35	77.35	80.79	84.23	87.67	91.1	94.54		
(44)m=	94.04	91.1	07.07	04.25	00.79	11.55	11.55	00.79					1031.37	(44)
$Total = Sum(44)_{112} = 1031.37 $ (44) Energy content of hot water used - calculated monthly = 4.190 x Vd,m x nm x DTm / 3600 kWh/month (see Tables 1b, 1c, 1d)														
(45)m=	140.2	122.62	126.54	110.32	105.85	91.34	84.64	97.13	98.29	114.54	125.03	135.78		
lf instant	aneous v	vater heati	ng at point	of use (no	hot water	storage).	enter 0 in	boxes (46		Tota <mark>l = S</mark> u	m(45) ₁₁₂ =	-	1 <mark>352.29</mark>	(45)
(46)m=	21.03	18.39	18.98	16.55	15.88	13.7	12.7	14.57	14.74	17.18	18.76	20.37		(46)
	storage		10.00	10.00	10.00	10.7	12.1	14.07	14.74	11.10	10.70	20.07		()
Storage	e volum	ne (litres)) includir	ng any so	olar or W	/WHRS	storage	within sa	ame ves	sel		0		(47)
	•	-	and no ta		-			. ,	`	(0) : (47)			
	ise it no storage		hot wate	er (this ir	iciudes i	nstantar	ieous co	indi dan	ers) ente	er 'O' in (47)			
	•		eclared I	oss facto	or is kno	wn (kWł	n/day):					0		(48)
Tempe	rature f	actor fro	m Table	2b								0		(49)
			r storage	•				(48) x (49)) =			0		(50)
,			eclared of factor fr	•										(51)
		-	see secti				ly)					0		(51)
	•	from Ta										0		(52)
Tempe	rature f	actor fro	m Table	2b								0		(53)
			r storage	e, kWh/y€	ear			(47) x (51)	x (52) x (53) =		0		(54)
	. ,	(54) in (8		for acab	month			((56)~ (55) - (44)	m		0		(55)
	-		culated					((56)m = (1				
(56)m= If cylinde	0 er contain	0 s dedicate	0 d solar sto	0 rage, (57)i	0 n = (56)m	0 x [(50) – (0 H11)] ÷ (5	0 0), else (5	0 7)m = (56)	0 m where (0 H11) is fro	0 m Appendix	άH	(56)
(57)m=	0	0	0	0	0	0	0	0	0	0	0			(57)
(57)11=	U				0	0	U	U	U		0	Ŭ		(07)

Primary circu Primary circu		,			(50)m - ((59) · 26	$S = \sqrt{41}$	m			0]	(58)
(modified)					. , .	. ,	,		r thermo	stat)			
(59)m= 0	0	0	0	0	0	0	0	0	0	0	0		(59)
Combi loss d	alculated	for each	ب ۱ month ((61)m =	(60) ÷ 3€	35 × (41))m		<u> </u>		1	I	
(61)m= 24.91	22.5	24.91	24.11	24.91	24.11	24.91	24.91	24.11	24.91	24.11	24.91		(61)
Total heat re	quired for	water h	eating ca	alculatec	for each	n month	(62)m =	0.85 × ((45)m +	(46)m +	(57)m +	(59)m + (61)m	
(62)m= 165.1	2 145.13	151.45	134.43	130.77	115.45	109.56	122.04	122.4	139.46	149.14	160.69		(62)
Solar DHW inpu	it calculated	using App	endix G or	Appendix	H (negativ	ve quantity	/) (enter '0'	if no sola	r contributi	ion to wate	er heating)		
(add additior	nal lines if	FGHRS	and/or V	NWHRS	applies.	, see Ap	pendix G	3)		-			
(63)m= 0	0	0	0	0	0	0	0	0	0	0	0		(63)
FHRS 13.01	9.82	8.78	6.76	6.16	5.3	5.01	5.68	5.73	6.94	9.43	13.09		(63) (G2)
WWHRS -31.2	7 -27.51	-28.08	-23.12	-21.48	-17.72	-15.01	-18.17	-18.7	-23.1	-26.74	-30.22		(63) (G10)
Output from	water hea	iter									-		
(64)m= 119.9	3 106.97	113.68	103.67	102.22	91.55	88.62	97.28	97.09	108.51	112.09	116.48		-
							Outp	ut from wa	ater heater	r (annual)₁	12	1258.11	(64)
Heat gains fi	om water	heating	, kWh/ma	onth 0.2	5´[0.85	× (45)m	+ (61)m] + 0.8 >	< [(46)m	+ (57)m	+ (59)m]	
(65)m= 52.85	6 46.4	48.3	42.71	41.42	36.4	34.37	38.52	38.71	44.31	47.6	51.38		(65)
in <mark>clude</mark> (5	7)m in c <mark>al</mark>	culation	of (65)m	only i <mark>f</mark> c	ylinder is	s in th <mark>e c</mark>	dwelling	or hot w	ate <mark>r is fr</mark>	om com	munity h	eating	
5. Internal	gains (see	e Table 8	5 and 5a):									
Met <mark>abolic</mark> ga	ins (Table	e 5), Wat	tts										
Jan	Feb	Mar	Apr	Мау	Jun	Jul –	Aug	Sep	Oct	Nov	Dec		
(66)m= 130.7	3 130.73	130.73	130.73	130.73	130.73	130.73	130.73	130.73	1 <mark>3</mark> 0.73	130.73	130.73		(66)
Lighting gair	s (calcula	ted in A	ppendix I	L, equat	ion L9 or	. L9a), a'	lso see	Table 5	_	-	<u>.</u>	-	
(67)m= 46.86	6 41.62	33.85	25.62	19.15	16.17	17.47	22.71	30.48	38.71	45.18	48.16		(67)
Appliances g						-	-						
(68)m= 284.9	5 287.9	280.45	264.59	244.57	225.75	213.17	210.22	217.67	233.53	253.56	272.38		(68)
Cooking gair	ns (calcula	ated in A	.ppendix	L, equat	tion L15	or L15a)	, also se	e Table	5				
(69)m= 50.25	5 50.25	50.25	50.25	50.25	50.25	50.25	50.25	50.25	50.25	50.25	50.25		(69)
Pumps and f	ans gains	(Table	5a)		<u> </u>								
(70)m= 3	3	3	3	3	3	3	3	3	3	3	3		(70)
Losses e.g.	evaporatio	on (nega	tive valu	es) (Tab	le 5)					-			
(71)m= -87.1	5 -87.15	-87.15	-87.15	-87.15	-87.15	-87.15	-87.15	-87.15	-87.15	-87.15	-87.15		(71)
Water heatin	lg gains (⊺	Table 5)					-						
(72)m= 71.03	69.04	64.92	59.32	55.68	50.55	46.2	51.78	53.76	59.56	66.11	69.05		(72)
Total intern	al gains =	:			(66)	m + (67)m	ı + (68)m +	· (69)m +	(70)m + (7	1)m + (72))m		
(73)m= 499.6	6 495.4	476.05	446.36	416.23	389.3	373.67	381.54	398.74	428.63	461.67	486.42		(73)
6. Solar gai	ns:												
<u> </u>													
Solar gains an Orientation:	e calculated	-	ar flux from	Table 6a	and associ Flux		tions to co	nvert to th	e applicab	le orientat FF	tion.	Gains	

South	0.9x	0.77	x	1.31	x	46.75	×	0.63	x	0.7	=	18.72	(78)
South	0.9x	0.77	x	1.69	x	46.75	x	0.63	x	0.7	=	24.15	(78)
South	0.9x	0.77	x	5.37	x	46.75	x	0.63	x	0.7	=	76.73	(78)
South	0.9x	0.77	x	1.31	x	76.57	x	0.63	x	0.7	=	30.65	(78)
South	0.9x	0.77	x	1.69	x	76.57	x	0.63	x	0.7	=	39.55	(78)
South	0.9x	0.77	x	5.37	x	76.57	x	0.63	x	0.7	=	125.66	(78)
South	0.9x	0.77	x	1.31	x	97.53	×	0.63	x	0.7	=	39.05	(78)
South	0.9x	0.77	x	1.69	x	97.53	x	0.63	x	0.7	=	50.37	(78)
South	0.9x	0.77	x	5.37	x	97.53	x	0.63	x	0.7	=	160.07	(78)
South	0.9x	0.77	×	1.31	x	110.23	×	0.63	x	0.7	=	44.13	(78)
South	0.9x	0.77	x	1.69	x	110.23	x	0.63	x	0.7	=	56.93	(78)
South	0.9x	0.77	×	5.37	x	110.23	×	0.63	x	0.7	=	180.91	(78)
South	0.9x	0.77	×	1.31	x	114.87	x	0.63	x	0.7	=	45.99	(78)
South	0.9x	0.77	×	1.69	x	114.87	x	0.63	x	0.7	=	59.33	(78)
South	0.9x	0.77	x	5.37	x	114.87	x	0.63	x	0.7	=	188.52	(78)
South	0.9x	0.77	x	1.31	x	110.55	x	0.63	x	0.7	=	44.26	(78)
South	0.9x	0.77	×	1.69	x	110.55	x	0.63	x	0.7	=	57.1	(78)
South	0.9x	0.77	x	5.37	x	110.55	х	0.63	х	0.7	=	181.42	(78)
South	0.9x	0.77	x	1.31	x	108.01	x	0.63	x	0.7	=	43.24	(78)
South	0.9x	0.77	x	1.69	x	108.01	×	0.63	x	0.7	=	55.79	(78)
Sout <mark>h</mark>	0.9x	0.77	x	5.37	x	108.01	x	0.63	x	0.7	=	177.26	(78)
Sout <mark>h</mark>	0.9x	0.77	×	1.31	x	104.89	x	0.63	x	0.7	=	41.99	(78)
South	0.9x	0.77	×	1.69	x	104.89	×	0.63	x	0.7	=	<mark>5</mark> 4.18	(78)
Sout <mark>h</mark>	0.9x	0.77	x	5.37	x	104.89	x	0.63	x	0.7	=	172.15	(78)
South	0.9x	0.77	x	1.31	x	101.89	x	0.63	x	0.7	=	40.79	(78)
South	0.9x	0.77	x	1.69	x	101.89	x	0.63	x	0.7	=	52.62	(78)
South	0.9x	0.77	x	5.37	x	101.89	x	0.63	x	0.7	=	167.21	(78)
South	0.9x	0.77	x	1.31	x	82.59	x	0.63	x	0.7	=	33.06	(78)
South	0.9x	0.77	x	1.69	x	82.59	x	0.63	x	0.7	=	42.65	(78)
South	0.9x	0.77	x	5.37	x	82.59	x	0.63	x	0.7	=	135.53	(78)
South	0.9x	0.77	x	1.31	x	55.42	x	0.63	x	0.7	=	22.19	(78)
South	0.9x	0.77	x	1.69	x	55.42	x	0.63	x	0.7	=	28.62	(78)
South	0.9x	0.77	×	5.37	x	55.42	×	0.63	x	0.7	=	90.95	(78)
South	0.9x	0.77	×	1.31	×	40.4	×	0.63	x	0.7	=	16.17	(78)
South	0.9x	0.77	×	1.69	×	40.4	×	0.63	x	0.7	=	20.87	(78)
South	0.9x	0.77	×	5.37	x	40.4	×	0.63	x	0.7	=	66.3	(78)

Solar g	ains in	watts, ca	alculated	l for eacl	n month			(83)m = S	um(74)m .	(82)m				
(83)m=	119.59	195.86	249.49	281.98	293.84	282.78	276.29	268.32	260.62	211.25	141.76	103.34		(83)
Total g	ains – ii	nternal a	nd solar	(84)m =	= (73)m -	+ (83)m	, watts						'	
(84)m=	4)m= 619.25 691.25 725.54 728.34 710.07 672.08 649.97 649.86 659.36 639.88 603.43 589.75													(84)
7. Mean internal temperature (heating season)														
Temp	erature	during h	eating p	eriods ir	n the livir	ng area f	from Tab	ole 9, Th	1 (°C)				21	(85)
Utilisa	ation fac	tor for g	ains for l	iving are	ea, h1,m	(see Ta	ble 9a)							
Stroma I	SAP 201	2 v Ersio n:	1.0.9.44	SAP 9.52	- http://ww	vw.stroma	.com ^l ul	Aug	Sep	Oct	Nov	Dec	Page 5	of 8

				-		i								
(86)m=	0.97	0.93	0.87	0.75	0.61	0.44	0.31	0.32	0.48	0.74	0.92	0.97		(86)
Mean	interna	l temper	ature in	living ar	ea T1 (fe	ollow ste	ps 3 to 7	7 in Tabl	e 9c)					
(87)m=	20.67	20.78	20.89	20.97	20.99	21	21	21	21	20.97	20.84	20.65		(87)
Temp	erature	durina h	neating p	eriods i	n rest of	dwelling	from Ta	able 9. T	h2 (°C)					
(88)m=	20.32	20.32	20.32	20.34	20.34	20.36	20.36	20.36	20.35	20.34	20.34	20.33		(88)
Litilion	tion for	tor for a	aine for	roct of d	wolling	h2,m (se		. () ()					1	
(89)m=	0.96	0.91	0.84	0.72	0.57	0.39	0.27	0.28	0.44	0.7	0.9	0.97	1	(89)
											0.0	0.07	J	(00)
		<u> </u>	r	r	r	ing T2 (f	1	r –	r	<u>, </u>	r		l	
(90)m=	19.89	20.06	20.19	20.3	20.34	20.36	20.36	20.36	20.35	20.32	20.14	19.87		(90)
									T	ila = Livin	g area ÷ (4	4) =	0.44	(91)
Mean	interna	l temper	ature (fo	or the wh	ole dwe	lling) = f	LA x T1	+ (1 – fL	A) × T2	_				
(92)m=	20.24	20.38	20.5	20.6	20.63	20.64	20.64	20.64	20.64	20.61	20.45	20.22		(92)
Apply	adjustr	nent to t	he mear	n interna	l temper	ature fro	m Table	e 4e, whe	ere appro	opriate	-	-		
(93)m=	20.24	20.38	20.5	20.6	20.63	20.64	20.64	20.64	20.64	20.61	20.45	20.22		(93)
8. Spa	ace hea	ting requ	uirement											
						ned at st	ep 11 of	Table 9	o, so tha	t Ti,m=(76)m an	d re-calc	ulate	
the ut	ilisation		or gains		I				i					
	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec		
			ains, hm											(0.1)
(94)m=	0.96	0.92	0.85	0.73	0.59	0.41	0.29	0.3	0.46	0.72	0.9	0.96		(94)
			, W = (94	· · ·		077.00	405.0	400.07	000.04	450.04	5 45 00	500 7		(05)
(95)m=	591.98	632.82	616.67	535.13	417.11	277.26	185.6	193.87	302.84	45 <mark>8.21</mark>	545.63	568.7	l i	(95)
	11y avera	age exte	6.5	8.9	11.7	14.6	16.6	16.4	14.1	10.6	7.1	4.2		(96)
(96)m=	-										7.1	4.2		(90)
	779.93	753.93	an intern 678.72	553.4	erature, 420.3	Lm , W =	=[(39)m 185.61	x [(93)m 193.88	- (96)m 303.25	471.21	634.83	768.94		(97)
(97)m=												700.94	l	(37)
(98)m=	139.84	81.38	46.17	13.16	2.38	Wh/mon ⁻ 0	11 = 0.02	24 X [(97)m – (95 0	9.67	64.22	148.98	1	
(50)11-	100.04	01.00	40.17	10.10	2.00	Ů	Ŭ) = Sum(9		505.8	(98)
_								TOLA	i per year	(KWII/yeai) = Sum(9	O) _{15,912} =	505.8	
Space	e heatin	g require	ement in	kWh/m ²	²/year								7.52	(99)
9a. En	ergy rec	quiremer	nts – Indi	ividual h	eating s	ystems i	ncluding	j micro-C	CHP)					
-	e heatir	-												_
Fracti	on of sp	bace hea	at from s	econdar	y/supple	ementary	system						0	(201)
Fracti	on of sp	bace hea	at from m	nain syst	tem(s)			(202) = 1	- (201) =				1	(202)
Fracti	on of to	tal heati	ng from	main sy	stem 1			(204) = (2	02) × [1 –	(203)] =			1	(204)
Efficie	ency of I	main spa	ace heat	ing syste	em 1								93.7	(206)
Efficie	encv of s	seconda	rv/suppl	ementar	v heatin	g systen	า. %						0	(208)
	•		· · ·	i	- 	1		A	Car	Oct	Next	Dee		
Snoo	Jan beatin	Feb	Mar ement (c	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	kWh/y	eai
opace	139.84	81.38	46.17	13.16	2.38	0	0	0	0	9.67	64.22	148.98		
(044)						L Ŭ	Ľ	Ľ	Ŭ	0.07	VT.LL	1 10.00	l	(044)
(211)m		í	(4)] } x 1	i i	1				0	10.00	60 F 4	450	1	(211)
	149.24	86.85	49.27	14.04	2.53	0	0			10.32	68.54 211) _{15.1012}	159	F GG G (
								TOTA	ii (rivvii/yee	uin(2	- · · / _{15,10} 12	-	539.81	(211)

Space heating fuel (secondary), kWh/month

= {[(98)m x (201)] } x 100 ÷	- (208)										
(215)m= 0 0 (0 0	0	0	0	0	0	0	0	0		_
					Tota	l (kWh/yea	ar) =Sum(2	2 15) _{15,1012}	2	0	(215)
Water heating											
Output from water heater (119.93 106.97 113	2.68 103.67	102.22	91.55	88.62	97.28	97.09	108.51	112.09	116.48]	
Efficiency of water heater					I					87.2	(216)
(217)m= 89.05 88.68 88	.18 87.58	87.28	87.2	87.2	87.2	87.2	87.48	88.44	89.13		(217)
Fuel for water heating, kW $(219)m = (64)m \times 100 \div (219)m$				-	-	-		-		_	
	3.92 118.37	117.12	104.99	101.63	111.56	111.34	124.05	126.74	130.68		
				-	Tota	I = Sum(2'	19a) ₁₁₂ =	-	-	1430.72	(219)
Annual totals		4					k	Wh/year		kWh/year	1
Space heating fuel used, n	nain system	1								539.81]
Water heating fuel used										1430.72	
Electricity for pumps, fans	and electric	keep-hot								_	
mechanical ventilation - b	alanced, ext	ract or po	ositive ii	nput fror	n outside	Э			108.07		(230a)
central heating pump:									30		(230c)
boiler with a fan-assisted	flue								45		(230e)
Total electricity for the abo	ve, <mark>kWh/</mark> yea	r			sum	of (230a).	<mark>(2</mark> 30g) =			183.07	(231)
Electricity for lighting										331	(232)
Electricity generated by PV	/s									-2 <mark>59.09</mark>	(233)
Total delivered energy for	all u <mark>ses (</mark> 211)(221)	+ (231)	+ (232)	(237b)	_				2225.51	(338)
10a. Fuel costs - individua	al heating sy	stems:									-
			Fu	el			Fuel P	rice		Fuel Cost	
			kΜ	/h/year			(Table	12)		£/year	
Space heating - main syste	em 1		(217	1) x			3.4	8	x 0.01 =	18.79	(240)
Space heating - main syste	em 2		(213	3) x			0		x 0.01 =	0	(241)
Space heating - secondary	,		(21	5) x			13.	19	x 0.01 =	0	(242)
Water heating cost (other f	uel)		(219	9)			3.4	8	x 0.01 =	49.79	(247)
Pumps, fans and electric k	eep-hot		(23)	1)			13.	19	x 0.01 =	24.15	(249)
(if off-peak tariff, list each of Energy for lighting	of (230a) to (230g) se	parately (232		licable a	nd apply	r fuel pri 13.		ding to x 0.01 =	Table 12a 43.66	(250)
Additional standing charge	s (Table 12)									120	(251)
			one	of (233) t	o (235) x)		13.	19	x 0.01 =	0	(252)
Appendix Q items: repeat I	ines (253) a	nd (254) :	as need	ded							-
Total energy cost	· · /	. ,		50)(254)	=					256.38	(255)
11a SAP rating - individu	al heating ev	ictome									

Energy cost deflator (Table 12)			0.42 (256)
Energy cost factor (ECF) [(2	55) x (256)] ÷ [(4) + 45.0] =		0.96 (257)
SAP rating (Section 12)			86.62 (258)
12a. CO2 emissions – Individual heating s	ystems including micro-CHP		
	Energy kWh/year	Emission factor kg CO2/kWh	Emissions kg CO2/year
Space heating (main system 1)	(211) x	0.216 =	116.6 (261)
Space heating (secondary)	(215) x	0.519 =	0 (263)
Water heating	(219) x	0.216 =	309.04 (264)
Space and water heating	(261) + (262) + (263) + (26	4) =	425.63 (265)
Electricity for pumps, fans and electric keep	o-hot (231) x	0.519 =	95.01 (267)
Electricity for lighting	(232) x	0.519 =	171.79 (268)
Energy saving/generation technologies Item 1		0.519 =	-134.47 (269)
Total CO2, kg/year		sum of (265)(271) =	557.97 (272)
CO2 emissions per m ²		(272) ÷ (4) =	8.29 (273)
El rating (section 14)			93 (274)
13a. Primary Energy			
Space heating (main system 1)	Energy kWh/year (211) x	Primary factor	P. Energy kWh/year
Space heating (secondary)	(215) ×	3.07 =	0 (263)
Energy for water heating	(219) x	1.22 =	1745.48 (264)
Space and water heating	(261) + (262) + (263) + (26		2404.04 (265)
Electricity for pumps, fans and electric keep	o-hot (231) x	3.07 =	562.03 (267)
Electricity for lighting	(232) x	0 =	1016.18 (268)
Energy saving/generation technologies Item 1		3.07 =	-795.39 (269)
'Total Primary Energy		sum of (265)(271) =	3186.85 (272)
Primary energy kWh/m²/year		(272) ÷ (4) =	47.35 (273)

			User D	etails:						
Assessor Name: Software Name:	Stroma FSAP 201			Stroma Softwa	ire Ver	sion:	· Be Gre		n: 1.0.5.41	
Address :	106 Bexley Road ,			Address.	Unit I -		De Gle	en		
1. Overall dwelling dimen			0 335							
Basement			Area 6		(1a) x		ight(m) 2.7	(2a) =	Volume(m ³) 181.71	(3a)
Total floor area TFA = (1a)	+(1b)+(1c)+(1d)+(1e	e)+(1n) 6	7.3	(4)					
Dwelling volume					(3a)+(3b)	+(3c)+(3d	l)+(3e)+	.(3n) =	181.71	(5)
2. Ventilation rate:	-									
Number of chimneys		econdary neating 0	, +	other 0] = [total 0	X 4	40 =	m ³ per hour	(6a)
Number of open flues	0 +	0	+	0	=	0	x 2	20 =	0	(6b)
Number of intermittent fan	S					0	x ´	10 =	0	(7a)
Number of passive vents					Ē	0	x ′	10 =	0	(7b)
Number of flueless gas fire	es				Ē	0	X 4	40 =	0	(7c)
								Air ch	anges per ho	ur
Infiltration due to chimneys						0		÷ (5) =	0	(8)
If a pressurisation test has be		ed, proceed	l to (17), c	otherwise c	ontinue fro	om (9) to ((16)			
Number of storeys in the Additional infiltration	e aweiling (ns)						[(0).	-1]x0.1 =	0	(9) (10)
Structural infiltration: 0.2	5 for steel or timber	frame or	0.35 for	masonr	v constr	uction	[(0)	1,00.1 -	0	(10)
if both types of wall are pre deducting areas of opening	sent, use the value corres s); if equal user 0.35	sponding to	the greate	er wall area	a (after					
If suspended wooden flo		led) or 0.	1 (seale	d), else	enter 0				0	(12)
If no draught lobby, ente									0	(13)
Percentage of windows	and doors draught s	tripped		0.25 - [0.2	$\mathbf{v}(14) \pm 1$	001 -			0	(14)
Window infiltration Infiltration rate				(8) + (10) -	· · ·	- C	+ (15) -	·	0	(15)
Air permeability value, q	50 expressed in cut	nic metres						area	0 4	(16) (17)
If based on air permeabilit	•		•	•	•		invelope	uluu	0.2	(17)
Air permeability value applies						is being us	sed		0.2	
Number of sides sheltered									3	(19)
Shelter factor				(20) = 1 - [9)] =			0.78	(20)
Infiltration rate incorporatir	-			(21) = (18)	x (20) =				0.16	(21)
Infiltration rate modified for		<u> </u>					1	1	I	
Jan Feb M	lar Apr May	Jun	Jul	Aug	Sep	Oct	Nov	Dec		
Monthly average wind spe		, ,					1	,	I	
(22)m= 5.1 5 4	.9 4.4 4.3	3.8	3.8	3.7	4	4.3	4.5	4.7		
Wind Factor (22a)m = (22)	m ÷ 4									
(22a)m= 1.27 1.25 1.	23 1.1 1.08	0.95	0.95	0.92	1	1.08	1.12	1.18		

Adjust	ed infiltr	ation rat	e (allowi	ing for sh	nelter an	d wind s	peed) =	(21a) x	(22a)m				-	
~ /	0.2	0.19	0.19	0.17	0.17	0.15	0.15	0.14	0.16	0.17	0.17	0.18		
	late effec echanica		•	rate for t	he appli	cable ca	se						0.5	(23a)
				endix N. (2	3b) = (23a	i) x Fmv (e	equation (N	N5)) . othe	rwise (23b) = (23a)			0.5	(23a)
					allowing f					, (,			0.5	
					°,		``		, ,	2h)m + (23b) × [1	I – (23c)		(230)
(24a)m=		0.3	0.29	0.28	0.27	0.25	0.25	0.25	0.26	0.27	0.28	0.29]	(24a)
		d mech:	I anical ve	I	without	heat rec	:overv (N	L /\\/) (24b	l = (22)	I 2b)m + (;	1 23b)		1	
(24b)m		0		0	0	0	0	0	0	0	0	0]	(24b)
c) If	whole h	ouse ex	ract ver	ntilation of	or positiv	re input v	/entilatic	n from c	utside				J	
,					c) = (23b	•				5 × (23b))			
(24c)m=	0	0	0	0	0	0	0	0	0	0	0	0]	(24c)
d) If					se positiv	•				-	-	-	-	
	r ,		r , ,	r ·	o)m othe	, ,	·	<u> </u>	, 	<u> </u>			1	
(24d)m=		0	0	0	0	0	0	0	0	0	0	0		(24d)
				<u> </u>) or (24b	, <u> </u>	<i>,</i> ,	, ,	r í		1		1	
(25)m=	0.3	0.3	0.29	0.28	0.27	0.25	0.25	0.25	0.26	0.27	0.28	0.29		(25)
3. He	eat l <mark>osse</mark>	s and he	at loss	paramet	er:									
ELE		Gros are <mark>a</mark>		Openin m	-	Net Ar A ,r		U-valı W/m2		A X U (W/I	K)	k-value kJ/m²-		A X k kJ/K
Doo <mark>rs</mark>						1.91	x	1	= [1.91				(26)
Windo	<mark>ws</mark> Type	e 1				1.31	x1/	/[1/(1.2)+	0.04] =	1.5				(27)
Windc	ws Type	2				1.69	x1/	/[1/(1.2)+	0.04] =	1.94				(27)
Windo	ws Type	93				5.37	x1/	/[1/(1.2)+	0.04] =	6.15	5			(27)
Floor						67.3	x	0.11		7.403	Γ			(28)
Walls	Type1	41.3	31	10.2	8	31.03	3 X	0.16	= [4.96	i T		\dashv	(29)
Walls	Type2	16.7	' 4	0		16.74	×	0.15		2.52			\exists	(29)
	area of e					125.3			เ		L			(31)
Party	wall					45.36	5 X	0		0				(32)
Party	ceiling					67.3			I				\exists	(32b)
	•	roof wind	ows, use e	effective wi	ndow U-va		 ated using	formula 1	/[(1/U-valu	ıe)+0.04] a	L as given in	paragraph	L h 3.2	`
** inclue	de the area	as on both	sides of ir	nternal wal	ls and part	titions								
	heat los			U)				(26)(30)	+ (32) =				26.38	(33)
	capacity		. ,						((28)	(30) + (32	2) + (32a).	(32e) =	17755.	5 (34)
		•			- TFA) in					tive Value			250	(35)
	ign assess used inste				constructi	ion are not	t known pr	ecisely the	e indicative	e values of	TMP in Ta	able 1f		
Therm	nal bridge	es : S (L	x Y) cal	culated	using Ap	pendix ł	<						4.43	(36)
			are not kr	10wn (36) =	= 0.05 x (3	1)			(00)	(26)				
	abric he		aloulotor	monthly						(36) =	25)m v (E)		30.8	(37)
ventila			i			lun	[]	A	. ,	· · · ·	25)m x (5)	_	1	
	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec]	

(38)m=	18.13	17.9	17.67	16.51	16.27	15.11	15.11	14.88	15.58	16.27	16.74	17.2		(38)
Heat tr	ansfer o	coefficie	nt, W/K						(39)m	= (37) + (38)m			
(39)m=	48.94	48.7	48.47	47.31	47.08	45.92	45.92	45.68	46.38	47.08	47.54	48.01		
Heatle	ee nara	motor (l	HLP), W	/m2k						Average = = (39)m ÷	Sum(39)1	12 /12=	47.25	(39)
(40)m=	0.73	0.72	0.72	0.7	0.7	0.68	0.68	0.68	0.69	0.7	0.71	0.71		
(- /											Sum(40)1		0.7	(40)
Numbe	er of day		nth (Tab	le 1a)						1	1			
	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec		(
(41)m=	31	28	31	30	31	30	31	31	30	31	30	31		(41)
4. Wa	ter hea	ting ene	rgy requ	irement:								kWh/ye	ar:	
		upancy,		•.		· · · · · · · · · · · · · · · · · · ·				/		.18		(42)
		9, N = 1 9, N = 1	+ 1.76 x	(1 - exp	(-0.0003	849 x (TF	-A -13.9)2)] + 0.0	0013 x (IFA -13.	.9)			
Annual	averag	e hot w	ater usa									5.95		(43)
		-	hot water person pe	• •		-	-	to achieve	a water u	se target o	f			
	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec		
Hot wate			r day for ea					<u> </u>		000	1407			
(44)m=	9 <mark>4.54</mark>	91.1	87.67	84.23	80.79	77.35	77.35	80.79	84.23	87.67	91.1	<mark>9</mark> 4.54		
											m(44) ₁₁₂ =		1031.37	(44)
Energy o			[.] used - cal									· · · · ·		
(45)m=	140.2	122.62	126.54	110.32	105.85	91.34	84.64	97.13	98.29	114.54	125.03	135.78	1050.00	
lf instant	aneous v	vater heati	ing at point	t of use (no	o hot water	r storage),	enter 0 in	boxes (46		10tal = 5u	m(45) ₁₁₂ =	= L	1352.29	(45)
(46)m=	21.03	18.39	18.98	16.55	15.88	13.7	12.7	14.57	14.74	17.18	18.76	20.37		(46)
Water	-										!			
0		•) includir	0,			0		ame ves	sel		0		(47)
	•	•	and no ta hot wate		•			` '	ers) ent	er '0' in <i>(</i>	47)			
Water			not hat			notantai					,			
a) If m	anufact	urer's d	eclared I	oss facto	or is kno	wn (kWł	n/day):					0		(48)
Tempe	rature f	actor fro	om Table	2b								0		(49)
			r storage	•		or io pot		(48) x (49)) =			0		(50)
			eclared of factor fi	•								0		(51)
		•	see secti		,							-		
		from Ta		0								0		(52)
-			om Table					· · · · · · · · · · · · · · · · · ·				0		(53)
		om wate (54) in (\$	r storage	e, kVVh/ye	ear			(47) x (51)) x (52) x (53) =		0		(54) (55)
	. ,	. , .	lculated	for each	month			((56)m = (55) × (41)	m	L	v		(33)
(56)m=	0	0	0		0	0	0	0	0	0	0	0		(56)
	-	-		-	-			-	-			om Appendix	ĸН	()
(57)m=	0	0	0	0	0	0	0	0	0	0	0	0		(57)
							·							

Primary circu	•	,			(50) - ((50) · 26	SE v (41)	m			0		(58)
Primary circu (modified b					. , .	. ,	. ,		r thermo	stat)			
(59)m= 0	0	0	0	0	0	0	0	0	0	0	0		(59)
Combi loss c	alculated	for each	י month ((61)m =	(60) ÷ 36	35 × (41))m						
(61)m= 24.91	22.5	24.91	24.11	24.91	24.11	24.91	24.91	24.11	24.91	24.11	24.91		(61)
Total heat re	quired for	water h	eating ca	alculated	I for each	n month	(62)m =	0.85 ×	(45)m +	(46)m +	(57)m +	(59)m + (61)m	
(62)m= 165.12	2 145.13	151.45	134.43	130.77	115.45	109.56	122.04	122.4	139.46	149.14	160.69		(62)
Solar DHW inpu	t calculated	using App	endix G or	⁻ Appendix	H (negativ	ve quantity	/) (enter '0	if no sola	r contribut	ion to wate	er heating)		
(add addition	al lines if	FGHRS	and/or V	NWHRS	applies,	, see Ap	pendix C	G)	-	-	-		
(63)m= 0	0	0	0	0	0	0	0	0	0	0	0		(63)
FHRS 15.98	12.35	10.71	7.57	6.36	5.3	5.01	5.68	5.73	7.71	11.9	15.96		(63) (G2)
WWHRS -31.27	-27.51	-28.08	-23.12	-21.48	-17.72	-15.01	-18.17	-18.7	-23.1	-26.74	-30.22		(63) (G10)
Output from	water hea	ıter							_			_	
(64)m= 116.9	6 104.44	111.76	102.86	102.02	91.55	88.62	97.28	97.09	107.74	109.62	113.61		_
							Outp	out from w	ater heate	r (annual)₁	12	1243.55	(64)
Hea <mark>t gains fr</mark>	om water	heating	, kWh/mo	onth 0.2	5 ´ [0.85	× (45)m	+ (61)m	n] + 0.8 x	k [(46)m	+ (57)m	+ (59)m]	
(65)m= 52.85	46.4	48.3	42.71	41.42	36.4	34.37	38.52	38.71	4 <mark>4.31</mark>	47.6	51.3 <mark>8</mark>		(65)
in <mark>clude</mark> (57)m in c <mark>al</mark>	culation	<mark>of (6</mark> 5)m	only if c	ylinder is	s in th <mark>e c</mark>	dwelling	or hot w	ate <mark>r is f</mark> r	om com	munity h	eating	
5. Internal	gains (see	e Table 5	5 and 5a)):									
Met <mark>abolic</mark> ga	ins (Table	<u>+ 5), Wat</u>	ts		· · · · · ·						1		
Jan		Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec		
(66)m= 108.94	108.94	108.94	108.94	108.94	108.94	108.94	108.94	108.94	10 <mark>8.94</mark>	108.94	108.94		(66)
Lighting gain	s (calcula	ted in A	ppendix I	L, equat	ion L9 or	: L9a), a	lso see	Table 5	i	i	i		
(67)m= 18.74	16.65	13.54	10.25	7.66	6.47	6.99	9.08	12.19	15.48	18.07	19.26		(67)
Appliances g	•								_		-		
<mark>(68)</mark> m= 190.92	2 192.9	187.9	177.28	163.86	151.25	142.83	140.85	145.84	156.47	169.88	182.49		(68)
Cooking gair	is (calcula	ated in A	ppendix	L, equat	tion L15	or L15a)), also se	e Table	5				
(69)m= 33.89	33.89	33.89	33.89	33.89	33.89	33.89	33.89	33.89	33.89	33.89	33.89		(69)
Pumps and f	ans gains	(Table	5a)										
(70)m= 3	3	3	3	3	3	3	3	3	3	3	3		(70)
Losses e.g. e	evaporatio	on (nega	tive valu	es) (Tab	ole 5)				-	-	-		
(71)m= -87.15	5 -87.15	-87.15	-87.15	-87.15	-87.15	-87.15	-87.15	-87.15	-87.15	-87.15	-87.15		(71)
Water heatin	g gains (1	۲able 5)											
(72)m= 71.03	69.04	64.92	59.32	55.68	50.55	46.2	51.78	53.76	59.56	66.11	69.05		(72)
Total interna	al gains =	:			(66)	m + (67)m	n + (68)m +	+ (69)m +	(70)m + (7	1)m + (72)	m		
(73)m= 339.3	7 337.27	325.05	305.52	285.88	266.96	254.7	260.39	270.48	290.19	312.75	329.49		(73)
6. Solar gai	ns:												
Solar gains are	e calculated	using sola	r flux from	Table 6a a	and associ	ated equa	tions to co	nvert to th	ne applicat		ion.		
Orientation:	Access F Table 6d		Area m²		Flu: Tab	x ole 6a	Т	g_ able 6b	Та	FF able 6c		Gains (W)	

	_				_								_
South	0.9x	0.77	x	1.31	x	46.75	x	0.63	x	0.7	=	18.72	(78)
South	0.9x	0.77	×	1.69	x	46.75	×	0.63	x	0.7	=	24.15	(78)
South	0.9x	0.77	x	5.37	x	46.75	×	0.63	x	0.7	=	76.73	(78)
South	0.9x	0.77	x	1.31	x	76.57	×	0.63	x	0.7	=	30.65	(78)
South	0.9x	0.77	x	1.69	x	76.57	x	0.63	x	0.7	=	39.55	(78)
South	0.9x	0.77	x	5.37	x	76.57	x	0.63	x	0.7	=	125.66	(78)
South	0.9x	0.77	x	1.31	x	97.53	×	0.63	x	0.7	=	39.05	(78)
South	0.9x	0.77	x	1.69	x	97.53	×	0.63	x	0.7	=	50.37	(78)
South	0.9x	0.77	x	5.37	x	97.53	x	0.63	x	0.7	=	160.07	(78)
South	0.9x	0.77	x	1.31	x	110.23	×	0.63	x	0.7	=	44.13	(78)
South	0.9x	0.77	x	1.69	x	110.23	×	0.63	x	0.7	=	56.93	(78)
South	0.9x	0.77	x	5.37	x	110.23	x	0.63	x	0.7	=	180.91	(78)
South	0.9x	0.77	x	1.31	x	114.87	×	0.63	x	0.7	=	45.99	(78)
South	0.9x	0.77	x	1.69	x	114.87	x	0.63	x	0.7	=	59.33	(78)
South	0.9x	0.77	x	5.37	x	114.87	x	0.63	x	0.7	=	188.52	(78)
South	0.9x	0.77	x	1.31	x	110.55	×	0.63	x	0.7	=	44.26	(78)
South	0.9x	0.77	x	1.69	x	110.55	x	0.63	x	0.7	=	57.1	(78)
South	0.9x	0.77	x	5.37	X	110.55	x	0.63	x	0.7	=	181.42	(78)
South	0.9x	0.77) ×	1.31	x	108.01	x	0.63	x	0.7	=	43.24	(78)
South	0.9x	0.77	x	1.69	x	108.01	×	0.63	x	0.7	=	55.79	(78)
South	0.9x	0.7 <mark>7</mark>	x	5.37	x	108.01	x	0.63	x	0.7	=	177.26	(78)
South	0.9x	0.77) ×	1.31	x	104. <mark>8</mark> 9	х	0.63	x	0.7	=	41.99	(78)
South	0.9x	0.77	x	1.69	x	104.89	×	0.63	x	0.7	=	54.18	(78)
South	0.9x	0.77	x	5.37	x	104.89	x	0.63	x	0.7	=	172.15	(78)
South	0.9x	0.77	x	1.31	x	101.89	x	0.63	x	0.7	=	40.79	(78)
South	0.9x	0.77	x	1.69	x	101.89	×	0.63	x	0.7	=	52.62	(78)
South	0.9x	0.77	x	5.37	x	101.89	x	0.63	x	0.7	=	167.21	(78)
South	0.9x	0.77	x	1.31	x	82.59	x	0.63	x	0.7	=	33.06	(78)
South	0.9x	0.77	x	1.69	x	82.59	×	0.63	x	0.7	=	42.65	(78)
South	0.9x	0.77	x	5.37	x	82.59	×	0.63	x	0.7	=	135.53	(78)
South	0.9x	0.77	x	1.31	x	55.42	×	0.63	x	0.7	=	22.19	(78)
South	0.9x	0.77	×	1.69	×	55.42	×	0.63	x	0.7	=	28.62	(78)
South	0.9x	0.77	×	5.37	×	55.42	×	0.63	x	0.7	=	90.95	(78)
South	0.9x	0.77	×	1.31	×	40.4	×	0.63	x	0.7	=	16.17	(78)
South	0.9x	0.77	x	1.69	x	40.4	×	0.63	x	0.7	=	20.87	(78)
South	0.9x	0.77	×	5.37	x	40.4	×	0.63	x	0.7	=	66.3	(78)

Solar g	ains in	watts, ca	alculated	for eac	h month		-	(83)m = S	um(74)m .	(82)m				
(83)m=	119.59	195.86	249.49	281.98	293.84	282.78	276.29	268.32	260.62	211.25	141.76	103.34		(83)
Total g	ains – ii	nternal a	nd solar	⁻ (84)m =	= (73)m -	⊦ (83)m	, watts							
(84)m=	4)m= 458.96 533.13 574.54 587.5 579.72 549.73 530.99 528.71 531.1 501.45 454.5 432.83													(84)
7. Mean internal temperature (heating season)														
Temp	erature	during h	eating p	eriods ir	n the livir	ng area f	from Tab	ole 9, Th	1 (°C)				21	(85)
Utilisa	ation fac	tor for g	ains for l	iving are	ea, h1,m	(see Ta	ble 9a)							_
Stroma I	SAP 201	2 v Ersio n:	1.0.9.44 (SAP 9.52	- http://ww	vw.stroma	. _{com} lul	Aug	Sep	Oct	Nov	Dec	Page	5 of 7

(86)m=	0.99	0.98	0.95	0.87	0.73	0.53	0.38	0.4	0.6	0.87	0.98	1		(86)
Mean	interna	l temper	ature in	living ar	ea T1 (fo	ollow ste	ps 3 to 7	7 in Tabl	e 9c)					
(87)m=	20.45	20.6	20.76	20.91	20.98	21	21	21	21	20.92	20.67	20.43		(87)
Temp	erature	durina h	eating p	eriods ir	n rest of	dwelling	I from Ta	able 9. T	h2 (°C)					
(88)m=	20.32	20.32	20.32	20.34	20.34	20.36	20.36	20.36	20.35	20.34	20.34	20.33		(88)
Litilior	tion for	tor for a	aine for l	roct of d	wolling	L		() ()	ļ				1	
(89)m=	0.99	0.98	0.94	0.84	0.69	h2,m (se 0.48	0.32	9a) 0.34	0.54	0.84	0.97	0.99		(89)
											0.07	0.00	I	(00)
					r	ing T2 (f	1	r –	r	<u> </u>	40.00	10.57	1	(00)
(90)m=	19.59	19.81	20.03	20.24	20.32	20.36	20.36	20.36	20.35	20.26	19.92	19.57		(90)
										fLA = Livin	y alea ÷ (4	+) =	0.44	(91)
Mean	interna	l temper	ature (fo	r the wh	ole dwe	lling) = f	LA x T1	+ (1 – fL	A) × T2	-				
(92)m=	19.97	20.16	20.36	20.54	20.61	20.64	20.64	20.64	20.64	20.55	20.26	19.95		(92)
	adjustn		he mear	interna	l temper	ature fro	m Table	e 4e, whe	ere appro	opriate			1	
(93)m=	19.97	20.16	20.36	20.54	20.61	20.64	20.64	20.64	20.64	20.55	20.26	19.95		(93)
			uirement											
						ned at st	ep 11 of	Table 9	b, so tha	t Ti,m=(76)m an	d re-calc	ulate	
the ut			or gains			lum		A	Con	Oat	Nevi	Dee		
Litilion	Jan	Feb	Mar ains, hm	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	1	
(94)m=	0.99	0.97	0.94	0.85	0.71	0.5	0.35	0.37	0.57	0.85	0.97	0.99		(94)
			, W = (94			0.5	0.00	0.57	0.57	0.00	0.37	0.99]	(01)
(95)m=	454.71	519.39	538.95	501.03	409.11	276.71	185.57	193.83	301.4	427.16	442.59	429.97		(95)
			rnal tem										I	()
(96)m=	4.3	4.9	6.5	8.9	11.7	14.6	16.6	16.4	14.1	10.6	7.1	4.2		(96)
	loss rate		ı an intern	al tempe	erature.	L Lm,W =	I =[(39)m	I x [(93)m					1	
(97)m=	767	743.33	671.63	550.48	419.65	277.38	185.61	193.88	303.13	468.57	625.43	756.1		(97)
Space	e heatin	g require	ement fo	r each n	ı nonth, k'	ı Wh/mon ⁻	th = 0.02	1 24 x [(97	ı)m – (95)m] x (4 ⁻	1)m		1	
(98)m=	232.35	150.49	98.71	35.61	7.84	0	0	0	0	30.81	, 131.65	242.64		
								Tota	l per year	(kWh/year	·) = Sum(9	8)15,912 =	930.09	(98)
Space	- heatin	a require	ement in	k\//h/m²	2/vear								13.82	(99)
		• •			•								13.02	(00)
			nts – Indi	ividual h	eating s	ystems i	ncluding	i micro-C	(HP)					
•	e heatir	0	at from s	econdar	v/sunnle	ementary	svetem						0	(201)
						anemary	•	(202) = 1	(201) -					
			at from m	-									1	(202)
Fracti	on of to	tal heati	ng from	main sys	stem 1			(204) = (2	02) × [1 –	(203)] =			1	(204)
Efficie	ency of r	main spa	ace heat	ing syste	em 1								93.7	(206)
Efficie	ency of s	seconda	ry/supple	ementar	y heatin	g systen	า, %						0	(208)
	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	kWh/y	/ear
Space	e heatin	g require	ement (c	alculate	d above)			· · · · ·	•	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·		
	232.35	150.49	98.71	35.61	7.84	0	0	0	0	30.81	131.65	242.64		
(211)m	n = {[(98)m x (20	4)] } x 1	00 ÷ (20)6)									(211)
	247.97	160.61	105.35	38	8.36	0	0	0	0	32.88	140.5	258.96		
					•		-	Tota	l (kWh/yea	ar) =Sum(2	211) _{15,1012}	Ē	992.62	(211)

Space heating fuel (secondary), kWh/month

Space heating fuel (secondary), kWh/month								
$= \{[(98)m \times (201)]\} \times 100 \div (208)$								
(215)m= 0 0 0 0 0	0 0	0 Total	0 (kWh/yea	0	0	0		(215)
Water besting		TOtal	(KWIII)yea	ii) =0uiii(2	10) _{15,101}	2	0	(215)
Water heating Output from water heater (calculated above)								
	91.55 88.62	97.28	97.09	107.74	109.62	113.61		
Efficiency of water heater							87.2	(216)
	87.2 87.2	87.2	87.2	87.95	89.08	89.55		(217)
Fuel for water heating, kWh/month (219)m = $(64)m \times 100 \div (217)m$								
	04.99 101.63	111.56	111.34	122.5	123.06	126.86		
	•	Total	= Sum(21	19a) ₁₁₂ =			1408.98	(219)
Annual totals				k\	Nh/yeai	r	kWh/year	-
Space heating fuel used, main system 1							992.62	
Water heating fuel used							1408.98	
Electricity for pumps, fans and electric keep-hot								
mechanical ventilation - balanced, extract or pos	sitive input from	n outside	•			108.07		(230a)
central heating pump:						30		(230 <mark>c</mark>)
boi <mark>ler wi</mark> th a fan-assisted flue						45		(230e)
Total electricity for the above, kWh/year		sum	of (230a).	(<mark>2</mark> 30g) =			183.07	(231)
Electricity for lighting							331	(232)
Electricity generated by PVs							-259.09	(233)
Total delivered energy for all uses (211)(221) +	(231) + (232)	(237b)					2656.59	(338)
12a. CO2 emissions – Individual heating system							2000100	
Tza. 002 chilosiono - individual realing system					_			
	Energy kWh/year			Emissi kg CO2	ion fac 2/k\\/h	tor	Emissions kg CO2/yea	
Space heating (main system 1)	(211) x							r
opulo heating (main system 1)				0.04	16	=	214 41	-
Space beating (secondary)	(215) x			0.21		=	214.41	(261)
Space heating (secondary)	(215) x			0.51	19	=	0	(261) (263)
Water heating	(219) x				19			(261) (263) (264)
Water heating Space and water heating	(219) x (261) + (262)	+ (263) + (2	264) =	0.51	19	=	0	(261) (263)
Water heating	(219) x	+ (263) + (2	264) =	0.51	19	=	0 304.34	(261) (263) (264)
Water heating Space and water heating	(219) x (261) + (262)	+ (263) + (2	264) =	0.51	19 16 19	=	0 304.34 518.75	(261) (263) (264) (265)
Water heating Space and water heating Electricity for pumps, fans and electric keep-hot	(219) x (261) + (262) (231) x	+ (263) + (2	264) =	0.51	19 16 19 19	=	0 304.34 518.75 95.01	(261) (263) (264) (265) (267)
Water heating Space and water heating Electricity for pumps, fans and electric keep-hot Electricity for lighting Energy saving/generation technologies	(219) x (261) + (262) (231) x	+ (263) + (:		0.51 0.21 0.51	19 16 19 19 19	= = =	0 304.34 518.75 95.01 171.79)(261))(263))(264))(265))(267))(268)
Water heating Space and water heating Electricity for pumps, fans and electric keep-hot Electricity for lighting Energy saving/generation technologies Item 1	(219) x (261) + (262) (231) x	+ (263) + (2		0.51 0.21 0.51 0.51 (265)(2	19 16 19 19 19	= = =	0 304.34 518.75 95.01 171.79 -134.47)(261))(263))(264))(265))(267))(268))(269)
Water heating Space and water heating Electricity for pumps, fans and electric keep-hot Electricity for lighting Energy saving/generation technologies Item 1 Total CO2, kg/year	(219) x (261) + (262) (231) x	+ (263) + (2	sum of	0.51 0.21 0.51 0.51 (265)(2	19 16 19 19 19	= = =	0 304.34 518.75 95.01 171.79 -134.47 651.09	(261) (263) (264) (265) (267) (268) (268) (269) (272)

SAP 2012 Overheating Assessment

Calculated by Stroma FSAP 2012 program, produced and printed on 15 July 2021

Property Details: Unit 1 - 1B 2P - Be Green

Dwelling type:	Flat
Located in:	England
Region:	South East England
Cross ventilation possible:	Yes
Number of storeys:	1
Front of dwelling faces:	South
Overshading:	Average or unknown
Overhangs:	None
Thermal mass parameter:	Indicative Value Medium
Night ventilation:	False
Blinds, curtains, shutters:	None
Ventilation rate during hot weather (ach):	3 (Windows open half the time)
Overheating Details:	

Summer ventilation heat loss coefficient:	179.89	(P1)
Transmission heat loss coefficient:	30.8	
Summer heat loss coefficient:	210.7	(P2)

Orientation: Ra	atio:	Z_overhangs:					
South (South Window) 0		1					
South (South Window 2)0		1					
South (South Window 3)0		1					
Solar shading:							
Orientation: Z	blinds:	Solar access:	Ove	erhangs:	Z summer:		
South (South Window) 1		0.9	1		0.9		(P8)
South (South Window 2)1		0.9	1		0.9		(P8)
South (South Window 3)1		0.9	1		0.9		(P8)
Solar gains:							
Orientation	Area	Flux	g_	FF	Shading	Gains	
South (South Window) 0.	9 x 1.31	118.4	0.63	0.7	0.9	55.4	
South (South Window 2)0.	9 x 1.69	118.4	0.63	0.7	0.9	71.48	
South (South Window 3)0.	9 x 5.37	118.4	0.63	0.7	0.9	227.12	
					Total	354	(P3/P4)

Internal gains:

	June	July	August
Internal gains	386.3	370.67	378.54
Total summer gains	753.66	724.67	722.96 (P5)
Summer gain/loss ratio	3.58	3.44	3.43 (P6)
Mean summer external temperature (South East England)	15.4	17.4	17.5
Thermal mass temperature increment	0.25	0.25	0.25
Threshold temperature	19.23	21.09	21.18 (P7)
Likelihood of high internal temperature	Not significant	Slight	Slight

Assessment of likelihood of high internal temperature:

<u>Slight</u>

Regulations Compliance Report

Approved Documer Printed on 15 July 2		, England assessed by S	Stroma FSAF	2012 program, Vei	rsion: 1.0.5.41	
Project Information						
Assessed By:	()			Building Type:	Flat	
Dwelling Details:						
NEW DWELLING	DESIGN STAGE			Total Floor Area: 6	61m²	
Site Reference :	106 Bexley Road			Plot Reference:	Unit 7 - 2B 3P	- Be Green
Address :	106 Bexley Road ,	Erith , DA8 3SP				
Client Details:						
Name:	Kang					
Address :	Upna Ltd , 106 Bez	kley Road , Erith , DA8 3	SP			
-	s items included wi e report of regulati	thin the SAP calculatio ons compliance.	ons.			
1a TER and DER						
	ng system: Mains ga	IS				
Fuel factor: 1.00 (m	iains gas) kide Emission Rate (TFR)		18.54 kg/m²		
-	ioxide Emission Rate	. ,		10.94 kg/m²		ОК
1b TFEE and DFE						
	gy Efficiency (TFEE)			45.3 kWh/m ²		
Dweiling Fabric Ene	ergy Efficiency (DFE	. C)		36.6 kWh/m ²		OK
2 Fabric U-values	S S					
Element External w Party wall Floor Roof	/all	Average 0.16 (max. 0.30) 0.00 (max. 0.20) (no floor) (no roof)		Highest 0.16 (max. 0.70) -		ок ок
Openings		1.17 (max. 2.00)		1.20 (max. 3.30)		ОК
2a Thermal bridg	ing					
		om linear thermal transm	nittances for e	each junction		
3 Air permeability				4.00 (designs und		
Maximum	ility at 50 pascals			4.00 (design val 10.0	ue)	ОК
4 Heating efficier	су					
Main Heating	g system:	Database: (rev 479, pro Boiler systems with rad Brand name: Worcester Model: Greenstar Model qualifier: 32CDi (Combi) Efficiency 89.8 % SEDI Minimum 88.0 %	diators or und er Compact Erl	derfloor heating - ma	ains gas	ОК
Secondary h	neating system:	None				

Regulations Compliance Report

Cylinder insulation			
Hot water Storage:	No cylinder		
Controls			
Space heating controls	TTZC by plumbing and e	electrical services	OK
Hot water controls:	No cylinder thermostat		
	No cylinder		014
Boiler interlock:	Yes		OK
7 Low energy lights Percentage of fixed lights wit	h low operav fittinge	100.0%	
Minimum	n low-energy mungs	75.0%	ок
3 Mechanical ventilation		10.070	OR
Continuous supply and extra	ct system		
Specific fan power:		0.39	
Maximum		1.5	ОК
MVHR efficiency:		93%	
Minimum		70%	OK
9 Summertime temperature			
Overheating risk (South East	England):	Slight	OK
ased on:			
Overshading:		Average or unknown	
Windows facing: South Windows facing: North		3.42m ²	
Windows facing: North		4.09m ²	
Ventilation rate:		3.00	
Blinds/curtains:		None	
0 Key features			
Doors U-value		1 W/m²K	
Party Walls U-value		0 W/m²K	
Photovoltaic array			

Property Details: Unit 7 - 2B 3P - Be Green

Address: Located in:	106 Bexley Road , Erith , DA8 3SP England
Region:	South East England
UPRN:	
Date of assessment:	13 July 2021
Date of certificate:	15 July 2021
Assessment type:	New dwelling design stage
Transaction type:	New dwelling
Tenure type:	Unknown
Related party disclosure:	No related party
Thermal Mass Parameter:	Indicative Value Medium
Water use <= 125 litres/person/da	ay: True
PCDF Version:	479

Property description								
Dwelling type:		Flat						
Detachment: Year Completed:		2021						
Floor Location:		Floor	area.					
					Storey height	:		
Floor 0		61 m²			2.7 m			
Living area:		26.4 m ²	(fraction 0.433)					
Front of dwelling fa	aces:	East	,					
Opening types:								
Name:	Source:	Т	100:	Glazing:		Argon	Fram	o .
Front Door	Manufacturer		/pe: lid	Glazing.		Argon:	Wood	е.
South Window	SAP 2012		indows	low-E, En =	0.05, soft coat	Yes	PVC-U	
North Window	SAP 2012	Wi	indows	low-E, En =	0.0 <mark>5, soft</mark> coat	Yes	PVC-U	
North Window 2	SAP 2012	Wi	indows	low-E, En =	0.05, soft coat	Yes	PVC-U	
Name:	Gap:		Frame Facto	or a-value	U-value:	Area:	No o	f Openings:
Front Door	mm		0.7	0	1	1.91	1	e penniger
South Window	16mm or	more	0.7	0.63	1.2	1.71	1	
North Window	16mm or		0.7	0.63	1.2	1.71	2	
North Window 2	16mm or	more	0.7	0.63	1.2	4.09	1	
Name:	Type-Name	e: Lo	ocation:	Orient:		Width:	Heigh	nt:
Front Door			ternal Wall	East		0.91	2.1	
South Window			ternal Wall	South		0.9	1.9	
North Window North Window 2			ternal Wall ternal Wall	North North		0.9 1.475	1.9 2.775	
NOLUT WILLOW 2		EX		NOLUT		1.473	2.775	
Overshading:		Average	e or unknown					
Opaque Elements:		5						
-	<u>_</u>		N 1			a		
Type: (External Elements	Gross area:	Openings:	Net area:	U-value:	Ru value:	Curtain	wall:	Kappa:
External Wall	66.42	11.13	55.29	0.16	0	False		N/A
Corridor Wall	7.83	0	7.83	0.16	0.4	False		N/A
Internal Elements								
Party Elements								
Party Wall	32.13							N/A
Party Ceiling Party Floor	61 61							N/A N/A
i arty i 1001	01							

Thermal bridges:	User-define	d (individual F	PSI-values)	Y-Value = 0.0708
	Length	Psi-valu		
[Approved]	5.23	0.3	E2	Other lintels (including other steel lintels)
[Approved]	2.7	0.04	E3	Sill
[Approved]	21.1	0.05	E4	Jamb
[Approved]	24.6	0.07	E7	Party floor between dwellings (in blocks of flats)
[Approved]	4.3	0.02	E9	Balcony between dwellings, wall insulation continuous
[Approved]	11.9	0.06	E18	Party wall between dwellings
[[[[[[[[[[[[[[[[[[[
Ventilation:				
Pressure test:	Yes (As des	•		
Ventilation:		ith heat recov	•	
		wet rooms: Ki		
	Ductwork:	Insulation, rigi	id	
	Approved I	nstallation Sch	neme: True	
Number of chimneys:	0			
Number of open flues:	0			
Number of fans:	0			
Number of passive stacks:	0			
Number of sides sheltered:	1			
Pressure test:	4			
Main heating system:				
	Database: Brand name Model: Gree Model quali (Combi boil Underfloor Central hea	e: Worcester enstar fier: <u>32CD</u> i Co er) heating and ra ting pump : 2 v temperature: ock: Yes	ompact ErP adiators, pi 013 or late	pes in insulated timber floor
Main heating Control:		1		
Vain heating Control:	Time and te	emperature zo	one control	by suitable arrangement of plumbing and electrical
nam nearing controll	services			5 1 5
	Control cod	e: 2110		
Secondary heating system:		т. 		
Secondary heating system:	None			
Water heating:				
Water heating:	From main	heating syster	m	
rator nouting.	Water code			
	Fuel :mains			
	No hot wat	•		
			System	
		eat Recovery S		040025)
	Database	(rev 479, proc		000030)
		\\\'		
		ne: Worcester		
	Model: Gr	ne: Worcester eenstar Xtra Ilifier: 2015		

Waste Water Heat Recovery System: Total rooms with shower and/or bath: 1 Product index: 080106, Megaflo SHRU 60 System B Number of mixer showers in rooms with a bath: 1 Number of mixer showers in rooms without a bath: 0 Solar panel: False

Others:

Electricity tariff: In Smoke Control Area: Conservatory: Low energy lights: Terrain type: EPC language: Wind turbine: Photovoltaics: Standard Tariff Unknown No conservatory 100% Low rise urban / suburban English No <u>Photovoltaic 1</u> Installed Peak power: 0.3 Tilt of collector: 30° Overshading: None or very little Collector Orientation: South No

Assess Zero Carbon Home:

User Details:										
Assessor Name: Software Name:	Stroma FSA			Stroma Softwa Address:	re Ver	sion:	- Be Gre		on: 1.0.5.41	
Address :	106 Bexley Ro			-uuress.		2001 -	De Ole	GII		
1. Overall dwelling dime	ç	500 , Entri, B7								
Ground floor				a(m²) 61	(1a) x	r	ight(m) 2.7	(2a) =	Volume(m³) 164.7	(3a)
Total floor area TFA = (1	a)+(1b)+(1c)+(1c	d)+(1e)+(1r	ı)	61	(4)					
Dwelling volume					(3a)+(3b)	+(3c)+(3d	l)+(3e)+	.(3n) =	164.7	(5)
2. Ventilation rate:										
Number of chimneys Number of open flues	main heating 0	secondar heating + 0 + 0	y] + [] + [0 0] = [] = [total 0 0		40 = 20 =	m ³ per hour	(6a) (6b)
Number of intermittent fa	ans				, r	0	x	10 =	0	_](7a)
Number of passive vents	3					0	x ^	10 =	0](7b)
Number of flueless gas f						-		40 =	-	(76) (7c)
Infiltration due to chimne		s = (6a)+(6b)+(7	'a)+(7b)+(1	7c) =		0		Air ch ÷ (5) =	o nanges per hou 0	
If a pressurisation test has a Number of storeys in t Additional infiltration Structural infiltration: C if both types of wall are p deducting areas of open	he dw <mark>elling</mark> (ns)).25 for steel or ti present, use the value	mber frame or e corresponding to	0.35 for	masonr	y constr			-1]x0.1 =	0 0 0	(9) (10) (11)
If suspended wooden	•		.1 (seale	d), else	enter 0				0	(12)
lf no draught lobby, er	nter 0.05, else en	ter 0							0	(13)
Percentage of window	rs and doors drau	ight stripped							0	(14)
Window infiltration				0.25 - [0.2	x (14) ÷ 1	= [00			0	(15)
Infiltration rate				(8) + (10) -		· · · ·			0	(16)
Air permeability value,	• •		•	•	•	etre of e	envelope	area	4	(17)
If based on air permeabi	•						1		0.2	(18)
Air permeability value applie Number of sides shelter		test has been don	ie or a deg	ree air per	meability i	s being us	sea		1	(19)
Shelter factor	30			(20) = 1 - [0.075 x (1	9)] =			1 0.92	(10)
Infiltration rate incorpora	ting shelter facto	r		(21) = (18)	x (20) =				0.19	(21)
Infiltration rate modified	for monthly wind	speed								-1
Jan Feb	Mar Apr	May Jun	Jul	Aug	Sep	Oct	Nov	Dec		
Monthly average wind sp	beed from Table	7								
(22)m= 5.1 5	4.9 4.4	4.3 3.8	3.8	3.7	4	4.3	4.5	4.7		
Wind Factor (22a)m = (2	22)m ÷ 4						-			
(22a)m= 1.27 1.25	<u> </u>	1.08 0.95	0.95	0.92	1	1.08	1.12	1.18		

Adjust	ed infiltr	ation rat	e (allow	ing for sl	nelter an	d wind s	peed) =	(21a) x	(22a)m			-	-	
	0.24	0.23	0.23	0.2	0.2	0.18	0.18	0.17	0.19	0.2	0.21	0.22		
		ctive air al ventila	-	rate for t	the appli	cable ca	se						0.5	
				endix N (2	23b) = (23a) × Fmv (e	auation (N	(5)) othe	rwise (23h) - (23a)			0.5	(23a)
		• •	0		allowing f	, (•	,, .) = (200)			0.5	(23b)
			-	-	-					0 h)ma (00h) [/	1 (00 a)	79.05	(23c)
		0.34	0.33	0.31	0.3	0.28		1R) (24a	0.29	<u>, </u>	1 -	0.32) ÷ 100]]	(24a)
(24a)m=										0.3	0.31	0.32		(244)
,		1	· · · · ·	1	without		· · · · ·	r Ó	, ,	rí (, 		1	(246)
(24b)m=		0	0	0	0	0	0	0	0	0	0	0	J	(24b)
,					or positiv c) = (23b	•				.5 × (23b))			
(24c)m=	0	0	0	0	0	0	0	0	0	0	0	0		(24c)
					se positiv b)m othe					0.5]			-	
(24d)m=	0	0	0	0	0	0	0	0	0	0	0	0		(24d)
Effe	ctive air	change	rate - ei	nter (24a	1) or (24b	o) or (24	c) or (24	d) in bo	(25)	•	•	•	•	
(25)m=	0.34	0.34	0.33	0.31	0.3	0.28	0.28	0.28	0.29	0.3	0.31	0.32		(25)
2 4	ot loopo	o ond he		ooromot									,	
		S and he Gros		paramet Openir		Net Ar	00	U-val		AXU		k-value	_	AXk
ELEN	IENT	area			198 1 ²	A,r		W/m2		(W/I	K)	k-value kJ/m²·l		kJ/K
Doo <mark>rs</mark>						1.91	x	1	=	1.91				(26)
Windo	ws Type	e 1				1.71	x1,	/[1/(1.2)+	0.04] =	1.96	F			(27)
Windo	ws Type	2				1.71	X 1/	/[1/(1.2)+	0.04] =	1.96	F			(27)
	ws Type					4.09		/[1/(1.2)+		4.68	5			(27)
Walls		66.4	12	11.1	3	55.29		0.16		8.85				(29)
Walls									=		╡┟		-	(29)
		7.8: elements		0		7.83		0.15	= [1.18				
Party		lements	, 111-			74.25 32.13		0	=	0				(31)
Party f	loor					61			'		L		\exists	(32a)
Party	ceiling					61					L L		\dashv	(32b)
* for win	ndows and				indow U-va Ils and part	alue calcul	ated using	formula 1	/[(1/U-valı	ıe)+0.04] a	L as given in	paragraph	n 3.2	
Fabric	heat los	s, W/K	= S (A x	U)				(26)(30)	+ (32) =				22.49	(33)
		Cm = S(•	,					((28)	(30) + (32	2) + (32a).	(32e) =	12222.7	
			. ,	⊃ = Cm -	÷ TFA) ir	∩ kJ/m²K			Indica	tive Value	: Medium		250	(35)
For des	ign assess		ere the de	etails of the	, constructi			ecisely the	e indicative	e values of	TMP in Ta	able 1f		(==)
					using Ap	pendix I	<						5.25	(36)
if details	-	al bridging			= 0.05 x (3	•			(33) +	(36) =			L	
			alculator	d monthl	v						25)m x (5)		27.75	(37)
ventile		1	i	1		lun	1	A	. ,	<u> </u>		<u> </u>	1	
	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	J	

(38)m=	18.51	18.26	18.01	16.75	16.5	15.25	15.25	14.99	15.75	16.5	17.01	17.51		(38)
Heat tra	ansfer o	coefficie	nt, W/K						(39)m	= (37) + (3	38)m			
(39)m=	46.26	46.01	45.76	44.5	44.25	42.99	42.99	42.74	43.49	44.25	44.75	45.25		
		motor (l	HLP), W	/m2k						Average = = (39)m ÷		12 /12=	44.44	(39)
(40)m=	0.76	0.75	0.75	0.73	0.73	0.7	0.7	0.7	0.71	= (39)III ÷	0.73	0.74		
(10)	0.10	0.10	0.10	0.10	0.10	0.17	0.1	0.1		Average =			0.73	(40)
Numbe	er of day	/s in mo	nth (Tab	le 1a)	-		-							
	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec		
(41)m=	31	28	31	30	31	30	31	31	30	31	30	31		(41)
4. Wa	ter hea	ting ene	rgy requ	irement:								kWh/ye	ar:	
if TF.	A > 13.	upancy, 9, N = 1 9, N = 1		([1 - exp	(-0.0003	849 x (TF	-13.9)2)] + 0.()013 x (⁻	TFA -13.		01		(42)
		,	ater usad	ge in litre	es per da	ay Vd.av	erage =	(25 x N)	+ 36		81	.93		(43)
Reduce	the annua	al average	hot water	usage by	5% if the a	lwelling is	designed t			se target o				(-)
not more				r day (all w			·							
Hot wate	Jan er usage i	Feb	Mar	Apr ach month	May	Jun	Jul	Aug (43)	Sep	Oct	Nov	Dec		
	90.13	86.85	83.57	80.29	77.02	73.74	73.74	77.02	80.29	83.57	86.85	90.13		
(44)m=	90.13	00.05	03.57	00.29	11.02	13.14	73.74	11.02		Total = Su			983.18	(44)
Energy o	content of	hot water	used - ca	lculated mo	onthly $= 4$.	190 x Vd,r	n x nm x D)Tm / 3600			· · ·			
(45)m=	133.65	116.89	120.62	105.16	100.91	87.07	80.69	92.59	93.7	10 <mark>9.19</mark>	119.19	129.44		
If instant		ratar baati	ing of point	h of yoo /m	hatwata	(atorogo)	antor 0 in	haven /16		Total = Su	m(45) ₁₁₂ =	=	1289.11	(45)
		i	, 1	t of use (no		,, o		, , I	,					(40)
(46)m= Water s	20.05 storage	17.53 IOSS:	18.09	15.77	15.14	13.06	12.1	13.89	14.05	16.38	17.88	19.42		(46)
	-) includir	ng any so	olar or W	/WHRS	storage	within sa	ame ves	sel		0		(47)
If comr	nunity h	neating a	and no ta	ank in dw	velling, e	nter 110	litres in	(47)			L			
			hot wate	er (this ir	ncludes i	nstantar	neous co	mbi boil	ers) ente	er '0' in (47)			
	storage		oclared I	oss facto	or ie kno	wp (k\//k	v/dav).							(48)
,			om Table				vuay).					0		(48)
				, kWh/ye	ear			(48) x (49)) =			0		(50)
0,			•	cylinder l		or is not		(-/ (-)				•		(00)
		-		rom Tabl	e 2 (kW	h/litre/da	ıy)					0		(51)
	•	from Ta	see secti ble 2a	on 4.3								0		(52)
			om Table	2b								0 0		(52)
				e, kWh/ye	ear			(47) x (51)	x (52) x (53) =		0		(54)
Enter	(50) or	(54) in (5	55)	·								0		(55)
Water	storage	loss cal	culated	for each	month			((56)m = (55) × (41)	m				
(56)m=	0	0	0	0	0	0	0	0	0	0	0	0		(56)
If cylinde	r contain	s dedicate	d solar sto	orage, (57)	m = (56)m	x [(50) – (H11)] ÷ (5	0), else (5	7)m = (56)	m where (H11) is fro	m Appendi	хH	
(57)m=	0	0	0	0	0	0	0	0	0	0	0	0		(57)

Primary circuit loss (annual) fro Primary circuit loss calculated		(59)m = (58) ÷ 3(65 × (41)m			0		(58)
(modified by factor from Tab	le H5 if there is s	solar water heati	ng and a cylin	der thermo	ostat)			
(59)m= 0 0 0	0 0	0 0	0 0	0	0	0		(59)
Combi loss calculated for each	1 month (61)m =	(60) ÷ 365 × (41)m					
(61)m= 24.91 22.5 24.91	24.11 24.91	24.11 24.91	24.91 24.1	1 24.91	24.11	24.91		(61)
Total heat required for water h	eating calculated	I for each month	(62)m = 0.85	× (45)m +	(46)m +	(57)m +	(59)m + (61)m	
(62)m= 158.57 139.4 145.54	129.27 125.82	111.18 105.6	117.5 117.8	134.11	143.3	154.35		(62)
Solar DHW input calculated using App	endix G or Appendix	H (negative quantit	y) (enter '0' if no s	olar contribut	tion to wate	er heating)	I	
(add additional lines if FGHRS	and/or WWHRS	applies, see Ap	pendix G)					
(63)m= 0 0 0	0 0	0 0	0 0	0	0	0		(63)
FHRS 13.56 11.36 11	8.94 8.31	7.19 6.8	7.71 7.77	9.34	11.2	13.3		(63) (G2)
WWHRS -29.24 -25.72 -26.26	-21.63 -20.1	-16.59 -14.06	-17.01 -17.9	5 -21.62	-25.01	-28.26		(63) (G10)
Output from water heater	·		· · · ·					
(64)m= 114.48 101.15 106.99	97.46 96.13	86.17 83.47	91.5 91.2	9 101.87	105.84	111.5		-
			Output from	water heate	r (annual)	12	1187.85	(64)
Heat gains from water heating		- , ,				<u> </u>]	
(65)m= 50.67 44.49 46.34	40.99 39.78	34.98 33.06	37.01 37.1	8 42.54	45.66	49.27		(65)
in <mark>clude</mark> (57)m in calculation	of (65)m only if c	ylinder is in the	dwelling or ho	wate <mark>r is f</mark>	rom com	munity h	leating	
5. Internal gains (see Table §	5 and 5a):							
Met <mark>abolic</mark> gains (Ta <mark>ble 5),</mark> Wat	tts							
Jan Feb Mar	Apr May	Jun Jul	Aug Se	p Oct	Nov	Dec		
(66)m= 120.59 120.59 120.59	120.59 120.59	120.59 120.59	120.59 120.5	9 120.59	120.59	120.59		(66)
Lighting gains (calculated in Ap	ppendix L, equat	ion L9 or L9a), a	Ilso see Table	5				
(67)m= 41.27 36.66 29.81	22.57 16.87	14.24 15.39	20.01 26.8	5 34.09	39.79	42.42		(67)
Appliances gains (calculated in			,					
(68)m= 261.88 264.6 257.75	243.17 224.77	207.47 195.92	193.2 200.0	5 214.63	233.03	250.33		(68)
Cooking gains (calculated in A	ppendix L, equat	tion L15 or L15a), also see Tal	ole 5			_	
(69)m= 49.07 49.07 49.07	49.07 49.07	49.07 49.07	49.07 49.0	7 49.07	49.07	49.07		(69)
Pumps and fans gains (Table s	5a)						_	
(70)m= 3 3 3	3 3	3 3	3 3	3	3	3		(70)
Losses e.g. evaporation (nega	tive values) (Tab	ole 5)						
(71)m= -80.39 -80.39 -80.39	-80.39 -80.39	-80.39 -80.39	-80.39 -80.3	9 -80.39	-80.39	-80.39		(71)
Water heating gains (Table 5)								
(72)m= 68.1 66.21 62.28	56.94 53.47	48.58 44.43	49.75 51.6	4 57.17	63.42	66.22		(72)
Total internal gains =		(66)m + (67)n	n + (68)m + (69)m	+ (70)m + (7	'1)m + (72))m		
(73)m= 463.52 459.73 442.11	1 1			4 000 40	428.5	454.00	1	(72)
	414.94 387.37	362.56 348.01	355.22 370.8	398.16	420.3	451.23		(73)
6. Solar gains:	414.94 387.37	362.56 348.01	355.22 370.8	398.16	420.5	451.23		(73)
6. Solar gains: Solar gains are calculated using sola Orientation: Access Factor			1 1				Gains	(73)

North	0.9x	0.77	×	1.71	×	10.63	×	0.63	x	0.7	=	11.11	(74)
North	0.9x	0.77	l x	4.09	x	10.63	x	0.63	x	0.7	=	13.29	(74)
North	0.9x	0.77	x	1.71	x	20.32	x	0.63	x	0.7	=	21.24	(74)
North	0.9x	0.77	×	4.09	×	20.32	×	0.63	x	0.7	=	25.4	(74)
North	0.9x	0.77	×	1.71	×	34.53	×	0.63	x	0.7	=	36.09	(74)
North	0.9x	0.77	×	4.09	×	34.53	×	0.63	x	0.7	=	43.16	(74)
North	0.9x	0.77	×	1.71	x	55.46	x	0.63	x	0.7	=	57.97	(74)
North	0.9x	0.77	×	4.09	×	55.46	×	0.63	x	0.7	=	69.33	(74)
North	0.9x	0.77	x	1.71	x	74.72	×	0.63	x	0.7	=	78.09	(74)
North	0.9x	0.77	x	4.09	x	74.72	x	0.63	x	0.7	=	93.39	(74)
North	0.9x	0.77	×	1.71	×	79.99	×	0.63	x	0.7	=	83.6	(74)
North	0.9x	0.77	×	4.09	×	79.99	×	0.63	x	0.7	=	99.98	(74)
North	0.9x	0.77	×	1.71	×	74.68	×	0.63	x	0.7	=	78.05	(74)
North	0.9x	0.77	x	4.09	x	74.68	×	0.63	x	0.7	=	93.34	(74)
North	0.9x	0.77	×	1.71	×	59.25	×	0.63	x	0.7	=	61.92	(74)
North	0.9x	0.77	×	4.09	×	59.25	×	0.63	x	0.7	=	74.06	(74)
North	0.9x	0.77	x	1.71	x	41.52	x	0.63	x	0.7	=	43.39	(74)
North	0.9x	0.77	×	4.09	X	41.52	х	0.63	х	0.7	=	51.89	(74)
North	0.9x	0.77	x	1.71	x	24.19	x	0.63	x	0.7	=	25.28	(74)
North	0.9x	0.77	x	4.09	х	24.19	×	0.63	x	0.7	=	30.24	(74)
North	0.9x	0.77	×	1.71	x	13.12	x	0.63	x	0.7	=	13.71	(74)
North	0.9x	0.77	x	4.09	×	13.12	х	0.63	x	0.7	=	16.4	(74)
North	0.9x	0.77	×	1.71	x	8.86	×	0.63	x	0.7	=	9.27	(74)
North	0.9x	0.77	x	4.09	x	8.86	x	0.63	x	0.7	=	11.08	(74)
South	0.9x	0.77	x	1.71	×	46.75	x	0.63	x	0.7	=	24.43	(78)
South	0.9x	0.77	x	1.71	×	76.57	×	0.63	x	0.7	=	40.01	(78)
South	0.9x	0.77	x	1.71	×	97.53	x	0.63	x	0.7	=	50.97	(78)
South	0.9x	0.77	x	1.71	x	110.23	x	0.63	x	0.7	=	57.61	(78)
South	0.9x	0.77	x	1.71	×	114.87	×	0.63	x	0.7	=	60.03	(78)
South	0.9x	0.77	×	1.71	×	110.55	×	0.63	x	0.7	=	57.77	(78)
South	0.9x	0.77	x	1.71	x	108.01	×	0.63	x	0.7	=	56.45	(78)
South	0.9x	0.77	x	1.71	×	104.89	×	0.63	x	0.7	=	54.82	(78)
South	0.9x	0.77	×	1.71	×	101.89	×	0.63	x	0.7	=	53.25	(78)
South	0.9x	0.77	×	1.71	×	82.59	×	0.63	x	0.7	=	43.16	(78)
South	0.9x	0.77	×	1.71	×	55.42	×	0.63	x	0.7	=	28.96	(78)
South	0.9x	0.77	x	1.71	x	40.4	×	0.63	x	0.7	=	21.11	(78)

Solar gains in watts, calculated for each month(83)m = Sum(74)m(82)m														
(83)m=	48.84	86.65	130.22	184.91	231.52	241.35	227.84	190.8	148.53	98.68	59.07	41.46		(83)
Total g	ains – ii	nternal a	and solar	(84)m =	= (73)m -	⊦ (83)m	, watts							
(84)m=	512.36	546.39	572.33	599.85	618.89	603.92	575.85	546.02	519.34	496.83	487.57	492.69		(84)
7. Me	an inter	nal temp	perature	(heating	season)								
Temp	erature	during h	eating p	eriods ir	n the livir	ng area f	from Tab	ole 9, Th	1 (°C)				21	(85)
Utilisation factor for gains for living area, h1,m (see Table 9a)														
Stroma I	SAP 201	2 vErsion:	1.0.9.44	SAP 9.52	- _h ttp:///	vw.stroma	. _{com} Jul	Aug	Sep	Oct	Nov	Dec	Page	5 of 8

(0)m 0.80 0.87 0.84 0.89 0.89 (0) Mean internal temperature in living area T1 (follow steps 3 to 7 in Table 9c); (07) 7 7 20.52 20.51 20.52 20.52 20.52 20.52 20.52 20.52 20.52 20.52 20.52 20.53 20.51 20.52 20.53 20.52 20.51 20.55 20.52 20.51 20.52 20.51 20.52 20.51 20.52 20.51 20.52 20.51 20.52 20.51 20.52 20.51 20.52 20.51 20.52 20.51 20.52 20.51 20.52 20.51 20.52 20.51 20.52 20.51 20.52 20.57 (02) Mean internal temperature in the rest of dwelling T2 (follow steps 3 to 7 in Table 9c);						•		ī	ī						
(87)m- 20.55 20.65 20.78 20.83 20.83 20.74 20.54 (67) Temperature during heating periods in rest of dwelling from Table 9, Th2 (*C) (68)m- 20.29 20.29 20.32 20.31 20.32 20.34 20.34 20.34 20.34 20.33 20.32 20.33 (68) Willisation factor for gains for rest of dwelling, T2,m (see Table 9a) (69)m- 10.85 0.81 0.41 0.28 0.31 0.52 0.81 0.96 0.86 (69) Mean internal temperature in the rest of dwelling T2 (follow steps 3 to 7 in Table 9c) (00)m- 10.71 (00) (01) 0.43 (01) Mean internal temperature (for the whole dwelling) = fLA x T1 + (1 - fLA) x T2 (92) 20.07 20.19 20.36 20.62 20.62 20.63 20.62 20.53 20.32 20.07 (93) Sigm- 20.07 20.19 20.36 20.64 20.62 20.63 20.62 20.63 20.62 20.65 20.32 20.07 (93) Sigm- 20.19 20.36 20.42 20.62 20.63 20.65 40.64 </td <td>(86)m=</td> <td>0.98</td> <td>0.97</td> <td>0.93</td> <td>0.83</td> <td>0.65</td> <td>0.45</td> <td>0.33</td> <td>0.36</td> <td>0.57</td> <td>0.84</td> <td>0.96</td> <td>0.98</td> <td></td> <td>(86)</td>	(86)m=	0.98	0.97	0.93	0.83	0.65	0.45	0.33	0.36	0.57	0.84	0.96	0.98		(86)
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Mean	internal	temper	ature in	living ar	ea T1 (fe	ollow ste	ps 3 to 7	7 in Tabl	e 9c)					
(88)m 20.29 20.3 20.31 20.32 20.34 20.34 20.33 20.32 20.31 20.3 (88) Utilisation factor for gains for rest of dwelling, h2, m (see Table 9a) (99)m 0.86 0.95 0.92 0.8 0.51 0.41 0.28 0.31 0.52 0.81 0.95 0.88 (99) Mean internal temperature in the rest of dwelling T2 (follow steps 3 to 7 in Table 9c) (90)m 19.71 19.85 0.04 20.44 20.34 20.34 20.33 20.25 0.98 (99) Mean internal temperature (for the whole dwelling) = fLA x T1 + (1 - fLA) x T2 (92) (92) Apply adjustment to the mean internal temperature form Table 4e, where appropriate (93) (93) Septe heating requirement 20.64 20.62 20.63 20.62 20.54 20.32 20.07 (93) Septe heating factor for gains bing Table 9a (94)m (95) (96)m (96)m (96)m (96)m (96)m (96)m (96)m (96)m (96)m	(87)m=	20.55	20.65	20.78	20.93	20.99	21	21	21	21	20.93	20.74	20.54		(87)
(88)m 20.29 20.3 20.31 20.32 20.34 20.34 20.33 20.32 20.31 20.3 (88) Utilisation factor for gains for rest of dwelling, h2, m (see Table 9a) (99)m 0.86 0.95 0.92 0.8 0.51 0.41 0.28 0.31 0.52 0.81 0.95 0.88 (99) Mean internal temperature in the rest of dwelling T2 (follow steps 3 to 7 in Table 9c) (90)m 19.71 19.85 0.04 20.44 20.34 20.34 20.33 20.25 0.98 (99) Mean internal temperature (for the whole dwelling) = fLA x T1 + (1 - fLA) x T2 (92) (92) Apply adjustment to the mean internal temperature form Table 4e, where appropriate (93) (93) Septe heating requirement 20.64 20.62 20.63 20.62 20.54 20.32 20.07 (93) Septe heating factor for gains bing Table 9a (94)m (95) (96)m (96)m (96)m (96)m (96)m (96)m (96)m (96)m (96)m	Temp	erature	during h	eating p	eriods ir	n rest of	dwelling	from Ta	able 9, T	h2 (°C)					
(9)m= 0.88 0.96 0.92 0.8 0.61 0.41 0.28 0.31 0.52 0.81 0.95 0.98 (89) Mean internal temperature in the rest of dwelling T2 (follow steps 3 to 7 in Table 9c): (80)m= 19.71 19.85 20.04 20.24 20.31 20.34 20.32 10.32 10.99 19.71 (90) Mean internal temperature (for the whole dwelling) = fLA x T1 + (1 - fLA) x T2 (91) (92) (92) (92) Apply adjustment to the mean internal temperature from Table 4e, where appropriate (93)m= 20.07 20.19 20.38 20.54 20.62 20.63 20.62 20.54 20.32 20.07 (93) Set to the mean internal temperature from Table 4e, where appropriate (93)m= 20.07 (93) 20.37 20.37 20.38 20.67 20.43 20.42 20.32 20.07 (93) Set to the mean internal temperature obtained at step 11 of Table 9b, so that T,m=(76)m and re-calculate the utilisation factor for gains, hm: (94) (94) (94) (94) (94) (94) (94) (94) (94) (94) (94) (94) (95) (94) <td></td> <td>1</td> <td></td> <td></td> <td>r</td> <td>-</td> <td><u> </u></td> <td>1</td> <td>i</td> <td><u>, , , , , , , , , , , , , , , , , , , </u></td> <td>20.32</td> <td>20.31</td> <td>20.3</td> <td></td> <td>(88)</td>		1			r	-	<u> </u>	1	i	<u>, , , , , , , , , , , , , , , , , , , </u>	20.32	20.31	20.3		(88)
(9)m= 0.88 0.96 0.92 0.8 0.61 0.41 0.28 0.31 0.52 0.81 0.95 0.98 (89) Mean internal temperature in the rest of dwelling T2 (follow steps 3 to 7 in Table 9c): (80)m= 19.71 19.85 20.04 20.24 20.31 20.34 20.32 10.32 10.99 19.71 (90) Mean internal temperature (for the whole dwelling) = fLA x T1 + (1 - fLA) x T2 (91) (92) (92) (92) Apply adjustment to the mean internal temperature from Table 4e, where appropriate (93)m= 20.07 20.19 20.38 20.54 20.62 20.63 20.62 20.54 20.32 20.07 (93) Set to the mean internal temperature from Table 4e, where appropriate (93)m= 20.07 (93) 20.37 20.37 20.38 20.67 20.43 20.42 20.32 20.07 (93) Set to the mean internal temperature obtained at step 11 of Table 9b, so that T,m=(76)m and re-calculate the utilisation factor for gains, hm: (94) (94) (94) (94) (94) (94) (94) (94) (94) (94) (94) (94) (95) (94) <td>Utilisa</td> <td>ation fac</td> <td>tor for a</td> <td>ains for</td> <td>rest of d</td> <td>welling</td> <td>h2 m (se</td> <td>e Table</td> <td>9a)</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	Utilisa	ation fac	tor for a	ains for	rest of d	welling	h2 m (se	e Table	9a)						
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $							1	-	<u> </u>	0.52	0.81	0.95	0.98		(89)
(8))m= 19.71 19.85 20.04 20.24 20.31 20.34 20.33 20.25 19.99 19.71 (90) ILA = Living area = (4) * 0.43 (91) Mean internal temperature (for the whole dwelling) = fLA x T1 + (1 - fLA) x T2 (92) (92)m= 20.07 20.19 20.38 20.64 20.62 20.62 20.62 20.64 20.32 20.07 (92) Apply adjustment to the mean internal temperature from Table 4e, where appropriate (93) 3. Space heating requirement (93) Set Ti to the mean internal temperature obtained at step 11 of Table 9b, so that Ti,m=(76)m and re-calculate (94) (94) (94) (94) (94) (94) (94) (94) (94) (95) (96) (96) (97) (93) (93) (94) (94) (95) (96) (96) (96) (96) (96) (96) (96) (96) (97) (93) (93) (94) (94) (94) (94) (94) (95) (96) (96) (97) (93) (93) (94) (94) (96) (96) (97) (93)		internel	tompor	oturo in	the reat		ing T2 (f		1	l 7 in Tobl					
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $					r	1	r <u> </u>	1	r –	r	<u> </u>	19 99	19.71		(90)
	(00)11-	10.71	10.00	20.04	20.24	20.01	20.04	20.04	20.04					0.43	
(92)me 20.07 20.19 20.32 20.54 20.62 20.62 20.54 20.32 20.07 (92) Apply adjustment to the mean internal temperature from Table 4e, where appropriate (93)me 20.07 20.19 20.36 20.54 20.62 20.54 20.32 20.07 (93) 8. Space heating requirement Set Ti to the mean internal temperature obtained at step 11 of Table 9b, so that Ti,m=(76)m and re-calculate the utilisation factor for gains, km: (94) (94) (94) (94) (95) (94) (94) (94) (94) (95)me (94) (95)me (96)me (96)me (97) 0.96 0.92 0.81 0.63 0.43 0.3 0.54 0.82 0.95 0.98 (94) Utilisation factor for gains, hm: (96)me 49.24 52.3 48.87 38.7 258.7 172.97 180.58 282.05 407.88 461.47 482.1 (95) (96)me 43 4.9 6.5 8.9 11.7 14.8 16.6 16.4 14.4 10.66 7.1 4.2 (96) (97) (97) Space heating requirement									<i></i>			. .	<i>,</i>	0.40	
Apply adjustment to the mean internal temperature from Table 4e, where appropriate (93) 20.07 20.19 20.36 20.62 20.62 20.62 20.54 20.32 20.07 (93) Sepace heating requirement Set Ti to the mean internal temperature obtained at step 11 of Table 9b, so that Ti.m=(76)m and re-calculate the fullisation factor for gains, hm: (94) Useful gains, hm: (94) (94) (94)				,	1	I	1 <u> </u>	I	r`	r	00.54				(02)
(83)m- 20.07 20.19 20.32 20.61 20.62 20.62 20.62 20.62 20.62 20.62 20.62 20.62 20.62 20.62 20.62 20.62 20.62 20.61 20.62 20.61 20.62 20.61 20.62 20.61 20.62 20.61 20.62 20.61 20.62 20.62 20.62 20.61 20.61 20.62 20.61 20.62 20.61 20.62 20.61 20.62 20.62 20.62 20.62 20.62 20.62 20.62 20.62 20.62 20.62 20.62 20.62 20.62 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>20.32</td><td>20.07</td><td></td><td>(92)</td></t<>												20.32	20.07		(92)
8. Space heating requirement Set Ti to the mean internal temperature obtained at step 11 of Table 9b, so that Ti,m=(76)m and re-calculate the utilisation factor for gains using Table 9a Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Utilisation factor for gains using Table 9a (94) Using Table 9a Utilisation factor for gains using Table 9a (94) Using Table 9a (95) Using Table 9a (96) Using Table 9a Utilisation factor for gains using Table 9a (97) Space heating requirement for each month, kWh/month = 0.024 x [(97)m - (95)m] x (41)m (98) Space heating requirement in kWh/m?/year (98) Space heating		<u> </u>			r	<u> </u>	r	1	r	· · ·	· ·	20.22	20.07		(93)
Set Ti to the mean internal temperature obtained at step 11 of Table 9b, so that Ti,m=(76)m and re-calculate the utilisation factor for gains using Table 9a (4) Uain Feb Mar Apr May Jun Jun Aug Sep Oct Nov Dec (94)m = 0.97 0.90 0.92 0.81 0.63 0.43 0.3 0.33 0.54 0.82 0.93 0.93 Utilisation factor for gains, hm: (94) (94) (94) (94) (95) (94) (94) (95) (94) (95) (94) (95) (94) (94) (94) (94) (94) (94) (94) (94) (94) (94) (94) (94) (95) (94) (95) (94) (94) (95) (94) (95) (94) (95) (94) (95) (95) (96) (97) (97) (97) (92) (96) (97) (97) (96) (97) (97) Space heating requirement for each month, kWh/month = 0.024 x [(97)m - (95)m] x (41)m (96) (98) (94) (94) (94) (94) (94) (94) (94)<						20.0	20.02	20.02	20.03	20.02	20.34	20.32	20.07		(30)
the utilisation factor for gains using Table 9a 49 49 Apr May Jun Jul Aug Sep Oct Nov Dec Utilisation factor for gains, hm: (94) 0.83 0.43 0.3 0.33 0.54 0.82 0.95 0.98 0.98 0.98 0.98 0.99 0.98 0.99 0.98 0.99 <t< td=""><td></td><td></td><td></td><td></td><td></td><td>re obtair</td><td>ned at st</td><td>en 11 of</td><td>Table 9</td><td>n so tha</td><td>t Ti m=('</td><td>76)m an</td><td>d re-calc</td><td>ulate</td><td></td></t<>						re obtair	ned at st	en 11 of	Table 9	n so tha	t Ti m=('	76)m an	d re-calc	ulate	
Utilisation factor for gains, hm: (94)m = 0.97 0.96 0.92 0.81 0.63 0.43 0.3 0.33 0.54 0.82 0.98 (94) Useful gains, hm: (94)m = (94)m = (94)m = (95)m = (94)m × (84)m (94) (94)m × (84)m (94) (95)m = 499.24 523.37 525.23 488.47 388.7 258.7 172.97 180.58 282.06 407.88 461.47 482.1 (95) Monthly average external temperature from Table 8 (96)m = 4.3 4.5 6.5 9.9 11.7 14.6 16.6 16.4 14.1 10.6 7.1 4.2 (96) Heat loss rate for mean internal temperature, Lm , W =((39)m × [(93)m – (96)m] (97) Space heating requirement for each month, kWh/month = 0.024 × [(97)m – (95)m] × (41)m (98) Space heating requirement in kWh/m²/year 11.39 (99) Space heating: 0 0 0 2.29 175.54 Fraction of space heat from main system 1 (204) = (202) × [1 – (201) =										o, oo tha	ι ι Π,ΠΙ-(r ojin un		alato	
(94)m= 0.97 0.96 0.92 0.81 0.63 0.43 0.3 0.33 0.54 0.82 0.98 0.98 Useful gains, hmGm, W = (94)m x (84)m (95)m= 449.24 523.37 525.23 483.87 38.7 258.7 172.97 180.58 282.05 407.88 461.47 452.1 (95) Monthly average external temperature from Table 8 (96)m = 4.9 6.5 8.9 11.7 14.6 16.4 14.1 10.6 7.1 4.2 (96) Heat loss rate for mean internal temperature, Lm, W =[(39)m x [(93)m - (95)m] (97)m 728.66 703.58 634.18 517.91 39.39.2 258.94 172.98 180.6 283.43 440.03 591.51 718.05 (97) Space heating requirement or each month, kWh/month = 0.024 x [(97)m - (95)m] x (41)m (98)m= 171.43 121.1 81.06 24.51 3.8.8 0 0 23.22 93.62 175.54 (98) Space heating requirement in kWh/m?/year 0 0 2.22 = 1 - (201) = 1 (202) 11.39 (99) 93.7 (201) 11.39		Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec		
Useful gains, hmGrn, W = (94)m x (84)m (95)m 499.24 523.37 525.23 483.87 388.7 258.7 172.97 180.58 282.05 407.88 461.47 482.1 (95)m Monthly average external temperature from Table 8 (96)m 4.3 4.9 6.5 8.9 11.7 148.6 16.6 16.4 14.1 10.6 7.1 4.2 (96)m (97)m 723.66 703.58 634.18 517.91 393.92 258.94 172.98 180.6 283.43 440.03 591.51 718.05 (97) Space heating requirement for each month, kWh/month = 0.024 x [(97)m - (95)m] x (41)m (97)m (95)m (43) 42.11 81.06 24.51 3.88 0 0 0 23.92 93.62 175.54 (98) Space heating requirement in kWh/m²/year Total per year (kWh/year) = Sum(98), 48.02 = 695.07 (98) (98) Space heating requirements – Individual heating systems including micro-CHP) 11.39 (99) 99 Space heating requirement in kWh/m²/year 0 (201) = 1 (202) 1 (202) Fraction of space heat from main system 1 (202) = 1 - (201) = 1 (202) Fraction of space heat from main system 1 (204) = (202) x [1 - (203)] = 1 (204) Efficiency of main space heating system 1 93.7 (206) 0 (201) Fraction of space heating from main system 1 (204) = (202) x [1 - (203)] = 1 (204) Efficiency of secondary/supplementary heating system, % 0 (208) 0 (208) Jan Feb Mar Apr	Utilisa	ation fac	tor fo <mark>r g</mark>	ains, hm	1:										
(95)m= 499.24 523.37 525.23 483.87 386.7 258.7 172.97 180.58 282.05 407.88 461.47 482.1 (95) Monthly average external temperature from Table 8 (96)m= 4.3 4.3 6.5 8.9 11.7 14.6 16.6 16.4 14.1 10.6 7.1 4.2 (96) Heat loss rate for mean internal temperature, Lm , W =[(39)m × [(93)m – (96)m] (97)m = 729.66 703.58 634.18 517.91 393.92 258.94 172.98 180.6 283.43 440.03 591.51 716.05 (97) Space heating requirement for each month, kWh/month = 0.024 x [(97)m – (95)m] x (41)m (98) (99) 93.62 175.54 (98) Space heating requirement in kWh/m²/year 11.39 (99) 93. 59.07 (98) Space heating: 11.39 (99) 93. (202) = 1 - (201) = 1 (202) Fraction of space heat from main system (s) (202) = 1 - (201) = 1 (202) 1 (203) = 1 (204) Efficiency of main space heating system 1 (204) = (202) x [1 - (203)] = 1<	(94)m=	0.97	0.96	0.92	0.81	0.63	0.43	0.3	0.33	0.54	0.82	0.95	0.98		(94)
Monthly average external temperature from Table 8 (96)m= 4.3 4.9 6.5 8.9 11.7 14.6 16.6 16.4 14.1 10.6 7.1 4.2 (96) Heat loss rate for mean internal temperature, Lm , W =[(39)m x [(93)m - (96)m] (97)m= 729.66 703.58 634.18 517.91 393.92 258.94 172.98 180.6 283.43 440.03 591.51 718.05 (97) Space heating requirement for each month, kWh/month = 0.024 x [(97)m - (95)m] x (41)m (98)m= 171.43 121.1 81.06 24.51 3.88 0 0 0 23.92 93.62 175.54 Space heating requirement in kWh/m2/year 11.39 (99) 90 90 23.92 93.62 175.54 (96) Space heating requirement in kWh/m2/year 11.39 (99) 90 91 93 1 202 93 93 93 93 1 202 9	Usefu			· ·	· ·										
(96)m= 4.3 4.9 6.5 8.9 11.7 14.6 16.6 16.4 14.1 10.6 7.1 4.2 (96) Heat loss rate for mean internal temperature, Lm , W =[(39)m × [(93)m – (96)m] (97)m= 729.66 703.58 634.18 517.91 393.92 258.94 172.98 180.6 283.43 440.03 591.51 718.05 (97) Space heating requirement for each month, kWh/month = 0.024 x [(97)m – (95)m] x (41)m (98)m= 171.43 121.1 81.06 24.51 3.88 0 0 0 23.92 93.62 175.54 Total per year (kWh/year) = Sum(98)ss.rt 695.07 (98) Space heating requirement in kWh/m²/year 11.39 (99) 93.7 14.06 24.51 3.88 0 0 0 202) x [1 - (201) = 1 (202) Fraction of space heat from secondary/supplementary system 0 (201) 1 (202) 1 (204) 1 (202) 1 (204) 1 (202) 1 (204) 1 (202) 1 (204) 1 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>172.97</td><td>180.58</td><td>282.05</td><td>407.88</td><td>461.47</td><td>482.1</td><td></td><td>(95)</td></td<>								172.97	180.58	282.05	407.88	461.47	482.1		(95)
Heat loss rate for mean internal temperature, Lm, W =[(39)m x [(93)m - (96)m] (97)m = 729.66 (703.58 634.18 517.91 393.92 258.94 172.98 180.6 283.43 440.03 591.51 718.05 (97) Space heating requirement for each month, kWh/month = 0.024 x [(97)m - (95)m] x (41)m (98)m = 171.43 121.1 81.06 283.43 440.03 591.51 718.05 (97) Space heating requirement for each month, kWh/month = 0.024 x [(97)m - (95)m] x (41)m (98)m = 171.43 121.1 81.06 24.51 3.88 0 0 0 23.92 93.62 175.54 Total per year (kWh/year) = Sum(98)ss.12 695.07 (98) Space heating requirement in kWh/m²/year 11.39 (99) 9a. Energy requirements - Individual heating systems including micro-CHP) Space heating: 0 (201) Fraction of space heat from main system(S) (202) = 1 - (201) = 1 (202) 1 (202) Fraction of total heating from main system 1 (204) = (202) × [1 - (203)] = 1 (204) (204) (202) × [1 - (203)] = 1 (204) Efficiency of secondary/supplementary heating system, % 0		<u> </u>							<u> </u>					1	(00)
(97)m= 729.66 703.58 634.18 517.91 393.92 258.94 172.98 180.6 283.43 440.03 591.51 718.05 (97) Space heating requirement for each month, kWh/month = 0.024 x [(97)m - (95)m] x (41)m (98)m= 171.43 121.1 81.06 24.51 3.88 0 0 0 23.92 93.62 175.54 Total per year (kWh/year) = Sum(98)so.12 695.07 (98) Space heating requirement in kWh/m²/year 11.39 (99) 93.7 (201) Fraction of space heat from secondary/supplementary system 0 (202) = 1 - (201) = 1 (202) Fraction of space heat from main system 1 (202) = 1 - (201) = 1 (202) Fraction of total heating from main system 1 (204) = (202) × [1 - (203)] = 1 (204) Efficiency of secondary/supplementary heating system, % 0 (208) Mar Apr May Jun Jul Aug Sep Oct Nov Dec kWh/year feb Mar		_										7.1	4.2		(96)
Space heating requirement for each month, kWh/month = $0.024 \times [(97)m - (95)m] \times (41)m$ (98)m= 171.43 121.1 81.06 24.51 3.88 0 0 0 23.92 93.62 175.54 Total per year (kWh/year) = Sum(98)scr Space heating requirement in kWh/m²/year 93.62 175.54 Space heating requirements - Individual heating systems including micro-CHP) Space heating: Fraction of space heat from main system(s) (202) = 1 - (201) = 1 (202) Fraction of space heat from main system(s) (202) = 1 - (201) = 1 (202) Fraction of total heating from main system 1 (204) = (202) × [1 - (203)] = 1 (204) Efficiency of main space heating system 1 93.7 (206) Efficiency of secondary/supplementary heating system, % 0 (208) 171.43 121.1 81.06 24.51 3.88 0 0 0 23.92 93.62 175.54 (211) If (143 121.1 81.06 24.51 3.88 0 <td></td> <td></td> <td></td> <td></td> <td>· · ·</td> <td>r</td> <td>1</td> <td><u> </u></td> <td><u> </u></td> <td></td> <td>ř – – –</td> <td>E01 E1</td> <td>710.05</td> <td> </td> <td>(07)</td>					· · ·	r	1	<u> </u>	<u> </u>		ř – – –	E01 E1	710.05		(07)
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $													718.05		(37)
$Total per year (kWh/year) = Sum(98)_{1.53.12} = 695.07 (98)$ Space heating requirement in kWh/m²/year $11.39 (99)$ 9a. Energy requirements – Individual heating systems including micro-CHP) Space heating: Fraction of space heat from secondary/supplementary system $0 (201)$ Fraction of space heat from main system(s) $(202) = 1 - (201) = 1 (202)$ Fraction of total heating from main system 1 $(204) = (202) \times [1 - (203)] = 1 (204)$ Efficiency of main space heating system 1 $93.7 (206)$ Efficiency of secondary/supplementary heating system, % $0 (208)$ $\boxed{Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec kWh/year$ Space heating requirement (calculated above) $\boxed{171.43 121.1 81.06 24.51 3.88 0 0 0 0 23.92 93.62 175.54}$ $(211)m = \{[(98)m \times (204)] \} \times 100 \div (206)$ (211)						Î	i i	Î	Î				175 54		
Space heating requirement in kWh/m²/year11.39(99) Space heating: Fraction of space heat from secondary/supplementary systemFraction of space heat from main system(s) $(202) = 1 - (201) =$ Fraction of space heat from main system(s) $(202) = 1 - (201) =$ Fraction of total heating from main system 1 $(204) = (202) \times [1 - (203)] =$ Efficiency of main space heating system 1 93.7 Efficiency of secondary/supplementary heating system, % 0 $\sqrt{3.7}$ (208) $\sqrt{3.7}$ (208) $\sqrt{3.7}$ (206) Efficiency of secondary/supplementary heating system, % 0 $\sqrt{3.7}$ $\sqrt{206}$ $\sqrt{3.7}$ $\sqrt{3.88}$ $\sqrt{3.82}$ $\sqrt{3.92}$ $\sqrt{3.92}$ $\sqrt{3.62}$ $\sqrt{3.92}$ $\sqrt{3.62}$ 3	(00)					0.00		, s	-					695.07	(98)
9a. Energy requirements – Individual heating systems including micro-CHP)Space heating: Fraction of space heat from secondary/supplementary system0(201)Fraction of space heat from main system(s) $(202) = 1 - (201) =$ 1(202)Fraction of total heating from main system 1 $(204) = (202) \times [1 - (203)] =$ 1(204)Efficiency of main space heating system 1 93.7 (206)Efficiency of secondary/supplementary heating system, %0(208)JanFebMarAprMayJunJulAugSepOctNovDecSpace heating requirement (calculated above) 171.43 121.1 81.06 24.51 3.88 000 23.92 93.62 175.54 (211) m = {[(98)m x (204)] } x 100 ÷ (206)(211)(211)(211)(211)(211)	Creek	- heatin			L() / /b //mo	24.000			1010	i por your	(itter#jour) – O um(o	C /15,912 -		
Space heating: Fraction of space heat from secondary/supplementary system0(201)Fraction of space heat from main system(s) $(202) = 1 - (201) =$ 1(202)Fraction of total heating from main system 1 $(204) = (202) \times [1 - (203)] =$ 1(204)Efficiency of main space heating system 1 93.7 (206)Efficiency of secondary/supplementary heating system, %0(208) $\sqrt{$ JanFebMarAprMayJunJulAugSepOctNovDecSpace heating requirement (calculated above) 171.43 121.1 81.06 24.51 3.88 000 23.92 93.62 175.54 (211) m = {[(98)m x (204)] } x 100 ÷ (206)(211) 182.96 129.25 86.51 26.16 4.14 000 25.53 99.92 187.35						•							l	11.39	(99)
Fraction of space heat from secondary/supplementary system0(201)Fraction of space heat from main system(s) $(202) = 1 - (201) =$ 1(202)Fraction of total heating from main system 1 $(204) = (202) \times [1 - (203)] =$ 1(204)Efficiency of main space heating system 1 93.7 (206)Efficiency of secondary/supplementary heating system, %0(208)JanFebMarAprMayJunJulAugSpace heating requirement (calculated above)171.43121.181.0624.513.8800023.9293.62175.54(211)m = {[(98)m x (204)] } x 100 ÷ (206)(211)182.96129.2586.5126.164.1400025.5399.92187.35				nts – Indi	ividual h	eating s	ystems i	ncluding	ı micro-C	CHP)					
Fraction of space heat from main system(s) $(202) = 1 - (201) =$ 1 (202) Fraction of total heating from main system 1 $(204) = (202) \times [1 - (203)] =$ 1 (204) Efficiency of main space heating system 1 93.7 (206) Efficiency of secondary/supplementary heating system, % 0 0 (208) Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec kWh/year Space heating requirement (calculated above) 171.43 121.1 81.06 24.51 3.88 0 0 0 23.92 93.62 175.54 (211) m = {[(98)m x (204)] } x 100 ÷ (206) (211) 182.96 129.25 86.51 26.16 4.14 0 0 0 25.53 99.92 187.35	-		-	t from s	econdar	v/supple	montary	vevetom					1	0	(201)
Fraction of total heating from main system 1 $(204) = (202) \times [1 - (203)] =$ 1 (204) Efficiency of main space heating system 1 93.7 (206) Efficiency of secondary/supplementary heating system, % 0 0 (208) Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec kWh/year Space heating requirement (calculated above) 171.43 121.1 81.06 24.51 3.88 0 0 0 23.92 93.62 175.54 (211) m = {[(98)m x (204)] } x 100 ÷ (206) (211) (211) 182.96 129.25 86.51 26.16 4.14 0 0 0 25.53 99.92 187.35							memary	-		(201) -					
Efficiency of main space heating system 1 93.7 (206) Efficiency of secondary/supplementary heating system, % 0 (208) Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec kWh/year Space heating requirement (calculated above) 171.43 121.1 81.06 24.51 3.88 0 0 0 23.92 93.62 175.54 (211)m = {[(98)m x (204)] } x 100 ÷ (206) (211) 182.96 129.25 86.51 26.16 4.14 0 0 0 25.53 99.92 187.35					-	. ,					(222)]			1	
Efficiency of secondary/supplementary heating system, % 0 (208) Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec kWh/year Space heating requirement (calculated above) 171.43 121.1 81.06 24.51 3.88 0 0 0 23.92 93.62 175.54 (211) $(211)m = \{[(98)m x (204)] \} x 100 \div (206)$ (211) 182.96 129.25 86.51 26.16 4.14 0 0 0 25.53 99.92 187.35				-	-				(204) = (2	02) × [1 –	(203)] =		ļ	1	(204)
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Efficie	ency of r	nain spa	ace heat	ing syste	em 1								93.7	(206)
Space heating requirement (calculated above) 171.43 121.1 81.06 24.51 3.88 0 0 0 23.92 93.62 175.54 (211)m = {[(98)m x (204)] } x 100 ÷ (206) (211) 182.96 129.25 86.51 26.16 4.14 0 0 0 25.53 99.92 187.35	Efficie	ency of s	seconda	ry/suppl	ementar	y heatin	g systen	า, %						0	(208)
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	kWh/y	/ear
$(211)m = \{ [(98)m \times (204)] \} \times 100 \div (206) $ $182.96 129.25 86.51 26.16 4.14 0 0 0 0 25.53 99.92 187.35 $ (211)	Space	e heating	g require	ement (c	alculate	d above)								
182.96 129.25 86.51 26.16 4.14 0 0 0 0 25.53 99.92 187.35		171.43	121.1	81.06	24.51	3.88	0	0	0	0	23.92	93.62	175.54		
	(211)m	n = {[(98])m x (20	4)]	00 ÷ (20	06)									(211)
Total (kWh/year) =Sum(211) _{15,1012} = 741.81 (211)		182.96	129.25	86.51	26.16	4.14	0	0							
									Tota	l (kWh/yea	ar) =Sum(2	2 11) _{15,1012}	-	741.81	(211)

Space heating fuel (secondary), kWh/month

$= \{[(98)m \times (201)]\} \times 100 \div (201)\}$	08)										
(215)m= 0 0 0	0	0	0	0	0	0	0	0	0		_
					Tota	l (kWh/yea	ar) =Sum(2	2 15) _{15,1012}	2	0	(215)
Water heating											
Output from water heater (calc 114.48 101.15 106.99	97.46	96.13	86.17	83.47	91.5	91.29	101.87	105.84	111.5]	
Efficiency of water heater					I					87.2	(216)
(217)m= 89.27 89.07 88.68	87.88	87.33	87.2	87.2	87.2	87.2	87.84	88.81	89.31		(217)
Fuel for water heating, kWh/m $(219)m = (64)m \times 100 \div (217)m$						-		-		_	
(219)m= 128.24 113.56 120.65	110.9	110.08	98.82	95.72	104.93	104.69	115.96	119.18	124.85		_
					Tota	I = Sum(21	19a) ₁₁₂ =			1347.59	(219)
Annual totals	avetam	4					k	Wh/year	•	kWh/year	1
Space heating fuel used, main	system	I								741.81]
Water heating fuel used										1347.59	J
Electricity for pumps, fans and	l electric l	keep-hot								_	
mechanical ventilation - balar	nced, ext	ract or p	ositive ir	nput fror	n outside	Э			97.96		(230a)
central heating pump:									30]	(230c)
boi <mark>ler wi</mark> th a fan-assisted flue									45		(230e)
Total electricity for the above,	kWh/yea	r			sum	of (230a).	<mark>(2</mark> 30g) =	:		172.96	(231)
Electricity for lighting										291.56	(232)
Electricity generated by PVs										-259.09	(233)
Total delivered energy for all u	. <mark>ses (</mark> 211)(221)	+ (231)	+ (232)	(237b)	_				2294.83	(338)
10a. Fuel costs - individual h	eating sy	stems:						-			1
			Fu	ما			Fuel P	rice		Fuel Cost	
				/h/year			(Table			£/year	
Space heating - main system	1		(211	l) x			3.4	8	x 0.01 =	25.81	(240)
Space heating - main system 2	2		(213	3) x			0		x 0.01 =	0	(241)
Space heating - secondary			(215	5) x			13.	19	x 0.01 =	0	(242)
Water heating cost (other fuel))		(219	9)			3.4	18	x 0.01 =	46.9	(247)
Pumps, fans and electric keep	o-hot		(231	1)			13.	19	x 0.01 =	22.81	(249)
(if off-peak tariff, list each of (2 Energy for lighting	230a) to (2	230g) se	parately (232		licable a	nd apply	fuel pri 13.		ding to x 0.01 =	Table 12a 38.46	(250)
Additional standing charges (T	Table 12)									120	(251)
			one	of (233) t	o (235) x)		13.	19	x 0.01 =	0	(252)
Appendix Q items: repeat lines	s (253) aı	nd (254)	as need	led			L			L	4
Total energy cost	. /	. ,	247) + (25		=					253.98	(255)
11a SAP rating - individual h	opting ov	etome									

Energy cost deflator (Table 12)			0.42 (256)
Energy cost factor (ECF) [(25	5) x (256)] ÷ [(4) + 45.0] =		1.01 (257)
SAP rating (Section 12)			85.96 (258)
12a. CO2 emissions – Individual heating sy	stems including micro-CHP		
	Energy kWh/year	Emission factor kg CO2/kWh	Emissions kg CO2/year
Space heating (main system 1)	(211) x	0.216 =	160.23 (261)
Space heating (secondary)	(215) x	0.519 =	0 (263)
Water heating	(219) x	0.216 =	291.08 (264)
Space and water heating	(261) + (262) + (263) + (2	64) =	451.31 (265)
Electricity for pumps, fans and electric keep	-hot (231) x	0.519 =	89.76 (267)
Electricity for lighting	(232) x	0.519 =	151.32 (268)
Energy saving/generation technologies Item 1		0.519 =	-134.47 (269)
Total CO2, kg/year		sum of (265)(271) =	557.93 (272)
CO2 emissions per m ²		(272) ÷ (4) =	9.15 (273)
El rating (section 14)			93 (274)
13a. Primary Energy Space heating (main system 1)	Energy kWh/year (211) x	Primary factor	P. Energy kWh/year
Space heating (secondary)	(215) ×	3.07 =	0 (263)
Energy for water heating	(219) x	1.22 =	1644.06 (264)
Space and water heating	(261) + (262) + (263) + (2	64) =	2549.07 (265)
Electricity for pumps, fans and electric keep	-hot (231) x	3.07 =	530.97 (267)
Electricity for lighting	(232) x	0 =	895.09 (268)
Energy saving/generation technologies Item 1		3.07 =	-795.39 (269)
'Total Primary Energy		sum of (265)(271) =	3179.74 (272)
Primary energy kWh/m²/year		(272) ÷ (4) =	52.13 (273)

		ι	User D	etails:						
Assessor Name: Software Name:	Stroma FSAP 201		Ş	Stroma Softwa	re Ver	sion:	· Be Gree		n: 1.0.5.41	
Address :	106 Bexley Road , E			auress.		20 36 -	De Gleo	GII		
1. Overall dwelling dimen	•		, 001							
Ground floor			Area	· ,	(1a) x	Av. He	ight(m) 2.7	(2a) =	Volume(m³) 164.7	(3a)
Total floor area TFA = (1a))+(1b)+(1c)+(1d)+(1e))+(1n)		61	(4)					
Dwelling volume					(3a)+(3b)	+(3c)+(3d	l)+(3e)+	.(3n) =	164.7	(5)
2. Ventilation rate:				- 4		4 - 4 - 1				
Number of chimneys Number of open flues		econdary eating 0	+	0 0] = [total 0 0		40 = 20 =	m ³ per hour	(6a) (6b)
Number of intermittent fan	s					0	x 1	10 =	0](7a)
	5							10 =	-	<u> </u>
Number of passive vents						0			0	(7b)
Number of flueless gas fire					L	0			o anges per ho	ur
Infiltration due to chimneys						0		÷ (5) =	0	(8)
If a pressurisation test has be Number of storeys in the Additional infiltration Structural infiltration: 0.2 if both types of wall are pre	e dw <mark>elling</mark> (ns) 25 for steel or timber f	rame or 0	.35 for	masonr	y constr			•1]x0.1 =	0 0 0	(9) (10) (11)
deducting areas of opening		N 0.4	<i>,</i> .							-
If suspended wooden flo	,	ed) or 0.1	(seale	d), else (enter 0				0	(12)
If no draught lobby, ente Percentage of windows		rinnod							0	(13)
Window infiltration	and doors draught su	ipped	(0.25 - [0.2	x (14) ÷ 1	001 =			0	(14) (15)
Infiltration rate				(8) + (10) -		-	+ (15) =		0	(16)
Air permeability value, q	50, expressed in cub	ic metres						area	4	(17)
If based on air permeabilit			•	•	•		•		0.2	(18)
Air permeability value applies	if a pressurisation test has	been done	or a deg	ree air per	meability i	is being us	sed			
Number of sides sheltered				(00) 4 5	0.075(4	0)1			1	(19)
Shelter factor				(20) = 1 - [9)] =			0.92	(20)
Infiltration rate incorporation	-			(21) = (18)	x (20) =				0.19	(21)
Infiltration rate modified fo		i		•	0	0.1		Du	l	
	Mar Apr May	Jun	Jul	Aug	Sep	Oct	Nov	Dec		
Monthly average wind spe		20	20	27	л	10	A E	47	l	
(22)m= 5.1 5 4	.9 4.4 4.3	3.8	3.8	3.7	4	4.3	4.5	4.7		
Wind Factor (22a)m = (22)	1 1 1								I	
(22a)m= 1.27 1.25 1.	.23 1.1 1.08	0.95	0.95	0.92	1	1.08	1.12	1.18		

Adjust	ed infiltra	ation rat	e (allow	ing for sl	nelter an	d wind s	peed) =	(21a) x	(22a)m				-	
	0.24	0.23	0.23	0.2	0.2	0.18	0.18	0.17	0.19	0.2	0.21	0.22		
	<i>ate effec</i> echanica		•	rate for t	he appli	cable ca	se							(00 -)
				andix N (2	23b) = (23a	a) x Emy (e	austion (N	(5)) other	nuico (23h) = (23a)			0.5	(23a)
					allowing f) = (200)			0.5	(23b)
			-	-	-					2 15)		(00 s)	79.05	(23c)
		0.34	i	0.31	with hea	0.28	0.28	1R) (24a 0.28	0.29	, <u>,</u>	23D) × [* 0.31	0.32) ÷ 100]]	(24a)
(24a)m=			0.33							0.3		0.32		(244)
,			1		without	1	<i>,</i> ,	, `	, ,	r í	, <u> </u>		1	(24b)
(24b)m=		0	0	0	0	0	0	0	0	0	0	0	J	(240)
,					or positiv c) = (23b					5 × (23b)	-	_	
(24c)m=	0	0	0	0	0	0	0	0	0	0	0	0		(24c)
,					se positiv b)m othe					0.5]				
(24d)m=	0	0	0	0	0	0	0	0	0	0	0	0		(24d)
Effe	ctive air	change	rate - er	nter (24a) or (24b	o) or (24	c) or (24	d) in box	(25)			_	_	
(25)m=	0.34	0.34	0.33	0.31	0.3	0.28	0.28	0.28	0.29	0.3	0.31	0.32		(25)
3 He	at losse	s and he	at loss	paramet	er.							_		
ELEN		Gros		Openin		Net Ar	ea	U-valu	Je	AXU		k-value		AXk
		area			19- 12	A ,r		W/m2		(W/I	K)	kJ/m ² ·l		kJ/K
Doo <mark>rs</mark>						1.91	x	1	=	1.91				(26)
Windo	<mark>ws</mark> Type	:1				1.71	x1/	/[1/(1.2)+	0.04] =	1.96				(27)
Windo	ws Type	2				1.71	x1/	/[1/(1.2)+	0.04] =	1.96				(27)
Windo	ws Type	3				4.09	x1/	/[1/(1.2)+	0.04] =	4.68	5			(27)
Walls -	Type1	66.4	2	11.1	3	55.29) X	0.16		8.85				(29)
Walls	Type2	7.8	3	0		7.83	x	0.15	=	1.18			\exists	(29)
Total a	area of e	lements	, m²			74.25	5		I		L			(31)
Party v						32.13		0		0				(32)
Party f	loor					61			($\exists \vdash$	(32a)
Party of						61					L			(32b)
•	-	roof wind	ows, use e	effective wi	indow U-va		 ated using	formula 1	/[(1/U-valu	ıe)+0.04] a	L as given in	paragraph	 h 3.2	(020)
					ls and part		9			, , .	5	1		
Fabric	heat los	s, W/K :	= S (A x	U)				(26)(30)	+ (32) =				22.49	(33)
Heat c	apacity	Cm = S((Axk)						((28).	(30) + (32	2) + (32a).	(32e) =	12222.	7 (34)
Therm	al mass	parame	ter (TMI	⁻ = Cm -	÷ TFA) ir	n kJ/m²K			Indica	tive Value	: Medium		250	(35)
	ign assess used instea				constructi	ion are not	t known pr	ecisely the	e indicative	e values of	TMP in Ta	able 1f		
Therm	al bridge	es : S (L	x Y) cal	culated	using Ap	pendix ł	<						5.25	(36)
	s of therma abric he		are not kr	own (36) =	= 0.05 x (3	1)			(33) +	(36) =			27.75	(37)
			alculated	d monthly	v					= 0.33 × (25)m x (5))		(3))
	Jan	Feb	Mar	Apr	, May	Jun	Jul	Aug	Sep	Oct	Nov	Dec]	
								. v				i	4	

(38)m=	18.51	18.26	18.01	16.75	16.5	15.25	15.25	14.99	15.75	16.5	17.01	17.51		(38)
Heat tr	ansfer o	coefficie	nt, W/K						(39)m	= (37) + (3	38)m			
(39)m=	46.26	46.01	45.76	44.5	44.25	42.99	42.99	42.74	43.49	44.25	44.75	45.25		
Heat lo	oss para	ameter (H	HLP), W	/m²K						Average = = (39)m ÷	Sum(39)1. • (4)	12 /12=	44.44	(39)
(40)m=	0.76	0.75	0.75	0.73	0.73	0.7	0.7	0.7	0.71	0.73	0.73	0.74		
Numbe	er of day	/s in mo	nth (Tab	le 1a)					,	Average =	Sum(40)1.	12 /12=	0.73	(40)
	Jan	Feb	Mar	Apr	Мау	Jun	Jul	Aug	Sep	Oct	Nov	Dec		
(41)m=	31	28	31	30	31	30	31	31	30	31	30	31		(41)
4. Wa	ter hea	ting ene	rgy requ	irement:								kWh/yea	ar:	
if TF	A > 13.	upancy, 9, N = 1 9, N = 1		: [1 - exp	(-0.0003	849 x (TF	FA -13.9))2)] + 0.()013 x (⁻	TFA -13.		01		(42)
				ge in litre								.93		(43)
		-		usage by : r day (all w		-	-	to achieve	a water us	se target o	f			
	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec		
Hot wate				ach month				<u> </u>	Ocp	000	1100			
(44)m=	90.13	86.85	83.57	80.29	77.02	73.74	73.74	77.02	80.29	8 <mark>3.57</mark>	86.85	90.13		
											n(44) ₁₁₂ =		9 <mark>83.18</mark>	(44)
Energy o	content of	^t hot water	used - cal	lculated mo	onthly $= 4$.	190 x Vd,n	n x nm x D	0Tm / 3600) kWh/mor	nth (see Ta	bles 1b, 1	c, 1d)		
(45)m=	133.65	116.89	120.62	105.16	100.91	87.07	80.69	92.59	93.7	109.19	119.19	129.44		_
lf instant	aneous w	vater heati	ng at point	t of use (no	hot water	r storage),	enter 0 in	boxes (46		Tota <mark>l = S</mark> u	m(45) ₁₁₂ =	=	1289.11	(45)
(46)m=	20.05	17.53	18.09	15.77	15.14	13.06	12.1	13.89	14.05	16.38	17.88	19.42		(46)
· · ·	storage													. ,
Storag	e volum	ne (litres)) includir	ng any so	olar or W	/WHRS	storage	within sa	ame ves	sel		0		(47)
		•		ank in dw	•			· ·						
	ise if no storage		hot wate	er (this in	ICludes I	nstantar	ieous co	mbi boil	ers) ente	er '0' in (47)			
	-		eclared I	oss facto	or is kno	wn (kWł	n/day):					0		(48)
			m Table			,	• •					0		(49)
Energy	lost fro	om water	r storage	e, kWh/ye	ear			(48) x (49)) =			0		(50)
,				cylinder I										
		-	s factor fi see secti	rom Tabl	e 2 (kW	h/litre/da	iy)					0		(51)
	•	from Ta		011 4.0								0		(52)
Tempe	rature f	actor fro	m Table	2b								0		(53)
Energy	lost fro	om water	r storage	e, kWh/ye	ear			(47) x (51)	x (52) x (53) =		0		(54)
Enter	(50) or	(54) in (5	55)									0		(55)
Water	storage	loss cal	culated	for each	month			((56)m = (55) × (41)	m				
(56)m=	0	0	0	0	0	0	0	0	0	0	0	0		(56)
If cylinde	er contain:	s dedicate	d solar sto	orage, (57)ı	m = (56)m	x [(50) – (H11)] ÷ (5	0), else (5	7)m = (56)	m where (H11) is fro	m Appendix	H	
(57)m=	0	0	0	0	0	0	0	0	0	0	0	0		(57)

Primary circui	•	,			(FO)~~ ((50) . 00	SE (44)	-			0		(58)
Primary circui (modified b				`	, , ,	· ·	` '		r thermo	stat)			
(59)m= 0	0	0	0	0	0	0	0	0	0	0	0		(59)
Combi loss ca	alculated	for each	month ((61)m =	(60) ÷ 36	35 × (41))m						
(61)m= 24.91	22.5	24.91	24.11	24.91	24.11	24.91	24.91	24.11	24.91	24.11	24.91		(61)
Total heat red	uired for	water h	eating ca	alculated	I for each	n month	(62)m =	0.85 ×	(45)m +	(46)m +	(57)m +	(59)m + (61)m	
(62)m= 158.57	139.4	145.54	129.27	125.82	111.18	105.6	117.5	117.81	134.11	143.3	154.35		(62)
Solar DHW input	calculated	using App	endix G or	Appendix	H (negativ	ve quantity	/) (enter '0	if no sola	r contribut	ion to wate	er heating)		
(add additiona	al lines if	FGHRS	and/or V	VWHRS	applies,	, see Ap	pendix (G)	-	-	-		
(63)m= 0	0	0	0	0	0	0	0	0	0	0	0		(63)
FHRS 14.44	12.66	12.17	9.54	8.45	7.19	6.8	7.71	7.77	10.04	12.46	14.13		(63) (G2)
WWHRS -29.24	-25.72	-26.26	-21.63	-20.1	-16.59	-14.06	-17.01	-17.5	-21.62	-25.01	-28.26		(63) (G10)
Output from v	vater hea	ter											
(64)m= 113.6	99.85	105.82	96.86	95.99	86.17	83.47	91.5	91.29	101.16	104.58	110.68		
	•						Outp	out from w	ater heate	r (annual)₁	12	1180.98	(64)
Hea <mark>t gains fro</mark>	om water	heating	, kWh/mo	onth 0.2	5 ´ [0.85	× (45)m	+ (61)m	n] + 0.8 x	k [(46)m	+ (57)m	+ (59)m]	
(65)m= 50.67	44.49	46.34	40.99	39.78	34.98	33.06	37.01	37.18	42.54	45.66	49.27		(65)
in <mark>clude</mark> (57)m in calo	culation	of (65)m	only if c	ylinder is	s in th <mark>e</mark> (dwelling	or hot w	ate <mark>r is fr</mark>	om com	munity h	eating	
5. Internal g	ains (see	e Table {	5 and 5a):									
Met <mark>abolic</mark> gai	ns (Table	<u>5),</u> Wat	ts										
Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec		
(66)m= 100.49	100.49	100.49	100.49	100.49	100.49	100.49	100.49	100.49	100.49	100.49	100.49		(66)
Lighting gains	s (calcula	ted in Ap	opendix	L, equat	ion L9 or	r L9a), a	lso see	Table 5			-		
<mark>(67)m=</mark> 16.51	14.66	11.93	9.03	6.75	5.7	6.16	8	10.74	13.64	15.92	16.97		(67)
Appliances ga	ains (calc	ulated ir	n Append	lix L, eq	uation L ²	13 or L1	3a), also	see Ta	ble 5			_	
<mark>(68)</mark> m= 175.46	177.28	172.69	162.93	150.6	139.01	131.27	129.45	134.03	143.8	156.13	167.72		(68)
Cooking gain	s (calcula	ted in A	ppendix	L, equat	tion L15	or L15a)), also se	e Table	5				
(69)m= 33.05	33.05	33.05	33.05	33.05	33.05	33.05	33.05	33.05	33.05	33.05	33.05		(69)
Pumps and fa	ans gains	(Table s	5a)										
(70)m= 3	3	3	3	3	3	3	3	3	3	3	3		(70)
Losses e.g. e	vaporatic	on (nega	tive valu	es) (Tab	le 5)								
(71)m= -80.39	-80.39	-80.39	-80.39	-80.39	-80.39	-80.39	-80.39	-80.39	-80.39	-80.39	-80.39		(71)
Water heating	g gains (T	able 5)			••				-	•			
(72)m= 68.1	66.21	62.28	56.94	53.47	48.58	44.43	49.75	51.64	57.17	63.42	66.22		(72)
Total interna	l gains =				(66)	m + (67)m	• n + (68)m +	+ (69)m +	(70)m + (7	1)m + (72)	m		
(73)m= 316.22	314.3	303.05	285.04	266.96	249.43	238	243.34	252.56	270.76	291.61	307.05		(73)
6. Solar gair	IS:		•						1				
Solar gains are	calculated	using sola	r flux from	Table 6a	and associ	ated equa	tions to co	nvert to th	ne applicat	le orientat	ion.		
Orientation:	Access F Table 6d		Area m²		Flu: Tab	x ole 6a	Т	g_ able 6b	Та	FF able 6c		Gains (W)	

North	0.9x	0.77	×	1.71	×	10.63	×	0.63	x	0.7	=	11.11	(74)
North	0.9x	0.77	x	4.09	x	10.63	x	0.63	x	0.7	=	13.29	(74)
North	0.9x	0.77	x	1.71	l x	20.32	×	0.63	x	0.7	=	21.24	(74)
North	0.9x	0.77	x	4.09	l x	20.32	x	0.63	x	0.7	=	25.4	(74)
North	0.9x	0.77	×	1.71	x	34.53	x	0.63	x	0.7	=	36.09	(74)
North	0.9x	0.77	x	4.09	l x	34.53	×	0.63	x	0.7	=	43.16	(74)
North	0.9x	0.77	 x	1.71	 x	55.46	 x	0.63	x	0.7	=	57.97	 (74)
North	0.9x	0.77	x	4.09	x	55.46	x	0.63	x	0.7	=	69.33	(74)
North	0.9x	0.77	x	1.71	x	74.72	x	0.63	x	0.7	=	78.09	(74)
North	0.9x	0.77	×	4.09	×	74.72	×	0.63	x	0.7	=	93.39	(74)
North	0.9x	0.77	×	1.71	×	79.99	×	0.63	x	0.7	=	83.6	(74)
North	0.9x	0.77	×	4.09	×	79.99	×	0.63	x	0.7	=	99.98	(74)
North	0.9x	0.77	×	1.71	×	74.68	x	0.63	x	0.7	=	78.05	(74)
North	0.9x	0.77	×	4.09	×	74.68	x	0.63	x	0.7	=	93.34	(74)
North	0.9x	0.77	×	1.71	×	59.25	x	0.63	x	0.7	=	61.92	(74)
North	0.9x	0.77	×	4.09	×	59.25	×	0.63	x	0.7	=	74.06	(74)
North	0.9x	0.77	x	1.71	×	41.52	x	0.63	x	0.7	=	43.39	(74)
North	0.9x	0.77	×	4.09	×	41.52	х	0.63	х	0.7	=	51.89	(74)
North	0.9x	0.77	×	1.71	x	24.19	x	0.63	x	0.7	=	25.28	(74)
North	0.9x	0.77	x	4.09	х	24.19	×	0.63	x	0.7	=	30.24	(74)
North	0.9x	0.77	x	1.71	x	13.12	x	0.63	x	0.7	=	13.71	(74)
North	0.9x	0.77	×	4.09	×	13.12	x	0.63	x	0.7	=	16.4	(74)
North	0.9x	0.77	×	1.71	x	8.86	×	0.63	x	0.7	=	9.27	(74)
North	0.9x	0.77	×	4.09	x	8.86	×	0.63	x	0.7	=	11.08	(74)
South	0.9x	0.77	×	1.71	×	46.75	×	0.63	x	0.7	=	24.43	(78)
South	0.9x	0.77	x	1.71	x	76.57	×	0.63	x	0.7	=	40.01	(78)
South	0.9x	0.77	×	1.71	×	97.53	×	0.63	x	0.7	=	50.97	(78)
South	0.9x	0.77	×	1.71	×	110.23	x	0.63	x	0.7	=	57.61	(78)
South	0.9x	0.77	×	1.71	x	114.87	x	0.63	x	0.7	=	60.03	(78)
South	0.9x	0.77	×	1.71	×	110.55	×	0.63	x	0.7	=	57.77	(78)
South	0.9x	0.77	×	1.71	x	108.01	×	0.63	x	0.7	=	56.45	(78)
South	0.9x	0.77	x	1.71	x	104.89	×	0.63	x	0.7	=	54.82	(78)
South	0.9x	0.77	x	1.71	x	101.89	x	0.63	x	0.7	=	53.25	(78)
South	0.9x	0.77	×	1.71	×	82.59	×	0.63	x	0.7	=	43.16	(78)
South	0.9x	0.77	×	1.71	×	55.42	×	0.63	x	0.7	=	28.96	(78)
South	0.9x	0.77	×	1.71	×	40.4	×	0.63	x	0.7	=	21.11	(78)

Solar g	ains in	watts, ca	alculated	for eacl	n month			(83)m = S	um(74)m .	(82)m				
(83)m=	48.84	86.65	130.22	184.91	231.52	241.35	227.84	190.8	148.53	98.68	59.07	41.46		(83)
Total g	ains – ir	nternal a	ind solai	⁻ (84)m =	= (73)m -	⊦ (83)m	, watts						_	
(84)m=	365.06	400.96	433.27	469.95	498.47	490.79	465.84	434.14	401.09	369.43	350.68	348.51		(84)
7. Me	an inter	nal temp	erature	(heating	season)								
Temp	erature	during h	eating p	eriods ir	n the livir	ng area f	from Tab	ole 9, Th	1 (°C)				21	(85)
Utilisa	ation fac	tor for g	ains for	iving are	ea, h1,m	(see Ta	ble 9a)							
Stroma I	SAP 201	2 version:	1.0.9.44	SAP 9.52)	- http://ww	vw.stroma	.com ^l ul	Aug	Sep	Oct	Nov	Dec	Page	e 5 of 7

	•
(86)m= 1 0.99 0.98 0.93 0.78 0.56 0.41 0.45 0.72 0.95 0.99 1	(86)
Mean internal temperature in living area T1 (follow steps 3 to 7 in Table 9c)	
(87)m= 20.32 20.43 20.61 20.83 20.96 21 21 21 20.98 20.82 20.54 20.31	(87)
Temperature during heating periods in rest of dwelling from Table 9, Th2 (°C)	
(88)m= 20.29 20.29 20.3 20.31 20.32 20.34 20.34 20.34 20.33 20.32 20.31 20.3	(88)
Utilisation factor for gains for rest of dwelling, h2,m (see Table 9a)	
(89)m= 1 0.99 0.98 0.91 0.74 0.5 0.34 0.39 0.66 0.94 0.99 1	(89)
Mean internal temperature in the rest of dwelling T2 (follow steps 3 to 7 in Table 9c)	1
(90)m= 19.38 19.54 19.79 20.12 20.28 20.33 20.34 20.34 20.32 20.11 19.72 19.38	(90)
fLA = Living area ÷ (4) =	0.43 (91)
Make interval to support the state of the state $(4, 4) \in \mathbb{T}_{2}$	
Mean internal temperature (for the whole dwelling) = $fLA \times T1 + (1 - fLA) \times T2$ (92)m= 19.79 19.93 20.14 20.43 20.58 20.62 20.62 20.63 20.61 20.42 20.07 19.78	(92)
Apply adjustment to the mean internal temperature from Table 4e, where appropriate]
(93)m= 19.79 19.93 20.14 20.43 20.58 20.62 20.62 20.63 20.61 20.42 20.07 19.78	(93)
8. Space heating requirement	
Set Ti to the mean internal temperature obtained at step 11 of Table 9b, so that Ti,m=(76)m and re-calc	culate
the utilisation factor for gains using Table 9a	
Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec	
Utilisation factor for gains, hm:	,
(94)m= 1 0.99 0.98 0.92 0.75 0.53 0.37 0.42 0.69 0.94 0.99 1	(94)
Useful gains, hmGm , $W = (94)m \times (84)m$	1 (05)
(95)m= 363.56 397.47 423.1 430.02 376.24 257.91 172.92 180.46 276.54 346.95 347.14 347.43	(95)
Monthly average external temperature from Table 8 (96)m= 4.3 4.9 6.5 8.9 11.7 14.6 16.6 16.4 14.1 10.6 7.1 4.2	(96)
Heat loss rate for mean internal temperature, Lm , $W = [(39)m \times [(93)m - (96)m]$] (00)
(97)m= 716.38 691.29 624.29 513 392.85 258.88 172.98 180.59 282.97 434.46 580.62 705.12	(97)
Space heating requirement for each month, kWh/month = $0.024 \times [(97)m - (95)m] \times (41)m$]
(98)m= 262.49 197.45 149.69 59.74 12.36 0 0 0 0 0 65.11 168.1 266.12]
Total per year (kWh/year) = Sum(98) ₁₅₉₁₂ =	1181.05 (98)
Space heating requirement in kWh/m²/year	19.36 (99)
9a. Energy requirements – Individual heating systems including micro-CHP)	
Space heating:	
Fraction of space heat from secondary/supplementary system	0 (201)
Fraction of space heat from main system(s) $(202) = 1 - (201) =$	1 (202)
Fraction of total heating from main system 1 $(204) = (202) \times [1 - (203)] =$	1 (204)
Efficiency of main space heating system 1	93.7 (206)
Efficiency of secondary/supplementary heating system, %	0 (208)
Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec	kWh/year
Space heating requirement (calculated above) 262.49 197.45 149.69 59.74 12.36 0 0 0 65.11 168.1 266.12	1
]
$(211)m = \{[(98)m x (204)] \} x 100 \div (206)$	(211)
280.14 210.73 159.75 63.76 13.19 0 0 0 0 69.48 179.41 284.01 Total (kWh/year) =Sum(211) ₁₅₁₀₁₂ =	1000.40 (211)
$10tal (xwiryear) = 00til(211)_{15,1012}$	1260.46 (211)

Space heating fuel (secondary), kWh/month

Space heating	•			month									
= {[(98)m x (201													
(215)m= 0	0	0	0	0	0	0	0	0	0 ar) =Sum(2	0	0		
							TULA	ii (KVVII/yea	ar) =Sum(2	213) _{15,1012}	7	0	(215)
Water heating Output from wat	er heate	r (calci	ilated al	hove)									
		105.82	96.86	95.99	86.17	83.47	91.5	91.29	101.16	104.58	110.68		
Efficiency of wat	ter heate	er										87.2	(216)
(217)m= 89.61	89.49	89.22	88.5	87.59	87.2	87.2	87.2	87.2	88.54	89.32	89.64		(217)
Fuel for water he (219)m = (64)m	-												
		118.61	109.45	109.59	98.82	95.72	104.93	104.69	114.26	117.08	123.47		
							Tota	l = Sum(2	19a) ₁₁₂ =			1334.96	(219)
Annual totals				4					k\	Wh/year	•	kWh/year	7
Space heating fu		, main	system	1								1260.46	ļ
Water heating fu	uel used											1334.96	
Electricity for pu	imps, far	ns and	electric	keep-hot									
mechanical ver	ntilation	- balan	ced, ext	ract or p	ositive i	nput fror	n outside	Ð			97.96		(230a)
central heating	pump:										30		(230 <mark>c</mark>)
boi <mark>ler wi</mark> th a far	n-assiste	d flue									45		(230e)
Tota <mark>l elec</mark> tricity f	for th <mark>e a</mark>	bove, k	Wh/yea	r			sum	of (230a).	<mark>(2</mark> 30g) =			172.96	(231)
Elec <mark>tricity</mark> for lig	hting											291.56	(232)
Electricity gener	rated by	PVs										-2 <mark>59.09</mark>	(233)
Total delivered e	energy fo	or all us	ses (211)(221)	+ (231)	+ (232).	(237b)	_				2 <mark>800.8</mark> 5	(338)
12a. CO2 emis	sions –	Individu	ual heati	ing syste	ms inclu	uding mi	cro-CHF)		-			
						ergy				ion fac	tor	Emissions	
						/h/year			kg CO			kg CO2/yea	_
Space heating (1) x			0.2	16	=	272.26	(261)
Space heating (seconda	ıry)			(21	5) x			0.5	19	=	0	(263)
Water heating					(219	9) x			0.2	16	=	288.35	(264)
Space and wate	er heating	9			(261	1) + (262)	+ (263) + (264) =				560.61	(265)
Electricity for pu	ımps, far	is and	alactric	keen-hot	(23)	1) x							(203)
Electricity for lig			electric						0.5	19	=	89.76	(267)
	hting		electric			2) x			0.5		=	89.76 151.32	
Energy saving/g	•			·		2) x				19			(267)
Energy saving/g	generatio			·		2) x		sum o	0.5	19	=	151.32	(267) (268)
Energy saving/g Item 1	generatio ear	n techi	nologies	·		2) x			0.5	19	=	-134.47	(267) (268) (269)
Energy saving/g Item 1 Total CO2, kg/ye	generatio ear E missio	n techi	nologies	·		2) x			0.5 [.]	19	=	151.32 -134.47 667.23	(267) (268) (269) (272)

SAP 2012 Overheating Assessment

Calculated by Stroma FSAP 2012 program, produced and printed on 15 July 2021

Property Details: Unit 7 - 2B 3P - Be Green

Dwelling type:	Flat
Located in:	England
Region:	South East England
Cross ventilation possible:	Yes
Number of storeys:	1
Front of dwelling faces:	East
Overshading:	Average or unknown
Overhangs:	None
Thermal mass parameter:	Indicative Value Medium
Night ventilation:	False
Blinds, curtains, shutters:	None
Ventilation rate during hot weather (ach):	3 (Windows open half the time)
Overheating Details:	

Summer ventilation heat loss coefficient:	163.05	
Transmission heat loss coefficient:	27.7	
Summer heat loss coefficient:	190.8	

	Ratio:	Z_overhangs:					
South (South Window) North (North Window)		1					
North (North Window 2)		1					
Solar shading:							
					_		
Orientation:	Z blinds:	Solar access:	Overl	hangs:	Z summer:		
South (South Window)	1	0.9	1		0.9		(P8)
North (North Window)	1	0.9	1		0.9		(P8)
North (North Window 2)	1	0.9	1		0.9		(P8)
Solar gains:							
Orientation	Area	a Flux	g_	FF	Shading	Gains	
South (South Window)	0.9 x 1.71	118.4	0.63	0.7	0.9	72.32	
North (North Window)	0.9 x 3.42	86.66	0.63	0.7	0.9	105.87	
North (North Window 2)	0.9 x 4.09	86.66	0.63	0.7	0.9	126.61	
. ,					Total	304.8	(P3/P4)

Internal gains:

June	July	August	
359.56	345.01	352.22	
686.23	649.8	609.44	(P5)
3.6	3.41	3.19	(P6)
15.4	17.4	17.5	
0.25	0.25	0.25	
19.25	21.06	20.94	(P7)
Not significant	Slight	Slight	
	359.56 686.23 3.6 15.4 0.25 19.25	359.56345.01686.23649.83.63.4115.417.40.250.2519.2521.06	359.56345.01352.22686.23649.8609.443.63.413.1915.417.417.50.250.250.2519.2521.0620.94

Assessment of likelihood of high internal temperature:

<u>Slight</u>

(P1)

(P2)

Regulations Compliance Report

Approved Documer Printed on 15 July 2		, England assessed by S	Stroma FSAF	2012 program, Ve	rsion: 1.0.5.41	
Project Information						
Assessed By:	()			Building Type:	Flat	
Dwelling Details:						
NEW DWELLING	DESIGN STAGE			Total Floor Area: 1	117.6m²	
Site Reference :	106 Bexley Road			Plot Reference:	Unit 14 - 3B 6F	P - Be Green
Address :	106 Bexley Road ,	Erith , DA8 3SP				
Client Details:						
Name:	Kang					
Address :	Upna Ltd , 106 Be	kley Road , Erith , DA8 3	SP			
-	s items included wi e report of regulati	thin the SAP calculatio ons compliance.	ns.			
1a TER and DER						
	ng system: Mains ga	S				
Fuel factor: 1.00 (m	iains gas) kide Emission Rate (16.92 kg/m²		
-	ioxide Emission Rate	· · · · ·		11.09 kg/m ²		ОК
1b TFEE and DFE						
	gy Efficiency (TFEE)			53.1 kWh/m ²		
Dweiling Fabric End	ergy Efficiency (DFE	E)		42.4 kWh/m ²	_	OK
2 Fabric U-values	S S S S S S S S S S S S S S S S S S S					
Element External w Party wall		Average 0.16 (max. 0.30) 0.00 (max. 0.20)		Highest 0.16 (max. 0.70) -		ОК
Floor		(no floor)				
Roof		0.11 (max. 0.20)		0.11 (max. 0.35)		OK OK
Openings 2a Thermal bridg	ina	1.18 (max. 2.00)		1.20 (max. 3.30)		UK
		om linear thermal transm	ittances for	each junction		
3 Air permeabilit				·		
Air permeab Maximum	ility at 50 pascals			4.00 (design val 10.0	lue)	ОК
4 Heating efficier	псу					
Main Heating	g system:	Database: (rev 479, pro Boiler systems with rad Brand name: Worceste Model: Greenstar Model qualifier: 32CDi (Combi) Efficiency 89.8 % SEDI Minimum 88.0 %	liators or une er Compact Er	derfloor heating - m	ains gas	ок
Secondary h	neating system:	None				

Regulations Compliance Report

cylinder insulation			
Hot water Storage:	No cylinder		
Controls			
Space heating controls	TTZC by plumbing and el	ectrical services	OK
Hot water controls:	No cylinder thermostat		
	No cylinder		
Boiler interlock:	Yes		OK
ow energy lights			
Percentage of fixed lights wi	th low-energy fittings	100.0%	
Minimum		75.0%	OK
lechanical ventilation			
Continuous supply and extra	ct system		
Specific fan power:		0.46	
Maximum		1.5	OK
MVHR efficiency:		92%	
Minimum		70%	OK
Summertime temperature			
Overheating risk (South Eas	t England):	Slight	OK
ed on:			
Overshading:		Average or unknown	
Windows facing: West		1.28m ²	
Windows facing: North		3.84m ²	
Windows facing: North		4.09m ²	
Windows facing: East		6.14m ²	
Ventilation rate:		3.00	
Blinds/curtains:		None	
Key features			
Thermal bridging		0.028 W/m ² K	
Doors U-value		1 W/m²K	
Roofs U-value		0.11 W/m²K	
Party Walls U-value		0 W/m²K	
Photovoltaic array			

Property Details: Unit 14 - 3B 6P - Be Green

Address:	106 Bexley Road , Erith , DA8 3SP
Located in:	England
Region:	South East England
UPRN:	
Date of assessment:	13 July 2021
Date of certificate:	15 July 2021
Assessment type:	New dwelling design stage
Transaction type:	New dwelling
Tenure type:	Unknown
Related party disclosure:	No related party
Thermal Mass Parameter:	Indicative Value Medium
Water use <= 125 litres/person/da	ay: True
PCDF Version:	479

Property description	n:					
Dwelling type:		Flat				
Detachment: Year Completed:		2021				
•						
Floor Location:		Floor area:		Storey height	•	
Floor 0		117.6 m²		2.7 m	•	
				2.7 111		
Living area: Front of dwelling f		36.5 m ² (fraction 0.31) South				
	aces.	300111		_		_
Opening types:						
Name:	Source:	Туре:	Glazing:		Argon:	Frame:
Front Door	Manufacturer	Solid				Wood
West Window	SAP 2012	Windows		0.05, soft coat	Yes	PVC-U
North Window North Window 2	SAP 2012 SAP 2012	Windows Windows		0.05, soft coat 0.05, soft coat	Yes Yes	PVC-U PVC-U
East Window 2	SAP 2012	Windows		0.05, soft coat	Yes	PVC-U
	5/11 2012	WINdows	10W E, EN =	0.00, 3011 0001	105	
Name:	Gap:	Frame Facto	or: g-value:	U-value:	Area:	No. of Openings:
Front Door	mm	0.7	0	1	1.91	1
West Window	16mm or more	0.7	0.63	1.2	1.28	1
North Window	16mm or more	0.7	0.63	1.2	1.28	3
North Window 2	16mm or more	0.7	0.63	1.2	4.09	1
East Window	16mm or more	0.7	0.63	1.2	6.14	1
Name:	Type-Name:	Location:	Orient:		Width:	Height:
Front Door	. jpo Hamoi	External Wall	South		0.91	2.1
West Window		External Wall	West		0.9	1.425
North Window		External Wall	North		0.9	1.425
North Window 2		External Wall	North		1.475	2.775
East Window		External Wall	East		2.3	2.67
Overshading:		Average or unknown				
Opaque Elements:						
51	Gross area: Oper	nings: Net area:	U-value:	Ru value:	Curtair	n wall: Kappa:
External Elements External Wall	92.88 17.3	26 75.62	0.16	0	False	N/A
	72.00 17	20 70.02	0.10	0		11/1

0

0

28.35

117.6

0.16

0.11

0.4

0

False

28.35

117.6

Corridor Wall

Internal Elements

Flat Roof

N/A

N/A

Party ElementsParty Wall7.0Party Floor11	02 7.6					N/A N/A
Thermal bridges:						
Thermal bridges: [Approv [Approv [Approv [Approv [Approv [Approv	ved] ved] ved] ved]	User-defined Length 8.27 3.6 25.1 34.4 9.2 2.6	(individual PSI- Psi-value 0.3 0.04 0.05 0.07 0.02 0.06	•values) E2 E3 E4 E7 E9 E18	Y-Value = 0.0278 Other lintels (including other steel lintels) Sill Jamb Party floor between dwellings (in blocks of flats) Balcony between dwellings, wall insulation continuou Party wall between dwellings	JS
Ventilation:						
Pressure test: Ventilation: Number of chimneys: Number of open flues: Number of fans: Number of passive stack: Number of sides sheltere Pressure test: Main heating system: Main heating system:	s: d:	Number of we Ductwork: Ins Approved Ins 0 0 0 1 4 8 Boiler system Gas boilers ar Fuel: mains g Info Source: I	a heat recovery et rooms: Kitch sulation, rigid tallation Schem as Boiler Database v 479, product	en + 2 ne: True s or und	lerfloor heating	.7
		(Combi boiler Systems with Central heatir	er: 32CDi Comp) radiators ng pump : 2013 emperature: De k: Yes	3 or late	r w temperature >45°C	
Main heating Control:						
Main heating Control:		Time and tem services Control code:		control	by suitable arrangement of plumbing and electric	cal
Secondary heating system	:					
Secondary heating system	n:	None				
Water heating:						
Water heating:			901 as		060035)	

Brand name: Worcester Model: Greenstar Xtra Model qualifier: 2015 Waste Water Heat Recovery System: Total rooms with shower and/or bath: 2 Product index: 080106, Megaflo SHRU 60 System B Number of mixer showers in rooms with a bath: 0 Number of mixer showers in rooms without a bath: 2 Solar panel: False

Others:

Electricity tariff: In Smoke Control Area: Conservatory: Low energy lights: Terrain type: EPC language:	Standard Tariff Unknown No conservatory 100% Low rise urban / suburban English
Wind turbine:	No
Photovoltaics:	Photovoltaic 1 Installed Peak power: 0.3 Tilt of collector: 30° Overshading: None or very little Collector Orientation: South
Assess Zero Carbon Home:	No

Assessor Name: Stroma FSAP 2012 Software Version: Version: 1.0.5.41 Property Address: Unit 14 - 3B 6P - Be Green Address: Init 17.5 (1a) x I - I - I - I - I - I - I - I - I - I	
Address :106 Bexley Road , Erith , DA8 3SPI. Overall dwelling dimensions:Area(m²)Av. Height(m)Volume(m³)Ground floor117.6(1a) × 2.7(2a) = 317.52(3a)Total floor area TFA = (1a)+(1b)+(1c)+(1d)+(1e)+(1n)117.6(1a) × 2.7(2a) = 317.52(3a)Total floor area TFA = (1a)+(1b)+(1c)+(1d)+(1e)+(1n)117.6(1a) × 2.7(2a) = 317.52(3a)Welling volume(3a)+(3b)+(3c)+(3d)+(3e)+(3n) =317.52(5)Ventilation rate:(3a)+(3b)+(3c)+(3d)+(3e)+(3n) =317.52(6)Number of chimneys0(4b)0(4b)Number of passive vents0(4b)Number of passive vents0(4b)Number of flueless gas fires0(4b)Number of storeys in the dwelling (ns)(a) (40)Additional infiltration((b) (4b)Number of storeys in the dwelling (ns)(a) (40)Additional infiltration((b) (4b)Number of storeys in the dwelling (ns)(a) (40)Additional infiltration((b) (2b)Number of storeys in the dwelling (ns)(a) (40)Additional infiltration	
Area(m ²)Av. Height(m)Volume(m ³)Ground floorArea(m ²)Av. Height(m)Volume(m ³)Total floor area TFA = (1a)+(1b)+(1c)+(1d)+(1e)+(1n)117.6(1a)Volume(m ³)Total floor area TFA = (1a)+(1b)+(1c)+(1d)+(1e)+(1n)117.6(1a)Volume(m ³)Output(3a)+(3b)+(3c)+(3d)+(3e)+(3n)=Volume(m ³)Output(3a)+(3b)+(3c)+(3d)+(3e)+(3n)=Volume(m ³)Output(3a)+(3b)+(3c)+(3d)+(3e)+(3n)=Volume(m ³)Output(3a)+(3b)+(3c)+(3d)+(3e)+(3n)=OutputNumber of chimneyso(a)(a)Number of poen flueso(a)(b)Number of poen flueso(a)O(a)(a)Number of passive vents(a)(a)Number of flueless gas fires(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a) <th col<="" td=""></th>	
Area(m²) (17.6)Av. Height(m) (13)Volume(m³) (3a)Ground floor117.6(1a) x2.7(2a) = 317.52 (3a)Total floor area TFA = (1a)+(1b)+(1c)+(1d)+(1e)+(1n)117.6(4)Dwelling volume(3a)+(3b)+(3c)+(3d)+(3e)+(3n) = 317.52 (5) 2. Ventilation rate:abbbb Number of chimneys 0 $+$ 0 $=$ 0 (6a)Number of open flues 0 $+$ 0 $=$ 0 (6b)Number of intermittent fans 0 $x10 =$ 0 (7a)Number of flueless gas fires 0 $x40 =$ 0 (7a)Number of flueless gas fires 0 $x40 =$ 0 (7b)Number of storeys in the dwelling (ns) 0 $x40 =$ 0 (9)Additional infiltration(9)-1(x0.1 = 0 (10)Structural infiltration: 0.25 for steel or timber frame or 0.35 for masonry construction 0 (11)If both types of wall are present, use the value corresponding to the greater wall area (after deducting areas of openings); if equal user 0.35for masonry construction 0 (12)If suspended wooden floor, enter 0.2 (unsealed) or 0.1 (sealed), else enter 0 0 (12)If no draught lobby, enter 0.05, else enter 0 0 (12)If no draught lobby, enter 0.05, else enter 0 0 (12)If no draught lobby, enter 0.05, else enter 0 0 (12)If no draught lobby, enter 0.05, else enter 0	
Dwelling volume(3a)+(3b)+(3c)+(3d)+(3e)+(3n) =317.52 (5) 2. Ventilation rate:total m³ per hourNumber of chimneys 0 $+$ 0 $=$ 0 $x 40$ 0 (6a)Number of open flues 0 $+$ 0 $=$ 0 $x 40$ 0 (6a)Number of intermittent fans 0 $+$ 0 $=$ 0 $x 10$ 0 (7a)Number of passive vents 0 $x 10$ 0 $x 10$ 0 $(7a)$ Number of flueless gas fires 0 $x 40$ 0 $(7c)$ Infiltration due to chimneys, flues and fans = (6a)+(6b)+(7a)+(7b)+(7c) = 0 $+$ 0 $=$ 0 (6) Infiltration due to chimneys, flues and fans = (6a)+(6b)+(7a)+(7b)+(7c) = 0 $+$ 0 $=$ 0 (6) Number of storeys in the dwelling (ns) 0 (9) (9) (9) (9) (9) (9) (9) (10) (9) (10) Structural infiltration 0.25 for steel or timber frame or 0.35 for masonry construction (9) (10) (11) 0 (12) If both types of wall are present, use the value corresponding to the greater wall area (after deducting areas of openings); if equal user 0.35 0.21 0 (12) 0 (12) If no draught lobby, enter 0.05 , else enter 0 0.21 0 (12) 0 (12) If no draught lobby, enter 0.05 , else enter 0 0.21 <th< td=""></th<>	
2. Ventilation rate: main heating secondary heating other total m³ per hour Number of chimneys 0 $+$ 0 $+$ 0 $=$ 0 $x40 =$ 0 (6a) Number of open flues 0 $+$ 0 $+$ 0 $=$ 0 $x40 =$ 0 (6b) Number of open flues 0 $+$ 0 $+$ 0 $=$ 0 $x10 =$ 0 (7a) Number of passive vents 0 $x10 =$ 0 (7c) Number of flueless gas fires 0 $x40 =$ 0 (7c) Number of storeys in the dwelling (ns) 0 $x40 =$ 0 (7c) Additional infiltration (9) 0 (10) 0 (9) Structural infiltration: 0.25 for steel or timber frame or 0.35 for masonry construction 0 (11) <i>it</i> both types of wall are present, use the value corresponding to the greater wall area (after deducting areas of openings); if equal user 0.35 0 0 (12) If no draught lobby, enter 0.05, else enter 0 0	
main heatingsecondary heatingothertotalm³ per hourNumber of chimneys 0 $+$ 0 $=$ 0 $x40 =$ 0 $(6a)$ Number of open flues 0 $+$ 0 $=$ 0 $x20 =$ 0 $(6b)$ Number of intermittent fans 0 $x 10 =$ 0 $(7a)$ Number of passive vents 0 $x 10 =$ 0 $(7b)$ Number of flueless gas fires 0 $x40 =$ 0 $(7c)$ Infiltration due to chimneys, flues and fans = $(6a) + (6b) + (7a) + (7b) + (7c) =$ 0 $x40 =$ 0 $(7c)$ Infiltration due to chimneys, flues and fans = $(6a) + (6b) + (7a) + (7b) + (7c) =$ 0 $(5) =$ 0 (8) If a pressurisation test has been carried out or is intended, proceed to (17), otherwise continue from (9) to (16) 0 (9) Additional infiltration (9) (9) (9) (9) Additional infiltration (9) (11) (9) (11) if both types of wall are present, use the value corresponding to the greater wall area (after deducting areas of openings); if equal user 0.35 (11) (12) If no draught lobby, enter 0.05, else enter 0 0 (12) If no draught lobby, enter 0.05, else enter 0 0 (12)	
heatingheatingheatingNumber of chimneys 0 $+$ 0 $+$ 0 $=$ 0 $x40 =$ 0 $(6a)$ Number of open flues 0 $+$ 0 $+$ 0 $=$ 0 $x20 =$ 0 $(6b)$ Number of intermittent fans 0 $x10 =$ 0 $(7a)$ Number of passive vents 0 $x10 =$ 0 $(7b)$ Number of flueless gas fires 0 $x40 =$ 0 $(7c)$ Number of flueless gas fires 0 $x40 =$ 0 $(7c)$ Infiltration due to chimneys, flues and fans = $(6a)+(6b)+(7a)+(7b)+(7c) =$ 0 $+$ 0 (9) Infiltration due to chimneys, flues and fans = $(6a)+(6b)+(7a)+(7b)+(7c) =$ 0 $+$ 0 (9) Additional infiltration 0 (9) (10) (9) (10) Structural infiltration 0 (9) (11) 0 (11) if both types of wall are present, use the value corresponding to the greater wall area (after deducting areas of openings); if equal user 0.35 (11) 0 (12) If no draught lobby, enter 0.05, else enter 0 0 (12) 0 (13)	
Number of passive vents 0 $x 10 =$ 0 $(7b)$ Number of flueless gas fires 0 $x 40 =$ 0 $(7c)$ Air changes per hourInfiltration due to chimneys, flues and fans = $(6a)+(6b)+(7a)+(7b) =$ 0 $\div (5) =$ 0 (8) If a pressurisation test has been carried out or is intended, proceed to (17) , otherwise continue from (9) to (16) 0 (9) Number of storeys in the dwelling (ns) 0 (9) (9) Additional infiltration (9) (10) (10) Structural infiltration: 0.25 for steel or timber frame or 0.35 for masonry construction 0 (11) if both types of wall are present, use the value corresponding to the greater wall area (after deducting areas of openings); if equal user 0.35 0 (12) If no draught lobby, enter 0.05 , else enter 0 0 (12) 0 (13)	
Number of flueless gas fires 0 x 40 = 0 (7c) Air changes per hour Infiltration due to chimneys, flues and fans = (6a)+(6b)+(7a)+(7b)+(7c) = 0 ÷ (5) = 0 (8) If a pressurisation test has been carried out or is intended, proceed to (17), otherwise continue from (9) to (16) Number of storeys in the dwelling (ns) Additional infiltration Structural infiltration: 0.25 for steel or timber frame or 0.35 for masonry construction if both types of wall are present, use the value corresponding to the greater wall area (after deducting areas of openings); if equal user 0.35 If suspended wooden floor, enter 0.2 (unsealed) or 0.1 (sealed), else enter 0 If no draught lobby, enter 0.05, else enter 0 0 (12) 170	
Number of flueless gas fires $0 \times 40 = 0$ (7c)Air changes per hourInfiltration due to chimneys, flues and fans = (6a)+(6b)+(7a)+(7b)+(7c) = 0 \div (5) = 0 (8)If a pressurisation test has been carried out or is intended, proceed to (17), otherwise continue from (9) to (16)Number of storeys in the dwelling (ns)Additional infiltrationStructural infiltration:0.25 for steel or timber frame or 0.35 for masonry constructionif both types of wall are present, use the value corresponding to the greater wall area (after deducting areas of openings); if equal user 0.35If suspended wooden floor, enter 0.2 (unsealed) or 0.1 (sealed), else enter 00013	
Air changes per hourInfiltration due to chimneys, flues and fans = $(6a)+(6b)+(7a)+(7b)+(7c) = 0 \div (5) = 0$ 0(8)If a pressurisation test has been carried out or is intended, proceed to (17), otherwise continue from (9) to (16)0(9)Number of storeys in the dwelling (ns)0(9)Additional infiltration(9)-1]x0.1 = 0(10)Structural infiltration: 0.25 for steel or timber frame or 0.35 for masonry construction0(11)if both types of wall are present, use the value corresponding to the greater wall area (after deducting areas of openings); if equal user 0.350(12)If suspended wooden floor, enter 0.2 (unsealed) or 0.1 (sealed), else enter 00(12)If no draught lobby, enter 0.05, else enter 00(13)	
Number of storeys in the dwelling (ns) 0 (9) Additional infiltration 0 (10) Structural infiltration: 0.25 for steel or timber frame or 0.35 for masonry construction 0 (11) if both types of wall are present, use the value corresponding to the greater wall area (after deducting areas of openings); if equal user 0.35 0 (11) If suspended wooden floor, enter 0.2 (unsealed) or 0.1 (sealed), else enter 0 0 (12) If no draught lobby, enter 0.05, else enter 0 0 (13)	
If suspended wooden floor, enter 0.2 (unsealed) or 0.1 (sealed), else enter 0 0 (12) If no draught lobby, enter 0.05, else enter 0 0 (13)	
Percentage of windows and doors draught stripped 0 (14)	
Window infiltration $0.25 - [0.2 \times (14) \div 100] =$ 0 (15)	
Infiltration rate $(8) + (10) + (11) + (12) + (13) + (15) = 0$ (16)	
Air permeability value, q50, expressed in cubic metres per hour per square metre of envelope area 4 (17)	
If based on air permeability value, then $(18) = [(17) \div 20] + (8)$, otherwise $(18) = (16)$ 0.2 (18)	
Air permeability value applies if a pressurisation test has been done or a degree air permeability is being used Number of sides sheltered 1 (19)	
Number of sides sheltered 1 (19) Shelter factor $(20) = 1 - [0.075 \times (19)] =$ 0.92 (20)	
Infiltration rate incorporating shelter factor $(21) = (18) \times (20) = 0.19$ (21)	
Infiltration rate modified for monthly wind speed	
Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec	
Monthly average wind speed from Table 7	
(22)m= 5.1 5 4.9 4.4 4.3 3.8 3.8 3.7 4 4.3 4.5 4.7	
Wind Factor (22a)m = (22)m ÷ 4	
(22a)m= 1.27 1.25 1.23 1.1 1.08 0.95 0.95 0.92 1 1.08 1.12 1.18	

Adjuste	ed infiltra	ation rat	e (allowi	ng for sh	nelter an	d wind s	speed) =	: (21a) x	(22a)m					
	0.24	0.23	0.23	0.2	0.2	0.18	0.18	0.17	0.19	0.2	0.21	0.22		
		<i>ctive air</i> al ventila	change i	rate for t	he applic	cable ca	ise					Г	0.5	(23a)
			using Appe	endix N, (2	3b) = (23a) × Fmv (e	equation (I	N5)) , othe	erwise (23b	o) = (23a)		L	0.5	(23b)
			overy: effici		, ,					, , ,		Ĺ	78.2	(23c)
			-		-					2h)m + (23b) x [L 1 – (23c)		(200)
(24a)m=	0.34	0.34	0.34	0.31	0.31	0.28	0.28	0.28	0.29	0.31	0.32	0.33	. 100]	(24a)
Ľ	balance	d mech	anical ve	ntilation	without	heat red	L coverv (I	1 MV) (24I	$1_{0}m = (2)$	1 2b)m + (1 23b)			
(24b)m=	0	0	0	0	0	0	0	0	0	0	0	0		(24b)
c) If v	whole h	ouse ex	tract ven	tilation of	or positiv	e input v	ventilatio	n from	outside	<u> </u>		II		
,			< (23b), t			•				.5 × (23b))			
(24c)m=	0	0	0	0	0	0	0	0	0	0	0	0		(24c)
,			on or wh		•					-	-			
r	. ,		en (24d)	· · · · · ·	,		r	r	r Ó	<u> </u>				
(24d)m=	0	0	0	0	0	0	0	0	0	0	0	0		(24d)
r			rate - er	<u> </u>	, <u>,</u>	, ,	ŕ	,	r`´´			,		()
(25)m=	0.34	0.34	0.34	0.31	0.31	0.28	0.28	0.28	0.29	0.31	0.32	0.33		(25)
3. Hea	at l <mark>osse</mark>	s and he	eat loss p	oaramete	er:									
ELEM	ENT	Gros		Openin	-	Net Ar		U-val		AXU		k-value		AXk
Deere		area	(m²)	m	2	A ,r		W/m2		(VV/	K)	kJ/m²·k	`	kJ/K
Doors	-					1.91			=	1.91				(26)
	vs Type					1.28		/[1/(1.2)+		1.47				(27)
	vs Type					1.28		/[1/(1.2)+		1.47				(27)
	vs Type					4.09	x1	/[1/(1.2)+	- 0.04] =	4.68				(27)
Window	vs Type	4				6.14	x1	/[1/(1.2)+	0.04] =	7.03				(27)
Walls T	ype1	92.8	38	17.20	6	75.62	<u>2</u> X	0.16	=	12.1				(29)
Walls T	ype2	28.3	35	0		28.35	5 X	0.15	=	4.26				(29)
Roof		117	.6	0		117.6	6 X	0.11	=	12.94				(30)
Total a	rea of e	lements	s, m²			238.8	3							(31)
Party w	all					7.02	x	0	=	0				(32)
Party fl	oor					117.6	6				[(32a)
			lows, use e sides of in				lated using	g formula :	1/[(1/U-valu	ue)+0.04] a	as given in	paragraph	3.2	
Fabric	heat los	s, W/K	= S (A x	U)				(26)(30) + (32) =			[48.78	(33)
Heat ca	apacity	Cm = S	(A x k)						((28).	(30) + (3	2) + (32a).	(32e) =	13812.	5 (34)
Therma	al mass	parame	eter (TMF	P = Cm ÷	- TFA) in	ı kJ/m²K			Indica	ative Value	: Medium	[250	(35)
-			nere the de tailed calcu		constructi	on are no	t known pi	recisely th	e indicative	e values of	TMP in Ta	able 1f		
Therma	al bridge	es : S (L	. x Y) cal	culated u	using Ap	pendix I	K					[6.63	(36)
			are not kn	own (36) =	= 0.05 x (3	1)						-		
rotal fa	abric hea	at loss							(33) +	- (36) =		L	55.41	(37)

Ventila	ation hea	at loss ca	alculated	monthl	у	-	-		(38)m	= 0.33 × ((25)m x (5)			
	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec		
(38)m=	36.14	35.65	35.17	32.74	32.26	29.84	29.84	29.35	30.81	32.26	33.23	34.2		(38)
Heat ti	ransfer o	coefficier	nt, W/K						(39)m	= (37) + (3	38)m			
(39)m=	91.55	91.06	90.58	88.16	87.67	85.25	85.25	84.76	86.22	87.67	88.64	89.61		
										-	Sum(39)1.	12 /12=	88.04	(39)
	<u> </u>	meter (H	<u>,</u>	I					· ,	= (39)m ÷				
(40)m=	0.78	0.77	0.77	0.75	0.75	0.72	0.72	0.72	0.73	0.75	0.75	0.76	0.75	
Numbe	er of day	s in moi	nth (Tab	le 1a)					/	<pre>Average =</pre>	s Sum(40)₁.	12/12=	0.75	(40)
	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec		
(41)m=	31	28	31	30	31	30	31	31	30	31	30	31		(41)
4 Wa	ater heat	tina ener	rav reau	irement:								kWh/ye	ar:	
		ipancy, l		[1 ovp	(0 0003		TA 12 0)2)] + 0.(012 v /	FEA 12		85		(42)
	A £ 13.9		+ 1.70 X	r [i - exh	(-0.0003	949 X (11	A -13.9	<i>)</i> 2)] + 0.0	JU13 X (IFA - 13.	.9)			
								(25 x N)				1.97		(43)
				usage by r day (all w		-	-	to achieve	a water us	se target o	of			
							·	A	0	Ort	Neu	Dee		
Hot wat	Jan er usage ii	Feb n litres per	Mar day for ea	Apr ach month	May Vd.m = fa	Jun ctor from T	Jul Table 1c x	Aug (43)	Sep	Oct	Nov	Dec		
(44)m=	112.17	, 108.09	104.01	99.93	95.85	91.77	91.77	95.85	99.93	104.01	108.09	112.17		
(44)11-	112.17	100.03	104.01	33.35	35.05	91.77	31.77	90.00			m(44) ₁₁₂ =		1223.66	(44)
Energy	content of	hot water	used - ca	lculated me	onthly $= 4$.	190 x Vd,r	n x nm x E	0Tm / 3600			ables 1b, 1		1220.00	
(45)m=	166.34	145.48	150.13	130.88	125.59	108.37	100.42	115.24	116.61	135.9	148.35	161.09		
										Fotal = Su	m(45) ₁₁₂ =	=	1604.41	(45)
lf instan	taneous w	ater heatii		t of use (no	o hot water	r storage),	enter 0 in	boxes (46) to (61)		•			
	24.95	21.82	22.52	19.63	18.84	16.26	15.06	17.29	17.49	20.39	22.25	24.16		(46)
	storage		includir		alar ar M		storada	within sa	me ves	ما		0		(47)
-		. ,		ank in dw			-			501		0		(47)
	•	-			-			ombi boil	ers) ente	er '0' in ((47)			
	storage			,					,	,				
a) If m	nanufact	urer's de	eclared l	oss facto	or is kno	wn (kWł	n/day):					0		(48)
Tempe	erature f	actor fro	m Table	2b								0		(49)
	•		•	e, kWh/ye				(48) x (49)) =			0		(50)
,				cylinder l rom Tabl								0		(51)
		leating s					iy)					0		(51)
	•	from Ta										0		(52)
Tempe	erature f	actor fro	m Table	2b								0		(53)
Energy	y lost fro	m water	storage	e, kWh/ye	ear			(47) x (51)	x (52) x (53) =		0		(54)
Enter	(50) or ((54) in (5	55)									0		(55)
Water	storage	loss cal	culated	for each	month			((56)m = (55) × (41)ı	m				
(56)m=	0	0	0	0	0	0	0	0	0	0	0	0		(56)

in cynnue	er contains	s dedicated	d solar sto	rage, (57)r	n = (56)m	x [(50) – (l	H11)] ÷ (50	0), else (57	7)m = (56)	m where (H11) is fro	m Append	ix H	
(57)m=	0	0	0	0	0	0	0	0	0	0	0	0		(57)
Primar	y circuit	loss (an	nual) frc	om Table	3							0		(58)
	•	•	,	for each		59)m = (58) ÷ 36	5 × (41)	m					
(mod	dified by	factor fr	om Tabl	le H5 if tl	here is s	olar wat	er heatir	ng and a	cylinde	r thermo	stat)			
(59)m=	0	0	0	0	0	0	0	0	0	0	0	0		(59)
Combi	loss ca	culated	for each	month (61)m = ((60) ÷ 36	35 × (41)	m						
(61)m=	24.91	22.5	24.91	24.11	24.91	24.11	24.91	24.91	24.11	24.91	24.11	24.91		(61)
Total h	eat requ	uired for	water he	eating ca	lculated	for each	n month	(62)m =	0.85 × (45)m +	(46)m +	(57)m +	(59)m + (61)m	
(62)m=	191.26	167.99	175.04	154.99	150.5	132.48	125.34	140.15	140.72	160.81	172.46	186.01		(62)
Solar DH	HW input o	calculated	using App	endix G or	Appendix	H (negativ	ve quantity	r) (enter '0'	if no sola	r contributi	on to wate	er heating)		
(add a	dditiona	l lines if	FGHRS	and/or V	VWHRS	applies,	, see Ap	pendix G	6)					
(63)m=	0	0	0	0	0	0	0	0	0	0	0	0		(63)
FHRS	17.76	15.37	15.19	11.87	10.12	8.53	8.11	9.17	9.23	12.58	15.41	17.4		(63) (G2)
WWHR	-43.72	-38.47	-39.26	-32.3	-29.99	-24.73	-20.93	-25.34	-26.08	-32.25	-37.36	-42.26		(63) (G10)
Output	from w	ater hea	ter											
(64)m=	128.48	112.98	119.3	109.58	109.1	97.97	95.02	104.35	104.16	114.69	118.43	125.05		_
								Outp	ut from wa	ater heater	(annual)₁	12	1339.12	(64)
Hea <mark>t g</mark>	ains froi	m wat <mark>er</mark>	heating,	. <mark>kWh</mark> /mc	onth 0.25	<mark>5 ´</mark> [0.85	× (45)m	+ (61)m] + 0.8 x	: [(46)m	+ (57)m	+ (59)m]	
(65)m=	<mark>6</mark> 1.54	54	56.15	49.55	47.99	42.06	39.62	44.54	44.8	51.42	55.35	5 <mark>9.79</mark>		(65)
(00)		U .		.0.00										()
				of (65)m									eating	()
inclu	ide (57)i	m in calc	culation of	LI	only if c								eating	
inclu 5. Int	ide (57)i ernal ga	m in calc	culation o Table 5	of (65)m	only if c								eating	
inclu 5. Int	ide (57)i ernal ga	m in calc ains (see	culation o Table 5	of (65)m	only if c								eating	
inclu 5. Int	ide (57)i ernal ga olic gain	m in calc ains (see s (Table	culation of Table 5	of (65)m and 5a)	only if c	ylinder is	s in the c	lwelling	or hot w	ater is fr	om com	munity h	eating	(66)
inclu 5. Int Metabo (66)m=	ide (57)i ernal ga olic gain Jan 171.21	m in calc ains (see s (Table Feb 171.21	culation of Table 5 5), Wat Mar 171.21	of (65)m 5 and 5a) ts Apr	only if c): May 171.21	ylinder is Jun 171.21	s in the c Jul 171.21	Aug 171.21	or hot w Sep 171.21	ater is fr Oct	om com Nov	munity h	eating	
inclu 5. Int Metabo (66)m=	ide (57)i ernal ga olic gain Jan 171.21	m in calc ains (see s (Table Feb 171.21	culation of Table 5 5), Wat Mar 171.21	of (65)m 5 and 5a) ts Apr 171.21	only if c): May 171.21	ylinder is Jun 171.21	s in the c Jul 171.21	Aug 171.21	or hot w Sep 171.21	ater is fr Oct	om com Nov	munity h	eating	
inclu 5. Int Metabo (66)m= Lightin (67)m=	ide (57)i ernal ga blic gain Jan 171.21 g gains 68.49	m in calc ains (see s (Table Feb 171.21 (calculat 60.83	Table 5 5), Wat Mar 171.21 ted in Ap 49.47	of (65)m 5 and 5a) ts Apr 171.21 opendix L	May 171.21 28	Jun 171.21 ion L9 or 23.64	s in the c Jul 171.21 r L9a), al 25.54	Aug 171.21 Iso see 33.2	or hot w Sep 171.21 Fable 5 44.56	Ater is fr Oct 171.21 56.57	om com Nov 171.21	Dec 171.21	eating	(66)
inclu 5. Int Metabo (66)m= Lightin (67)m=	ide (57)i ernal ga blic gain Jan 171.21 g gains 68.49	m in calc ains (see s (Table Feb 171.21 (calculat 60.83	Table 5 5), Wat Mar 171.21 ted in Ap 49.47	of (65)m 5 and 5a) ts Apr 171.21 5pendix L 37.45	May 171.21 28	Jun 171.21 ion L9 or 23.64	s in the c Jul 171.21 r L9a), al 25.54	Aug 171.21 Iso see 33.2	or hot w Sep 171.21 Fable 5 44.56	Ater is fr Oct 171.21 56.57	om com Nov 171.21	Dec 171.21	eating	(66)
inclu 5. Int Metabo (66)m= Lightin (67)m= Applian (68)m=	ide (57)i emal ga olic gain Jan 171.21 g gains 68.49 nces ga 420.98	m in calc ains (see s (Table Feb 171.21 (calculat 60.83 ins (calc 425.35	ted in Ap 49.47 ulated in 414.34	of (65)m and 5a) ts Apr 171.21 opendix L 37.45	only if c : May 171.21 _, equati 28 dix L, equ 361.32	ylinder is Jun 171.21 ion L9 or 23.64 uation L ² 333.52	Jul 171.21 r L9a), al 25.54 13 or L13 314.94	Aug 171.21 Iso see 33.2 3a), also 310.57	Sep 171.21 Table 5 44.56 See Tal 321.58	Oct 171.21 56.57 ole 5 345.02	om com Nov 171.21 66.03	Dec 171.21 70.39	eating	(66) (67)
inclu 5. Int Metabo (66)m= Lightin (67)m= Applian (68)m=	ide (57)i emal ga olic gain Jan 171.21 g gains 68.49 nces ga 420.98	m in calc ains (see s (Table Feb 171.21 (calculat 60.83 ins (calc 425.35	ted in Ap 49.47 ulated in 414.34	of (65)m 5 and 5a) ts Apr 171.21 5 pendix L 37.45 6 Append 390.9	only if c : May 171.21 _, equati 28 dix L, equ 361.32	ylinder is Jun 171.21 ion L9 or 23.64 uation L ² 333.52	Jul 171.21 r L9a), al 25.54 13 or L13 314.94	Aug 171.21 Iso see 33.2 3a), also 310.57	Sep 171.21 Table 5 44.56 See Tal 321.58	Oct 171.21 56.57 ole 5 345.02	om com Nov 171.21 66.03	Dec 171.21 70.39	eating	(66) (67)
inclu 5. Int Metabo (66)m= Lightin (67)m= Applian (68)m= Cookin (69)m=	de (57)i emal ga Jan 171.21 g gains 68.49 nces ga 420.98 ng gains 54.97	m in calc ains (see s (Table Feb 171.21 (calculat 60.83 ins (calc 425.35 (calcula	culation of Table 5 5), Wat Mar 171.21 ted in Ap 49.47 ulated in 414.34 ted in Ap 54.97	of (65)m 5 and 5a) ts Apr 171.21 5pendix L 37.45 Append 390.9 ppendix 54.97	May 171.21 L, equati 28 dix L, equ 361.32 L, equat	ylinder is Jun 171.21 ion L9 or 23.64 uation L 333.52 ion L15	Jul 171.21 r L9a), al 25.54 13 or L13 314.94 or L15a)	Aug 171.21 Iso see 33.2 3a), also 310.57 , also se	Sep 171.21 Fable 5 44.56 see Tal 321.58 ee Table	ate r is fr Oct 171.21 56.57 ole 5 345.02 5	om com Nov 171.21 66.03 374.6	Dec 171.21 70.39 402.4	eating	(66) (67) (68)
inclu 5. Int Metabo (66)m= Lightin (67)m= Applian (68)m= Cookin (69)m=	de (57)i emal ga Jan 171.21 g gains 68.49 nces ga 420.98 ng gains 54.97	m in calc ains (see s (Table Feb 171.21 (calculat 60.83 ins (calc 425.35 (calcula 54.97	culation of Table 5 5), Wat Mar 171.21 ted in Ap 49.47 ulated in 414.34 ted in Ap 54.97	of (65)m 5 and 5a) ts Apr 171.21 5pendix L 37.45 Append 390.9 ppendix 54.97	May 171.21 L, equati 28 dix L, equ 361.32 L, equat	ylinder is Jun 171.21 ion L9 or 23.64 uation L 333.52 ion L15	Jul 171.21 r L9a), al 25.54 13 or L13 314.94 or L15a)	Aug 171.21 Iso see 33.2 3a), also 310.57 , also se	Sep 171.21 Fable 5 44.56 see Tal 321.58 ee Table	ate r is fr Oct 171.21 56.57 ole 5 345.02 5	om com Nov 171.21 66.03 374.6	Dec 171.21 70.39 402.4	leating	(66) (67) (68)
inclu 5. Int Metabo (66)m= Lightin (67)m= Applian (68)m= Cookin (69)m= Pumps (70)m=	ide (57)i ernal ga olic gain Jan 171.21 g gains 68.49 nces ga 420.98 ng gains 54.97 s and far 3	m in calc ains (see s (Table Feb 171.21 (calculat 60.83 ins (calc 425.35 (calcula 54.97 ns gains 3	Culation of the second	of (65)m 5 and 5a) ts Apr 171.21 5pendix L 37.45 Appendix 390.9 ppendix 54.97 5a)	only if c May 171.21 L, equati 28 dix L, equati 361.32 L, equati 54.97 3	ylinder is Jun 171.21 ion L9 or 23.64 uation L7 333.52 ion L15 54.97	Jul 171.21 r L9a), al 25.54 13 or L13 314.94 or L15a) 54.97	Aug 171.21 Iso see - 33.2 3a), also 310.57 , also se 54.97	Sep 171.21 Table 5 44.56 see Tal 321.58 ee Table 54.97	ate r is fr Oct 171.21 56.57 56.57 54.97	om com Nov 171.21 66.03 374.6 54.97	Dec 171.21 70.39 402.4 54.97	leating	(66) (67) (68) (69)
inclu 5. Int Metabo (66)m= Lightin (67)m= Applian (68)m= Cookin (69)m= Pumps (70)m=	ide (57)i emal ga blic gain Jan 171.21 g gains 68.49 nces ga 420.98 ng gains 54.97 s and far 3 s e.g. ev	m in calc ains (see s (Table Feb 171.21 (calculat 60.83 ins (calc 425.35 (calcula 54.97 ns gains 3	culation of Table 5 5), Wat Mar 171.21 ted in Ap 49.47 ulated in Ap 414.34 ted in Ap 54.97 (Table 5 3 n (negat	of (65)m 5 and 5a) ts Apr 171.21 5pendix L 37.45 Appendix 390.9 ppendix 54.97 5a) 3 tive value	only if c May 171.21 L, equati 28 dix L, equati 361.32 L, equati 54.97 3	ylinder is Jun 171.21 ion L9 or 23.64 uation L7 333.52 ion L15 54.97 3 ule 5)	Jul 171.21 r L9a), al 25.54 13 or L13 314.94 or L15a) 54.97	Aug 171.21 Iso see - 33.2 3a), also 310.57 , also se 54.97	Sep 171.21 Table 5 44.56 see Tal 321.58 ee Table 54.97	ate r is fr Oct 171.21 56.57 56.57 54.97	om com Nov 171.21 66.03 374.6 54.97	Dec 171.21 70.39 402.4 54.97	leating	(66) (67) (68) (69)
inclu 5. Int Metabo (66)m= Lightin (67)m= Applian (68)m= Cookin (69)m= Pumps (70)m= Losses (71)m=	ide (57)i ernal ga olic gain Jan 171.21 g gains 68.49 nces ga 420.98 ng gains 54.97 and far 3 s e.g. ev -114.14	m in calc ains (see s (Table Feb 171.21 (calculat 60.83 ins (calculat 425.35 (calcula 54.97 ns gains 3 raporatio	Culation of Table 5 Table 5 (5), Wat Mar 171.21 ted in Ap 49.47 ulated in Ap 414.34 ted in Ap 54.97 (Table 5 3 on (negat -114.14	of (65)m 5 and 5a) ts Apr 171.21 5pendix L 37.45 Appendix 390.9 ppendix 54.97 5a) 3 tive value	only if c : May 171.21 L, equati 28 dix L, equ 361.32 L, equat 54.97 3 es) (Tab	ylinder is Jun 171.21 ion L9 or 23.64 uation L7 333.52 ion L15 54.97 3 ule 5)	Jul 171.21 r L9a), al 25.54 13 or L13 314.94 or L15a) 54.97 3	Aug 171.21 Iso see 33.2 3a), also 310.57 , also se 54.97	Sep 171.21 Table 5 44.56 See Tal 321.58 See Table 54.97	ate r is fr Oct 171.21 56.57 ole 5 345.02 5 54.97 3	om com Nov 171.21 66.03 374.6 54.97 3	Dec 171.21 70.39 402.4 54.97 3	leating	 (66) (67) (68) (69) (70)
inclu 5. Int Metabo (66)m= Lightin (67)m= Applian (68)m= Cookin (69)m= Pumps (70)m= Losses (71)m=	ide (57)i ernal ga olic gain Jan 171.21 g gains 68.49 nces ga 420.98 ng gains 54.97 and far 3 s e.g. ev -114.14	m in calc ains (see Feb 171.21 (calculat 60.83 ins (calculat 425.35 (calcula 54.97 ns gains 3 aporatio -114.14	Culation of Table 5 Table 5 (5), Wat Mar 171.21 ted in Ap 49.47 ulated in Ap 414.34 ted in Ap 54.97 (Table 5 3 on (negat -114.14	of (65)m 5 and 5a) ts Apr 171.21 5pendix L 37.45 Appendix 390.9 ppendix 54.97 5a) 3 tive value	only if c : May 171.21 L, equati 28 dix L, equ 361.32 L, equat 54.97 3 es) (Tab	ylinder is Jun 171.21 ion L9 or 23.64 uation L7 333.52 ion L15 54.97 3 ule 5)	Jul 171.21 r L9a), al 25.54 13 or L13 314.94 or L15a) 54.97 3	Aug 171.21 Iso see 33.2 3a), also 310.57 , also se 54.97	Sep 171.21 Table 5 44.56 See Tal 321.58 See Table 54.97	ate r is fr Oct 171.21 56.57 ole 5 345.02 5 54.97 3	om com Nov 171.21 66.03 374.6 54.97 3	Dec 171.21 70.39 402.4 54.97 3	eating	 (66) (67) (68) (69) (70)
inclu 5. Int Metabo (66)m= Lightin (67)m= Applian (68)m= Cookin (69)m= Pumps (70)m= Losses (71)m= Water (72)m=	ide (57)i emal ga blic gain Jan 171.21 g gains 68.49 nces gai 420.98 ng gains 54.97 s and far 3 s e.g. ev -114.14 heating 82.71	m in calc ains (see s (Table Feb 171.21 (calculat 60.83 ins (calculat 425.35 (calculat 54.97 ns gains 3 aporatio -114.14 gains (T	Culation of Table 5 Table 5 (5), Wat Mar 171.21 ted in Ap 49.47 ulated in Ap 414.34 ted in Ap 54.97 (Table 5 3 on (negat -114.14 Table 5) 75.46	of (65)m 5 and 5a) ts Apr 171.21 5pendix L 37.45 Appendix 390.9 ppendix 54.97 5a) 3 tive value -114.14	only if c : May 171.21 L, equati 28 dix L, equ 361.32 L, equat 54.97 3 es) (Tab -114.14	ylinder is Jun 171.21 ion L9 or 23.64 uation L2 333.52 ion L15 of 54.97 3 le 5) -114.14 58.42	Jul 171.21 r L9a), al 25.54 13 or L13 314.94 or L15a) 54.97 3 -114.14	Aug 171.21 Iso see 33.2 3a), also 310.57 , also se 54.97 3 -114.14 59.87	or hot w Sep 171.21 Table 5 44.56 see Tal 321.58 ee Table 54.97 3 -114.14	ate r is fr Oct 171.21 56.57 56.57 54.97 54.97 3 3 -114.14 69.11	om com Nov 171.21 66.03 374.6 54.97 3 -114.14 76.88	Munity h	leating	 (66) (67) (68) (69) (70) (71)
inclu 5. Int Metabo (66)m= Lightin (67)m= Applian (68)m= Cookin (69)m= Pumps (70)m= Losses (71)m= Water (72)m=	ide (57)i emal ga blic gain Jan 171.21 g gains 68.49 nces gai 420.98 ng gains 54.97 s and far 3 s e.g. ev -114.14 heating 82.71	m in calc ains (see s (Table Feb 171.21 (calculat 60.83 ins (calculat 425.35 (calcula 54.97 ns gains 3 raporatio -114.14 gains (T 80.36	Culation of Table 5 Table 5 (5), Wat Mar 171.21 ted in Ap 49.47 ulated in Ap 414.34 ted in Ap 54.97 (Table 5 3 on (negat -114.14 Table 5) 75.46	of (65)m 5 and 5a) ts Apr 171.21 5pendix L 37.45 Appendix 390.9 ppendix 54.97 5a) 3 tive value -114.14	only if c : May 171.21 L, equati 28 dix L, equ 361.32 L, equat 54.97 3 es) (Tab -114.14	ylinder is Jun 171.21 ion L9 or 23.64 uation L2 333.52 ion L15 of 54.97 3 le 5) -114.14 58.42	Jul 171.21 (L9a), al 25.54 13 or L13 314.94 or L15a) 54.97 3 -114.14	Aug 171.21 Iso see 33.2 3a), also 310.57 , also se 54.97 3 -114.14 59.87	or hot w Sep 171.21 Table 5 44.56 see Tal 321.58 ee Table 54.97 3 -114.14	ate r is fr Oct 171.21 56.57 56.57 54.97 54.97 3 3 -114.14 69.11	om com Nov 171.21 66.03 374.6 54.97 3 -114.14 76.88	Munity h	leating	 (66) (67) (68) (69) (70) (71)
inclu 5. Int Metabo (66)m= Lightin (67)m= Applian (68)m= Cookin (69)m= Pumps (70)m= Losses (70)m= Losses (71)m= Water (72)m= Total i (73)m=	ide (57)i ernal ga olic gain Jan 171.21 g gains 68.49 nces ga 420.98 ng gains 54.97 s and far 3 s e.g. ev -114.14 heating 82.71 nternal	m in calc ains (see s (Table Feb 171.21 (calculat 60.83 ins (calculat 425.35 (calculat 54.97 ns gains 3 aporatio -114.14 gains (T 80.36 gains = 681.58	Culation of the second	of (65)m 5 and 5a) ts Apr 171.21 5pendix L 37.45 6 Appendix 390.9 ppendix 54.97 5a) 3 tive value -114.14	only if c May 171.21 _, equati 28 dix L, equ 361.32 L, equat 54.97 3 es) (Tab -114.14 64.5	ylinder is Jun 171.21 ion L9 or 23.64 uation L7 333.52 ion L15 54.97 3 le 5) -114.14 58.42 (66)	Jul 171.21 r L9a), al 25.54 13 or L13 314.94 or L15a) 54.97 3 -114.14 53.25 m + (67)m	Aug 171.21 Iso see - 33.2 3a), also 310.57 , also se 54.97 3 -114.14 59.87 + (68)m +	or hot w Sep 171.21 Table 5 44.56 see Table 54.97 3 -114.14 62.22 (69)m + (ate r is fr Oct 171.21 56.57 56.57 54.97 54.97 3 -114.14 69.11 70)m + (7	om com Nov 171.21 66.03 374.6 54.97 3 -114.14 76.88 1)m + (72)	Munity h	leating	 (66) (67) (68) (69) (70) (71) (72)

Solar gains are calculated using solar flux from Table 6a and associated equations to convert to the applicable orientation.

Orientation:			Area m²	Flux Table 6a			g_ Table 6b		FF Table 6c	Gains (W)		
North 0.9	x 0.77	x	1.28	x	10.63	x	0.63	x	0.7	=	12.48	(74)
North 0.9	x 0.77	x	4.09	x	10.63	x	0.63	x	0.7	=	13.29	(74)
North 0.9	x 0.77	x	1.28	x	20.32	x	0.63	x	0.7	=	23.85	(74)
North 0.9	x 0.77	×	4.09	x	20.32	x	0.63	x	0.7	=	25.4	(74)
North 0.9	x 0.77	×	1.28	x	34.53	x	0.63	x	0.7	=	40.52	(74)
North 0.9	× 0.77	×	4.09	x	34.53	x	0.63	x	0.7	=	43.16	(74)
North 0.9	x 0.77	×	1.28	x	55.46	x	0.63	x	0.7	=	65.09	(74)
North 0.9	x 0.77	×	4.09	x	55.46	x	0.63	x	0.7	=	69.33	(74)
North 0.9	x 0.77	×	1.28	x	74.72	x	0.63	x	0.7	=	87.68	(74)
North 0.9	x 0.77	×	4.09	x	74.72	x	0.63	x	0.7	=	93.39	(74)
North 0.9	x 0.77	×	1.28	x	79.99	x	0.63	x	0.7	=	93.87	(74)
North 0.9	x 0.77	×	4.09	×	79.99	x	0.63	x	0.7	=	99.98	(74)
North 0.9	x 0.77	×	1.28	x	74.68	x	0.63	x	0.7	=	87.64	(74)
North 0.9	x 0.77	×	4.09	x	74.68	x	0.63	x	0.7	=	93.34	(74)
North 0.9	x 0.77	x	1.28	x	59.25	x	0.63	x	0.7	=	69.53	(74)
North 0.9	x 0.77	x	4.09	×	59.25	х	0.63	х	0.7	=	74.06	(74)
North 0.9	x 0.77	x	1.28	х	41.52	x	0.63	x	0.7	=	48.72	(74)
North 0.9	× 0.77	x	4.09	х	41.52	×	0.63	x	0.7	=	51.89	(74)
North 0.9	× 0.77	x	1.28	X	24.19	x	0.63	×	0.7	=	28.39	(74)
North 0.9	× 0.77	x	4.09	×	24.19	х	0.63	×	0.7	=	30.24	(74)
North 0.9	× 0.77	x	1.28	×	13.12	x	0.63	×	0.7	=	15.39	(74)
North 0.9	x 0.77	×	4.09	×	13.12	x	0.63	x	0.7	=	16.4	(74)
North 0.9	x 0.77	×	1.28	x	8.86	x	0.63	x	0.7	=	10.4	(74)
North 0.9	x 0.77	×	4.09	x	8.86	х	0.63	x	0.7	=	11.08	(74)
East 0.9	x 0.77	×	6.14	x	19.64	x	0.63	x	0.7	=	36.85	(76)
East 0.9	x 0.77	×	6.14	x	38.42	x	0.63	x	0.7	=	72.09	(76)
East 0.9	x 0.77	×	6.14	×	63.27	x	0.63	x	0.7	=	118.73	(76)
East 0.9	× 0.77	×	6.14	×	92.28	x	0.63	x	0.7	=	173.16	(76)
East 0.9	× 0.77	×	6.14	×	113.09	x	0.63	x	0.7	=	212.21	(76)
East 0.9	× 0.77	×	6.14	x	115.77	x	0.63	x	0.7	=	217.24	(76)
East 0.9	-	×	6.14	x	110.22	x	0.63	X	0.7	=	206.82	(76)
East 0.9		×	6.14	X	94.68	X	0.63	x	0.7	=	177.66	(76)
East 0.9		×	6.14	x	73.59	x	0.63	x	0.7	=	138.09	(76)
East 0.9		×	6.14	x	45.59	x	0.63	x	0.7	=	85.55	(76)
East 0.9		x	6.14	×	24.49	x	0.63	x	0.7	=	45.95	(76)
East 0.9	-	×	6.14	×	16.15	x	0.63	x	0.7	=	30.31	(76)
West 0.9		×	1.28	×	19.64	x	0.63	X	0.7	=	7.68	(80)
West 0.9		×	1.28	×	38.42	x	0.63	x	0.7	=	15.03	(80)
West 0.9	x 0.77	×	1.28	x	63.27	x	0.63	x	0.7	=	24.75	(80)

	-					-										
West	0.9x	0.77	X	1.2	28	×	9	2.28	×	0.6	3	_ × _	0.7	=	36.1	(80)
West	0.9x	0.77	x	1.2	28	×	1′	13.09	x	0.6	3	×	0.7	=	44.24	(80)
West	0.9x	0.77	x	1.2	28	x	11	15.77	x	0.6	3	×	0.7	=	45.29	(80)
West	0.9x	0.77	x	1.2	28	x	1′	10.22	×	0.6	3	x	0.7	=	43.12	(80)
West	0.9x	0.77	x	1.2	28	x	9	4.68	x	0.6	3	x	0.7	=	37.04	(80)
West	0.9x	0.77	x	1.2	28	x	7	3.59] × [0.6	3	_ x [0.7	=	28.79	(80)
West	0.9x	0.77	x	1.2	28	x	4	5.59] × [0.6	3	_ x [0.7	=	17.83	(80)
West	0.9x	0.77	x	1.2	28	x [2	4.49) × [0.6	3	x	0.7	=	9.58	(80)
West	0.9x	0.77	x	1.2	28	x	1	6.15) × [0.6	3	x	0.7	=	6.32	(80)
	_					_										
Solar g	ains in	watts, ca	alculated	for eac	h month	_			(83)m	= Sum(7	4)m	.(82)m				
(83)m=	70.31	136.37	227.17	343.68	437.53	45	6.37	430.92	358.	28 267	.49	162	87.32	58.11		(83)
Total g	ains – i	nternal a	nd sola	r (84)m =	= (73)m	+ (8	33)m	, watts	-				_			
(84)m=	757.53	817.95	881.48	955.89	1006.39	98	6.99	939.69	876.	96 810	0.9	747.75	719.88	726.31		(84)
7. Mea	an inter	nal temp	oerature	(heating	season)										
Temp	erature	during h	eating p	eriods ir	n the livi	ng a	area f	from Tab	ole 9,	Th1 (°0	C)				21	(85)
Utilisa	tion fac	tor for g	ains for	living are	ea, h1,m	i (se	е Та	ble 9a)]
_	Jan	Feb	Mar	Apr	May	Ì,	Jun	Jul	Αι	ıg S	ер	Oct	Nov	Dec		
(86)m=	1	0.99	0.98	0.92	0.77	0	.55	0.4	0.4	4 0.7	71	0.95	0.99	1		(86)
Mean	interna	l temper	ature in	living ar	ea T1 (fo		N Ste	ns 3 to 7	in T	able 9c	L					
(87)m=	20.34	20.44	20.61	20.84	20.96	1	21	21	21		-	20.82	20.55	20.33		(87)
L																
- i r	erature 20.27	during h 20.28	20.28	20.3	20.3	r	eiiing 0.32	20.32	20.3	<u> </u>	<u> </u>	20.3	20.29	20.29		(88)
(88)m=											51	20.5	20.29	20.29		(00)
г		tor for g	i	i	<u> </u>	-			ŕ							()
(89)m=	0.99	0.99	0.97	0.9	0.72	0	.49	0.34	0.3	8 0.6	65	0.93	0.99	1		(89)
Mean	interna	l temper	ature in	the rest	of dwell	ing	T2 (fo	ollow ste	eps 3	to 7 in	Table	e 9c)				
(90)m=	19.38	19.53	19.79	20.11	20.27	20	0.32	20.32	20.3	32 20	.3	20.1	19.72	19.38		(90)
											fL	A = Livir	ng area ÷ (4) =	0.31	(91)
Mean	interna	l temper	ature (fo	or the wh	ole dwe	lling	g) = fL	_A × T1	+ (1 -	– fLA) ×	: T2					
(92)m=	19.68	19.82	20.04	20.34	20.48	<u> </u>	0.53	20.53	20.5		- T	20.33	19.98	19.68		(92)
Apply	adjustr	nent to t	he mear	interna	l temper	atur	re fro	m Table	4e, \	where a	ppro	priate	•			
(93)m=	19.68	19.82	20.04	20.34	20.48	20	0.53	20.53	20.5	53 20.	51	20.33	19.98	19.68		(93)
8. Spa	ace hea	ting requ	uirement	i i												
				•		ned	at ste	ep 11 of	Table	e 9b, so	that	Ti,m=((76)m an	d re-calc	ulate	
the uti		factor fo		<u> </u>	r	-							1	1	I	
	Jan	Feb	Mar	Apr	May	<u> </u>	Jun	Jul	Αι	ıg S	ер	Oct	Nov	Dec		
Г		tor for g			0.74		54	0.00				0.00			l	(04)
(94)m=	0.99	0.99	0.97	0.9	0.74	0	.51	0.36	0.4	0.6	57	0.93	0.99	1		(94)
(95)m=	752.78	hmGm . 808.33	, VV = (9 [,] 855.18	4)m x (84 860.13	4)m 740.58	50	3.62	334.94	350.	06 541	74	693.64	709.75	722.74		(95)
, í L		age exte						554.54	550.	00 341	./4	035.04	709.75	122.14		(00)
(96)m=	4.3	4.9	6.5	8.9	11.7	1	4.6	16.6	16.	4 14	.1	10.6	7.1	4.2		(96)
L		e for mea											I			x · - /
r		1358.24	r	· · ·	770.12		, vv –	335.04	350.	<u> </u>	<u> </u>	852.71	1141.32	1386.84		(97)
() '						Ľ			L						l	· · ·

Space	e heatin	g requir	ement fo	or each n	nonth, k	Wh/mon	th = 0.02	24 x [(97)m – (95)m] x (4 ⁻	1)m			
(98)m=	487.45	369.54	276.52	106.73	21.98	0	0	0	0	118.35	310.73	494.09		_
								Tota	l per year	(kWh/year	[.]) = Sum(9	8)15,912 =	2185.4	(98)
Space	e heatin	g requir	ement in	1 kWh/m²	²/year								18.58	(99)
9a. En	ergy rec	luiremer	nts – Ind	ividual h	eating s	ystems i	ncluding	g micro-C	CHP)					
	e heatir	-			, .							i		
				econdar		ementary	system	(202) = 1 ·	(201) -				0	(201)
				nain syst main sys	. ,			$(202) = 1^{-1}$ $(204) = (2^{-1})^{-1}$		(203)] -		·	1	(202)
			0	ing syste				(204) = (2	02) ~ [1	(200)] –			1	(204)
	•			ementar		a evetor	0/_						93.7	(208)
EIIICIE	•		1	i	- I	1	i		0	0.1	NL	Du	0	
Snace	Jan A heatin	Feb	Mar	Apr alculate	May d above	Jun	Jul	Aug	Sep	Oct	Nov	Dec	kWh/yea	ar
Opact	487.45	369.54	276.52	106.73	21.98	0	0	0	0	118.35	310.73	494.09		
(211)m	n = {[(98)m x (20	1)4)] } x 1	1 100 ÷ (20		ļ	1	!			1	1		(211)
	520.22	394.39	295.11	113.91	23.46	0	0	0	0	126.3	331.62	527.31		. ,
								Tota	l (kWh/yea	ar) =Sum(2	211) _{15,1012}	=	2332.33	(211)
-		-		y), kWh/	month									
			00 ÷ (20											
(215)m=	0	0	0	0	0	0	0	0 Tota	0 I (kWh/yea	0 ar) = Sum(2)	0	0	0	(215)
Water	heating							1010		(1) -Oum(1	1	_		(210)
			ter (calc	ulated al	bove)									
	128.48	112.98	119.3	109.58	109.1	97.97	95.02	104.35	104.16	11 <mark>4.6</mark> 9	118.43	125.05		_
Efficier	ncy of w	ater hea	ater	i	-								87.2	(216)
(217)m=		89.86	89.62	88.89	87.77	87.2	87.2	87.2	87.2	88.94	89.71	89.97		(217)
			, kWh/m) ÷ (217)											
	142.84	125.73	133.12	123.27	124.31	112.35	108.96	119.67	119.45	128.95	132.02	138.99		
I								Tota	l = Sum(2	19a) ₁₁₂ =			1509.68	(219)
	I totals									k	Wh/year		kWh/year	-
Space	heating	fuel use	ed, main	system	1								2332.33	
Water	heating	fuel use	ed										1509.68	
Electric	city for p	oumps, f	ans and	electric	keep-ho	ot								
mech	anical v	entilatio	n - balar	nced, ext	ract or p	ositive i	nput fror	m outside	Э			222.74		(230a)
centra	al heatir	g pump	:									30		(230c)
boiler	with a f	an-assis	sted flue									45		(230e)
Total e	lectricity	/ for the	above,	kWh/yea	r			sum	of (230a).	(230g) =			297.74	(231)
	city for li			-									483.8](232)
		erated b	v P\/s										-259.09	(233)
	Sity Gen		y 1 V 3										-209.09	(200)

Total delivered energy for all uses (211)(221) + (2	231) + (232)(237b) =		4364.47 (338)
10a. Fuel costs - individual heating systems:			
	Fuel kWh/year	Fuel Price (Table 12)	Fuel Cost £/year
Space heating - main system 1	(211) x	3.48 × 0.01 =	81.17 (240)
Space heating - main system 2	(213) x	0 × 0.01 =	0 (241)
Space heating - secondary	(215) x	13.19 × 0.01 =	0 (242)
Water heating cost (other fuel)	(219)	3.48 × 0.01 =	52.54 (247)
Pumps, fans and electric keep-hot	(231)	13.19 × 0.01 =	39.27 (249)
(if off-peak tariff, list each of (230a) to (230g) separ- Energy for lighting	ately as applicable and a (232)	pply fuel price according to 13.19 x 0.01 =	Table 12a 63.81 (250)
Additional standing charges (Table 12)			120 (251)
	one of (233) to (235) x)	13.19 x 0.01 =	0 (252)
Appendix Q items: repeat lines (253) and (254) as a Total energy cost (245)(247)	needed + (250)(254) =		356.79 (255)
11a. SAP rating - individual heating systems			
Energy cost deflator (Table 12)			0.42 (256)
)] ÷ [(4) + 45.0] =		0.92 (257)
SAP rating (Section 12)			87.14 (258)
12a. CO2 emissions – Individual heating systems	including micro-CHP		
	Energy kWh/year	Emission factor kg CO2/kWh	Em<mark>issio</mark>ns kg CO2/year
Space heating (main system 1)	(211) x	0.216 =	503.78 (261)
Space heating (secondary)	(215) x	0.519 =	0 (263)
Water heating	(219) x	0.216 =	326.09 (264)
Space and water heating	(261) + (262) + (263) + (264) =	=	829.87 (265)
Electricity for pumps, fans and electric keep-hot	(231) x	0.519 =	154.53 (267)
Electricity for lighting	(232) x	0.519 =	251.09 (268)
Energy saving/generation technologies Item 1		0.519 =	-134.47 (269)
Total CO2, kg/year	SL	um of (265)(271) =	1101.03 (272)
CO2 emissions per m ²	(2	72) ÷ (4) =	9.36 (273)
El rating (section 14)			91 (274)
13a. Primary Energy			
	Energy kWh/year	Primary factor	P. Energy kWh/year
Space heating (main system 1)	(211) x	1.22 =	2845.45 (261)

Space heating (secondary)	(215) x	3.07	=	0	(263)
Energy for water heating	(219) x	1.22	=	1841.81	(264)
Space and water heating	(261) + (262) + (263) + (26	4) =		4687.25	(265)
Electricity for pumps, fans and electric keep-hot	(231) x	3.07	=	914.06	(267)
Electricity for lighting	(232) x	0	=	1485.28	(268)
Energy saving/generation technologies					
Item 1		3.07	=	-795.39	(269)
'Total Primary Energy		sum of (265)(271) =		6291.2	(272)
Primary energy kWh/m²/year		(272) ÷ (4) =		53.5	(273)

			User D	etails:						
Assessor Name: Software Name:	Stroma FSAP			Stroma Softwa	are Ver	sion:			n: 1.0.5.41	
	106 Poylov Poo			Address:	Unit 14	- 3B 6P	- Be Gr	een		
Address : 1. Overall dwelling dime	106 Bexley Roa	a , Entri , DA	18 355							
Ground floor			-	a(m²) 17.6	(1a) x		ight(m) 2.7	(2a) =	Volume(m ³) 317.52	(3a)
Total floor area TFA = (1a	a)+(1b)+(1c)+(1d)+	+(1e)+(1n	I) 1	17.6	(4)			-		-
Dwelling volume			·)+(3c)+(3d	l)+(3e)+	.(3n) =	317.52	(5)
2. Ventilation rate:		-		_		_				
Number of chimneys	main heating		y] + [] + [0] = [total 0		40 = 20 =	m ³ per hour	(6a)
Number of open flues	0	0] . L	0	ŢŢ	0			0	(6b)
Number of intermittent far	าร					0	x ?	10 =	0	(7a)
Number of passive vents						0	x ?	10 =	0	(7b)
Number of flueless gas fir	res					0	X 4	40 =	o anges per ho	(7c) ur
Infiltration due to chimney	s, flues and fans :	= (6a)+(6b)+(7	a)+(7b)+(1	7c) =	Г	0	<u> </u>	÷ (5) =	0	(8)
<i>If a pressurisation test has be</i> Number of storeys in th Additional infiltration Structural infiltration: 0.	en carried out or is int e dwelling (ns)	ended, proceed	d to (17), c	otherwise c		om (9) to ((16)	-1]x0.1 =	0 0 0	(9) (10) (11)
if both types of wall are pro deducting areas of openin If suspended wooden fl	gs); if equal user 0.35		-						0	_](12)
If no draught lobby, ent		,	(-,,					0	(13)
Percentage of windows									0	(14)
Window infiltration				0.25 - [0.2	x (14) ÷ 1	= [00			0	(15)
Infiltration rate				(8) + (10)	+ (11) + (1	2) + (13) -	+ (15) =		0	(16)
Air permeability value,			•	•	•	etre of e	envelope	area	4	(17)
If based on air permeabili	-								0.2	(18)
Air permeability value applies Number of sides sheltered		t has been don	e or a deg	gree air pei	rmeability	is being us	sed			
Shelter factor	u			(20) = 1 -	[0.075 x (1	9)] =			1 0.92	(19) (20)
Infiltration rate incorporati	ng shelter factor			(21) = (18)) x (20) =				0.19	(21)
Infiltration rate modified for	-	eed							0.10](=1)
r		lay Jun	Jul	Aug	Sep	Oct	Nov	Dec		
Monthly average wind spe	- I · I									
r r	4.9 4.4 4.	3 3.8	3.8	3.7	4	4.3	4.5	4.7		
Wind Factor (22a)m = (22	?)m ÷ 4								I	
(22a)m= 1.27 1.25 1	1.23 1.1 1.0	0.95	0.95	0.92	1	1.08	1.12	1.18		

Adjuste	ed infiltr	ation rat	e (allowi	ing for sh	elter an	d wind s	peed) =	(21a) x	(22a)m					
<u> </u>	0.24	0.23	0.23	0.2	0.2	0.18	0.18	0.17	0.19	0.2	0.21	0.22		
		c <i>tive air</i> al ventila	-	rate for ti	he applic	cable ca	se						0.5	(23a)
				endix N, (2	3b) = (23a) x Fmv (e	equation (N	(5)) othe	rwise (23h	(23a)			0.5	(23a) (23b)
				iency in %						<i>(</i> 200)			0.5	
			-	-	-					0h), m. i (22h) [1 (22-)	78.2	(23c)
a) II (24a)m=	0.34	0.34		entilation	0.31	0.28	0.28	0.28	0.29	0.31	230) × [0.32	0.33	- 100j]	(24a)
												0.55	l	(244)
,				entilation		neat rec		0 0	m = (22)	20)m + (0	230)	0	1	(24b)
(24b)m=	-	-			-	•	-	-		0	0	0		(240)
				ntilation c then (24c	-	-				5 x (23)	2)			
(24c)m=		0) = (200 0		0	$\frac{0}{0} = \frac{221}{2}$			0	0	1	(24c)
		_		lole hous	•	Ũ			-				l	(/
,				m = (22t)		•				0.5]				
(24d)m=	0	0	0	0	0	0	0	0	0	0	0	0		(24d)
Effe	ctive air	change	rate - er	nter (24a) or (24b) or (24	c) or (24	d) in box	(25)				1	
(25)m=	0.34	0.34	0.34	0.31	0.31	0.28	0.28	0.28	0.29	0.31	0.32	0.33		(25)
			1				1		I					
				paramete										
ELEN		Gros area		Openin m		Net Ar A ,r		U-valu W/m2		A X U (W/		k-value		A X k kJ/K
Doors						1.91	x	1		1.91				(26)
Window	ws Type	e 1				1.28		/[1/(1.2)+		1.47	Ħ			(27)
	ws Type					1.28		/[1/(1.2)+		1.47	Ħ			(27)
	ws Type							/[1/(1.2)+			4			
						4.09	=			4.68				(27)
	ws Type					6.14		/[1/(1.2)+	0.04] =	7.03	╡,			(27)
Walls 1		92.8	38	17.26	<u>}</u>	75.62	<u>2</u> X	0.16	=	12.1	_ ļ		\dashv	(29)
Walls 7	l ype2	28.3	35	0		28.35	5 X	0.15	=	4.26				(29)
Roof		117	.6	0		117.6	3 X	0.11	=	12.94				(30)
Total a	rea of e	elements	s, m²			238.8	3							(31)
Party v	vall					7.02	x	0	=	0				(32)
Party f	loor					117.6	6				[(32a)
				effective wil nternal wall			ated using	formula 1	/[(1/U-valı	ıe)+0.04] a	as given in	paragraph	1 3.2	
Fabric	heat los	ss, W/K	= S (A x	U)				(26)(30)) + (32) =				48.78	8 (33)
Heat c	apacity	Cm = S	(A x k)						((28).	(30) + (3	2) + (32a).	(32e) =	13812	2.5 (34)
Therma	al mass	parame	eter (TMF	⊃ = Cm ÷	TFA) in	⊨kJ/m²K			Indica	itive Value	: Medium		250	(35)
	-		ere the de tailed calc	etails of the ulation.	constructi	on are not	t known pr	ecisely the	e indicative	e values of	TMP in Ta	able 1f		
Therma	al bridg	es : S (L	x Y) cal	culated u	using Ap	pendix ł	<						6.63	(36)
if details	of therma	al bridging	are not kn	nown (36) =	= 0.05 x (3	1)								
Total fa	abric he	at loss							(33) +	(36) =			55.41	1 (37)

Ventila	ation hea	at loss ca	alculated	monthl	у		_		(38)m	= 0.33 × (25)m x (5)			
	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec		
(38)m=	36.14	35.65	35.17	32.74	32.26	29.84	29.84	29.35	30.81	32.26	33.23	34.2		(38)
Heat ti	ransfer o	coefficie	nt, W/K						(39)m	= (37) + (3	38)m			
(39)m=	91.55	91.06	90.58	88.16	87.67	85.25	85.25	84.76	86.22	87.67	88.64	89.61		
Heat lo	oss para	imeter (I	HLP), W	/m²K						Average = = (39)m ÷	Sum(39)₁. · (4)	12 /12=	88.04	(39)
(40)m=	0.78	0.77	0.77	0.75	0.75	0.72	0.72	0.72	0.73	0.75	0.75	0.76		
Numbe	er of day	/s in mo	nth (Tab	le 1a)			•	•	,	Average =	Sum(40)1.	12 /12=	0.75	(40)
	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec		
(41)m=	31	28	31	30	31	30	31	31	30	31	30	31		(41)
			•	•			•	•						
4. Wa	ater heat	ting ene	rgy requ	irement:								kWh/ye	ear:	
if TF if TF Annua	A > 13.9 A £ 13.9 I averag	9, N = 1 je hot wa	+ 1.76 ×	ge in litre	(-0.0003 es per da	ay Vd,av	erage =	(25 x N)	+ 36		.9)	85		(42)
					5% if the a vater use, l	-	-	to achieve	a water us	se target o	f			
	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec		
Hot wate					Vd,m = fa				000					
(44)m=	112.17	108.09	104.01	99.93	95.85	91.77	91.77	95.85	99.93	104.01	108.09	112.17		
Energy	content of	hot water	used - ca	culated me	onthly $= 4$.	190 x Vd,r	n x nm x E)) Tm / 3600			m(44) ₁₁₂ = ables 1b, 1		1223.66	(44)
(45)m=	166.34	145.48	150.13	130.88	125.59	108.37	100.42	115.24	116.61	135.9	148.35	161.09		
lf instan	taneous w	vater heati	ng at poin	t of use (no	o hot water	r storage),	enter 0 in	boxes (46		Fotal = Su	m(45) ₁₁₂ =		1604.41	(45)
	24.95	21.82	22.52	19.63	18.84	16.26	15.06	17.29	17.49	20.39	22.25	24.16		(46)
	storage		I P					111 1		1			1	(
				0 ,	olar or W		0		ame ves	sel		0	I	(47)
Otherv		o stored			velling, e ncludes i			• •	ers) ente	er '0' in (47)			
	-		eclared I	oss facto	or is kno	wn (kWł	n/day):					0		(48)
Tempe	erature f	actor fro	m Table	2b								0		(49)
			-	e, kWh/ye	ear loss fact	or is not		(48) x (49)) =			0		(50)
Hot wa	ater stora	age loss	factor f	rom Tab	le 2 (kW							0]	(51)
	•	from Ta	ee secti	on 4.3								0		(52)
			m Table	2b								0 0		(52)
				e, kWh/ye	ear			(47) x (51)) x (52) x (53) =		0		(54)
		(54) in (5	-	, , , , , , , , , , , , , , , , , , , ,				() ··· () ··· () ··· ()	/ (0		(55)
Water	storage	loss cal	culated	for each	month			((56)m = (55) × (41)ı	m	<u> </u>			
(56)m=	0	0	0	0	0	0	0	0	0	0	0	0		(56)

If cylinde	er contains	s dedicated	solar sto ^ا	rage, (57)r	n = (56)m	x [(50) – (I	H11)] ÷ (50	0), else (57	7)m = (56)	m where (H11) is fro	m Append	lix H	
(57)m=	0	0	0	0	0	0	0	0	0	0	0	0		(57)
Primar	y circuit	loss (an	nual) frc	om Table	3							0		(58)
Primar	y circuit	loss cal	culated f	for each	month (59)m = (58) ÷ 36	5 × (41)	m					
(moo	dified by	factor fr	om Tabl	le H5 if tl	here is s	olar wat	er heatir	ng and a	cylinde	r thermo	stat)			
(59)m=	0	0	0	0	0	0	0	0	0	0	0	0		(59)
Combi	loss ca	culated	for each	month (61)m = ((60) ÷ 36	5 × (41)	m						
(61)m=	24.91	22.5	24.91	24.11	24.91	24.11	24.91	24.91	24.11	24.91	24.11	24.91		(61)
Total h	eat requ	uired for	water he	eating ca	lculated	for each	ו month	(62)m =	0.85 × (45)m +	(46)m +	(57)m +	(59)m + (61)m	
(62)m=	191.26	167.99	175.04	154.99	150.5	132.48	125.34	140.15	140.72	160.81	172.46	186.01		(62)
Solar DH	HW input o	calculated	using App	endix G or	Appendix	H (negativ	/e quantity	') (enter '0'	if no sola	r contributi	on to wate	er heating)		
(add a	dditiona	l lines if	FGHRS	and/or V	VWHRS	applies,	see Ap	pendix G	G)					
(63)m=	0	0	0	0	0	0	0	0	0	0	0	0		(63)
FHRS	18.71	16.18	15.99	13.31	10.64	8.53	8.11	9.17	9.23	14.09	16.23	18.34		(63) (G2)
WWHR	5 -43.72	-38.47	-39.26	-32.3	-29.99	-24.73	-20.93	-25.34	-26.08	-32.25	-37.36	-42.26		(63) (G10)
Output	from w	ater heat	ter											
(64)m=	127.53	112.17	118.49	108.14	108.58	97.97	95.02	104.35	104.16	113.19	117.61	124.12		_
								Outp	out from wa	ater heatei	(annual)₁	12	1331.34	(64)
Hea <mark>t g</mark>	ains froi	m wat <mark>er</mark>	heating,	kWh/mc	onth 0.25	5 (0.85	× (45)m	+ (61)m] + 0.8 ×	(<mark>46)m</mark>	+ (57)m	+ (59)m]	
(65)m=	61.54	54	56.15	49.55	47.99	42.06	39.62	44.54	44.8	5 <mark>1.42</mark>	55.35	5 <mark>9.79</mark>		(65)
(/···														
				of (65)m			s in the c	dwelling	or hot w		om com	munity h	leating	
inclu	ıde (57)ı	m in calc	ulation o	LI	only if c		s in the c	dwelling	or hot w		om com	munity h	leating	
inclu 5. Int	ıde (57)ı ternal ga	m in calc	culation of Table 5	of (65)m	only if c		s in the c	dwelling	or hot w		om com	munity h	leating	
inclu 5. Int	ıde (57)ı ternal ga	m in calc ains (see	culation of Table 5	of (65)m	only if c		s in the c	dwelling	or hot w Sep		om com Nov	munity h	leating	
inclu 5. Int	ide (57)i iemal ga olic gain	m in calc ains (see s (Table	culation of Table 5	of (65)m and 5a) ts	only if c	ylinder is				ater is fr			leating	(66)
inclu 5. Int Metabo (66)m=	ide (57)i ernal ga olic gain Jan 142.68	m in calc ains (see s (Table Feb 142.68	culation of Table 5 5), Watt Mar 142.68	of (65)m 5 and 5a) ts Apr	only if c : May 142.68	ylinder is Jun 142.68	Jul 142.68	Aug 142.68	Sep 142.68	ater is fr Oct	Nov	Dec	leating	
inclu 5. Int Metabo (66)m=	ide (57)i ernal ga olic gain Jan 142.68 g gains	m in calc ains (see s (Table Feb 142.68	culation of Table 5 5), Watt Mar 142.68	of (65)m 5 and 5a) ts Apr 142.68	only if c : May 142.68	ylinder is Jun 142.68	Jul 142.68	Aug 142.68	Sep 142.68	ater is fr Oct	Nov	Dec	leating	
inclu 5. Int Metabo (66)m= Lightin (67)m=	ide (57)i ernal ga olic gain Jan 142.68 g gains 27.39	m in calc ains (see s (Table Feb 142.68 (calculat 24.33	Table 5 5), Wat Mar 142.68 ted in Ap 19.79	of (65)m and 5a) ts Apr 142.68 opendix L	May 142.68 L, equati 11.2	Jun 142.68 on L9 or 9.45	Jul 142.68 r L9a), al 10.22	Aug 142.68 Iso see 13.28	Sep 142.68 Table 5 17.82	Oct 142.68 22.63	Nov 142.68	Dec 142.68	leating	(66)
inclu 5. Int Metabo (66)m= Lightin (67)m=	ide (57)i ernal ga olic gain Jan 142.68 g gains 27.39 nces ga	m in calc ains (see s (Table Feb 142.68 (calculat 24.33	Table 5 5), Wat Mar 142.68 ted in Ap 19.79	of (65)m 5 and 5a) ts Apr 142.68 5pendix L 14.98	May 142.68 L, equati 11.2	Jun 142.68 on L9 or 9.45	Jul 142.68 r L9a), al 10.22	Aug 142.68 Iso see 13.28	Sep 142.68 Table 5 17.82	Oct 142.68 22.63	Nov 142.68	Dec 142.68	leating	(66)
inclu 5. Int Metabo (66)m= Lightin (67)m= Applian (68)m=	ide (57)i ernal ga olic gain Jan 142.68 g gains 27.39 nces ga 282.05	m in calc ains (see s (Table Feb 142.68 (calculat 24.33 ins (calc 284.98	culation of Table 5 5), Watt Mar 142.68 ted in Ap 19.79 ulated in 277.61	of (65)m and 5a) ts Apr 142.68 ppendix L 14.98 Append	only if c : May 142.68 L, equati 11.2 dix L, equ 242.08	ylinder is Jun 142.68 fon L9 or 9.45 uation L ¹ 223.46	Jul 142.68 142.68 10.22 13 or L13 211.01	Aug 142.68 Iso see ⁻ 13.28 3a), also 208.08	Sep 142.68 Table 5 17.82 see Tal 215.46	ater is fr Oct 142.68 22.63 ble 5 231.16	Nov 142.68 26.41	Dec 142.68 28.16	leating	(66) (67)
inclu 5. Int Metabo (66)m= Lightin (67)m= Applian (68)m=	ide (57)i ernal ga olic gain Jan 142.68 g gains 27.39 nces ga 282.05	m in calc ains (see s (Table Feb 142.68 (calculat 24.33 ins (calc 284.98	culation of Table 5 5), Watt Mar 142.68 ted in Ap 19.79 ulated in 277.61	of (65)m and 5a) ts Apr 142.68 ppendix L 14.98 Append 261.9	only if c : May 142.68 L, equati 11.2 dix L, equ 242.08	ylinder is Jun 142.68 fon L9 or 9.45 uation L ¹ 223.46	Jul 142.68 142.68 10.22 13 or L13 211.01	Aug 142.68 Iso see ⁻ 13.28 3a), also 208.08	Sep 142.68 Table 5 17.82 see Tal 215.46	ater is fr Oct 142.68 22.63 ble 5 231.16	Nov 142.68 26.41	Dec 142.68 28.16	leating	(66) (67)
inclu 5. Int Metabo (66)m= Lightin (67)m= Applian (68)m= Cookin (69)m=	ide (57)i ernal ga olic gain Jan 142.68 g gains 27.39 nces ga 282.05 ng gains 37.27	m in calc ains (see s (Table Feb 142.68 (calculat 24.33 ins (calcu 284.98 (calcula	culation of Table 5 5), Watt Mar 142.68 ted in Ap 19.79 ulated in 277.61 ted in Ap 37.27	of (65)m and 5a) ts Apr 142.68 opendix L 14.98 Append 261.9 opendix 37.27	May 142.68 L, equati 11.2 dix L, equ 242.08 L, equat	ylinder is Jun 142.68 on L9 or 9.45 uation L1 223.46 ion L15	Jul 142.68 r L9a), al 10.22 13 or L13 211.01 or L15a)	Aug 142.68 Iso see 13.28 3a), also 208.08 , also se	Sep 142.68 Table 5 17.82 see Tal 215.46 ee Table	ater is fr Oct 142.68 22.63 ble 5 231.16 5	Nov 142.68 26.41 250.98	Dec 142.68 28.16 269.61	leating	(66) (67) (68)
inclu 5. Int Metabo (66)m= Lightin (67)m= Applian (68)m= Cookin (69)m=	ide (57)i ernal ga olic gain Jan 142.68 g gains 27.39 nces ga 282.05 ng gains 37.27	m in calc ains (see s (Table Feb 142.68 (calculat 24.33 ins (calculat 284.98 (calcula 37.27	culation of Table 5 5), Watt Mar 142.68 ted in Ap 19.79 ulated in 277.61 ted in Ap 37.27	of (65)m and 5a) ts Apr 142.68 opendix L 14.98 Append 261.9 opendix 37.27	May 142.68 L, equati 11.2 dix L, equ 242.08 L, equat	ylinder is Jun 142.68 on L9 or 9.45 uation L1 223.46 ion L15	Jul 142.68 r L9a), al 10.22 13 or L13 211.01 or L15a)	Aug 142.68 Iso see 13.28 3a), also 208.08 , also se	Sep 142.68 Table 5 17.82 see Tal 215.46 ee Table	ater is fr Oct 142.68 22.63 ble 5 231.16 5	Nov 142.68 26.41 250.98	Dec 142.68 28.16 269.61	leating	(66) (67) (68)
inclu 5. Int Metabo (66)m= Lightin (67)m= Applian (68)m= Cookin (69)m= Pumps (70)m=	ide (57)i ernal ga olic gain Jan 142.68 g gains 27.39 nces ga 282.05 ng gains 37.27 s and far 3	m in calc ains (see s (Table Feb 142.68 (calculat 24.33 ins (calculat 284.98 (calcula 37.27 ns gains 3	Culation of Table 5 5), Watt Mar 142.68 ted in Ap 19.79 ulated in 277.61 ted in Ap 37.27 (Table 5 3	of (65)m 5 and 5a) ts Apr 142.68 ppendix L 14.98 Appendix 261.9 ppendix 37.27 5a)	Only if c May 142.68 L, equati 11.2 Jix L, equ 242.08 L, equati 37.27	ylinder is Jun 142.68 ion L9 or 9.45 uation L1 223.46 ion L15 o 37.27	Jul 142.68 129a), a 10.22 13 or L13 211.01 or L15a) 37.27	Aug 142.68 Iso see - 13.28 3a), also 208.08 , also se 37.27	Sep 142.68 Table 5 17.82 see Tal 215.46 ee Table 37.27	ater is fr Oct 142.68 22.63 ble 5 231.16 5 37.27	Nov 142.68 26.41 250.98 37.27	Dec 142.68 28.16 269.61 37.27	leating	(66) (67) (68) (69)
inclu 5. Int Metabo (66)m= Lightin (67)m= Applian (68)m= Cookin (69)m= Pumps (70)m= Losses	ide (57)i ernal ga olic gain Jan 142.68 g gains 27.39 nces ga 282.05 ng gains 37.27 s and far 3 s e.g. ev	m in calc ains (see s (Table Feb 142.68 (calculat 24.33 ins (calculat 284.98 (calcula 37.27 ns gains 3	culation of Table 5 5), Watt Mar 142.68 ted in Ap 19.79 ulated in Ap 277.61 ted in Ap 37.27 (Table 5 3 n (negat	of (65)m and 5a) ts Apr 142.68 ppendix L 14.98 Appendix 261.9 ppendix 37.27 5a) 3	Only if c May 142.68 L, equati 11.2 Jix L, equ 242.08 L, equati 37.27	ylinder is Jun 142.68 fon L9 or 9.45 uation L1 223.46 ion L15 o 37.27 3 le 5)	Jul 142.68 129a), a 10.22 13 or L13 211.01 or L15a) 37.27	Aug 142.68 Iso see - 13.28 3a), also 208.08 , also se 37.27	Sep 142.68 Table 5 17.82 see Tal 215.46 ee Table 37.27	ater is fr Oct 142.68 22.63 ble 5 231.16 5 37.27	Nov 142.68 26.41 250.98 37.27	Dec 142.68 28.16 269.61 37.27	leating	(66) (67) (68) (69)
inclu 5. Int Metabo (66)m= Lightin (67)m= Applian (68)m= Cookir (69)m= Pumps (70)m= Losses (71)m=	ide (57)i ernal ga olic gain Jan 142.68 g gains 27.39 nces ga 282.05 ng gains 37.27 and far 3 s e.g. ev -114.14	m in calc ains (see s (Table Feb 142.68 (calculat 24.33 ins (calculat 284.98 (calcula 37.27 ns gains 3 aporatio	culation of Table 5 5), Watt Mar 142.68 ted in Ap 19.79 ulated in 277.61 ted in Ap 37.27 (Table 5 3 n (negat -114.14	of (65)m and 5a) ts Apr 142.68 ppendix L 14.98 Appendix 261.9 ppendix 37.27 5a) 3	only if c May 142.68 1, equati 11.2 dix L, equ 242.08 L, equati 37.27 3 es) (Tab	ylinder is Jun 142.68 fon L9 or 9.45 uation L1 223.46 ion L15 o 37.27 3 le 5)	Jul 142.68 142.68 10.22 13 or L13 211.01 or L15a) 37.27 3	Aug 142.68 Iso see 7 13.28 3a), also 208.08 1, also se 37.27 3	Sep 142.68 Table 5 17.82 see Tal 215.46 ee Table 37.27 3	ate r is fr Oct 142.68 22.63 ble 5 231.16 5 37.27 3	Nov 142.68 26.41 250.98 37.27 3	Dec 142.68 28.16 269.61 37.27 3	leating	(66) (67) (68) (69) (70)
inclu 5. Int Metabo (66)m= Lightin (67)m= Applian (68)m= Cookir (69)m= Pumps (70)m= Losses (71)m=	ide (57)i ernal ga olic gain Jan 142.68 g gains 27.39 nces ga 282.05 ng gains 37.27 and far 3 s e.g. ev -114.14	m in calc ains (see s (Table Feb 142.68 (calculat 24.33 ins (calculat 284.98 (calcula 37.27 ns gains 3 aporatio -114.14	culation of Table 5 5), Watt Mar 142.68 ted in Ap 19.79 ulated in 277.61 ted in Ap 37.27 (Table 5 3 n (negat -114.14	of (65)m and 5a) ts Apr 142.68 ppendix L 14.98 Appendix 261.9 ppendix 37.27 5a) 3	only if c May 142.68 1, equati 11.2 dix L, equ 242.08 L, equati 37.27 3 es) (Tab	ylinder is Jun 142.68 fon L9 or 9.45 uation L1 223.46 ion L15 o 37.27 3 le 5)	Jul 142.68 142.68 10.22 13 or L13 211.01 or L15a) 37.27 3	Aug 142.68 Iso see 7 13.28 3a), also 208.08 1, also se 37.27 3	Sep 142.68 Table 5 17.82 see Tal 215.46 ee Table 37.27 3	ate r is fr Oct 142.68 22.63 ble 5 231.16 5 37.27 3	Nov 142.68 26.41 250.98 37.27 3	Dec 142.68 28.16 269.61 37.27 3	leating	(66) (67) (68) (69) (70)
inclu 5. Int Metabo (66)m= Lightin (67)m= Applian (68)m= Cookin (69)m= Pumps (70)m= Losses (71)m= Water (72)m=	ide (57)i ernal ga olic gain Jan 142.68 g gains 27.39 nces gai 282.05 ng gains 37.27 s and far 3 s e.g. ev -114.14 heating 82.71	m in calc ains (see s (Table Feb 142.68 (calculat 24.33 ins (calculat 284.98 (calcula 37.27 ns gains 3 aporatio -114.14 gains (T	culation of Table 5 5), Watt Mar 142.68 ted in Ap 19.79 ulated in Ap 277.61 ted in Ap 37.27 (Table 5 3 n (negat -114.14 able 5) 75.46	of (65)m and 5a) ts Apr 142.68 opendix L 14.98 Appendix 261.9 opendix 37.27 5a) 3 tive value -114.14	only if c May 142.68 L, equati 11.2 Jix L, equ 242.08 L, equati 37.27 3 es) (Tab -114.14	ylinder is Jun 142.68 on L9 or 9.45 uation L1 223.46 ion L15 o 37.27 3 le 5) -114.14 58.42	Jul 142.68 L9a), a 10.22 13 or L13 211.01 or L15a) 37.27 3 -114.14	Aug 142.68 lso see 7 13.28 3a), also 208.08 0, also se 37.27 3 -114.14 59.87	Sep 142.68 Table 5 17.82 see Tal 215.46 ee Table 37.27 3 -114.14	ate r is fr Oct 142.68 22.63 ble 5 231.16 5 37.27 3 -114.14 69.11	Nov 142.68 26.41 250.98 37.27 3 -114.14 76.88	Dec 142.68 28.16 269.61 37.27 3 -114.14 80.37	leating	 (66) (67) (68) (69) (70) (71)
inclu 5. Int Metabo (66)m= Lightin (67)m= Applian (68)m= Cookin (69)m= Pumps (70)m= Losses (71)m= Water (72)m=	ide (57)i ernal ga olic gain Jan 142.68 g gains 27.39 nces gai 282.05 ng gains 37.27 s and far 3 s e.g. ev -114.14 heating 82.71	m in calc ains (see s (Table Feb 142.68 (calculat 24.33 ins (calculat 37.27 ns gains 3 aporatio -114.14 gains (T 80.36	culation of Table 5 5), Watt Mar 142.68 ted in Ap 19.79 ulated in Ap 277.61 ted in Ap 37.27 (Table 5 3 n (negat -114.14 able 5) 75.46	of (65)m and 5a) ts Apr 142.68 opendix L 14.98 Appendix 261.9 opendix 37.27 5a) 3 tive value -114.14	only if c May 142.68 L, equati 11.2 Jix L, equ 242.08 L, equati 37.27 3 es) (Tab -114.14	ylinder is Jun 142.68 on L9 or 9.45 uation L1 223.46 ion L15 o 37.27 3 le 5) -114.14 58.42	Jul 142.68 129a), al 10.22 13 or L13 211.01 or L15a) 37.27 3 -114.14	Aug 142.68 lso see 7 13.28 3a), also 208.08 0, also se 37.27 3 -114.14 59.87	Sep 142.68 Table 5 17.82 see Tal 215.46 ee Table 37.27 3 -114.14	ate r is fr Oct 142.68 22.63 ble 5 231.16 5 37.27 3 -114.14 69.11	Nov 142.68 26.41 250.98 37.27 3 -114.14 76.88	Dec 142.68 28.16 269.61 37.27 3 -114.14 80.37	leating	 (66) (67) (68) (69) (70) (71)
inclu 5. Int Metabo (66)m= Lightin (67)m= Applian (68)m= Cookin (69)m= Pumps (70)m= Losses (70)m= Usses (71)m= Water (72)m= Total i (73)m=	ide (57)i iernal ga gain Jan 142.68 g gains 27.39 nces ga 282.05 ng gains 37.27 s and far 3 s e.g. ev -114.14 heating 82.71 nternal 142.68	m in calc ains (see s (Table Feb 142.68 (calculat 24.33 ins (calculat 284.98 (calculat 37.27 ns gains 3 aporatio -114.14 gains (T 80.36 gains = 458.47	Culation of Table 5 5), Watter Mar 142.68 ted in Ap 19.79 ulated in 277.61 ted in Ap 37.27 (Table 5 3 n (negat -114.14 table 5) 75.46	of (65)m 5 and 5a) ts Apr 142.68 opendix L 14.98 o Appendix 261.9 opendix 37.27 5a) 3 tive value -114.14	only if c may 142.68 _, equati 11.2 dix L, equ 242.08 L, equat 37.27 3 es) (Tab -114.14 64.5	ylinder is Jun 142.68 fon L9 or 9.45 uation L1 223.46 ion L15 o 37.27 3 le 5) -114.14 58.42 (66)	Jul 142.68 • L9a), a 10.22 13 or L13 211.01 or L15a) 37.27 3 -114.14 53.25 m + (67)m	Aug 142.68 Iso see 13.28 3a), also 208.08 37.27 3 -114.14 59.87 + (68)m +	Sep 142.68 Table 5 17.82 See Tal 215.46 ee Table 37.27 3 -114.14	ate r is fr Oct 142.68 22.63 ble 5 231.16 5 37.27 3 -114.14 69.11 70)m + (7	Nov 142.68 26.41 250.98 37.27 3 -114.14 76.88 1)m + (72)	Dec 142.68 28.16 269.61 37.27 3 -114.14 80.37 m		 (66) (67) (68) (69) (70) (71) (72)

Solar gains are calculated using solar flux from Table 6a and associated equations to convert to the applicable orientation.

Orientati	on:	Access Factor Table 6d	r	Area m²		Flux Table 6a		g_ Table 6b		FF Table 6c		Gains (W)	
North	0.9x	0.77	x	1.28	×	10.63	×	0.63	x	0.7	=	12.48	(74)
North	0.9x	0.77	x	4.09	x	10.63	x	0.63	x	0.7	=	13.29	(74)
North	0.9x	0.77	x	1.28	x	20.32	x	0.63	x	0.7	=	23.85	(74)
North	0.9x	0.77	x	4.09	x	20.32	×	0.63	x	0.7	=	25.4	(74)
North	0.9x	0.77	x	1.28	x	34.53	x	0.63	x	0.7	=	40.52	(74)
North	0.9x	0.77	x	4.09	x	34.53	x	0.63	x	0.7	=	43.16	(74)
North	0.9x	0.77	x	1.28	x	55.46	x	0.63	x	0.7	=	65.09	(74)
North	0.9x	0.77	x	4.09	x	55.46	×	0.63	x	0.7	=	69.33	(74)
North	0.9x	0.77	x	1.28	x	74.72	×	0.63	x	0.7	=	87.68	(74)
North	0.9x	0.77	x	4.09	x	74.72	x	0.63	x	0.7	=	93.39	(74)
North	0.9x	0.77	x	1.28	x	79.99	×	0.63	x	0.7	=	93.87	(74)
North	0.9x	0.77	x	4.09	x	79.99	×	0.63	x	0.7	=	99.98	(74)
North	0.9x	0.77	x	1.28	x	74.68	x	0.63	x	0.7	=	87.64	(74)
North	0.9x	0.77	x	4.09	x	74.68	x	0.63	x	0.7	=	93.34	(74)
North	0.9x	0.77	x	1.28	x	59.25	x	0.63	x	0.7	=	69.53	(74)
North	0.9x	0.77	x	4.09	×	59.25	x	0.63	х	0.7	=	74.06	(74)
North	0.9x	0.77	x	1.28	x	41.52	x	0.63	x	0.7	=	48.72	(74)
North	0.9x	0.77	x	4.09	x	41.52	×	0.63	×	0.7	=	51.89	(74)
North	0.9x	0.77	x	1.28	X	24.19	×	0.63	×	0.7	=	28.39	(74)
North	0.9x	0.77	x	4.09	×	24.19	х	0.63	×	0.7	=	30.24	(74)
North	0.9x	0.77	x	1.28	×	13.12	×	0.63	×	0.7	=	15.39	(74)
North	0.9x	0.77	x	4.09	×	13.12	×	0.63	x	0.7	=	16.4	(74)
North	0.9x	0.77	x	1.28	x	8.86	x	0.63	x	0.7	=	10.4	(74)
North	0.9x	0.77	x	4.09	x	8.86	×	0.63	x	0.7	=	11.08	(74)
East	0.9x	-	x	6.14	x	19.64	x	0.63	x	0.7	=	36.85	(76)
East	0.9x		x	6.14	×	38.42	×	0.63	x	0.7	=	72.09	(76)
East	0.9x		x	6.14	x	63.27	×	0.63	x	0.7	=	118.73	(76)
East	0.9x		x	6.14	x	92.28	×	0.63	x	0.7	=	173.16	(76)
East	0.9x		x	6.14	x	113.09	×	0.63	x	0.7	=	212.21	(76)
East	0.9x		x	6.14	x	115.77	X	0.63	X	0.7	=	217.24	(76)
East	0.9x	-	x	6.14	×	110.22	×	0.63	x	0.7	=	206.82	(76)
East	0.9x		x	6.14	X	94.68	×	0.63	X	0.7	=	177.66	(76)
East	0.9x		x	6.14	X	73.59	×	0.63	x	0.7	=	138.09	(76)
East	0.9x		x	6.14	×	45.59	×	0.63	x	0.7	=	85.55	(76)
East	0.9x		X	6.14	×	24.49	×	0.63	x	0.7	=	45.95	(76)
East	0.9x		X	6.14	×	16.15	×	0.63	x	0.7	=	30.31	(76)
West	0.9x		X	1.28	×	19.64	×	0.63	x	0.7	=	7.68	(80)
West	0.9x		X	1.28	×	38.42	×	0.63	x	0.7	=	15.03	(80)
West	0.9x	0.77	X	1.28	x	63.27	x	0.63	x	0.7	=	24.75	(80)

	г															
West	0.9x	0.77	X	1.2	28	×	9	2.28	X	0	0.63		0.7	=	36.1	(80)
West	0.9x	0.77	x	1.2	28	×	1′	13.09	x	0	0.63	_ × [0.7	=	44.24	(80)
West	0.9x	0.77	x	1.2	28	x	11	15.77	x	0	0.63	×	0.7	=	45.29	(80)
West	0.9x	0.77	x	1.2	28	×	11	10.22	x	C	0.63	×	0.7	=	43.12	(80)
West	0.9x	0.77	x	1.2	28	×	9	4.68	x	C	0.63	×	0.7	=	37.04	(80)
West	0.9x	0.77	x	1.2	28	x	7	3.59	x	C	0.63	×	0.7	=	28.79	(80)
West	0.9x	0.77	x	1.2	28	x	4	5.59	x	0	0.63	×	0.7	=	17.83	(80)
West	0.9x	0.77	x	1.2	28	x	2	4.49	x	0	0.63	×	0.7	=	9.58	(80)
West	0.9x	0.77	x	1.2	28	x [1	6.15	x	0	0.63	x	0.7	=	6.32	(80)
т		· · · ·	r	for eac		<u> </u>			<u> </u>	-	n(74)m .		1		1	
(83)m=	70.31	136.37	227.17	343.68	437.53		56.37	430.92	358	.28 2	267.49	162	87.32	58.11		(83)
ŗ		i	1	r (84)m =	· ,	È							540.4	505.04	1	(0.4)
(84)m=	531.27	594.85	668.83	758.18	824.11	8	16.5	774.2	708	.31	631.8	553.7	510.4	505.04		(84)
				(heating		<i>,</i>									-	
•		•	• •	periods ir		-			ole 9,	Th1	(°C)				21	(85)
Utilisa r	tion fac	<u> </u>	1	living are	1	(se	ee Ta	,	1				-i	1	1	
-	Jan	Feb	Mar	Apr	May		Jun	Jul		ug	Sep	Oct	Nov	Dec		
(86)m=	1	1	1	0.97	0.87	0).66	0.48	0.5	5	0.85	0.99	1	1		(86)
Me <mark>an</mark>	interna	l temp <mark>e</mark> r	ature in	living are	ea T1 (fo	ollo	w ste	ps 3 to 7	' in T	able	9c)					
(87)m=	<mark>2</mark> 0.15	20.25	20.44	20.72	20.92	2	0.99	21	2'	1	20.95	20.69	20.38	20.14		(87)
Temp	erature	during h	neating p	periods in	n rest of	dw	elling	from Ta	ble 9), Th2	2 (°C)					
(88)m=	2 <mark>0.27</mark>	20.28	20.28	20.3	20.3	2	0.32	20.32	20.	32 :	20.31	20.3	20.29	20.29		(88)
Utilisa	tion fac	tor for g	ains for	rest of d	welling,	h2,	m (se	e Table	9a)							
(89)m=	1	1	0.99	0.96	0.84).59	0.41	0.4	7	0.8	0.98	1	1		(89)
Mean	interna	I temper	ature in	the rest	of dwelli	ina	T2 (fc	ollow ste	eps 3	to 7 i	n Tabl	e 9c)				
(90)m=	19.1	19.26	19.55	19.95	20.22	<u> </u>	0.31	20.32	20.3		20.27	19.91	19.46	19.11		(90)
L		1								I	f	LA = Livi	ng area ÷ (·	4) =	0.31	(91)
Mean	interna	l tomnor	atura (fr	or the wh	olo dwo	lling	a) – fl	Δ 🗸 Τ1	⊥ (1	fΙ_Δ`) v T2					
(92)m=	19.43	19.57	19.83	20.19	20.44	<u> </u>	9) — II 0.52	20.53	20.		20.48	20.15	19.75	19.43		(92)
Ľ				n internal]	
(93)m=	19.43	19.57	19.83	20.19	20.44	_	0.52	20.53	20.		20.48	20.15	19.75	19.43		(93)
8. Spa	ace hea	ting requ	uiremen	t					I							
Set Ti	to the	mean int	ernal te	mperatu	re obtair	ned	at ste	ep 11 of	Tabl	e 9b,	so that	t Ti,m=	(76)m an	d re-calo	culate	
the uti	lisation	1		using Ta	able 9a										1	
L	Jan	Feb	Mar	Apr	May		Jun	Jul	A	ug	Sep	Oct	Nov	Dec		
г		tor for g	· · · · · ·	1				0.40							1	(04)
(94)m=	1	1	0.99	0.96	0.84).61	0.43	0.4	9	0.81	0.98	1	1		(94)
(95)m=	530.85	593.68	, VV = (9 664.03	4)m x (8 729.43	695.29	40	99.36	334.62	349	27 5	512.39	543.89	509.39	504.76	1	(95)
L				perature				007.02	J	<u> </u>		0-10.09	000.00	007.70	l	(00)
(96)m=	4.3	4.9	6.5	8.9	11.7	1	4.6	16.6	16.	.4	14.1	10.6	7.1	4.2		(96)
L				al tempe									1	I	I	
		1335.95	r	r	765.86	<u> </u>	, 505	335.01	350	<u> </u>	550.21	837.63	1120.98	1364.59		(97)
L		Į	!	!	<u>I</u>									I	1	

Space neatil	ig require		r each n	nonth, K	wn/mon	tn = 0.02	24 x [(97)m – (95	<u>)mj x (4</u>	r)m			
(98)m= 635.39	498.81	403.96	191.36	52.5	0	0	0	0	218.54	440.35	639.71		_
							Tota	l per year	(kWh/year) = Sum(9	8)15,912 =	3080.61	(98)
Space heating	ng require	ement in	ı kWh/m²	²/year								26.2	(99)
9a. Energy re	quiremer	nts – Ind	ividual h	eating s	ystems i	ncluding	g micro-C	CHP)					
Space heati	-	t from o	aaandar	v/ounnio	monton	ovetem							
Fraction of s					ementary	•	(202) = 1 ·	_ (201) _				0	(201)
Fraction of s			-				$(202) = 1^{-1}$ (204) = (2)		(203)] -			1	(202)
Efficiency of		0					(204) = (2	02) ~ [1	(200)] =			1	(204)
Efficiency of					a system	n %						93.7 0	(208)
	1	· · ·	 	I		<u> </u>	<u> </u>	San	Oct	Nov	Dee	1	
Jan Space heatir	Feb	Mar ement (c	Apr alculate	May d above	Jun	Jul	Aug	Sep	Oct	Nov	Dec	kWh/ye	ar
635.39	498.81	403.96	191.36	52.5	0	0	0	0	218.54	440.35	639.71		
(211)m = {[(98	3)m x (20)4)]}x1	1 00 ÷ (20)6)	1	1	<u> </u>]	(211)
678.11	532.35	431.12	204.23	56.03	0	0	0	0	233.24	469.95	682.73		
							Tota	l (kWh/yea	ar) =Sum(2	2 11) _{15,1012}	=	3287.74	(211)
Sp <mark>ace h</mark> eatir	-			month									
$= \{[(98)m \times (2)]$	T		<u> </u>										
(215)m= 0	0	0	0	0	0	0	0 Tota	0 L (kWh/ve	0 ar) =Sum(2	0	0	0	(215)
Water heatin	a						TOTO			10715,1012	2	0	
Output from v	-	ter (calc	ulated a	bove)									
	112.17	118.49	108.14	108.58	97.97	95.02	104.35	104.16	11 <mark>3.19</mark>	117.61	124.12		
Efficiency of v	vater hea	ater		-		-						87.2	(216)
(217)m= 90.1	90.04	89.88	89.4	88.31	87.2	87.2	87.2	87.2	89.47	89.94	90.11		(217)
Fuel for water $(219)m = (64)$													
(219)m = 141.55		131.83	120.96	122.96	112.35	108.96	119.67	119.45	126.51	130.77	137.74		
							Tota	I = Sum(2	19a) ₁₁₂ =			1497.33	(219)
Annual totals									k	Wh/year		kWh/yea	r
Space heating	g fuel use	ed, main	system	1								3287.74	
Water heating	g fuel use	d										1497.33	
Electricity for	pumps, f	ans and	electric	keep-ho	t								
mechanical	ventilatio	n - balar	nced, ext	ract or p	ositive i	nput fror	n outside	Ð			222.74		(230a)
central heati	ng pump	:									30		(230c)
boiler with a	fan-assis	sted flue									45		(230e)
Total electrici	ty for the	above,	kWh/yea	ır			sum	of (230a).	(230g) =			297.74	(231)
Electricity for	lighting											483.8	(232)
Electricity ger	nerated b	y PVs										-259.09	(233)

Total delivered energy for all uses (211)(221) + (2	5307.53 (338)		
12a. CO2 emissions – Individual heating systems	including micro-CHP		
	Energy kWh/year	Emission factor kg CO2/kWh	Emissions kg CO2/year
Space heating (main system 1)	(211) x	0.216 =	710.15 (261)
Space heating (secondary)	(215) x	0.519 =	0 (263)
Water heating	(219) x	0.216 =	323.42 (264)
Space and water heating	(261) + (262) + (263) + (264) =		1033.57 (265)
Electricity for pumps, fans and electric keep-hot	(231) x	0.519 =	154.53 (267)
Electricity for lighting	(232) x	0.519 =	251.09 (268)
Energy saving/generation technologies Item 1		0.519 =	-134.47 (269)
Total CO2, kg/year	sum	of (265)(271) =	1304.73 (272)
Dwelling CO2 Emission Rate	(272)) ÷ (4) =	11.09 (273)
El rating (section 14)			89 (274)

SAP 2012 Overheating Assessment

Calculated by Stroma FSAP 2012 program, produced and printed on 15 July 2021

Property Details: Unit 14 - 3B 6P - Be Green

Dwelling type:	Flat	
Located in:	England	
Region:	South East England	
Cross ventilation possible:	Yes	
Number of storeys:	1	
Front of dwelling faces:	South	
Overshading:	Average or unknown	
Overhangs:	None	
Thermal mass parameter:	Indicative Value Medium	
Night ventilation:	False	
Blinds, curtains, shutters:	None	
Ventilation rate during hot weather (ach):	3 (Windows open half the time)	
Overheating Details:		
Summer ventilation heat loss coefficient:	314.34	(P1)

Summer ventuation near 1055 coefficient.	314.34	(FI)
Transmission heat loss coefficient:	55.4	
Summer heat loss coefficient:	369.76	(P2)

-(1)	Δr	nai	വശ	с÷.
0.		nai	IQ.	

Orientation:Ratio:West (West Window)0North (North Window)0North (North Window 2)0East (East Window)East (East Window)0Solar shading:Orientation:Z blinds:West (West Window)1North (North Window)1North (North Window)1North (North Window 2)1	Z_overhangs: 1 1 1 1 1 1 Solar access: 0.9 0.9 0.9 0.9 0.9	1 1 1	overhangs:	Z summer: 0.9 0.9 0.9	(P8 (P8 (P8	5) 5)
East (East Window) 1	0.9	1		0.9	(P8	5)
Solar gains:						
Orientation Ar	ea Flux	g_	FF	Shading	Gains	
West (West Window) 0.9 x 1.2	124.8	0.63	0.7	0.9	57.06	
North (North Window) 0.9 x 3.8	86.66	0.63	0.7	0.9	118.87	
North (North Window 2)0.9 x 4.0	9 86.66	0.63	0.7	0.9	126.61	
East (East Window) 0.9 x 6.7	14 124.8	0.63	0.7	0.9	273.71	
				Total	576.25 (P3	5/P4)
Internal gains:						
			June	July	August	
Internal gains			527.61	505.78	515.69	
Total summer gains			1144.62	1082.03	1000.58 (P5	
Summer gain/loss ratio	(Cauth Fast Franks	-1)	3.1	2.93	2.71 (P6	9
Mean summer external temperature		u)	15.4	17.4	17.5	
Thermal mass temperature incremer Threshold temperature	IL		0.25 18.75	0.25 20.58	0.25 20.46 (P7	n
Likelihood of high internal temper	ature		Not significant	Slight	Not signific	•

SAP 2012 Overheating Assessment

Assessment of likelihood of high internal temperature:

<u>Slight</u>

