ACRA Conculting	Project		Job Ref.					
ACKA COnsulting	2	Main Street Ne	wsholme, Howd	en	SA-HOWD100			
Civil & Structural Engineer's	Section				Sheet no./rev.			
^		Soakaw	ay Report		REV A			
AEB ARCHITECTURE & DESIGN LTD	Calc. by	Date	Chk'd by	Date	App'd by	Date		
	JHC	16/07/2019	HB	17/07/2019	JHC	17/07/2019		

CONTENTS

- 1. Brief
- 2. Test Methodology
- 3. Trial Pit Information
- 4. Test Results
- 5. Conclusion

ACDA Consulting	Project		Job Ref.					
ACKA COnsulting	2	Main Street Ne	wsholme, Howd	len	SA-HOWD100			
Civil & Structural Engineer's	Section			Sheet no./rev.				
A		Soakaw	ay Report		REV A			
AEB ARCHITECTURE & DESIGN LTD	Calc. by	Date	Chk'd by	Date	App'd by	Date		
	JHC	16/07/2019	HB	17/07/2019	JHC	17/07/2019		

1.0 Brief

ACRA Consulting has been requested by Howard Bruce of AEB Architecture Design Ltd to interpolate and comment on soakaway test data recorded by AEB Architecture Design Ltd.

2.0 Test Methodology

Testing was to be conducted in accordance with BRE365 as industry standard, the testing was conducted 2 times.

3.0 Trial Pit Information

Trial pits were excavated using a JCB. The final test pit dimension where – 0.6m Wide x 1.0m Long x 1.0m Deep.

4.0 Test Results

Infiltration tests were undertaken on the proposed site with the following results,

AEB ARCHITECTURE & DESIGN LTD				-		2 Main Street Newsholme	2 Main Street Newsholme, Howden								
		201011210					,			HOW	/D-100				
ACRA Co	nsulting		Section							Sheet No/	Rev				
Civil & Struct	tural Engineer's			-		Soakaway Test				1 OF 1					
			Calc by		Date		Chk'd by		Date	App'd by	Date				
			L	IHC		16.07.19									
				-											
		Width	Breath			75% Depth	0.55	9							
	Excavation	0.600	1.0			50% Depth	0.37	3							
	Dimension	0.000	1.0			25% Depth	0.18	6							
				A	1.000										
				-		Volume 75%-25%	0.22	4							
				-		Wetted 50%	1.79	2							
				-		Time 75%-25% (mins)	518.2	61							
	IL			В	0.745										
						f per min (m)	0.00	1							
						Time 75% (mins)	777.3	91							
						Time 25% (mins)	259.1	30							
				С	0.000	Soil Infiltration f	0.014439	m/hr							
lest 1	Time	Mins	Water Depth	Depth Dropped											
	09:00:00	0	0.000												
	09:20:00	20	0.700	0.045											
	10:00:00	60	0.680	0.065											
	10:30:00	90	0.650	0.095											
	12:00:00	240	0.500	0.245											
	14:00:00	480	0.400	0.345											

	Project		Job Ref.				
ACRA Consulting	2	2 Main Street Ne	wsholme, Howo	len	SA-HOWD100		
Civil & Structural Engineer's	Section		Sheet no./rev.				
•		Soakaw	REV A				
AEB ARCHITECTURE & DESIGN LTD	Calc. by	Date	Chk'd by	Date	App'd by	Date	
	JHC	16/07/2019	НВ	17/07/2019	JHC	17/07/2019	

~			Project							Job Ref		
AEB AR	CHITECTURE & D	ESIGN LTD				2 Main Street Newsholm	e, Howden			ном	/D-100	
	and the second		Section							Sheet No/Rev		
Civil & Struct	nsulting ural Engineer's			Soakaway Test						1 OF 1		
			Calc by		Date		Chk'd by		Date	App'd by	Date	
		Width	Breath			75% Depth	0.5	36				
	Excavation	0.600	10			50% Depth	0.358					
	Dimension	0.000	1.0			25% Depth	0.1	79				
				Α	1.000		•					
						Volume 75%-25%	0.2	15				
						Wetted 50%	1.74	14				
						Time 75%-25% (mins) 295.8	362				
	IL			в	0.715							
						f per min	0.0	01				
						Time 75% (mins)	443.	793				
						Time 25% (mins)	147.9	931				
				с	0.000	Soil Infiltration f	0.024943	m/hr				
T+ 2												
lest 2	Time	Mins	Water depth	Depth Dropped		Average						
	17:00:00	0	0.000	0.715		Soil Infiltration f	0.019691	m/hr				
	17:20:00	20	0.670	0.045								
	18:00:00	60	0.610	0.105								
	18:30:00	90	0.585	0.130								
	21:00:00	240	0.425	0.290								

Extract of soakaway log (Pit 1 - Test 2)

Trial Pit				
	Test 1 (m/hr)	Test 2 (m/hr)	Test 3 (m/hr)	Average
1	0.014439	0.019691	NOT TESTED	0.017065
Average				0.017065

Below are the ground definitions in accordance with table 25.1 of the CIRIA SuDs Manual (2016).

Result

Description

Test Result

0.017065

Clay

Based on the above results and comparing them with the data provided within the SuDs manual the result is considered to be Very Poor.

Definition

Very Poor

ACDA Consulting	Project				Job Ref.			
ACRA Consulting	2	Main Street Ne	wsholme, Howd	en	SA-HOWD100			
Civil & Structural Engineer's	Section				Sheet no./rev.			
<u>~</u>		Soakaw	ay Report		REV A			
AEB ARCHITECTURE & DESIGN LTD	Calc. by	Date	Chk'd by	Date	App'd by	Date		
	JHC	16/07/2019	HB	17/07/2019	JHC	17/07/2019		

TABLE	Typical infiltration coefficients based on soil	texture (after Bettess, 1996)			
20.1	Soil type/texture	ISO 14688-1 description (after Blake, 2010)	Typical infiltration coefficients (m/s)		
	Good infiltration media • gravel • sand • loamy sand	Sandy GRAVEL Slightly silty slightly clayey SAND Silty slightly clayey SAND	3 × 10 ⁻⁴ − 3 × 10 ⁻² 1 × 10 ⁻⁵ − 5 × 10 ⁻⁵ 1 × 10 ⁻⁴ − 3 × 10 ⁻⁵		
	sandy loam Poor infiltration media loam silt loam	Silty clayey SAND Very silty clayey SAND Very sandy clayey SILT	1 × 10 ⁻⁷ – 1 × 10 ⁻⁵ 1 × 10 ⁻⁷ – 5 × 10 ⁻⁶ 1 × 10 ⁻⁷ – 1 × 10 ⁻⁵		
	sandy clay loam Very poor infiltration media silty clay loam clay	Very clayey silty SAND Can be any texture of soil	3 × 10 ⁻⁰ - 3 × 10 ⁻⁷ 3 × 10 ⁻⁰ - 3 × 10 ⁻⁷ 1 × 10 ⁻⁰ - 1 × 10 ⁻⁰ < 3 × 10 ⁻⁶		
	till Other rock* (note mass infiltration capacity will depend on the type of rock and the extent and nature of discontinuities and any infill)	described above	3 × 10 ^{-e} - 3 × 10 ^{-e} 3 × 10 ^{-e} - 3 × 10 ^{-e}		

Table 25.1 of the CIRIA SuDs Manual 2016

5.0 Proposed Model

In order to establish whether soakaways are a viable option for this development, a model has been built based on an impermeable area for a single proposed plot discharging to ground via a ring soakaway.

In order to be deemed compliant, the soakaway must be able to contain all flows generated during the 1 in 1, 1 in 10 and 1 in 30 year events with a 30% allowance for climate change to be included.

It will also need to demonstrate compliance with the 24hr half drain down time.

Model Parameters

CL:	+10.000 (Assumed Level)
IL:	+7.600
Infiltration Rate:	0.017 m/hr
Ring Diameter	1.5m DIA
Pit Multiplier	2.0
Infiltration Cap	1.5m
Catchment Area	155m ²

	Project				Job Ref.	
ACKA Consulting		2 Main Street Ne	wsholme, Howo	len	SA-HO	WD100
Civil & Structural Engineer's	Section				Sheet no./rev.	
^		Soakaw	ay Report		RE	EV A
AEB ARCHITECTURE & DESIGN LTD	Calc. by	Date	Chk'd by	Date	App'd by	Date
	JHC	16/07/2019	HB	17/07/2019	JHC	17/07/2019
		·	·			
	720 min W	linter				
		Carling and Carling and				
					Video Controls	
			\leq		708 minutes	
			\geq		▶ 📑 1x ●	
					K -	N
	_					

Extract of 3D Model showing water level withn Mircodrainage – 1:30yr + 30%

Results

During the all the above events including an allowance for climate change no above ground flooding will occur, as demonstrated by the below image showing the maximum depth during the 1 in 30 year event + 30%.

	Project				Job Ref.		
ACKA Consulting	2	Main Street Ne	wsholme, Howd	len	SA-HOWD100		
Civil & Structural Engineer's	Section			Sheet no./rev.			
<u>~</u>		Soakaw	ay Report		REV A		
AEB ARCHITECTURE & DESIGN LTD	Calc. by	Date	Chk'd by	Date	App'd by	Date	
	JHC	16/07/2019	HB	17/07/2019	JHC	17/07/2019	

			Summa	ary of Re	esults f	or 30 ye	ear Ret	urn Pe	riod (+3	0%)	
				1 - C		- 1			•	· ·	
Half Drain Time : 1100 minutes.											
		Dein	Time to	Max Water	Max	Flooded	Мах	ΣMax	Maximum		
	Storm Event	(mm/hr)	Vol Peak	Level	Depth	Volume	Filtration	Outflow	Volume	Status	
		(,	(mins)	(m)	(m)	(m²)	(l/s)	(l/s)	(m³)		4
	30 min Summer	63.339	37	8.487	0.887	0.0	0.0	0.0	3.5	ОК	
	60 min Summer	39.442	66	8.691	1.091	0.0	0.1	0.1	4.3	ОК	
	120 min Summer	23.846	126	8.889	1.289	0.0	0.1	0.1	5.1	ОК	
	180 min Summer	17.580	186	8.994	1.394	0.0	0.1	0.1	5.5	ОК	
	240 min Summer	14.100	244	9.058	1.458	0.0	0.1	0.1	5.7	ОК	
	360 min Summer	10.301	362	9.167	1.567	0.0	0.1	0.1	6.0	ОК	
	480 min Summer	8.243	482	9.248	1.648	0.0	0.1	0.1	6.2	ОК	
	600 min Summer	6.929	600	9.280	1.680	0.0	0.1	0.1	6.2	ОК	
	720 min Summer	6.011	698	9.281	1.681	0.0	0.1	0.1	6.2	ОК	
	960 min Summer	4.801	800	9.265	1.665	0.0	0.1	0.1	6.2	ок	
	1440 min Summer	3.493	1044	9.200	1.600	0.0	0.1	0.1	6.1	ок	
	2160 min Summer	2.539	1452	9.081	1.481	0.0	0.1	0.1	5.8	ОК	
	2880 min Summer	2.023	1876	9.009	1.409	0.0	0.1	0.1	5.5	ОК	
	4320 min Summer	1.467	2684	8.877	1.277	0.0	0.1	0.1	5.0	OK	
	5760 min Summer	1.168	3512	8.765	1.165	0.0	0.1	0.1	4.6	ОК	
	7200 min Summer	0.978	4320	8.667	1.067	0.0	0.1	0.1	4.2	ОК	
	8640 min Summer	0.846	5096	8.579	0.979	0.0	0.0	0.0	3.9	ОК	
	10080 min Summer	0.748	5848	8.501	0.901	0.0	0.0	0.0	3.5	ОК	
	15 min Winter	97.276	23	8.368	0.768	0.0	0.0	0.0	3.0	ОК	
	30 min Winter	63.339	37	8.595	0.995	0.0	0.0	0.0	3.9	ОК	
	60 min Winter	39.442	66	8.826	1.226	0.0	0.1	0.1	4.8	ОК	
	120 min Winter	23.846	124	9.051	1.451	0.0	0.1	0.1	5.7	ОК	
	180 min Winter	17.580	182	9.259	1.659	0.0	0.1	0.1	6.2	ОК	
	240 min Winter	14.100	240	9.430	1.830	0.0	0.1	0.1	6.5	ОК	
	360 min Winter	10.301	356	9.636	2.036	0.0	0.1	0.1	6.9	ОК	
	480 min Winter	8.243	470	9.751	2.151	0.0	0.1	0.1	7.1	ОК	
	600 min Winter	6.929	584	9.812	2.212	0.0	0.1	0.1	7.2	ОК	
	720 min Winter	6.011	694	9.837	2.237	0.0	0.1	0.1	7.2	ОК	
	960 min Winter	4.801	906	9.824	2.224	0.0	0.1	0.1	7.2	ОК	
	1440 min Winter	3.493	1128	9.719	2.119	0.0	0.1	0.1	7.0	ОК	
	2160 min Winter	2.539	1580	9.516	1.916	0.0	0.1	0.1	6.6	ОК	
	2880 min Winter	2.023	2020	9.275	1.675	0.0	0.1	0.1	6.2	ОК	
	4320 min Winter	1.467	2896	8.981	1.381	0.0	0.1	0.1	5.4	ОК	
	5760 min Winter	1.168	3744	8.821	1.221	0.0	0.1	0.1	4.8	ОК	
	7200 min Winter	0.978	4544	8.684	1.084	0.0	0.1	0.1	4.3	ОК	
	8640 min Winter	0.846	5360	8.565	0.965	0.0	0.0	0.0	3.8	ОК	
	10080 min Winter	0.748	6152	8.461	0.861	0.0	0.0	0.0	3.4	ОК	

Extract of Summary withn Mircodrainage – 1:30yr + 30%

6.0 Conclusion

The test was undertaken in accordance with Building regulations with the water level dropping between 75% - 25%. The calculated infiltration rate has concluded it fall under parameter of good infiltration, due to the small catchment area draining to this soakaway, the required 24hr half drain down time can be achieved based on the modelled parameters.

Therefore, it is recommended the development should uses soakaway as the primary method of surface water disposal.

ACDA Consulting	Project			Job Ref.		
ACKA Consulting	2 Main Street Newsholme, Howden				SA-HOWD100	
Civil & Structural Engineer's	Section				Sheet no./rev.	
A	Soakaway Report				REV A	
AEB ARCHITECTURE & DESIGN LTD	Calc. by	Date	Chk'd by	Date	App'd by	Date
	JHC	16/07/2019	HB	17/07/2019	JHC	17/07/2019

7.0 Recommendations

- 1. Soakaway shall be used.
- 2. The proposed development shall include 30% climate changes for all storm periods.
- 3. The 1:100yr return period shall be contained above ground.
- 4. The system should be designed in a way that flows generated during events above a 1 in 30 year storm should follow dedicated flow paths to be kept away from on-site and adjacent property.

For AEB Architecture Design Ltd

Report Written by:-

Heollins

J H Collins BSc, (Hons), MCIWEM Civil Engineer