

Sustainable Drainage System Strategy

Site Address

8 Hollymoor Lane Epsom KT19 KT19 9BZ

Client William Barcelo

Report Reference

SWDS - 2021 - 000068

Prepared By STM Environmental Consultants Ltd

Date 06/01/2022

CONSULTING ENVIRONMENTAL ENGINEERS AND SCIENTISTS

Our mission - to deliver innovative solutions that enable our clients to achieve their objectives in the most cost effective manner possible whilst protecting or enhancing the environment

Document Control

Sustainable Drain	Sustainable Drainage System Strategy				
Site Address:	8 Hollymoor Lane Epsom KT19 9BZ				
National Grid Reference:	521071, 162575				
STM Reference:	SWDS - 2021 - 000068				
Version No:	1.0				
Prepared for:	William Barcelo				
Date:	06/01/2022				
Report Author:	Matthew Ashdown (BSc) Senior Environmental Consultant				
Authorised by:	Simon Makoni (BSc, MSc) GeoEnvironmental Engineer, Director				

2 Contents

1		Doo	cum	ent Control	. 2
2		Сог	nten	ts	. 3
3		Abl	orev	iations	. 8
4		Dis	claiı	mer	. 9
5				ive Summary	
6				ction	
	6.	1	Pro	posed Development	13
	6.	2	Rep	oort Aims and Objectives	14
	6.	3	Leg	islative and Policy Context	14
		6.3.	1	Legislative Context	14
		6.3.	2	Policy Context	15
		6.3.	3	The London Plan - Policy SI 13 Sustainable drainage	16
		6.3.	4	Policy DM19 Development & Flood Risk	17
7		Site	e Ch	aracteristics	8
	7.	1	Loc	ation and Area	18
	7.	2	Cur	rent Site and Surrounding Uses	20
	7.	3	Site	e Topography	20
	7.	4	Hyc	Irology	20
	7.	5	Geo	blogy and Hydrogeology	20
	7.	6	Floo	od Risk	21
		7.6.	1	Fluvial Flood Risk	21
		7.6.	2	Surface Water Flood Risk	21
		7.6.	3	Groundwater Flood Risk	22
	7.	7	Exis	sting Drainage	23
8		Нус	drolo	ogical Run-off Assessment	23
	8.	1	Exis	sting and Proposed Ground Cover	23
9		Su	DS R	Requirements	24
	9.			ak Flow Control	

9.2	Volur	me Control Requirements	24
9.3	Run-	off and Storage Calculations	25
10 Site		stigation	
10.1	Site	e Investigation	26
10.2	Gro	ound Conditions Encountered	26
10.3	Gro	oundwater	26
10.4	Infi	Itration Testing	27
11 Sul		otions	
11.1	Su	DS Hierarchy	27
11.2	Ass	sessment of SuDS Options	28
11.2	2.1	Living Roofs	28
11.2	2.2	Basins, Ponds, Filter Strips and Swales	28
11.2	2.3	Infiltration Devices	29
11.2	2.4	Permeable Surfaces and Filter Drains	29
11.2	2.5	Tanked Systems	29
11.2	2.6	Rainwater Harvesting	29
11.2	2.7	Summary of results of SuDS Options Assessment	30
		plementation	
		DS Constraints	
12.2		oposed SuDS	
12.2	2.1	SuDS Planters	31
12.2	2.2	Rainwater Butt	32
12.2	2.3	Permeable Block Paving	32
12.2	2.4	Discharge Control Device	32
12.2	2.5	Microdrainage Modelling	33
12.2	2.6	Surface Water Discharge Points	33
12.2	2.7	Treatment of Run-off	33
12.2	2.8	Exceedance Flows	34

1	2.3	Mai	ntenance and Adoption of SuDS	. 34
13 14			on and Recommendations	
			es	
1	5.1	Арр	endix 1 – Development Plans	. 38
1	5.2	Арр	endix 2– Site Topography and Drainage Characteristics	. 39
	15.2.	1	LIDAR Mapping showing Site Topography - (Source: OS 2017)	. 39
	15.2.2	2	Bedrock Hydrogeology and Permeability (Source: BGS, 2016)	. 40
	15.2.3	3	Superficial Hydrogeology & Permeability (Source: BGS, 2016)	. 40
	15.2.4	4	Infiltration Drainage Potential (Source: BGS, 2016)	. 41
	15.2.	5	Groundwater Table Depth (Source: BGS 2016)	. 41
1	5.3	Арр	endix 3 – Flood Risk Mapping	. 42
	15.3.	1	Long Term Flood Risk Maps	. 42
	15.3.: (Sour		Surface water flood depth during the 1 in 100 rainfall return peri EA, 2016)	
	15.3.3 perio		Surface water flood depth during the 1 in 1000 year rainfall refource: EA, 2016).	
	15.3.4	4	Groundwater flooding susceptibility (Source: BGS, 2016)	. 44
1	5.4	Арр	endix 4 – Run-Off Rate and Storage Calculations	. 45
	15.4.	1	UK SuDS	. 45
	15.4.2	2	IH124 method	. 46
	15.4.3	3	Microdrainage Quick Storage Estimates - Pre- Development	. 47
	15.4.4	4	Microdrainage Quick Storage Estimates - Post - Development	. 47
1	5.5	Арр	endix 5 – SuDS Suitability Assessment	. 48
1	5.6	Арр	endix 6 – Descriptions of SuDS Techniques	. 51
	15.6.	1	Permeable Paving	. 51
	15.6.2	2	SuDs Planter Storage Volume/Rain water Harvesting Systems	. 52
	15.6.3	3	Geocellular structures, oversized pipes and tanks	. 54

15.7 Ap	pendix 7 – SuDS Maintenance Manual	55
15.7.1	Maintenance of SuDS Planters	
15.7.2	Maintenance of SuDS Rain Water Butts	57
15.7.3	Pervious Pavements	58
15.7.4	Geo-Cellular Maintenance	60
15.8 Ap	pendix 8 - Existing Drainage and Asset Mapping	62
15.8.1	Existing Site Drainage	62
15.8.2	Thames Water Asset Mapping	63
15.9 Ap	pendix 9 - Infiltration Testing	64
15.9.1	Trial Pit Log	64
15.9.2	Trial Pit Photos	65
15.9.3	Trial Pit Location Map	66
15.10 Ap	pendix 10 - Microdrainage	67
15.10.1	Layout of Network	67
	Layout of Network - Features, Exceedance flows and on	
15.10.3	Microdrainage results	69

List of Tables

Table 1: Breakdown of Ground Cover in the Proposed Development	. 23
Table 2: Summary of Permeable and Impermeable Areas	. 24
Table 3: Calculation of post-development run-off rates for the site.	. 25
Table 4: Pre-development 6-hour critical storm	. 25
Table 5: Summary of Results of SuDS Options Assessment	. 30
Table 6: Post Development Modelled Discharge Rate	. 33

List of Figures

Figure 1: Site location map and aerial photo	. 19
Figure 2 SuDS Hierarchy	. 28
Figure 3 Block Permeable Paving with sub-base	. 51
Figure 4 Block Permeable Paving with Geocellular Module	. 52
Figure 5 Plastic or Grid Permeable Paving with Sub-base	. 52
Figure 6: SuDS Planter with attenuation storage (Thames Water)	. 53
Figure 7: SuDS Planter Cross Section	. 53

3 Abbreviations

Abbreviation	Description
STM	STM Environmental Consultants Limited
BGS	British Geological Survey
EA	Environment Agency
OS	Ordnance Survey of Great Britain
FRA	Flood Risk Assessment
NPPF	National Planning Policy Framework
FWD	Floodline Warning Direct
FRMS	Flood Risk Management Strategy
LLFA	Lead Local Flood Authority
SWMP	Surface Water Management Plan
SFRA	Strategic Flood Risk Assessment
CDA	Critical Drainage Area
SuDS	Sustainable Drainage Systems
GWSPZ	Groundwater Source Protection Zone
ТРН	Total Petroleum Hydrocarbons
BTEX	Benzene, Toluene, Ethylene, Xylene
РАН	Poly-Aromatic Hydrocarbons

4 Disclaimer

This report and any information or advice which it contains, is provided by STM Environmental Consultants Ltd (STM) and can only be used and relied upon by William Barcelo (Client).

STM has exercised such professional skill, care and diligence as may reasonably be expected of a properly qualified and competent consultant when undertaking works of this nature. However, STM gives no warranty, representation or assurance as to the accuracy or completeness of any information, assessments or evaluations presented within this report. Furthermore, STM accepts no liability whatsoever for any loss or damage arising from the interpretation or use of the information contained within this report. Any party other than the Client using or placing reliance upon any information contained in this report, do so at their own risk.

5 Executive Summary

BACKGROUND				
Location	8 Hollymoor Lane, Epsom, KT19 9BZ Grid reference: 521071, 162575			
Site Area	2	65m² / 0.0265ha		
Proposed Development	A double storey rear extens	ion to an existing resid	lential dwelling.	
Current Site and Surrounding Uses	The site is a residential dwe	elling within a suburb n	orth of Epsom.	
Topography	The ground levels range fro The average level of the site		o 31.92mAOD (NW).	
Hydrology	The nearest main watercour is located 60m to the East.	rse is a tributary of the l	Hogsmill River which	
Geology	Data from the British Geological Survey indicates that the underlying superficial geology is characterised as River Terrace Deposits. The underlying bedrock geology is characterized as London Clay Formation.			
Hydrogeology	BGS information indicates that the site is situated upon a Secondary A superficial aquifer and an Unproductive bedrock aquifer.			
Permeability	BGS information indicates draining, and the bedrock is	-		
Infiltration Potential	The BGS indicates there ar use of infiltration methods o		nt constraints for the	
Fluvial Flood Risk	Low – the site lies within EA	Flood Zone 2.		
Surface Water Flood Risk	Low - the site is not impace However, it will witness 600 event.			
Groundwater Flood Risk	Low - the EA indicates there surface.	e is potential for ground	water flooding at the	
	Ground Cover	Existing	Proposed (Without SuDS)	
Existing and	Buildings	76	84	
Proposed Site Layout	Driveways/Patio	67	85	
	Gardens/ Soft landscaping	122	96	
	Total Impermeable Area143169			

Changes in Impermeable Area Without SuDS	Without SuDS, the proposed development would increase the impermeable area of the site by 10% (i.e. 26m ²).				
	PROPOSED S	UDS			
Run-Off Rates	Greenfield (GF) (I/s) *IH24 Modelled Pre- Development Rates (I/s) Modelled Pos Development Rates with SU (I/s)				
Qbar	0.1190				
1 in 1	0.1012	0.4	0.1		
1 in 30	0.2737	0.9	0.5		
1 in 100 + CC	0.5628	1.4	1.0		
SuDS Target Requirement	As the development is taking place on a previously developed site the non-statutory technical standards for sustainable drainage systems S3 (peak flow) and S5 and S6 (volume controls) apply. The target discharge rate was therefore set to a maximum of 1.4l/s during the critical storm scenario, but should aim to achieve a runoff rate of Qbar for the greenfield scenario wherever possible.				
Storage Required to meet Planning Requirement	Using the Microdrainage quick storage estimate method the total storage volume required to match greenfield discharges was calculated to be 10 - 14 m ³ .				
Infiltration Testing	The site investigation works were carried out on the 8 th of November 2021. A total of 1no. trial pit was excavated to a depth of 1mbgl for undertaking infiltration testing in accordance with BRE DG 365. However, infiltration testing was abandoned due the presence of groundwater at 1mbgl. The geology encountered consisted of Made Ground underlain by CLAY and clayey GRAVEL at depth.				
SuDS Strategy	 The proposal, without SuDS, would increase the overall impermeable area of the site by 10% (26m²) through the introduction of additional a new patio and rear extension. The proposal captures and reduces the runoff for 50% (80m²) of the impermeable site area to 0.1l/s. Run-off from the remaining area of the site will enter the drainage system at an unrestricted rate. The proposal seeks to establish a runoff rate reduction and attenuation volume at a level appropriate to the scale and type of development. The SuDS strategy will retrofit SuDS planter within the front driveway and a rainwater butt within the rear of the site. The proposed patio will be formed of permeable paving, it provides a reduction of 18m² in the effective impermeable area of the site. However, it will be lined with an impermeable liner to prevent infiltration and groundwater intrusion due to elevated groundwater and underlying foul sewer run. 				

	The attenuation will be provided through the use of 4.3m ³ of geocellular storage units placed below the patio. Excess run-off from the Geocellular units will be discharged into the existing surface water drainage run on site.
	An orifice flow control device will limit the discharge from the geocellular attenuation to the drainage system to 0.11/s during all storm events.
	As such, the proposal reduces the total post development discharge rate during the critical 1 in 100 years plus 20% climate change to 1.0l/s, which a 29% reduction compared to the pre-development rate.
Conclusion	With the proposed SuDS mitigation measures in place, we believe that the proposed development will reduce local flood risk and therefore be in compliance with the LLFA's current planning policy and the NPPF.

6 Introduction

STM Environmental Consultants Limited have been appointment by William Barcelo to undertake a Sustainable Drainage System (SuDS) Strategy for a proposed development at 8 Hollymoor Lane, Epsom, KT19 9BZ.

6.1 **Proposed Development**

The SuDS strategy is required to support a planning application (Reference: 20/01803/FLH) for erection of part single, part two storey rear extension (following demolition of existing conservatory), hip to gable and rear dormer roof extensions and installation of front rooflights.

The planning condition states as follows:

The development hereby permitted shall not commence until details of the design of a surface water drainage scheme have been submitted to and approved in writing by the Local Planning Authority. The design must satisfy the SuDS Hierarchy and be compliant with the NPPF (2019). The required drainage details shall include:

- a) Evidence that the proposed final solution will effectively manage the 1 in 30 & 1 in 100 (+20% allowance for climate change) storm event, during all stages of the development, associated discharge rates and storage volumes shall be provided using a discharge rate to be agreed with the LPA and local water authority.
- b) Detailed drainage design drawings and calculations to include: a finalised drainage layout detailing the location of drainage elements, pipe diameters, levels, and long and cross sections of each element including details of any flow restrictions and maintenance/risk reducing features (silt traps, inspection chambers etc.).
- A plan showing exceedance flows (i.e. during rainfall greater than design events or during blockage) and how property on and off site will be protected.

Reason: To ensure design does not increase flood risk on or off site and to comply

with Policy DM19 (Development and Flood Risk) of the LDF Development Management Policies Document (2015).

Copies of the development plans and decision noticed are presented in Appendix 1.

6.2 Report Aims and Objectives

This report sets out the proposed drainage strategy that will be employed in the designs to meet the requirements of the planning condition and the National Planning Policy Framework.

This report should be read in conjunction with the following reports also prepared for the site by STM:

Flood Risk Assessment – Ref: FRA/2020/000160

6.3 Legislative and Policy Context

6.3.1 Legislative Context

Section H3 of the Building Regulations 2010 requires that adequate provision is made for rainwater to be carried from the building roofs and paved areas. and be preferentially discharged to soakaways or some other adequate infiltration system. Where that is not reasonably practicable, a watercourse; or sewer can be used.

The Flood and Water Management Act was introduced in 2010. The Act defines the role of lead local flood authority (LLFA) for an area. All LLFA are required to develop, maintain, apply and monitor a strategy for local flood risk management in its area, called "local flood risk management strategy".

Alongside the Act, Flood Risk Regulations (2009) outline the roles and responsibilities of the various authorities, which include preparing Flood Risk Management Plans and identifying how significant flood risks are to be mitigated.

6.3.2 Policy Context

The National Planning Policy Framework (NPPF) sets out the Government's economic, environmental and social planning policies for England. The policies set out in this framework apply to the preparation of local and neighbourhood plans and to decisions on planning applications.

Paragraph 167 of the National Planning Policy Framework (NPPF) states that:

When determining any planning applications, local planning authorities should ensure that flood risk is not increased elsewhere. Where appropriate, applications should be supported by a site-specific flood-risk assessment (See Note 1) Development should only be allowed in areas at risk of flooding where, in the light of this assessment (and the sequential and exception tests, as applicable) it can be demonstrated that:

- within the site, the most vulnerable development is located in areas of lowest flood risk unless there are overriding reasons to prefer a different location
- the development is appropriately flood resistant and resilient such that, in the event of a flood, it could be quickly brought back into use without significant refurbishment;
- it incorporates sustainable drainage systems, unless there is clear evidence that this would be inappropriate;
- any residual risk can be safely managed; and
- safe access and escape routes are included where appropriate, as part of an agreed emergency plan.

Applications for some minor development and changes of use (See Note.2) should not be subject to the sequential or exception tests but should still meet the requirements for site-specific flood risk assessments set out in (See Note 1).

Paragraph 169 states that:

Major developments should incorporate sustainable drainage systems unless there is clear evidence that this would be inappropriate. The systems used should:

take account of advice from the lead local flood authority;

- have appropriate proposed minimum operational standards;
- have maintenance arrangements in place to ensure an acceptable standard of operation for the lifetime of the development; and
- where possible, provide multifunctional benefits.

A major development is defined as:

- a residential development: 10 dwellings or more or residential development with a site area of 0.5 hectares or more where the number of dwellings is not yet known
- a non-residential development: provision of a building or buildings where the total floor space to be created is 1000 square metres or more or where the floor area is not yet known, a site area of 1 hectare or more.

Note. 1 - A site-specific flood risk assessment should be provided for all development in Flood Zones 2 and 3. In Flood Zone 1, an assessment should accompany all proposals involving: sites of 1 hectare or more; land which has been identified by the Environment Agency as having critical drainage problems; land identified in a strategic flood risk assessment as being at increased flood risk in future; or land that may be subject to other sources of flooding, where its development would introduce a more vulnerable use.

Note. 2 - This includes householder development, small non-residential extensions (with a footprint of less than 250m²) and changes of use; except for changes of use to a caravan, camping or chalet site, or to a mobile home or park home site, where the sequential and exception tests should be applied as appropriate.

6.3.3 The London Plan - Policy SI 13 Sustainable drainage

Lead Local Flood Authorities should identify – through their Local Flood Risk Management Strategies and Surface Water Management Plans – areas where there are particular surface water management issues and aim to reduce these risks. Increases in surface water run-off outside these areas also need to be identified and addressed.

Development proposals should aim to achieve greenfield run-off rates and ensure that surface water run-off is managed as close to its source as possible. There should also be a preference for green over grey features, in line with the following drainage hierarchy:

- rainwater use as a resource (for example rainwater harvesting, blue roofs for irrigation);
- rainwater infiltration to ground at or close to source;
- rainwater attenuation in green infrastructure features for gradual release (for example green roofs, rain gardens);
- rainwater discharge direct to a watercourse (unless not appropriate);
- controlled rainwater discharge to a surface water sewer or drain;
- controlled rainwater discharge to a combined sewer;

Development proposals for impermeable surfacing should normally be resisted unless they can be shown to be unavoidable, including on small surfaces such as front gardens and driveways.

Drainage should be designed and implemented in ways that promote multiple benefits including increased water use efficiency, improved water quality, and enhanced biodiversity, urban greening, amenity and recreation (2).

6.3.4 Policy DM19 Development & Flood Risk

In order to manage flood risk, we will take a sequential approach to the allocation of sites in a Site Allocations Policy Document and when determining planning applications.

Development within Flood Risk Zones 2 & 3 or on sites of 1ha or greater in Zone 1 and sites at medium or high risk from other sources of flooding as identified by the Borough Council's SFRA, will not be supported unless:

- In fluvial flood risk areas, the sequential and exception tests have been applied and passed and it is a form of development compatible with the level of risk; and
- (ii) For all sources of risk, it can be demonstrated through a site FRA that the proposal would, where practicable, reduce risk both to and from the development or at least be risk neutral; and
- (iii) Where risks are identified through an FRA, flood resilient and resistant design and appropriate mitigation and adaptation can be implemented so that the level of risk is reduced to acceptable levels.

We will expect development to reduce the volume and rate of surface water run-off through the incorporation of appropriately designed Sustainable Drainage Systems (SUDS) at a level appropriate to the scale and type of development.

7 Site Characteristics

7.1 Location and Area

The site is centred at national grid reference 521071, 162575 and has an area of 265m².

It falls within the jurisdiction of Epsom and Ewell District Council in terms of the planning consultation process on flood risk and surface water management. The LLFA is Surrey County Council.

Figure 1 provides the site location map and aerial imagery.

Figure 1: Site location map and aerial photo

7.2 Current Site and Surrounding Uses

The site is currently used as residential dwelling. It is located within a residential suburb 1.5km north of Epsom town centre.

7.3 Site Topography

The mapping provided in <u>Appendix 2</u> shows 1m DTM LiDAR Data that shows the topography within the site.

The ground levels range from 31.36mAOD (SW) to 31.92mAOD (NW). The average level of the site is 31.5mAOD.

7.4 Hydrology

The nearest watercourse is a tributary of the Hogsmill River which is located 60m to the east.

7.5 Geology and Hydrogeology

BGS mapping showing the geological and hydrogeological characteristics of the site are presented in <u>Appendix 2</u>.

The BGS information indicates that the superficial deposits at the site consist of River Terrace (Sand and Gravel) deposits while the bedrock is classified as belonging to the London Clay Formation (Silt, Sand and Clay).

The permeability of the bedrock geology is considered to be highly variable while that of the superficial geology is considered to be freely draining.

The BGS infiltration potential map suggests that there are significant constraints for infiltration methods at the site due to the potential of one or more geo-hazard.

The maps also indicate that the groundwater table is thought to be to be less than 3mbgl.

The site lies upon an Unproductive bedrock and a Secondary A superficial aquifer. The site does not lie within a groundwater Source Protection Zone.

7.6 Flood Risk

7.6.1 Fluvial Flood Risk

Fluvial and tidal risk is assessed using flooding maps produced by the Environment Agency (EA). These maps use available historic data and hydraulic modelling to define zones of flood risk. The maps allow a site to be defined in terms of its Flood Zone (e.g. 1, 2, 3a or 3b) and in terms of the overall flood risk (very low, low, medium or high).

The EA Flood Zones are defined as:

- Flood Zone 1: Less than a 1 in 1000 annual probability of fluvial and/or tidal flooding;
- Flood Zone 2: Between 1 in 100 and 1 in 1000 annual probability of fluvial flooding and/or between 1 in 200 and 1 in 1000 annual probability of tidal flooding;
- Flood Zone 3a: Greater than 1 in 100 annual probability of fluvial flooding and/or greater than 1 in 200 annual probability of tidal flooding;
- Flood Zone 3b: functional flood plain (definition specific to the LLFA). Less than a 1 in 20 annual probability of fluvial and/or tidal flooding.

The site is designated as being within Flood Zone 2 and is therefore considered to have a low to medium risk of flooding. This equates to a potential yearly risk of flooding of between 0.1 and 1 % Annual Expected Probability.

7.6.2 Surface Water Flood Risk

Surface water flooding occurs when high intensity rainfall leads to run-off which flows over the ground surface, causing ponding in low-lying areas when the precipitation rate or overland flow rate is greater than the rate of infiltration, or return into watercourses. Surface water flooding can be exacerbated when the underlying soil and geology is saturated (as a result of prolonged precipitation or a high-water table) or when the drainage network has insufficient capacity.

The chief mechanisms for flooding can be divided into the following categories:

- Runoff from higher topography the areas of greatest flood depths tend to be at the base of the steeper land;
- Localised surface water runoff within the central parts of the borough, surface water flooding tends to be a result of localised ponding of surface water;
- Sewer Flooding areas where extensive and deep surface water flooding is likely to be influenced by sewer flooding. Where the sewer network has reached capacity, and surcharged, this will exacerbate the flood risk in these areas.
- Low Lying Areas areas such as underpasses, subways and lowered roads beneath railway lines are more susceptible to surface water flooding;
- Railway Cuttings leading to internal ponding and transport disruption;
- Railway Embankments discrete surface water flooding locations along the upstream side of the raised network rail embankments where water flows are interrupted and ponding can occur.

A map showing the site and the modelled prediction of surface water flood risk and depth provided by the EA is available in <u>Appendix 3</u>. This indicates that the site is at low risk of flooding.

The maps show that the site would remain dry during the 1 in 100-year event and it is expected to flood to depths of up to 600mm during the 1 in 1000-year event.

7.6.3 Groundwater Flood Risk

Groundwater flooding occurs when water rises from the underlying aquifer at the location of a spring – where the underlying impermeable geology meets the ground surface. This tends to occur after much longer periods of intense precipitation, in often low-lying areas where the water table is likely to be at a shallow depth. Groundwater flooding is known to occur in areas underlain by principal aquifers, although increasingly it is also being associated with more localised floodplain sands and gravels.

Groundwater susceptibility mapping provided by BGS is presented in <u>Appendix 3</u>. This indicates that there is potential for groundwater flooding to occur at the surface.

7.7 Existing Drainage

The existing drainage for the site is show in <u>Appendix 8</u>.

The surface water drainage connects into a Thames Water surface water sewer, located to the front of the site, on Hollymore Lane. The closest Thames Water Asset is identified as 0592, it has a cover level of 31.87 and an invert level of 30.41mAOD.

An asset map is also available in Appendix 8.

8 Hydrological Run-off Assessment

To minimise the impact of the new development on local flood risk, the NPPF requires that post development surface water run-off volumes and peak flow rates are improved upon those of the existing conditions. The following section provides an assessment of greenfield as well as pre- and post-development run-off rates.

8.1 Existing and Proposed Ground Cover

A summary of the existing and proposed site ground cover is shown below in Table 1 and Table 2 below. These tables assume all hardstanding will remain as impermeable surfaces.

Ground Cover	Existing Development Area		Proposed Development Area		Difference (m2)
	m²	%	m²	%	(=/
Buildings	76	29	84	32	8
Hard	67	25	85	32	18
Standing	01	20	00	02	10
Soft	122	46	96	36	26
landscaping		.0		50	20
Total	265	100	265	100	

Table 1: Breakdown of Ground Cover in the Proposed Development

	Impermeable Area		Permeable Area		Total Area
	m²	%	m2	%	m²
Existing Site	143	54	122	46	265
Proposed Site	169	64	96	36	265
Difference	26	10	-26	-10	

Table 2: Summary of Permeable and Impermeable Areas

The proposal will include various SuDS that reduce the impermeable area by substituting the typical surfaces with permeable alternatives.

The proposal will increase the impermeable area of the site by 26m² without the inclusion of SuDS.

9 SuDS Requirements

9.1 Peak Flow Control

With regard to peak flow control, the non-statutory technical standards for sustainable drainage systems state that:

S3 For developments which were previously developed, the peak runoff rate from the development to any drain, sewer or surface water body for the 1 in 1 year rainfall event and the 1 in 100 year rainfall event must be as close as reasonably practicable to the greenfield runoff rate from the development for the same rainfall event, but should never exceed the rate of discharge from the development prior to redevelopment for that event.

9.2 Volume Control Requirements

With regard to volume control, the non-statutory technical standards for sustainable drainage systems state that:

S5 Where reasonably practicable, for developments which have been previously developed, the runoff volume from the development to any highway drain, sewer or surface water body in the 1 in 100-year, 6-hour rainfall event must be constrained to a value as close as is reasonably practicable to the

greenfield runoff volume for the same event, but should never exceed the runoff volume from the development site prior to redevelopment for that event.

S6 Where it is not reasonably practicable to constrain the volume of runoff to any drain, sewer or surface water body in accordance with S4 or S5 above, the runoff volume must be discharged at a rate that does not adversely affect flood risk.

9.3 Run-off and Storage Calculations

The IH124 method was applied to calculate the Greenfield and post-development runoff rates that include the 40% allowances for climate change. The full results are presented in <u>Appendix 4</u>. Table 3 below give a summary of the results.

	Greenfield (I/s)	Greenfield + CC	Pre - Development	Pre - Development + CC	Post Development	Post Development + CC
Qbar	0.1190	0.1764	0.1381	0.2048	0.1416	0.2099
1 in 1	0.1012	0.1500	0.1174	0.1741	0.1204	0.1784
1 in 30	0.2737	0.4057	0.3177	0.4710	0.3257	0.4828
1 in 100	0.3796	0.5628	0.4406	0.6532	0.4517	0.6697

Table 3: Calculation of post-development run-off rates for the site (without SuDS)

As the development is taking place on a previously developed site S3 (peak flow) and S5 and S6 (volume controls) apply.

A Microdrainage model of the pre-development scenario was created in order to establish a more accurate pre-development discharge rate and volume. The model was designed based on the known drainage information and contributing area.

Table 4 below summarises the critical storm predevelopment discharge rates obtained from the model.

Table 4: Pre-development 6-hour critical storm

	Pre - Development Discharge	
Pre - Development (I/s)	Volume (m³)	

1 in 1	0.4	2.3
1 in 30	0.9	5.0
1 in 100 + 20% CC	1.4	7.8

Therefore, the development should aim to ensure a post development peak discharge rate of no more than 1.4l/s for the critical storm event. However, wherever possible, the excess flows should be restricted to the Qbar (0.1l/s) for the greenfield scenario.

Based on a proposed discharge rate of 0.1l/s, the Microdrainage Quick storage estimate tool calculated the storage required for the proposed development during the 1 in 100 plus 40% CC event to be 10 - 14m³. Screenshots of the quick storage estimate tool and variables are available in <u>Appendix 4</u>.

10 Site Investigation

10.1 Site Investigation

Site investigation works were carried out on the 8th of November 2021. 1no. trial pit was excavated to 1mbgl for the purpose of undertaking infiltration testing in accordance with BRE DG 365.

10.2 Ground Conditions Encountered

The investigation encountered ground conditions that were generally consistent with the published geological records of the area. Made Ground consisting of dark brown silty, slightly cobbly CLAY with occasional brick fragments and cobbles of flint was encountered to a depth of 0.4mbgl. The Made Ground was underlain by mottled dark brown and dark grey CLAY with occasional roots to a maximum depth of 0.6mbgl, in turn underlain by light greyish yellow and light brown, silty slightly clayey cobbly GRAVEL to a depth of 1mbgl.

10.3 Groundwater

Groundwater was encounter at the base of the trial pit at 1.0mbgl.

10.4 Infiltration Testing

Infiltration testing was abandoned due to the shallow groundwater table encountered and the requirement that any infiltration SuDS should ensure a 1m freeboard between the groundwater table and the invert level of the component.

As a result, the use of infiltration SuDS are not considered suitable as a means of surface water disposal at the site.

Full details including photos, location map and log of the trial pit are available in <u>Appendix 9.</u>

11 SuDS Options

As mentioned above, planning policies require that SuDS strategies consider source control (i.e. disposal of runoff within the plot boundary), followed by site control (site wide disposal) and then regional control (appropriate for larger development with strategic drainage infrastructure). They also require that that those methods that give the most benefits in terms of sustainability are prioritised for employment (generally known as the SuDS Hierarchy) as further described below.

11.1 SuDS Hierarchy

The SuDS Hierarchy sets out the preferred method of selecting which Sustainable Drainage System should be used. Generally, 'soft SuDS' such as ponds and swales are the preferred drainage systems as they mimic natural drainage and provide a number of benefits including attenuation of surface water flows and flow rates as well as pollution.

Smaller developments which may not have the physical room for pond and swales would need to consider other options. In these cases, preference should be given to infiltration systems. However, care should be taken if implementing infiltration systems near aquifer protection zones, close to buildings or structural foundations or in areas where soils may be polluted.

The SuDS hierarchy is summarised in Figure 2 below.

Figure 2 SuDS Hierarchy

Most Sustainable	SUDS technique	Flood Reduction	Pollution Reduction	Landscape & Wildlife Benefit
	Living roofs	~	~	~
Î	Basins and ponds - Constructed wetlands - Balancing ponds - Detention basins - Retention ponds			Ŷ
	Filter strips and swales	~	~	~
	Infiltration devices - soakaways - infiltration trenches and basins	~		Ŷ
¥	Permeable surfaces and filter drains - gravelled areas - solid paving blocks - porous paviors	~		
Least Sustainable	Tanked systems - over-sized pipes/tanks - storms cells			

11.2 Assessment of SuDS Options

An assessment was made of the suitability of a range of potential SuDS techniques that could be implemented as part of the development. The results of the assessment are summarised in <u>Appendix 5</u> and are further discussed below.

11.2.1 Living Roofs

As buildings will cover more than 32% of the site, living roofs are considered to be a viable SuDS technique across the flat roof areas of the development. However, the flat roof areas are limited to already developed areas and an area approximately 2m².

11.2.2 Basins, Ponds, Filter Strips and Swales

Basins, ponds, filters strips and swales are not considered suitable due to limited space.

11.2.3 Infiltration Devices

Infiltration techniques should be given priority in any SuDS design as they deal with discharge on the site returning water to the aquifer and subsequently rivers via baseflow.

However, care must be taken to ensure that contamination of groundwater is prevented. The Environment Agency publication 'Groundwater protection: Policy and practice (GP3) Section G, 2012, states that the Environment Agency will support sustainable drainage systems for new discharges to ground subject to an appropriate risk assessment to demonstrate that ground conditions are suitable and infiltration systems do not present an unacceptable risk of promoting mobilisation of contaminants or creating new pathways for contaminant migration.

As discussed in <u>Section 10</u> the use of infiltration devices is not suitable due to elevated groundwater.

11.2.4 Permeable Surfaces and Filter Drains

Over 33% of the development will consist of car parking, pathways and patios following the proposed development, an increase of 7% (18m²), which could be designed to be permeable.

However, it should be noted that due to the existence of a foul sewer run and elevated ground water table, this will be required to be lined with an impermeable lining.

11.2.5 Tanked Systems

A tanked system incorporating a hydro brake restricting flow to the sewer would be a viable option as infiltration is not suitable. However, this option is ranked as being the least sustainable in the SuDS hierarchy.

11.2.6 Rainwater Harvesting

The use of rainwater butts and or harvesting tanks could be employed within each individual building and patios, although they would have a limited storage capacity and will be required to be an active system.

11.2.7 Summary of results of SuDS Options Assessment

A summary of the results of the SuDS Options Assessment is presented in Table 5 below. Full details of the options assessment along with descriptions of the SuDS options are presented in <u>Appendix 5</u> and <u>Appendix 6</u>.

SuDS Technique	Potential Suitability
Rainwater Harvesting	Suitable - small scale
Infiltration: Soakaways Infiltrations trenches and basins	Unsuitable - Elevated groundwater
Green/brown /blue roofs	Suitable - Small scale and outside of scope of development
Rain Gardens	Suitable - Storage only
Permeable Pavements / Surfaces	Suitable - With lining
Swales	Unsuitable - Limited space
Detention basin/ponds	Unsuitable
Storage tanks/ Geocellular storage	Suitable
Oversized piping	Suitable

Table 5: Summary of Results of SuDS Options Assessment

12 SuDS Implementation

12.1 SuDS Constraints

As mentioned above, there are a number of constraints in relation to type of drainage system that can be implemented.

Firstly, here is a high groundwater table at the site. Secondly an existing foul sewer is located in the rear garden.

A final consideration is the size and scope of the proposed development. The proposal will introduce new hard landscaping; however, no ground works are proposed to the front of the dwelling.

Therefore, the introduction of new SuDS is limited to the retrofitting of SuDS, at surface level or above within areas that remain unchanged. As to not to overburden the scope and budget of the proposed development. The proposal seeks to establish a runoff rate reduction and attenuation volume at a level appropriate to the scale and type of development.

12.2 Proposed SuDS

The proposed SuDS strategy aims to control surface water runoff from 50% of the site's impermeable area.

The use of SuDS planters and rainwater butts will be used on all suitable down pipes from the rooftops.

The excess will discharge directly onto permeable block paving that will form the new patio. It will have a geocelluar sub-base attenuation structure that will be lined to prevent infiltration.

The geocellular attenuation will be controlled via a flow control orifice and will limit the discharge to 0.1 l/s into the existing drainage run.

12.2.1 SuDS Planters

SuDS planters will be placed upon the driveway and will cover a total area of 2m².

The SuDS planter will reduce the overall effective impermeable area and provide for water re-use within the planters, and act as interception and a minor attenuation storage structure.

The SuDS planter will be a long trough, they will be vegetated with plants suited to deluge and drought conditions, with a minimum of 500mm of growing substrate (Sand, Soil and Gravel). By intercepting the rainfall, it will directly slow the runoff and in addition provide a filtration medium for the rooftop runoff.

Examples of different types of SuDS planters are available in Appendix 6.

12.2.2 Rainwater Butt

The rear patio forms 18m² of the proposed site area. The downpipe to the rear will be fitted with a 220 litre rainwater harvesting butt. It will provide a means of capturing some of the rooftop surface water runoff for re-use later.

Once at capacity the runoff will be discharged directly onto the permeable block paving that is described in more detail below.

12.2.3 Permeable Block Paving

The new patio accounts for 18m². Runoff from this area will be managed using permeable block paving and geocellular attenuation. It will accept 50% of the surface water runoff from the proposed development site.

Permeable Paving combines hardstanding with SuDS and works in a very different way to traditional pavement. It is designed to allow rainfall to percolate immediately through the surface near to where the raindrop lands – so surface ponding is completely eradicated without the need for an additional channel drainage system.

The construction will consist of 80mm interlocking concrete blocks with jointing, with a 50mm underlying bedding layer of sand and a geotextile cloth. The geotextile will prevent fines entering the 250mm thick geocellular attenuation installed below. The geocellular structure will be wrapped in an impermeable lining to prevent ground water intrusion and protect the underlying foul sewer from infiltration. The base of the geocellular storage structure will be padded with a minimum of 100mm of pea gravel.

12.2.4 Discharge Control Device

An orifice flow control chamber will be used to limit the discharge from the geocellular storage into the existing surface water drainage run to 0.11/s.

The catchment will be retained as existing with the exception of the inclusion of SuDS planters.

12.2.5 Microdrainage Modelling

Microdrainage Modelling was carried out to assess the performance of the proposed drainage system under a variety of modelled storm events. The designed system including the proposed attenuation storage, provides a total storage of 4.8m³ when including all pipes, manholes and storage structures.

No flooding was indicated during any of the modelled scenarios, including the 1 in 100 years plus 20% climate change.

Table 6: Post Development Modelled Discharge Rate

Model Run	Post - Development (I/s)
1 in 1	0.1
1 in 30	0.5
1 in 100 + 20% CC	1.0

Full results, drainage layout including the proposed discharge point and exceedance flows of this are available in <u>Appendix 10</u>.

12.2.6 Surface Water Discharge Points

As infiltration is not suitable and there are no nearby watercourses, the run-off from the development will be conveyed via the existing 150mm diameter lateral drains to the surface water sewer on Hollymoor Lane (location).

As the proposal is utilising an already established connection and will provide a reduction in the discharge rate, a capacity check should not be required.

A copy drainage asset search is available in Appendix 9.

12.2.7 Treatment of Run-off

The treatment of roof water runoff will be provided through the provision of rainwater butts, SuDS planters and permeable block paving to intercept gross solids and sediment, guidance will be provided to householders on appropriate maintenance requirements.

12.2.8 Exceedance Flows

The site is mostly flat at 31.45mAOD. However, there is a gradual slope towards the dwelling within the rear garden.

Given the location of the proposed and existing buildings, it is recommended that an overflow connection (Acco Drain or overflow pipe) is installed onto the new flow control device. This will ensure the conveyance of any exceedance flow events will conveyed safely away from the rear of the dwelling and can be contained within the driveway before receding naturally once flood levels reduce on site.

It can be seen from the design proposals; the proposed system includes approximately 4.8m³ of storage capacity. In addition, a safety factor of 2 was applied to the Microdrainage modelling, which gives a further degree of confidence that exceedance flows are unlikely to occur. Nonetheless, appropriate level design will be employed to ensure that flood waters are directed away from buildings in the unlikely event that an inundation of the proposed system results in overland flows.

A map displaying the exceedance flow is available in <u>Appendix 10</u>.

12.3 Maintenance and Adoption of SuDS

All SuDS features will be properly installed by competent persons. They will be maintained regularly to ensure that their design capacity and attenuation characteristics provide the required storage volume.

Landscaping and adjacent areas will be designed such that they do not cause soil, mulch and other materials to be washed onto the permeable surfaces and into drains causing clogging.

Owners of the properties/persons responsible for maintenance of SuDS components will be provided with operation and maintenance manuals which will include information such as:

the location of SuDS components;

- an explanation of design intent and objective of the SuDS;
- the requirements for regular and occasional inspection and maintenance;
- visual indicators that may trigger maintenance.

An inspection checklist should be generated based on the maintenance strategy to facilitate consistent inspection of the condition of the system and as a method for recording inspections. Inspections should also be accompanied by photographic records to assist with the monitoring of the system. It is recommended that an annual maintenance report should be prepared and retained within the Operation and Maintenance Manual.

Regular maintenance of SuDS components is relatively straightforward with the main tasks consisting of:

- Regular visual inspections checking inlets are not blocked and verifying that clogging has not occurred;
- Litter and debris removal;
- Grass cutting;
- Preventive sweeping;
- Weeding and invasive plant control;
- Oil and stain removal.

Occasional maintenance activities to ensure the long-term performance of the SuDS features include:

Sediment removal
 Vegetation and plant replacement

These simple measures will ensure that the storage capacity of the system is maintained and that the need for reconstruction and replacement of components is minimised.

Further details on SuDS maintenance measures that will be employed at the site can be found in <u>Appendix 8</u>.

13 Conclusion and Recommendations

The proposed drainage strategy will ensure there is no increase in the post development runoff rates from the site when compared to the pre-development scenario.

The size and scope of the development has been taken into account. As the proposal does not include any changes to the front of the dwelling or existing hard landscaping, the proposal has been designed to ensure that the rear catchment (50% of the total site impermeable area) will be attenuated and the flow restricted.

The proposal will introduce rainwater butts, SuDS Planters and permeable paving that will be constructed with a geocellular attenuation sub-base.

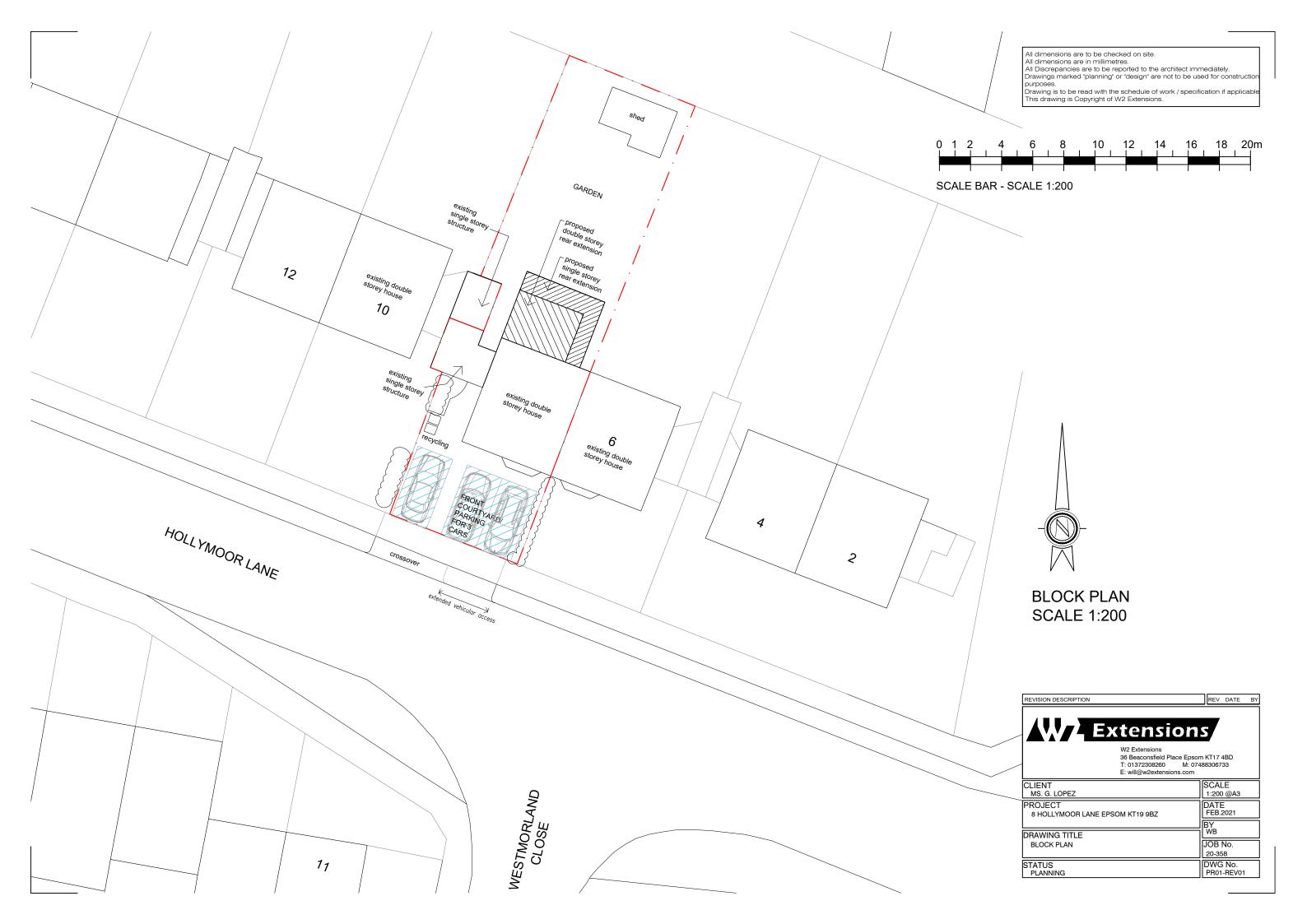
The use of permeable paving and geo-cellular storage beneath the patio will act as interception and provide $4.3m^3$ of attenuation. The discharge from the geocellular attenuation will be limited to 0.1/s via an orifice flow control device.

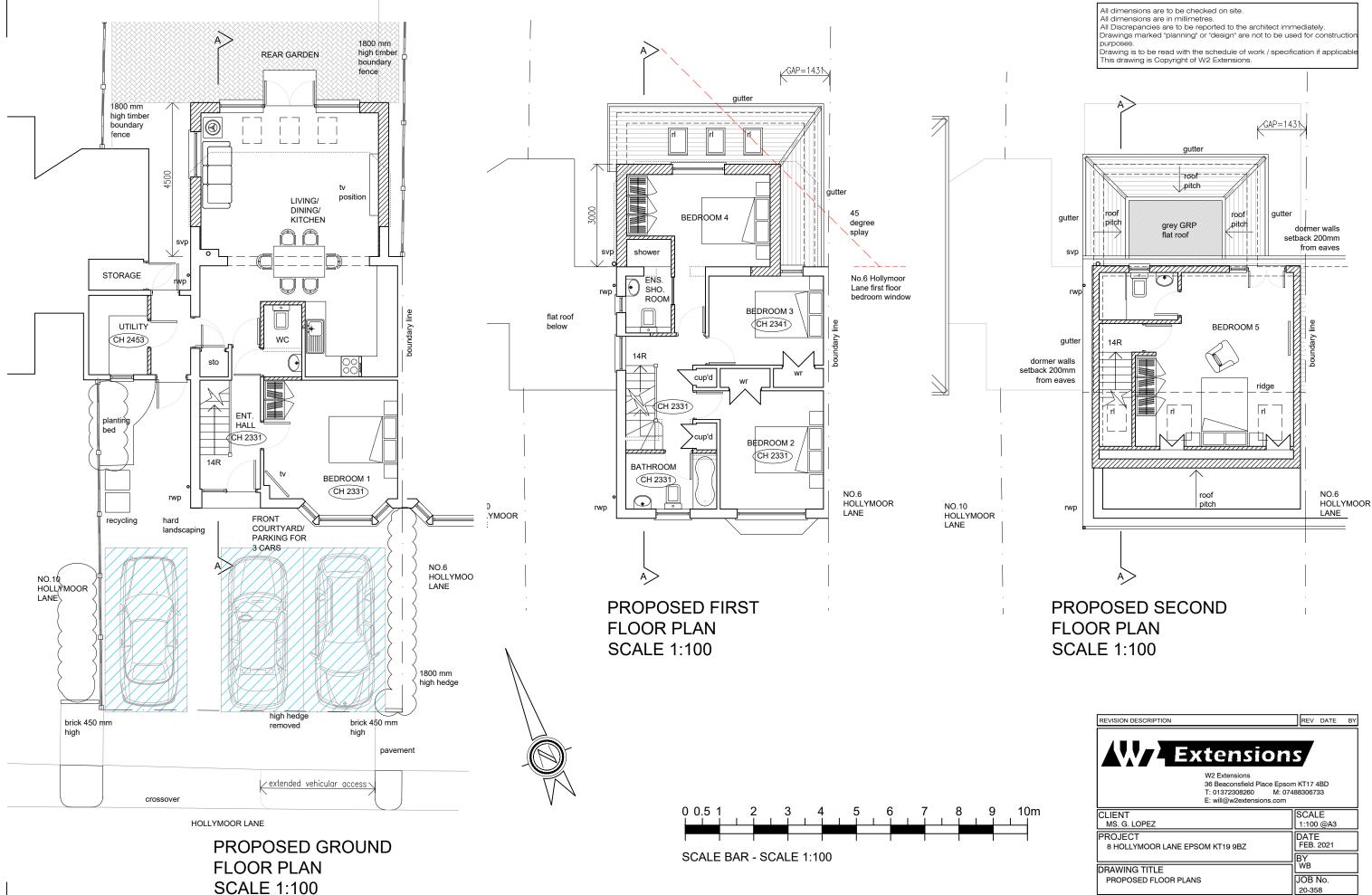
It will discharge into the existing drainage run on site that will remain at an un-restricted rate into the surface water sewer operated by Thames Water on Hollymoor Lane.

The proposal reduces the post development discharge rate during the critical 1 in 100 years plus 20% climate change to 1.0l/s which a 29% reduction compared to the predevelopment rate.

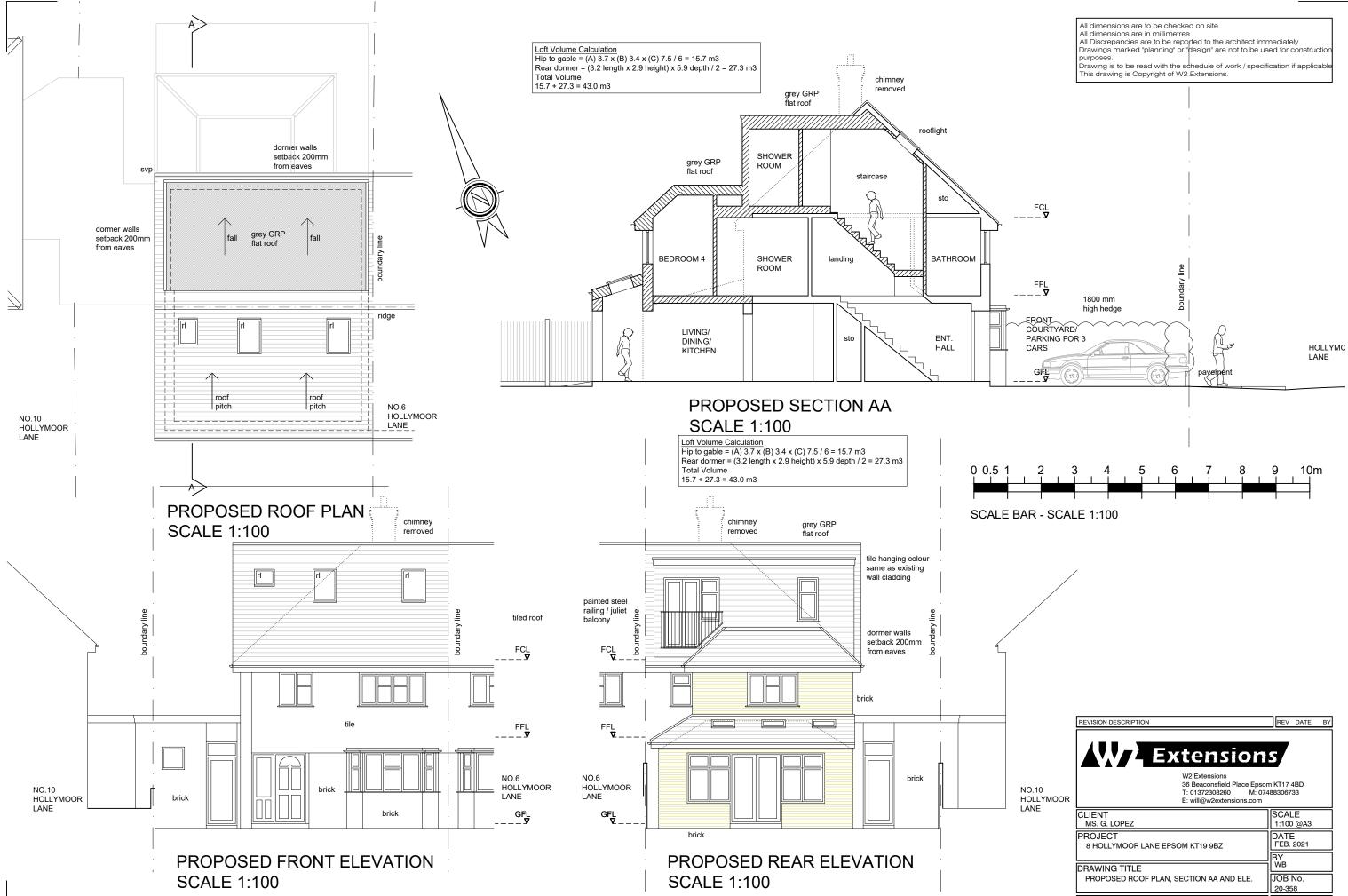
With the proposed SuDS mitigation measures in place, it is considered that the proposed development will reduce local flood risk and enhance the local environment and as such, will be in compliance with the LLFA's current planning policy and the NPPF.

14 References

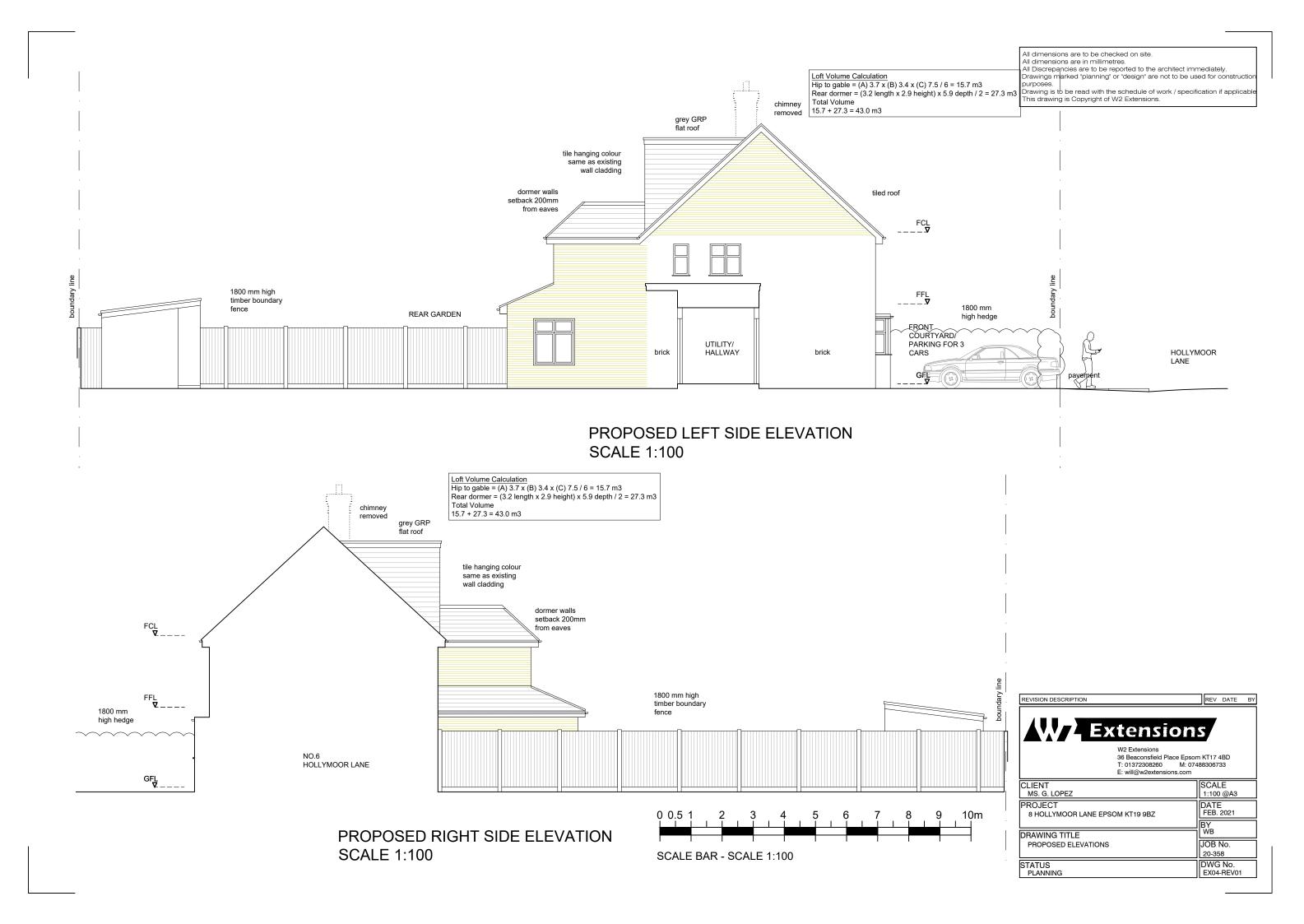

- 1. Communities and Local Government National Planning Policy Framework NPPF, 2019.
- 2. The London Plan The Spatial Development Strategy for Greater London March 2021
- 3. CIRIA, Defra, Environment Agency UK SuDS Manual, 2015.
- 4. Epsom and Ewell District Council Local Planning Policy 2015

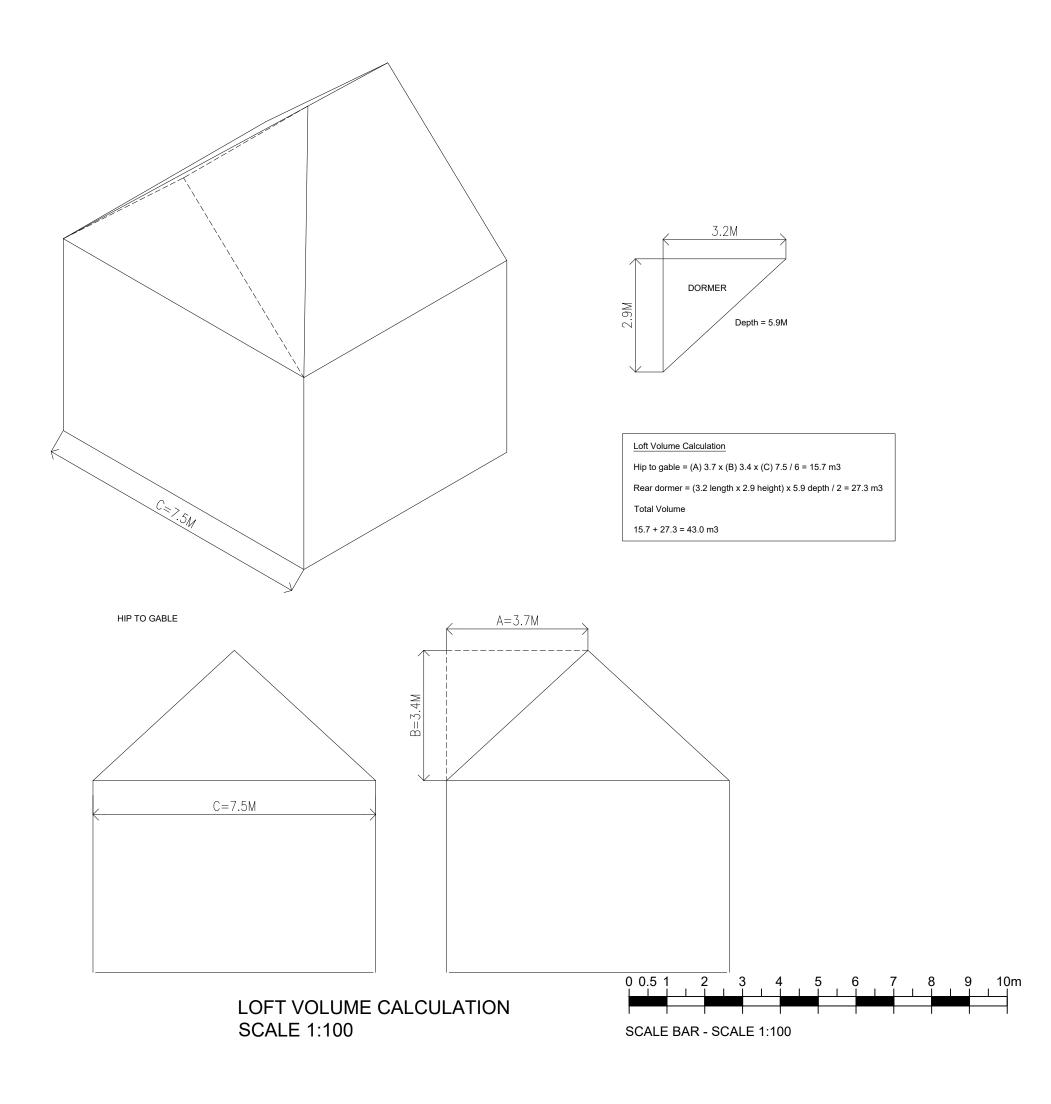


15 Appendices

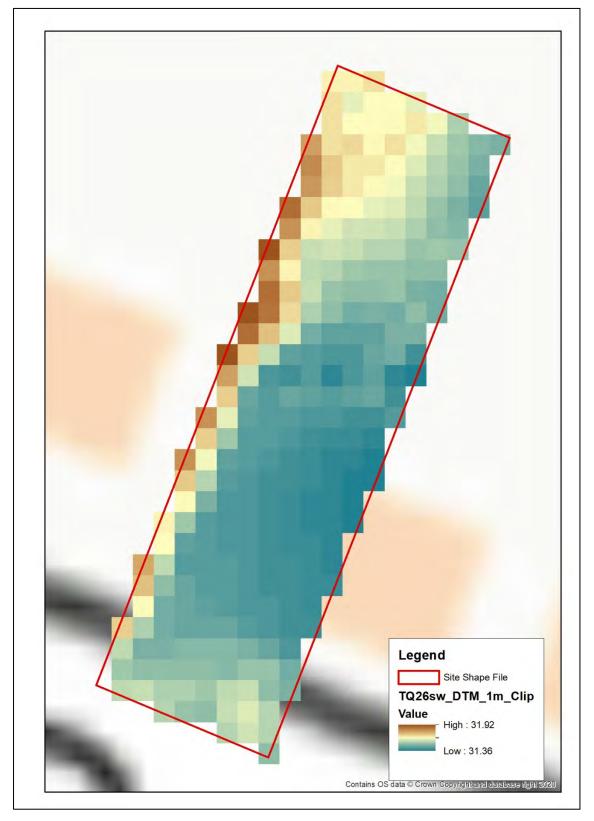

15.1 Appendix 1 – Development Plans

Report Reference: SWDS - 2021 - 000068
 Site Address: 8 Hollymoor Lane, Epsom, KT19 9BZ

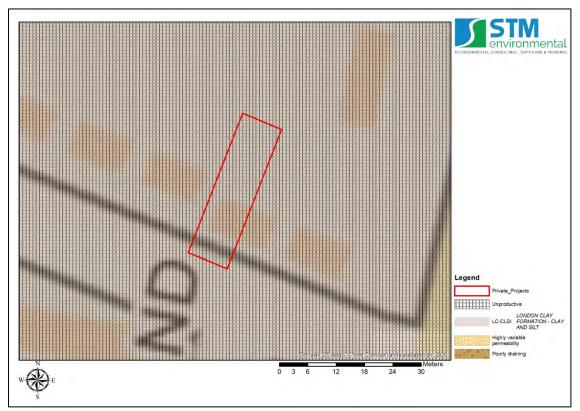



REVISION DESCRIPTION			REV	DATE	BY
36 E T: 0	Extensions Beaconsfield Plac	ce Epson M: 074	1 KT17		
CLIENT MS. G. LOPEZ			SCAI 1:100	E) @A3	
PROJECT 8 HOLLYMOOR LANE EPSOM K	T19 9BZ		DATE FEB.		
DRAWING TITLE			BY WB		
PROPOSED FLOOR PLANS			JOB 20-35		
STATUS PLANNING			DWG PR02	6 No. -REV01	

	REVISION DESCRIPTION	REV DATE BY
MOOR	W2 Extensions W2 Extensions 36 Beaconsfield Place Epsol T: 01372308260 M: 07- E: will@w2extensions.com	m KT17 4BD
	CLIENT MS. G. LOPEZ	SCALE 1:100 @A3
	PROJECT 8 HOLLYMOOR LANE EPSOM KT19 9BZ	DATE FEB. 2021
	L DRAWING TITLE PROPOSED ROOF PLAN, SECTION AA AND ELE.	BY WB JOB No. 20-358
	STATUS PLANNING	DWG No. PR03-REV01

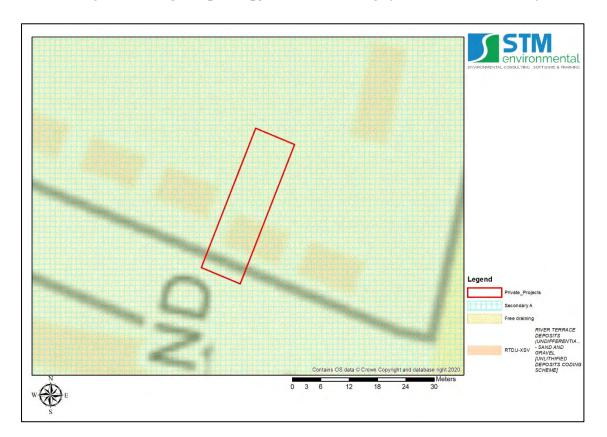

All dimensions are to be checked on site. All dimensions are in millimetres. All Discrepancies are to be reported to the architect immediately. Drawings marked "planning" or "design" are not to be used for construction purposes. Drawing is to be read with the schedule of work / specification if applicable This drawing is Copyright of W2 Extensions.

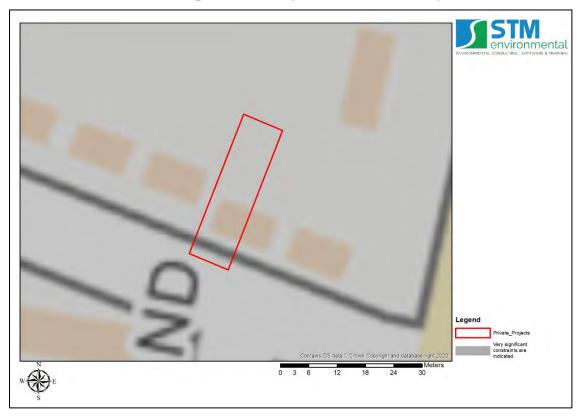
REVISION DESCRIPTION		R	EV DATE	BY
W/ Exte	nsior	1S	7	
36 Bea T: 013	ttensions aconsfield Place Eps 72308260 M: (@w2extensions.com	0748830		
CLIENT MS. G. LOPEZ			ALE 100 @A3	
PROJECT 8 HOLLYMOOR LANE EPSOM KT	19 9BZ	FE	TE B. 2021	
DRAWING TITLE LOFT VOLUME CALCULATION				
STATUS PLANNING			VG No. R05	



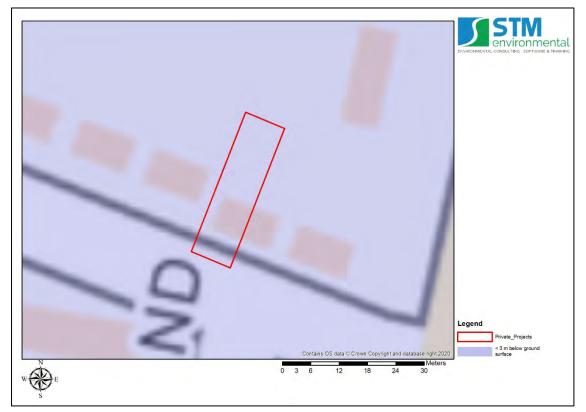
15.2 Appendix 2– Site Topography and Drainage Characteristics

15.2.1 LIDAR Mapping showing Site Topography - (Source: OS 2017)

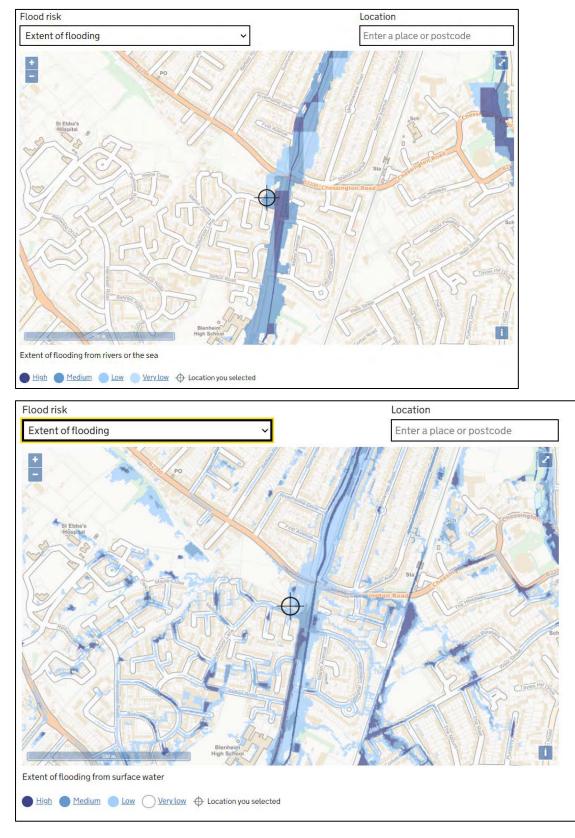


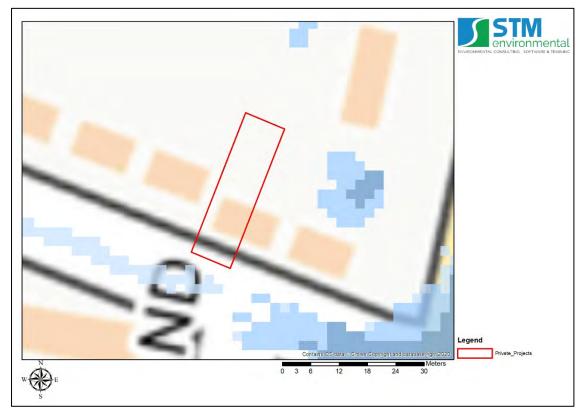

15.2.2 Bedrock Hydrogeology and Permeability (Source: BGS, 2016)

15.2.3 Superficial Hydrogeology & Permeability (Source: BGS, 2016)

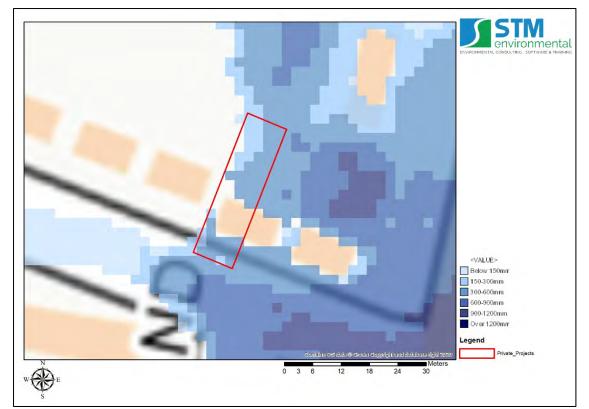


15.2.4 Infiltration Drainage Potential (Source: BGS, 2016)

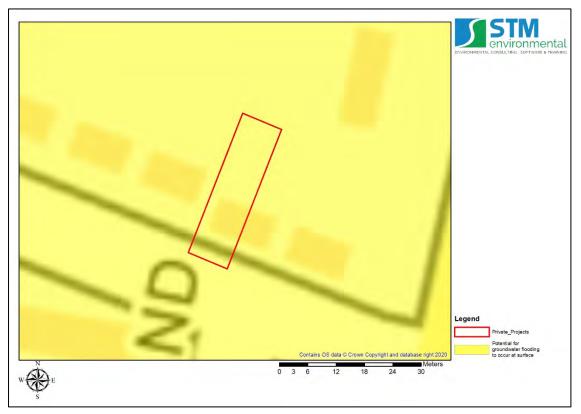

15.2.5 Groundwater Table Depth (Source: BGS 2016)


15.3 Appendix 3 – Flood Risk Mapping

15.3.1 Long Term Flood Risk Maps



15.3.2 Surface water flood depth during the 1 in 100 rainfall return periods (Source: EA, 2016).



15.3.3 Surface water flood depth during the 1 in 1000 year rainfall return periods (Source: EA, 2016).

15.3.4 Groundwater flooding susceptibility (Source: BGS, 2016).

15.4 Appendix 4 – Run-Off Rate and Storage Calculations

15.4.1 UK SuDS

Greenfield runoff rate estimation for sites

www.uksuds.com | Greenfield runoff tool

Calculated by:	Matthew Asho	down		Site Details	
Site name:		000		Latitude:	51.34943° N
Site hame.	8 Hollymoor L	ane		Longitude:	0.26301° W
Site location:	Epsom, KT19	9BZ			0.20001 W
in line with Environme	ent Agency guidance	e "Rainfall runoff m	anagement for de	•	3624395526
Defra, 2015), tr Defra, 2015). This inf the drainage of surfac	formation on greenfi	ield runoff rates ma		ry standards for SuDS setting consents for Date:	Dec 08 2021 13:48
Runoff estimati	on approach	IH124			
Site characteris	stics			Notes	
Total site area (ha)): 0.1			(1) Is Q _{BAR} < 2.0 I/s/ha?	
Methodology					
Q_{BAR} estimation r	nethod: Calcu	ulate from SPR	and SAAR	When Q_{BAR} is < 2.0 l/s/ha then lir	miting discharge rates are set
SPR estimation m	ethod: Calcu	ulate from SOIL	type	at 2.0 l/s/ha.	
Soil characteris					
SOIL type:	4	4		(2) Are flow rates < 5.0 l/s?	
HOST class:	N/A	N/A		Where flow rates are less than 5.) l/c concort for discharge is
SPR/SPRHOST:	0.47	0.47		usually set at 5.0 l/s if blockage fr	Ũ
Hydrological ch	naracteristics	Default	Edited	materials is possible. Lower cons where the blockage risk is addres	•
SAAR (mm):		658	658	drainage elements.	
Hydrological regic	n:	6	6	(3) Is SPR/SPRHOST ≤ 0.3?	
Growth curve fact	tor 1 year:	0.85	0.85		
Growth curve factor 30 years: 2.3		2.3	2.3		
Growth curve fact	tor 100 years:	3.19	3.19	soakaways to avoid discharge off preferred for disposal of surface v	
Crowth our of foot	tor 200 years:	3.74	3.74		

Greenfield runoff rates	Default	Edited
Q _{BAR} (I/s):	0.45	0.45
1 in 1 year (l/s):	0.38	0.38
1 in 30 years (l/s):	1.03	1.03
1 in 100 year (l/s):	1.43	1.43
1 in 200 years (l/s):	1.68	1.68

This report was produced using the greenfield runoff tool developed by HR Wallingford and available at www.uksuds.com. The use of this tool is subject to the UK SuDS terms and conditions and licence agreement, which can both be found at www.uksuds.com/termsand-conditions.htm. The outputs from this tool are estimates of greenfield runoff rates. The use of these results is the responsibility of the users of this tool. No liability will be accepted by HR Wallingford, the Environment Agency, CEH, Hydrosolutions or any other organisation for the use of this data in the design or operational characteristics of any drainage scheme.

Surface water storage requirements for sites

www.uksuds.com | Storage estimation tool

Calculated by:	Matthew Ashdown
Site name:	8 Hollymoor Lane, Z
Site location:	Epsom, KT19 9B

This is an estimation of the storage volume requirements that are needed to meet normal best practice criteria in line with Environment Agency guidance "Rainfall runoff management for developments", SC030219 (2013), the SuDS Manual C753 (Ciria, 2015) and the non-statutory standards for SuDS (Defra, 2015). It is not to be used for detailed design of drainage systems. It is recommended that hydraulic modelling software is used to calculate volume requirements and design details before finalising the design of the drainage scheme.

Site Details	
Latitude:	51.34942° N
Longitude:	0.26311° W
Reference:	193091809
Date:	Dec 08 2021 13:53

Site characteristics		Methodology					
Total site area (ha):	0.0265	esti	IH	124			
Significant public open space (ha):	0	Q _{BAR} estimation method	l: Ca	alculate f	rom SPI	R and S/	۹AR
Area positively drained (ha):	0.0265	SPR estimation method	Ca	alculate f	rom SO	IL type	
Impermeable area (ha):	0.0169	Soil characteristics	De	fault	Ec	lited	
Percentage of drained area that is impermeable (%):	64	SOIL type:	4		4		
Impervious area drained via infiltration (ha):	0	SPR:	0.47		0.47		
Return period for infiltration system design (year):	10	Hydrological		Defa	ault	Edi	ted
Impervious area drained to rainwater harvesting (ha):	0	characteristics					
Return period for rainwater harvesting system (year):	10	Rainfall 100 yrs 6 hrs:				63	
Compliance factor for rainwater harvesting system (%):	66	Rainfall 100 yrs 12 hrs:				97.79	
Net site area for storage volume design (ha):	0.03	FEH / FSR conversion fa	actor:	1.27		1.27	
Net impermable area for storage volume design (ha):	0.02	SAAR (mm):		658		658	
Pervious area contribution to runoff (%):	30	M5-60 Rainfall Depth (m	ım):	20		20	
* where rainwater harvesting or infiltration has been used	for managing	'r' Ratio M5-60/M5-2 da	ay:	0.4		0.4	
surface water runoff such that the effective impermeable	0 0	Hydological region:		6		6	
than 50% of the 'area positively drained', the 'net site are estimates of $\rm Q_{BAR}$ and other flow rates will have been red		Growth curve factor 1 ye	ear:	0.85		0.85	

Design criteria

accordingly.

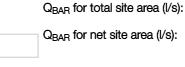
Climate change allowance factor:

1.4

Urban creep allowance factor:

Volume control approach

Interception rainfall depth (mm):


Minimum flow rate (l/s):

1.1

2

years:

Growth curve factor 10 year:

Growth curve factor 30 year:

Growth curve factor 100

1.62

2.3

3.19

0.12

0.12

1.62

2.3

3.19

0.12

0.12

Site discharge rates	Default	Edited	Estimated storage volumes	Default	Edited
1 in 1 year (l/s):	2	2	Attenuation storage 1/100 years (m ³):	3	3
1 in 30 years (l/s):	2	2	Long term storage 1/100 years (m ³):	0	0
1 in 100 year (l/s):	2	2	Total storage 1/100 years (m ³):	3	3

This report was produced using the storage estimation tool developed by HRWallingford and available at www.uksuds.com. The use of this tool is subject to the UK SuDS terms and conditions and licence agreement, which can both be found at http://uksuds.com/termsand-conditions.htm. The outputs from this tool have been used to estimate storage volume requirements. The use of these results is the responsibility of the users of this tool. No liability will be accepted by HR Wallingford, the Environment Agency, CEH, Hydrosolutions or any other organisation for the use of these data in the design or operational characteristics of any drainage scheme.

15.4.2 IH124 method

			DEDODT OUTDUT VALUES		
			REPORT OUTPUT VALUES Greenfield Run-off Rate -1 in 100 + CC		
ltem	Value		(l/s)	0.5628	
Climate Change Allowance Foster			Total Post Development Run-off Rate - 1	0.007	
Climate Change Allowance Factor	1.40		in 100 + CC (I/s) Difference between Greenfield and Post	0.6697	
			Development Run Off Rates - 1 in 100 +		
SAAR(mm) - Current	658.00		CC (I/s)	0.1069	
			Volume of Storage Required to meet Greenfield Discharge - Difference		
			between Post Development and		
SAAR (mm) + CC	921.20		Greenfield 1 in 100 + CC volumes (m3)	2.3090	
			Difference between 3 * Greenfield and Post Development 1 in 100 + CC Run Off		
SPR (Greenfield)	0.47		Rates	-1.0186	
			Volume of Storage Required to meet 3 *		
			Greenfield Discharge - Difference		
SPR (Impermeable)	0.53		between Proposed Development and 3 * Greenfield 1 in 100 +CC (m3)	-22.0021	
Site Area (ha)	0.0265		Greenneid I III 100 +CC (IIS)	-22.0021	
Impermable Area (Pre Development - ha)	0.01430				
Permeanble Area (Pre Development - ha))	0.0122000				
Impermable Area (Post Development - ha)	0.0169000				
Permeanble Area (Post Development - ha)	0.0096000				
GCF (1 in 1) GCF (1 in 30)	0.85				
GCF (1 in 100)	3.19				
Hyrdological Region	6				
Soil Type Rainfall 100 Yrs 6 hours mm	2				
Nament 100 115 0 Hour's MM	63			3 times	Volume (6 hr) - Standard
	QBAR50	Run-Off Rate I/s	l/s/ha (QBarA)	greenfield (I/s)	(m3)
Qbar	224.5348	0.1190			
1 in 1		0.1012			2.1849
1 in 30 1 in 100		0.2737		0.8211	5.9121 8.1998
GREENFIELD RUN-OFF + CC		0.0100		1.1000	0.1000
Qbar Impermeable	332.8538	0.1764	6.6571	0.5292	3.8105
1 in 1 +CC 1 in 30 + CC		0.1500	5.6585	0.4499	3.2389 8.7642
1 in 100 + CC		0.4057		1.6883	12.1555
PRE -DEVELOPMENT RUN-OFF (i.e. same		Impermeable Surface Run-Off (Volume (6 hr)
Impermeable Surface Calculation					
Qbar Impermeable	291.4137	0.0833	5.8283	0.2500	1.8002 1.5302
1 in 30		0.1917	13.4050	0.5751	4.1405
1 in 100		0.2659	18.5922	0.7976	5.7428
Permeable Surface Calculation	004 5040	Permeable Surface Run-off (I/s		0.1011	
Qbar Permeable 1 in 1	224.5348	0.0548	5.7069		1.0059
1 in 30		0.1260	13.1259		2.7218
1 in 100		0.1748		0.5243	3.7750
Qbar	Impermeal 515.9485	ble Surface Calculation + Perme 0.1381		0.4144	1.8002
Qbar 1 in 1	515.9405	0.1381			2.5361
1 in 30		0.3177	26.5310	0.9531	6.8623
1 in 100		0.4406	36.7973	1.3219	9.5178
PRE DEVELOPMENT RUN-OFF + CC (incr	reased rainfall)	Impermeable Surface Run-Off (/s)		
Impermeable Surface Calculation		importiouble outlade Ruit off			
Qbar Impermeable	431.9961	0.1236	7.3107	r	2.6687
1 in 1 +CC 1 in 30 + CC		0.1050	6.2141 16.8146		2.2684 6.1380
1 in 100 + CC		0.3941		, 	8.5131
Permeable Surface Calculation		Permeable Surface Run-off (I/s			
Qbar Permeable 1 in 1 +CC	332.8538	0.0812			1.4911
1 in 30 + CC		0.1868	19.4581		4.0348
1 in 100 + CC		0.2591	26.9875		5.5961
	Impermeal 764.8499	ble Surface Calculation + Perme	able Surface Calculation		
Qbar 1 in 1 +CC	/64.8499	0.2048	15.7707 13.4051	0.2436	2.6687 3.7595
1 in 30 + CC		0.4710	36.2727	0.5604	10.1728
1 in 100 + CC		0.6532	50.3086		14.1093
POST DEVELOPMENT RUN-OFF (i.e. same Impermeable Surface Calculation	e rainfall)	Impermeable Surface Run-Off (I/s/ha (QBarA)		Volume (6 hr)
Qbar Impermeable	291.4137	0.0985	5.8283	0.2955	,
1 in 1		0.0837	4.9540	0.2512	1.8084
1 in 30		0.2265	13.4050	0.6796	4.8934
1 in 100 Permeable Surface Calculation		0.3142 Permeable Surface Run-off (I/s		0.9426	6.7869
Qbar Permeable	224.5348	0.0431	4.4907	0.1293	
1 in 1		0.0366	3.8171	0.1099	0.7915
1 in 30 1 in 100		0.0992	10.3286	0.2975	2.1417 2.9705
			on + Permeable Surface Calculation	0.4120	2.9/05
Qbar Permeable	515.9485	0.1416	10.3190		
1 in 1	0.0000	0.1204	8.7711	0.3611	2.5999
1 in 30 1 in 100	0.0000	0.3257	23.7336		7.0351 9.7574
		0.4517	52.9173	1.0002	5.1314
POST DEVELOPMENT RUN-OFF + CC (inc	creased rainfall)	Impermeable Surface Run-Off ((I/s)		
Impermeable Surface Calculation	431.9961	0.1460	0.000		2.4500
Qbar Impermeable 1 in 1 +CC	431.9961	0.1460	8.6399 7.3439)	3.1539 2.6808
1 in 30 + CC		0.3358	19.8718		7.2540
1 in 100 + CC		0.4658			10.0610
Permeable Surface Coloulation		Permeable Surface Run-off (I/s 0.0639	6.6571	0.1917	
Permeable Surface Calculation Qbar Permeable	332,8538			0.1630	1.1733
Permeable Surface Calculation Qbar Permeable 1 in 1 +CC	332.8538	0.0543	5.6585	0.1000	
Qbar Permeable 1 in 1 +CC 1 in 30 + CC		0.1470	15.3113	0.4410	3.1749
Qbar Permeable 1 in 1 +CC		0.1470 0.2039	15.3113 21.2361	0.4410	
Qbar Permeable 1 in 1 +CC 1 in 30 + CC		0.1470	15.3113 21.2361	0.4410 0.6116	3.1749
Obar Permeable 1 in 1+CC 1 in 3+CC 1 in 100 + CC 1 in 100 + CC Obar 1 in 1+CC 1 in 1+CC	Impermeal 764.8499	0.1470 0.2039 ole Surface Calculation + Perme 0.2099 0.1784	15.3113 21.2361 able Surface Calculation 15.2970 13.0024	0.4410 0.6116 0.1917 0.1630	3.1749 4.4035 3.1539 3.8542
Obar Permeable 1 in 1 + 0C 1 in 3 0 + CC 1 in 100 + CC Obar	Impermeal 764.8499	0.1470 0.2039 ole Surface Calculation + Perme 0.2099	15.3112 21.2361 able Surface Calculation 15.2970 13.0024 35.1831	0.4410 0.6116 0.1917 0.1630 0.4410	3.1749 4.4035 3.1539

STM Environmental Consultants		Page 1
Unit 6, Crane Mews		
32 Gould Road, Twickenham		
London, TW2 6RS		Micro
Date 09/12/2021 15:15	Designed by Matthew	Drainage
File 8 Hollymoor - Proposal.MDX	Checked by	brainage
Innovyze	Network 2020.1	
STORM SEWER DESIGN	by the Modified Rational Method	
Design	Criteria for Storm	
Pipe Sizes ST.	NDARD Manhole Sizes STANDARD	
	Model - England and Wales	
Return Period (years) M5-60 (mm)	100 PI 20.000 Add Flow / Climate Chan	MP (%) 100 qe (%) 0
	0.402 Minimum Backdrop Heig	
Maximum Rainfall (mm/hr)	1 3	
Maximum Time of Concentration (mins) Foul Sewage (1/s/ha)		
Volumetric Runoff Coeff.	5 1	
Design	ed with Level Soffits	
Time Ar	ea Diagram for Storm	
Time	Area Time Area	
-) (ha) (mins) (ha)	
	4 0 012 4 0 0 001	
0-	4 0.013 4-8 0.001	
Total Area	Contributing (ha) = 0.014	
Total P	pe Volume (m³) = 0.240	
Network I	esign Table for Storm	
	E. Base k HYD DIA Section	
(m) (m) (1:X) (ha) (m	ns) Flow (l/s) (mm) SECT (mm).	Design
	0.0 0.600 o 100 Pipe/Co	
	0.00 0.0 0.600 o 100 Pipe/Co 0.00 0.0 0.600 o 100 Pipe/Co	
	0.00 0.0 0.600 o 100 Pipe/Co 0.00 0.0 0.600 o 100 Pipe/Co	
	0.00 0.0 0.600 o 100 Pipe/Co	nduit 🔐
Netw	ork Results Table	
PN Rain T.C. US/IL E I.	Area Σ Base Foul Add Flow Vel (Cap Flow
(mm/hr) (mins) (m) (h	a) Flow (l/s) (l/s) (l/s) (m/s) (l	L/s) (l/s)
s1.000 50.00 5.10 31.250 0	.000 0.0 0.0 0.0 1.01	7.9 0.0
	.000 0.0 0.0 0.0 1.01	7.9 0.0
S1.002 50.00 5.31 31.057 0	.007 0.0 0.0 0.0 1.01	8.0 0.9
	.014 0.0 0.0 0.0 1.01	7.9 1.9
S1.004 50.00 5.50 30.831 0	.014 0.0 0.0 0.0 1.01	7.9 1.9
©19	82-2020 Innovyze	
	-	

STM Envi	ronme	ental C	onsul	tants				P	age 2
Unit 6,									
32 Gould	l Road	d, Twic	kenha	m					Le
London,								N	Mirro
Date 09/	12/20	021 15:	15		De	signed by	Matthew		Drainage
File 8 H	lollyr	noor - i	Propo	sal.MDX	Ch	ecked by			Janayo
Innovyze	2				Ne	twork 2020	.1		
		Settin	לוו∩ ד	Informa	tio	n - True (Coordinates	(Storm)	
PN	USMH Name	Dia/Len (mm)	Width (mm)	US Eastin (m)	ng T	JS Northing (m)	Intersection Easting (m)		
S1.000	S1	450		521075.63	10	162581.175	521075.610	162581.175	5
S1.001	S2	450		521070.18	89	162583.423	521070.189	162583.423	3
S1.002	S3	450		521068.28	81	162578.264			
S1.003	S4	450		521065.64	44	162571.522	521065.644	162571.522	2
S1.004	S5			521063.93	31	162565.851			Q
		PN	DSMH Name		/idtl (mm)	-	g DS Northing (m)	Layout (North)	Ň
		S1.004			()		162560.488	(102 01)	
								٥	
				©198	32-1	2020 Innov	vze		

STM Envi	ronme	ental Co	onsul	tants					Page 3
Unit 6,	Crane	e Mews							
32 Gould			kenha	m					·
London,									Micco
Date 09/			15		Des	signed by	Matthew		MILIU
File 8 H				sal MDX		ecked by	110001101		Drainage
Innovyze				Sar. MDA		twork 2020	1		-
тшоууге					INC.	CWOIR ZUZ	J.1		
		Setting	g Out	Informa	tio	n - Site	Coordinates	(Storm)	
PN	USMH Name	Dia/Len (mm)	Width (mm)	US Eastin (m)	ng U	S Northing (m)	Intersection Easting (m)		
S1.000	S1	450		521075.63	10	162581.175	521075.610	162581.1	75
S1.001	S2	450		521070.1	89	162583.423	521070.189	162583.4	23
S1.002	S3	450		521068.23	81	162578.264			
S1.003	S4	450		521065.64	44	162571.522	521065.644	162571.5	22
S1.004	S5			521063.93	31	162565.851			¢,
		PN	DSMH Name		/idth (mm)		g DS Northing (m)	Layout (North)	× ×
		S1.004			(11111)		(m) 1 162560.488	(NOI CII)	
		51.004	2	U		521000.00	1 102500.488	١	
				@100	20 0	2020 Innov			
				@198	JZ-Z	JUZU IIIIOV	y 2C		

STM Environmental Consultants		Page 4
Unit 6, Crane Mews		
32 Gould Road, Twickenham		·
London, TW2 6RS		Mirro
Date 09/12/2021 15:15	Designed by Matthew	Dcainago
File 8 Hollymoor - Proposal.MDX	Checked by	Diamage
Innovyze	Network 2020.1	

Area Summary for Storm

Pipe Number		PIMP Name	PIMP (%)	Gross Area (ha)	Imp. Area (ha)	Pipe Total (ha)
1.000	-	-	100	0.000	0.000	0.000
1.001	-	-	100	0.000	0.000	0.000
1.002	-	-	100	0.007	0.007	0.007
1.003	-	-	100	0.007	0.007	0.007
1.004	-	-	100	0.000	0.000	0.000
				Total	Total	Total
				0.014	0.014	0.014

©1982-2020 Innovyze

STM Envir				nts					Page 5
Unit 6, C	rane	Mews	5						
32 Gould	Road	l, Twi	ickenham						"Grander and a second
London, I	W2 6	RS							Micco
Date 09/1	2/20	21 1	5:15	Γ	Designed by I	Matth	ew		
File 8 Ho	, . 	oor -	- Proposa		Checked by				Drainago
Innovyze)TTÄ.	1001	1102050		Jetwork 2020	.1			
			Netwo	ork Clas	sifications	for	Storm		
PN		-	Min Cover		r Pipe Type	мн	МН	MH Ring	МН Туре
	Name	Dia	Depth	Depth				Depth	
		(mm)	(m)	(m)		(mm)	(mm)	(m)	
S1.000	S1	100	0.100	0.20	0 Unclassified	450	0	0.100	Unclassified
S1.001	S2	100	0.200	0.29	3 Unclassified	450	0	0.200	Unclassified
S1.002	S3	100	0.293	0.41	8 Unclassified	l 450	0	0.293	Unclassified
S1.003	S4	100	0.418	0.46	9 Unclassified	l 450	0	0.418	Unclassified
S1.004	S5	100	0.422	0.46	9 Unclassified	l			Junction
			Free Fl	owing Oi	utfall Detai	lg fo	r sto	rm	
			<u>1100 11</u>	owing of		10 10	1 000	<u> </u>	
					Level I. Level (m) (m)			D,L W mm) (mm)	
		Tipe	Number	anc	(ш) (ш)		n)	<u>1111</u>) (1111)	
			S1.004	S 3	31.250 30.728	в с	.000	0 0)
			~ '		~	~			
			Sin	ulation	Criteria fo	or Sto	orm		
	Vo	lumetr	ric Runoff	Coeff 0.	750 Addition	al Flo	ow – %	of Total	L Flow 0.000
	A	real F	Reduction F	actor 1.	000 MADE	Facto	or * 10)m³/ha St	corage 2.000
		F	Hot Start (mins)	0		Inlet	Coeffie	ecient 0.800
		Hot S	Start Level	(mm)	0 Flow per P	erson	per Da	ay (l/per	c/day) 0.000
Manho	le He	adloss	s Coeff (Gl					un Time (
Fou	l Sew	age pe	er hectare	(l/s) 0.	000	Out	tput Ir	nterval	(mins) 1
	N		-		hs 0 Number o		-		
					ols 0 Number o:			-	
		Numbe	r of Offli	ne Contro	ols 0 Number o:	t Real	Time	Controls	0
			S	ynthetio	c Rainfall D	etail	S		
		Rai	nfall Mode	1	FSR		Profi	le Type	Summer
	Retur		iod (years		100			Summer)	
	neccui				and Wales			Winter)	
			M5-60 (mm	-	20.000 Sto	orm Du			30
			Ratio 1		0.402			(

©1982-2020 Innovyze

STM Env	ironme	ental	Consult	cants					Pag	е б
Unit 6,	Crane	e Mews	5							
32 Goul	d Road	d, Twi	ckenhar	n					26	
London,	TW2 6	SRS							Min	
Date 09			:15	I	Designe	d by Ma	atthew			
File 8 1	Hollyr	noor -	Propos	sal.MDX (Checked	by			Ulc	inage
Innovyz					Jetwork		L			
		Areal R	eduction	<u>Simu</u> Factor 1.	lation C 000 Ad	<u>riteria</u> ditiona	l Flow -	+0% for St % of Total I	Flow 0	
	oul Sew	Hot S adloss vage pe	tart Lev Coeff (r hectar	rel (mm) Global) 0. re (l/s) 0.	0 500 Flow 000	per Pe	Inl rson per	10m³/ha Stor et Coeffiec: Day (l/per/o Structures 0	lent 0 lay) 0	.800
		Numbe	er of On	line Contro line Contro	ols 0 Nut	nber of nber of	Time/Area Real Time	a Diagrams (e Controls (
		Ra	ainfall I Re M5-60	Model egion Engla	and and W	FSR Vales Cv	Ratio F	0.750		
	Mar	gin fo	r Flood i	Risk Warnir	ng (mm)			30	0.0	
			1	-	-	2.5 Secc	ond Increm	ment (Extend		
					Status Status				ON ON	
				Inertia					ON	
				Pi	ofile(s) Summer	and Wint	er		
			Retur	Duration(s n Period(s) Climate Ch	(years)		360 100 20		
PN	US/MH Name		Water : Level (m)	Surcharged Depth (m)		Flow / Cap.	Overflow (l/s)	Half Drain Time (mins)	Flow	Status
S1.000	S1	1	31.250	-0.100	0.000	0.00			0.0	OK
S1.001	S2		31.150	-0.100	0.000	0.00			0.0	OK
S1.002	S3		31.068	-0.089	0.000	0.03			0.2	OK
S1.003 S1.004	S4 S5		30.947 30.845	-0.085 -0.085	0.000 0.000	0.06 0.05			0.4 0.4	OK OK*
				©1982	-2020]	Innovyz	e			

STM Env	ironme	ental	Consult	ants					Pag	e 7
Unit 6,	Crane	e Mews	3							
32 Goul	d Road	d, Twi	ckenhar	n					20	
London,	TW2 6	SRS							Mi	cro
Date 09	/12/20	021 15	5:15	I	Designe	d by Ma	atthew		Dc	inage
File 8 1	Hollyr	noor -	- Propos	sal.MDX (Checked	by				may
Innovyz	e			1	Network	2020.2	L			
	Sumn	nary W	lizard o	of 360 min	nute 30	year	Summer I	+0% for St	torm	
	nole He	H Hot S adloss	lot Start Start Lev Coeff (Factor 1. (mins) rel (mm)	0 0 500 Flow	lditiona MADD	l Flow - Factor * Inl	% of Total 1 10m³/ha Sto: et Coeffiec: Day (l/per/o	rage 2 ient 0	.000 .800
	1	Numbe	er of On	line Contro	ols 0 Nu	mber of	Time/Area	Structures (a Diagrams (e Controls ()	
		Ra	ainfall I Re		ic Rainfa	FSR	Ratio H			
			M5-60				(Winter			
	Mar	gin fo	r Flood i	Risk Warnin	ng (mm)			30	0.0	
		2		Analysis T:	imestep	2.5 Seco	ond Increm	ment (Extend	led)	
					Status Status				ON ON	
				Inertia					ON	
				Pi	rofile(s) Summer	and Wint	cer		
			Retur	Duration(s n Period(s Climate Ch) (years)		360 L00 20		
PN	US/MH Name	Storm Rank	Water : Level (m)	Surcharged Depth (m)			Overflow (1/s)	Half Drain Time (mins)	Flow	Status
						-		· · · ·		
S1.000 S1.001	S1 S2		31.250 31.150	-0.100 -0.100	0.000	0.00 0.00			0.0 0.0	OK OK
S1.002	S3		31.073	-0.084	0.000	0.06			0.5	OK
S1.003 S1.004	S4		30.956	-0.076	0.000	0.13			0.9	OK
S1.004	S5	3	30.853	-0.078	0.000	0.12			0.9	OK*
				@1000	2-2020	r	-			

STM Environmental Co	onsultants					Page	e 8
Unit 6, Crane Mews							
32 Gould Road, Twick	kenham					20	
London, TW2 6RS						Min	
Date 09/12/2021 15:1	15 1	Designed	l by Ma	atthew			10
File 8 Hollymoor - P	Proposal.MDX	Checked	by			Ulc	iinage
Innovyze		Network		_			
Areal Redu Hot Hot Star Manhole Headloss Co Foul Sewage per h Number of Number o Number o	Luction Factor 1. Start (mins) rt Level (mm) Coeff (Global) 0. hectare (l/s) 0. f Input Hydrogram of Online Contro of Offline Contro	ulation C: 000 Ad 0 .500 Flow .000 phs 0 Num ols 0 Num ols 0 Num ic Rainfa	riteria ditiona MADD 1 per Pe: ber of ber of ber of ber of fSR	l Flow - % Factor * 1 Inle rson per I Storage S Time/Area Real Time <u>ils</u> Ratio R	s of Total F .0m³/ha Stor et Coeffieci Day (l/per/d tructures 0 Diagrams 0 Controls 0 0.406	flow 0. cage 2. Lent 0. day) 0.	000 800
	M5-60 (mm) Flood Risk Warnin Analysis T	20 ng (mm)	.000 Cv	(Winter)	0.840	0.0 ed) ON	
	DVD Inertia	Status Status				ON ON	
	P: Duration(; Return Period(s Climate C	s) (mins)			60		
US/MH Storm L	ater Surcharged Level Depth (m) (m)		Flow / Cap.	Overflow (1/s)	Half Drain Time (mins)	Flow	Status
S1.001 S2 3 31 S1.002 S3 1 31 S1.003 S4 1 30	1.250 -0.100 1.150 -0.100 1.078 -0.079 0.962 -0.070 0.859 -0.072	0.000 0.000	0.00 0.00 0.10 0.20 0.18			0.0 0.0 0.7 1.4 1.4	OK OK OK OK*
	©1982	2-2020 I	nnovyz	e			

STM Env	ironme	ental	Consult	ants					Pag	e 9
Unit 6,	Crane	e Mews	3							
32 Goul	d Road	d, Twi	ckenhar	n					-	
London,	TW2 6	SRS							Mi	cro
Date 09	/12/20	021 15	5:15	I	Designe	d by Ma	atthew		Dc	inage
File 8 1	Hollyr	noor -	Propos	sal.MDX (Checked	by			DIC	maye
Innovyz	e			1	Jetwork	2020.1	L			
	Sum	mary N	Wizard	of 360 mi	nute 1	year W	linter I	+0% for St	orm	
	nole He Dul Sew	H Hot S adloss vage pe	ot Start tart Lev Coeff (r hectar	Factor 1. (mins) rel (mm) Global) 0. e (l/s) 0.	0 0 500 Flow 000	ditiona MADD v per Pe	l Flow - Factor * Inl rson per	% of Total 1 10m³/ha Sto: et Coeffiec Day (1/per/o	rage 2 ient 0 day) 0	.000 .800
]	Numbe	er of On	line Contro	ols 0 Nu	mber of	Time/Area	Structures (a Diagrams (e Controls ()	
		Ra	ainfall M Re		ic Rainfa	FSR	Ratio F			
			M5-60				(Winter)			
	Mar	ain fo	r Flood 1	Risk Warnin	ng (mm)			30	0.0	
	Hai	9111 10.			-	2.5 Seco	ond Increm	nent (Extend		
					Status				ON	
				Inertia	Status Status				ON ON	
				Pi	cofile(s) Summer	and Wint	er		
				Duration(s				360		
			Retur	n Period(s) Climate Ch) (years)	1, 30, 1 0, 0,	L00		
				CIIMALE CI	lange (%)	0, 0,	20		
PN	US/MH Name		Water : Level (m)	Surcharged Depth (m)		Flow / Cap.	Overflow (1/s)	Half Drain Time (mins)	Flow	Status
PN	Name				(111-)	cap.	(1/5)	(mins)	(1/5)	Status
S1.000 S1.001	S1 S2		31.250 31.150	-0.100 -0.100	0.000 0.000	0.00 0.00			0.0 0.0	OK OK
S1.001	S3		31.067	-0.090	0.000	0.02			0.1	OK
S1.003	S4		30.945	-0.087	0.000	0.04			0.3	OK
S1.004	S5	6	30.843	-0.088	0.000	0.04			0.3	OK*
				©1982	2020	Innovyz	e			

STM Env	ironme	ental	Consult	ants					Pag	e 10
Unit 6,	Crane	e Mews	5							
32 Goul	d Road	d, Twi	lckenhar	n					-	-
London,	TW2 (6RS							Mi	cro
Date 09	/12/20	021 15	5:15	I	Designe	d by Ma	atthew		Dc	ainage
File 8 1	Hollyn	moor -	- Propos	sal.MDX (Checked	by				maye
Innovyz	e			1	Network	2020.2	1			
	Sum	nary W	lizard c	of 360 min	nute 30	year	Winter I	:+0% for S	torm	
	nole He	H Hot S adloss	lot Start Start Lev S Coeff (Factor 1. (mins) rel (mm)	0 0 500 Flow	lditiona MADD	l Flow - Factor * Inl	% of Total 1 10m³/ha Sto: et Coeffiec: Day (l/per/o	rage 2 ient 0	.000 .800
	:	Numb	er of Onl	line Contro	ols 0 Nu	mber of	Time/Area	Structures (a Diagrams (e Controls ()	
		R		Model egion Engla		FSR Wales Cu	Ratio H	0.750		
			M5-60	(mm)	20	0.000 Ct	(Winter)	0.840		
	Mar	gin fo	r Flood 1	Risk Warnin	ng (mm)			30	0.0	
			i	-	-	2.5 Seco	ond Increm	ment (Extend		
					Status Status				ON ON	
				Inertia	Status				ON	
						,	and Wint			
			Retur	Duration(s n Period(s Climate Ch) (years)		360 100 20		
			Level	Surcharged Depth	Volume	Flow /	Overflow		Flow	
PN	Name	Rank	(m)	(m)	(m³)	Cap.	(1/s)	(mins)	(l/s)	Status
S1.000	S1		31.250	-0.100	0.000	0.00			0.0	OK
S1.001 S1.002	S2 S3		31.150 31.071	-0.100 -0.086	0.000	0.00 0.05			0.0 0.3	OK OK
S1.002 S1.003	53 S4		30.952	-0.080	0.000	0.09			0.3	OK
S1.004	S5	4	30.850	-0.081	0.000	0.08			0.7	OK*

STM Environmental Consultants					Pag	e 11
Unit 6, Crane Mews						
32 Gould Road, Twickenham					26	
London, TW2 6RS					Mi	
Date 09/12/2021 15:15	Designe	d by Ma	atthew			linado
File 8 Hollymoor - Proposal.M	DX Checked	by			Die	iinage
Innovyze	Network	2020.1	L			
Summary Wizard of 360 Areal Reduction Factor Hot Start (mins Hot Start Level (mr Manhole Headloss Coeff (Global	<u>Simulation (</u> or 1.000 Ac s) 0 n) 0	<u>riteria</u> ditiona MADD	l Flow - Factor * Inl	% of Total H 10m³/ha Stor et Coeffiec:	Flow 0 cage 2 ient 0	.000 .800
Foul Sewage per hectare (1/s		. <u>F</u>				
Rainfall Model	ontrols 0 Nu ontrols 0 Nu thetic Rainf England and	mber of mber of all Deta FSR Wales Cw	Time/Area Real Time Lils Ratio F	a Diagrams 0 e Controls 0 e 0.406 0.750		
	, , ,			2.0		
Margin for Flood Risk W Analys	is Timestep	2.5 Seco	ond Increm		0.0 ed)	
	DTS Status				ON	
The	DVD Status				ON	
Ine	rtia Status				ON	
			1			
Return Peri	Profile(s ion(s) (mins od(s) (years te Change (%))	3	360 _00		
Water Surcha US/MH Storm Level Dept PN Name Rank (m) (m)	th Volume		Overflow (l/s)	Half Drain Time (mins)	Flow	Status
s1.000 s1 6 31.250 -0	.100 0.000	0.00			0.0	ОК
	.100 0.000	0.00			0.0	OK
	.083 0.000	0.07			0.5	OK
	.075 0.000 .076 0.000	0.15 0.13			1.0 1.0	OK OK*
						-

15.4.3 Microdrainage Quick Storage Estimates - Pre- Development

1/ Quick Storage Estimate				
	Results			
Micro Drainage	Global Variables require approximate storage of between 19 m ³ and 19 m ³ .			
	These values are estimates only and should not be used for design purposes.			
Variables				
Results				
Design				
Overview 2D				
Overview 3D				
Vt				
Analyse OK Cancel Help				
Enter Climate Change between -100 and 600				

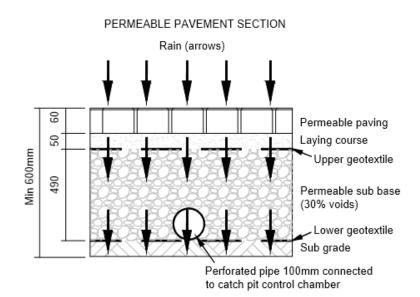
15.4.4 Microdrainage Quick Storage Estimates - Post - Development

🖊 Quick Storage	Estimate				
	Results				
Micro Drainage	Global Variables require approximate storage of between 24 m ³ and 24 m ³ .				
	These values are estimates only and should not be used for design purposes.				
Variables					
Results					
Design					
Overview 2D					
Overview 3D					
Vt					
Analyse OK Cancel Help					
Select required Rainfall Model from the list					

15.5 Appendix 5 – SuDS Suitability Assessment

Suds Technique	Typical Uses	Potential Issues	Potential Suitability
Rainwater Harvesting	Capture of rainwater into a tank(s) for use (usually non- potable) such as irrigation, toilet flushing, vehicle or plant cleansing.	Care is needed to prevent the development of bacteria, algae and insect infestation.	Suitable on small scale for interception storage
Infiltration: Soakaways Infiltration Trenches and Basins	Infiltration components are used to capture surface water runoff and allow it to infiltrate (soak) and filter through to the subsoil layer, into the groundwater.	Variable draining geology. Groundwater table is potentially < 3m below surface. Could increase flood risk. Maintenance	Unsuitable
Green/Brown /Blue Roofs	Used on flat or shallow pitched roofs to provide a durable roof covering which also provides thermal insulation, amenity space, biodiversity habitat as well as attenuation of rainwater.	Maintenance - Ensuring safe access	Unsuitable

Suds Technique	Typical Uses	Potential Issues	Potential Suitability
Rain Gardens	Creation of planted landscaped areas to allow the diversion of a portion of rainwater from either downpipes or surrounding paved surfaces. Raingardens can either allow infiltration into the ground or have tanked systems for water retention.	Require maintenance	Suitable - storage only
Permeable Pavements / Surfaces	Permeable hard surfaces that allow rainwater to pass through either into the ground or to tanked systems. Good as interception storage.	Potential impact of saturation on pavement stability to be considered. May require extensive use of impermeable membranes and under-drainage. Maintenance required.	Suitable - Lined
Swales	Dry ditches used as landscape features to allow the storage and infiltration of rainwater. Often used as linear features alongside roads, footpaths or rail lines but capable of being integrated into the design of many open spaces.	Finding available space in proposed site layout	Unsuitable
Detention Basin/Ponds	Landscape features designed to store and in some cases infiltrate rainwater. Detentions basins are usually dry, whereas a pond should retain water. These features need areas of open space but can often be combined with other sustainable drainage techniques.	Potential health and safety issues. Finding available space in proposed site layout	Unsuitable
Storage Tanks/	Usually below ground level, they attenuate rainwater for	Pumping may sometimes be required	Unsuitable


Suds Technique	Typical Uses	Potential Issues	Potential Suitability
Geocellular Storage	later slow release back into the drainage system.	to empty the tank into the drainage system	
Oversized Piping	Using larger than necessary pipework creates additional space to store rainwater.	Lacks the wider benefits of the green infrastructure-based techniques	Suitable

15.6 Appendix 6 – Descriptions of SuDS Techniques

15.6.1 Permeable Paving

Various options are available for the type of permeable paving that can be installed. Permeable block paving allows for infiltration through gaps in the surface. This can be underlain by a geotextile membrane and fine gravel course followed by with a subbase or geocellular crates as shown in the figures below.

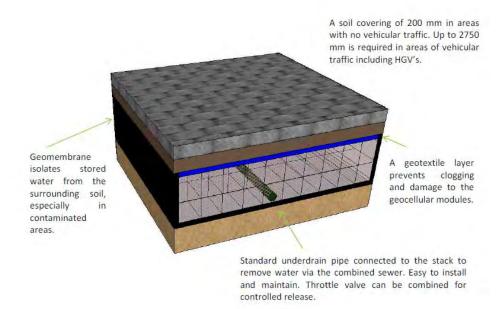


Figure 3 Block Permeable Paving with sub-base

The use of geocellular module storage provides structural strength (up to 400kN/m2) and high-water storage capacity with void space of 95%+.

51

Figure 4 Block Permeable Paving with Geocellular Module

The plastic or concrete grid system is usually installed with a depth of 40 mm, with gaps between filled with an appropriate planting soil and seeded with a turf mix.

Figure 5 Plastic or Grid Permeable Paving with Sub-base

15.6.2 SuDs Planter Storage Volume/Rain water Harvesting Systems

SuDs planters are an innovative way of increasing the water attenuation, additionally providing an opportunity to green areas where is not practical to remove or break up permeable surfaces. With excellent retro-fit potential SuDs planters can be designed to receive rain water from a drainpipe or other inlet or simply used to receive rainwater falling on them. SuDS planters are best placed where they can be used in conjunction with other SuDS.

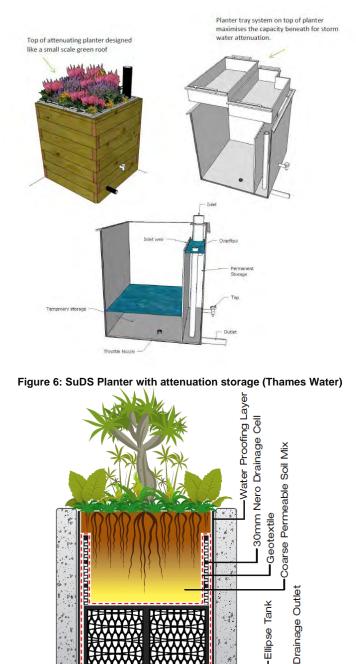


Figure 7: SuDS Planter Cross Section

They offer multi-use benefits such as aesthetic improvements and biodiversity potential. Furthermore, with capacity for water storage, they are well situated in grow your own schemes, providing a substrate for plant growth and a water storage capacity, for use in watering other plants.

15.6.3 Geocellular structures, oversized pipes and tanks

Modular plastic geocellular structures, with a high void ratio, are a new below ground storage arrangement that can replace underground pipes or tanks that have been used to store water. They can also be used to convey or infiltrate surface water runoff into the ground.

Underground storage features attenuate an agreed volume with a control structure to limit the discharge rate. Structural design must be provided to ensure integrity of the box, pipe or tank under loading. Silt interception and management arrangement is critical to long-term effectiveness of these structures and this must be demonstrated at design stage and confirmed for the design life of the development. It can be implemented either in the form if a modular box system with inlet and outlet pipework connected to the sides of the structure or in the form of a honeycomb structure with perforated pipes running under or through the box. Water is forced into the box when flows increase. There are now shallow, load bearing boxes which can be used under pavements and in particular below permeable pavement which protects the box from silt contamination and provides treatment with enhanced storage. Moreover, geocellular systems can be installed above a high-water table.

15.7 Appendix 7 – SuDS Maintenance Manual

All maintenance activities will be the responsibility of the developer owners of the site will be responsible for undertaking or appointing suitable a management company to undertake the general maintenance duties within the site.

The information presented below is taken from the CIRIA SuDS Manual (Report c753) and <u>SuDS</u>. Further details on installation and maintenance can be found detailed below and online.

15.7.1 Maintenance of SuDS Planters

Maintenance Schedule	Required Action	Typical Frequency	Responsibility
	Inspect for sediment and debris in inlet and outlet components	Quarterly; As required.	
Regular maintenance	Inspection & Cleaning of gutters and any filters on downpipes feeding into rain gardens as required.	Quarterly; As required.	
	Remove, replace and maintain vegetation as required; Ensuring cuttings are removed to prevent debris	Monthly inspections during Spring / Summer	
	build up; Weeding of flower bed to maintain the desired vegetation, density and biodiversity - Vegetation management	Autumn / Winter - As required.	Grace Lopez will be responsible for setting up the management
			company or undertaking the
Remedial actions	Replace dead vegetation as required. Cut back vegetation as required.	As required.	maintenance required.
Monitoring	Inspect silt traps / discharge points and note rate of sediment accumulation and ensure no erosion pathways forming.	Monthly in the first year and then annually.	
	Check Planters are emptying as required following a storm event occurring.	After storms; When possible.	

Maintenance will be carried out manually. All monitoring and maintenance will be carried out by the appointed estate management company that undertakes the general landscaping maintenance.

15.7.2 Maintena	nce of SuDS	Rain Wate	r Butts
-----------------	-------------	------------------	---------

Maintenance Schedule	Required Action	Typical Frequency	Responsibility
Regular maintenance	Inspect for sediment and debris in inlet and outlet components; Inspection & Cleaning of gutters and any filters on downpipes feeding into the Rain Water Butts.	Quarterly; As required. Increase freq. to Monthly during Autumn; Quarterly; Increase freq. to Monthly during Autumn;	
Remedial actions	Cleaning of the water butt. Fully drain the water butt and clear out debris and enable access; Scrub out the inside of the butt or tank with a coarse brush, if accessible, using a proprietary cleaning product such as Just Water Butt Cleaner or garden disinfectant; Rinse with clean water; Cleaning of Gutters; Clean or fit a new filter;	Annually; Or as required.	Grace Lopez will be responsible for setting up the management company or undertaking the maintenance required.
Remedial actions	Use water/empty water butts - to clean, water plants (inside & out); Empty water Butt more frequently during the winter, to allow for storage during storms and to keep the water fresh;	Once every two weeks; as required	

Maintenance will be carried out manually. All monitoring and maintenance will be carried out by the appointed estate management company that undertakes the general landscaping maintenance.

15.7.3 Pervious Pavements

Maintenance Schedule	Required Action	Typical Frequency	Responsibility
Regu l ar maintenance	Brushing and vacuuming (standard cosmetic sweep over whole surface).	Once a year, after autumn leaf fall, or reduced frequency as required, based on site- specific observations of clogging or manufacturer's recommendations - pay particular attention to areas where water runs onto pervious surface from adjacent impermeable areas as this area is most likely to collect the most sediment.	
Occasional maintenance	Stabilise and mow contributing and areas.	As required.	Grace Lopez will be responsible for setting up the management
	Removal of weeds or manage using weed killer applied directly into the weeds rather than spraying.	As required - once per year on less frequently used pavements.	company or undertaking the maintenance required.
	Remediate any landscaping which, through vegetation maintenance or soil slip, has been raised to within 50 mm of the level of the paving.	As required.	
Remedial actions	Remedial work to any depressions, rutting and cracked or broken blocks considered detrimental to the structural performance or a hazard to users, and lost material.	As required.	

Maintenance Schedule	Required Action	Typical Frequency	Responsibility
	Rehabilitation of surface and upper substructure by remedial sweeping.	Every 10 to 15 years or as required (if infiltration performance is reduced due to significant clogging).	Orace Lance will be
	Initial Inspection.	Monthly for three months after installation.	Grace Lopez will be responsible for setting up the management company or
Monitoring	Inspect for evidence of poor operation and/or weed growth - if required, take remedial action.	Three-monthly, 48h after large storms in first six months.	undertaking the maintenance required.
	Inspect silt accumulation rates and establish appropriate brushing frequencies.	Annually.	
	Monitor Inspection chambers.	Annually.	

Many of the specific maintenance activities for pervious pavements can be undertaken as part of a general site cleaning contract (many car parks or roads are swept to remove litter and for visual reasons to keep them tidy). Therefore, if litter management is already required at the site, this should have marginal cost implications.

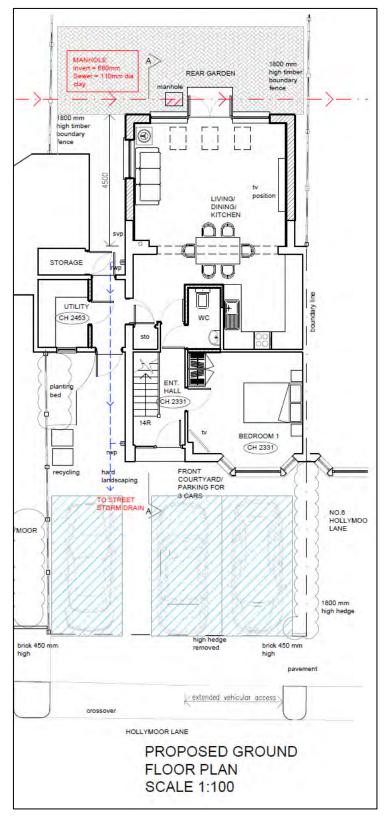
15.7.4 Geo-Cellular Maintenance

Maintenance Schedule	Required Action	Typical Frequency	Responsibility
	Inspect for sediment and debris in pre-treatment components and floor of inspection tube or chamber and inside of concrete manhole rings.	Annually.	
Regular maintenance	Cleaning of gutters and any filters on downpipes.	Annually (or as requi red based on i nspections).	Grace Lopez will be responsible for setting up the management company or undertaking the
	Trimming any roots that may be causing blockages.	Annually (or as required).	maintenance required.
Occasional maintenance	Remove sediment and debris from manhole, storage structure and components and floor of inspection tube or chamber and inside of concrete manhole rings.	As required, based on Inspections.	
	Reconstruct geocellular and/or replace or clean void fill, if performance failure occurs	As required	
Remedial actions	Replacement of clogged geotextile (will require reconstruction of soakaway).	As required.	Grace Lopez will be responsible for setting up the management company or undertaking the
	Inspect silt raps and note rate of sediment accumulation.	Monthly in the first year and then annually.	maintenance required.
Monitoring	Check soakaway to ensure emptying is occurring.	Annually.	

Maintenance will usually be carried out manually, although a suction tanker can be used for sediment / debris removal for large systems. If maintenance is not undertaken

for long periods, deposits can become hard-packed and require considerable effort to remove.

Replacement of the geocellular units will be necessary if the system becomes blocked with silt. Effective monitoring will give information on changes in infiltration rate and provide a warning of potential failure in the long term.


Areas draining to infiltration components should be regularly swept to prevent silt being washed off the surface. This will minimize the need for maintenance.

Maintenance responsibility should be placed with an appropriate organisation, and maintenance schedules should be developed during the design phase.

15.8 Appendix 8 - Existing Drainage and Asset Mapping

15.8.1 Existing Site Drainage

15.8.2 Thames Water Asset Mapping

Asset location search

STM Environmental TWICKENHAM TW2 6RS

Search address supplied

8 Hollymoor Lane Epsom KT19 9BZ

Your reference	8 Hollymoor Lane Epsom KT19 9BZ
----------------	---------------------------------

Our reference ALS/ALS Standard/2021_4556578

Search date

9 December 2021

Knowledge of features below the surface is essential for every development

The benefits of this knowledge not only include ensuring due diligence and avoiding risk, but also being able to ascertain the feasibility of any development.

Did you know that Thames Water Property Searches can also provide a variety of utility searches including a more comprehensive view of utility providers' assets (across up to 35-45 different providers), as well as more focused searches relating to specific major utility companies such as National Grid (gas and electric).

Contact us to find out more.

Thames Water Utilities Ltd Property Searches, PO Box 3189, Slough SL1 4WW DX 151280 Slough 13

searches@thameswater.co.uk www.thameswater-propertysearches.co.uk

0800 009 4540

Search address supplied: 8, Hollymoor Lane, Epsom, KT19 9BZ

Dear Sir / Madam

An Asset Location Search is recommended when undertaking a site development. It is essential to obtain information on the size and location of clean water and sewerage assets to safeguard against expensive damage and allow cost-effective service design.

The following records were searched in compiling this report: - the map of public sewers & the map of waterworks. Thames Water Utilities Ltd (TWUL) holds all of these.

This searchprovides maps showing the position, size of Thames Water assets close to the proposed development and also manhole cover and invert levels, where available.

Please note that none of the charges made for this report relate to the provision of Ordnance Survey mapping information. The replies contained in this letter are given following inspection of the public service records available to this company. No responsibility can be accepted for any error or omission in the replies.

You should be aware that the information contained on these plans is current only on the day that the plans are issued. The plans should only be used for the duration of the work that is being carried out at the present time. Under no circumstances should this data be copied or transmitted to parties other than those for whom the current work is being carried out.

Thames Water do update these service plans on a regular basis and failure to observe the above conditions could lead to damage arising to new or diverted services at a later date.

Contact Us

If you have any further queries regarding this enquiry please feel free to contact a member of the team on 0800 009 4540, or use the address below:

Thames Water Utilities Ltd Property Searches PO Box 3189 Slough SL1 4WW

Email: <u>searches@thameswater.co.uk</u> Web: <u>www.thameswater-propertysearches.co.uk</u>

Asset location search

Tel: 01737 772 000 Fax: 01737 766 807

For your guidance:

- Assets other than vested water mains may be shown on the plan, for information only.
- If an extract of the public water main record is enclosed, this will show known public water mains in the vicinity of the property. It should be possible to estimate the likely length and route of any private water supply pipe connecting the property to the public water network.

Payment for this Search

A charge will be added to your suppliers account.

Asset location search

Waste Water Services

Please provide a copy extract from the public sewer map.

Enclosed is a map showing the approximate lines of our sewers. Our plans do not show sewer connections from individual properties or any sewers not owned by Thames Water unless specifically annotated otherwise. Records such as "private" pipework are in some cases available from the Building Control Department of the relevant Local Authority.

Where the Local Authority does not hold such plans it might be advisable to consult the property deeds for the site or contact neighbouring landowners.

This report relates only to sewerage apparatus of Thames Water Utilities Ltd, it does not disclose details of cables and or communications equipment that may be running through or around such apparatus.

The sewer level information contained in this response represents all of the level data available in our existing records. Should you require any further Information, please refer to the relevant section within the 'Further Contacts' page found later in this document.

For your guidance:

- The Company is not generally responsible for rivers, watercourses, ponds, culverts or highway drains. If any of these are shown on the copy extract they are shown for information only.
- Any private sewers or lateral drains which are indicated on the extract of the public sewer map as being subject to an agreement under Section 104 of the Water Industry Act 1991 are not an 'as constructed' record. It is recommended these details be checked with the developer.

Clean Water Services

Please provide a copy extract from the public water main map.

With regard to the fresh water supply, this site falls within the boundary of another water company. For more information, please redirect your enquiry to the following address:

Sutton & East Surrey Water London Road Redhill Surrey RH1 1LJ

<u>Thames Water Utilities Ltd</u>, Property Searches, PO Box 3189, Slough SL1 4WW, DX 151280 Slough 13 T 0800 009 4540 E <u>searches@thameswater.co.uk I www.thameswater-propertysearches.co.uk</u>

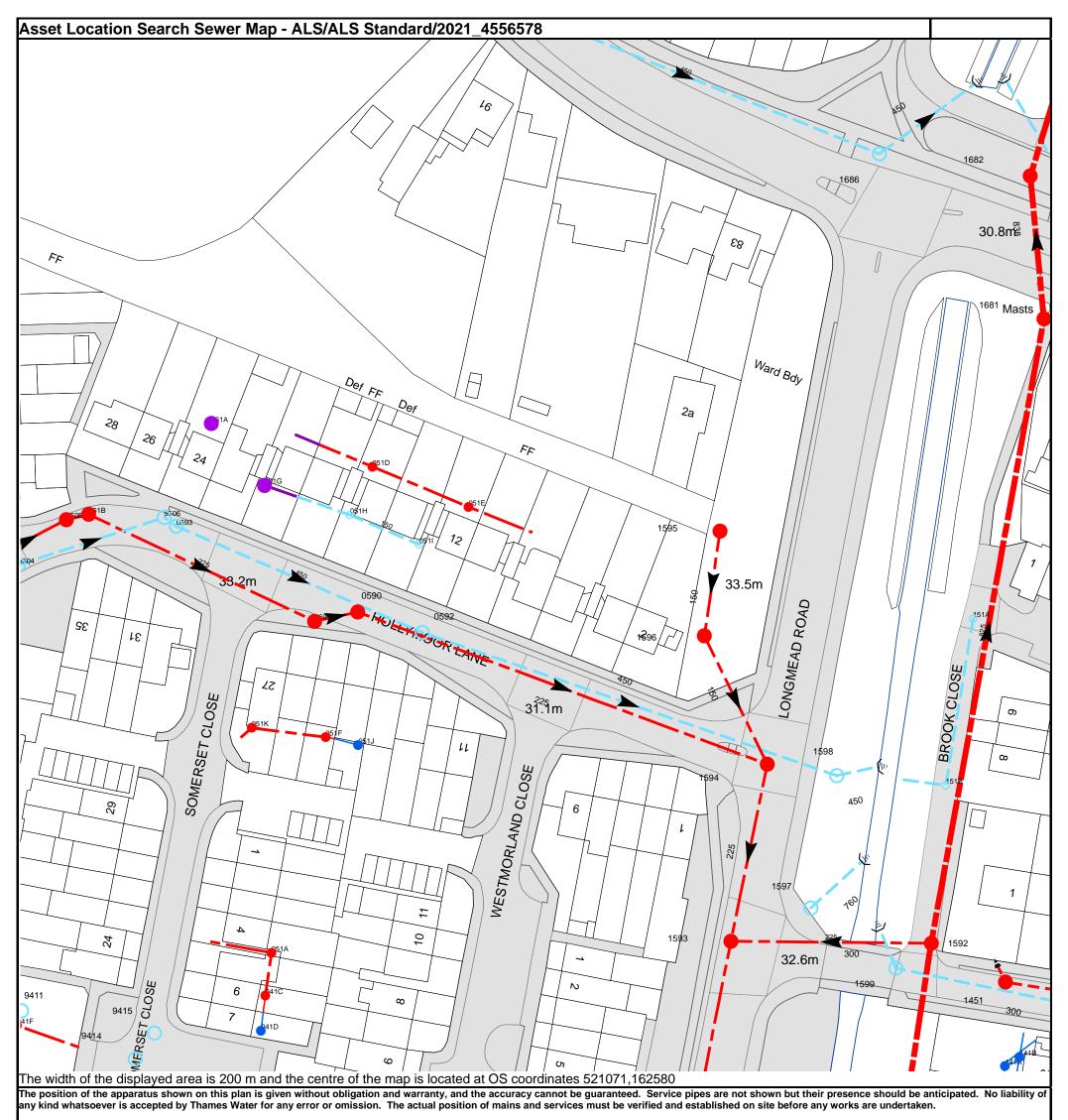
Further contacts:

Waste Water queries

Should you require verification of the invert levels of public sewers, by site measurement, you will need to approach the relevant Thames Water Area Network Office for permission to lift the appropriate covers. This permission will usually involve you completing a TWOSA form. For further information please contact our Customer Centre on Tel: 0845 920 0800. Alternatively, a survey can be arranged, for a fee, through our Customer Centre on the above number.

If you have any questions regarding sewer connections, budget estimates, diversions, building over issues or any other questions regarding operational issues please direct them to our service desk. Which can be contacted by writing to:

Developer Services (Waste Water) Thames Water Clearwater Court Vastern Road Reading RG1 8DB

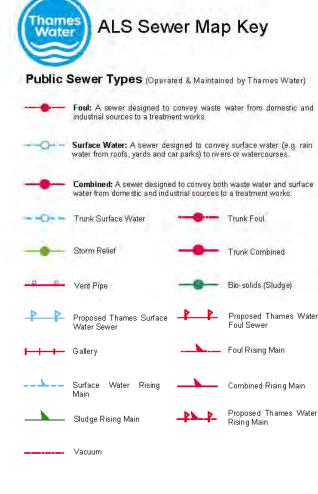

Tel: 0800 009 3921 Email: developer.services@thameswater.co.uk

Clean Water queries

Should you require any advice concerning clean water operational issues or clean water connections, please contact:

Developer Services (Clean Water) Thames Water Clearwater Court Vastern Road Reading RG1 8DB

Tel: 0800 009 3921 Email: developer.services@thameswater.co.uk



Based on the Ordnance Survey Map with the Sanction of the controller of H.M. Stationery Office, License no. 100019345 Crown Copyright Reserved

Thames Water Utilities Ltd, Property Searches, PO Box 3189, Slough SL1 4W, DX 151280 Slough 13 T 0800 009 4540 E searches@thameswater.co.uk I www.thameswater-propertysearches.co.uk

Manhole Reference	Manhole Cover Level	Manhole Invert Level
1686	31	29.32
151A	n/a	n/a
1682	31.35	25.71
1681	31.35	25.74
1598	30.98	29.73
1599	30.88	29.98
1592	30.961	26.031
151B	n/a	n/a
141A	n/a	n/a
1451	30.85	30.36
141B	n/a	n/a
9414	n/a	n/a
9415	35.16	n/a
041D	n/a	n/a
041C	n/a	n/a
051A	n/a	n/a
1593	30.5	29.17
1597	30.69	29.25
1594	30.74	29.02
051J	n/a	n/a
051F	n/a	n/a
051K	n/a	n/a
1596	31.11	29.68
0592	31.87	30.41
0591	32.728	30.508
0590	32.49	29.64
0511	n/a	n/a
1595	31.25	29.97
0593	33.58	31.48
9505	n/a	n/a
9506	n/a	n/a
051H	n/a	n/a
951B	n/a	n/a
051E	n/a	n/a
051G	n/a	n/a
051D	n/a	n/a
061A	n/a	n/a
9411	n/a	n/a
		d the accuracy cannot be guaranteed. Service pipes are not y Thames Water for any error or omission. The actual position
	established on site before any works are undertaken.	y mames water for any error or offission. The actual position

NB. Levels quoted in metres Ordnance Newlyn Datum.	The value -9999.00 indicates that no survey information is available

Sewer Fittings

A

Inlet

Other Symbols

Symbols used on maps which do not fall under other general categories

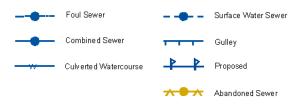

 Image: Symbols used on maps which do not fall under other general categories

 Image: Symbol

 Image: Sym

Conduit Bridge

Other Sewer Types (Not Operated or Maintained by Thames Water)

Notes:

1) All levels associated with the plans are to Ordnance Datum Newlyn.

2) All measurements on the plans are metric.

3) Arrows (on gravity fed sewers) or flecks (on rising mains) indicate direction of flow.

 Most private pipes are not shown on our plans, as in the past, this information has not been recorded.

5) 'na' or '0' on a manhole level indicates that data is unavailable.

6) The text appearing alongside a sewer line indicates the internal diameter of the pipe in milimetres. Text next to a manhole indicates the manhole reference number and should not be taken as a measurement. If you are unsure about any text or symbology present on the plan, please contact a member of Property Searches on 0800 009 4540.

Terms and Conditions

All sales are made in accordance with Thames Water Utilities Limited (TWUL) standard terms and conditions unless previously agreed in writing.

- 1. All goods remain in the property of Thames Water Utilities Ltd until full payment is received.
- 2. Provision of service will be in accordance with all legal requirements and published TWUL policies.
- 3. All invoices are strictly due for payment 14 days from due date of the invoice. Any other terms must be accepted/agreed in writing prior to provision of goods or service, or will be held to be invalid.
- 4. Thames Water does not accept post-dated cheques-any cheques received will be processed for payment on date of receipt.
- 5. In case of dispute TWUL's terms and conditions shall apply.
- 6. Penalty interest may be invoked by TWUL in the event of unjustifiable payment delay. Interest charges will be in line with UK Statute Law 'The Late Payment of Commercial Debts (Interest) Act 1998'.
- 7. Interest will be charged in line with current Court Interest Charges, if legal action is taken.
- 8. A charge may be made at the discretion of the company for increased administration costs.

A copy of Thames Water's standard terms and conditions are available from the Commercial Billing Team (cashoperations@thameswater.co.uk).

We publish several Codes of Practice including a guaranteed standards scheme. You can obtain copies of these leaflets by calling us on 0800 316 9800

If you are unhappy with our service you can speak to your original goods or customer service provider. If you are not satisfied with the response, your complaint will be reviewed by the Customer Services Director. You can write to her at: Thames Water Utilities Ltd. PO Box 492, Swindon, SN38 8TU.

If the Goods or Services covered by this invoice falls under the regulation of the 1991 Water Industry Act, and you remain dissatisfied you can refer your complaint to Consumer Council for Water on 0121 345 1000 or write to them at Consumer Council for Water, 1st Floor, Victoria Square House, Victoria Square, Birmingham, B2 4AJ.

Credit Card	BACS Payment	Telephone Banking	Cheque
Call 0800 009 4540 quoting your invoice number starting CBA or ADS / OSS	Account number 90478703 Sort code 60-00-01 A remittance advice must be sent to: Thames Water Utilities Ltd., PO Box 3189, Slough SL1 4WW. or email ps.billing@thameswater. co.uk	By calling your bank and quoting: Account number 90478703 Sort code 60-00-01 and your invoice number	Made payable to ' Thames Water Utilities Ltd' Write your Thames Water account number on the back. Send to: Thames Water Utilities Ltd., PO Box 3189, Slough SL1 4WW or by DX to 151280 Slough 13

Ways to pay your bill

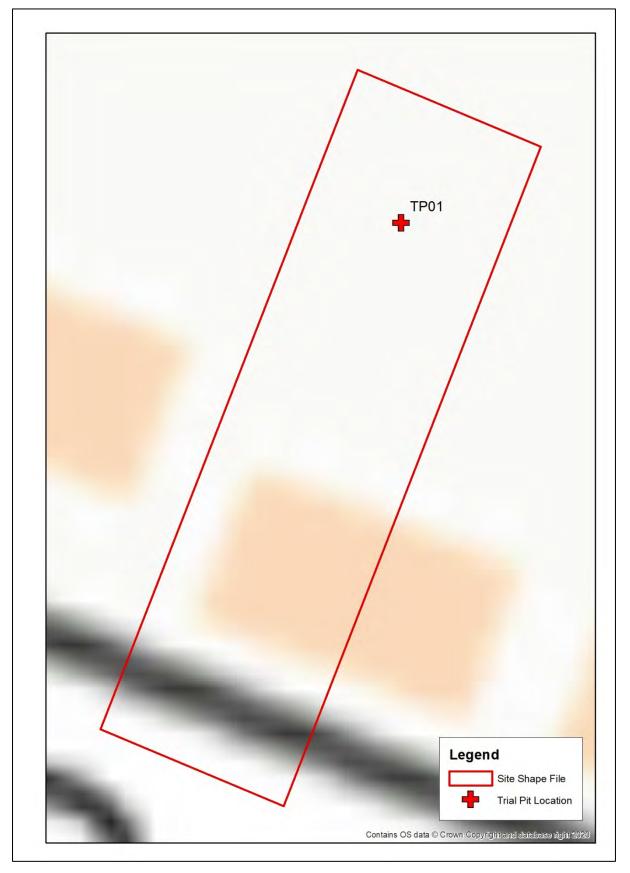
Thames Water Utilities Ltd Registered in England & Wales No. 2366661 Registered Office Clearwater Court, Vastern Rd, Reading, Berks, RG1 8DB.

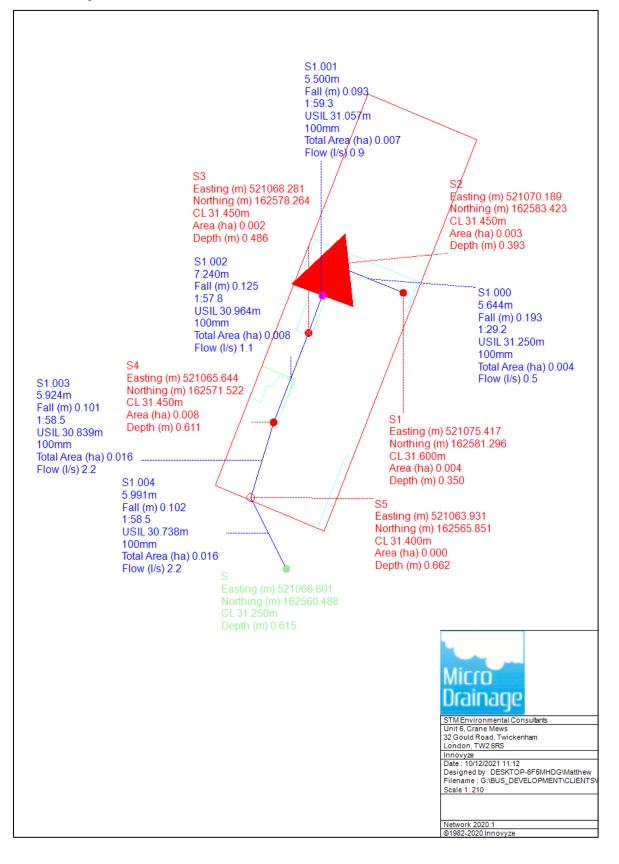
15.9 Appendix 9 - Infiltration Testing

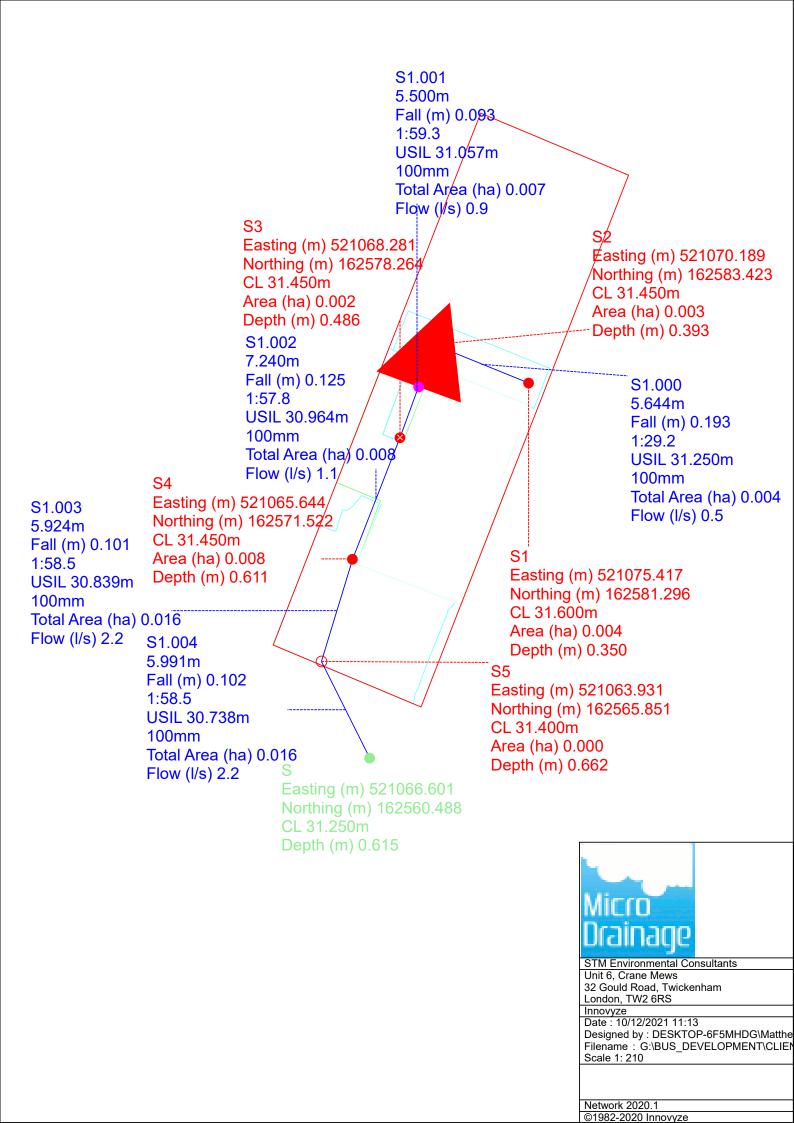
15.9.1 Trial Pit Log

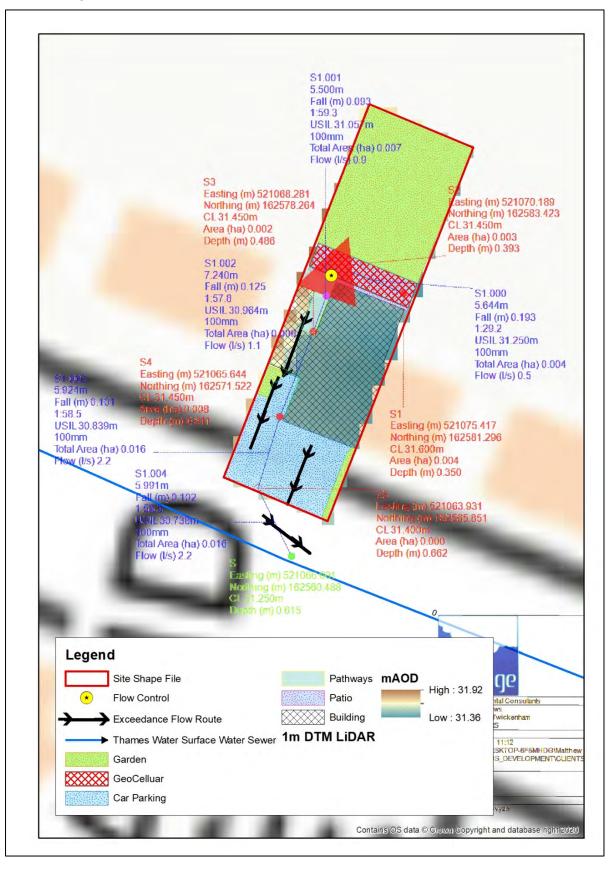
	5TM							alpit No
	INVIRONMENTAL					Tri	ial Pit Log 🔰 ד	P01
							She	et 1 of 1
Project Name:	8 Hollym	oor Lane,	, Epsom	Projec 8 Hollyr	i t NO . noor Lane	, Epsom		Date 11/2021
ocatio	n: 8 Hollym	oor I ane	, Epsom, KT19 9B			<u>, 1</u>	Dimensions 1	Scale
								1:25 ogged
Client:	W2 Exte				1	1		orshaw
Water Strike		1 I	Situ Testing	Depth (m)	Level (m)	Legend	Stratum Description	
50 ≤	Depth	Туре	Results				Made Ground - Dark brown Silty, slightly Cobbly CLAY Occasional brick fragments and occasional flint cobble Abundant rootlets.	s.
				0.40	31.17		Mottled dark brown and dark grey CLAY. Occasional roots.	
				0.60	30.97	۲ <u>۵۵٬۵۵٬۵</u> ٬۰	Mottled light greyish yellow and light brown slightly Silt slightly Clayey, Cobbly GRAVEL.	y,
						مبر میں ایک		
				0.98	30.59		End of pit at 0.98 m	1
								2
								3
								4
								5
tability	record	it advance led at 0.97 ry (not mea	mbgl. Trial pit location	oth of 0.98m on grid refere	bgl. Grou ence and	Indwater ground l	strike was recorded at 0.98mbgl, and a rest level was evel elevation values are estimated using aerial	AGS

15.9.2 Trial Pit Photos




15.9.3 Trial Pit Location Map




15.10 Appendix 10 - Microdrainage

15.10.1 Layout of Network

15.10.2 Layout of Network - Features, Exceedance flows and Sewer Connection

15.10.3 Microdrainage results

			Page 1	
			Micco	7
signed by Matt	hew		MILIO	
ecked by	.110 W		Draina	D
-				_
2020.1				
		l Method		
teria for Sto.	rm			
D Manhole Sizes	STANDAR	RD		
100 000 Add 402 Mi 50 Ma 30 Min Design D 000 Min Vel f	Flow / (nimum Ba ximum Ba epth fo: or Auto	Climate Cha ackdrop Hei ackdrop Hei r Optimisat Design onl	nge (%) ght (m) 0. ght (m) 1. ion (m) 0. y (m/s) 1	50
ith Level Soffit	S			
) iagram for St	orm			
(mins) (ma)				
014 4-8 0.002	2			
ributing (ha) =	0.016			
(olume (m ³) = 0	238			
···· ·································	. .			
gn Table for S	storm			
Base k	HYD	DIA Sectio		ito
	HYD	DIA Sectio (mm)	n Type Au Des	
Base k	HYD SECT		Des	
Base k Flow (l/s) (mm) 0.0 0.60 0.0 0.60	HYD SECT 0 0	(mm) 100 Pipe/C 100 Pipe/C	Des onduit	sig P P
Base k Flow (l/s) (mm) 0.0 0.60 0.0 0.60 0.0 0.60	HYD SECT 0 0 0 0 0 0	(mm) 100 Pipe/C 100 Pipe/C 100 Pipe/C	Des onduit onduit onduit	sig A A A
Base k Flow (1/s) (mm) 0.0 0.60 0.0 0.60 0.0 0.60 0.0 0.60	HYD SECT 0 0 0 0 0 0 0 0 0 0	(mm) 100 Pipe/C 100 Pipe/C 100 Pipe/C 100 Pipe/C	Des Conduit Conduit Conduit Conduit	sig: A A A A A A A A A A A A A A A A A A A
Base k Flow (l/s) (mm) 0.0 0.60 0.0 0.60 0.0 0.60	HYD SECT 0 0 0 0 0 0 0 0 0 0	(mm) 100 Pipe/C 100 Pipe/C 100 Pipe/C	Des Conduit Conduit Conduit Conduit	sig A A A
Base k Flow (1/s) (mm) 0.0 0.60 0.0 0.60 0.0 0.60 0.0 0.60	HYD SECT 0 0 0 0 0 0 0 0 0 0	(mm) 100 Pipe/C 100 Pipe/C 100 Pipe/C 100 Pipe/C	Des Conduit Conduit Conduit Conduit	sig: A A A A A A A A A A A A A A A A A A A
Base k Flow (1/s) (mm) 0.0 0.60 0.0 0.60 0.0 0.60 0.0 0.60 0.0 0.60 Results Table Σ Base Fou	HYD SECT 0 0 0 0 0 0 0 0 0 0 1 Add F	(mm) 100 Pipe/C 100 Pipe/C 100 Pipe/C 100 Pipe/C 100 Pipe/C 100 Vel	Des Conduit Conduit Conduit Conduit Cap Flow	sig A A A A A A A A A A A A A A A A A A A
Base k Flow (1/s) (mm) 0.0 0.60 0.0 0.60 0.0 0.60 0.0 0.60 0.0 0.60 Results Table	HYD SECT 0 0 0 0 0 0 0 0 0 0 1 Add F	(mm) 100 Pipe/C 100 Pipe/C 100 Pipe/C 100 Pipe/C 100 Pipe/C 100 Vel	Des londuit londuit londuit londuit londuit	sig A A A A A A A A A A A A A A A A A A A
Base k Flow (1/s) (mm) 0.0 0.60 0.0 0.60 0.0 0.60 0.0 0.60 0.0 0.60 Results Table Σ Base Fou	HYD SECT 0 0 0 0 0 0 0 0 0 0 1 Add F 1 (1/s	(mm) 100 Pipe/C 100 Pipe/C 100 Pipe/C 100 Pipe/C 100 Pipe/C 100 Vel	Des Conduit Conduit Conduit Conduit Cap Flow	sig.
Base k Flow (1/s) (mm) 0.0 0.60 0.0 0.60 0.0 0.60 0.0 0.60 Results Table E Base Fou Flow (1/s) (1/s	HYD SECT 0 0 0 0 0 0 0 0 0 0 1 Add F 3) (1/s	(mm) 100 Pipe/C 100 Pipe/C 100 Pipe/C 100 Pipe/C 100 Pipe/C 100 Pipe/C 100 (m/s) (m/s)	Des Conduit Conduit Conduit Conduit Cap Flow (1/s) (1/s)	sig A A A A A A A A A A
Base k Flow (1/s) (mm) 0.0 0.60 0.0 0.60 0.0 0.60 0.0 0.60 0.0 0.60 Results Table E Base Fou Flow (1/s) (1/s 0.0 0. 0.0 0.	HYD SECT 0 0 0 0 0 0 0 0 0 0 0 0 1 Add F 1 (1/s 0 0 0	(mm) 100 Pipe/C 100 Pipe/C 100 Pipe/C 100 Pipe/C 100 Pipe/C 100 Pipe/C 0.0 1.43 0.0 1.00 0.0 1.01	Des Conduit Conduit Conduit Cap Flow (1/s) (1/s) 11.2 0.5 7.9 0.5 8.0 1.1	ig
Base k Flow (1/s) (mm) 0.0 0.60 0.0 0.60 0.0 0.60 0.0 0.60 0.0 0.60 Results Table E Base Fou Flow (1/s) (1/s 0.0 0. 0.0 0. 0.0 0.	HYD SECT 0 0 0 0 0 0 0 0 0 0 0 0 1 Add F 1 (1/s 0 0 0 0 0	(mm) 100 Pipe/C 100 Pipe/C 100 Pipe/C 100 Pipe/C 100 Pipe/C 100 Pipe/C 0.0 1.43 0.0 1.00 0.0 1.01 0.0 1.01	Des londuit londuit londuit londuit londuit londuit londuit lin.2 0.5 7.9 0.5 8.0 1.1 7.9 2.2	ig
Base k Flow (1/s) (mm) 0.0 0.60 0.0 0.60 0.0 0.60 0.0 0.60 0.0 0.60 Results Table E Base Fou Flow (1/s) (1/s 0.0 0. 0.0 0.	HYD SECT 0 0 0 0 0 0 0 0 0 0 0 0 1 Add F 1 (1/s 0 0 0 0 0	(mm) 100 Pipe/C 100 Pipe/C 100 Pipe/C 100 Pipe/C 100 Pipe/C 100 Pipe/C 0.0 1.43 0.0 1.00 0.0 1.01	Des Conduit Conduit Conduit Cap Flow (1/s) (1/s) 11.2 0.5 7.9 0.5 8.0 1.1	ig
Base k Flow (1/s) (mm) 0.0 0.60 0.0 0.60 0.0 0.60 0.0 0.60 0.0 0.60 Results Table E Base Fou Flow (1/s) (1/s 0.0 0. 0.0 0. 0.0 0.	HYD SECT 0 0 0 0 0 0 0 0 0 0 0 0 1 Add F 1 (1/s 0 0 0 0 0	(mm) 100 Pipe/C 100 Pipe/C 100 Pipe/C 100 Pipe/C 100 Pipe/C 100 Pipe/C 0.0 1.43 0.0 1.00 0.0 1.01 0.0 1.01	Des londuit londuit londuit londuit londuit londuit londuit lin.2 0.5 7.9 0.5 8.0 1.1 7.9 2.2	ig
	twork 2020.1 the Modified F teria for Sto D Manhole Sizes All - England and DOO Add 402 Mi 50 Man Design D 000 Min Vel f 750 Min Slo ith Level Soffit Diagram for St rea Time Area (mins) (ha) 014 4-8 0.002 cributing (ha) =	twork 2020.1 the Modified Rationa teria for Storm D Manhole Sizes STANDAR lel - England and Wales 100 Add Flow / 0 402 Minimum Bi 50 Maximum Bi 30 Min Design Depth for 30 Min Design Depth for 30 Min Slope for 0 100 Min Slope for 0 101 Level Soffits Diagram for Storm rea Time Area (mins) (ha)	twork 2020.1 the Modified Rational Method ttria for Storm tD Manhole Sizes STANDARD tel - England and Wales 100 Add Flow / Climate Cha 402 Minimum Backdrop Hei 50 Maximum Backdrop Hei 30 Min Design Depth for Optimisat 000 Min Slope for Optimisatio ith Level Soffits Diagram for Storm rea Time Area (mins) (ha) 014 4-8 0.002 cributing (ha) = 0.016	twork 2020.1 the Modified Rational Method teria for Storm D Manhole Sizes STANDARD Hel - England and Wales 100 Add Flow / Climate Change (%) 402 Minimum Backdrop Height (m) 0. 50 Maximum Backdrop Height (m) 1. 30 Min Design Depth for Optimisation (m) 0. 000 Min Vel for Auto Design only (m/s) 1 750 Min Slope for Optimisation (1:X) 11 Level Soffits Diagram for Storm rea Time Area (mins) (ha) 014 4-8 0.002

STM Environmental Consultants	Page 2	
Unit 6, Crane Mews		
32 Gould Road, Twickenham		
London, TW2 6RS		Mirro
Date 10/12/2021 11:10	Designed by Matthew	Dcainago
File 8 HOLLYMOOR - PROPOSAL.MDX	Checked by	Diamaye
Innovyze	Network 2020.1	

Manhole Schedules for Storm

MH Name	MH CL (m)	MH Depth (m)	MH Connection	MH Diam.,L*W (mm)	PN	Pipe Out Invert Level (m)	Diameter (mm)	PN	Pipes In Invert Level (m)	Diameter (mm)	Backdroj (mm)
S1	31.600	0.350	Open Manhole	450	S1.000	31.250	100				
S2	31.450	0.393	Open Manhole	450	S1.001	31.057	100	S1.000	31.057	100	
S3	31.450	0.486	Sealed Manhole	450	S1.002	30.964	100	S1.001	30.964	100	
S4	31.450	0.611	Open Manhole	450	S1.003	30.839	100	S1.002	30.839	100	
S5	31.400	0.662	Junction		S1.004	30.738	100	S1.003	30.738	100	
S	31.250	0.615	Open Manhole	0		OUTFALL		S1.004	30.635	100	
	I	1	I	I I	1			I			1

MH Name	Manhole Easting (m)	Manhole Northing (m)	Intersection Easting (m)	Intersection Northing (m)		Layout (North)
S1	521075.417	162581.296	521075.417	162581.296	Required	`
S2	521070.189	162583.423	521070.189	162583.423	Required	P
S3	521068.281	162578.264			No Entry	ø
S4	521065.644	162571.522	521065.644	162571.522	Required	•
S5	521063.931	162565.851			No Entry	Q
S	521066.601	162560.488			No Entry	` 0

©1982-2020 Innovyze

STM Environmental Consultants		Page 3
Unit 6, Crane Mews		
32 Gould Road, Twickenham		
London, TW2 6RS		Micro
Date 10/12/2021 11:10	Designed by Matthew	Dcainago
File 8 HOLLYMOOR - PROPOSAL.MDX	Checked by	Diamaye
Innovyze	Network 2020.1	

PIPELINE SCHEDULES for Storm

Upstream Manhole

PN	Hyd Sect		MH Name	C.Level (m)	I.Level (m)	D.Depth (m)	MH Connection	MH DIAM., L*W (mm)
S1.000	0	100	S1	31.600	31.250	0.250	Open Manhole	450
S1.001	0	100	S2	31.450	31.057	0.293	Open Manhole	450
S1.002	0	100	S3	31.450	30.964	0.386	Sealed Manhole	450
S1.003	0	100	S4	31.450	30.839	0.511	Open Manhole	450
S1.004	0	100	S5	31.400	30.738	0.562	Junction	

Downstream Manhole

PN	Length (m)	Slope (1:X)		C.Level (m)	I.Level (m)	D.Depth (m)	MH Connection	MH DIAM., L*W (mm)
S1.000	5.644	29.2	S2	31.450	31.057	0.293	Open Manhole	450
S1.001	5.500	59.3	S3	31.450	30.964	0.386	Sealed Manhole	450
S1.002	7.240	57.8	S4	31.450	30.839	0.511	Open Manhole	450
S1.003	5.924	58.5	S5	31.400	30.738	0.562	Junction	
S1.004	5.991	58.5	S	31.250	30.635	0.515	Open Manhole	0

©1982-2020 Innovyze

STM Envi	ronme	ental C	onsul	tants				P	age 4
Jnit б,									
32 Gould			kenha	m					Le
London,								N	Mirrn
Date 10/	12/20	021 11:	10		Desig	ned by	Matthew		Drainage
File 8 H	IOLLYI	MOOR -	PROPO	SAL.MDX	Checke	ed by			Janage
Innovyze	2				Netwo	rk 2020	0.1	·	
		~				_	~ 1' .	(7)	
		Setting	g Out	Informat	<u>tion -</u>	'l'rue (Coordinates	(Storm)	
PN	USMH Name	Dia/Len (mm)	Width (mm)	US Eastin (m)		orthing (m)	Intersection Easting (m)		
S1.000	S1	450		521075.41	7 1625	581.296	521075.417	162581.296	5
S1.001	S2	450		521070.18	9 1625	583.423	521070.189	162583.423	3
S1.002	S3	450		521068.28	1 1625	578.264			
S1.003	S4	450		521065.64	4 1625	571.522	521065.644	162571.522	2
S1.004	S5			521063.93	1 1625	565.851			¢
		PN	DSMH Name		idth DS mm)		g DS Northing	Layout (North)	Ň
		S1.004		(nun) (-	(m)	(m) L 162560.488		
		51.001	5	Ĵ	02	20001001		Ò	

STM Envi	ronme	ental Co	onsul	tants				P	age 5
Unit 6,	Crane	e Mews							
32 Gould	l Road	d, Twic	kenha	m					L.
London,	TW2 (5RS						N	Airco
Date 10/	12/20	021 11:	10		De	signed by	Matthew)cainado
File 8 H	IOLLYI	100r - 1	PROPO	SAL.MDX	Ch	ecked by)rainage
Innovyze						twork 2020	.1		
-									
		Setting	g Out	Informa	itio	on – Site (Coordinates	(Storm)	
PN	USMH Name	Dia/Len (mm)	Width (mm)	US Easti (m)	ng U	JS Northing (m)	Intersection Easting (m)		
S1.000	S1	450		521075.4	17	162581.296	521075.417	162581.296	5
S1.001	S2	450		521070.1	89	162583.423	521070.189	162583.423	3
S1.002	S3	450		521068.2	81	162578.264			
S1.003	S4	450		521065.6	44	162571.522	521065.644	162571.522	2
S1.004	S5			521063.9	31	162565.851			¢
		PN	DSMH Name		Vidt] (mm)		g DS Northing (m)	Layout (North)	Ň
		S1.004		0	(L 162560.488	(1101 011)	
								٢	
				©19	82-2	2020 Innov	yze		

STM Environmental Consultants		Page 6
Unit 6, Crane Mews		
32 Gould Road, Twickenham		
London, TW2 6RS		Mirro
Date 10/12/2021 11:10	Designed by Matthew	Dcainago
File 8 HOLLYMOOR - PROPOSAL.MDX	Checked by	Diamaye
Innovyze	Network 2020.1	

Area Summary for Storm

Pipe Number		PIMP Name	PIMP (%)	Gross Area (ha)	Imp. Area (ha)	Pipe Total (ha)
1.000	User	-	100	0.004	0.004	0.004
1.001	User	-	100	0.001	0.001	0.001
	User	-	100	0.002	0.002	0.003
1.002	User	-	100	0.002	0.002	0.002
1.003	User	-	100	0.006	0.006	0.006
	User	-	100	0.002	0.002	0.008
1.004	-	-	100	0.000	0.000	0.000
				Total	Total	Total
				0.016	0.016	0.016

©1982-2020 Innovyze

STM Envir	ronme	ental	Consultan	ts				Page 7
Unit 6, C	Irane	e Mews	5					
32 Gould	Road	l, Twi	lckenham					Constant of the
London, 1								
				D		[— MICCO
Date 10/1					esigned by M	lattnew		Drainag
File 8 HC)LLYM	100R -	- PROPOSAL	.MDX C	necked by			<u>L'indiritary</u>
Innovyze				Ne	etwork 2020.	1		
			Networ	k Class	fications	for Stor	cm	
PN	USMH	Pipe	Min Cover M	lax Cover	Pipe Type	мн м	H MH Ring	МН Туре
		Dia	Depth	Depth		Dia Wid	lth Depth	
		(mm)	(m)	(m)		(mm) (m	m) (m)	
S1.000	S1		0.250		Unclassified			Unclassified
S1.001		100	0.293		Unclassified			Unclassified
S1.002		100	0.386		Unclassified			Unclassified
S1.003		100	0.511		Unclassified Unclassified		0 0.511	Unclassified
S1.004	55	100	0.515	0.562	Unclassified			Junction
			Free Flo	wing Ou	tfall Detail	ls for S	torm	
		0	tfall Out:			Nin		
					Level I. Level m) (m)	. Min I. Level	D,L. W. L (mm) (mm)	
						(m)		
			S1.004	S 31	1.250 30.635	0.000	0 0	1
			Simu	lation	<u>Criteria</u> fo	r Storm		
	Vo	lumotr	ic Runoff C	ooff 0 7	50 Addition	al Flow -	۶ of Total	Flow 0.000
			leduction Fa					orage 2.000
			lot Start (m		0			ecient 0.800
			Start Level		0 Flow per P			
Manho	le He	adloss	Coeff (Glc	bal) 0.5		-	Run Time (
Fou	l Sew	age pe	er hectare (l/s) 0.0	00	Output	Interval (mins) 1
	N	Jumber	of Input H	ydrograpł	ns 0 Number of	Storage	Structures	1
					s 1 Number of		-	
		Numbe:	r of Offline	e Control	s 0 Number of	Real Tin	ne Controls	0
			Sy	nthetic	Rainfall De	etails		
		De la			ECD	Deer	641 - m	0
	Potur		nfall Model iod (years)		FSR 100		ofile Type / (Summer)	0.750
	Recui	II FEL	-	England	and Wales		/ (Winter)	
			M5-60 (mm)	Lugrand	20.000 Sto			30
			Ratio R		0.402	Duruti	(

STM Environmental Consultants		Page 8
Unit 6, Crane Mews		
32 Gould Road, Twickenham		
London, TW2 6RS		Mirro
Date 10/12/2021 11:10	Designed by Matthew	Dcainago
File 8 HOLLYMOOR - PROPOSAL.MDX	Checked by	Diamaye
Innovyze	Network 2020.1	

Online Controls for Storm

Orifice Manhole: S2, DS/PN: S1.001, Volume (m³): 0.1

Diameter (m) 0.008 Discharge Coefficient 0.600 Invert Level (m) 31.057

STM Environmental Consultants		Page 9
Unit 6, Crane Mews		
32 Gould Road, Twickenham		
London, TW2 6RS		Mirro
Date 10/12/2021 11:10	Designed by Matthew	Desinado
File 8 HOLLYMOOR - PROPOSAL.MDX	Checked by	Diamaye
Innovyze	Network 2020.1	
Storage	Structures for Storm	

Porous Car Park Manhole: S2, DS/PN: S1.001

Infiltration Coefficient Base (m/hr)	0.00000	Width (m)	2.0
Membrane Percolation (mm/hr)	1000	Length (m)	9.0
Max Percolation (l/s)	5.0	Slope (1:X)	0.0
Safety Factor	2.0	Depression Storage (mm)	5
Porosity	0.95	Evaporation (mm/day)	3
Invert Level (m)	31.100	Cap Volume Depth (m)	0.250

Manhole Headloss for Storm

PN	US/MH Name	US/MH Headloss
S1.000	S1	0.500
S1.001	S2	0.500
S1.002	S3	0.500
S1.003	S4	0.500
S1.004	S5	0.000

2 Gould Road, Twickenham pesigned by Matthew inden, TW2 6RS Imovy2 inte 10/12/2021 11:10 Designed by Matthew innovyze Network 2020.1 CASDEF Controller for Storm SI.000 S1 31.600 Yes No 200 0 Yes 0 SI.000 S1 31.600 Yes No 200 0 Yes 0 SI.001 S2 31.450 Yes No 243 0 Yes 0 SI.002 S3 31.450 Yes No 461 0 Yes 0 SI.001 S2 31.450 Yes No 461 0 Yes 0 SI.001 S2 31.450 Yes No 4650 0 Yes 0 SI.002 S3 31.460 Yes No 4650 0 Yes 0 SI.001 S2 31.400 Yes No 4650 0 Yes 0 SI.002 S3 31.460 Yes No 4650 0 Yes 0 SI.003 S4 31.450 Yes No 4650 0 Yes 0 SI.003 S1 0.056 0.044 0.000 0.100 SI.002 S3 0.053 0.043 0.043 0.000 0.130 SI.002 S3 0.077 0.057 0.000 0.134 SI.003 S4 0.097 0.047 0.000 0.047 Storage Storage Storage Storage Storage Storage Storage Storage </th <th></th>					
Designed by Matthew Checked by Designed by Matthew Checked by Nnrovyze Network 2020.1 CASDEF Controller for Storm PN US/MH Level Not Modify Max Pipe No. Pipe Add No. Storage Name Exceeded Control Pipe Size Diameter Failures Storage Failures \$1.001 \$2 31.450 Yes No 243 0 Yes 0 \$1.002 \$3 31.450 Yes No 346 0 Yes 0 Storage Storage Pipe USMH Manhole Pipe Structure Total Number Name Volume (m³) Volume (m³) Volume (m³) Volume (m³) Volume (m³) \$1.000 \$1 0.056 0.044 0.000 0.100 \$1.001 \$2 0.056 0.044 0.000 0.104 Storage Pipe USMH Manhole Storage Storadte	~				
Ile 8 HOLLYMOOR - PROPOSAL.MDX Checked by Impose nnovyze Network 2020.1 CASDEF Controller for Storm CASDEF Controller for Storm PN US/MH Level Not Modify Modify Max Pipe No. Pipe Add No. Storage Name Exceeded Control Pipe Size Diameter Failures Storage Failures Storage Structure Total No 4510 0 Yes 0 Storage Fipe USMH Manhole Pipe Structure Total Number Name Volume (m') Volume (m') Volume (m') Volume (m') S1.001 S1 0.056 0.044 0.000 0.1047 0.104 Storage Structure Total No 410 0.293 0.238 4.275 4.806 Volume Summary (Static) Storage Structure Total Number Name Volume (m') Volume (m') Volume (m') Volume (m') <th c<="" th=""><th>ſſ</th></th>	<th>ſſ</th>	ſſ			
Ile s HolLindok - PROPOSAL.HUX Clecked by Network 2020.1 CASDEF Controller for Storm PN US/MH Level Not Modify Modify Max Pipe No. Pipe Add No. Storage Name Exceeded Control Pipe Size Diameter Failures Storage Failures \$1.001 \$2 31.450 Yes 0 1/2 0 \$1.001 \$2 31.450 Yes No 243 0 Yes 0 \$1.001 \$2 31.450 Yes No 336 0 Yes 0 \$1.002 \$3 31.450 Yes No 461 0 Yes 0 \$1.002 \$3 31.450 Yes No 450 0 Yes 0 \$1.002 \$3 31.450 Yes No 450 0 Yes 0 \$1.004 \$5 31.400 Yes No 450 0 Yes 0 \$1.004 \$5 0.056 0.044 0.000 0.100 51.000 51.000 0.144 <td></td>					
CASDEF Controller for Storm CASDEF Controller for Storm CASDEF Controller for Storm Name Exceeded Control Pipe Size Diameter Failures Storage Failures Sti.000 Sti.000 Yes No 200 Yes O Sti.001 Sti.001 Sti.001 Sti.001 Yes No 200 Yes 0 Sti.001 Sti.001 Sti.001 Yes No 2440 Yes 0 Sti.001 Sti.003 Sti.001 Yes No 461 O Yes O Volume Summary (Static) Storage Pipe VSIM Manhole Pipe Stincture Total Number Name Volume (m ³) Volume (m ³) Volume Summary (Static) Storage	nay				
PN US/MH Level Not Modify Max Pipe No. Pipe Add No. Storage Failures \$1.000 \$1 31.600 Yes No 200 0 Yes 0 \$2.0100 \$1 31.650 Yes No 200 0 Yes 0 \$2.0102 \$23 31.450 Yes No 450 0 Yes 0 \$2.001 \$5 31.400 Yes No 450 0 Yes 0 \$2.004 \$5 31.400 Yes No 450 0 Yes 0 \$2.004 \$5 31.400 Yes No 450 0 Yes 0 \$2.004 \$5 31.400 Yes No 450 0 Yes 0 \$2.004 \$2.0063 0.644 0.000 0.100 \$1.000 \$1 0.057 0.000 0.144 \$1.002 \$3					
PN US/MH Level Not Modify Max Pipe No. Pipe Add No. Storage Failures \$1.000 \$1 31.600 Yes No 200 0 Yes 0 \$1.001 \$2 31.450 Yes No 200 0 Yes 0 \$1.002 \$3 31.450 Yes No 336 0 Yes 0 \$1.004 \$5 31.400 Yes No 450 0 Yes 0 \$1.004 \$5 31.400 Yes No 450 0 Yes 0 \$1.004 \$5 31.400 Yes No 450 0 Yes 0 \$1.004 \$5 31.400 Yes No 450 0 Yes 0 \$1.005 \$1 0.056 0.044 0.000 0.100 \$1 \$1.002 \$3 0.077 0.000 0.144 \$1.002 <td< td=""><td></td></td<>					
Name Exceeded Control Pipe Size Diameter Failures Storage Failures S1.000 S1 31.600 Yes No 200 0 Yes 0 S1.001 S2 31.450 Yes No 243 0 Yes 0 S1.002 S3 31.450 Yes No 336 0 Yes 0 S1.004 S5 31.400 Yes No 450 0 Yes 0 S1.004 S5 31.400 Yes No 450 0 Yes 0 S1.004 S5 31.400 Yes No 450 0 Yes 0 S1.004 S5 31.400 Yes No 450 Yes Yes Yes S1.005 S1.400 S1 0.056 0.044 0.000 0.104 S1.002 S3 0.077 0.057 0.000 0.144 S1.002<	Use				
S1.001 S2 31.450 Yes No 243 0 Yes 0 S1.002 S3 31.450 Yes No 336 0 Yes 0 S1.003 S4 31.450 Yes No 461 0 Yes 0 S1.004 S5 31.400 Yes No 450 0 Yes 0 S1.004 S5 31.400 Yes No 450 0 Yes 0 Volume Summary (Static) Length Calculations based on Centre-Centre Storage Pipe USMH Manhole Pipe Structure Total Number Name Volume (m³) Volume (m³) Volume (m³) Volume (m³) S1.000 S1 0.055 0.044 0.000 0.100 S1.001 S2 0.063 0.047 0.000 0.047 Total 0.293 0.238 4.275 4.806 Volume (m3) Volume (m3) Volume (m3) Volume (m3) <	CASDeF				
S1.002 S3 31.450 Yes No 336 0 Yes 0 S1.003 S4 31.450 Yes No 461 0 Yes 0 S1.004 S5 31.400 Yes No 450 0 Yes 0 Structure Structure Colume (n') Structure Total No 450 0 Yes 0 Structure Total Number Name Volume (n') Volume (n') Volume (n') Volume (n') S1.000 S1 0.056 0.044 0.000 0.100 S1.001 S2 0.063 0.044 0.000 0.134 S1.002 S3 0.077 0.057 0.000 0.144 S1.003 S4 0.097 0.047 0.000 0.047 Total 0.293 0.238 4.275 4.806 Volume (n') Volume (n') Volume (n') Under Sinder Sinder Sinder Sinder Sinder Sinder Sinder Sinder Sinder Sin	Yes				
S1.003 S4 31.450 Yes No 461 0 Yes 0 S1.004 S5 31.400 Yes No 450 0 Yes 0 Uolume Summary (Static) Length Calculations based on Centre-Centre Structure Total Number Name Volume (m') Volume (m') Volume (m') Volume (m') S1.000 S1 0.056 0.044 0.000 0.100 S1.001 S2 0.063 0.043 4.275 4.381 S1.002 S3 0.077 0.057 0.000 0.144 S1.004 S5 0.000 0.047 0.000 0.047 Total 0.293 0.238 4.275 4.806 Uolume Summary (Static) Total 0.293 0.238 4.275 4.806 Uolume Summary (Static) Length Calculations based on True Length Length Calculations based on True Length Manhole Pipe Structure Total Number Name Volume (n') Volume	Yes				
S1.004 S5 31.400 Yes No 450 0 Yes 0 Uolume Summary (Static) Length Calculations based on Centre-Centre Structure Total Number Name Volume (n³) Volume (n³) Volume (n³) Volume (n³) Volume (n³) Volume (n³) Volume (n³) Volume (n³) Volume (n³) Volume (n³) Volume (n³) S1.000 S1 0.055 0.044 0.000 0.100 S1.001 S2 0.063 0.043 4.275 4.381 S1.001 S2 0.063 0.047 0.000 0.0144 Structure Structure Structure Structure Structure Structure Structure Structure Structure Structure Structure Structure Structure Structure Structure Structure Structure Structure <th colspan="4" struc<="" td=""><td>Yes</td></th>	<td>Yes</td>				Yes
Jolume Summary (Static) Lagta Calculations based on Centre-Centre Structure Structure Total Number Name Volume (n°) Volume (n°) Volume (n°) Volume (n°) \$1.000 \$1 0.056 0.044 0.000 0.100 \$1.001 \$2 0.063 0.043 4.275 4.381 \$1.002 \$3 0.077 0.057 0.000 0.144 \$1.004 \$5 0.000 0.047 0.000 0.041 Total 0.293 0.238 4.275 4.806 Structure Total Structure Delume Summary (Static) Total 0.293 0.238 4.275 4.806 Delume Summary (Static) Delume (n') Volume (n') Volume (n') Volume (n') Output (n') Volume (n') Volume (n') Delume Summary (Static) Structure Total Number Name Volume (n') Volume (n') Volume (n') Volume (n') Volume (n') Notal Dividi Si 0.006<	Yes				
Here used is calculations based on Centre-Centre Storage Pipe USMH Manhole Pipe Structure Total Number Name Volume (n ³) Volume (n ³) Volume (n ³) S1.000 S1 0.056 0.044 0.000 0.100 S1.001 S2 0.063 0.043 4.275 4.381 S1.002 S3 0.097 0.047 0.000 0.144 S1.003 S4 0.097 0.047 0.000 0.047 Total 0.293 0.238 4.275 4.806 Used calculations based on True Length Length Calculations based on True Length Used calculations based on True Length Structure Total Number Name Volume (n ³) Volume (n ³) Volume (n ³) Output Structure Total Number Name Volume (n ³) Volume (n ³) Volume (n ³) S1.000 S1 0.056 0.041 0.000	Yes				
PipeUSMHManholePipeStructureTotalNumberNameVolume(n³)Volume(n³)Volume(n³)Volume(n³) 1.000 1.005 0.044 0.000 0.100 1.001 52 0.063 0.043 4.275 4.381 1.002 53 0.077 0.057 0.000 0.134 1.003 54 0.097 0.047 0.000 0.144 1.004 55 0.000 0.047 0.000 0.047 Total 0.293 0.238 4.275 4.806 Unume Summary (Static)TotalStructureTotalOlume Summary (Static)StructureTotalNonder PipeStructureTotalStructureTotalOlume (n³)Volume (n³)Volume (n°)StructureTotalNonder (n°)Volume (n°) <tr< td=""><td></td></tr<>					
Fipe USMH Manhole Pipe Structure Total Number Name Volume (m³) Volume Volume Volume Volume Volu Volu					
Number Name Volume (m³) Volume (m³) Volume (m³) Volume (m³) \$1.000 \$1 0.056 0.044 0.000 0.100 \$1.001 \$2 0.063 0.043 4.275 4.381 \$1.002 \$3 0.077 0.057 0.000 0.134 \$1.003 \$5 0.000 0.047 0.000 0.144 \$1.004 \$5 0.000 0.047 0.000 0.047 Total 0.293 0.238 4.275 4.806 Volume Summary (Static) Length Calculations based on True Length Storage Pipe USMH Manhole Pipe Structure Total Number Name Volume (m³) Volume (m³) Volume (m³) \$1.000 \$1 0.056 0.041 0.000 0.096 \$1.001 \$2 0.063 0.040 4.275 4.377 \$1.002 <					
\$1.001 \$2 0.063 0.043 4.275 4.381 \$1.002 \$3 0.077 0.057 0.000 0.134 \$1.003 \$4 0.097 0.047 0.000 0.144 \$1.004 \$5 0.000 0.047 0.000 0.047 Total 0.293 0.238 4.275 4.806 Volume Summary (Static) Length Calculations based on True Length Number Name Volume (m³) Volume (m³) Volume (m³) Volume (m³) \$1.000 \$1 0.056 0.041 0.000 0.096 \$1.001 \$2 0.063 0.040 4.275 4.377 \$1.002 \$3 0.077 0.053 0.000 0.131 \$1.001 \$2 0.063 0.040 4.275 4.377 \$1.002 \$3 0.077 0.053 0.000 0.131 \$1.003 \$4 0.097 0.045 0.000 0.142 \$1.004 \$5 0.000 0.047 0.000 0.047					
\$1.001 \$2 0.063 0.043 4.275 4.381 \$1.002 \$3 0.077 0.057 0.000 0.134 \$1.003 \$4 0.097 0.047 0.000 0.144 \$1.004 \$5 0.000 0.047 0.000 0.047 Total 0.293 0.238 4.275 4.806 Volume Summary (Static) Length Calculations based on True Length Number Name Volume (m³) Volume (m³) Volume (m³) \$1.000 \$1 0.056 0.041 0.000 0.096 \$1.001 \$2 0.063 0.040 4.275 4.377 \$1.002 \$3 0.077 0.053 0.000 0.131 \$1.002 \$3 0.077 0.053 0.000 0.131 \$1.003 \$4 0.097 0.045 0.000 0.142 \$1.004 \$5 0.000 0.047 0.000 0.047					
\$1.002 \$3 0.077 0.057 0.000 0.134 \$1.003 \$4 0.097 0.047 0.000 0.144 \$1.004 \$5 0.000 0.047 0.000 0.047 Total 0.293 0.238 4.275 4.806 Volume Summary (Static) Length Calculations based on True Length Storage Pipe USMH Manhole Pipe Structure Total \$1.000 \$1 0.056 0.041 0.000 0.096 \$1.001 \$2 0.063 0.040 4.275 4.377 \$1.002 \$3 0.077 0.053 0.000 0.131 \$1.004 \$5 0.000 0.047 0.000 0.142 \$1.004 \$5 0.000 0.047 0.000 0.047					
\$1.003 \$4 0.097 0.047 0.000 0.144 \$1.004 \$5 0.000 0.047 0.000 0.047 Total 0.293 0.238 4.275 4.806 Volume Summary (Static) Length Calculations based on True Length Storage Pipe USMH Manhole Pipe Structure Total Number Name Volume (m³) Volume (m³) Volume (m³) 0.096 \$1.000 \$1 0.056 0.041 0.000 0.096 \$1.001 \$2 0.063 0.040 4.275 4.377 \$1.002 \$3 0.077 0.053 0.000 0.142 \$1.004 \$5 0.000 0.047 0.000 0.047					
Total 0.293 0.238 4.275 4.806 Uolume Summary (Static) Length Calculations based on True Length Storage Pipe USMH Manhole Pipe Structure Total Number Name Volume (m³) Volume (m³) Volume (m³) \$1.000 \$1 0.056 0.041 0.000 0.096 \$1.001 \$2 0.063 0.040 4.275 4.377 \$1.002 \$3 0.077 0.053 0.000 0.142 \$1.003 \$4 0.097 0.045 0.000 0.142 \$1.004 \$5 0.000 0.047 0.000 0.047					
Volume Summary (Static) Length Calculations based on True Length Storage Pipe USMH Manhole Pipe Structure Total Number Name Volume (m³) Volume (m³) Volume (m³) \$1.000 \$1 0.056 0.041 0.000 0.096 \$1.001 \$2 0.063 0.040 4.275 4.377 \$1.002 \$3 0.077 0.053 0.000 0.131 \$1.003 \$4 0.097 0.045 0.000 0.142 \$1.004 \$5 0.000 0.047 0.000 0.047					
Length Calculations based on True Length Storage Pipe USMH Manhole Pipe Structure Total Number Name Volume (m³) Volume (m³) Volume (m³) S1.000 S1 0.056 0.041 0.000 0.096 S1.001 S2 0.063 0.040 4.275 4.377 S1.002 S3 0.077 0.053 0.000 0.131 S1.003 S4 0.097 0.045 0.000 0.142 S1.004 S5 0.000 0.047 0.000 0.047					
PipeUSMHManholePipeStructureTotalNumberNameVolume(m³)Volume(m³)Volume(m³)S1.000S10.0560.0410.0000.096S1.001S20.0630.0404.2754.377S1.002S30.0770.0530.0000.131S1.003S40.0970.0450.0000.142S1.004S50.0000.0470.0000.047					
PipeUSMHManholePipeStructureTotalNumberNameVolume(m³)Volume(m³)Volume(m³)S1.000S10.0560.0410.0000.096S1.001S20.0630.0404.2754.377S1.002S30.0770.0530.0000.131S1.003S40.0970.0450.0000.142S1.004S50.0000.0470.0000.047					
Number Name Volume (m³)Volume (m³)Volume (m³)Volume (m³)S1.000S10.0560.0410.0000.096S1.001S20.0630.0404.2754.377S1.002S30.0770.0530.0000.131S1.003S40.0970.0450.0000.142S1.004S50.0000.0470.0000.047					
S1.000S10.0560.0410.0000.096S1.001S20.0630.0404.2754.377S1.002S30.0770.0530.0000.131S1.003S40.0970.0450.0000.142S1.004S50.0000.0470.0000.047					
\$1.001\$20.0630.0404.2754.377\$1.002\$30.0770.0530.0000.131\$1.003\$40.0970.0450.0000.142\$1.004\$50.0000.0470.0000.047					
S1.002S30.0770.0530.0000.131S1.003S40.0970.0450.0000.142S1.004S50.0000.0470.0000.047					
S1.003S40.0970.0450.0000.142S1.004S50.0000.0470.0000.047					
S1.004 S5 0.000 0.047 0.000 0.047					
Total 0.293 0.226 4.275 4.793					

TM Envi	ronmei	ntal Consu	ltants						Pa	ge 11
Jnit 6, (
•		, Twickenh	am						1	
ondon, 7	TW2 61	RS							N	licco
		21 11:10		De	sign	ed by I	Matthew			
'ile 8 H(OLLYM(DOR - PROP	OSAL.M		lecke	_			D	rainag
nnovyze				Ne	twor	k 2020	.1			
<u>l year F</u>	Returr	n Period S	ummary	-	ritic or St		ults by	<u>Maximum</u>	Level	(Rank 1
	ole Hea 11 Sewa	eal Reducti Hot Sta Hot Start L dloss Coeff ge per hect umber of Ing	rt (min evel (m (Globa are (1/) put Hydr	or 1.00 s) m) 1) 0.50 s) 0.00	00 2 0 00 Flc 00 5 0 N	MADE ow per F umber o:	Lal Flow Factor Person pe	* 10m³/ha Enlet Coeff er Day (1/p e Structure	Storage iecient er/day) es 1	2.000 0.800
	1	Number of (Number of Of					- /			
		Rainfall		nthetic	Rain	fall Det		o r 0.406		
		Rainiai		Enqlan	d and	FSR Wales (o R 0.406 er) 0.750		
		M5-6	50 (mm)	-				er) 0.840		
	Marq	in for Flood	d Risk W	Varning	(mm)				300.0	
	riar g	111 101 11000		-		2.5 Se	cond Inc	rement (Ext		
				DTS S					ON	
			Ine	DVD S ertia S	tatus tatus				ON ON	
	Retu) (years	s) 15, s)	30, 6	0, 120,				
							Maham	Quuchannad	D leaded	
PN	US/MH Name		Event			US/CL (m)	Water Level (m)	Surcharged Depth (m)		Flow / Cap.
S1.000	S1	15 minute	-					-0.085	0.000	0.05
S1.001		240 minute	-					-0.024	0.000	0.01
S1.002 S1.003	S3 S4	15 minute 15 minute	-					-0.089 -0.073	0.000	0.03 0.16
S1.004	S5	15 minute	1 year	Winter	I+0%	31.400	30.763	-0.074	0.000	0.15
						Pip	e			
				US/MH						
			PN	Name	(1/s	5) (1/1	s) Statu	S		
			S1.000	S1				K		
			S1.001 S1.002	S2 S3				K K		
			S1.003	S4				ĸ		
			31.003							
			S1.003	S5		1	.2 OK	*		
				S5		1	.2 OK	*		