

Mr and Mrs Thomas

Project Name: Thomas/Regis
Phone:
Address: Briarwood House, Sheringwood,
Beeston Regis, NR26 8TS
Date Created: 8th February 2022
Designer: Derek Boone

Roof Layout

Roof 1

Component list

•

ltem		Quantity
	Trina 330W All Black Split Cell Mono solar panel	12
Greeyst	Growatt MIN 3600 TL-XE Dual MPPT single phase inverter with DC switch inverter	1
	Emlite ECA2 extended cover	1
	Label sheet	1
	AC isolator - KN Newbury 20A 4-pole	2
	Pair of MC4 connectors	4
	50m reel of 4mm2 solar cable	1
	Fastensol end clamp (35mm black)	12
	Fastensol mid clamp (35mm black)	18
	Fastensol end cap (black)	12
	Fastensol portrait pan tile roof hook	30
	Fastensol rail splice	4
	FS Black rail 3.3m	0
	FS Silver rail 3.3m	8

Inverter checks

Growatt MIN 3600 TL-XE Dual MPPT single phase inverter with DC switch

PV power	3960	Rated AC output	3600

Input 1: 6 Trina 330W All Black Split Cell Mono solar panels in 1

strings

Panels		Inverter	
PV power	1980 W		
Open circuit voltage at -10° C	263 V	Max DC voltage	550 V
V _{mpp} at 40° C	195 V	V_{mpp} lower limit	80 V
V _{mpp} at -10° C	222 V	V _{mpp} upper limit	550 V
I _{mpp} at 40° C	10 A	Max DC input current	16 A

Max voltage

The open circuit voltage of the solar panels never exceeds the voltage limit of the inverter.

Max power point range

The maximum power point voltage of the solar panels is always above the lower limit of the inverter MPPT tracker. The maximum power point voltage of the solar panels is always below the upper limit of the inverter MPPT tracker.

Max Current

The maximum power point current of the solar panels is always below the maximum current for the inverter MPPT tracker.

Input 2: 6 Trina 330W All Black Split Cell Mono solar panels in 1 strings

Panels		Inverter		
PV power	1980 W			
Open circuit voltage at -10° C	263 V	Max DC voltage	550 V	
V _{mpp} at 40° C	195 V	V _{mpp} lower limit	80 V	
V _{mpp} at -10° C	222 V	V _{mpp} upper limit	550 V	
I _{mpp} at 40° C	10 A	Max DC input current	16 A	

The open circuit voltage of the solar panels never exceeds the voltage limit of the inverter.

Max power point range

The maximum power point voltage of the solar panels is always above the lower limit of the inverter MPPT tracker. The maximum power point voltage of the solar panels is always below the upper limit of the inverter MPPT tracker.

Max Current

The maximum power point current of the solar panels is always below the maximum current for the inverter MPPT tracker.

Electrical

Growatt MIN 3600 TL-XE Dual MPPT single phase inverter with DC switch

AC Isolator

A AC isolator - KN Newbury 20A 4-pole has been specified for this input

Current

The rated isolator current (20A) is greater than the rated inverter current (16A)

Phases

The isolator is suitable for use on a single phase inverter.

Input 1

DC Isolator

Integrated isolator

This inverter contains an integrated DC Isolator.

Cable

10m of 4mm2 solar cable has been specified

Voltage drop

Voltage drop at maximum power point at 40°C will be around **0.85 V (0.44 percent)**

.....

Input 2

DC Isolator

Integrated isolator

This inverter contains an integrated DC Isolator.

Cable

10m of 4mm2 solar cable has been specified

Voltage drop

Voltage drop at maximum power point at 40°C will be around **0.85 V (0.44 percent)**

Structural calculations

Weight loading calculations

Roof 1

Total dead load of solar array, mounting and roof covering	0.56 kN/m ²
Dead load from roof covering	0.44 kN/m ²
Loading imposed by solar array	0.12 kN/m ²
Area of solar array	20.2 m ²
Weight of solar panels and mounting	255.4 kg

The solar array, mounting system, and roof covering are expected to impose a total dead load on the roof of 0.56kN/m². This is less than the permitted dead load for the roof of 0.785kN/m².

.

Wind loading calculations

The maximum force acting on a solar array from wind loading is given by the following formula in BRE Digest 489:

$$F = q_p \times C_{p net} \times C_a \times C_t \times A_{ref}$$

Doot	1
RUUI	
	_

Qp			1201 Pa
in	From Fig 34 in Guide to the Installation of Pho windzone 2, in country terrain, at a distance	tovoltaic Systems for a building of less than 2km from the sea	10 m high,
Cp	net	Roof Centre	Roof edge
	Uplift	-1.3	-2.2
	Pressure	1	1.1
Ca			1
	At an altitude of 12m		
Ct			1
	When there is no significant topography		
Are	ef		20.2m ²
F		Roof Centre	Roof edge
	Uplift	-31537N	-53369N
	Pressure	24259N	26685N

With 30 roof hooks we should allow for an uplift force per hook in the central zone of **1051N**, rising to **1779N** at the edges. If 2 screws are used per roof hook, this equates to **526N**per fixing in the central zone, and **889N** at the edges.

Pan tile roof hooks are fixed with screws that pass through the 5mm plate of the roof hook and are then buried fully into the rafter beneath. So there is approximately 75 mm of thread in the timber. The pull-out force in C16 timber is given by tables and formulae in BS5268 Part 2:

18.74 x 1.25 x 75 = **1757N**

The pullout force on the fixings is less than the expected wind loading, even when the fixings are close to the edge of the roof.

Performance Estimate

Site details

Client

Mr and Mrs Thomas

Address Briarwood House, Sheringwood, Beeston Regis

The sunpath diagram shows the arcs of the sky that the sun passes through at different times of the day and year as yellow blocks. The shaded area indicates the horizon as seen from the location of the solar array. Where objects on the horizon are within 10m of the array, an added semi-circle is drawn to represent the increased shading. Blocks of the sky that are shaded by objects on the horizon are coloured red, and a shading factor is calculated from the number of red blocks. The performance of the solar array is calculated by multiplying the size of the array (kWp) by the shading factor (sf) and a site correction factor (kk), taken from tables which take account of the geographical location, orientation and inclination of the array.

Inverter 1

Growatt MIN 3600 TL-XE Dual MPPT single phase inverter with DC switch

Input 1

ш	A. Installation data						
1+1 ×	Installed capacity of PV system - kWp (stc)	1.980	kWp				
	Orientation of the PV system - degrees from South	-78	o				
	Inclination of system - degrees from horizontal	30	o				
	Postcode region	12					
	B. Performance calculations						
	kWh/kWp (Kk)	808	kWh/kWp				
	Shade factor (SF)	0.88					
	Estimated output (kWp x Kk x SF)	1408	kWh				

Input 2

-		ь.	
г			

ıĿ	A. Installation data						
×==	Installed capacity of PV system - kWp (stc)	1.980	kWp				
	Orientation of the PV system - degrees from South	-78	o				
	Inclination of system - degrees from horizontal	30	o				
	Postcode region	12					
	B. Performance calculations						
	kWh/kWp (Kk)	808	kWh/kWp				
	Shade factor (SF)	0.88					
	Estimated output (kWp x Kk x SF)	1408	kWh				

Performance Summary

A. Installation data				
Installed capacity of PV system - kWp (stc)	3.96	kWp		
Orientation of the PV system - degrees from South	See individual inputs			
Inclination of system - degrees from horizontal	See individual inputs			
Postcode region	12			
B. Performance calculations				
kWh/kWp (Kk)	See individual inputs			
Shade factor (SF)	See individual inputs			
Estimated output (kWp x Kk x SF)	2816	kWh		

Important Note: The performance of solar PV systems is impossible to predict with certainty due to the variability in the amount of solar radiation (sunlight) from location to location and from year to year. This estimate is based upon the standard MCS procedure is given as guidence only for the first year of generation. It should not be considered as a guarantee of performance.

Shading will be present on your system that will reduce its output to the factor stated. This factor was calculated using the MCS shading methodology and we believe that this will yield results within 10% of the actual energy estimate stated for most systems.

Equipment Costs		
12x Trina 330W All Black Split Cell Mono solar panel		£2,280.00
Growatt MIN 3600 TL-XE Dual MPPT single phase inverter with	DC switch inverter	£640.00
Emlite ECA2 extended cover		£28.50
Label sheet		£3.00
1x AC isolator - KN Newbury 20A 4-pole		£31.80
4x Pair of MC4 connectors		£16.00
50m reel of 4mm2 solar cable		£60.00
12x Fastensol end clamp (35mm black)		£28.80
18x Fastensol mid clamp (35mm black)		£43.20
12x Fastensol end cap (black)		£13.20
30x Fastensol portrait pan tile roof hook		£240.00
4x Fastensol rail splice		£14.00
8x FS Silver rail 3.3m		£200.00
	Total equipment cost	£3,598.50

	Total services cost	£470.00
MCS /certification fees		£150.00
1day 2men		£320.00
Services Costs		

Totals

£4,068.50	Total before tax
£203.43	VAT at 5%

Total including tax £4,271.93

Financial

Generation

The system is expected to generate 2816 kWh per year initially, decreasing gradually as the solar cells degrade. Over the 30 year term of this financial projection the total generation is expected to be 78435 kwh, of which 78435 kWh will be consumed on site and 0 kWh exported.

Payback

After adjusting projected costs and benefits for inflation, and applying a discount rate of 0%, the initial system cost of \pm 4,271.93 is expected to be recouped after 6 years.

Net Present Value

The total present value of future benefits and costs, using a discount rate of 0% per year, is £38,479.85. The cost of the PV system is £4,271.93. The net present value of the project is therefore £34,207.92. A positive net present value is a good indication that the project is financially worthwhile.

IRR

The Internal Rate of Return is a useful measure for comparing the relative profitability of investments.

Assumptions

78 MWh

£34207.

92

Inflation rate	5%
Cost of electricity	£0.22 /kWh eases with inflation
System size	3.96 kWp es at 0.5% per year
Discount rate	0%
Projection length	30 years

Disclaimer

Our financial model calculates the benefits of a solar PV installation (such as savings in electricity, or payments for exported electricity) and costs (the initial purchase cost, and any future maintenance costs if entered), over the projected lifespan of the system. Values are corrected for inflation, system degradation, and discount rate - a measure that accounts for the fact that a promise of a monetary sum in the distant future is usually considered less valuable than the promise of the same sum in the near future.

A model is only as accurate as the assumptions it makes. You should consider whether the values chosen are appropriate for your situation. There are many variables that dictate the financial return of a solar installation and we cannot forecast how they may change in the future. This financial projection shows a likely scenario for future financial returns. Actual returns may vary significantly from this forecast.

		ments	avings
	c+Port Pa	t' clectici	d ³ rotat
Year 1	0	633	633
Year 2	0	662	662
Year 3	0	691	691
Year 4	0	722	722
Year 5	0	755	755
Year 6	0	788	788
Year 7	0	824	824
Year 8	0	861	861
Year 9	0	899	899
Year 10	0	939	939
Year 11	0	981	981
Year 12	0	1025	1025
Year 13	0	1071	1071
Year 14	0	1119	1119
Year 15	0	1169	1169
Year 16	0	1221	1221
Year 17	0	1276	1276
Year 18	0	1333	1333
Year 19	0	1393	1393
Year 20	0	1455	1455
Year 21	0	1520	1520
Year 22	0	1588	1588
Year 23	0	1659	1659
Year 24	0	1734	1734
Year 25	0	1811	1811
Year 26	0	1892	1892
Year 27	0	1977	1977
Year 28	0	2066	206
Year 29	0	Ę	5
;а D	C	Ę	5
17 18 19	20 21 22 23	24 25	26 27 28 29

Income and savings

The projected income from the system over the project lifetime in payments for generated and exported electricity, along with electricity savings, are shown in the table and graph below. These figures assume an inflation rate of 5 percent.

2500

2000

1500

1000

500

0

1

2 3

4 5

6

7

8 9 10

11 12 13 14 15

 ± 0

Electricity savings

over 30 years

		, er	15	sti ^{rs} xe	, x5
		redbeil	xive ber.	reduces	xive cos
	0 ^{isco}	une cumulé	disco	une cumu	ac cashflor
Year 1	633	633	0	4272	-3639
Year 2	662	1295	0	4272	-2977
Year 3	691	1987	0	4272	-2285
Year 4	722	2709	0	4272	-1563
Year 5	755	3464	0	4272	-808
Year 6	788	4252	0	4272	-20
Year 7	824	5076	0	4272	804
Year 8	861	5936	0	4272	1664
Year 9	899	6835	0	4272	2563
Year 10	939	7775	0	4272	3503
Year 11	981	8756	0	4272	4484
Year 12	1025	9781	0	4272	5509
Year 13	1071	10852	0	4272	6580
Year 14	1119	11971	0	4272	7699
Year 15	1169	13140	0	4272	8869
Year 16	1221	14362	0	4272	10090
Year 17	1276	15638	0	4272	11366
Year 18	1333	16971	0	4272	12699
Year 19	1393	18364	0	4272	14092
Year 20	1455	19819	0	4272	15547
Year 21	1520	21340	0	4272	17068
Year 22	1588	22928	0	4272	18656
Year 23	1659	24588	0	4272	20316
Year 24	1734	26321	0	4272	22049
Year 25	1811	28133	0	4272	23861
Year 26	1892	30025	0	4272	25753
Year 27	1977	32002	0	4272	27730
Year 28	2066	34067	0	4272	29795
Year 29	2158	36225	0	4272	31953
Year 30	2255	38480	0	4272	34208

29 30

17

The bottom line

The table and graph below show the discounted costs for the project (including the initial capital required for the installation), against the total discounted benefits from income and savings on electricity bills.

The system pays for itself in 6 years.

0

з

40000