

Drainage Field Siting and Powys Percolation Test Calculation Form

NB - Development proposing the use of non-mains drainage schemes will only be considered where connection to the mains sewer is not feasible

Guidance Notes:

The following table provides details of siting distances contained in Approved Document H 2010 (Wales), Section H2 of the Building Regulations.

Siting of septic tanks, treatment plants and soakaways						
Distance from Dwelling Watercourse Borehole/well						
Drainage field	15m	10m	50m			
Septic Tank	7m	10m	50m			
Treatment plant	7m	10m	50m			

Conducting the main percolation test

The percolation test should be carried out in accordance with Approved Document H 2010 (Wales), Section H2 of the Building Regulations.

- 1. These tests should be carried out within and be representative of, the proposed soakaway area.
- Excavate at least 2 percolation holes 300mm square to a depth of 300mm below the proposed invert level of the effluent distribution pipe. Where deep holes are necessary, the hole should conform to this shape at the bottom but may be enlarged above the 300mm level to enable safe excavation to be carried out.
- 3. Fill the 300mm square section of the holes to a depth of at least 300mm with water and allow it to seep away overnight.
- 4. Next day, refill the test sections with water to a depth of at least 300mm and observe the time (T) in seconds, for the water to seep away from 75% to 25% full level. (ie a depth of 150mm)
- 5. Extreme weather conditions should be avoided when testing.

please complete the below diagram and form overleaf and return to appointed planning officer and ensure that the porosity test holes are left open for inspection.

Drainage scheme siting diagram

See Location Plan

Percolation tests in accordance with the guidance provided with this form on (*date*) 11/01/2022 in respect of premises at: Land at Cefn Bryn, Cefn Coch, Welshpool, Powys, SY21 0AE

Description of ground strata:

The overall depth of the test holes dug were: (state in metres/millimetres)

Test Hole 1	Test Hole 2			
1m	1m			

I confirm that the water table did not rise to within 1 metre of the invert of the proposed land Irrigation scheme.

The weather conditions on the day were: dry The results of the percolation tests were:

Test Hole 1		Test Hole 2					
	Time in Seconds		V_p		Time in Seconds		V _p
Test 1	5700	÷150	38	Test 1	6000	÷150	40
Test 2	5400	÷150	36	Test 2	5700	÷150	38
Test 3	5100	÷150	34	Test 3	5400	÷150	36
Trial Hole 1 – Average V _p 36		Trial Hole 1 – Average Vp			38		

Average V _p of Test Holes 1 & 2	37				
Use this averaged V_p figure in the following formula P x V_p x 0.25 = A					

Calculating the drainage field area					Key			
Р	X	V _p	Χ	0.25	=	Α		P = no of people served by
8	X	37	Χ	0.25	=	74	m²	the tank
Calculating the linear drainage field length							A = floor area of the drainage	
Α	÷	TW	=	L				field (in square metres) V _P = Percolation Value TW= Trench width in metres
74	÷	0.8	=	92.5	m			
							L = length of the drainage field (in metres)	

Private Treatment Plan Details

KLARGESTER BIOTEC 2 - 12 PERSON SEWAGE TREATMENT PLANT, GRAVITY DISCHARGE

Product Description

The Klargester BioTec is the economical off-mains solution for single houses and uses the tried and tested aerobic biological process for the treatment of domestic sewage.

Klargester BioTec sewage treatment systems are ideal for single/multiple houses and employ the well proven aerobic biological trickling filter process for the treatment of sewage. Easy to install, this BioTec 2 system is suitable for a population of 12.