

New Private Dwelling, Land Adjacent to No.86 Camlet Way, Hadley Wood

Surface Water & SUDs Strategy

In Support of Planning Application 22/00627/FUL

10th March 2022

1.0 Introduction

1.1 Infrastructure Design Ltd (IDL) has been appointed by Jenna Rachel to prepare a Surface Water & SuDS design for their proposed redevelopment at the aforementioned site

2.0 Flood Risk

- 2.1 By reference to the Long Term Flooding Assessment online tool, this address is defined as being in an area at *Very Low Risk of Flooding*
- 2.2 Appendix A includes the maps showing the effects of flooding from Rivers, Surface Water and Reservoirs. The site is unaffected on all counts.
- 2.3 In the unlikely event of flooding from sewers, resulting flows will be contained with the road network (Camlet Way). The onsite FW and SW drainage is to be pumped which will further protect the new property as these facilities are provided with non-return valves in case of main sewer surcharge.
- 2.4 Overland flow routes in case of exceedance will mimic the existing situation where land to continues to fall to the south via the rear gardens to the properties off Pagitts Grove and towards Hadley Common. See Appendix D for drainage layout showing exceedance flow paths.

3.0 Surface Water Drainage / SuDS

- 3.1 An existing 375 dia SW sewer exists in the nearside verge of Camlet Way at a depth to invert of approx. 1.0m. Adjacent to the site, within the Freehold of No 86 Camlet Way, an existing package pump station exists which discharges SW from this dwelling into Camlet Way at a rate of 2 l/sec. It is proposed to form a connection into this existing pump station with the consent of the current owner. Refer to Appendix G which includes a letter from the current owner of No 86, accepting a discharge via their pump station.
- 3.2 The existing undeveloped site presently discharges its surface water, overland to the south.
- 3.3 Given the topography of the site and prevailing clay subsoil conditions, it is necessary to provide a positive means of discharge to the existing surface water sewer network. Infiltration techniques are not suitable.
- 3.4 The FFL to the new dwelling, is to be set at a level some 5m lower than Camlet Way, and therefore requires a pump facility to lift the surface water discharge to its outfall.

- 3.5 The total impermeable catchment of the new development, proposed to discharge into the adopted sewer system is 290m2.
- 3.6 Attenuation in the form of cellular storage is to be provided (12m3) along with 300mm thickness of reduced fines crushed rock subbase to the 130m2 of permeable driveway (30% voids ratio providing 11.7m3 of potential stormwater storage).
- 3.7 Source Control measures in the form of raised rain-planters will divert the majority of the roof runoff via specially planted containers that will serve to remove pollutants during the first-flush (approx.. 5mm depth of rainfall). These planters will be designed to divert flow from the downpipe with the containers having a low-flow outfall in to the drain and overflow in case of heavy or prolonged rainfall. Refer to Appendix F for the *Stormwater Planter Construction and Maintenance Guide*.
- 3.8 In acknowledging the obligation to limit runoff to as close as possible to greenfield runoff rates. The adjacent pump station already controls runoff from No 86 to 2 litres/sec. By discharging into this existing pump station, there will be grater increase in flow rate than currently exists for No 86.
- 3.9 The design has been prepared so as to prevent on and offsite flooding for any storm event, up to and including a 1 in 100 year event, plus an allowance for the potential effects of climate change (+ 40%). Similarly, by extension, the site will not flood for any events up to and including the peak 1 in 30 year event.
- 3.10 The site lies wholly outside any recorded source protection zones (SPZ), however, it is acknowledged that any potentially contaminated runoff (for example off roads and private drives) should benefit from a SuDS treatment stage, in order to improve water quality prior to discharge. A newly constructed driveway formed of permeable paving will provide this level of treatment. This will be impermeably lined and a perforated pipe installed in the subbase to provide a final positive outfall.
- 3.11 The SuDS Heirarchy has been duly considered and our explanation as to how we arrived at the proposed strategy is noted under Appendix A.

4.0 Enclosures

- 4.1 Appendix A includes the Flood Maps for this address.
- 4.2 Appendix B defines the SuDS Hierarchy, and has been duly completed to show which of these measures has been incorporated.
- 4.3 Appendix C provides calculations to demonstrate that there will be no flooding for storm events up to and including the 1 in 100 year + 40% storm event.
- 4.4 Appendix D includes a copy of the Surface Water Drainage Strategy Layout
- 4.5 Appendix E includes a copy of the Thames Water asset search.
- 4.6 Appendix F includes the Management and Maintenance strategy for the site, including a copy of the Stormwater Planter Construction and Maintenance Guide.
- 4.7 Appendix G includes a copy of a letter from No 86 Camlet Way, confirming acceptance of flow from the new property into the existing pump station.
- 4.8 Appendix H includes extracts of the soils report which identifies the ground conditions which are not conducive to the use of infiltration techniques.

<u>Appendix A – Flood Risk Maps</u>

Flood Risk From Rivers (Very Low Risk)

Flood Risk From Surface Water (Very Low Risk)

Appendix B - The SUDS Hierarchy

Most Sustainable	SUDS technique	Flood Reduction	Pollution Reduction	Landscape & Wildlife Benefit	Included in the scheme?	Comments
	Living roofs	٧	٧	V	√	The new dwelling will have a pitched roof which is unsuitable for this type of SuDS feature, however we have proposed the inclusion of raised rain planters to collect runoff from the majority of the roof areas.
	Basins and ponds - Constructed wetlands - Balancing ponds - Detention basins - Retention ponds	٧	٧	V		Above ground features are unsuitable on this site given the steep topography and presence of retained trees and their root protection areas.
	Filter strips and swales	٧	٧	٧		As above.
	Infiltration devices -soakaways - infiltration trenches and basins	٧	٧	V		Given the clay subsoil conditions, infiltration techniques are unsuitable on this site.
	Permeable surfaces and filter drains - gravelled areas - solid paving blocks porous paviours	V	٧		√	Permeable paving is proposed to be used in forming the new driveway. This will also assist in pollution reduction.
Least Sustainable	Tanked systems - over-sized pipes/tanks - storms/cells	V			√	Cellular storage is proposed in order to provide the additional attenuation required during prolonged storm events.

Appendix C – Surface Water Calculations

Inc. Permeable Paving

Infrastructure Design Limited		Page 1
33 The Point Rockingham Road		
Market Harborough		
Leicestershire LE16 7QU		Micco
Date 10/03/2022 16:18	Designed by philt	Desinado
File	Checked by	namaye
Micro Drainage	Source Control 2017.1.2	

ICP SUDS Mean Annual Flood

Input

 Return Period (years)
 100
 Soil
 0.450

 Area (ha)
 0.066
 Urban
 0.000

 SAAR (mm)
 700
 Region
 Number
 Region
 6

Results 1/s

QBAR Rural 0.3 QBAR Urban 0.3

Q100 years 0.9

Q1 year 0.2 Q30 years 0.7 Q100 years 0.9

Infrastructure Design Limited		Page 1
33 The Point Rockingham Road	LA 86 Camlet Way	
Market Harborough	Hadley Wood	4
Leicestershire LE16 7QU	Permeable Driveway	Micro
Date 10/03/2022 16:59	Designed by IDL	Drainage
File Permeable Driveway.SRCX	Checked by PT	nialilade
Micro Drainage	Source Control 2017.1.2	

Summary of Results for 100 year Return Period (+40%)

Half Drain Time : 2 minutes.

	Storm		Max	Max	Мах	Max	Max	Max	Status
	Event	:	Level	-	Infiltration				
			(m)	(m)	(1/s)	(1/s)	(1/s)	(m³)	
15	min S	Summer	107.269	0.169	0.0	5.8	5.8	0.9	ОК
30	min S	Summer	107.262	0.162	0.0	5.7	5.7	0.8	O K
60	min S	Summer	107.224	0.124	0.0	4.7	4.7	0.5	O K
120	min S	Summer	107.193	0.093	0.0	3.3	3.3	0.3	O K
180	min S	Summer	107.179	0.079	0.0	2.5	2.5	0.2	O K
240	min S	Summer	107.167	0.067	0.0	2.0	2.0	0.1	O K
360	min S	Summer	107.156	0.056	0.0	1.5	1.5	0.1	O K
480	min S	Summer	107.150	0.050	0.0	1.2	1.2	0.1	O K
600	min S	Summer	107.147	0.047	0.0	1.0	1.0	0.1	O K
720	min S	Summer	107.143	0.043	0.0	0.9	0.9	0.1	O K
960	min S	Summer	107.138	0.038	0.0	0.7	0.7	0.0	O K
1440	min S	Summer	107.132	0.032	0.0	0.5	0.5	0.0	O K
2160	min S	Summer	107.127	0.027	0.0	0.3	0.3	0.0	O K
2880	min S	Summer	107.124	0.024	0.0	0.3	0.3	0.0	O K
4320	min S	Summer	107.120	0.020	0.0	0.2	0.2	0.0	O K
5760	min S	Summer	107.118	0.018	0.0	0.2	0.2	0.0	O K
7200	min S	Summer	107.116	0.016	0.0	0.1	0.1	0.0	O K
8640	min S	Summer	107.115	0.015	0.0	0.1	0.1	0.0	O K
10080	min S	Summer	107.114	0.014	0.0	0.1	0.1	0.0	O K
15	min V	Winter	107.278	0.178	0.0	6.0	6.0	0.9	ОК

Storm			Rain	Flooded	Discharge	Time-Peak	
	Even	t	(mm/hr)	Volume	Volume	(mins)	
				(m³)	(m³)		
15	min	Summer	142.829	0.0	2.8	12	
30	min	Summer	92.260	0.0	3.8	19	
60	min	Summer	56.713	0.0	4.9	34	
120	min	Summer	33.709	0.0	5.9	64	
180	min	Summer	24.562	0.0	6.5	94	
240	min	Summer	19.521	0.0	6.9	124	
360	min	Summer	14.048	0.0	7.5	184	
480	min	Summer	11.131	0.0	7.9	244	
600	min	Summer	9.286	0.0	8.2	300	
720	min	Summer	8.005	0.0	8.5	364	
960	min	Summer	6.329	0.0	9.0	484	
1440	min	Summer	4.539	0.0	9.6	726	
2160	min	Summer	3.251	0.0	10.2	1092	
2880	min	Summer	2.564	0.0	10.6	1464	
4320	min	Summer	1.832	0.0	11.0	2176	
5760	min	Summer	1.442	0.0	11.3	2856	
7200	min	Summer	1.198	0.0	11.4	3672	
8640	min	Summer	1.029	0.0	11.5	4264	
10080	min	Summer	0.904	0.0	11.4	5040	
15	min	Winter	142.829	0.0	3.2	12	

©1982-2017 XP Solutions

Infrastructure Design Limited		Page 2
33 The Point Rockingham Road	LA 86 Camlet Way	
Market Harborough	Hadley Wood	4
Leicestershire LE16 7QU	Permeable Driveway	Micro
Date 10/03/2022 16:59	Designed by IDL	Drainage
File Permeable Driveway.SRCX	Checked by PT	Dialilade
Micro Drainage	Source Control 2017.1.2	

Summary of Results for 100 year Return Period (+40%)

Storm Max Max Max Max Max Max Max Event Level Depth Infiltration Control Σ Outflow Volum (m) (m) (1/s) (1/s) (1/s) (m ³)	Status e
30 min Winter 107.253 0.153 0.0 5.5 5.5 0.	7 O K
60 min Winter 107.207 0.107 0.0 4.2 4.2 0.	3 O K
120 min Winter 107.179 0.079 0.0 2.5 2.5 0.	2 O K
180 min Winter 107.164 0.064 0.0 1.9 1.9 0.	1 O K
240 min Winter 107.156 0.056 0.0 1.5 1.5 0.	1 O K
360 min Winter 107.149 0.049 0.0 1.1 1.1 0.	1 O K
480 min Winter 107.143 0.043 0.0 0.9 0.9 0.	1 O K
600 min Winter 107.139 0.039 0.0 0.7 0.7 0.	0 O K
720 min Winter 107.136 0.036 0.0 0.6 0.6 0.	0 O K
960 min Winter 107.132 0.032 0.0 0.5 0.5 0.	0 O K
1440 min Winter 107.127 0.027 0.0 0.3 0.3 0.	0 O K
2160 min Winter 107.123 0.023 0.0 0.2 0.2 0.	0 O K
2880 min Winter 107.120 0.020 0.0 0.2 0.2 0.	0 O K
4320 min Winter 107.117 0.017 0.0 0.1 0.1 0.	0 O K
5760 min Winter 107.115 0.015 0.0 0.1 0.1 0.	0 O K
7200 min Winter 107.113 0.013 0.0 0.1 0.1 0.	0 O K
8640 min Winter 107.112 0.012 0.0 0.1 0.1 0.	0 O K
10080 min Winter 107.111 0.011 0.0 0.1 0.1 0.	0 O K

Storm			Rain	Flooded	Discharge	Time-Peak
	Even	t	(mm/hr)	Volume	Volume	(mins)
				(m³)	(m³)	
2.0		ration to a second	00 000	0 0	4 4	2.0
		Winter		0.0	4.4	20
		Winter		0.0	5.5	34
120	min	Winter	33.709	0.0	6.7	64
180	min	Winter	24.562	0.0	7.3	92
240	min	Winter	19.521	0.0	7.8	122
360	min	Winter	14.048	0.0	8.5	180
480	min	Winter	11.131	0.0	8.9	246
600	min	Winter	9.286	0.0	9.3	302
720	min	Winter	8.005	0.0	9.6	370
960	min	Winter	6.329	0.0	10.1	490
1440	min	Winter	4.539	0.0	10.9	718
2160	min	Winter	3.251	0.0	11.6	1116
2880	min	Winter	2.564	0.0	12.0	1480
4320	min	Winter	1.832	0.0	12.6	2144
5760	min	Winter	1.442	0.0	12.9	2784
7200	min	Winter	1.198	0.0	13.1	3560
8640	min	Winter	1.029	0.0	13.2	4368
10080	min	Winter	0.904	0.0	13.3	5152

Infrastructure Design Limited		Page 3
33 The Point Rockingham Road	LA 86 Camlet Way	
Market Harborough	Hadley Wood	
Leicestershire LE16 7QU	Permeable Driveway	Micco
Date 10/03/2022 16:59	Designed by IDL	Drainage
File Permeable Driveway.SRCX	Checked by PT	Dialilade
Micro Drainage	Source Control 2017.1.2	

Rainfall Details

Return Period (years) 100 Cv (Summer) 0.750
Region England and Wales Cv (Winter) 0.840
M5-60 (mm) 20.000 Shortest Storm (mins) 15
Ratio R 0.440 Longest Storm (mins) 10080
Summer Storms Yes Climate Change % +40

Time Area Diagram

Total Area (ha) 0.013

 Time
 (mins)
 Area

 From:
 To:
 (ha)

 0
 4
 0.013

Infrastructure Design Limited		Page 4
33 The Point Rockingham Road	LA 86 Camlet Way	
Market Harborough	Hadley Wood	
Leicestershire LE16 7QU	Permeable Driveway	Micco
Date 10/03/2022 16:59	Designed by IDL	Drainage
File Permeable Driveway.SRCX	Checked by PT	Dialilade
Micro Drainage	Source Control 2017.1.2	

Model Details

Storage is Online Cover Level (m) 107.700

Porous Car Park Structure

5.0	Width (m)	0.00000	Infiltration Coefficient Base (m/hr)
26.0	Length (m)	1000	Membrane Percolation (mm/hr)
40.0	Slope (1:X)	36.1	Max Percolation (1/s)
5	Depression Storage (mm)	2.0	Safety Factor
3	Evaporation (mm/day)	0.30	Porosity
0	Membrane Depth (m)	107.100	Invert Level (m)

Pipe Outflow Control

Diameter (m)	0.100	Entry Loss Coefficient	0.500
Slope (1:X)	150.0	Coefficient of Contraction	0.600
Length (m)	10.000	Upstream Invert Level (m)	107.100
Roughness k (mm)	0.600		

Infrastructure Design Limited		Page 1
33 The Point Rockingham Road	LA 86 Camlet Way	
Market Harborough	Hadley Wood	4
Leicestershire LE16 7QU	Attenuation & Pump	Micro
Date 10/03/2022 16:00	Designed by IDL	Drainage
File Attenuation and Pump at	Checked by PT	Dialilade
Micro Drainage	Source Control 2017.1.2	

Summary of Results for 100 year Return Period (+40%)

Half Drain Time : 139 minutes.

	Storm Event		Max Level (m)	Max Depth (m)	Max Infiltration (1/s)	Max Control (1/s)	Σ	Max Outflow (1/s)	Max Volume (m³)	Status
			\ /	\ /	(=, =,	(-/-/		(-, -,	, ,	
15	min Sum	nmer 1	05.249	0.579	0.0	2.0		2.0	18.6	O K
30	min Sum	nmer 1	05.362	0.692	0.0	2.0		2.0	23.2	O K
60	min Sum	nmer 1	05.434	0.764	0.0	2.0		2.0	26.1	O K
120	min Sum	nmer 1	05.424	0.754	0.0	2.0		2.0	25.7	O K
180	min Sum	nmer 1	05.387	0.717	0.0	2.0		2.0	24.2	O K
240	min Sum	nmer 1	05.353	0.683	0.0	2.0		2.0	22.8	O K
360	min Sum	nmer 1	05.288	0.618	0.0	2.0		2.0	20.2	O K
480	min Sum	nmer 1	05.228	0.558	0.0	2.0		2.0	17.8	O K
600	min Sum	nmer 1	05.166	0.496	0.0	2.0		2.0	15.5	O K
720	min Sum	nmer 1	05.103	0.433	0.0	2.0		2.0	13.4	O K
960	min Sum	nmer 1	04.981	0.311	0.0	2.0		2.0	9.6	O K
1440	min Sum	nmer 1	04.801	0.131	0.0	2.0		2.0	4.0	O K
2160	min Sum	nmer 1	04.677	0.007	0.0	2.0		2.0	0.2	O K
2880	min Sum	nmer 1	04.670	0.000	0.0	1.7		1.7	0.0	O K
4320	min Sum	nmer 1	04.670	0.000	0.0	1.2		1.2	0.0	O K
5760	min Sum	nmer 1	04.670	0.000	0.0	0.9		0.9	0.0	O K
7200	min Sum	nmer 1	04.670	0.000	0.0	0.8		0.8	0.0	O K
8640	min Sum	nmer 1	04.670	0.000	0.0	0.7		0.7	0.0	O K
10080	min Sum	nmer 1	04.670	0.000	0.0	0.6		0.6	0.0	O K
15	min Win	nter 1	05.313	0.643	0.0	2.0		2.0	21.2	O K

	Stor Even		Rain (mm/hr)	Flooded Volume (m³)	Discharge Volume (m³)	Time-Peak (mins)
15	min	Summer	142.829	0.0	21.1	21
30	min	Summer	92.260	0.0	27.3	34
60	min	Summer	56.713	0.0	33.5	62
120	min	Summer	33.709	0.0	40.0	114
180	min	Summer	24.562	0.0	43.8	142
240	min	Summer	19.521	0.0	46.2	174
360	min	Summer	14.048	0.0	49.9	242
480	min	Summer	11.131	0.0	52.7	308
600	min	Summer	9.286	0.0	55.0	374
720	min	Summer	8.005	0.0	57.0	440
960	min	Summer	6.329	0.0	59.9	562
1440	min	Summer	4.539	0.0	64.6	794
2160	min	Summer	3.251	0.0	69.3	1104
2880	min	Summer	2.564	0.0	72.9	0
4320	min	Summer	1.832	0.0	78.2	0
5760	min	Summer	1.442	0.0	82.0	0
7200	min	Summer	1.198	0.0	85.2	0
8640	min	Summer	1.029	0.0	87.8	0
10080	min	Summer	0.904	0.0	90.0	0
15	min	Winter	142.829	0.0	23.7	21

©1982-2017 XP Solutions

Infrastructure Design Limited		Page 2
33 The Point Rockingham Road	LA 86 Camlet Way	
Market Harborough	Hadley Wood	4
Leicestershire LE16 7QU	Attenuation & Pump	Micro
Date 10/03/2022 16:00	Designed by IDL	Drainage
File Attenuation and Pump at	Checked by PT	Dialiage
Micro Drainage	Source Control 2017.1.2	

Summary of Results for 100 year Return Period (+40%)

	Storm Event	=	Max Level (m)	Max Depth (m)	Max Infiltration (1/s)	Max Control (1/s)	Σ	Max Outflow (1/s)	Max Volume (m³)	Status
30	min V	Winter	105.445	0.775	0.0	2.0		2.0	26.5	O K
60	min V	Winter	105.538	0.868	0.0	2.0		2.0	30.3	O K
120	min V	Winter	105.552	0.882	0.0	2.0		2.0	30.8	O K
180	min V	Winter	105.499	0.829	0.0	2.0		2.0	28.7	O K
240	min V	Winter	105.454	0.784	0.0	2.0		2.0	26.9	O K
360	min V	Winter	105.361	0.691	0.0	2.0		2.0	23.1	O K
480	min V	Winter	105.271	0.601	0.0	2.0		2.0	19.5	O K
600	min V	Winter	105.181	0.511	0.0	2.0		2.0	16.1	O K
720	min V	Winter	105.085	0.415	0.0	2.0		2.0	12.8	O K
960	min V	Winter	104.906	0.236	0.0	2.0		2.0	7.3	O K
1440	min V	Winter	104.684	0.014	0.0	2.0		2.0	0.4	O K
2160	min V	Winter	104.670	0.000	0.0	1.5		1.5	0.0	O K
2880	min V	Winter	104.670	0.000	0.0	1.2		1.2	0.0	O K
4320	min V	Winter	104.670	0.000	0.0	0.9		0.9	0.0	O K
5760	min V	Winter	104.670	0.000	0.0	0.7		0.7	0.0	O K
7200	min V	Winter	104.670	0.000	0.0	0.6		0.6	0.0	O K
8640	min V	Winter	104.670	0.000	0.0	0.5		0.5	0.0	O K
10080	min V	Winter	104.670	0.000	0.0	0.4		0.4	0.0	O K

	Stor	m	Rain	Flooded	Discharge	Time-Peak
	Even	t	(mm/hr)	Volume	Volume	(mins)
				(m³)	(m³)	
2.0			00 000	0.0	20.6	2.4
			92.260	0.0	30.6	34
60	min	Winter	56.713	0.0	37.7	62
120	min	Winter	33.709	0.0	44.8	118
180	min	Winter	24.562	0.0	48.9	164
240	min	Winter	19.521	0.0	51.8	188
360	min	Winter	14.048	0.0	55.9	264
480	min	Winter	11.131	0.0	59.1	336
600	min	Winter	9.286	0.0	61.6	404
720	min	Winter	8.005	0.0	63.7	470
960	min	Winter	6.329	0.0	67.2	590
1440	min	Winter	4.539	0.0	72.3	772
2160	min	Winter	3.251	0.0	77.7	0
2880	min	Winter	2.564	0.0	81.7	0
4320	min	Winter	1.832	0.0	87.5	0
5760	min	Winter	1.442	0.0	91.9	0
7200	min	Winter	1.198	0.0	95.4	0
8640	min	Winter	1.029	0.0	98.3	0
10080	min	Winter	0.904	0.0	100.8	0

Infrastructure Design Limited		Page 3
33 The Point Rockingham Road	LA 86 Camlet Way	
Market Harborough	Hadley Wood	4
Leicestershire LE16 7QU	Attenuation & Pump	Micco
Date 10/03/2022 16:00	Designed by IDL	Drainage
File Attenuation and Pump at	Checked by PT	Diamage
Micro Drainage	Source Control 2017.1.2	

Rainfall Details

Return Period (years) 100 Cv (Summer) 0.750
Region England and Wales Cv (Winter) 0.840
M5-60 (mm) 20.000 Shortest Storm (mins) 15
Ratio R 0.440 Longest Storm (mins) 10080
Summer Storms Yes Climate Change % +40

Time Area Diagram

Total Area (ha) 0.079

Time	(mins)	Area	Time	(mins)	Area
From:	To:	(ha)	From:	To:	(ha)
0	4	0.049	4	8	0.030

©1982-2017 XP Solutions

Infrastructure Design Limited		Page 4
33 The Point Rockingham Road	LA 86 Camlet Way	
Market Harborough	Hadley Wood	4
Leicestershire LE16 7QU	Attenuation & Pump	Micro
Date 10/03/2022 16:00	Designed by IDL	Drainage
File Attenuation and Pump at	Checked by PT	Diamage
Micro Drainage	Source Control 2017.1.2	

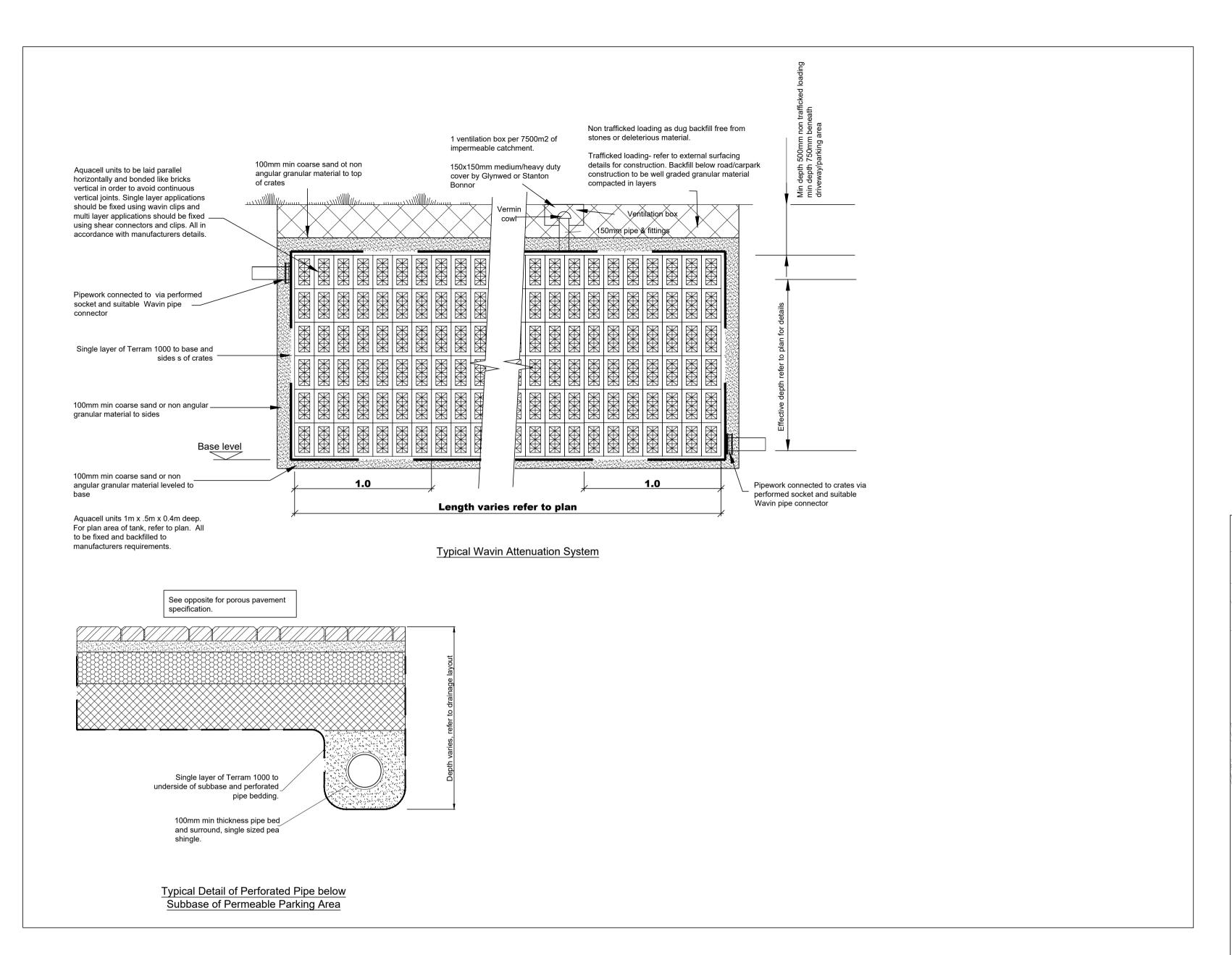
Model Details

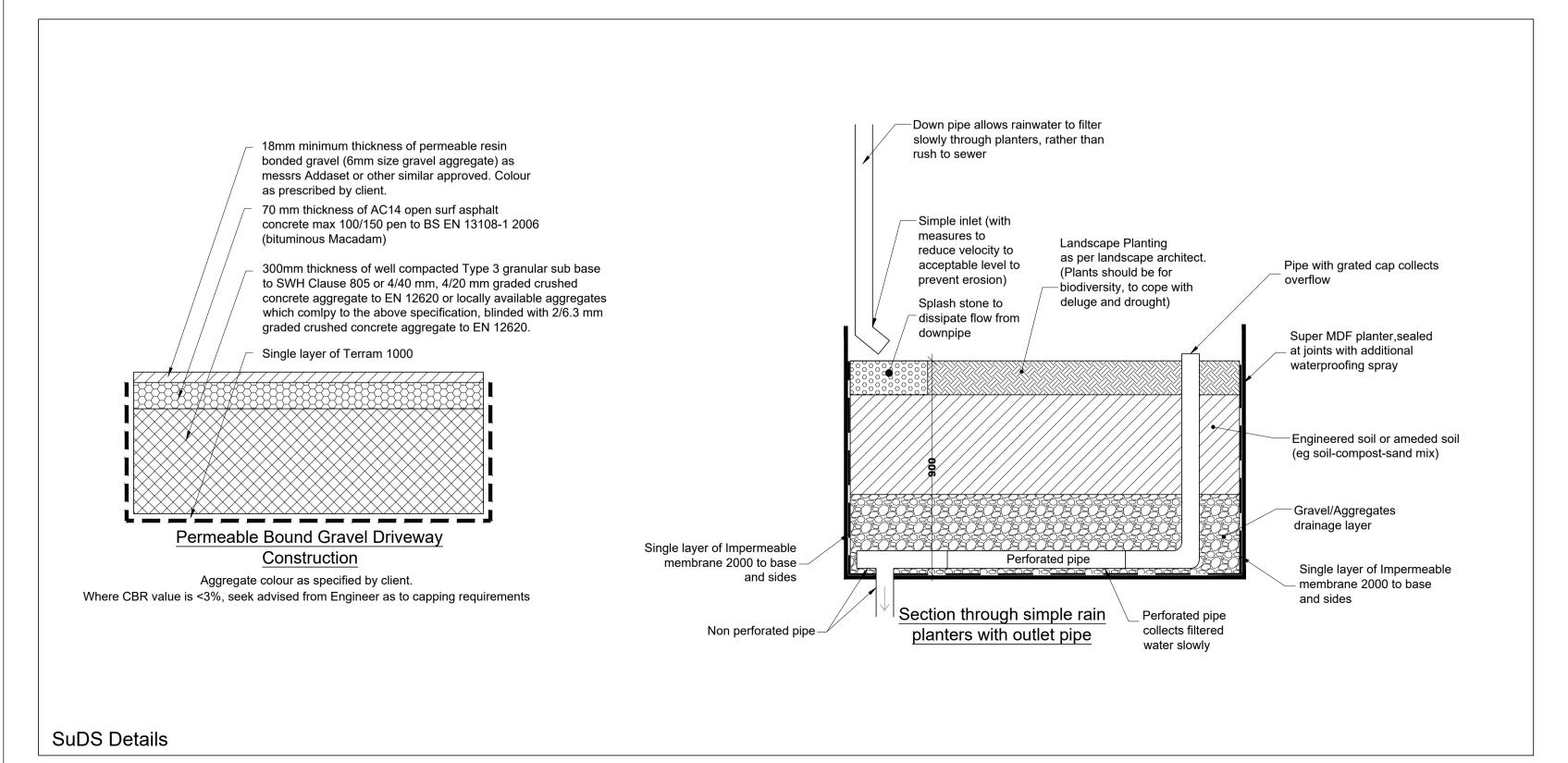
Storage is Online Cover Level (m) 107.300

Cellular Storage Structure

Invert Level (m) 104.670 Safety Factor 2.0 Infiltration Coefficient Base (m/hr) 0.00000 Porosity 0.95 Infiltration Coefficient Side (m/hr) 0.00000

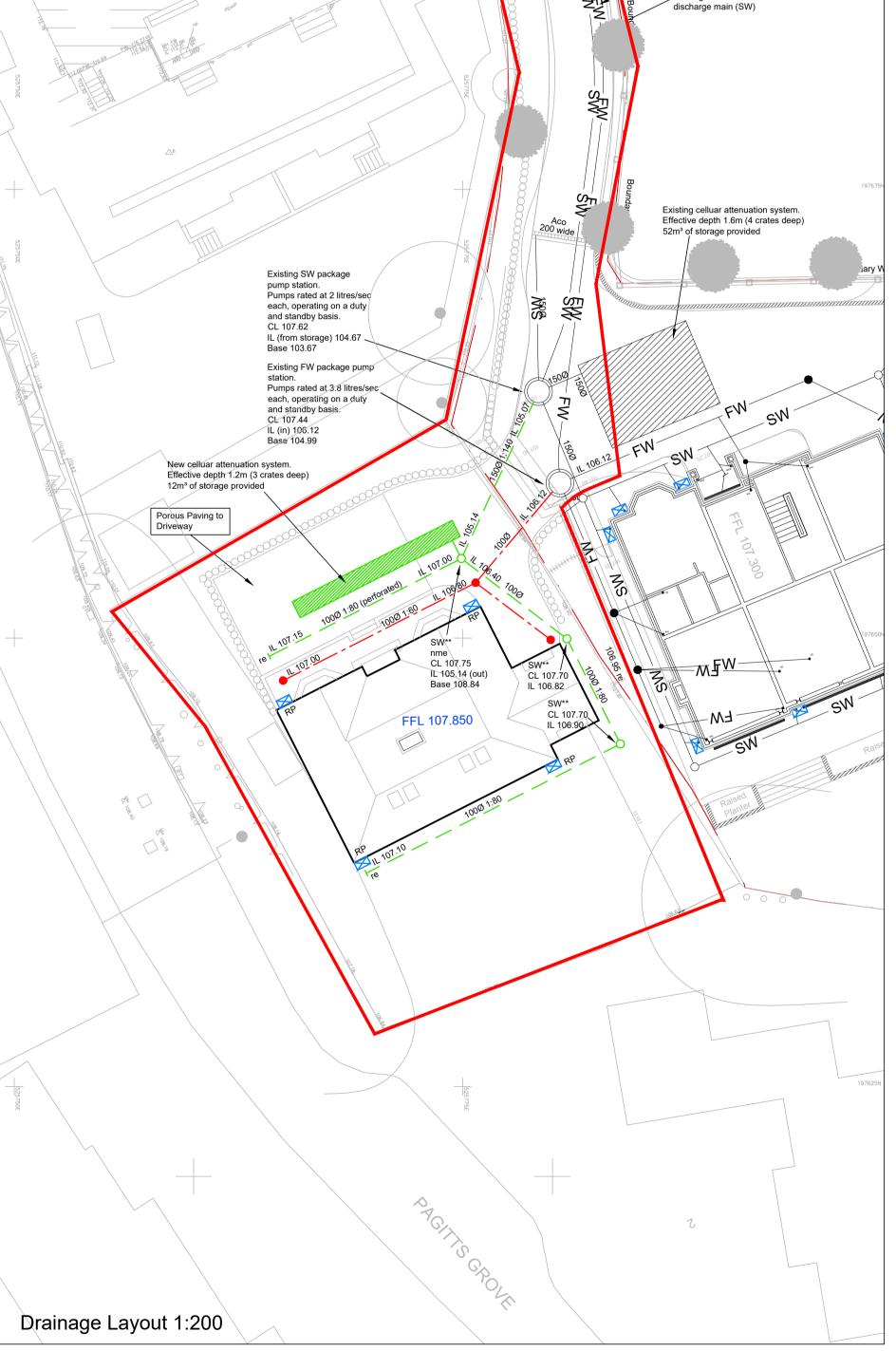
Depth (m)	Area (m²) Inf	. Area (m²)	Depth (m)	Area (m²) Ini	f. Area (m²)
0.000	32.5	32.5	2.600	0.0	75.2
0.200	32.5	37.1	2.800	0.0	75.2
0.400	32.5	41.6	3.000	0.0	75.2
0.600	42.5	46.5	3.200	0.0	75.2
0.800	42.5	51.7	3.400	0.0	75.2
1.000	42.5	56.9	3.600	0.0	75.2
1.200	42.5	62.2	3.800	0.0	75.2
1.400	42.5	67.4	4.000	0.0	75.2
1.600	42.5	72.6	4.200	0.0	75.2
1.800	0.0	75.2	4.400	0.0	75.2
2.000	0.0	75.2	4.600	0.0	75.2
2.200	0.0	75.2	4.800	0.0	75.2
2.400	0.0	75.2	5.000	0.0	75.2


Pump Outflow Control


Invert Level (m) 104.000

Depth (m)	Flow (1/s)						
0.100	2.0000	0.900	2.0000	1.700	2.0000	2.500	2.0000
0.200	2.0000		2.0000	1.800	2.0000	2.600	2.0000
0.300	2.0000	1.100	2.0000	1.900	2.0000	2.700	2.0000
0.400	2.0000	1.200	2.0000	2.000	2.0000	2.800	2.0000
0.500	2.0000	1.300	2.0000	2.100	2.0000	2.900	2.0000
0.600	2.0000	1.400	2.0000	2.200	2.0000	3.000	2.0000
0.700	2.0000	1.500	2.0000	2.300	2.0000		
0.800	2.0000	1.600	2.0000	2.400	2.0000		

©1982-2017 XP Solutions


<u>Appendix D – Drainage Strategy Layout</u>

Key —— FW —— Existing foul water sewer ——— SW ——— Existing surface water sewer ___ _ _ _ Private foul water drainage as detailed on the private drainage/ construction details. Private SW drainage as detailed on the private drainage/ construction details. Polypropylene universal inspection chambers 3000 deep max, 450 dia, 100 inlet / outlet connections (6 no. max) or 150 inlet/outlet connections (4 no max) as detailed on the private drainage/ construction details. Polypropylene 'non-entry' inspection chambers 3000 deep max, 450 dia (with 300 dia. or square cover) 100 inlet / outlet connections (6 no. max), or 150 inlet/outlet connections (4 no max) as detailed on the private drainage construction details. Polypropylene silt trap as detailed on the private drainage construction details. Rodding eye same dia. as downstream drain Aquacell or similar heavy duty crate-based attenuation system as detailed on the private drainage/ construction details

1.2m x 0.6m 0.9m deep Rain Planters

Notes

- 1 This drawing is to be read in conjunction with the private drainage construction details all other relevant contract
- 2 All private drainage works to be carried out in accordance with the provisions laid down in BS EN 752 & The Building
- Regulations, Part H. 3 Levels shown in buildings are Finished Floor Level.
- 4 Drainage under adopted roads to be either:a) Vitrified Clayware to BSEN295.
- b) Concrete to BS 5911, Class M. Laterals to be formed of either vitrified clay or "Extra Strength", concrete "Class M", 5 Before commencing any Sewer or drainage works, the Developer's Groundworker must satisfy themselves, the
- of existing sewers. 6 Buried concrete to satisfy the requirements of BRE Special Digest 1 as predetermined by the site's Geotechnical Report

developer and the Local Authority of actual levels and conditions

- 7 All abandoned, buried obstructions encountered during the construction of Highway & Drainage Works are to be broken out to bed level of drains and sewers, and to the formation of carparks and drives etc., and to sufficient depth to allow for
- laying service company's mains and services. 8 Depth and Location of existing services to be traced prior to any
- 9 All private drainage to be laid to levels shown using flexibly jointed pipes, either uPVC to BS 4660 and BS 5481 or vitrified
- clayware to BS EN 295. 10 Generally pipes to have granular Bed & Surround in accordance with manufacturers recommendations, ensuring adequate protection with respect to depth and location. Where bedding
- material is placed at depths susceptible to ground water ingress, it is to be wrapped in a geotextile (Terram 700 or better). 11 Private precast concrete manholes and catchpits to be constructed using conc. box sections or circular rings to BS 5911-200, with 150mm conc. surround, size and construction to
- comply with Table 12 of Approved Document, Part H. 12 Rodding eyes, etc are to be laid to manufacturers minimum cover and depth to allow adequate fall from adjoining unit.
- 13 Access panels are to be provided to all rainwater pipes, a max. 600 above finished ground level.
- 14 All manholes / inspection chambers in hard surfaced areas, to have recessed covers. These are to be orientated such as to
- minimise cut blocks.
- 15 All pipework to be 100mmØ unless otherwise stated, 150mm dia
- from road gullies. 16 All levels in metres (m) unless specified otherwise.
- 17 All drain runs from SVP's, stub stacks or FW gullies to be laid at
- min. 1:40 gradient unless otherwise stated. 18 Svp's, stub stacks & RWP's are shown indicative only. Refer to
- Architectural dimensioned GA's for accurate locations 19 House/Flat drainage to be laid prior to erection of scaffold. 20 All cover and invert levels shown are in metres. All pipe
- diameters are in millimetres U.N.O.
- 21 All chambers located in trafficked areas to have concrete
- 22 IMPORTANT NOTE: At depths where groundwater ingress is encountered,
- consider the use of a sump / pump arrangement. Where excavations are >1m deep, consider the use of full perimeter trench support.
- 23 IMPORTANT NOTE:
 - The new sewer connections are be successfully made prior to commencing any upstream drainage works.

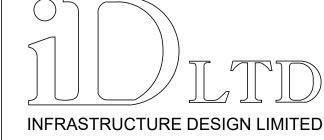
SCALE: 1:200@A1

DATE: Mar 2022 DRAWN: IDL

TITLE:

Drainage Strategy Layout

LA 86 Camlet Way, Hadley Wood


Jenna Rachel

IDL/1130/07/01

Ref. No: 1130-07-01.pdf

33 The Point, Rockingham Road Market Harborough

Leicestershire LE16 7QU Tel 01858 411570 Fax 01858 411571 Email: info@infrades.co.uk URL: www.infrades.co.uk

Appendix E – Thames Water Asset Search

Atkins Telecoms Stats Enquiries Team The Hub 500Park Avenue BRISTOL BS32 4RZ CHECKED

Search address supplied Site at Camlet Way, BARNET, Hertfordshire

EN4 0NX

Your reference 50351

Our reference ALS/ALS Standard/2016_3448241

Search date 8 November 2016

Notification of Price Changes...

From **1 September 2016** Thames Water Property Searches will be increasing the prices of its Asset Location Searches. This will be the first price rise in three years and is in line with the RPI at 1.84%. The increase follows significant capital investment in improving our systems and infrastructure.

Enquiries received with a higher payment prior to 1 September 2016 will be non-refundable. For further details on the price increase please visit our website at

www.thameswater-propertysearches.co.uk

Search address supplied: Site at Camlet Way, BARNET, Hertfordshire, EN4 0NX

Dear Sir / Madam

An Asset Location Search is recommended when undertaking a site development. It is essential to obtain information on the size and location of clean water and sewerage assets to safeguard against expensive damage and allow cost-effective service design.

The following records were searched in compiling this report: - the map of public sewers & the map of waterworks. Thames Water Utilities Ltd (TWUL) holds all of these.

This searchprovides maps showing the position, size of Thames Water assets close to the proposed development and also manhole cover and invert levels, where available.

Please note that none of the charges made for this report relate to the provision of Ordnance Survey mapping information. The replies contained in this letter are given following inspection of the public service records available to this company. No responsibility can be accepted for any error or omission in the replies.

You should be aware that the information contained on these plans is current only on the day that the plans are issued. The plans should only be used for the duration of the work that is being carried out at the present time. Under no circumstances should this data be copied or transmitted to parties other than those for whom the current work is being carried out.

Thames Water do update these service plans on a regular basis and failure to observe the above conditions could lead to damage arising to new or diverted services at a later date.

Contact Us

If you have any further queries regarding this enquiry please feel free to contact a member of the team on 0845 070 9148, or use the address below:

Thames Water Utilities Ltd Property Searches PO Box 3189 Slough SL1 4WW

Email: searches@thameswater.co.uk

Web: www.thameswater-propertysearches.co.uk

Waste Water Services

Please provide a copy extract from the public sewer map.

The following quartiles have been printed as they fall within Thames' sewerage area:

TQ2597SE TQ2697SW TQ2697NW TQ2597NE

Enclosed is a map showing the approximate lines of our sewers. Our plans do not show sewer connections from individual properties or any sewers not owned by Thames Water unless specifically annotated otherwise. Records such as "private" pipework are in some cases available from the Building Control Department of the relevant Local Authority.

Where the Local Authority does not hold such plans it might be advisable to consult the property deeds for the site or contact neighbouring landowners.

This report relates only to sewerage apparatus of Thames Water Utilities Ltd, it does not disclose details of cables and or communications equipment that may be running through or around such apparatus.

The sewer level information contained in this response represents all of the level data available in our existing records. Should you require any further Information, please refer to the relevant section within the 'Further Contacts' page found later in this document.

For your guidance:

- The Company is not generally responsible for rivers, watercourses, ponds, culverts
 or highway drains. If any of these are shown on the copy extract they are shown for
 information only.
- Any private sewers or lateral drains which are indicated on the extract of the public sewer map as being subject to an agreement under Section 104 of the Water Industry Act 1991 are not an 'as constructed' record. It is recommended these details be checked with the developer.

Clean Water Services

Please provide a copy extract from the public water main map.

Following examination of our statutory maps, Thames Water has been unable to find

any plans of water mains within this area. If you require a connection to the public water supply system, please write to:

New Connections / Diversions Thames Water Network Services Business Centre Brentford Middlesex TW8 0EE

Tel: 0845 850 2777

Fax: 0207 713 3858

Email: developer.services@thameswater.co.uk

The following quartiles have not been printed as they are out of Thames' water catchment area. For details of the assets requested please contact the water company indicated below:

TQ2597SE Affinity Water TQ2697SW Affinity Water TQ2597NE Affinity Water Affinity Water

> Affinity Water Ltd Tamblin Way Hatfield AL10 9EZ

Tel: 0845 7823333

For your guidance:

- Assets other than vested water mains may be shown on the plan, for information only.
- If an extract of the public water main record is enclosed, this will show known public
 water mains in the vicinity of the property. It should be possible to estimate the
 likely length and route of any private water supply pipe connecting the property to
 the public water network.

Payment for this Search

A charge will be added to your suppliers account.

Further contacts:

Waste Water queries

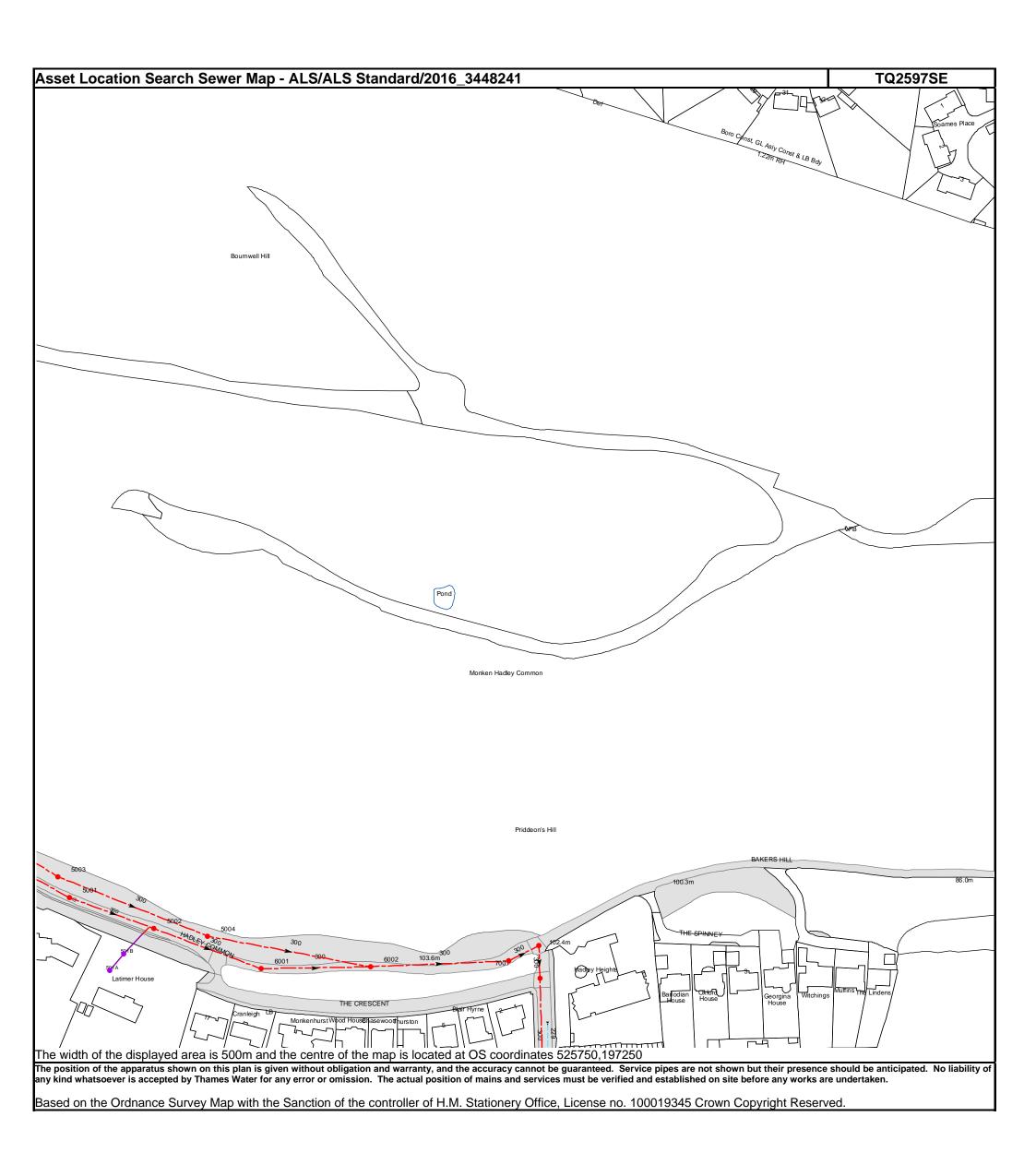
Should you require verification of the invert levels of public sewers, by site measurement, you will need to approach the relevant Thames Water Area Network Office for permission to lift the appropriate covers. This permission will usually involve you completing a TWOSA form. For further information please contact our Customer Centre on Tel: 0845 920 0800. Alternatively, a survey can be arranged, for a fee, through our Customer Centre on the above number.

If you have any questions regarding sewer connections, budget estimates, diversions, building over issues or any other questions regarding operational issues please direct them to our service desk. Which can be contacted by writing to:

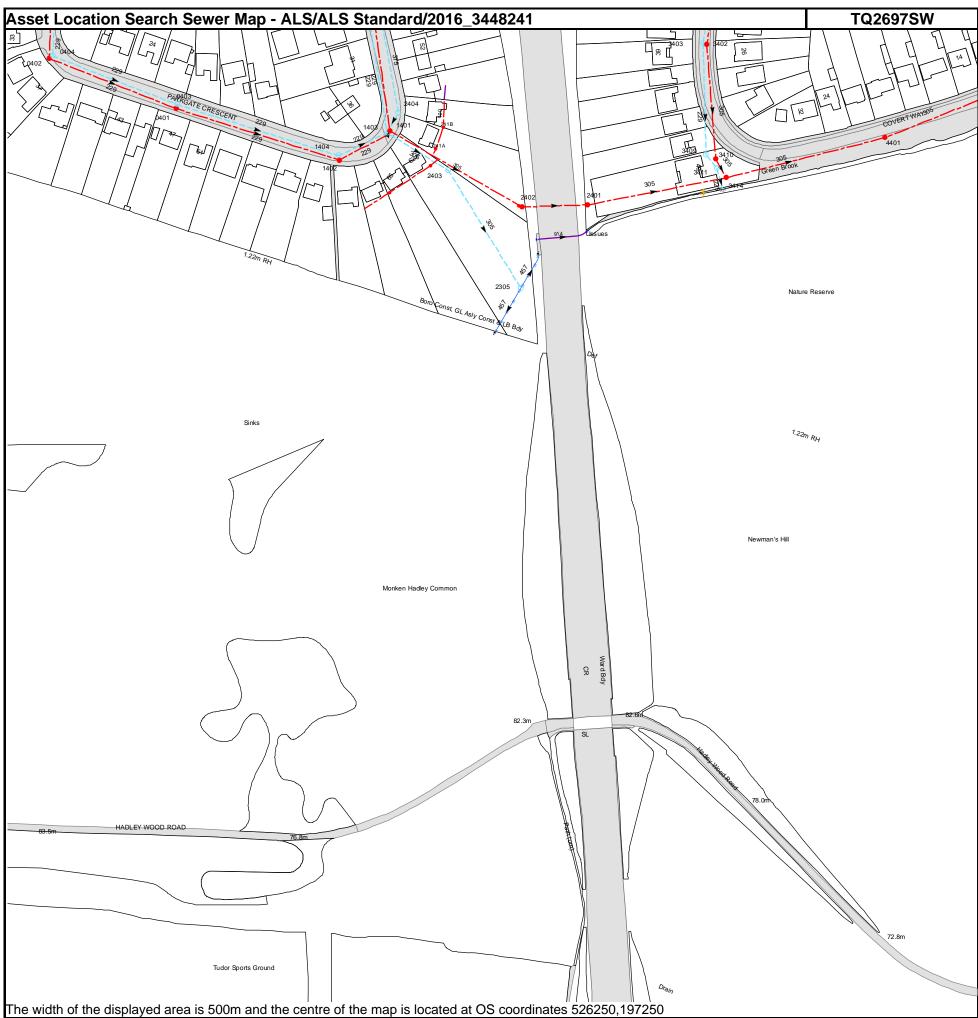
Developer Services (Waste Water)
Thames Water
Clearwater Court
Vastern Road
Reading
RG1 8DB

Tel: 0845 850 2777

Email: developer.services@thameswater.co.uk

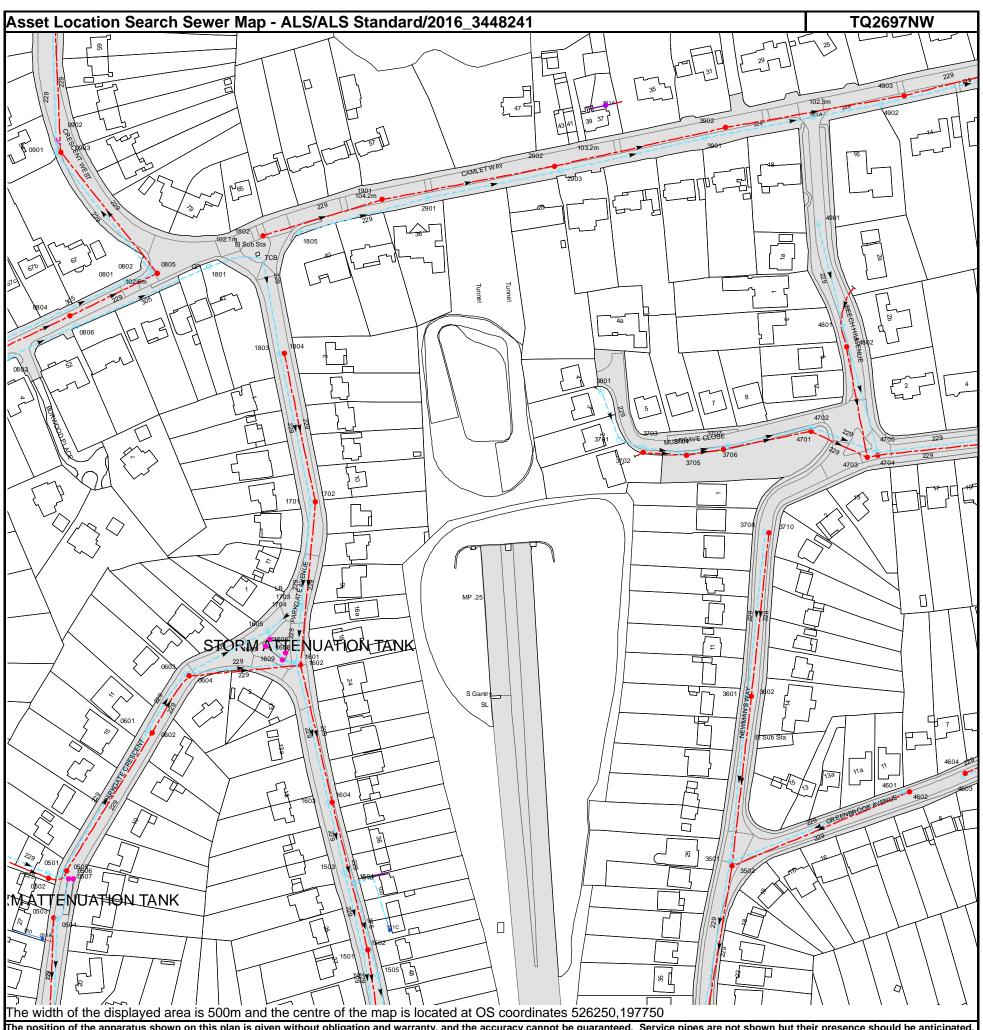

Clean Water queries

Should you require any advice concerning clean water operational issues or clean water connections, please contact:

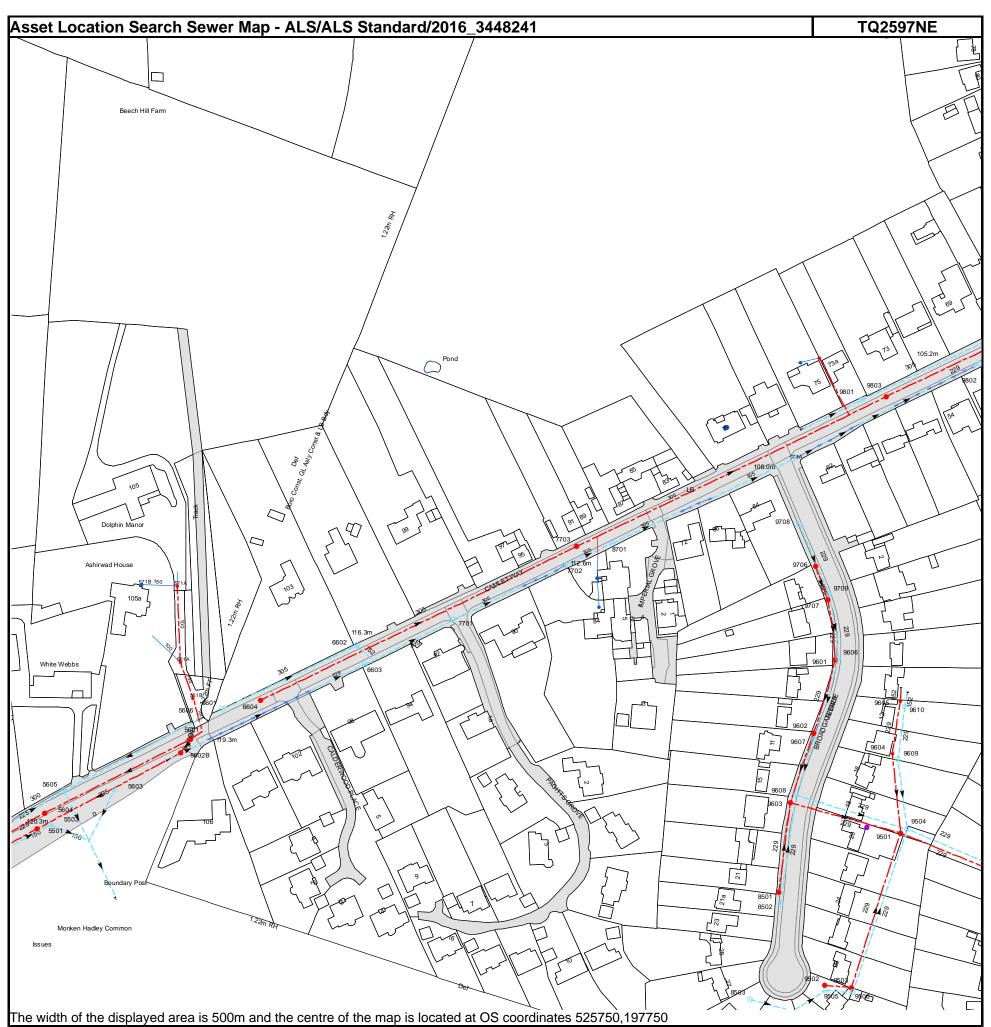

Developer Services (Clean Water) Thames Water Clearwater Court Vastern Road Reading RG1 8DB

Tel: 0845 850 2777

Email: developer.services@thameswater.co.uk



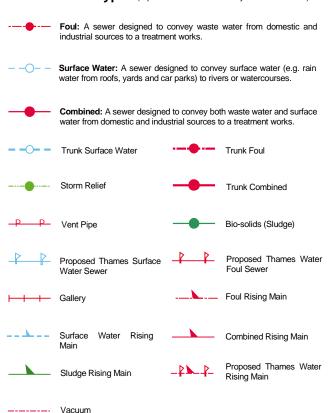
Manhole Reference	Manhole Cover Level	Manhole Invert Level
7003	n/a	n/a
7001	102.9	n/a
7004	n/a	n/a
501A	n/a	n/a
6001	106.6	104.55
6002	104.69	102.69
501B	n/a	n/a
5004	.01	n/a
5002	109.94	106.92
5001	112.54	n/a
5003	111.5	109.45


Based on the Ordnance Survey Map with the Sanction of the controller of H.M. Stationery Office, License no. 100019345 Crown Copyright Reserved.

Manhole Reference	Manhole Cover Level	Manhole Invert Level
0401	84.87	82.71
0403	84.9	83.09
1404	81.98	80.38
1402	81.9	80.02
1403	81.39	78.38
141A	n/a	n/a
1401	81.3	78.08
2404	n/a	n/a
241C	n/a	n/a
241A	n/a	n/a
241B	n/a	n/a
2403	80.03	77.84
0402	87.64	85.13
0404	87.61	85.45
2401	77.39	74.21
3403	78.45	76.62
3409	n/a	n/a
3402	78.43	76.32
3410	n/a	n/a
3411	n/a	n/a
3414	n/a	n/a
4401	75.48	72.54
2305	78.27	77.11
2402	78.98	74.71
1		

Based on the Ordnance Survey Map with the Sanction of the controller of H.M. Stationery Office, License no. 100019345 Crown Copyright Reserved.

Manhole Reference	Manhole Cover Level	Manhole Invert Level
4802	97.15	95.8
4801	97.89	96.16
4901	101.02	99.19
491A	n/a	n/a
4902 4903	101.33 101.23	97.98 97.8
0803	104.65	103.89
0901	97.59	95.59
0902	96.15	95.84
0903	97.53	95.72
0804 0806	103.52 103.59	101.23 102.85
0801	102.62	100.8
0802	102.21	97.6
0805	102.24	99.85
1801	101.92	100.68
1802	102.28	99.84
1803 1804	95.93 95.89	93.57 93.61
1805	103.13	99.69
1901	104.69	99.46
2901	104.24	99.31
2902	103.34	98.87
2903	103.4	98.91
391A 3901	n/a 102.51	n/a 98.47
3902	102.38	98.39
0508	n/a	n/a
0507	n/a	n/a
0601	86.02	84.25
0602	86.03	83.9
0603	85.7 85.69	82.99 83.14
0604 1603	85.68 82.37	83.14 80.31
1604	82.34	80
1503	n/a	n/a
1504	n/a	n/a
1501	81.56	79.3
151D	n/a	n/a
1502 1505	81.54 n/a	79 n/a
151C	n/a	n/a
051A	n/a	n/a
0501	88.14	86.95
0502	n/a	n/a
0503 0504	88 88.05	85.92 86.27
0504	87.77	85.33
0506	87.77	84.97
1602	84.7	82.24
1601	84.74	82.58
1609	n/a	n/a
1608 1607	n/a n/a	n/a n/a
1606	n/a	n/a
1605	n/a	n/a
1704	n/a	n/a
1703	n/a	n/a
1701	89.5	87.33 87.36
1702 4601	89.41 83.87	87.26 80.92
4602	83.93	80.65
4603	84.36	81.23
4604	84.36	80.9
3801	99.13	98.18
3701	98.03 07.63	96.52
3702 3703	97.63 97.68	96.01 96.2
3704	97.19	95.7
3705	97.18	95.44
3706	96.55	94.8
3707	96.52	95.09
3501 3502	81.91 81.8	79.86 79.52
3601	87.7	79.52 85.18
3602	87.74	85.12
3708	93.48	91.32
3710	93.45	91.31
4701	95.42	92.68
4702	95.44	92.92
4703 4704	93.26 93.17	91.7 89.03
4705	93.17	89.37
		-
	s given without obligation and warranty, and the acc	



Based on the Ordnance Survey Map with the Sanction of the controller of H.M. Stationery Office, License no. 100019345 Crown Copyright Reserved.

Manhole Reference	Manhole Cover Level	Manhole Invert Level
981B	n/a	n/a
981A	n/a	n/a
9802	66.34	64.62
8503	94.44	93.12
8501	94.43	93.36
8502	94.49	93.58
9603	95.35	92.88
9608	95.33	93.27
9602	95.52	94.09
9607	95.51	94.37
9502	93.4	91.47
9505	93.26	91.47
9503	92.84	90.78
9506	93.65	91.1
951A	n/a	n/a
9604	94.12	91.07
9609	94.06	91.22
9605	94.89	91.55
9501	90.71	89.39
9610	94.32	91.67
9504	90.75	89.7
9601	96.35	94.57
9606	96.33	94.86
7701	66.74	65.83
871A 9707	n/a 101.08	n/a 99.4
9709	101.24	100.25
871B	n/a	n/a
9706	103.49	102.28
7702	n/a	n/a
7703	112.28	107.98
8701	n/a	n/a
9708	105.99	104.59
971A	n/a	n/a
87AF	n/a	n/a
9801	106.27	103.83
9803	105.84	103.81
5501	119.72	117.42
5604	120.05	117.44
5503	119.07	118.02
5605	n/a	n/a
5603	119.46	118.6
571B	n/a	n/a
571A	n/a	n/a
561A	n/a	n/a
5602B	.01	n/a
5601	119.33	n/a
561B	n/a	n/a
5606	n/a	n/a
6601	119.17	117.88
6604	118.38	115.38
6602	116.75	115.53
6603	116.37	115.48

Public Sewer Types (Operated & Maintained by Thames Water)

Sewer Fittings

A feature in a sewer that does not affect the flow in the pipe. Example: a vent is a fitting as the function of a vent is to release excess gas.

Air Valve

Dam Chase

Fitting

Meter

♦ Vent Column

Operational Controls

A feature in a sewer that changes or diverts the flow in the sewer. Example: A hydrobrake limits the flow passing downstream.

Control Valve

Drop Pipe

Ancillary

Weir

End Items

End symbols appear at the start or end of a sewer pipe. Examples: an Undefined End at the start of a sewer indicates that Thames Water has no knowledge of the position of the sewer upstream of that symbol, Outfall on a surface water sewer indicates that the pipe discharges into a stream or river.

Outfall

Undefined End

Inlet

Notes:

- 1) All levels associated with the plans are to Ordnance Datum Newlyn.
- 2) All measurements on the plans are metric.
- Arrows (on gravity fed sewers) or flecks (on rising mains) indicate direction of flow.
- Most private pipes are not shown on our plans, as in the past, this information has not been recorded.
- 5) 'na' or '0' on a manhole level indicates that data is unavailable.

6) The text appearing alongside a sewer line indicates the internal diameter of the pipe in milimetres. Text next to a manhole indicates the manhole reference number and should not be taken as a measurement. If you are unsure about any text or symbology present on the plan, please contact a member of Property Insight on 0845 070 9148.

Other Symbols

Symbols used on maps which do not fall under other general categories

/ A Public/Private Pumping Station

Change of characteristic indicator (C.O.C.I.)

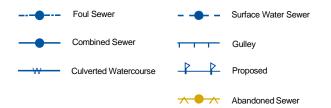
M Invert Level

✓ Summit

Areas

Lines denoting areas of underground surveys, etc.

Agreement


/// Operational Site

Chamber

Tunnel

Conduit Bridge

Other Sewer Types (Not Operated or Maintained by Thames Water)

Appendix F – Management & Maintenance Regime

Stormwater Attenuation (and surface water drainage system generally)

The principle means of surface water disposal from the development is by way of a privately maintained sewer network, discharging into attenuation tanks below the driveway, inclusive of a pump set to limit the flow into the existing offsite sewer system. The attenuation takes the form of a fully lined cellular system of interlocking crates.

The home owner will ensure that the following measures are undertaken to ensure the longevity of the surface water drainage system;

Quarterly

i) Inspect the performance of the attenuation system by lifting the covers on the upstream chambers (silt traps) to check that the outlet pipes (into the crates) are free of obstruction and visible (ie not submerged). If an inlet pipe is submerged then remedial action may be required.

Remedial advice to be sought from a suitably qualified consulting infrastructure engineer.

Every 6 months

- i) Remove silt build up from *all* catchpits and drainage channels.
- ii) Ensure that at least twice yearly, the pump sets, associated float controls and alarms, etc are serviced by a specialist company, with any recommended remedial or replacement works actioned promptly.

Annually

i) Select approx. 20% of the development's surface water inspection chambers (situated in accessible areas) and inspect for blockages / silt build up. Remove silt and debris. Rotate on a 5 yearly cycle to cover all such chambers over this period.

Every 2-5 years (depending on outcome of aforementioned inspections)

i) Commission a CCTV survey and report on condition of the surface water piped drainage system upstream of the crate attenuation to check for structural integrity and hydraulic fluidity. Carry out promptly any remedial work as advised by CCTV company.

Pump Stations

Upon completion of installation and commissioning, the pump supplier will be appointed to undertake a minimum of 2 services per station, each year.

Such regular inspection and maintenance should avoid the need for major refurbishment and reduce the potential for pump failure.

The pump supplier will also provide the emergency call out service in case of pump failure. Typically responses are made within 8 hours.

Permeable Paving

The main access road and parking area is to be constructed in permeable paving in order to;

- a) Delay the surface water runoff volume from these areas into the downstream attenuation system.
- b) Enhance the quality of the rainwater percolating through the construction layers before discharging via a perforated collector pipe into the downstream system.

The home owner will ensure that the following measures are undertaken to ensure the longevity of the pervious pavement;

Quarterly

- i) Inspect the pervious pavement for signs of ponding and ensure there is no migration of soils from adjacent landscaped areas or other deleterious material that may prematurely clog up the jointing stone situated in the gaps between the blocks. Ideally this type of inspection should be undertaken immediately following a heavy rainfall event.
- ii) Commission vacuum sweeping and brushing of the pervious pavement to ensure joints are kept free of silt. Minimum 3 sweeping per year, thus;
 - a) End of Winter (April) to collect winter debris
 - b) Mid-Summer (July/August) to collect dust, flower and grass-type deposits.
 - c) After Autumn leaf fall (November)

The company commissioned to carry out this work should ensure that their vacuum equipment is suited to the type of surfacing applied.

Last Resort Remedial Action

- i) Should a portion of the pervious pavement become substantially impervious due to excessive siltation, the following procedure should be followed;
 - a) Plane off existing surfacing
 - b) Break out underlying bitmac base layer and replace with similar compacted depth of course aggregate subbase material to BS EN 13242:2002 Type 4/20.
 - c) Renew laying course.

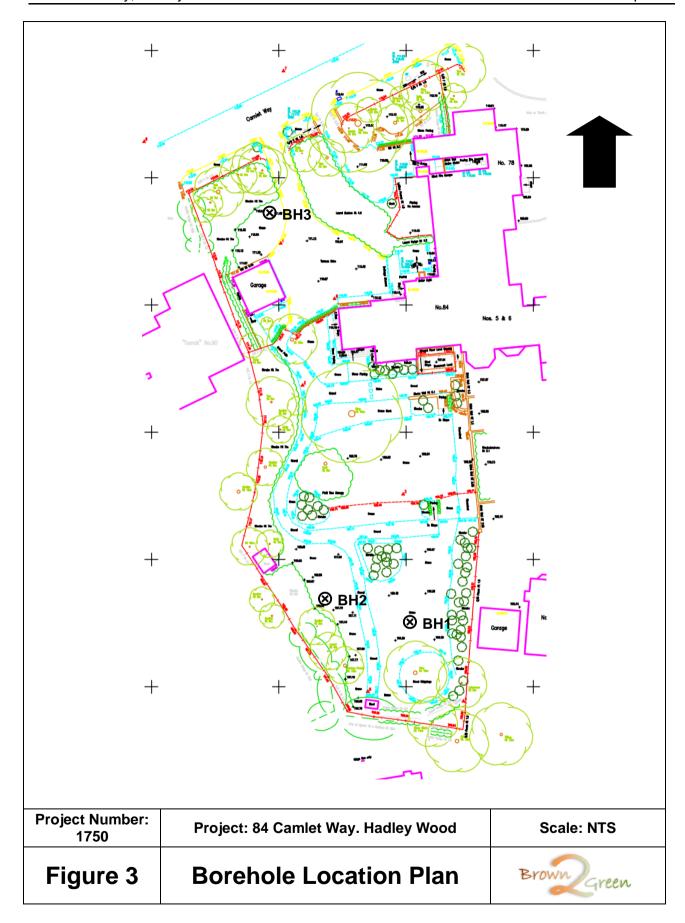
NB. Material removed from the voids or the layers below the surface may contain heavy metals and hydrocarbons and as such may need to be disposed of as 'controlled waste'. Sediment testing should be carried out before disposal to confirm its classification and appropriate disposal methods.

Appendix G – Letter of Acceptance from No 86 Camlet Way for flows to discharge via existing Pump Station

11/03/2022

Dear Sirs,

RE: 22/00627/FUL Planning Application at Land Adjacent To 86 Camlet Way Enfield EN4 0NX


Please be advised that should the development of land adjacent to our property obtain planning consent, we hereby confirm that we are satisfied that the foul and surface water drainage discharging from the new dwelling, may pass via our privately owned pump stations.

An Agreement will be put in place prior to occupation of the new dwelling, which ensures that the cost of the servicing and maintenance of the exiting pump stations will be shared equally between the 2 connected property freeholders.

Your faithfully,

Mrs Jenna Rachel C

<u>Appendix H – Soils Report Extracts</u>

Project:	84 Camlet Way	Borehole Number:	BH1
Location:	Hadley Wood Barnet	Boi enoie Number.	ВΠΙ
		Start of Drilling:	8th May 2017
Project No:	1750	Completion of Drilling:	8th May 2017
Client	Fusion Residential	Drilling Method:	Premier Auger rig

Sa	ample/Tes	st						
nple	Result	Sample range	Description		Log	Depth (m)	Thick- ness (m)	S/pip
	or sample		Grass over brown silty sandy slightly gravelly CLAY. Sand is fine, gravel is fin flint and brick (TOPSOIL/MADE GROUND).	ne to medium angular to rounded	239	0.3	0.3	None
			Firm brown mottled dark grey and yellow CLAY with abundant fine to medium gravel (MADE GROUND)	n, occasionally coarse brick		_1.0	0.7	
			Firm to stiff brown and mottled pale blue-grey and orange CLAY with some particles (LONDON CLAY FORMATION).	artings of fine pale brown sand	 			
					 	_	>1.0	
			Borehole complete at 2.0m			2.0		
			Described destinated at 2.011					
						_		
						_3.0		
						_		
						_4.0		
						-		
						_5.0		
						_		
						_6.0		
						-		
						_7.0		
arks:		ole used for	soakaway testing. Backfilled with arisings on completion of soakaway test.				Brown	ireen

Project:	84 Camlet Way		
Location:	Hadley Wood	Borehole Number:	BH2
	Barnet		

Barnet
EN4 0NX
Start of Drilling: 8th May 2017

Project No: 1750
Completion of Drilling: 8th May 2017
Client Fusion Residential
Drilling Method: Premier Auger rig
Logged By: NPB
Ground Level (m AOD): Not surveyed

	Sample/Tes			1			
ample Test	Result	Sample range	Description	Log	Depth (m)	Thick-	S/pipe
	Result		Grass over very stiff (dry) brown silty sandy slightly gravelly CLAY. Sand is fine, gravel is fine to coarse sub-	Log	Deptii (iii)	ness (m)	None
			angular to rounded flint, occasional brick, rare coal and rare cable sheathing fragment at 0.25m (MADE			0.3	
			GROUND)		0.3		
			Very stiff (dry) brown mottled yellow CLAY with abundant rootlets (LONDON CLAY FORMATION)				
					_		
			Becoming fissured at 1.0m		1.0		
SPT	6,3,3,5,5	1.0-1.45			- 1.0		
	N=16						
					L		
			Possible shear surface observed at 1.5m and some to abundant medium to coarse sand-sized gypsum				
			crystals and rare medium gravel-sized gypsum.				
						2.9	
					2.0		
SPT	5,3,3,4,3	2.0-2.45			2.0		
J	N=13	2.0 2.10					
	-						
					L		
					2.0		
J100		3.0-3.45			_3.0		
7100		0.0 0.40			3.2		
			Firm brown and mottled pale blue and yellow CLAY with occasional thin partings of fine pale brown sand. (no				
			obvious visual signs of desiccation or gypsum crystals observed)				
					4.0		
SPT	7,2,2,3,3	4.0-4.45			_4.0		
· ·	N=10						
	-						
					L		
					5.0		
SPT	7,3,4,4,4	5.0-5.45	Below 5.0m becoming with sporadic medium to coarse sand-sized gypsum crystals below 5.0m		F ^{3.3}		
	N=15	2.0 0.40	gypain ayama ayam ayam				
	-					5.8	
					L		
					6.0		
			Below 6.0m becoming stiff and slightly darker brown below 6.0m		F ^{0.0}		
			3 ,				
SPT	7,4,5,5,6	6.5-6.95	Below 7.9m becoming greyish brown and wet along fissures, mottled yellow with occasional partings of fine		L		
	N=20		yellow sand.				
					7.0		
					F'.5		
		i		I	i	i l	
			Borehole continues	1_			
narks:	Backfi	lled with aris		1			
narks: undwa		lled with aris	ings.			Brown	reen

Project:	84 Camlet Way		5110
Location:	Hadley Wood	Borehole Number:	BH2
	Barnet		
	EN4 0NX	Start of Drilling:	8th May 2017
Project No:	1750	Completion of Drilling:	8th May 2017
Client	Fusion Residential	Drilling Method:	Premier Auger rig
Logged By:	NPB	Ground Level (m AOD):	Not surveyed

	Sample/Tes	st					
Sample / Test	Result	Sample range	Description	Log	Depth (m)	Thick- ness (m)	S/pipe
			Borehole continued from sheet 1		7.0		None
			Below 7.9m becoming greyish brown and wet along fissures, mottled yellow with occasional partings of fine				
			yellow sand.		8.0		
SPT	7,4,4,5,5	8.0-8.45				5.8	
	N=18						
					_		
					9.0		
			Stiff dark grey-brown fissured CLAY (LONDON CLAY FORMATION)		5.0		
SPT	8,5,5,5,6	9.5-9.95			-		
	N=21						
					10.0		
					10.0		
			At 10.5m becoming with rare medium sub-rounded pyritised gravel		_		
					11.0		
SPT	5,4,4,4,6	11.0-11.45	At 11.0m becoming with a little fine sand.		_ 11.0		
	N=18						
					-	>9.0	
					12.0		
U100		12.5-12.95			_		
					13.0		
					ſ l		
					L		
					14.0		
		4404445		i			
SPT	11,5,7,7,8 N=27	14.0-14.45	Borehole continues				

J - 250 or 500ml Jar, T - Tub, V - Vial or 60ml jar, D - Small Disturbed, B - Large bulk sample, W - Water sample,

Project: Location:	84 Camlet Way Hadley Wood Barnet	Borehole Number:	BH2
	EN4 0NX	Start of Drilling:	8th May 2017

Logged By: NPB Ground Level (m AOD): Not surveyed					ed			
	Sample/Te	et				1		
Sample	Sample/Te	Sample					Thick-	
/ Test	Result	range	Description		Log	Depth (m)		S/pipe
			Borehole continued from sheet 2	PMATION)		14.0		None
			Continued - stiff dark grey-brown fissured CLAY (LONDON CLAY FOI	(MATION)				
			At 14.0m to 14.45m recovered with fine pale brown sand along wall of	SPT - possible "claystone"				
			At 14.40m infilled burrow cast?					
						15.0		
			At 15.0m rare pyritised medium gravel-sized nodule and occasional g	reen mottling		_		
SPT	11,8,9,9,11	15 5-15 95				-		
O	N=37	10.0 10.00						
			At 15.9m fine pale brown sand recovered in SPT			F	>9.0	
						17.0		
						-17.0		
SPT	12 0 10 10	17.55-18.0				F		
511	13,6,10,10	17.55-16.0						
	N=40							
			2 11 11 11			18.0		
			Borehole complete at 18.0n	•				
						L		
						19.0		
						F		
						_20.0		
						1		
						1		
						L		
						21.0		
						Γ .		
						<u> </u>		
Remarks:	Backf	illed with aris	ings.				Brown	
Groundwa	ter: None	encountered				,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	enical and construction	TEEN
/	. 050	o	Figh V/ Winter Complian D. Compliant C. 1. 1. 2. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.	. Water annula		* quita	Page 1 of	2
Keys	J - ∠50 or 50	umi Jar, I -	Tub, V - Vial or 60ml jar, D - Small Disturbed, B - Large bulk sample, W	- vvater sampië,			Page 1 of 3	J

Project:	84 Camlet Way		
Location:	Hadley Wood	Borehole Number:	BH3
	Barnet		

Barnet
EN4 0NX
Start of Drilling: 9th May 2017
Project No: 1750
Completion of Drilling: 9th May 2017
Client Fusion Residential
Drilling Method: Premier Auger rig
Logged By: NPB
Ground Level (m AOD): Not surveyed

	Sample/Tes						
mple Test	Result	Sample range	Description	Log	Depth (m)	Thick-	S/pipe
1631	Result	range	Grass over stiff (dry) brown silty sandy slightly gravelly CLAY. Sand is fine, gravel is fine to medium sub-	Log	Depth (m)	ness (m)	None
			angular to rounded flint, brick and occasional coal (TOPSOIL/MADE GROUND)			0.25	
			Firm brown and mottled orange-brown and dark grey along roots slightly sandy slightly gravelly CLAY with		0.25		
			some rootlets. Gravel is fine to medium sub-angualr to rounded flint, brick and rare quarry tile fragment (MADE			0.35	
			GROUND)		0.6		
			Firm brown and mottled orange-brown with some dark grey mottling slightly gravelly CLAY. Gravel is fine to medium sub-angualr to rounded flint (Possible MADE GROUND - reworked natural soils)				
			Theulum Sub-anguan to founded finit (Fossible MADE GROUND - Teworked flatural Solis)			0.40	
					1.0		
SPT	2,2,2,2,3	1.0-1.45	Firm brown CLAY with some orange and dark grey mottling and some medium to coarse sand-sized gypsum				
	N=9		crystals (LONDON CLAY FORMATION)				
			At 1.4m becoming fissured with frequent gypsum up to fine gravel size and a little pale blue-grey mottling	l			
					2.0		
SPT	5,3,4,5,5 N=17	2.0-2.45					
	IN=1/		At 2.3m becoming stiff				
					L		
100		3.0-3.45			_3.0		
100		3.0-3.45					
			440.05				
			At 2.95m to 3.0m pocket of orange silty fine sand Below 3.1m becoming with scattered fine to coarse sand -sized gypsum crystals		-		
			Economic Interest and the control of				
			Becoming firm between approximately 3.5m to 4.2m				
					4.0		
SPT	4,3,2,3,4	4.0-4.45			_4.0	7.0	
	N=12					7.6	
					-		
					5.0		
SPT	5,3,3,3,5	5.0-5.45	Becoming fissured with thin partings of fine orange silt and sand along fissure planes				
	N=14						
					•		
					<u> </u>		
					6.0		
			Below 6.0m becoming stiff and slightly darker brown below 6.0m		ſ		
			Below 7.9m becoming greyish brown and wet along fissures, mottled yellow with occasional partings of fine		L		
100		6.5-6.95	yellow sand.				
					•		
			At 7.0m becoming with some medium gravel-sized gypsum crystals		7.0		
			Band 1 a				
marks:	Backfi	illed with aris	Borehole continues	<u> </u>	1		
						Brown	reen
	ater: None	encountered	ı		Gester	innical and Gto-trivirons	della Consulta

Project:	84 Camlet Way		
Location:	Hadley Wood	Borehole Number:	BH3
	Barnet		_
	EN4 0NX	Start of Drilling:	9th May 2017
Project No	: 1750	Completion of Drilling:	9th May 2017
Client	Fusion Residential	Drilling Method:	Premier Auger rig
I ogged By	· NPB	Ground Level (m AOD):	Not surveyed

Result range Result range Boundaire continued from sheet 1 Continued - Still score fistured CLAY modified compare and data gray and with score medium to covere sensitive accordance of the gravel scored grown dynamic (CAP rofiled compare and data gray and with score medium to covere sensitive accordance). And the Accordance - Still score fistured CLAY modified compare and data gray and with score medium to covere sensitive accordance of the gravel score of the covered grown data continued graphs. CAPONI CLAY FORMATION) Bill data gray stream fistured CLAY with frequent scorlained graphs or crystals up to covering gravel size. Bill data gray stream fistured CLAY with frequent scorlained graphs or crystals up to covering gravel size. Bill data gray stream fistured CLAY with frequent scorlained graphs or crystals up to covering gravel size. Bill data gray stream fistured CLAY with frequent scorlained graphs or crystals up to covering gravel size. Bill data gray stream fistured CLAY with frequent scorlained graphs or crystals up to covering gravel size. Bill data gray stream fistured CLAY with frequent scorlained graphs or crystals up to covering gravel size. Bill data gray stream fistured CLAY with frequent scorlained graphs or crystals up to covering gravel size. Bill data gray stream fistured gravel scorlained gravel size of gra		Sample/Tes	st					
Service continued from select 1 Continued - Storm Instance CLAY routine drange and dark gray and with some medium to coaster sand- acted and fine grave-isoned growth areas with some yellow mosting PT 7.5.5.6.6 R.D-8.45 N-22 Sill dark gray-brown fistaned CLAY with Request scattered growth coaster gravel size (LONDON CLAY FORMATION) Bibbs 9.5** December 1 Sill dark gray-brown fistaned CLAY with Request scattered growth coastered growth coaste		Result		Description	Log	Depth (m)	Thick- ness (m)	S/pi
PT 7,5,5,6,6 8,0-8,45 N-22 Sold dark grey-brown featured CLAY with frequent scattered gyosum crystals up to coarse gravet size (LONDON CLAY FORMATION) 9,0 9,0 9,0 9,0 9,0 9,0 9,0 becoming with occasional green modifing and occasional shell fregments and no obvious gyosum crystals crystals N-18 N-19 11,0-11,45 N-19 11,0-11,45 N-19 12,5-12,56 Ar 12,6m becoming with occasional partings of fine green sand and fine gravel-sized gyosum crystals 11,0-11,45 N-27 12,5-12,56 Ar 12,6m becoming with occasional partings of fine green sand and fine gravel-sized gyosum crystals 11,0-11,45 N-27 12,5-12,56 Ar 12,6m becoming with occasional partings of fine green sand and fine gravel-sized gyosum crystals 11,0-11,45 N-27 12,5-12,56 Ar 12,6m becoming with occasional partings of fine green sand and fine gravel-sized gyosum crystals 11,0-11,45 N-27 12,5-12,56 Ar 12,6m becoming with occasional partings of fine green sand and fine gravel-sized gypsum crystals 11,0-11,45 N-27 12,5-12,56 Ar 12,6m becoming with occasional partings of fine green sand and fine gravel-sized gypsum crystals 11,0-11,45 N-27 12,5-12,56 Ar 12,6m becoming with occasional partings of fine green sand and fine gravel-sized gypsum crystals 11,0-11,45 N-27 12,5-12,56 Ar 12,6m becoming with occasional partings of fine green sand and fine gravel-sized gypsum crystals 11,0-11,45 N-27 12,5-12,56 Ar 12,6m becoming with occasional partings of fine green sand and fine gravel-sized gypsum crystals 11,0-11,40 N-27 12,0-11,40 N-27 12,5-12,56 Ar 12,6m becoming with occasional partings of fine green sand and fine gravel-sized gypsum crystals 11,0-11,40 N-27 12,0-11,40				Borehole continued from sheet 1 Continued - Stiff brown fissured CLAY mottled orange and dark grev and with some medium to coarse sand-				Nor
7.5.5.6.6 8.0-8.45 N22 8.0-8.45 N22 8.0 8.0-8.45 N22 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0				Relaw 7 6m becoming arguich-brown with some vellow mattling		_		
77 7.5.5.8.6 8.0-8.45 Solid dark gray-brown fiscaned CLAY with frequent scattered gypsum crystals up to coarse greet size (LONDON GLAY FORMATION) 28.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0				below 7.011 becoming greyish brown with some yellow motaling				
Stiff dask gay-shown featured CLAY with frequent scattered gypsum crystals up to coarse gravet size							7.60	
Silf dask gray-brown fasured CLAY with frequent scattered gypsum crystals up to coarse gravel size (LONDON CLAY FORMATION) 8.6						8.0		
Stift dark grey-brown fasured CLAY with frequent scattered gypsum crystals up to coarse gravel size (LONDON CLAY FORMATION) 8.6 3 8.6 3 8.6 3 8.6 3 8.6 3 8.6 3 8.6 3 8.6 3 8.6 3 8.7 7 8.6 7.7 7 8.6 7.7.7 12.5-12.95 At 12.5m becoming with occasional parings of fine green sand and fine gravel-sized gypsum crystals 8.6 7 8.7 8.6 7.7 7 8.6 7.7.7 12.5-12.95 At 12.5m becoming with occasional parings of fine green sand and fine gravel-sized gypsum crystals 8.7 8.7 8.7 7 8.8 7.7 7 8.8 7.7 7 8.8 7.7 7 8.8 7.7 7 8.8 7.7 7 8.8 7.7 7 8.8 8 7.7 7 8.8 8 7.7 7 8.8 8 7.7 7 8.8 8 7.7 7 8.8 8 7.7 7 8.8 8 7.7 7 8.8 8 7.7 7 8.8 8 7.7 7 8.8 8 7.7 7 8.8 8 7.7 7 8.8 8 7.7 7 8.8 8 8 7 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	т		8.0-8.45					
Silf data grey-trown fissured CLAY with frequent scattered gypsum crystals up to coarse gravel size 1. Silf data grey-trown fissured CLAY with frequent scattered gypsum crystals up to coarse gravel size 2. Silf data grey-trown fissured CLAY with frequent scattered gypsum crystals up to coarse gravel size 3.4.4.5		N=22						
Silf data grey-trown fissured CLAY with frequent scattered gypsum crystals up to coarse gravel size 1. Silf data grey-trown fissured CLAY with frequent scattered gypsum crystals up to coarse gravel size 2. Silf data grey-trown fissured CLAY with frequent scattered gypsum crystals up to coarse gravel size 3.4.4.5								
Still date, grey-thrown fissured CLAY with frequents scattered gypsum crystals up to coarse gravel size (LONDON CLAY FORMATION) 9.3.4.4.5 N=16 9.5-9.99 7.7.5.5.4.5 11.0-11.45 N=17 N=17 12.5-12.95 At 12.5m becoming with occasional parings of fine green sand and fine gravel-sized gypsum crystals 11.0 12.0 13.0 14.0 14.0 15.0 16.0 17.0 18.6.7.7.7 18.6.7.7 18.6.7.7 18.6.7.7 18.6.7.7 18.6.7.7 18.6.7.7 18.6.7						86		
T 7.5.5.4.5 11.0-11.45 No.19 12.5-12.95 At 12.5m becoming with occasional parings of fine green sand and fine gravel-sized gypsum crystals 11.0 11.0 No.27 12.5-12.95 At 12.5m becoming with occasional parings of fine green sand and fine gravel-sized gypsum crystals 13.0 13.0 13.0 13.0 14.0 14.0 14.0 14.0 14.0 14.0 14.0 14				Stiff dark grey-brown fissured CLAY with frequent scattered gypsum crystals up to coarse gravel size		0.0		
T				(LONDON CLAY FORMATION)				
77						9.0		
T								
T								
T				Below 9.5m becoming with occasional green mottling and occasional shell fragments and no obvious guasum.				
TT 7.5.5.4.5 11.0-11.4	т		9.5-9.95			-		
TT 7,5,5,4,5 11.0-11.45 N=19 11.0-11.45 N=19 12.0 12.0 12.5-12.95 At 12.5m becoming with occasional partings of line green sand and line gravel-sized gypsum crystals 13.0 13.0 14.0 14.0 15.0 15.0 15.0 15.0 15.0 15.0 15.0 15		N=16						
TT 7,5,5,4,5 11.0-11.45 N=19 11.0-11.45 N=19 12.0 12.0 12.5-12.95 At 12.5m becoming with occasional partings of line green sand and line gravel-sized gypsum crystals 13.0 13.0 14.0 14.0 15.0 15.0 15.0 15.0 15.0 15.0 15.0 15								
T 7,5,5,4,5 N=19 11.0-11.45						_10.0		
T 7,5,5,4,5 N=19 11.0-11.45								
T 7,5,5,4,5 N=19 11.0-11.45								
T 7,5,5,4,5 N=19 11.0-11.45								
T 7,5,5,4,5 N=19 11.0-11.45								
T 7,5,5,4,5 N=19 11,0-11,45 N=19 12,0 12,5-12,95 At 12.5m becoming with occasional partings of fine green sand and fine gravel-sized gypsum crystals 13,0 13,0 14,0 14,0 14,0 15,5,4,5 16,7,7,7 12,5-12,95 At 12.5m becoming with occasional partings of fine green sand and fine gravel-sized gypsum crystals 14,0 15,5,4,5 16,7,7,7 17,5,5,4,5 18,6,7,7,7 18,6,7,7,7 19,10 19								
N=19 R,6,7,7,7 12.5-12.95 At 12.5m becoming with occasional partings of fine green sand and fine gravel-sized gypsum crystals						_11.0		
8,6,7,7,7 N=27 12.5-12.95 At 12.5m becoming with occasional partings of fine green sand and fine gravel-sized gypsum crystals 13.0 14.0 Borehole continues	"		11.0-11.45					
TI 8,6,7,7,7 N=27 12.5-12.95 At 12.5m becoming with occasional partings of fine green sand and fine gravel-sized gypsum crystals 13.0 14.0 Borehole continues								
TT 8,6,7,7,7 N=27 12.5-12.95 At 12.5m becoming with occasional partings of fine green sand and fine gravel-sized gypsum crystals 13.0 13.0 14.0 15.0 15.0 15.0 15.0 15.0 15.0 15.0 15							>6.4	
8,6,7,7,7 N=27 12.5-12.95 At 12.5m becoming with occasional partings of fine green sand and fine gravel-sized gypsum crystals 13.0 14.0 Borehole continues								
8,6,7,7,7 N=27 12.5-12.95 At 12.5m becoming with occasional partings of fine green sand and fine gravel-sized gypsum crystals 13.0 14.0 Borehole continues								
TT 8,6,7,7,7 N=27 12.5-12.95 At 12.5m becoming with occasional partings of fine green sand and fine gravel-sized gypsum crystals						12.0		
N=27						_ 12.0		
N=27								
N=27								
N=27	_	86777	12 5-12 05	At 12.5m becoming with occasional partings of fine green sand and fine gravel-sized gynsum counters		-		
Borehole continues 14.0			12.0-12.95	rac 12.0m boooning with occasional partings of the green sailu and the graver-sized gypsulfi Gystals				
Borehole continues 14.0								
Borehole continues arks: Backfilled with arisings.						13.0		
Borehole continues arks: Backfilled with arisings.								
Borehole continues rks: Backfilled with arisings.								
Borehole continues arks: Backfilled with arisings.								
Borehole continues						-		
Borehole continues								
Borehole continues arks: Backfilled with arisings.								
arks: Backfilled with arisings.						14.0		
arks: Backfilled with arisings.				Borehole continues				
D	arks:	Backfi	lled with aris				Brown	
ndwater: None encountered	ndwat	ter: None	encountered			Certain	nical and Geo-environm	TEEN

Project: Location:	84 Camlet Way Hadley Wood	Borehole Number:	BH3
	Barnet		_
	EN4 0NX	Start of Drilling:	9th May 2017

Logged	By: NPB		Ground	Level (m AOD):	lot surveye			
Sample/Test Sample Samp								
Sample / Test	Result	Sample range	Description			Donth (m)	Thick-	S/nine
, 1031	result	· ange	Borehole continued from sheet 2			Depth (m) 14.0	11035 (III)	S/pipe None
			Continued - Stiff dark grey-brown fissured CLAY with occasional partings of fine sized gypsum crystals (LONDON CLAY FORMATION)	green sand and fine gravel-				
			ozot gypoum orjonalo (zorozoro ozoro ozoro)					
							>6.4	
SPT	11,7,8,8,10 N=33	14.55-15.0						
	14-33							
			Borehole complete at 15.0m			15.0		
						_		
						16.0		
						17.0		
						_		
						_18.0		
						_19.0		
						_		
						20.0		
						F		
						21.0		
Remarks:	Backfi	l illed with aris	ings.					
Groundwa	ater: None	encountered				, september 1	Brown	reen ental Consultants
Keys	<u>J - 2</u> 50 or 50	<u>0ml J</u> ar, T - 1	Tub, V - Vial or 60ml jar, D - Small Disturbed, B - Large bulk sample, W - Water	sample,		- Captions	Page 1 of 3	8