

SCAIL Assessment Lower House Farm, Preston

Client: K H & B Knowles

Reference: 5343r1

Date: 3rd March 2022

Ref: 5343

Report Issue

Report Title: SCAIL Assessment - Lower House Farm, Preston

Report Reference: 5343

Field	Report Version									
	1	2	3	4						
Prepared by	Liam Shelmerdine									
Position	Air Quality Consultant									
Reviewed by Ceri Haines										
Position	Air Quality Consultant									
Authorised by Ger Parry										
Position Associate Director										
Date of Issue	3 rd March 2022									
Comments	-									

Taylor Road, Urmston, Manchester, M41 7JQ

info@red-env.co.uk | 0161 706 0075 | www.red-env.co.uk

This report has been prepared by Redmore Environmental Ltd in accordance with the agreed terms and conditions of appointment. Redmore Environmental Ltd cannot accept any responsibility for any use of or reliance on the contents of this report by any third party.

Ref: 5343

Table of Contents

1.0	INTRODUCTION	1
1.1	Background	1
1.2	Site Location and Context	1
2.0	AMMONIA BACKGROUND	2
2.1	Atmospheric Ammonia and Nitrogen Deposition	2
2.2	Critical Loads and Levels	2
3.0	SCAIL ASSESSMENT	4
3.1	SCAIL Model Inputs	4
3.2	Ecological Designations	4
3.3	Site Specific Critical Loads and Levels	5
3.4	Assessment Criteria	6
4.0	SCAIL RESULTS	7
	Introduction	7
	Ammonia	7
	Nitrogen Deposition	7
	Acid Deposition	8
4.2	Summary	9
App	pendix 1 - SCAIL Model Outputs	10

Ref: 5343

1.0 <u>INTRODUCTION</u>

1.1 <u>Background</u>

1.1.1 Redmore Environmental Ltd was commissioned by K H & B Knowles to undertake a Simple Calculation of Atmospheric Impact Limits (SCAIL) Assessment in support of a planning application for a proposed covered slurry lagoon on land at Lower House Farm, Preston.

1.2 <u>Site Location and Context</u>

- 1.2.1 The site is located on land at Lower House Farm, Preston, at approximate National Grid Reference (NGR): 347618, 437477.
- 1.2.2 The proposals comprise the construction of a covered earth banked lagoon which has a capacity to store 3,650 tonnes of slurry.
- 1.2.3 Atmospheric emissions from the lagoon have the potential to impact on ecological designations in the vicinity of the site. A SCAIL Assessment was therefore undertaken to quantify ammonia (NH₃) concentrations and nitrogen and acid deposition rates at sensitive locations and identify any requirement for further analysis. The associated model inputs, assessment criteria and results are provided in the following report.

Ref: 5343

2.0 AMMONIA BACKGROUND

2.1 <u>Atmospheric Ammonia and Nitrogen Deposition</u>

- 2.1.1 The breakdown of urea or uric acid in animal manures produces NH₃. Exposure to high concentrations of NH₃ can lead to direct damage to vegetation, as well as acute toxicity in some sensitive plants. Certain species are more sensitive than others. For example, lichens and mosses have a much lower tolerance to atmospheric NH₃ than higher plants species such as grasses and trees.
- 2.1.2 Atmospheric emissions of NH₃ can also lead to indirect effects on vegetation. Deposition of the nitrogen component of NH₃ on to land can cause a fertilising effect which leads to an increase in plants which thrive in a nitrogen rich environment. This may lead to competition between species and imbalances in the natural diversity of flora within the receiving habitat.
- 2.1.3 The combination of these effects can lead to changes in ecosystem structure and function. Some of the most significant problems resulting from NH₃ and nitrogen deposition are found at nature conservation sites located in intensive agricultural areas.

2.2 <u>Critical Loads and Levels</u>

2.2.1 A critical load is defined by the UK Air Pollution Information System (APIS)¹ as:

"A quantitative estimate of exposure to deposition of one or more pollutants, below which significant harmful effects on sensitive elements of the environment do not occur, according to present knowledge. The exceedance of a critical load is defined as the atmospheric deposition of the pollutant above the critical load."

2.2.2 A critical level is defined as:

UK Air Pollution Information System, www.apis.ac.uk.

Ref: 5343

"Threshold for direct effects of pollutant concentrations according to current knowledge. Exceedance of a critical level is defined as the atmospheric concentration of the pollutant above the critical level."

- 2.2.3 A critical load refers to deposition of a pollutant, while a critical level refers to pollutant concentrations in the atmosphere (which usually have direct effects on vegetation or human health).
- 2.2.4 When pollutant loads (or concentrations) exceed the critical load or level it is considered that there is a potential risk of harmful effects. The excess over the critical load or level is termed the exceedence. A larger exceedence is often considered to represent a greater risk of harm.
- 2.2.5 Maps of critical loads and levels and their exceedences have been used to show the potential extent of pollution damage and aid in developing strategies for reducing pollution. Decreasing deposition below the critical load is seen as means for preventing the risk of damage. However, even a decrease in the exceedence may infer that less harm will occur.
- 2.2.6 Table 1 presents the critical levels for the protection of vegetation for pollutants considered within this assessment.

Table 1 Critical Levels for the Protection of Vegetation

Pollutant	Critical Level								
	Concentration (µg/m³)	Averaging Period							
NH ₃	1	Where lichens and bryophytes are present (where they form a key part of the ecosystem integrity)							
	3 Other vegetation								

2.2.7 Critical loads have been designated within the UK based on the sensitivity of the receiving habitat and have been identified for the relevant designations considered within the assessment in Section 3.3.

Ref: 5343

3.0 **SCAIL ASSESSMENT**

3.1 <u>SCAIL Model Inputs</u>

3.1.1 A summary of the SCAIL model inputs is provided in Table 2.

Table 2 SCAIL Model Inputs - Proposed Covered Slurry Lagoon

Input	Unit	Value				
Location	NGR	347618, 437477				
Source Type	-	Slurry Lagoon				
Slurry Type	-	Cattle				
Source Area	m²	3,400				
Storage Capacity	Tonnes	3,650				
Storage Period	Days	365				

3.1.2 It should be noted that the model was run in conservative mode as required for regulatory purposes in accordance with SCAIL guidance². Additionally, it was assumed that the covered slurry lagoon operates at full capacity at all times and emissions occur constantly, 24-hours per day, 365-days per year. This ensured a worst-case assessment of potential impacts.

3.2 <u>Ecological Designations</u>

- 3.2.1 Impacts were predicted at the following ecological designations:
 - Rough Hey Wood Site of Significant Scientific Interest (SSSI);
 - Newton Marsh SSSI;
 - Wyre Estuary SSSI;
 - Morecambe Bay Special Protection Area (SPA);
 - Ribble Estuary SSSI; and,
 - Ribble and Alt Estuaries SPA.

² SCAIL-Agriculture: User Guide, Sniffer ER26, 2014.

Ref: 5343

3.3 <u>Site Specific Critical Loads and Levels</u>

- 3.3.1 The SCAIL tool was utilised to identify the habitats that are sensitive to increases in NH₃ concentrations and nitrogen and acid deposition rates within the ecological designations, as well as the associated critical levels and loads.
- 3.3.2 The lowest critical level of $1\mu g/m^3$ was assigned to all ecological designations in order to provide a worst-case assessment.
- 3.3.3 The relevant critical loads for nitrogen deposition are presented in Table 3.

Table 3 Critical Loads for Nitrogen Deposition

Designation	Habitat	Critical Load (kgN/ha/yr)
Rough Hey Wood SSSI	Broad-leaved	5
Newton Marsh SSSI	Neutral grassland lowland	20
Wyre Estuary SSSI	No sensitive habitat or species at this site	-
Morecambe Bay SPA	Charadrius hiaticula (Europe/Northern Africa - wintering)	8
Ribble Estuary SSSI	Neutral grassland lowland	20
Ribble and Alt Estuaries SPA	Melanitta nigra (Western Siberia/Western & Northern Europe/North-western Africa)	5

3.3.4 The relevant acid deposition critical loads are presented in Table 4.

Table 4 Critical Loads for Acid Deposition

Designation	Habitat	Acid Critical Load (keq/ha/yr)				
Rough Hey Wood SSSI	Mixed and yew woodland	1.80				
Newton Marsh SSSI	Neutral grassland lowland	5.07				
Wyre Estuary SSSI	No sensitive habitat or species at this site	-				

Ref: 5343

Designation	Habitat	Acid Critical Load (keq/ha/yr)
Morecambe Bay SPA	Charadrius hiaticula (Europe/Northern Africa - wintering)	0.64
Ribble Estuary SSSI	Neutral grassland lowland	4.86
Ribble and Alt Estuaries SPA	0.48	

3.4 Assessment Criteria

- 3.4.1 Natural England (NE) are a statutory consultee for planning applications in England.

 Review of consultation reports prepared by NE in relation to agricultural developments which are exempt from regulation by the Environment Agency (EA) under the Environmental Permitting (England and Wales) Regulations (2016) and subsequent amendments, such as the proposed development, indicated that the following advisory screening threshold are applicable to predicted process contributions (PCs) to atmospheric NH₃ concentrations and nitrogen and acid deposition rates at statutory ecological designations:
 - 1% of the relevant critical level or load at Special Areas of Conservation, SPAs and Ramsar sites; and,
 - 4% of the relevant critical level or load at SSSIs.
- 3.4.2 Should predicted PCs exceed the thresholds at the relevant ecological designations, there is usually a requirement to consider whether there is the potential for in-combination effects as a result of emissions from other agricultural installations in the vicinity of the site.
- 3.4.3 It should be noted that the stated NE screening thresholds are advisory and have not been published as part of any formal guidance. However, interpretation of the SCAIL results has been undertaken with reference to the criteria in order to determine an indicative requirement for further assessment as a result of emissions from the proposed development.

Ref: 5343

4.0 **SCAIL RESULTS**

4.1 <u>Introduction</u>

- 4.1.1 The SCAIL model inputs outlined in Section 3.2 were utilised to predict NH₃ concentrations and nitrogen and acid deposition rates at the relevant ecological designations. The results are summarised in the following Sections.
- 4.1.2 Reference should be made to Appendix 1 for the SCAIL model outputs.

4.2 Ammonia

4.2.1 Predicted annual mean NH₃ PCs at the ecological designations are summarised in Table5.

Table 5 Predicted Annual Mean NH₃ PC Concentrations

Ecological Designation	Predicted Annual Mean NH ₃ PC Concentration (µg/m³)	PC Proportion of Relevant Critical Level (%)				
Rough Hey Wood SSSI	0.0062	0.62				
Newton Marsh SSSI	0.0045	0.45				
Wyre Estuary SSSI	0.0041	0.41				
Morecambe Bay SPA	0.0041	0.41				
Ribble Estuary SSSI	0.0037	0.37				
Ribble and Alt Estuaries SPA	0.0037	0.37				

4.2.2 As shown in Table 5, the predicted PC proportion of the critical level was less than 1% at all designations. As such, further assessment of potential effects at the designations as a result of NH₃ emissions is not required.

4.3 <u>Nitrogen Deposition</u>

4.3.1 Predicted annual nitrogen PC deposition rates at the ecological designations are summarised in Table 6.

Ref: 5343

Table 6 Predicted Annual PC Nitrogen Deposition Rates

Ecological Designation	Predicted Annual PC Nitrogen Deposition Rate (kgN/ha/yr)	PC Proportion of Relevant Critical Load (%)
Rough Hey Wood SSSI	0.05	1.00
Newton Marsh SSSI	0.02	0.10
Wyre Estuary SSSI	0.02	-
Morecambe Bay SPA	0.02	0.25
Ribble Estuary SSSI	0.02	0.10
Ribble and Alt Estuaries SPA	0.02	0.40

4.3.2 As shown in Table 6, the predicted PC proportion of the critical load was less than 1% at all relevant designations. As such, further assessment of potential effects at the designations as a result of nitrogen deposition is not required.

4.4 Acid Deposition

4.4.1 Predicted annual acid PC deposition rates at the ecological designations are summarised in Table 7.

Table 7 Predicted Annual PC Acid Deposition Rates

Ecological Designation	Predicted Annual PC Acid Deposition Rate (keq/ha/yr)	PC Proportion of Relevant Critical Load (%)				
Rough Hey Wood SSSI	0.003	0.17				
Newton Marsh SSSI	0.002	0.04				
Wyre Estuary SSSI	0.002	-				
Morecambe Bay SPA	0.001	0.16				
Ribble Estuary SSSI	0.001	0.02				
Ribble and Alt Estuaries SPA	0.001	0.21				

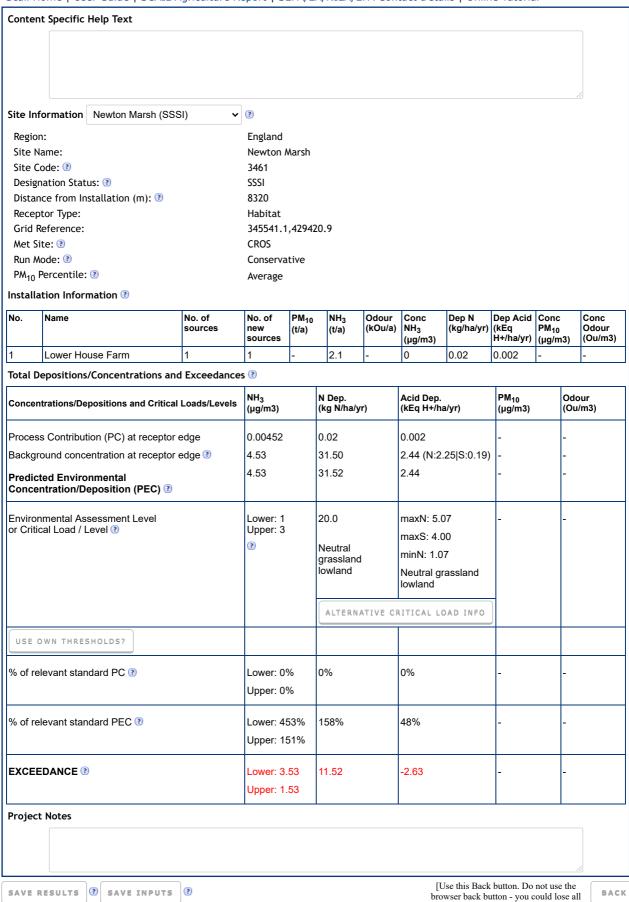
Ref: 5343

4.4.2 As shown in Table 7, the predicted PC proportion of the critical load was less than 1% at all relevant designations. As such, further assessment of potential effects at the designations as a result of acid deposition is not required.

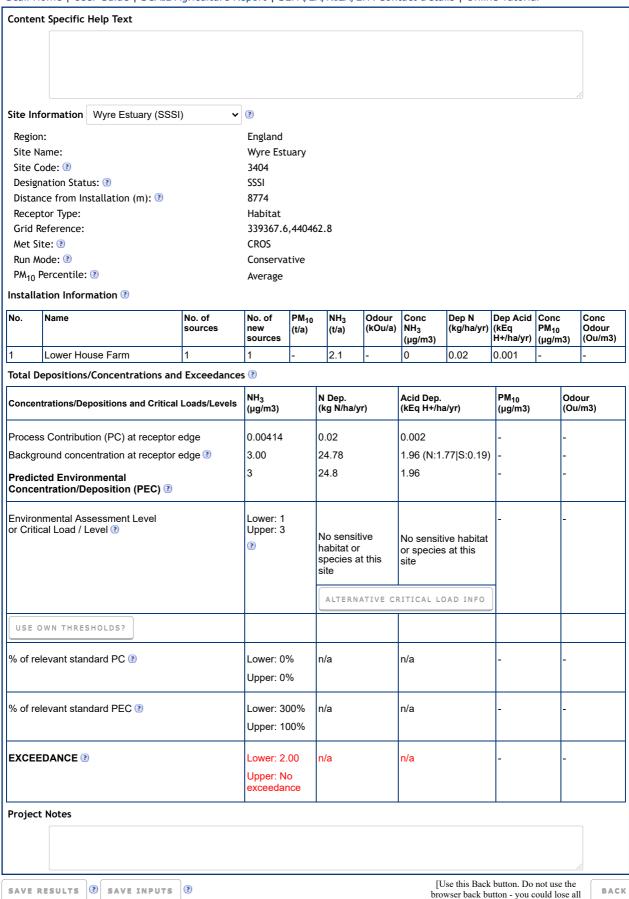
4.5 <u>Summary</u>

4.5.1 The results of the assessment indicated that impacts as a result of residual emissions from the proposed covered slurry lagoon were below the relevant criteria at all ecological designations. As such, further assessment of potential effects is not required.

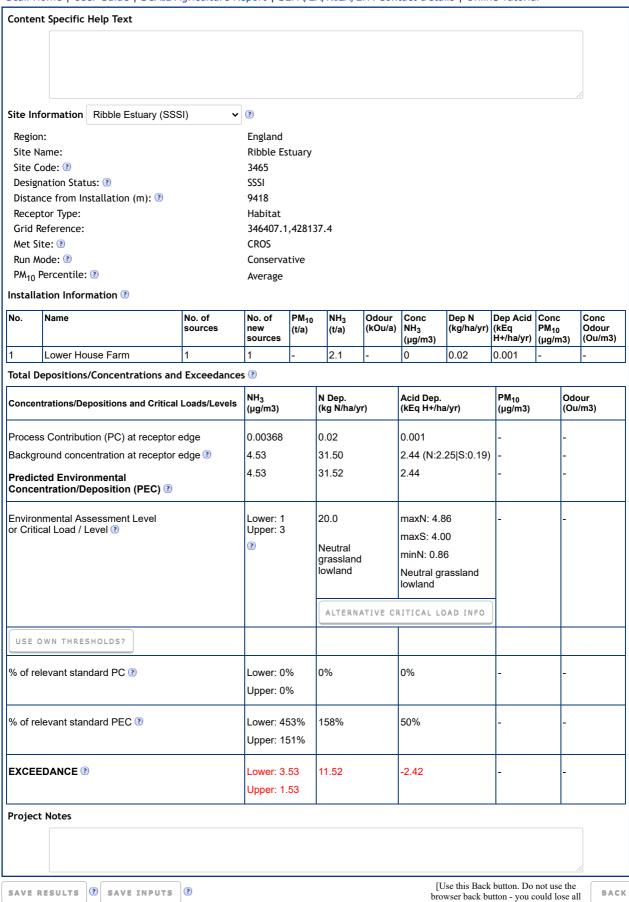
Ref: 5343



Appendix 1 - SCAIL Model Outputs


Content Specific	Help Text											
Site Information	Rough Hey Wood (SSSI) 🗸	?									
	England											
Region: Site Name:	England Rough He	w Woo	vd.									
Site Code: 3			Rough Hey Wood 3468									
Designation Sta	itus: ②		SSSI									
=	nstallation (m): 🕙		6844									
Receptor Type:			Habitat									
Grid Reference			352051.9	.44269	90.5							
Met Site: ②	•		CROS	,	, , , ,							
Run Mode: ③			Conserva	tive								
PM ₁₀ Percentile	e: ③		Average									
Installation Info			Average									
No. Name No. of sources No. of new sources									Ç	Conc Odour Ou/m3)		
1 Lower H	ouse Farm	1	1	-	2.1	-	0.01	0.05	0.003	-	-	
Total Deposition	s/Concentrations and	d Exceedance:	s (?)									
Concentrations/D	epositions and Critical	Loads/Levels	NH ₃ (μg/m3)		N Dep. (kg N/ha/y	r)	Acid Dep. (kEq H+/ha	n/yr)	PM ₁₀ (μg/m3)		Odou (Ou/m	
Process Contrib	ution (PC) at receptor	edge	0.00624		0.05		0.003		=		-	
	centration at receptor	_	3.81		50.96		3.89 (N:3.64 S:0.25)		-		-	
Predicted Envir Concentration/	onmental Deposition (PEC) ③		3.82		51.01		3.89		-		-	
Environmental A or Critical Load /	ssessment Level Level 🖲		Lower: 1 Upper: 3		5.0 Broad-leaved, mixed and yew woodland		maxN: 1.80 maxS: 1.44 minN: 0.36 Broad-leaved, mixed and yew woodland		-		-	
					ALTERNATIVE CRITICA							
USE OWN THR	ESHOLDS?											
% of relevant sta	andard PC 🕖		Lower: 16 Upper: 06		1%		0%		-		-	
% of relevant standard PEC ③		Lower: 382% Upper: 127%		1020%		216%		-		-		
EXCEEDANCE ③			Lower: 2. Upper: 0.		46.01		2.09		-		-	
Project Notes					ı				1			
SAVE RESULTS	③ SAVE INPUTS	3						se this Back wser back bu				BAC

Scail Home | User Guide | SCAIL-Agriculture Report | SEPA/EA/NIEA/EPA Contact Details | Online Tutorial



inputs!]

Conten	t Specific	Help Text														
Site Inf	formation	Morecambe Bay (SF	PA) •	?												
Region	Region:															
Site Name:				_	England Morecambe Bay											
Site C	ode: 🕙			UK90050	81											
Desigr	nation Stat	us: 🕙		SPA												
		stallation (m): 🕐		8793												
	tor Type:			Habitat			_									
	Reference:			339300.3	,44032	27.	.5									
Met Si				CROS	44											
	lode: 🕙 Porcontile:	2		Conserva	tive											
PM ₁₀ Percentile: Average Installation Information																
		ilation 🐨	1					T .	I .		1				T .	
No.	Name		No. of sources	No. of new sources	PM ₁₀ (t/a)		NH ₃ (t/a)	Odour (kOu/a)	Conc NH ₃ (µg/m	3)	Dep N (kg/ha/yr)	Dep Acid (kEq H+/ha/yr)	Cond PM ₁₀ (µg/r)	Conc Odour (Ou/m3)	
1	Lower Ho	use Farm	1	1	-		2.1	-	0		0.02	0.001	-		-	
Total D	epositions	/Concentrations and	l Exceedances	?												
Concen	trations/De	positions and Critical	Loads/Levels	NH ₃ (μg/m3)			Dep. g N/ha/y	r)		Acid Dep. (kEq H+/ha/yr)		PM ₁₀ (μg/m3)			Odour (Ou/m3)	
Proces	s Contribut	ion (PC) at receptor e	edge	0.00413		0.	0.02		0.00	0.001		-		-		
Backgr	ound conc	entration at receptor e	edge 🕙	3.00		24	24.78			1.96		-	- .			
Dradio	ted Enviro	nmontal		3		24.8		(N:1	(N:1.77 S:0.19)		-		_			
		eposition (PEC) 🕙						1.96	1.96							
Environ	amontal Ao	sessment Level				9.0		max	maxN: 0.64							
	cal Load / L			Lower: 1 Upper: 3		8.0			maxN: 0.64 maxS: 0.39		-		-			
				?		Charadrius hiaticula		ء ا								
							Europe/N).22					
						AI	frica - wi	ntering)	Cha		lrius a					
					(Euro		rop	e/Northern								
									Atri	ca -	wintering)					
						Ľ	ALTERNA	ATIVE CR	ITICAL	. LC	AD INFO					
USE	OWN THRES	SHOLDS?														
% of re	levant stan	idard PC 🕙		Lower: 0°	%	09	%		0%			-		_		
				Upper: 0	%	0 70			070							
% of re	levant stan	idard PEC ③		Lower: 30	00%	31	10%		306	%		-		-		
		Upper: 10	00%													
EXCEE	EXCEEDANCE ®		Lower: 2.	00	16	6.80		1.32	2		-		-			
		Upper: N exceedar														
Droin-4	t Notes											1				
Project	L NOTES															

Conte	nt Specific	Help Text										
Site In	formation	Ribble and Alt Estu	aries (SPA) 🗸	?								
Region:				England								
Site Name:				Ribble and Alt Estuaries								
Site Code: ③				UK9005103								
Designation Status: ③				SPA								
Distance from Installation (m): 🕙				9423								
Receptor Type:				Habitat								
Grid Reference:				346407.2,428132.2								
Met Site: ③				CROS								
Run Mode: ③ PM ₁₀ Percentile: ③				Conservative								
	Percentile: ation Inforr			Average								
No.	Name	nacion o	No. of sources	No. of new	PM ₁₀ (t/a)	NH ₃ (t/a)	Odour (kOu/a)	Conc NH ₃	Dep N (kg/ha/yr)	Dep Acid (kEq	Conc PM ₁₀	Conc Odour
				sources		0.4		(µg/m3)	2.22	H+/ha/yr)	(µg/m3) (Ou/m3)
1	Lower Ho		1	1	-	2.1	-	0	0.02	0.001	-	-
Total [Depositions.	Concentrations an	d Exceedances	?								
Concentrations/Depositions and Critical Loads/Levels				NH ₃ (μg/m3)		N Dep. (kg N/ha/yr)			Acid Dep. (kEq H+/ha/yr)			Odour Ou/m3)
Process Contribution (PC) at receptor edge				0.00368		0.02		0.001	0.001		-	
Background concentration at receptor edge ③				4.53		31.50			2.44			
				4.53		31.52			(N:2.25 S:0.19)			
Predicted Environmental Concentration/Deposition (PEC) ③				4.00		01.02		2.44	2.44			
or Critical Load / Level 🕙				Lower: 1 Upper: 3		3.0 Melanitta nigra (Western Siberia/Western &		maxN:	maxN: 0.48 maxS: 0.16 minN: 0.32 Larus ridibundus		-	
								maxS:				
								minN: (
								Larus r				
						Northern Europe/North-		(North-	(North-western Europe - breeding)			
						western A						
						ALTERN	ATIVE CR	ITICAL LO				
USE	OWN THRES	HOLDS?										
% of relevant standard PC ③				Lower: 0%		1%		0%	0%		-	
				Upper: 0%	6							
% of relevant standard PEC ⁽²⁾				Lower: 453%		1051%		508%	508%		-	
				Upper: 15	51%							
EXCEEDANCE ③				Lower: 3.53		28.52		1.96	1.96		-	
				Upper: 1.	53							
Projec	t Notes			l				1		1		