

FLOOD RISK ASSESSMENTS

Flood Risk Assessment and Drainage Strategy Addendum

2010-493 Chalk Hill, Blakenham

November 2020

TABLE OF CONTENTS

TA	BLE OF	F CONTENTS	1
1.	INTE	RODUCTION	2
1	l. 1	Background	2
1	L .2	Existing Flood Risk Assessment	2
2.	Surf	ace Water Flood Risk and Drainage	3
2	2.1	Overland Surface Water Flood Risk	3
2	2.2	SuDS Surface Water Drainage	3
3.	CON	ICLUSION AND RECOMMENDATIONS	4
4.	APP	ENDIX A – OVERLAND SURFACE WATER FLOOD RISK	5
5.	APP	ENDIX B – DRAINAGE STRATEGY LAYOUT 2010-493-SK001	7
6.	APP	ENDIX C – INFILTRATION TESTING AND DESIGN CALCULATIONS	8

1. INTRODUCTION

1.1 Background

A Flood Risk Assessment (FRA) and Drainage Strategy was produced by Geosphere Environmental to support a planning application for 7 residential dwellings to the west of Hook Drive, Blakenham, reference 4954,DS,FR,FLOOD/PC,SG/12-08-20/V1 dated August 2020. The FRA was submitted in support of a planning application DC/20/01927 and a holding Objection was received from the Lead Local Flood Authority (LLFA) dated 21st August 2020.

The reason given for the LLFA Objection is summarised as:

The reason why we recommend continuing to maintain our holding object is whilst the applicant has provide an assessment of the flood risk to the site, in which they have identified that parts of the site are at medium to high risk of surface water. The applicant has not sufficiently demonstrated that the properties will remain safe for their life time and that they will not increase flood risk elsewhere in line with national and local policy/guidance.

And additional information requested was:

To overcome our objection the applicant shall;

1) Demonstrate with clear evidence how the properties will remain safe for there lifetime and demonstrate that they will not increase surface water flooding elsewhere

2) Reduce the number of dwellings proposed or position the proposed dwellings in a low flood risk area of the site

3) Provided a detailed strategy with evidence, for the disposal of surface water as per our consultation reply dated the 21 st May 2020

1.2 Existing Flood Risk Assessment

The Geosphere FRA does identify the Low to High risk of overland surface water flooding to the site and the flood mapping is included in Appendix A. The preliminary site layout did include a dwelling in the area affected by surface water and in section 5.3 of the FRA it is recommended that mitigation measures must be incorporated into the layout for the proposed development.

The FRA also advises that infiltration measures are likely to be suitable for the site and advises testing to BRE365 to confirm for drainage design.

The purpose of this Addendum is therefore to progress the recommendations of the FRA in order to address the objections raised by the LLFA.

2. SURFACE WATER FLOOD RISK AND DRAINAGE

2.1 Overland Surface Water Flood Risk

As indicated on appended flood mapping and within the FRA, overland surface water flooding can be seen to build up within the north eastern area of the site, within a low area of the topography.

When flood risk is high and greater than 3.3% the floodwater is shown to be solely within the site, but as the risk progresses to less frequent low risk between 0.1% and 1.0% it can be seen that storm water is also expected to flow in from Chalk Hill Lane. The flood water is shown to terminate in the site and this is indicative that the water ponds into the low area of the site in storms before infiltrating over time.

BRE 365 testing has been undertaken on the site to inform this Addendum and in the area of the flood water, rates of 2.19x10-6m/s were found.

In order to mitigate the flood risk from this surface water it is therefore proposed to remove the proposed dwelling previously shown completely within the flood area and to replace it with an excavated infiltration basin to intercept and store the water. A further measure of around 30m of French drain in the floor of the basin is also proposed to help the stored water to infiltrate during and after the storm event. It is recommended that the basin is landscaped to assist with bioretention and also to provide an area of ecological and amenity value within the site.

The basin shown on attached layout drawing 2010-493-SK001 has an excavated volume of 300m3 and it is proposed that suitable material from this excavation will be used to raise the south eastern end of the unmitigated flood area around plot 3, and to raise it by up to 600mm. With the basin in place it is expected that all the surface flood water would be contained within it, but raising plot 3 and it's garden will further ensure the water is contained in the basin area and that there is no flood risk to property.

By reducing the number of dwellings on the site and in the surface water floodzone, in accordance with LLFA advice and introducing flood water storage, it has therefore been possible to ensure that all the proposed properties will remain safe from flooding for their design life, without displacing the flood risk elsewhere.

2.2 SuDS Surface Water Drainage

The approach to Sustainable Urban Drainage Systems (SuDS) is to control water quantity, water quality, amenity and biodiversity by incorporating SuDS features into a drainage design and by producing a management train to achieve enhancements in all areas.

The recommended hierarchy for SuDS drainage is to use infiltration where possible and BRE365 testing carried out on this site does indicate that infiltration will be a suitable solution.

In order to ensure water quality treatment, it is proposed to utilise permeable paving throughout the site for the access road and also private driveways and hardstandings. Clean water from house and garage roof areas will be directed to cellular soakaways located a minimum of 5m off buildings.

Calculations have been undertaken for the proposed drainage strategy to demonstrate that the infiltration design can be achieved and are appended.

3. CONCLUSION AND RECOMMENDATIONS

An FRA was produced for the proposed development which highlighted overland surface water flood risk and also discussed surface water drainage by infiltration, but did not provide details of how the flood risk would be mitigated, or test results and drainage design to support an infiltration strategy.

The number of dwellings proposed for the site and layout to accommodate has subsequently been revised and updated to provide mitigation to the flood risk, and to direct the proposed dwellings outside of it. Flood mitigation has been provided in a form that will also provide an opportunity to enhance ecological and amenity value on the site.

In order to provide a detailed drainage strategy for surface water on the site and also as recommended by the FRA, infiltration testing was undertaken on the site in November 2020 and the results as appended have been used to inform a strategic design of permeable pavement and cellular soakaways for the site. Calculations for the outline drainage system are appended.

By providing detail of how the surface water flood risk on the site will be safely mitigated and also how the surface water drainage on the site will be managed, it is considered that the basis of the current LLFA Objection has been satisfactorily addressed.

4. APPENDIX A – OVERLAND SURFACE WATER FLOOD RISK

5. APPENDIX B – DRAINAGE STRATEGY LAYOUT 2010-493-SK001

6. APPENDIX C – INFILTRATION TESTING AND DESIGN CALCULATIONS

Our Ref: 5264,SK,Ltr01,PC,17-11-20,V1 Your Ref: 5264,SK

KLH Architects The Old Steelyard Poplar Lane Sproughton, Ipswich Suffolk IP8 3HL

Date: 17 November 2020

For the attention of Mr Ben Moore

By Email: <u>ben@klharchitects.com</u>

Dear Ben,

INFILTRATION TESTING AT CHALK HILL LANE, GREAT BLAKENHAM, IPSWICH

1. Introduction

This letter report has been prepared for KLH Architects.

The primary objective of this ground investigation was to assess the infiltration potential of the natural soils beneath the site.

This was achieved by:

- Excavating a number of machine-dug trial pits across the site;
- Undertaking soakage testing in line with BRE Digest 365 guidance; and
- Undertaking infiltration calculations to allow for an assessment of the suitability of soakaways or infiltration techniques for the future development of the site.

It is understood that the proposed development will comprise seven residential plots with associated access roads and garden areas. A Proposed Development Plan, provided by the client, Drawing ref. 4772-0102-P03 is provided within Appendix 4 at the end of this letter report.

A Site Location Plan, Drawing ref. 5264,SK/001/Rev0, is presented at the end of this letter report in Appendix 4.

The purpose of this letter report is to provide factual data only.

2. Site Works

2.1 Methodology

This ground investigation was carried out on the basis of the practices set out in BRE Digest 365, 'Soakaway Design'. 2016, which requires, in summary, a total of three infiltration tests to be undertaken in succession over a 24-hour period or tests to be undertaken on consecutive days.

GEOSPHERE ENVIRONMENTAL LTD

Brightwell Barns, Ipswich Road, Brightwell, Suffolk, IP100BJ T: 01603 298076 | 01473 353519 | E: info@geosphere-environmental.co.uk | W: geosphere-environmental.co.uk

Registered Office: Brightwell Barns, Ipswich Road, Brightwell, Suffolk, IP10 0BJ | Registered in England and Wales | Registered NO. 7107630 | VAT NO. 985 4247 79

The exploratory holes were positioned at client supplied locations.

In general, where a test location showed limited or no infiltration, it was allowed to continue for circa 24 hours, the data obtained and the test ceased. Where a test exhibited appreciable infiltration and the "75%" infiltration level was achieved, a further infiltration "run", or more was undertaken.

2.2 Scope

Site works were carried out on 02 and 03 November 2020, and comprised the following:

- Excavation of machine excavated trial pits in four locations, (TP01 to TP04), to a maximum depth of 2.0mbgl;
- Undertaking infiltration testing in line with BRE Digest 365 guidance; and
- Undertaking infiltration calculations to allow for an assessment of the suitability of soakaways for the future development of the site.

An Exploratory Hole Location Plan, Drawing ref. 5264,SK/002/Rev0, is presented at the end of this letter report in Appendix 4.

An unidentified obstruction, potentially a service or tank, was encountered within TP04, excavation was halted and the position relocated approximately 2m to the south east as TP04A.

2.3 Ground Conditions Encountered

The sequence of the strata encountered during the investigation generally confirms the anticipated geology as interpreted from geological mapping.

The sequence and indicative thickness of strata are summarised in Table 1 below, with the Exploratory Hole Logs provided in Appendix 2:

Table 1 - Ground Conditions									
Chuete	Depth Encoun	tered (mbgl)	Strata Thickness	Leastion and Composition					
Strata	From	То	(m)	Location and Composition					
Topsoil.	0.00	0.30 - 0.40	0.30 - 0.40	All exploratory holes:					
				A brown silty gravelly SAND. Gravel is flint.					
Possible fill.	0.30	1.45	Unproven	TP04 only:					
				A brown clayey gravelly SAND					
Granular	0.30 - 0.40	1.05 - 1.80	Unproven	TP01, TP02, TP04A:					
deposits.				Orange brown and pale grey mottled gravelly clay with chalk and flint and chalk gravel.					
Newhaven	0.40 - 1.10	Unproven	Unproven	TP02, TP03, TP04A:					
Chalk.				Generally light brown to white with variable quantities of sand, gravel and putty					

2.4 Groundwater

No groundwater was encountered in any of the exploratory holes during the intrusive investigation.

2.5 Infiltration Testing Results

Soil infiltration testing was undertaken in accordance with BRE 365, 2016. The results are summarised in Table 2 below and are provided in full in Appendix 3, presented at the end of this letter report:

Table 2 - Summary of Soil Infiltration Results								
Location	Test 1 (m/s)	Test 2 (m/s)	Test 3 (m/s)	Notes				
TP01	4.13x10-06	2.19x10-06	4.67x10-06	None				
TP02	3.53x10-05	3.32x10-05	2.69x10-05	None				
TP03	1.18×10-05	1.26x10-05	3.17x10-06	None				
TP04A	2.20x10-06	2.22x10-06	3.19x10-06	None				

We trust the above is clear and acceptable. If you have any questions, please do not hesitate to contact us.

Yours sincerely

Peter Coyne **Technical Assistant** Geosphere Environmental Ltd peter@geosphere-environmental.co.uk

Enclosures: Appendix 1 – Report Limitations and Conditions Appendix 2 – Exploratory Hole Logs Appendix 3 – Infiltration Testing Results Appendix 4 – Drawings

APPENDICES

5264,SK,Ltr01,PC,17-11-20,V1

APPENDIX 1 – REPORT LIMITATIONS AND CONDITIONS

This report refers, within the limitations stated, to the condition of the site at the time of the inspections. No warranty is given as to the possibility of future changes in the condition of the site.

This report has been prepared for the sole use of the Client for the purposes described and no extended duty of care to any third party is implied or offered. Third parties using any information contained within this report do so at their own risk.

This report is prepared and written for the use stated herein; it should not be used for any other purposes without reference to Geosphere Environmental Limited. The report has been prepared in relation to the proposed end-use, should another end-use be intended, a further re-assessment may be required. It is likely that over time practises will improve and the relevant guidance and legislation be amended or superseded, which may necessitate a re-assessment of the site.

The accuracy of any map extracts cannot be guaranteed. It is possible that different conditions existed onsite, between and subsequent to the various map surveys appended.

Whilst the report may express an opinion on possible configurations of strata between or beyond exploratory holes discussed or on the possible presence of features based on visual, verbal or published evidence, this is for guidance only and no liability can be accepted for its accuracy.

APPENDIX 2 – EXPLORATORY HOLE LOGS

Trial Pit Logs (TP01 to TP04A)

Geosphere Environmental Ltd Unit 11 Brightwell Barns Brightwell, Ipswich, IP10 0BJ Telephone: 01603 298 076

Project				Client					TRIAL PIT No
Cha	Chalk Hill Lane, Great Blakenham			KLH Ar	chitects				7004
Job No Date Ground			d Level (m)	Grid Refere		1001			
526	54,SK	02-11-20							
Fieldwork	Ву			Logged By					Sheet
GE	L			PC					1 of 1
Donth		D	ESCOIDT			Legend	Donth	Nia	Remarks/Tests
0.00-0.40	Brown silty - and mediur _ flint - (TOPSOIL) Light brown	gravelly fine and mediu n roots. Gravel is suban	m ORGA uglar to	NIC SAND with subrounded fine	active fine e to coarse		Deptil		Trial pit remained dry and stable upon completion
	- Gravel is fir - - - - - - - - - - - Becoming c	ning gravelly denser	and subi		d chalk				Trial pit completed at 1.9m
					Sh	horing/Su ability: S	upport: Stable	Grave	 backfill
All dimens	ions in metre 3333333333333	Method Trial Pit/tro 33	ench	Plant	JsedMECHAN EXCAVA	NICAL TOR		Ch SG	ecked By G

Geosphere Environmental Ltd Unit 11 Brightwell Barns Brightwell, Ipswich, IP10 0BJ Telephone: 01603 298 076

Project				Client					TRIAL PIT No
Chalk Hill Lane, Great Blakenham			KLH Ar	chitects				TDOO	
Job No Date Ground Level			d Level (m)	(m) Grid Reference ()				- IP02	
526	4,SK	02-11-20							
Fieldwork	Fieldwork By Logged By						Sheet		
GEL				PC					1 of 1
Depth		D	ESCRIPT	ION		Legend	Denth	No	Remarks/Tests
0.00-0.35	Brown silty fine and me (TOPSOIL)	slightly gravelly fine and edium flint with fine acti	d mediui ve roots	m ORGANIC SAN	ID. Gravel is - -		Deptii		Trial pit remained dry and stable upon completion
- 0.35-1.05 - - - - - - - - - - - - - - - - - - -	Orangish br angular to s - - - - - - - Unstructure	own gravelly fine and m subrounded flint and cha ed CHALK recovered as a	edium S alk n orang	iAND. Gravel is t	ine to coarse - - - - - - - e sandy gravel -				
	of fine to co	oarse subangular and su							Trial pit completed at 2.0m
		0.45	anch	Diant 1	Sho Sta	bring/Su bility: S	upport: Stable	Grave	el backfill
All dimensi Scale 1:20.8	ons in metre 333333333333	es Method Trial Pit/tre 33	ench	Plant l	EXCAVAT	ICAL OR		(спескеа Ву 6G

Geosphere Environmental Ltd Unit 11 Brightwell Barns Brightwell, Ipswich, IP10 0BJ Telephone: 01603 298 076

Project				Client					TRIAL PIT No
Chalk Hill Lane, Great Blakenham			KLH Ar	chitects				TDOO	
Job No Date Ground Level			d Level (m)	vel (m) Grid Reference ()				1803	
526	54,SK	02-11-20							
Fieldwork	Ву			Logged By					Sheet
GEI	_			PC					1 of 1
Depth			DESCRIPT	ION		Legend	Depth	No	Remarks/Tests
0.00-0.40	Brown silt - medium a _ flint	ty slightly gravelly fine ar active roots. Gravel is fine	nd mediu e and me	m SAND with fir dium subangula	ne and r to rounded	-			Trial pit remained dry and stable upon completion
0.40-2.00	– (TOPSOIL) Unstructu) Ired CHALK recovered as	a light br	own/off-white	sandy gravelly				
	– putty. Gra –	avel is fine to coarse angu	ular to su	brounded chalk	, o , , .				
	- - 0.80 Reco	vered as a slightly putty	sandy GR	AVEL					
	-		·		_				
	- - 1.20 With -	gravel of angular to sub	rounded	fine to coarse fl	int				
	-								
	1.60 Beco	ming white							
	-								
									Trial pit completed at 2.0m
	-				-	-			
	1.2	>							
		0.45			Sho Sta	oring/Su Ibility: S	upport: Stable	Grave	el backfill
All dimens	ions in met	res Method Trial Pit/t	rench	Plant	JsedMECHAN	ICAL			Checked By
Jale 1.20.8		555			EXCAVAI	UK			56

Geosphere Environmental Ltd Unit 11 Brightwell Barns Brightwell, Ipswich, IP10 0BJ Telephone: 01603 298 076

Project				Client					TRIAL PIT No
Cha	alk Hill La	ne, Great Blakenham		KLH AI	chitects				7004
Job No Date Ground L			d Level (m)	Grid Referen	ce ()			IP04	
526	54,SK	02-11-20							
Fieldwork	Ву	- 1		Logged By					Sheet
GEI	-			PC					1 of 1
Depth			DESCRIPT	ION		Legend	Depth	No	Remarks/Tests
Depth 0.00-0.30 0.30-1.45	Brown sli - to coarse (TOPSOIL Brown cla - subangul - - - 0.90 Grav - - - - - - - - - - - - -	ghtly silty slightly gravell flint with active fine and) ayey gravelly fine and me ar to rounded flint and cl rel becoming fine to coar ied obstruction	DESCRIPT y fine and medium edium SAN halk	ION I medium SANE roots ND. Gravel is fin	 O. Gravel is fine - -	Legend	Depth	No	Trial pit terminated at 1.45mbgl due to unidentified obstruction - suspected pipe or tank. Hole repositioned as TP04A
¥		••• 0.45 ¥			Shc Sta	oring/Su bility: S	upport: Stable	Grave	el backfill
All dimens Scale 1:20.8	ions in me 33333333333	tres Method Trial Pit/t	rench	Plant	UsedMECHAN	ICAL OR			Checked By
		1				U			

Geosphere Environmental Ltd Unit 11 Brightwell Barns Brightwell, Ipswich, IP10 0BJ Telephone: 01603 298 076

Project				Client					TRIAL PIT No
Chalk Hill Lane, Great Blakenham			KLH A	rchitects				TDOAA	
Job No	Job No Date Ground Le			l Level (m)	Grid Referen	ce ()			IP04A
526	54,SK	02-11-20							
Fieldwork	Ву			Logged By					Sheet
GEI	L			PC					1 of 1
Depth			DESCRIPTI	ON		Legend	Depth	No	Remarks/Tests
0.00-0.30	Brown slig	ghtly silty slightly gravel flint with active fine an	lly fine and d medium i	medium SAN	D. Gravel is fine				Trial pit remained dry and stable
-									upon completion
0 30-1 10	Light brow	yn gravelly fine and me	dium SAND	Gravel is an	ular to	· . · . · .			
0.50 1.10	- subrounde	ed fine to coarse chalk				- · · · · · · · · ·			
-	_					- · · · ·			
-	-								
	-								
_	_				-				
1 10 2 00	Structuro	A CHALK recovered as a	clightly put	tty gravally fir	o to coarco				
1.10-2.00	- SAND. Gra	avel is fine to coarse an	gular to sub	prounded cha	k and flint	┟╖╹╖			
-	_								
-	-					┨ <mark>┍╶┟╴╓╶</mark> ╽			
-	-					┨ <mark>┙╖╺┶╶╖╶╝</mark>			
_						┠╥┶╥┷			
-	_					┟┸╦┸╢			
-	-								
-									Trial nit
-	-								completed at 2.0m
-	-								
-	-								
	_								
	-								
×	1 25								
	1.20								
		A			Shi	nring/Si	innort.	Grave	el hackfill
					Sta	bility: S	Stable	5,010	
All dimens	ions in met	res Method Trial Pit/	trench	Plant	UsedMECHAN	ICAL			Checked By
Scale 1:20.8	333333333333	333			EXCAVAT	OR			SG

APPENDIX 3 – INFILTRATION TEST RESULTS

5264,SK,Ltr01,PC,17-11-20,V1

Checked by:

SG

Calculated by: PC

Project Number:

5264,SK

Chalk Hill Lane, Great Blakenham Project Name:

Time	Depth to	
	Water	
[min]	[mbgl]	
0	0.78	
1	0.89	
2	0.97	
3	1.00	Para
4	1.03	
5	1.03	h ₇₅
10	1.08	h ₂₅
21	1.16	h ₇₅ -
44	1.26	
84	1.36	
108	1.41	t ₇₅
185	1.54	t ₂₅
		t ₇₅ -
		V ₇₅₋₂
		ap ₅₀
		f

Pit Size [m]						
Length	Width	Depth				
0.90	0.45	1.70				
Infiltrati	on Rate Calcu	llations				
Parameter	Unit	Resul				
	height					
1 ₇₅	[m]	1.470				
1 ₂₅	[m]	1.010				
1 ₇₅ -h ₂₅	[m]	0.460				
	time					
75	[s]	8400.00				
25	[s]	192.00				
₇₅ - t ₂₅	[s]	8208.00				
ef	fective volume	2				
75-25	[m³]	0.056				
	effective area					
IP 50	[m²]	1.647				
soi	l infiltration rat	e				

	Pit Size [m]	
ength	Width	Depth
0.90	0.45	1.70
Infiltrati	on Rate Calcu	lations
meter	Unit	Result
	height	
	[m]	1.470
	[m]	1.010
1 ₂₅	[m]	0.460
	time	
	[s]	8400.00
	[s]	192.00
t ₂₅	[s]	8208.00
e	ffective volume	
5	[m³]	0.056
	effective area	
	[m²]	1.647
soi	I infiltration rat	e
	[m/s]	4.13E-06

Trial Pit	TP01
Run	1 of 3
Test Date	02/11/2020
Groundwater Encountered:	N/A

Remarks: Gravel backfilled for stability

16/11/2020

Date:

Calculated by: PC

Project Number:

Project Name:

5264,SK

Chalk Hill Lane, Great Blakenham

Checked by:

SG

Time	Depth to	
	Water	
[min]	[mbgl]	
0	0.98	
1	0.99	
2	1.01	
3	1.03	Ρ
12	1.10	
22	1.13	h
42	1.18	h
57	1.20	h
117	1.29	
177	1.35	
237	1.46	t ₇
297	1.55	t2
357	1.57	t ₇
417	1.64	
		v
		а
		f

Pit Size [m]			
Length	Width	Depth	
0.90	0.45	1.70	
Infiltrati	on Rate Calcu	lations	
Parameter	Unit	Result	
	height		
75	[m]	1.520	
1 ₂₅	[m]	1.160	
1 ₇₅ -h ₂₅	[m]	0.360	
	time		
75	[s]	16800.00	
25	[s]	2280.00	
₇₅ - t ₂₅	[s]	14520.00	
effective volume			
75-25	[m³]	0.044	
effective area			
P ₅₀	[m²]	1.377	
soi	l infiltration rat	e	

	Pit Size [m]	
.ength	Width	Depth
0.90	0.45	1.70
Infiltrati	on Rate Calcu	lations
meter	Unit	Result
	height	
	[m]	1.520
	[m]	1.160
n ₂₅	[m]	0.360
	time	
	[s]	16800.00
	[s]	2280.00
t ₂₅	[s]	14520.00
e	ffective volume	
5	[m³]	0.044
	effective area	
	[m²]	1.377
soi	l infiltration rat	e
	[m/s]	2.19E-06

Trial Pit	TP01
Run	2 of 3
Test Date	02/11/2020

Groundwater Encountered: N/A

16/11/2020

Date:

Remarks: Gravel backfilled for stability

GEO

Project Number:

Time

[min]

0

1 2

3

4 20

45

60

120

180

240

5264,SK

Project Name: Chal

Depth to

Water [mbgl]

0.75

0.86

0.96

1.02

1.16

1.26

1.30

1.45

1.56

1.63

Chalk Hill Lane, Great Blakenham

Pit Size [m]		
Length	Width	Depth
0.90	0.45	1.70
Infiltrati	on Rate Calcu	lations
Parameter	Unit	Result
	height	
h ₇₅	[m]	1.463
h ₂₅	[m]	0.988
h ₇₅ -h ₂₅	[m]	0.475
	time	
t ₇₅	[s]	7500.00
t ₂₅	[s]	180.00
t ₇₅ - t ₂₅	[s]	7320.00
e	ffective volume	
V75-25	[m ³]	0.058
	effective area	
ap ₅₀	[m ²]	1.688
soi	l infiltration rat	e
f	[m/s]	4.67E-06

Trial Pit	TP01
Run	3 of 3
Test Date	03/11/2020
Groundwater Encountered:	N/A

Remarks: Gravel backfilled for stability

16/11/2020

Date:

Calculated by: PC

Checked by: SG

Calculated by: PC

Project Number:

Depth to

Water [mbgl]

1.24

1.38

1.44

1.53

1.57

1.70

1.78

1.83

5264,SK

Project Name:

Time

[min]

0

1 2

3

4 5

10

15

20

Chalk Hill Lane, Great Blakenham

Pit Size [m]		
Length	Width	Depth
1.20	0.45	2.00
Infiltrati	on Rate Calcu	lations
Parameter	Unit	Result
	height	
h ₇₅	[m]	1.810
h ₂₅	[m]	1.430
h ₇₅ -h ₂₅	[m]	0.380
	time	
t ₇₅	[s]	1080.00
t ₂₅	[s]	108.00
t ₇₅ - t ₂₅	[s]	972.00
	.	
e	ffective volume	2
V ₇₅₋₂₅	[m³]	0.062
	effective area	
ap ₅₀	[m ²]	1.794
soi	l infiltration rat	te
f	[m/s]	3.53E-05

Checked by:

SG

Trial Pit	TP02
Run	1 of 3
Test Date	02/11/2020
Groundwater Encountered:	N/A

Remarks: Gravel backfilled for stability

Date: 16/11/2020

GEO

5264,SK

Checked by:

SG

Calculated by: PC

Project Number:

Project Name:

Chalk Hill Lane, Great Blakenham

Time	Depth to Water
[min]	[mbgl]
0	1.20
1	1.31
2	1.38
3	1.43
4	1.48
5	1.52
10	1.65
18	1.78
33	1.90

Pit Size [m]		
Length	Width	Depth
1.20	0.45	2.00
Infiltrat	ion Rate Calcu	lations
Parameter	Unit	Re
	height	
h ₇₅	[m]	1.
has	[m]	1.

1.20	0.45	2.00	
Infiltrati	on Rate Calcu	lations	
Parameter	Unit	Result	
	height		
h ₇₅	[m]	1.800	
h ₂₅	[m]	1.400	
h ₇₅ -h ₂₅	[m]	0.400	
	time		
t ₇₅	[s]	1200.00	
t ₂₅	[s]	150.00	
t ₇₅ - t ₂₅	[s]	1050.00	
ef	fective volume		
V ₇₅₋₂₅	[m³]	0.065	
	i		
effective area			
ap ₅₀	[m²]	1.860	
soil infiltration rate			
f	[m/s]	3.32E-05	

Depth [mbgl]

Trial Pit	TP02
Run	2 of 3
Test Date	02/11/2020
Groundwater Encountered:	N/A

Remarks: Gravel backfilled for stability

16/11/2020 Date:

Checked by:

SG

Calculated by: PC

Project Number:

Project Name:

5264,SK

Chalk Hill Lane, Great Blakenham

Time	Depth to Water	
[min]	[mbgl]	Le
0	1.27	1
1	1.32	
2	1.35	
3	1.40	Param
4	1.45	
5	1.49	h ₇₅
10	1.62	h ₂₅
16	1.73	h ₇₅ -h ₂
25	1.82	
30	1.86	
		t ₇₅
		t ₂₅
		t ₇₅ - t ₂
		V ₇₅₋₂₅
		ap ₅₀
		f

Pit Size [m]		
Length	Width	Depth
1.20	0.45	2.00
Tofiltrati	on Poto Colou	lations
arameter	Unit	Result
	height	Reput
75	[m]	1.818
25	[m]	1.453
₇₅ -h ₂₅	[m]	0.365
	time	
75	[s]	1500.00
25	[s]	240.00
₇₅ - t ₂₅	[s]	1260.00
ef	fective volume	
75-25	[m³]	0.059
effective area		
P ₅₀	[m ⁻]	1.745
soil infiltration rate		
	[m/s]	2.69E-05

Trial Pit	TP02
Run	3 of 3
Test Date	02/11/2020
Groundwater Encountered:	N/A

16/11/2020 Date:

Remarks: Gravel backfilled for stability

Calculated by: PC

Project Number:

Depth to

Water [mbgl]

1.31

1.34

1.37

1.39

1.41

1.43

1.52

1.62

1.73

1.85

5264,SK

Project Name:

Time

[min]

0

1

2

3

4

5

10

19

37

58

Chalk Hill Lane, Great Blakenham

Pit Size [m]		
Length	Width	Depth
1.20	0.45	2.00
Infiltrat	ion Rate Calcu	lations
Parameter	Unit	Result
	height	
h ₇₅	[m]	1.828
h ₂₅	[m]	1.483
h ₇₅ -h ₂₅	[m]	0.345
	time	
t ₇₅	[s]	3300.00
t ₂₅	[s]	480.00
t ₇₅ - t ₂₅	[s]	2820.00
	<u></u>	
e	ffective volume	
V75-25		0.056
	effective area	
ap ₅₀	[m ²]	1.679
SO	il infiltration rat	e
f	[m/c]	1 195-05

Checked by:

SG

Trial Pit	TP03
Run	1 of 3
Test Date	02/11/2020
Groundwater Encountered:	N/A

Remarks: Gravel backfilled for stability

16/11/2020

Date:

C	
G	

Project Number:

5264,SK

Depth to

Water [mbgl]

1.36

1.40 1.57

1.69

1.82

1.85

1.87

1.91

Project Name:

Time

[min]

0 5

15 25

45

60

75

90

Chalk Hill Lane, Great Blakenham

Pit Size [m]		
Length	Width	Depth
1.20	0.45	2.00
Infiltrat	tion Rate Calcu	lations
Parameter	Unit	Result
	height	
h ₇₅	[m]	1.839
h ₂₅	[m]	1.516
h ₇₅ -h ₂₅	[m]	0.323
	time	
t ₇₅	[s]	3300.00
t ₂₅	[s]	720.00
t ₇₅ - t ₂₅	[s]	2580.00
e	effective volume	9
V ₇₅₋₂₅	[m³]	0.052
	effective area	
ap ₅₀	[m ⁴]	1.604
SC	oil infiltration rat	e
f	[m/s]	1.26E-05

Trial Pit	TP03
Run	2 of 3
Test Date	02/11/2020
Groundwater Encountered:	N/A

Groundwater Encountered: **Remarks:** Gravel backfilled for stability

16/11/2020

Date:

Depth [mbgl]

Calculated by: PC

Checked by: SG

Calculated by: PC

Project Number:

Depth to

Water [mbgl]

1.36

1.38

1.40

1.65

1.70

1.77

1.84

1.91

1.93

5264,SK

Project Name:

Time

[min]

0

1 2

3 33

63

123

183

243

303

Chalk Hill Lane, Great Blakenham

Pit Size [m]		
Length	Width	Depth
1.20	0.45	2.00
Infiltrati	ion Rate Calcu	lations
Parameter	Unit	Result
	height	
h ₇₅	[m]	1.840
h ₂₅	[m]	1.520
h ₇₅ -h ₂₅	[m]	0.320
	time	
t ₇₅	[s]	10980.00
t ₂₅	[s]	720.00
t ₇₅ - t ₂₅	[s]	10260.00
e	ffective volume	2
V ₇₅₋₂₅	[m³]	0.052
	offortivo prop	
	enective area	4 50 6
ap ₅₀	<u> </u>	1.596
soi	l infiltration rat	te
f	[m/s]	3.17E-06

Checked by:

SG

Trial Pit	TP03
Run	3 of 3
Test Date	03/11/2020
Groundwater Encountered:	N/A

Remarks: Gravel backfilled for stability

16/11/2020

Date:

Depth [mbgl]

Soakage Rate

Calculated by: PC

Project Number:

5264,SK

Depth to

Water [mbgl]

1.29

1.36

1.37

1.39

1.42

1.43

1.48

1.52

1.60

1.64

1.76

1.80

1.840

Project Name:

Time

[min]

0

1

2

3

4

5

10

17

38

53

185

240

300

Chalk Hill Lane, Great Blakenham

Pit Size [m]		
Length	Width	Depth
1.25	0.45	2.00
Infiltrat	ion Rate Calcı	lations
Parameter	Unit	Result
	height	
h ₇₅	[m]	1.823
h ₂₅	[m]	1.468
h ₇₅ -h ₂₅	[m]	0.355
		-
	time	
t ₇₅	[s]	15900.00
t ₂₅	[s]	480.00
t ₇₅ - t ₂₅	[s]	15420.00
e	ffective volume	9
V ₇₅₋₂₅	[m³]	0.060
	effective area	
ap ₅₀	[m²]	1.770
	il infiltuntion	ha
so		
T	[m/s]	2.20E-06

Checked by:

SG

Trial Pit	TP04
Run	1 of 3
Test Date	02/11/2020
Groundwater Encountered:	N/A

Remarks: Gravel backfilled for stability

16/11/2020

Date:

Soakage Rate

Depth [mbgl]

Project Number:

Project Name:

5264,SK

Chalk Hill Lane, Great Blakenham

Time	Depth to Water	
[min]	[mbgl]	
0	1.29	
1	1.31	
2	1.33	
3	1.35	P
4	1.37	
5	1.39	h
9	1.42	h
29	1.55	h
59	1.59	
119	1.68	
179	1.75	t
239	1.80	t
299	1.84	t
359	1.87	
		v
		a
		f

Pit Size [m]							
Length	Width	Depth					
1.25	0.45	2.00					
Infiltrati	on Rate Calcu	lations					
Parameter	Unit	Result					
	height						
75	[m]	1.821					
1 ₂₅	[m]	1.464					
1 ₇₅ -h ₂₅	[m]	0.358					
	time						
75	[s]	16200.00					
25	[s]	900.00					
₇₅ - t ₂₅	[s]	15300.00					
ef	fective volume						
75-25	[m³]	0.060					
l	effective area						
p 50	[m²]	1.778					
soi	infiltration rat	e					
	[m/s]	2.22E-06					

Trial Pit	TP04
Run	2 of 3
Test Date	02/11/2020
Groundwater Encountered:	N/A

Remarks: Gravel backfilled for stability

16/11/2020

Date:

Calculated by: PC

Checked by: SG

Calculated by: PC

Project Number:

Depth to

Water [mbgl]

1.36

1.38

1.40

1.65

1.70

1.77

1.84

1.91

1.93

5264,SK

Project Name:

Time

[min]

0

1 2

3

33

63

123

183

243

303

Chalk Hill Lane, Great Blakenham

Pit Size [m]						
Length	Width	Depth				
1.25	0.45	2.00				
Infiltrat	tion Rate Calcu	lations				
Parameter	Unit	Result				
	height					
h ₇₅	[m]	1.840				
h ₂₅	[m]	1.520				
h ₇₅ -h ₂₅	[m]	0.320				
	time					
t ₇₅	[s]	10980.00				
t ₂₅	[s]	720.00				
t ₇₅ - t ₂₅	[s]	10260.00				
e	effective volume					
V ₇₅₋₂₅	[m³]	0.054				
effective area						
ap ₅₀	[m²]	1.651				
SC	oil infiltration rat	e				
£	[m/c]	2 105 06				

Checked by:

SG

Trial Pit	TP04
Run	3 of 3
Test Date	03/11/2020
Groundwater Encountered:	N/A

Remarks: Gravel backfilled for stability

16/11/2020

Soakage Rate

Depth [mbgl]

APPENDIX 4 – DRAWINGS

Site Location Plan - Drawing ref. 5264,SK/001/Rev0 Exploratory Hole Location Plan – Drawing ref. 5264,SK/002/Rev0 Proposed Development Plan – KLH Architects, Drawing ref. 4772-0102-P03

GEO

GEOSPHERE ENVIRONMENTAL

LEGEND

Site boundary

Trial Pit

SOURCE Client Provided PROJECT

Chalk Hill Lane, Great Blakenham

TITLE

Exploratory Hole Location Plan

DRAWING NUMBER

5264,SK/002/Rev0

SCALE	DATE
NTS	16/11/2020
DRAWN BY	CHECKED BY
PC	SG

NO DIMENSIONS TO BE SCALED FROM THIS DRAWING						
This document references the fo	llowing file:-					
Reference Name	Status	Revision				
PC-XX-XX-M3-Designer-0001_477	2	P01.1				

Revision	5	Date Dr	awn / Chk'd
P01	First Issue	04/12/1	9 BM
P02	First Issue	17/03/2	0 WD/BM
P03	Notes added	14/05/2	0 BM

HOUSING SCHEDULE

House Type	Quantity	N	lo. of Bed	s GIA	No	o. of Spaces	
1	3	3BB 145m ²				2	
2	4		2BB	110m ²		2	
Total:	7						
Garage Type				01760			
Single	4	GARDEN SIZES					
Double	3		PLOT	House Ty	be	Garden Size	
Total:	7		1	HT1		90m ²	
			2	HT2		160m ²	
V Proposed	Trees		3	HT2		140m ²	
Existing Trees			4	HT1		200m ²	
A da u tabla			5	HT2		170m ²	
			6	HT2		115m ²	
Shared			7	HT1		105m ²	
						*	

Client Mr R. Hood

Project Proposed Residential Development, land at Chalk Hill Lane, Great Blakenham

Title

Block Plan as Proposed

PC-Designer-0102

The Old Steelyard Poplar Lane Sproughton Ipswich IP8 3HL t: 01473 689 532

GEOSPHERE ENVIRONMENTAL

GEOSPHERE ENVIRONMENTAL LTD

Brightwell Barns, Ipswich Road, Brightwell, Suffolk, IP100BJ **T**: 01603 298076 | 01473 353519 | **E**: info@geosphere-environmental.co.uk | **W**: geosphere-environmental.co.uk

Page 1 Chalk Hill Lane Blakenham Soakaway designs

Design Settings

Rainfall Methodology	FSR	Maximum Time of Concentration (mins)	30.00
Return Period (years)	2	Maximum Rainfall (mm/hr)	50.0
Additional Flow (%)	0	Minimum Velocity (m/s)	1.00
FSR Region	England and Wales	Connection Type	Level Soffits
M5-60 (mm)	20.000	Minimum Backdrop Height (m)	0.200
Ratio-R	0.400	Preferred Cover Depth (m)	1.200
CV	0.750	Include Intermediate Ground	\checkmark
Time of Entry (mins)	4.00	Enforce best practice design rules	\checkmark

<u>Nodes</u>

Name	Area (ha)	T of E (mins)	Cover Level (m)	Diameter (mm)	Depth (m)
SA5	0.014	4.00	22.700	450	1.400
DUM5	0.000		22.700	450	1.500
SA7	0.020	4.00	25.000	450	0.700
DUM7	0.000		25.000	450	0.800
SA3	0.013	4.00	21.500	450	0.600
DUM3	0.000		21.500	450	0.700
SA1	0.019	4.00	21.600	450	0.700
DUM1	0.000		21.600	450	0.800
РР	0.005	4.00	22.000	450	0.615
DUMPP	0.000		22.000	450	0.700
SA2	0.013	4.00	21.800	450	0.800
DUM2	0.000		21.800	450	0.900

<u>Links</u>

Name 5.000	US Node SA5	DS Node DUM5	Length (m) 2.000	ks (mm) / n 0.600	US IL (m) 21.300	DS IL (m) 21.200	Fall (m) 0.100	Slope (1:X) 20.0	Dia (mm) 100	T of C (mins) 4.02	Rain (mm/hr) 50.0
7.000	SA7	DUM7	2.000	0.600	24.300	24.200	0.100	20.0	100	4.02	50.0
3.000	SA3	DUM3	2.000	0.600	20.900	20.800	0.100	20.0	100	4.02	50.0
1.000	SA1	DUM1	2.000	0.600	20.900	20.800	0.100	20.0	100	4.02	50.0

Name	Vel (m/s)	Cap (I/s)	Flow (I/s)	US Depth (m)	DS Depth (m)	Σ Area (ha)	Σ Add Inflow (I/s)	Pro Depth (mm)	Pro Velocity (m/s)
5.000	1.734	13.6	1.9	1.300	1.400	0.014	0.0	25	1.225
7.000	1.734	13.6	2.7	0.600	0.700	0.020	0.0	30	1.348
3.000	1.734	13.6	1.8	0.500	0.600	0.013	0.0	25	1.203
1.000	1.734	13.6	2.6	0.600	0.700	0.019	0.0	29	1.329

Flow+ v9.0 Copyright © 1988-2020 Causeway Software Solutions Limited

	Ingent Co
	Unit 10 B
CAUSEVVAI 😈	Waldring
	IP10 OBJ

1	i	n	kc
	-		1.3

Name	US Node	DS Node	Length (m)	ks (mm) / n	US IL (m)	DS IL (m)	Fall (m)	Slope (1:X)	Dia (mm)	T of C (mins)	Rain (mm/hr)
10.00	PP	DUMPP	2.000	0.600	21.385	21.300	0.085	23.5	150	4.02	50.0
2.000	SA2	DUM2	2.000	0.600	21.000	20.900	0.100	20.0	100	4.02	50.0

Name	Vel (m/s)	Cap (I/s)	Flow (I/s)	US Depth (m)	DS Depth (m)	Σ Area (ha)	Σ Add Inflow (I/s)	Pro Depth (mm)	Pro Velocity (m/s)
10.00	2.084	36.8	0.7	0.465	0.550	0.005	0.0	14	0.809
2.000	1.734	13.6	1.8	0.700	0.800	0.013	0.0	25	1.203

Simulation Settings

Rainfall Methodology	FSR	Analysis Speed	Normal
FSR Region	England and Wales	Skip Steady State	х
M5-60 (mm)	20.000	Drain Down Time (mins)	2880
Ratio-R	0.400	Additional Storage (m³/ha)	20.0
Summer CV	0.750	Check Discharge Rate(s)	х
Winter CV	0.840	Check Discharge Volume	х

Storm Durations

15 30	60 120	180 240	360 480	600 720	960 1440
	Return Period (years)	Climate Change (CC %)	Additional Area (A %)	Additional Flow (Q %)	
	100	40	0	0	

Node DUM5 Online Pump Control

Flap Valve Replaces Downstream Link	x √ Swi	Invert Lev tch on dep	vel (m) th (m)	21.200 0.500	Switch off depth (m)	0.400
Depth (m)	Flow (I/s)	Depth (m)	Flow (I/s)	Depth (m)	Flow (I/s)	
0.001	0.000	1.000	0.000	2.000	0.000	

Node DUM7 Online Pump Control

Flap Valve x Replaces Downstream Link √ Sw	Invert Level (m) vitch on depth (m)	24.200 2.000	Switch off depth (m)	1.900
Depth Flow (m) (l/s) 0.001 0.000	Depth Flow (m) (l/s) 1.000 0.000	Depth (m) 2.000	Flow (I/s) 0.000	
Node	DUM1 Online Pum	<u>p Control</u>		
Flap Valve x Replaces Downstream Link √ Sw	Invert Level (m) vitch on depth (m)	20.800 0.500	Switch off depth (m)	0.400

	Ingent Consulting Engineers Unit 10 Brightwell Barns	File: PLOT 5&6.pfd Network: Storm Network	Page 3 Chalk Hill Lane		
	Waldringfield Rd, Brightwell	Richard Wigzell	Blakenham Saakaway dasigns		
	I INTO ORI	NOV 2020	Soakaway designs		
	Depth Flow Depth (m) (l/s) (n 0.001 0.000 1.0	Flow Depth Flow n) (l/s) (m) (l/s) 000 0.000 2.000 0.000			
	Node DUM3	Online Pump Control			
Replaces Downsi	Flap Valve x Inver tream Link √ Switch on	t Level (m) 20.800 Switch o depth (m) 0.500	off depth (m) 0.400		
	DepthFlowDepth(m)(l/s)(n0.0010.0001.0	Flow Depth Flow n) (l/s) (m) (l/s) 000 0.000 2.000 0.000			
	Node DUMPP	Online Pump Control			
Replaces Downs	Flap Valve x Inver tream Link √ Switch on	t Level (m) 21.300 Switch o depth (m) 0.500	off depth (m) 0.400		
	DepthFlowDepth(m)(l/s)(n0.0010.0001.0	Flow Depth Flow n) (l/s) (m) (l/s) 000 0.000 2.000 0.000			
	Node DUM2	Online Pump Control			
Replaces Downs	Flap Valve x Inver tream Link √ Switch on	t Level (m) 20.900 Switch o depth (m) 2.000	off depth (m) 1.800		
	DepthFlowDepth(m)(l/s)(n0.0010.0001.0	Flow Depth Flow n) (l/s) (m) (l/s) 000 0.000 2.000 0.000			
	Node SA5 Depth	/Area Storage Structure			
Base Inf Coefficier Side Inf Coefficier	nt (m/hr) 0.09680 Safet nt (m/hr) 0.09680	y Factor 2.0 Inv Porosity 1.00 Time to half e	ert Level (m) 20.400 empty (mins) 500		
Depth Area Inf Are (m) (m²) (m²) 0.000 4.0 4.	a Depth Area Inf Area (m) (m ²) (m ²) 0 0.600 4.0 10.	a Depth Area Inf Area (m) (m²) (m²) 0 1.200 4.0 16.0	DepthAreaInf Area(m)(m²)(m²)1.2010.016.0		
	Node SA7 Depth	/Area Storage Structure			
Base Inf Coefficier Side Inf Coefficier	nt (m/hr) 0.09680 Safet nt (m/hr) 0.09680	y Factor 2.0 Inv Porosity 1.00 Time to half e	ert Level (m) 23.100 empty (mins) 304		
Depth Area Inf Are (m) (m²) (m²) 0.000 8.0 8.	a Depth Area Inf Area (m) (m²) (m²) 0 0.600 8.0 18.	a Depth Area Inf Area (m) (m²) (m²) 8 1.200 8.0 29.6	Depth Area Inf Area (m) (m²) (m²) 1.201 0.0 29.6		
	Node SA3 Depth	/Area Storage Structure			
Base Inf Coefficier	nt (m/hr) 0.01140 Safet	y Factor 2.0 Inv	rert Level (m) 19.700		

	it Consulting Eng	gineers	File: PLOT 5&6	5.pfd m Network	Page 4 Chalk Hill	Lane	
	ringfield Rd Brig	ohtwell	Richard Wigze		Blakenha	m	
	ARI	Sileweii	Nov 2020		Soakaway	v designs	
	003		1101 2020		Joanawa	y acsigns	
Depth Area Inf Area I (m) (m ²) (m ²)	Depth Area	Inf Area	Depth Are	a Inf Area	Depth Ar	rea Inf Ar	ea
		21.0	1 200 9) (iii) 0 29.6	1 201 (nn 33	, . 0
0.000 5.0 5.0	0.000 9.0	21.0	1.200 5.	25.0	1.201	0.0 00	
	Node SA1	Depth/Arc	<u>ea Storage Stru</u>	<u>cture</u>			
Base Inf Coefficient (m/h	r) 0.01140	Safety Fa	ctor 2.0	Inve	ert Level (m)	19.600	
Side Inf Coefficient (m/h	r) 0.01140	Porc	osity 1.00	Time to half e	mpty (mins)	1545	
	,						
Depth Area Inf Area I	Depth Area	Inf Area	Depth Are	a Inf Area	Depth Ar	rea Inf Ar	ea
(m) (m²) (m²)	(m) (m²)	(m²)	(m) (m²	²) (m²)	(m) (n	n²) (m²)	
0.000 10.0 10.0	0.600 10.0	34.6	1.500 10.	0 71.5	1.501 (0.0 71	5
	Node SA2	2 Depth/Are	ea Storage Stru	cture			
	<u> </u>			<u> </u>			
Base Inf Coefficient (m/h	r) 0.01140	Safety Fa	ctor 2.0		ert Level (m)	19.700	
Side Inf Coefficient (m/n	r) 0.01140	Porc	osity 1.00	lime to half e	mpty (mins)	2040	
Donth Aroa Inf Aroa	Jonth Araz	Inf Aroa	Donth Ara	a Inf Aroa	Donth Ar	oo Inf Ar	~ ~
(m) (m^2) (m^2)	(m) (m^2)	(m^2)	(m) (m^2)	a IIII Alea	(m) (n	(m^2) (m^2)	
		27.8	1 200 8	0 396	1 201 (nn 30	16
	0.000 0.0	27.0	1.200 0.	0 33.0	1.201	0.0 00	
	<u>Node P</u>	P Carpark	Storage Structu	<u>ire</u>			
Base Inf Coefficient (m/hr	0 01140		Invert Level (m) 21 385	Slone (1·X) 25.0	
Side Inf Coefficient (m/hr) 0.01140	Time to ha	alf empty (mins) 456	Denth (m) 0325	
Safety Facto	r 30		Width (m) 5 500	Inf Depth (m) 0.323	
Porosity	/ 0.30		Length (m) 10.000	in Depth (in	/	
				,			
		<u>Rair</u>	<u>nfall</u>				
Event	Peak A	verage		Event		Peak	Average
	Intensity Ir	ntensity				Intensity	Intensity
	(mm/hr) (r	mm/hr)				(mm/hr)	(mm/hr)
100 year +40% CC 15 minute summer	488.233 1	138.153	100 year +40	% CC 360 minu	te summer	56.677	14.585
100 year +40% CC 15 minute winter	342.620 1	138.153	100 year +40	% CC 360 minu	te winter	36.841	14.585
100 year +40% CC 30 minute summer	320.551	90.705	100 year +40	% CC 480 minu	te summer	43.979	11.622
100 year +40% CC 30 minute winter	224.948	90.705	100 year +40	% CC 480 minu	te winter	29.219	11.622
100 year +40% CC 60 minute summer	214.603	56.713	100 year +40	% CC 600 minu	te summer	35.604	9.738
100 year +40% CC 60 minute winter	142.577	56.713	100 year +40	% CC 600 minu	te winter	24.327	9.738
100 year +40% CC 120 minute summer	129.587	34.246	100 year +40	% CC 720 minu	te summer	31.433	8.424
100 year +40% CC 120 minute winter	86.094	34.246	100 year +40	% CC 720 minu	te winter	21.125	8.424
100 year +40% CC 180 minute summer	97.729	25.149	100 year +40	% CC 960 minu	te summer	25.432	6.697
100 year +40% CC 180 minute winter	63.526	25.149	100 year +40	% CC 960 minu	te winter	16.847	6.697
100 year +40% CC 240 minute summer	75.977	20.078	100 year +40	% CC 1440 min	ute summer	18.055	4.839
100 year +40% CC 240 minute winter	50.477	20.078	100 year +40	% CC 1440 min	ute winter	12.134	4.839

Results for 100 year +40% CC Critical Storm Duration. Lowest mass balance: 98.45%

Node Event	U: No	S Peak de (mins)	Level (m)	Depth (m)	Inflow (I/s)	Node Vol (m³)	Flood (m³)	Sta	tus
180 minute winte	r SA5	176	22.620	1.320	2.4	5.2760	0.0000	FLOOD	RISK
180 minute winte	r DUN	15 176	22.620	1.420	3.6	0.2257	0.0000	ОК	
180 minute winte	r SA7	172	24.434	0.134	3.0	9.7022	0.0000	SURCH	ARGED
180 minute winte	r DUN	/17 172	24.434	0.234	3.6	0.0372	0.0000	ОК	
1440 minute wint	er SA3	1380	21.064	0.164	1.7	10.9021	0.0000	SURCH	ARGED
1440 minute wint	er DUN	/13 1380	21.064	0.264	3.7	0.0420	0.0000	ОК	
720 minute winte	r SA1	690	20.962	0.062	1.5	13.6595	0.0000	ОК	
720 minute winte	r DUN	/1 690	20.962	0.162	3.6	0.0257	0.0000	ОК	
480 minute winte	r PP	456	21.773	0.388	0.3	2.6733	0.0000	FLOOD	RISK
480 minute winte	r DUN	/IPP 456	21.773	0.473	0.1	0.0753	0.0000	ОК	
1440 minute wint	er SA2	1380	21.238	0.237	1.7	9.7192	0.0000	SURCH	ARGED
1440 minute wint	er DUN	/12 1380	21.238	0.337	3.7	0.0537	0.0000	ОК	
(Upstream Depth)	US Node	Link	DS Node	Outflov (I/s)	v Velo (m	city Flov /s)	v/Cap V	Link /ol (m³)	Discharge Vol (m ³)
(Upstream Depth) 180 minute winter 180 minute winter	US Node SA5 SA5	Link 5.000 Infiltration	DS Node DUM5	Outflow (I/s) 3. 0.	w Velo (m, 6 0. 2	city Flov /s) 589	v/Cap V 0.263	Link 'ol (m³) 0.0156	Discharge Vol (m³)
(Upstream Depth) 180 minute winter 180 minute winter 180 minute winter	US Node SA5 SA5 DUM5	Link 5.000 Infiltration Pump	DS Node DUM5	Outflov (I/s) 3. 0. 0.	w Velo (m, 6 0. 2 0	city Flov /s) 589	v/Cap V 0.263	Link /ol (m³) 0.0156	Discharge Vol (m ³)
(Upstream Depth) 180 minute winter 180 minute winter 180 minute winter 180 minute winter	US Node SA5 SA5 DUM5 SA7	Link 5.000 Infiltration Pump 7.000	DS Node DUM5 DUM7	Outflov (I/s) 3. 0. 0. 3.	w Velo (m, 6 0. 2 0 6 0.	city Flov /s) 589 589	v/Cap V 0.263 0.263	Link /ol (m ³) 0.0156 0.0156	Discharge Vol (m ³) 0.0
(Upstream Depth) 180 minute winter 180 minute winter 180 minute winter 180 minute winter 180 minute winter 180 minute winter	US Node SA5 SA5 DUM5 SA7 SA7 DUM7	Link 5.000 Infiltration Pump 7.000 Infiltration Pump	DS Node DUM5	Outflov (I/s) 3. 0. 3. 0. 0.	w Velo (m, 6 0. 2 0 6 0. 4 0	city Flov /s) 589 589	v/Cap V 0.263 0.263	Link /ol (m³) 0.0156 0.0156	Discharge Vol (m ³) 0.0
(Upstream Depth) 180 minute winter 180 minute winter 180 minute winter 180 minute winter 180 minute winter 180 minute winter 180 minute winter	US Node SA5 SA5 DUM5 SA7 SA7 DUM7 SA3	Link 5.000 Infiltration Pump 7.000 Infiltration Pump 3.000	DS Node DUM5 DUM7	Outflov (I/s) 3. 0. 0. 3. 0. 3. 3.	 Velo (m) 6 0 6 0 4 0 7 0. 	city Flov /s) 589 589 600	v/Cap V 0.263 0.263 0.263	Link Vol (m ³) 0.0156 0.0156 0.0156	Discharge Vol (m ³) 0.0
(Upstream Depth) 180 minute winter 180 minute winter 180 minute winter 180 minute winter 180 minute winter 180 minute winter 1440 minute winter 1440 minute winter 1440 minute winter	US Node SA5 SA5 DUM5 SA7 SA7 DUM7 SA3 SA3 SA3 DUM3	Link 5.000 Infiltration Pump 7.000 Infiltration Pump 3.000 Infiltration Pump	DS Node DUM5	Outflov (I/s) 3. 0. 0. 3. 0. 3. 0. 0. 0.	 v Velo (m, 6 0 2 0 6 0 4 0 7 0 1 0 	city Flov /s) 589 589 600	v/Cap V 0.263 0.263 0.269	Link /ol (m³) 0.0156 0.0156 0.0156	Discharge Vol (m ³) 0.0 0.0
(Upstream Depth) 180 minute winter 180 minute winter 180 minute winter 180 minute winter 180 minute winter 180 minute winter 1440 minute winter 1440 minute winter 1440 minute winter 1440 minute winter	US Node SA5 SA5 DUM5 SA7 SA7 DUM7 SA3 SA3 DUM3 SA1	Link 5.000 Infiltration Pump 7.000 Infiltration Pump 3.000 Infiltration Pump 1.000	DS Node DUM5 DUM7 DUM3	Outflov (I/s) 3. 0. 0. 3. 0. 3. 0. 0. 3. 0. 3. 0. 3.	 v Velo (m) 6 0. 2 0 6 0. 4 0 7 0. 1 0 6 0. 	city Flov /s) 589 589 600 586	v/Cap V 0.263 0.263 0.269 0.269	Link /ol (m³) 0.0156 0.0156 0.0156 0.0129	Discharge Vol (m ³) 0.0 0.0
(Upstream Depth) 180 minute winter 180 minute winter 180 minute winter 180 minute winter 180 minute winter 180 minute winter 180 minute winter 1440 minute winter 1440 minute winter 1440 minute winter 1440 minute winter	US Node SA5 SA5 DUM5 SA7 SA7 DUM7 SA3 SA3 DUM3 SA1 SA1	Link 5.000 Infiltration Pump 7.000 Infiltration Pump 3.000 Infiltration Pump 1.000 Infiltration	DS Node DUM5 DUM7 DUM3	Outflov (I/s) 3. 0. 0. 3. 0. 3. 0. 3. 0. 3. 0.	 v Velo (m) 6 0 6 0 7 0 7 0 6 0 1 	city Flov /s) 589 589 600 586	v/Cap 0.263 0.263 0.269 0.262	Link Vol (m ³) 0.0156 0.0156 0.0156	Discharge Vol (m ³) 0.0 0.0
(Upstream Depth) 180 minute winter 180 minute winter 180 minute winter 180 minute winter 180 minute winter 180 minute winter 180 minute winter 1440 minute winter	US Node SA5 SA5 DUM5 SA7 SA7 DUM7 SA3 SA3 DUM3 SA1 SA1 SA1 DUM1	Link 5.000 Infiltration Pump 7.000 Infiltration Pump 3.000 Infiltration Pump 1.000 Infiltration Pump	DS Node DUM5 DUM7 DUM3	Outflov (I/s) 3. 0. 0. 3. 0. 3. 0. 0. 3. 0. 0. 3. 0. 0.	 v Velo (m) 6 0. 2 0 6 0. 7 0. 1 0 6 0. 1 0 1 0 	city Flov /s) 589 589 600 586	v/Cap 0.263 0.263 0.269 0.262	Link Vol (m ³) 0.0156 0.0156 0.0156	Discharge Vol (m³) 0.0 0.0 0.0
(Upstream Depth) 180 minute winter 180 minute winter 180 minute winter 180 minute winter 180 minute winter 180 minute winter 180 minute winter 1440 minute winter 1440 minute winter 1440 minute winter 1440 minute winter 20 minute winter 720 minute winter 720 minute winter	US Node SA5 SA5 DUM5 SA7 SA7 DUM7 SA3 SA3 DUM3 SA1 SA1 DUM1 PP	Link 5.000 Infiltration Pump 7.000 Infiltration Pump 1.000 Infiltration Pump 1.000 Infiltration Pump	DS Node DUM5 DUM7 DUM3 DUM1	Outflov (I/s) 3. 0. 0. 3. 0. 3. 0. 0. 3. 0. 0. 3. 0. 0. 0.	 v Velo (m) 6 0 6 0 7 0 6 0 1 0 1 0 1 0 1 0 1 0 1 0 	city Flov /s) 589 589 600 586 156	v/Cap V 0.263 0.263 0.269 0.262 0.262	Link /ol (m ³) 0.0156 0.0156 0.0156 0.0129 0.0352	Discharge Vol (m³) 0.0 0.0 0.0
LINK Event (Upstream Depth) 180 minute winter 180 minute winter 180 minute winter 180 minute winter 180 minute winter 180 minute winter 1440 minute winter	US Node SA5 SA5 DUM5 SA7 SA7 DUM7 SA3 SA3 DUM3 SA1 SA1 SA1 DUM1 PP PP	Link 5.000 Infiltration Pump 7.000 Infiltration Pump 3.000 Infiltration Pump 1.000 Infiltration Pump 10.00 Infiltration Pump	DS Node DUM5 DUM7 DUM3 DUM1 DUMPP	Outflov (I/s) 3. 0. 0. 3. 0. 3. 0. 0. 3. 0. 0. 0. 0. 0. 0.	 v Velo (m) 6 0 6 0 7 0 7 0 1 0 1 0 1 0 1 0 1 0 1 0 	city Flov /s) 589 589 600 586 156	v/Cap 0.263 0.263 0.269 0.262 0.003	Link Vol (m ³) 0.0156 0.0156 0.0156 0.0129 0.0352	Discharge Vol (m³) 0.0 0.0 0.0
LINK Event (Upstream Depth) 180 minute winter 180 minute winter 180 minute winter 180 minute winter 180 minute winter 180 minute winter 1440 minute winter	US Node SA5 SA5 DUM5 SA7 SA7 DUM7 SA3 SA3 DUM3 SA1 SA1 DUM1 PP PP DUMPP	Link 5.000 Infiltration Pump 7.000 Infiltration Pump 1.000 Infiltration Pump 10.00 Infiltration Pump	DS Node DUM5 DUM7 DUM3 DUM1	Outflov (I/s) 3. 0. 0. 3. 0. 0. 3. 0. 0. 3. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.	 v Velo (m) 6 0 6 0 7 0 7 0 1 0 1 0 1 0 1 0 1 0 	city Flov /s) 589 589 600 586 156	v/Cap 0.263 0.263 0.269 0.262 0.262	Link /ol (m ³) 0.0156 0.0156 0.0156 0.0129 0.0352	Discharge Vol (m ³) 0.0 0.0 0.0
LINK Event (Upstream Depth) 180 minute winter 180 minute winter 180 minute winter 180 minute winter 180 minute winter 180 minute winter 180 minute winter 1440 minute winter 1440 minute winter 1440 minute winter 720 minute winter 720 minute winter 720 minute winter 480 minute winter 480 minute winter 1440 minute winter	US Node SA5 SA5 DUM5 SA7 SA7 DUM7 SA3 SA3 DUM3 SA1 SA1 SA1 DUM1 PP PP DUMPP SA2	Link 5.000 Infiltration Pump 7.000 Infiltration Pump 3.000 Infiltration Pump 1.000 Infiltration Pump 10.00 Infiltration Pump 2.000	DS Node DUM5 DUM7 DUM7 DUM3 DUM1 DUMPP	Outflov (I/s) 3. 0. 3. 0. 3. 0. 3. 0. 3. 0. 0. 0. 3. 0. 3. 0. 3. 0. 3. 3. 0. 3. 3. 3. 0. 3. 3. 0. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3.	 Velo (m) 6 0 6 0 7 0 7 0 1 0 1 0 1 0 1 0 7 0 	city Flov /s) 589 589 600 586 156 600	v/Cap 0.263 0.263 0.269 0.269 0.262 0.003	Link vol (m ³) 0.0156 0.0156 0.0156 0.0129 0.0352 0.0352	Discharge Vol (m ³) 0.0 0.0 0.0 0.0
LINK Event (Upstream Depth) 180 minute winter 180 minute winter 180 minute winter 180 minute winter 180 minute winter 180 minute winter 180 minute winter 1440 minute winter 1440 minute winter 1440 minute winter 720 minute winter 720 minute winter 480 minute winter 480 minute winter 1440 minute winter 1440 minute winter	US Node SA5 SA5 DUM5 SA7 SA7 DUM7 SA3 SA3 DUM3 SA1 SA1 DUM1 PP PP DUMPP SA2 SA2 SA2	Link 5.000 Infiltration Pump 7.000 Infiltration Pump 1.000 Infiltration Pump 10.00 Infiltration Pump 2.000 Infiltration	DS Node DUM5 DUM7 DUM3 DUM1 DUM1 DUMPP	Outflov (I/s) 3. 0. 0. 3. 0. 3. 0. 0. 3. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.	 v Velo (m) 6 0 6 0 7 0 1 0 1 0 1 0 7 0 1 0 7 0 1 0 7 0 1 0 7 0 1 0 0 1 0	city Flov /s) 589 589 600 586 156 600	v/Cap 0.263 0.263 0.269 0.269 0.003 0.269	Link /ol (m ³) 0.0156 0.0156 0.0156 0.0352 0.0352	Discharge Vol (m ³) 0.0 0.0 0.0 0.0