

Environment Group

Strawsons Holdings Ltd Phase 3, Witham St Hughs Land off Gibson Green, Witham St Hughs, Lincs, LN6 9PU

Phase 2 Geo-Environmental Assessment

Environment Group

Strawsons Holdings Ltd Phase 3, Witham St Hughs Land off Gibson Green, Witham St Hughs, Lincs, LN6 9PU Phase 2 Geo-Environmental Assessment

Birmingham Livery Place, 35 Livery Street, Colmore Business District, Birmingham, B3 2PB T: 0121 233 3322

Leeds Whitehall Waterfront, 2 Riverside Way, Leeds LS1 4EH T: 0113 233 8000

> London 11 Borough High Street, London SE1 9SE T: 0207 407 3879

Manchester 4th Floor Carvers Warehouse, 77 Dale Street Manchester, M1 2HG T: 0161 233 4260

Nottingham Waterfront House, Station Street, Nottingham NG2 3DQ T: 0115 924 1100

December 2017

BIM Document Ref: WSH-BWB-ZZ-XX-YE-RP-0002_Ph2

Project Number: NTM2082

DOCUMENT ISSUE RECORD

Rev	Date of Issue	Status	Author:	Checked:	Geotech Approved:	Land Approved:
P1	December	Final	Patrick Taylor BSc (Hons)	Redmond Parker- Dunn BSc (Hons)	Jamie Rushton BEng CEng MICE	Tim Hull BSc MSc CGeol FGS
	2017	Tindi				

Limitations

This report has been prepared for the sole use of Strawsons Holdings Ltd in accordance with the terms of the appointment under which it was produced. BWB Consulting Limited accepts no responsibility for any use of or reliance on the contents of this report by any third party. No part of this report shall be copied or reproduced in any form without the prior written permission of BWB.

	NV
EXECUTIVE SUMMAR	
Site Address, Setting and History	Land off Gibson Green, Witham St Hughs, Lincs, LN6 9PU.
	The site comprises approximately 70 hectares of farmland largely utilised for arable purposes. Several surface water drains run through the site. A small a of dense woodland was present in the southern area of the site including m. Oak trees.
	Historical uses of the site are limited to a former pond that may have been infilled; otherwise, mapping indicated uses are limited to farming. Significant land uses in the surrounding area comprise nearby RAF Swinderby and industriabuildings to the south, where tanks and ESSs have also been indicated.
Proposed Development	A residential development with associated gardens, landscaping, infrastriand amenities. Farm buildings in the north east of the site are expecter retained.
Published Geology, hydrogeology and hydrology	The site is expected to comprise limited thicknesses of Made Ground and Top underlain by the Balderton Sands and Gravels Formation (Secondary A Aq in the west and directly underlain by the bedrock geology of the Lias Group, Scunthorpe Mudstone (unproductive) Formation in the west.
	No groundwater abstractions listed within 1km of the site and the slocated within or close to a Source Protection Zone (SPZ).
	The nearest significant water course is Thurlby Lake located approximately 1.1 m south.
Scope of investigation works	 The ground investigation comprised: Twenty-five machine excavated trial pits; TRL dynamic probe penetration (TRL DCP) testing at selected loca; and Collection of environmental and geotechnical samples for laboratory testing. The purpose of the investigation was to assess the underlying ground cond targeting areas of proposed highways and drainage infrastructuand ta collect soil samples for geotechnical and environmental analysis to inforr preliminary designs for road infrastructure and associated attenuation pon
Ground Condition Encountered	Ground conditions comprised varying depths of Topsoil predominantly over the Weathered Scunthorpe Mudstone Formation (east of the 0.20mbgl. Superficial Deposits of the Balderton Sands and Gravels Forr were present underlying the Topsoil and overlying the Weathered Scur Mudstone Formation in the west of the site. The base of the bedrock proven.
Geotechnical Appraisal	 CBR values obtained via in-situ testing and laboratory analysis has produresults varying between 5.0% and 75.0% in the west of the site and 1.5% to 42 in the east of the site. A preliminary Design Sulphate Class of DS-1 and ACEC Class AC-1 is recommended for the western side of the side (Balderton Sands and C Formation) and DS5 and ACEC Class AC-5 is recommended within the easterr area of the site (Weathered Scunthorpe Mudstone Formation) given high levels of sulphate identified at several locations within pyritic geology. Further groun investigations should seek to clarify these figures.
Environmental Appraisal	No significant contamination has been identified on site. Direct sources of contamination have not been identified based on the current and historical use of the site as agricultural fields.

EXECUTIVE SUMMARY							
	The findings of the completed ground investigation and indicate that the investigated areas pose a low risk to human health ϵ low risk to controlled waters receptors.						
Recommendation	Further intrusive works will be required prior to development to inform founda design and further assess the Design Sulphate Class for the site.						
	This summary should be read in conjunction with BWB's full report (ref. WSH-BWB-ZZ-XX-YE-RP-0002_Ph2) and reflects an assessment of the site based on information received by BWB at the time of produc						

CONTENTS PAGE

1.0	IN TRO D UC TIO N	1
	Instruction	1
	Objectives	1
	Scope of Works	2
2.0	THE SITE	3
	Site Location	3
	Site Description	3
3.0	GEO-ENVIRONMENTAL SETTING	5
	Published Geology	5
	Hydrogeology	5
	Hydrology	5
4.0	PRELIMINARY ENVIRONMENTAL RISK ASSESSMENT	6
	Introduction	6
5.0	PHASE II ENVIRONMENTAL AND GEOTECHNICAL GROUND INVESTIGATION	9
	Scope of Works	9
	Chemical Sampling Strategy	9
	Chemical Analytical Strategy	9
	Geotechnical Strategy	10
	Limitations and Uncertainty	10
6.0	GROUND CONDITIONS ENCOUNTERED	11
	Geological Summary	11
	Geological Descriptions	11
	In Situ Testing	16
	* Results include – TP09, 11, 12, 14, 16, 19, 20, 21, 22 and 25.	17
	Hydrogeology	18
	Hydrology	18
	Contamination Observations	18
7.0	GEOTECHNICAL ASSESSMENT	19
	Introduction	19
	Roads and Pavements	19
	Drainage	19
	Excavations	20

	Groundwater	20
	Chemical Attack on Buried Concrete	20
8.0	CONTAMINANT DISTRIBUTION	22
	Soils	22
	Surface Water	22
	Groundwater	23
9.0	HUMAN HEALTH RISK ASSESSMENT	24
	Pathways	24
10.0	ENVIRONMENTAL RISK ASSESSMENT	26
	Summary of Potentially Significant Pollutant Linkages	26
11.0	ENVIRONMENTAL LIABILITY ASSESSMENT AND DEVELOPMENT CONSTRAINTS	29
	Statutory Liability	29
	Third Party Liability	29
	Public Relations	30
	Development Implications	30
12.0	CONCLUSIONS AND RECOMMENDATIONS	31
	Conclusions	31
	Recommendations	31
13.0	REFERENCE S	32

TABLE S

Table 1	Preliminary Conceptual Site Model	7
Table 2	Summary of Ground Conditions	11
Table 3	Summary of Particle Size Distribution by Sieve wet/dry	12
Table 4	Summary of Particle Size Distribution by Sedimentation	16
Table 5	Summary of Compaction Testing (2.5k and 4.5kg)	16
Table 6	DCP TRL Results Summary – West (Granular Superficial Deposits)	17
Table 7	DCP TRL Results Summary - East (Cohesive Deposits)	17
Table 8	CBR Results Summary	17
Table 9	Encountered Water Strikes	18
Table 10	Ground Model	19
Table 11	Residential Exposure Pathways	24
Table 12	Revised Conceptual Site Model	27

FIG URES (included in main text)

Figure 1	Site Location Plan
Figure 2	Moisture Content (%) vs Depth (mbgl) – Balderton Sands and Gravels Formation
Figure 3	In Situ Hand Shear Vane Test Results
Figure 4	Moisture Content (%) vs Depth (mbgl) – Weathred Scunthorpe Mudstone Formation
Figure 5	Plasticity Chart
Figure 6	Plasticity Index (%) vs Depth (mbgl)
DRAWINGS	
Drawing 1	Exploratory Hole Location Plan
APPENDICES	
Appendix 1	Proposed Development Masterplan
Appendix 2	Exploratory Hole Logs
Appendix 3	Soil Chemical Analysis Results
Appendix 4	Geotechnical Laboratory Testing Results
Appendix 5	DCP-TRL Test Results
Appendix 6	Derivation of BWB GSAC
Appendix 7	CLEA Screening Worksheets
Appendix 8	Soil Chemical Results Summary

1.0 IN TRO DUC TIO N

Instruction

- 1.1 BWB Consulting (BWB) was instructed by Strawsons Holdings Ltd (the Client) to carry out a Phase 2 Geo-environmental Assessment at the site at Phase 3, Witham St Hughs, Land off Gibson Green, Witham St Hughs, Lincs, LN6 9PU. Details of the project brief are included in BWB proposal reference 20170831/1/NTM2004/RC/RPD.
- 1.2 BWB has previously completed the following desk study for the site, familiarity with this report is assumed :

BWB Consulting Ltd for Strawsons Properties Ltd; Phase I Geo-Environmental Assessment; Phase 3, Witham St Hughs, Land Off Gibson Green, Witham St Hughs, Lincolnshire, LN6 9PU; BIM Ref: NTM2004-BWB-00-XX-RP-EN-0001-Ph1_V1; dated August 2015.

1.2 The proposed development is anticipated to comprise a residential development with associated roads, infrastructures, gardens and amenities. However, the intrusive works focused primarily on the road infrastructure and the attenuation ponds which are proposed. This was undertaken to assist with S78 and S38 agreements.

Objectives

1.2 The objectives of the report are to assess:

The prevailing ground and groundwater conditions across the site; The potential presence and extent of contamination in shallow soil a groundwater beneath the site; The significance and magnitude of the observed contamination throug comparison of analytical data to appropriate published environme screening criteria;

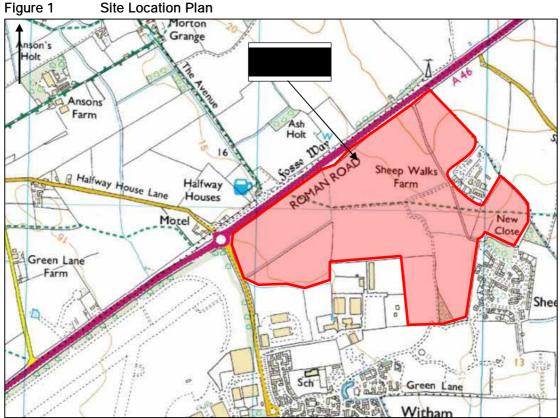
The strength properties of the soil beneath the site to enable preliminary California Bearing Ratios (CBRs) for the road and pavement infrastructure.

- 1.5 The above objectives will allow the Preliminary Conceptual Site Model presented in the Phase 1 report to be verified and updated. The report has been completed in accordance with BS10175:2011(+A1:2013) Investigation of Potentially Contaminated Sites, Code of Practice and CLR11 "Model Procedures for the Management of Land Contamination".
- 1.2 This report presents the information obtained from a desk study and the supplementary ground investigations and contains relevant factual information from the previous investigations undertaken by others. Sections 2 to 5 of the report, together with the associated Figures and Appendices, provides a Ground Investigation Report (GIR), as defined in BS EN 1997-1:2004 and BS EN 1997-2:2007
- 1.5 The report also includes information required to form a Geotechnical Design Report as defined in BS EN 1997-1:2004, and the salient information, assessments and

recommendations are presented in Sections 6 to 12 of the report, together with the associated Figures and Appendices.

Scope of Works

1.2 The scope of works was completed between 7th and 9th November 2017 and comprised the following


Non-intrusive survey of excavation locations for underground utilities; Supervision of excavations by a qualified archaeologist 25 machine excavated trial pits; Dynamic Cone Penetrometer (DCP) at selected intrusive locations; Chemical analysis of soils; and Geotechnical testing of soil.

2.0 THE SITE

Site Location

2.1 The site is located to the north of Witham St Hughs in Lincolnshire, at National Grid coordinates 489435, 362870. The location of the site is shown in **Figure 1**.

Reproduced from the Ordnance Survey Open Map - Local with the permission of the controller of Her Majesty's Stationery Office Crown Copyright Reserved.

Site Description

- 2.2 A detailed description of the key features of the site and its surrounding is included in the Phase 1 Report.
- 2.2 The site is irregularly shaped, occupies an area of approximately 70 hectares and largely comprises farmland. The site is at an elevation of approximately 15m above Ordnance Datum (AOD) and is largely flat, with a slight slope from north-east to southwest.
- 2.2 At the time of the site reconnaissance the site area appeared to be occupied by up to eight individual fields, however, obvious field boundaries could not be identified. With the exception of two fields in the far east of the site, all fields were noted to contain corn crop. The crop in the fields in the east had recently been harvested.

- 2.2 Several surface water drains run through the site some of which appear to form field boundaries. At the time of the site inspection all surface water drains were noted to be dry and overgrown.
- 2.2 A small area of dense woodland was present in the southern area of the site. Tree species were noted to contain mature Oak trees.
- 2.2 A former asphalt roadway, now overgrown, is present in the east of the site which links a farm complex, located in the east of the site, to the land adjacent to the southeast. This roadway was blocked part way by vegetation and fencing.

3.0 GEO-ENVIRONMENTAL SETTING

Published Geology

2.1 Ground conditions were anticipated to comprise limited thicknesses of Made Ground with varying thicknesses of topsoil across the site. Superficial deposits are only present in the western area of the site and comprise the Balderton Sand and Gravel Member. The solid geology present beneath the superficial deposits and at the surfa elsewhere on site comprises the Scunthorpe Mudstone Formation of the Lias Group.

Hydrogeology

- 2.2 The Environment Agency (EA) classifies the superficial deposits in the west of the site as Secondary A Aquifer and the underlying bedrock as unproductive.
- 2.2 There are no groundwater abstractions listed within 1km of the site and the site is not located within or close to a Source Protection Zone (SPZ).

Hydrology

- 2.2 Several watercourses and tertiary water courses are noted to be present on site However, the watercourses observed were noted to be overgrown with limited flow.
- 2.2 The nearest significant watercourses are considered to be Thurlby Lake locatec approximately 1.1km south and the River Witham located approximately 1.2km southeast of the site.
- 2.2 There are no surface water abstractions listed within close proximity to the site and the site is not indicated to be within a flood zone area.

4.0 PRELIMINARY ENVIRONMENTAL RISK ASSESSMENT

Introduction

- 2.1 The risk posed by any contaminants in soil or groundwater will dep of the hazard, the probability of exposure, the pathway by which exposure occurs, and the likely effects on the receptors. A contaminant is defined as a substance that has the potential to cause harm, while a risk is considered to exist if such a substance is present in sufficient concentration to cause harm and a pathway exists for a receptor to be exposed to the substance.
- 2.2 The following sections discuss all the identified potential on and off-site sources, pathways and receptors in the context of the proposed development and plausible pollutant linkages which may represent a risk to identified receptors such as human health and/or controlled waters from the data gained from the desk study. At this stage the assessment is qualitative and aimed to determine all pollutant linkages, irrespective of significance or allowing for uncertainty.
- 2.2 Three impact potentials exist for any given site, these are:

The site impacting upon itself; The site impacting on its surroundings; and The surroundings impacting on the site.

- 2.2 All three impacts need to be considered in a risk assessment.
- 2.2 A Source, Pathway, Receptor analysis has been undertaken for the site based on the information provided in the preceding sections. This is presented as Table 1.
- 2.2 **Sources (S)**; These are potential or known sources of contamination that may relate to a former land use or present site feature or process (e.g. fuel storage tanks).
- 2.2 **Pathways (P)**; A pathway is defined as a mechanism or route by which a contaminant comes into contact with, or otherwise affects a receptor. Pathways by which the identified receptors may be impacted upon in the context of the prc development.
- 2.2 **Receptors (R)**; Receptors are defined as people, living organisms, ecological systems, controlled waters, atmosphere, structures and utilities that could be adversely affected by contaminant(s).

Table 1Preliminary Conceptual Site Model

Sourc e	Pathway	Receptor	Con	Prob	Risk	Mitigation/Investigation
On-Site S1: General localised Made Ground – Contaminants may include complex	P1: Dermal contact, ingestion and inhalation of contaminated soil particulates.	R1: Site end users (commercial and/c residential)	Md	Lw	M/ L	If contamination is identified at the site through intri investigation that is indicated to present a potential risk it is likely to be localised. The potential risk is likely to be eas mitigated through incorporation of an approp- cover system in landscaped areas.
c yanide, PAHs, ammonium, heavy metals, sulphate, asbestos and hydrocarbons.		R2: Constructions workers, ground workers and maintenance workers.	Mi	Li	M/ L	If a risk to construction workers is identified through investigation and assessment that adoption of appropr PPE, typical industry practice and good hygiene is likel mitigate potentially significant risk.
S2: Farming activities– Potential contaminants may include pesticides, herbicides, and hydrocarbons.	P2 : Inhalation of vapours (indoors and outdoors)	R1: Site end users (commercial and/c residential)	Md	Lw	M/ L	If contamination is identified at the site through intri investigation that is indicated to present a poten through vapour inhalation it is likely to be localised potential risk is likely to be easily mitigatec incorporation of vapour resistant membranes in buil within the impact area or through limited soil removal/remediation.
	P3: Leaching and permeation through soil profile	R3: Secondary A Aquifer underlying the western area of the site.	Mi	Lw	Lw	The risk of impact to the underlying aquifer is limited to western area of the site as the rest of the site is unde by Unproductive Strata. Based on the site setti limited potential sources of contamination on-site there is considered to be limited risk to the underlying
	f		Mi	UI	VL	Additionally, the significant surface water courses substantial distance from site. Groundwater te relation to site derived contamination is only considered to be required if significant shallow ground contaminat identified during the site investigation.

Sourc e	Pathway	Receptor	Con	Prob	Risk	Mitigation/Investigation
	P4: Direct contact	R5 : Buried water utility pipes (tainting of water supply be organic c ontaminants)	Md	Lw	M/ L	The results of the site investigation should be provide the water utility provider in order to confirm suitable pipe material at the site.
		R6 : Buried concrete (sulphate attach)	Md	Lw	M/ L	The intrusive investigation should include an assessment c sulphate and pH of the ground to confirm the contype required.
On-Ste S3: Methane and carbon dioxide ground gasassociated with localised Made Ground	P2: Migration into buildings through foundation cracks, service entry points	R7: Confined space: in buildings, residents	Mi	UI	VL	There is considered to be limited risk from ground gases the site for which basic gas protection is likely to maximum requirement.
Off-Ste S4: Nearby airfield and industrial properties including tanks and ESSs – Potential contaminan may include Kerosene and other fuel hydrocarbons, oils, polychlorinated biphenyls (PCBs), PAHs, and heavy metals.	P2 : Migration into buildings through foundation cracks, service entry points	R1: Site end users (commercial and/c residential)	Mi	Lw	L	It is possible that off-site sources of contamination have migrated onto and impact the Secondary beneath the western area of the site. The impact is to have limited significance in the context of the propose development though this should be confirmed 1 testing of groundwater samples obtained from bore installed in the western area of the site.
		i <mark>gh</mark> , <mark>H = High</mark> , <mark>M = Moderato</mark> = Medium, Mi = Mild, Mr = M				<mark>/</mark> , <mark>L = Low</mark> , VL = Very Low y, Lw = Low Likelihood, UI = Unlikely

5.0 PHASE II ENVIRONMENTAL AND GEOTECHNICAL GROUND INVESTIGATION

Scope of Works

5.1 Intrusive ground investigation works were undertaken between 7th and 9th and comprised the following works:

Clearance of investigation locations by a specialist buried services tracing company;

Inspection of excavations by a qualified archaeologist;

The advancement of twenty-five machine excavated trial pits (TP01 to TP25 inclusive) to a maximum depth of 4.30mbgl;

TRL dynamic probe penetration (TRL DCP) testing at selected locations to infer CBR values;

Collection of environmental soil samples for chemical analysis at a UKAS and MCERTS accredited laboratory; and

Collection of bulk and disturbed soil samples for geotechnical analysis at a UKAS accredited laboratory.

- 2.2 An exploratory hole location plan is presented as **Drawing 1** and the BWB exploratory hole records are presented as **Appendix 2**.
- 2.2 The site investigation works were carried out in general accordance w 'Code of Practice for Site Investigations' and BS10175:2011 'Investigation of Potentially Contaminated Sites'.

Chemical Sampling Strategy

- 2.2 As no development has been recorded on the site in historical mapping, sampling positions were positioned to provide site coverage, targeting areas of proposed highways and drainage infrastructure.
- 5.5 During the investigation samples were obtained from various geologies and depths throughout the natural soil profile to determine the typical background chemic concentrations for the site.

Chemical Analytical Strategy

Soil Strategy

2.2 Selected soil samples collected from exploratory hole locations were sent to 12 Analytical (UKAS and MCERTS accredited) for chemical analysis. The following chemical analytical testing was undertaken:

Nine soil samples tested for a soil suite (BWB Standard Suite) comprising arsenic, barium, beryllium, water soluble boron, cadmium, chromium, hexavaleni chromium, copper, lead, mercury, nickel, selenium, vanadium, zinc, water

soluble sulphate (2:1 extract), total phenols, total cyanide, free cyanide, complex cyanide, fraction of organic carbon, pH, Polycyclic Aromatic Hydrocarbons (PAHs) (United States Environment Protection Agency priority 16 compounds) and Total Petroleum Hydrocarbons (TPH) C6-C40;

Four soil samples for asbestos screening; and

Four samples tested four pesticides comprising Organochlorine, Organonitrogen and Organophosphorous.

5.5 The results of the soil chemical testing are presented as **Appendix 3**.

Geotechnical Strategy

- 2.2 The trial pits were positioned along the proposed road infrastructure and location of attenuation ponds to assess ground conditions, strength properties and characteristics across the wider site.
- 5.9 In-situ DCP tests were undertaken within selected trial pits to provide a preliminary understanding of potential CBR values for the proposed road infrastructure an pavement design.
- 5.10 Selected disturbed and bulk samples were collected from the investigation locations and sent to the geotechnical project laboratory (I2 Analytical), which is UKAS accredited. The following geotechnical testing was undertaken;

Fifteen samples tested for moisture content; Sxteen samples tested for Atterberg (liquid and plastic) limits; Eight samples tested for particle size distribution by sieve wet/dry; Ten samples tested for particle size distribution by sedimentation; Ten samples tested for BRE Suite comprising aqueous sulphate and pH; Four CBR (2.5kg) compaction testing; Four CBR (4.5kg) compaction testing; Three (2.5kg) compaction testing; and Three (4.5kg) compaction testing.

5.11 The results of the geotechnical testing are included as **Appendix 4**.

Limitations and Uncertainty

- 5.12 TP24 was terminated at 1.20mbgl due to potential archaeological significance.
- 5.12 Numerous pits in the west of the site terminated at shallow depth due to significant instability within sand and gravel deposits.

6.0 GROUND CONDITIONS ENCOUNTERED

Geological Summary

- 6.1 The ground conditions recorded confirmed the published geolog in the Phase 1 report comprising varying depths of Topsoil overlying the Superficial Deposits of the Balderton Sand and Gravel Formation (BSGF) in the west and subsequently overlying the Weathered Scunthorpe Mudstone Formation (WSMF). The Topsoil in the east of the site directly overlay the WSMF.
- 5.9 The recorded ground conditions are summarised in Table 2 below.

Table 2 Se	Summary of Ground Conditions							
Stra ta	Тор Dep	th (mbgl)	Base Dep	oth (mbgl)	Thickness	(mbgl)		
Sila la	Min	Max	Min	Max	Min	Max		
To p so il	0.	0.00		0.42	0.20	0.42		
BSGF	0.30	0.40	1.90	2.90	1.50	2.52		
WSMF	0.20	2.90	Not P	roven	Not Proven			

Geological Descriptions

<u>To p so il</u>

- 5.9 Topsoil was encountered consistently across the site at thicknesses c 20m (TP17) and 0.42m (TP19), overlying the BSGF in the west (TP01-TP08 inclusive) and the WSMF in the east (TP09-TP25 inclusive). The composition also displayed consistency, typically comprising a dark brown, brown or on a rare occasion light brown gravelly sand with varying volumes of silt/ clay or a soft to firm gravelly sandy clay with varying volumes of sand and gravels, with occasional rootlets.
- 5.9 Gravels of mixed lithologies were identified. Gravels comprised fine to coarse subangular to sub-rounded sandstone, guartzite, flint, coal and siltstone.
- 5.9 A plastic bag was found within TP25.
- 5.9 Frequent rootlets were present within all exploratory holes.
- 5.9 The depth of topsoil over the site may vary from that encountered at the locations investigated within the scope of this investigation which may result in inaccurate estimations of topsoil quantities on the site.
- 5.9 pH and water-soluble Sulphate from one sample (TP23 – 0.20mbgl) were found to be 7.20 and 0.009g/l respectively.
- 6.9 Geotechnical laboratory testing results are presented as Appendix 4.

Balderton Sand and Gravel Formation

- 5.12 The BSGF was encountered at eight of the twenty-five locations (TP01-TP08) all located in the west of the site and underlying the Topsoil. The base of the BSGF was only encountered at two locations (TP06–2.60mbgl and TP07–2.90mbgl) due to substantial collapsing within the pits.
- 6.11 The BSGF were encountered as a light brown, orangish brown, brown and occasionally grey gravelly sand or sandy gravel with varying volumes of clay and silt.
- 5.12 Gravels comprised fine to coarse sub-angular to sub-rounded siltstone, sandstone, flint and quartzite.
- 5.12 Pockets of sandy clay were noted throughout shallow granular deposits within four locations (TP01, TP02, TP03 and TP04).
- 5.12 Moisture content analysis undertaken on six samples between 0.9mbgl and 1.7mbgl with results ranging between 6.4% and 13%. An indication of correlation between depth and moisture content is present on **Figure 2** below.

Moisture Content (%) 2 6 0 4 8 10 12 14 0 0.25 0.5 0.75 Depth (mbgl) ۲ 1 1.25 1.5 ۲ 1.75 2

Figure 2 Moisture Content (%) vs Depth (mbgl) – BSGF

5.12 The results of the PSD testing undertaken on eight samples at varying depths across all eight locations positioned in the west of the site are shown below in **Table 3**.

Location ID	Depth (m)	Cobble Content (%)	Gravel Content (%)	Sand Content (%)	Clay / Silt Content (%)
TP01	1.5	0	5.8	90.0	4.20
TP02	1.70	0	44.90	50.80	4.30

 Table 3
 Summary of Particle Size Distribution by Sieve wet/dry

TP03	0.90	0	7.4	81.60	11.0
TP04	1.20	0	6.8	77.90	15.30
TP05	1.60	0	5.60	91.40	2.90
TP06	1.50	0	55.20	39.70	5.10
TP07	2.00	0	65.80	29.90	4.30
TP08	0.90	0	61.80	31.20	7.00

- 5.12 pH and water-soluble Sulphate from six samples were found to vary between 7.5 and 7.8 and 0.016g/l and 0.059g/l respectively. Total Sulphur ranged between <50mg/kg (TP05 0.50mbgl) to 110mg/kg (TP02 1.70mbgl).
- 5.12 Geotechnical laboratory testing results are presented as **Appendix 4**.

Weathered Scunthorpe Mudstone Formation

- 5.12 The WSMF was encountered at nineteen locations with all locations predominantly underlying the Topsoil (eastern area of the site) and underlying the BSGF at two locations (TP06 and TP07) with the base of the stratum not proven.
- 6.19 The WSMF was encountered with an array of colourations including light brown, bluish grey, brown, dark grey, orangish brown with varying compositions. The WSMF was encountered as either a firm to stiff clay or an extremely weak mudstone arising as a poorly laminated or blocky clay/silt both with varying volumes of sands and gravels.
- 5.12 Gravels encountered within the soil matrix comprised fine to coarse sub-angular to subrounded weak sandstone, siltstone, flint and quartzite becoming predominantly weak mudstone with depth.
- 6.11 Thirteen positions were terminated due to refusal on bedrock ranging in dept between 1.40mbgl (TP13) and 3.52mbgl (TP07). The bedrock encountered was recorded as a weak limestone or weak mudstone arising as a sandy gravel.
- 5.12 A band of clayey sand wasidentified between 1.0mbgl and 1.3mbgl within TP12, whilst a band of limestone arisings as a sandy gravel was identified within TP18 between 0.90mbgl and 1.10mbgl.
- 5.12 Shell fragments and whole shells were noted in nine locations between 0.34mbgl (TP24) and 2.90mbgl (TP07).
- 5.12 Relic rootlets were identified in two locations between 1.30mbgl (TP11) and 1.90mbgl (TP09).
- 5.12 Two locations (TP17 and TP18) comprised micaceous deposits between depths of 2.60mbgl and 4.20mbgl.
- 5.12 Where suitable cohesive deposits were encountered hand shear vane tests were undertaken. The tests comprised three tests with the average taken as the peak results and presented as **Figure 3** on the following page. The HSV results obtained are presented on the exploratory hole records presented in **Appendix 2**.

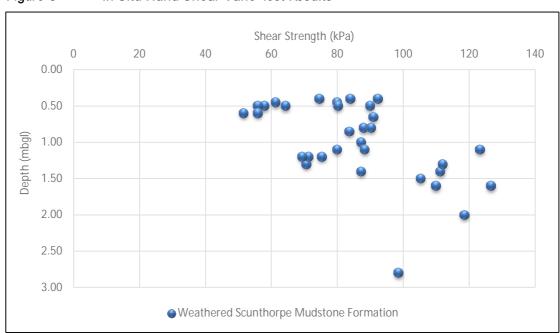
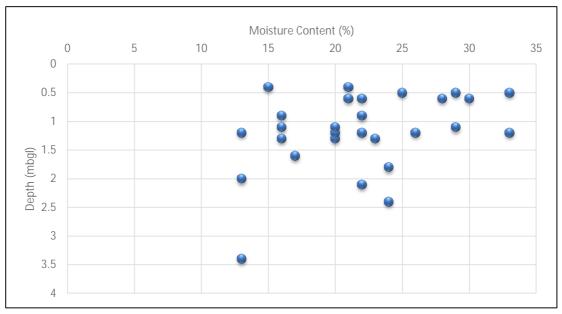



Figure 3 In Situ Hand Shear Vane Test Results

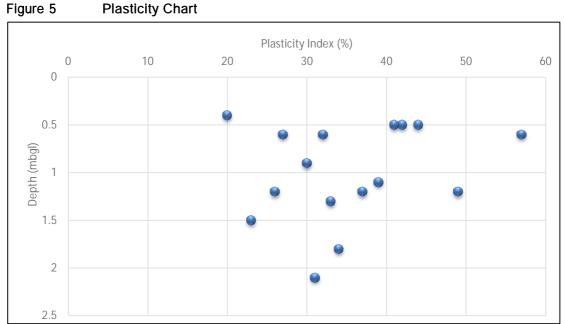

5.12 Moisture content analysis undertaken on twenty-eight samples between 0.4mbgl and 3.4mbgl with results ranging between 13% and 33%. An indication of the correlation between depth and moisture content is present on **Figure 4** below. It can be seen that the moisture content is predominantly at its highest at shallower depths.

Figure 4 Moisture Content (%) vs Depth (mbgl) – WSMF

5.12 Sixteen Atterberg Tests testing for the Plasticity Index (PI) were undertaken on samples within the WSMF ranging between 0.40mbgl and 2.10mbgl. The geotechnical laboratory testing has indicated PIs to range between 20% (TP16 - low plasticity) and 57% (TP12 - high plasticity). The PI results and Liquid Limit is presented on **Figure 5** below.

6.19 Additionally, the PI vs Depth is presented on **Figure 6** and illustrates the correlation that plasticity tends to decrease with increased depth.

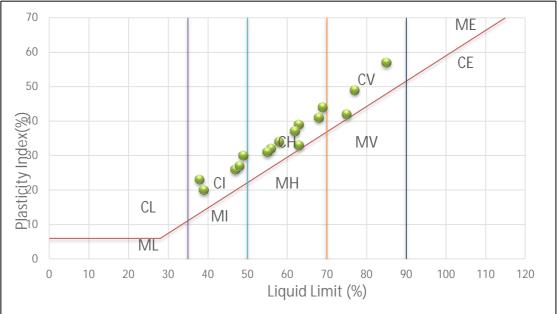


Figure 6 Plasticity Index (%) vs Depth (mbgl)

5.12 The results of the PSD sedimentation testing undertaken on ten s depths across eight locations positioned in the east of the site are shown below in Table 4.

Table 4	Summary of Particle Size Distribution by Sedimentation						
Location ID	Depth (m)	Cobble Content (%)	Gravel Content (%)	Sand Content (%)	Silt Content (%)	Clay(%)	
TP 10	1.3	0	4.9	12.4	36.5	46.2	
TP10	2.0	0	18.3	19.5	34.5	27.7	
TP12	1.2	0	32.4	34.0	19.0	14.6	
TP13	1.1	0	0.1	5.7	32.5	61.7	
TP16	2.4	0	0.2	2.7	47.4	49.7	
TP17	2.8	0	0.3	5.9	69.1	24.7	
TP18	2.0	0	0.9	10.1	42.9	46.1	
TP18	3.4	0	0.7	3.8	56.5	39	
TP22	2.0	0	2.5	5.5	41.4	50.6	
TP23	2.7	0	5.8	2.	49.8	42.4	

6.11 Six compaction tests (three – 2.5kg and three 4.5kg) were undertaken on samples ranging in depths between 0.5mbgl and 2.1mbgl. The results indicate that shallower soils display increased moisture content compared to the optimum. A summary of the results is presented below in Table 5.

Table 5 Summary of Compaction Testing (2.5k and 4.5kg)						
Location ID	Depth (m)	As received moisture content (%)	Maximum Dry Density (Mg/m³)	Optimum Moisture content (%)		
2.5kg (Light) Rammer						
TP 10	1.3	23	1.77	17		
TP15	1.2	20	1.74	18		
TP20	2.1	22	1.66	20		
		4.5kg (Heavy)	Rammer			
TP12	0.6	30	1.70	17		
TP22	0.6	28	1.84	14		
TP25	0.5	25	1.79	17		

- 5.12 pH and water-soluble Sulphate from six samples were found to vary between 6.8 and 8.3, and 0.019g/l and 1.90g/l respectively. Total Sulphur ranged between 85mg/kg (TP25 1.20mbgl) to 19000mg/kg (TP18 3.40mbgl).
- 5.12 Geotechnical laboratory testing results are presented as **Appendix 4**.

In Situ Testing

Dynamic Cone Penetrometer Testing

6.1 Dynamic Cone Penetrometer Tests were undertaken following the removal of the topsoil at a number of exploratory hole locations in order to infer California Bearing Ratio (CBR) values to inform pavement design. The testing was undertaken accordance with Transport Research Laboratory (TRL) methodology. The results of the

testing have been separated into the west (Granular deposits) and east (Cohesive Deposits) and are presented in Table 6 and Table 7 below.

Table 6	DCP TRL Results Summary -	West	(Granular Super	ficial Deposits,)

Stra ta	Min CBR (%)	Max CBR (%)
Balderton Sand and Gravels Formation	5.0	75.0
* Desults include TD01 02 06 and 00		

[•] Results include – TP01, 03, 06 and 08.

Table 7	DCP TRL Results Summary - East (Cohesive Deposits)			
Stra ta		Min CBR (%)	Max CBR (%)	
Weathered Scunthorpe Mudstone Formati1.742.8				
* Results include – TP09, 11, 12, 14, 16, 19, 20, 21, 22 and 25.				

- High CBR readings noted within the cohesive deposits are likely to be a result of gravels 5.9 positioned within the soil matrix.
- 5.9 DCP-TRL worksheets are presented as Appendix 5.
- 5.9 Three samples of the shallow BSGFd eposits and five samples from the WSMF were sent for California Bearing Ratio (CBR) analysis, a summary of the results is presented below asTable 8 below.

Table 8 CBR Results Summary							
Location	Depth (m bgl)	Initial Details		Highest CBR Value	Average CBR Value	Final Moisture	
	bgij	Bulk Density (mg/m³)	Moisture Content (%)	(%)	(%)	Content	
Compaction 2.5kg Rammer							
TP03	0.90	2.08	13	36.0	34.0	11	
TP07	0.70	2.06	11	33.0	-	11	
TP16	0.40	2.05	21	1.5	1.4	19	
TP21	1.20	1.96	26	4.2	4.1	24	
		Comp	action 4.5kg	Rammer			
TP05	1.60	2.04	13	36.0	33.0	12	
TP13	1.10	1.97	29	6.0	5.9	27	
TP19	1.10	2.06	21	15.0	-	20	
TP25	0.50	2.00	25	6.1	-	24	

5.9 Geotechnical laboratory testing results are presented as Appendix 4.

Hydrogeology

5.9 During the investigation, groundwater waspredominantly encountered within the BSGF in the west of the site, at eight locations. However, groundwater was identified at seven locations as a slight seepage up through the encountered bedrock; most likely caused by the release of pressure from the removal of overlying arisings. Table 9 below provides a summary of the groundwater encountered.

Table 9	Encountered Wa	ater Strikes
Location ID	Depth (mbgl)	Description and Strata
TP01	1.50	Seepage within the BSGF in the north of the pit.
TP02	1.50	Fast ingress within the BSGF in the north of the pit.
TP03	1.50	Fast ingress within the BSGF in the north of the pit.
TP04	1.60	Medium ingress within the BSGF in the north and south p wall.
TP05	2.00	Fast ingress within the BSGF.
TP06	2.40	Slight seepage within the BSGF in the north and south p wall.
TP07	2.70	Medium ingress within the BSGF.
TP08	1.60	Medium ingress within the BSGF n in the north-eastern corner of the pit.
TP09	1.90	Slight seepage up through the bedrock.
TP10	1.60	Slight seepage in the north-western corner of the pit within the WSMF.
	2.30	Slight seepage up through the bedrock
TP14	1.80	Slight seepage up through the bedrock.
TP15	2.00	Slight seepage up through the bedrock.
TP16	2.60	Slight seepage up through the bedrock.
TP18	0.80	Perched groundwater within layer of limestone betv 0.80mbgl and 0.90mbgl.
TP21	1.45	Slight seepage up through the bedrock.
TP22	2.20	Slight seepage up through the bedrock.

Hydrology

5.9 A hydrological assessment did not form part of this investigation.

Contamination Observations

5.9 No visual or olfactory evidence of contamination was noted during the intrusive works.

7.0 GEOTECHNICAL ASSESSMENT

Introduction

- 7.1 The proposed development is anticipated to comprise a residential associated roads, infrastructure, gardens and amenities. The intrusive works focused primarily on the road infrastructure and the attenuation ponds, and therefore only these features of the development will be covered within the geotec assessment. A proposed Masterplan is presented as **Appendix 1**.
- 5.9 The preliminary ground investigation completed was designer shallow ground conditions across the site.
- 5.9 The following ground model (Table 10) has been adopted for the site, based on the findings of the ground investigation (Section 6.0).

Table 10 Gro	und Model					
Stra ta	Тор Dep	th (mbgl)	Base Dep	oth (mbgl)	Thickness (mbgl)	
Silala	Min	Max	Min	Max	Min	Max
To p so il	0.	00	0.20	0.42	0.20	0.42
BSGF	0.30	0.40	1.90	2.90	1.50	2.52
WSMF	0.20	2.90	Not Proven Not Prove		oven	

Roads and Pavements

- 5.9 In total 15 TRL DCP tests were undertaken at selected locations across the Site with inferred CBR results ranging between 1.2% and 52.9%.
- 7.5 Based upon guidance within Interim Advice Note 73/06 (IAN73/06) Revision 1 2009, roads should be designed with CBR's between 3% and for 5%, which should be confirmed by in-situ testing once detailed designs are available.
- 5.9 Geotechnical laboratory testing results are presented as **Appendix 4**.

Drainage

- 7.5 No permeability testing was undertaken as part of this preliminary ground investigation. However, based on the encountered ground conditions, soakaways may not b practicable in areas of cohesive materials.
- 5.9 The Masterplan (**Appendix 1**) indicates that attenuation ponds will be included as part of the proposed development, however, the plan is indicative and may therefore change prior to development.

Excavations

Ease of Excavation

6.9 Based on the ground conditions encountered during the intrusive investigatio conventional plant and equipment is expected to be suitable for shallow excavations.

Stability of Excavation

5.12 Excavations displayed generally poor stability within the BSGF encountered in the west of the site and good stability within the WSMF in the centre and east of the site during the site investigation. Excavations however, may still become unstable if left open for any significant periods. Where personnel entry is required for inspection; excavations should be sufficiently enlarged, and an assessment of safe temporary angles should be made. Alternatively, temporary shoring should be provided.

Legislation on Personnel Entry to Excavations

5.11 It is recommended that no excavations should be entered without appropriate support and a full risk assessment should be completed prior to entry.

Groundwater

- 5.12 Groundwater has been identified between 1.50mbgl and 2.80mbgl within the BSGF in the west of the site which is considered to be representative of a consistent body of water. Groundwater strikes were recorded as medium to fast ingresses, which caused instability and subsequent collapsing of exploratory holes.
- 5.12 However, groundwater was encountered as minor seepages through the bedrock in the west of the site between 1.60mbgl and 2.60mbgl and is not considered representative of a consistent body, rather the release of pressure from the removal of overlying material.
- 5.12 The presence of water within granular material has the potential to destabil excavations and where groundwater is encountered during foundation excavations or the creation of developable plateaus, it may require removal. It is considered that conventional dewatering techniques comprising a sump and submersible pump are likely to provide an adequate form of water abstraction from these areas. However, care must be taken to avoid pumping out fine material (i.e. silt) as this could destabilise the localised ground.

Chemical Attack on Buried Concrete

Balderton Sands and Gravels Formation (West of the site)

7.15 Soil chemical analysis has identified that Water soluble sulphate concentrations in soils varied from 20.0 mg/l to 60.0 mg/l with soil pH values ranging from 7.5 to 7.8. Total sulphur concentrations ranged from <0.01% to 0.04%.

5.12 Based on the above, it is recommended that buried concrete is designed to satisfy DS1-AC1 conditions, in accordance with BRE Special Digest 1, 'Concrete in Aggressive Ground Conditions', 2005. It is considered this to be the most appropriate design to resist chemical attack from potential elevated sulphates in the ground.

Weathered Scunthorpe Mudstone Formation

- 7.15 Soil chemical analysis has identified that Water soluble sulphate concentrations in soils varied from 9.3 mg/l to 1900 mg/l with soil pH values ranging from 6.8 to 8.3. Total sulphur concentrations ranged from <0.0085% to 1.90%.
- 5.12 Based on the above, it is recommended that buried concrete is designed to satisfy DS5-AC5 conditions (described as mobile groundwater as the most conservative approach) in accordance with BRE Special Digest 1, 'Concrete in Aggressive Ground Conditions', 2005. It is considered this to be the most appropriate design to resist chemical attack from potential elevated sulphates in the ground.
- 6.19 Two areas of high concentrations were identified, TP10 and TP18 which have impacted the design class. The SMF is part of the Lias Formation and is therefore considered to be potentially pyritic. The two locations identified could potentially be hotspots within the SMF, however, further investigations should seek to clarify this preliminary classification.

8.0 CONTA MINANT DISTRIBUTION

Soils

- 2.1 Seven soil samples from the Topsoil, two from the BSGF and six from the WSMF were sent to a MCERTS accredited laboratory (I2 Analytics) for analysis.
- 2.2 The distribution of soil contaminant concentration results across the wider site area are discussed in the following sections. The soil analytical laboratory results are given in laboratory report number 17-67277 dated 23rd November 2017 and is presented as **Appendix 3**.
- 2.2 The site has been compared to generic site assessment criteria (GSAC) end use excluding plant uptake given the initial development of the road infrastructure and attenuation ponds Details of the derivation of the GSACs are presented in **Appendix 6** along with the assessment sheets, which are presented as **Appendix 7**.

<u>To p so il</u>

- 2.2 Seven samples from the Topsoil were scheduled for chemical analysis. All contaminants passed their relevant screening criteria.
- 2.2 No asbestos containing materials were recorded the seven scheduled samples.
- 2.2 No elevated level of pesticides were noted to be present within the Topsoil samples.

Balderton Sand and Gravel Formation

2.2 Two samples from the BSGF were scheduled for chemical analysis passed their relevant screening criteria.

Weathered Scunthorpe Mudstone Formation

- 2.2 Six samples from the WSMF were scheduled for chemical analysis. The majority of contaminants passed their relevant screening criteria, which is discussed in greater detail below.
- 5.9 Generally, all heavy metals / inorganic compounds have been identified at loc concentrations (most below the limit of detection) within a similar order of magnitude. However, one minor exceedance of Beryllium was identified 1.5mg/kg (TP12 -0.60mbgl).
- 5.10 Total Sulphur was identified to be significantly higher than the limit of detectior (50mg/kg) at two locations TP10 (2.00mbgl) and TP18 (3.40mbgl) with concentrations of 17000mg/kg and 19000mg/kg respectively.

Surface Water

8.11 A hydrological assessment did not form part of this investigation.

Groundwater

5.10 Groundwater sampling did not form part of this assessment.

9.0 HUMAN HEALTH RISK ASSESSMENT

- 6.1 Soil contaminant data have been compared against Generic Site Assessment Criteria (GSAC) developed by BWB using the CLEA model 1.06 and the updated CLEA framework (2009) for assessing risk from soil contamination to human health. Details of the derivation of the GSACs are presented in Appendix 6. The results of the soil chemical laboratory results are provided within Appendix 3 with a table summarising the results presented as Appendix 8.
- 5.9 The GSACs have been developed with the following assumption changed from the CLEA default parameter set. Soil type is a sandy loam with ar organic matter content of 1%. This is considered to be more representative of shallow Made Ground found on most Brownfield sites than the CLEA default of 6% organic matter.

Pathways

- 5.9 Contamination data have been compared to generic site assessment criteria (GSAC) for a residential end use without home grown produce (i.e. using all pathways for that end use) based on an organic matter content of 1%. Details of the derivation of the GSACs are presented in **Appendix 6**.
- 2.2 The site is to be developed for residential end use therefc considered to be a female child in the first six years of life and GSACs for residential without plant uptake have been adopted; given the first Phase of works comprises the development of road infrastructure and attenuation ponds.
- 5.9 Exposure pathways considered in this assessment are presented in Table 11.

Sourc e:		Shallow Soils		Deep Soils
Pathway	Residential housing with private gardens	Residential housing with communal landscaped area	Residential housing with hard standing areas	Residential housing
Ingestion of Soil			×	×
Ingestion of site derive household dust			×	×
Dermal contact with So			×	×
Dermal contact with sit derived household dust			×	×
Inhalation of fugitive sc dust			×	×

Table 11 Re	sidential Exposure Pathways
-------------	-----------------------------

Sourc e:	Shallow Soils	Deep Soils	
Inhalation of fugitive site derived household dust		×	×
Inhalation of vapours outside			
Inhalation of vapours inside			

- 5.9 Generally, all heavy metals / inorganic compounds were below the limit of detection or within a similar order of magnitude been identified at low concentrations (most below the limit of detection) within a similar order of magnitude. However, one minor exceedance of Beryllium was identified 1.5mg/kg (TP12 0.60mbgl).
- 2.2 The one exceedance of Beryllium identified TP12 (0.60mbgl) is likely to be reflective of natural background levels within the Scunthorpe Mudstone Formation and is not considered to be a risk to human health or controlled waters
- 2.2 Total Sulphur was identified to be significantly higher than the limit of detectio (50mg/kg) at two locations TP10 (2.00mbgl) and TP18 (3.40mbgl) with concentrations of 17000mg/kg and 19000mg/kg respectively.
- 5.9 Elevated levels of Total Sulphur identified at depth in two locations TP10 (2.00mbgl) and TP18 (3.40mbgl) are not considered to represent a risk to human health given the depth that they are encountered. Furthermore, there is no risk to controlled waters as there is no consistent body of water within the eastern part of the site.

10.0ENVIRONMENTAL RISK A SSESSMENT

10.1 An updated assessment of identified pollutant linkages has been made following completion of a ground investigation. The preliminary risk assessment presented in **Section 3** has been updated in the light of the findings of the ground investigation and the revised conceptual site model developed, as presented in **Table 12**.

Summary of Potentially Significant Pollutant Linkages

- 10.2 There is considered to be limited potential for widespread significant to be present on-site. Direct sources of gross contamination have not been identified based on the current and historical use of the site as agricultural fields.
- 10.2 The findings of the completed ground investigation and subsequent assessment indicate that the investigated areas pose a low risk to human health and very low risk to controlled waters receptors.
- 10.2 There is a limited potential for contamination to be present associated with current and historical off-site development including associated Made Ground.
- 10.2 The updated conceptual site model is presented as **Table 11**.

Sourc e	Pathway	Receptor	Con	Prob	Risk	Mitigation/Investigation
On-Site S1 : High Sulphate and rare heavy metal	P1: Dermal contact, ingestion and inhalation of contaminated soil	R1 : Site end users (c ommercial and/or residential)	Mi	Lw	L	No significant contamination was identified during the site investigation. However, the use of appropriate PP good hygiene should still be adopted to comply best industry practice.
exceedances- Beryllium.	particulates.	R2: Constructions workers, ground workers and maintenance workers.	Mi	Lw	L	
	P2: Direct contact	R3: Buried concrete (sulphate attach)	Md	Lw	Μ	A preliminary Design Sulphate Class of DS1 and ACE(Class AC-1 and DS5 and ACEC Class AC-5 is recommended in the west and east of the site respectively, given the concentrations of sulphate encountered.
						These results and any results from subsequent site investigations will be provided to the water utility pro in order to confirm the most suitable pipe material site.
On-Site	P3: Migration into	R4: Confined	Mi	UI	VL	There is considered to be limited risk from ground gases
S2: Methane and carbon dioxide ground gasassociated with localised Made Ground	buildings through foundation cracks, service entry points	spaces in buildings, residents				the site for which basic gas protection is likely to maximum requirement. However, the installa subsequent monitoring of wells should be undertak part of the ground investigation prior to development.
0		h, <mark>H = High</mark> , <mark>M = Moderate</mark> ■ Medium, Mi = Mild, Mr = M				

Table 12 Revised Conceptual Site Model

Pollutant Linkage Assessment Summary

The risk to human health is considered to be **LOW** based on the lack of contamination identified at the site. Ground Gas monitoristill be required prior to development to further delineate any potential risk to human health; although this risk is considered to be low.

The controlled waters risk assessment has identified a VERY LOW risk to controlled water receptors given the lack of conta identified at the site.

11.0ENVIRONMENTAL LIABILITY ASSESSMENT AND DEVELOPMENT CONSTRAINTS

Statutory Liability

- 11.1 Under statutory guidance for definition of contaminated land site may be classified into 4 categories. Categories 1 and 2 would meet the definition of contaminated land and categories 3 and 4 would not meet the definition.
- 10.2 It is considered that the site would fall within Category 4 based on the limited historical development and the lack of contamination identified.
- 10.2 Contaminated land is defined in Section 78A (2) of Part IIA of the Environmental Protection Act 1990 as:

'Any land which appears to the local authority in whose area it is situated to be in such a condition, by reason of substances in, on or under land, that:

- *a)* Significant harm is being caused or there is a significant possibility of such harm being caused; or
- b) Pollution of controlled waters is being or is likely to be, caused'.
- 10.2 Harm is defined in Section 78(4) of the Environmental Protection Act 1990 as:

' Harm to the health of living organisms or other interference with ecological systems of which them form part and, in the case of man, includes harm to his property'.

11.5 Once an area of land has been identified as contaminated land, appropriate persons will be identified as being responsible for the cost of cleaning up the land by the enforcing authority. The appropriate person will be liable for all or part of the remediation of the land. Two classes of appropriate person have been identified:

Class A appropriate persons are those who cause or knowingly permit the pollutants to be in, on or under the land. Class B appropriate persons are the owners(s) or occupier(s) of the land.

- 10.2 Where no Class A appropriate persons can be identified, then Class B appropriate persons may become liable.
- 11.5 Based on the information available regarding the site, the potential for Statutor Authority action based on 'pollution of controlled waters' or 'significant harm' a defined by Part IIA of the Environmental Protection Act 1990 is considered to be LOW.

Third Party Liability

10.2 Based on the information contained in this report, it is the opinion of BWB that the potential for legal action by surrounding landowners, based on the potential f contamination to migrate off-site, is considered to be LOW when considering the

limited contamination identified on site, the industrial activity to the south and the RAF base to the west.

Public Relations

11.9 The likelihood of public relations being tarnished due to contamination is are considered to be LOW.

Development Implications

11.10 The western half of the site may require complete topsoil removal prior to delineate any further areas of archaeological importance.

12.0CONCLUSIONS AND RECOMMENDATIONS

Conclusions

10.1 Ground conditions were found to comprise Top soil to depths of between 0.20mbgl and 0.42m overlying Balderton Sand and Gravels to depths of 1.90mbgl to 2.90mbgl Over Weathered Scunthorpe Mudstone Formation. Groundwater strikes were recorded at depths between 0.80mbgl and 2.70mbgl.

Environmental

- 10.2 Laboratory analysis has identified no significant contamination at the site, with only one minor exceedance of Beryllium identified within the WSMF at one location (TP12 0.60mbgl). Elevated levels of Total Sulphur were identified at TP10 (2.00mbgl) and TP18 (3.40mgl).
- 10.2 These are not considered to represent a significant risk to human health given the localised nature and the depth that they were encountered respectively.
- 10.2 The above is considered to represent a **Low** risk to human health and a **Very Low** risk to controlled waters.

Geotechnical

- 10.2 CBR values obtained via in-situ testing and laboratory analysis has produced results varying between 5.0% and 75.0% in the west of the site and 1.5% to 42.8% in the east of the site, with the high readings correlating to the position of the Superficial BSGF.
- 10.2 A preliminary Design Sulphate Class of DS-1 and ACEC Class AC-1 in the west of the site (BSGF) and DS-5 and ACEC Class AC-4 (WSMF) is recommended within the eastern area of the site given high levels of sulphate identified at several locations within pyritic geology. However, this classification is preliminary is nature and will require further investigation to clarify this.

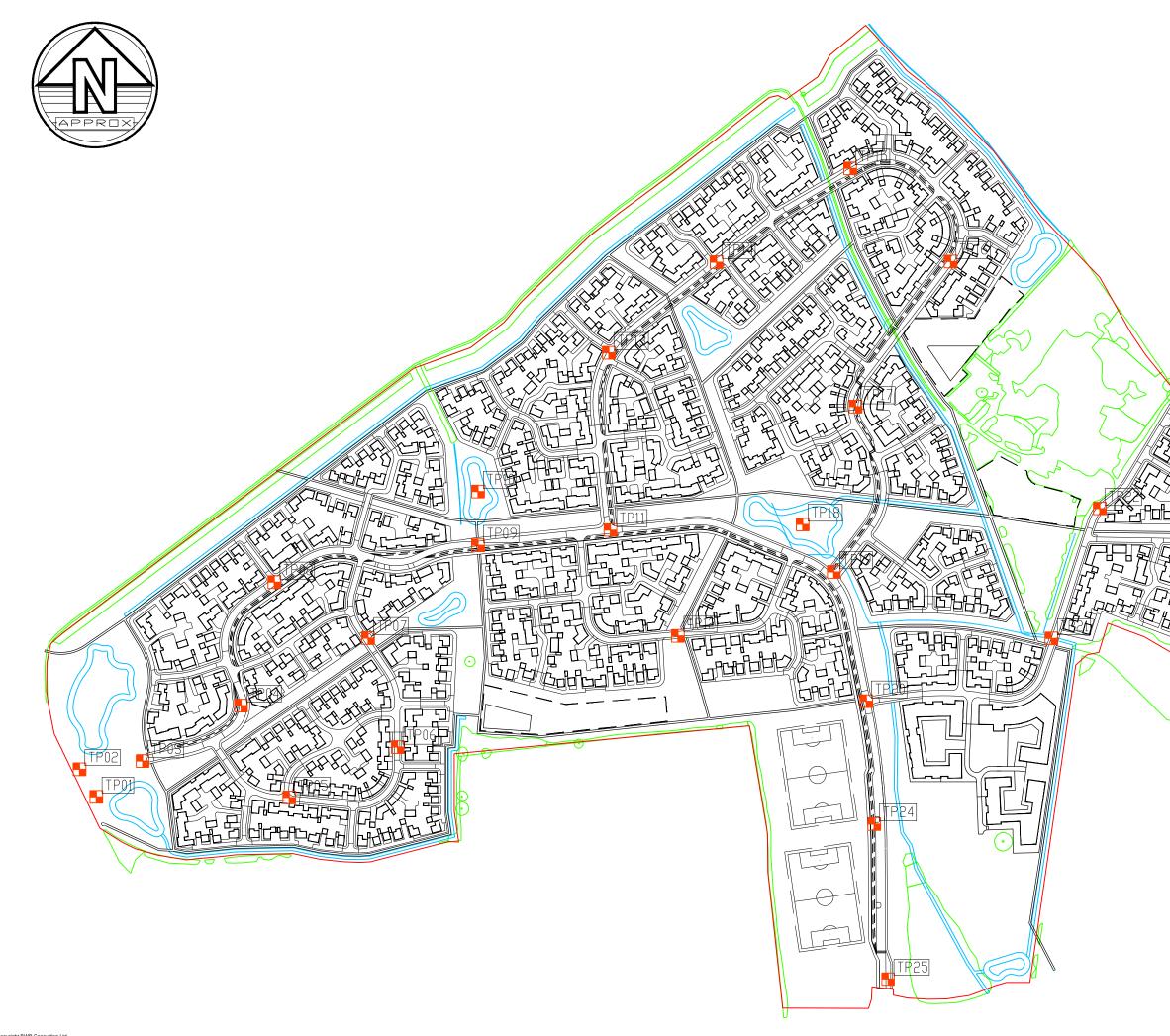
Recommendations

- 10.2 An additional ground investigation is recommended to infer foundation design and to provide further information on the Design Sulphate class for buried concrete.
- 10.2 Ground gas and groundwater monitoring wells should be installed during the next phase of works to characterise the ground gas regime of the site.
- 11.9 If any earthworks are envisaged following further masterplan development then earthworks testing should be carried out in order to facilitate the provision of *a* earthworks specification.

13.0 REFERENCE S

- 1. British Standards Institution, (BSI), BS 8485:2015, Code of Practice for the characterization and remediation from ground gas in affected developments
- 2. British Standards Institution, (BSI), BS 8576:2013, Guidance on investigations for ground ga s Permanent gases and Volatile Organic Compounds (VOCs)
- 3. British Standards Institution, (BSI), BS 10175:2011+A1:2013, Investigation of Contaminated Sites Code of Practice
- 4. British Standards Institution, (BSI), BS5930:2015 Code of practice for Ground investigations
- 5. British Standards Institution, (BSI), BS EN 1997-1:2004 Incorporating corrigendum February 2009, Eurocode 7 Geotechnical Design Part 1: General rules.
- 6. British Standards Institution, (BSI), BS EN 1997-2:2007 Incorporating corrigendum June 2010, Eurocode 7 Geotechnical Design Part 2: Ground Investigation and testing.
- 7. Building Research Establishment Special Digest 1 *Third Edition.* Concrete in Aggressive Ground (2005)
- 8. Building Research Establishment (BRE) BR211, Radon; Guidance on Protective Measures for New Buildings (2015)
- 9. Construction Industry Research and Information Association (CIRIA), Report 132, A Guide to Safe working on Contaminated Sites (1996).
- 10. Construction Industry Research and Information Association (CIRIA). 2001, C522 Contaminated land risk assessment, A guide to good practice.
- 11. Construction Industry Research and Information Association (CIRIA). 2007, Report C665, Assessing Risk Posed by on Hazardous Ground Gases to Buildings
- 12. Department for Communities and Local Government (DCLG), 2012, National Planning Policy Framework.
- 13. Department for Environment Food and Rural Affairs (DEFRA), 2012, Environmental Protection Act 1990: Part 2A Contaminated Land Statutory Guidance.
- 14. Environment Agency report CLR11 'Model Procedures for the Management of Land Contamination'.
- 15. Environment Agency 2008, Updated technical background to the CLEA model Science Report SC050021/SR3
- 16. Environment Agency 2008, Human health toxicological assessment of contaminants in soil Science Report SC050021/SR2

- 17. Environment Agency 2009, CLEA Software (Version 1.05) Handbook Better Regulation Science Programme Science report: SC050021/SR4
- Environment Agency 2008, A review of body weight and height data used within the Contaminated Land Exposure Assessment model (CLEA) Project SC050021/ Technical Review 1
- 19. Environment Agency, 2006, Remedial Targets Methodology, Hydrogeological Risk Assessment for Land Contamination
- 20. Health and Safety Executive (HSE) 'Protection of workers and the general public during the Development of Contaminated Land (1991).
- 21. Highways England, 2009, Interim Advice Note 73/06 Revision 1: Design Guidance for Road and Pavement Foundations (Draft HD25)
- 22. Nathanail, C.P, McCaffrey, C., Gillett, A.G., Ogden, R.C. and Nathanail, J.F. 2015. The LQM/CIEH S4ULs for Human Health Risk Assessment. Land Quality Press, Nottingham.
- 23. NHBC Guidance for the Safe Development of Housing on Land Affected by Contamination, R&D Publication 66: 2008

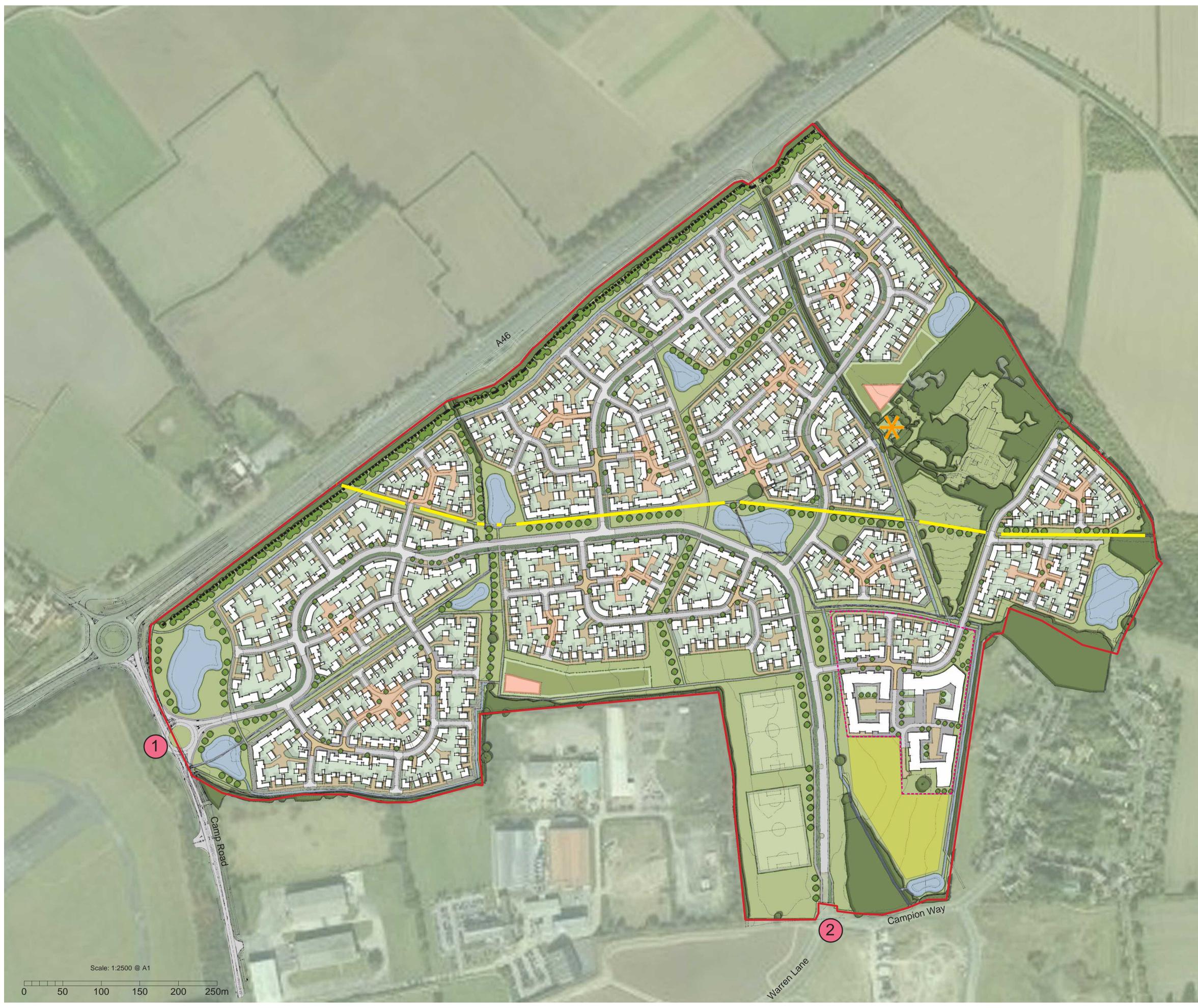


DRAWINGS

DRAWING 1

EXPLORATORY HOLE LOCATION PLAN

	Notes
	 Do not scale this drawing. All dimensions must be checked/verified on site. If in doubt ask.
	2. This drawing is to be read in conjunction with all
	relevant architects, engineers and specialists drawings and specifications.
	 All dimensions in millimetres unless noted otherwise. All levels in metres unless noted otherwise.
	 Any discrepancies noted on site are to be reported to the engineer immediately.
	Key Plan
	Legend
	Denotes Location of Trial Pit
X	
S & S & S & S & S & S & S & S & S & S &	
	P1 01.01.00 PRELIMINARY ISSUE AJ JB Rev Date Details of issue / revision Drw Rev
	Issues & Revisions
	Birmingham 0121 233 3322 Leeds 0113 233 8000 London 020 7234 9122
	CONSULTANCY ENVIRONMENT Notitionham 0115 924 1100
	www.bwbconsulting.com
	STRAWSONS HOLDINGS
	LTD
	Project Title WITHAM ST HUGHS Ph3
	S38
	Drawing Title
	EXPLORATORY HOLE
	Drawn: P.TAYLOR Reviewed: R.PARKER-DUNN
	BWB Ref: NTH2082 Date: 06.11.17 Scale@A3: - Drawing Status
	PRELIMINARY
	Project - Originator - Zone - Level - Type - Role - Number Status Rev WSH-BWB-00-EN-DR-0001 S1 R1



APPENDICES

APPENDIX 1

PROPOSED DEVELOPMENT MAST ERPLAN

J:\5800\5801\LANDS\Plans\5801-L-06 Indicative Masterplan REV B.indd

Strawsons Property Witham St Hughs Lincolnshire

INDICATIVE MASTERPLAN

This drawing is the property of FPCR Environment and Design Ltd and is issued on the condition it is not reproduced, retained or disclosed to any unauthorised person, either wholly or in part without written consent of FPCR Environment and Design Ltd.

Aerial imagery © 2017 Microsoft Corporation

and other division

Application Site Boundary

68.45ha

Built Development

Residential 36.05ha Up to 1100 homes at circa 31 dwellings per hectare. Residential Land includes Primary Street.

Residential - Extra Care / Retirement3.00haUp to 150 units at circa 50 dwellings per hectare.To include Retirement Care, Extra Care (Assisted Living) &Retirement Bungalows

Primary Street Including Roadside Swale

Raised Table Junction Nodes

Proposed Points of Access
1. Halfway House Lane
2. Warren Lane

Secondary Lanes

×

Home Zones

Existing property to be retained

Shared Driveways / Green Lanes

Green Infrastructure

Existing Public Right of Way Retained

Existing Hedgerow, Trees and Vegetation to be Retained

Greenspace Includes retained vegetation and watercourses, new habitat creation, woodland, hedgerows, tree planting, open space and play areas, grassland, wetlands, SuDS detention basins and sports provision.

Potential Noise Attenuation Adjacent to the A46.

Proposed Structural Planting Woodland, hedgerows and tree cover.

Proposed Allotments

1.45ha

Provision for Adults Football Pitches

Proposed Detention Basins

Swales and Drainage Ditches

Children's Equipped Play Areas Indicative Location.

1.64ha

1:2500 @ A1 4 September 2017 TM / JJ 5801-L-06 rev B

Ν

ronmental assessmen landscape design urban design ecology architecture arboriculture

masterplanning

FPCR Environment and Design Ltd Lockington Hall Lockington Derby DE74 2RH t: 01509 672772 f: 01509 674565 e: mail@fpcr.co.uk

w: www.fpcr.co.uk

APPENDIX 2 EXPLORATORY HOLE LOG S

Groundwater			Strata
Strike	Strike Details	Backį II	
	1 5m		
	1.5m bgl		
]	

Groundwater			Strata
Strike	Strike Details	Backį II	
	1 5m		
	1.5m bgl		
]	

Groundwater			Strata
Strike	Strike Details	Backį II	
	1 5m		
	1.5m bgl		
]	

Groundwater		Strata						
Strike	Strike Details	Backį II						
	1.6m bgl							
	bgi							

Ground								
Strike	Strike Details	Backį II						
	2m bgl							

Groundwater		Strata
Strike Strike Details	Backį II	
2 4m		
2.4m		
1	1	

Ground			Strata
Strike	Strike Details	Backį II	
	2.7m bgl		
	bgl		
]	

Groundwater		Strata						
Strike	Strike Details	Backį II						
	1.6m bgl							
	bgi							

Ground	Groundwater		Strata					
Strike	Strike Details	Backį II						
▼	1.9m bgl							
	bgl							

Groundwater							
Strike Strike Details	Backį II						
1.6m							
-5							
2.3m bgl							
- 0							
· · ·	-						

Ground	dwater		Strata
Strike	Strike Details	Backį II	
		J	

Ground	dwater		Strata
Strike	Strike Details	Backį II	
		J	

Ground	dwater		Strata
Strike	Strike Details	Backį II	
		J	

Groundwater								
Strike	Strike Details	Backį II						
	1.8m bgl							
	29.							
		I						

Ground								
Strike	Strike Details	Backį II						
	2m bgl							

Ground	dwater		Strata
Strike	Strike Details	Backį II	
•			
_	2.6m bgl		
		J	

Ground	dwater		Strata
Strike	Strike Details	Backį II	
		J	

Ground	water		Strata
Strike	Strike Details	Backį II	
▼	0.8m bgl		
	-		
		J	

Ground	dwater		Strata
Strike	Strike Details	Backį II	
		J	

Ground	dwater		Strata
Strike	Strike Details	Backį II	
		J	

Groundwater		Strata						
Strike Details	Backį II							
1.45m bgl								

Ground	dwater			Strata		
Strike	Strike Details	Backį II				
	2.2m bgl					
	bgi					
I						

Groundwater		Strata				
Strike	Strike Details	Backį II				

Groundwater		Strata				
Strike	Strike Details	Backį II				

Ground	dwater		Strata
Strike	Strike Details	Backį II	
		J	

APPENDIX 3

SOIL CHEMICAL ANALYSIS RESULTS

Patrick Taylor BWB Consulting Limited 5th Floor Waterfront House Nottingham NG2 3DQ

i2 Analytical Ltd. 7 Woodshots Meadow, Croxley Green Business Park, Watford, Herts, WD18 8YS

t: 01923 225404 f: 01923 237404 e: reception@i2analytical.com

e: patrick.taylor@bwbconsulting.com

Analytical Report Number : 17-67277

Project / Site name:	Witham St Hughs Ph3 S38 Design	Samples received on:	13/11/2017
Your job number:	NTM2082	Samples instructed on:	13/11/2017
Your order number:	POR014675	Analysis completed by:	23/11/2017
Report Issue Number:	1	Report issued on:	23/11/2017
Samples Analysed:	15 soil samples		

Signed:

Rexona Rahman Customer Services Manager For & on behalf of i2 Analytical Ltd.

Standard Geotechnical, Asbestos and Chemical Testing Laboratory located at: ul. Pionierów 39, 41 -711 Ruda Śląska, Poland.

Accredited tests are defined within the report, opinions and interpretations expressed herein are outside the scope of accreditation.

Standard sample disposal times, unless otherwise agreed with the laboratory, are :

soils	- 4 weeks from reporting
leachates	- 2 weeks from reporting
waters	- 2 weeks from reporting
asbestos	- 6 months from reporting

Excel copies of reports are only valid when accompanied by this PDF certificate.

Project / Site name: Witham St Hughs Ph3 S38 Design Your Order No: POR014675

Lab Sample Number			855734	855735	855736	855737	855738	
Sample Reference								
Sample Number				TP02 3	TP04 1	TP05 3	TP08 1	TP10 6
Depth (m)				1.70-1.70	0.20-0.20		0.20-0.20	2.00-2.00
Date Sampled				06/11/2017	07/11/2017	08/11/2017	08/11/2017	07/11/2017
Time Taken				None Supplied	None Supplied	None Supplied	None Supplied	None Supplied
				None Supplied		None Supplied	None Supplied	None Supplied
		1.5						
Analytical Parameter								
(Soil Analysis)	2							
			1					
Stone Content	%	0.1	NONE	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Moisture Content	%	N/A	NONE	6.4	11	13	17	13
Total mass of sample received	kg	0.001	NONE	0.55	1.9	0.58	0.60	0.47
Asbestos in Soil	Туре	N/A	ISO 17025	-	-	-	Not-detected	-
General Inorganics		ı — —	.				1	1
pH - Automated	pH Units	N/A	MCERTS	7.8	-	7.7	7.5	7.4
Total Cyanide	mg/kg	1	MCERTS	< 1	-	< 1	< 1	< 1
Complex Cyanide	mg/kg	1	MCERTS	< 1	-	< 1	< 1	< 1
Free Cyanide Water Soluble SO4 16hr extraction (2:1 Leachate	mg/kg	1	MCERTS	< 1	-	< 1	< 1	< 1
Equivalent)	g/l	0.00125	MCERTS	0.031	-	0.024	0.025	1.9
Total Sulphur	mg/kg	50	MCERTS	110	-	< 50	380	17000
Fraction Organic Carbon (FOC)	N/A	0.001	NONE	0.0018	-	0.0012	0.015	0.019
Total Phenols								
Total Phenols (monohydric)	mg/kg	1	MCERTS	< 1.0	-	< 1.0	< 1.0	< 1.0
Speciated PAHs		1	1					
Naphthalene	mg/kg	0.05	MCERTS	< 0.05	-	< 0.05	< 0.05	< 0.05
Acenaphthylene	mg/kg	0.05	MCERTS	< 0.05	-	< 0.05	< 0.05	< 0.05
Acenaphthene Fluorene	mg/kg	0.05	MCERTS MCERTS	< 0.05	-	< 0.05	< 0.05 < 0.05	< 0.05 < 0.05
Phenanthrene	mg/kg mg/kg	0.05	MCERTS	< 0.05	-	< 0.05	< 0.05	< 0.05
Anthracene	mg/kg	0.05	MCERTS	< 0.05	-	< 0.05	< 0.05	< 0.05
Fluoranthene	mg/kg	0.05	MCERTS	< 0.05	-	< 0.05	< 0.05	< 0.05
Pyrene	mg/kg	0.05	MCERTS	< 0.05	-	< 0.05	< 0.05	< 0.05
Benzo(a)anthracene	mg/kg	0.05	MCERTS	< 0.05	-	< 0.05	< 0.05	< 0.05
Chrysene	mg/kg	0.05	MCERTS	< 0.05	-	< 0.05	< 0.05	< 0.05
Benzo(b)fluoranthene	mg/kg	0.05	MCERTS	< 0.05	-	< 0.05	< 0.05	< 0.05
Benzo(k)fluoranthene	mg/kg	0.05	MCERTS	< 0.05	-	< 0.05	< 0.05	< 0.05
Benzo(a)pyrene	mg/kg	0.05	MCERTS	< 0.05	-	< 0.05	< 0.05	< 0.05
Indeno(1,2,3-cd)pyrene	mg/kg	0.05	MCERTS	< 0.05	-	< 0.05	< 0.05	< 0.05
Dibenz(a,h)anthracene	mg/kg	0.05	MCERTS	< 0.05	-	< 0.05	< 0.05	< 0.05
Benzo(ghi)perylene	mg/kg	0.05	MCERTS	< 0.05	-	< 0.05	< 0.05	< 0.05
T + 1041								
Total PAH Speciated Total FPA-16 PAHs	ma/ka	0.8	MCERTS	< 0.80		< 0.80	< 0.80	< 0.80
Specialeu Tolai EPA-TO PAHS	mg/kg	U.8	WICERTS	< 0.80	-	< 0.80	< 0.80	< 0.80
Heavy Metals / Metalloids								
Arsenic (aqua regia extractable)	mg/kg	1	MCERTS	18	-	2.1	14	21
Barium (aqua regia extractable)	mg/kg	1	MCERTS	91	-	19	84	28
Beryllium (aqua regia extractable)	mg/kg	0.06	MCERTS	0.34	-	0.17	0.82	0.80
Boron (water soluble)	mg/kg	0.2	MCERTS	< 0.2	-	< 0.2	0.9	1.6
Cadmium (aqua regia extractable)	mg/kg	0.2	MCERTS	< 0.2	-	< 0.2	< 0.2	< 0.2
Chromium (hexavalent)	mg/kg	4	MCERTS	< 4.0	-	< 4.0	< 4.0	< 4.0
Chromium (aqua regia extractable)	mg/kg	1	MCERTS	8.7	-	3.9	33	27
Copper (aqua regia extractable)	mg/kg	1	MCERTS	9.8	-	11	18	20
Lead (aqua regia extractable)	mg/kg	1	MCERTS	9.2	-	5.9	20	13
Mercury (aqua regia extractable)	mg/kg	0.3	MCERTS	< 0.3	-	< 0.3	< 0.3	< 0.3
Nickel (aqua regia extractable)	mg/kg	1	MCERTS	12	-	6.7	15	26
Selenium (aqua regia extractable)	mg/kg	1	MCERTS	< 1.0	-	< 1.0	< 1.0	< 1.0
Vanadium (aqua regia extractable)	mg/kg	1	MCERTS	15	-	7.0	45	35
Zinc (aqua regia extractable)	mg/kg	1	MCERTS	31	-	20	55	54

Project / Site name: Witham St Hughs Ph3 S38 Design Your Order No: POR014675

Lab Sample Number	855734	855735	855736	855737	855738		
Sample Reference	TP02	TP04	TP05	TP08	TP10		
Sample Number	3	1	3	1	6		
Depth (m)			1.70-1.70	0.20-0.20	1.60-1.60	0.20-0.20	2.00-2.00
Date Sampled			06/11/2017	07/11/2017	08/11/2017	08/11/2017	07/11/2017
Time Taken			None Supplied				
Analytical Parameter (Soil Analysis)	* * * *						

Petroleum Hydrocarbons

TPH C10 - C40	mg/kg	10	MCERTS	< 10	-	< 10	< 10	< 10
TPH2 (C6 - C10)	mg/kg	0.1	MCERTS	< 0.1	-	< 0.1	< 0.1	< 0.1

Environmental Forensics

Organochlorine Pesticides								
Aldrin	µg/kg	10	NONE	-	< 10	-	-	-
Alpha-HCH (Alpha BHC)	µg/kg	10	NONE	-	< 10	-	-	-
Beta-HCH (Beta-BHC)	µg/kg	10	NONE	-	< 10	-	-	-
Chlordane (sum of cis & trans isomers)	µg/kg	10	NONE	-	< 10	-	-	-
Delta-HCH (Delta-BHC)	µg/kg	10	NONE	-	< 10	-	-	-
Dieldrin	µg/kg	10	NONE	-	< 10	-	-	-
Endosulphan A	µg/kg	10	NONE	-	< 10	-	-	-
Endosulphan B	µg/kg	10	NONE	-	< 10	-	-	-
Endrin	µg/kg	10	NONE	-	< 10	-	-	-
Gamma-HCH (Lindane) (Gamma-BHC)	µg/kg	10	NONE	-	< 10	-	-	-
HCB (Hexachlorobenzene)	µg/kg	10	NONE	-	< 10	-	-	-
Heptachlor	µg/kg	10	NONE	-	< 10	-	-	-
Heptachlor Epoxide	µg/kg	10	NONE	-	< 10	-	-	-
Isodrin	µg/kg	10	NONE	-	< 10	-	-	-
pp-Methoxychlor	µg/kg	10	NONE	-	< 10	-	-	-
o,p-DDE	µg/kg	10	NONE	-	< 10	-	-	-
o,p-DDT	µg/kg	10	NONE	-	< 10	-	-	-
o,p-TDE (o,p-DDD)	µg/kg	10	NONE	-	< 10	-	-	-
p,p-DDE	µg/kg	10	NONE	-	< 10	-	-	-
p,p-DDT	µg/kg	10	NONE	-	< 10	-	-	-
p,p-TDE (p,p-DDD)	µg/kg	10	NONE	-	< 10	-	-	-
Trifluralin	µg/kg	10	NONE	-	< 10	-	-	-
Organonitrogen Pesticides								
Bentazone	mg/kg	0.1	NONE	-	< 0.10	-	-	-
Pendimethalin	mg/kg	0.1	NONE	-	< 0.10	-	-	-
Triclorpyr	mg/kg	0.1	NONE	-	< 0.10	-	-	-
Triadimefon	mg/kg	0.1	NONE	-	< 0.10	-	-	-

Organophosphorous pesticides

organophosphorous pesticides								
Azinphos-methyl	µg/kg	10	NONE	-	< 10	-	-	-
Chlorfenvinphos I (cis)	µg/kg	10	NONE	-	< 10	-	-	-
Chlorfenvinphos II (trans)	µg/kg	10	NONE	-	< 10	-	-	-
Chlorfenvinphos-methyl	µg/kg	10	NONE	-	< 10	-	-	-
Diazinon	µg/kg	10	NONE	-	< 10	-	-	-
Dichlorvos	µg/kg	10	NONE	-	< 10	-	-	-
Dimethoate	µg/kg	10	NONE	-	< 10	-	-	-
E-mevinphos	µg/kg	10	NONE	-	< 10	-	-	-
Z-mevinphos	µg/kg	10	NONE	-	< 10	-	-	-
Fenitrothion	µg/kg	10	NONE	-	< 10	-	-	-
Fenthion	µg/kg	10	NONE	-	< 10	-	-	-
Malathion	µg/kg	10	NONE	-	< 10	-	-	-
Parathion-ethyl	µg/kg	10	NONE	-	< 10	-	-	-
Parathion-methyl	µg/kg	10	NONE	-	< 10	-	-	-
Phorate	µg/kg	10	NONE	-	< 10	-	-	-

Iss No 17-67277-1 Witham St Hughs Ph3 S38 Design NTM2082

This certificate should not be reproduced, except in full, without the express permission of the laboratory. The results included within the report are representative of the samples submitted for analysis.

Project / Site name: Witham St Hughs Ph3 S38 Design Your Order No: POR014675

Lab Sample Number 855734 855736 855737 855738 855735 Sample Reference TP02 TP04 TP05 TP08 TP10 Sample Number 3 1 3 6 1 0.20-0.20 2.00-2.00 1.70-1.70 0.20-0.20 1.60-1.60 Depth (m) 06/11/2017 07/11/2017 08/11/2017 08/11/2017 07/11/2017 Date Sampled Time Taken None Supplied None Supplied None Supplied None Supplied None Supplied Analytical Parameter (Soil Analysis)

Project / Site name: Witham St Hughs Ph3 S38 Design Your Order No: POR014675

Lab Sample Number	o Sample Number						855742	855743
Sample Reference				TP11	TP12	TP14	TP15	TP16
Sample Number				1	1	1114	1	1
Depth (m)				0.20-0.20	0.60-0.60	0.30-0.30	0.10-0.10	0.40-0.40
Date Sampled				07/11/2017	07/11/2017	08/11/2017	09/11/2017	09/11/2017
Time Taken				None Supplied	None Supplied	None Supplied	None Supplied	None Supplied
		1.1						
Analytical Parameter	1							
(Soil Analysis)	-	1.1						
			1					
Stone Content	%	0.1	NONE	< 0.1	< 0.1	-	< 0.1	< 0.1
Moisture Content	%	N/A	NONE	6.0	19	-	16	15
Total mass of sample received	kg	0.001	NONE	1.8	0.45	-	2.0	0.52
Asbestos in Soil	Туре	N/A	ISO 17025	-	-	Not-detected	-	-
General Inorganics	-				i	r		
pH - Automated	pH Units	N/A	MCERTS	-	7.7	-	-	7.9
Total Cyanide	mg/kg	1	MCERTS	-	< 1	-	-	< 1
Complex Cyanide	mg/kg	1	MCERTS	-	< 1	-	-	< 1
Free Cyanide Water Soluble SO4 16hr extraction (2:1 Leachate	mg/kg	1	MCERTS	-	< 1	-	-	< 1
Equivalent)	g/l	0.00125	MCERTS		0.067	-		0.042
Total Sulphur	mg/kg	50	MCERTS		220	-		140
Fraction Organic Carbon (FOC)	N/A	0.001	NONE	-	0.0071	-	-	0.0049
Total Phenols								
Total Phenols (monohydric)	mg/kg	1	MCERTS	-	< 1.0	-	-	< 1.0
Speciated PAHs	-				n			
Naphthalene	mg/kg	0.05	MCERTS	-	< 0.05	-	-	< 0.05
Acenaphthylene	mg/kg	0.05	MCERTS	-	< 0.05	-	-	< 0.05
Acenaphthene	mg/kg	0.05	MCERTS	-	< 0.05	-	-	< 0.05
Fluorene	mg/kg	0.05	MCERTS	-	< 0.05	-	-	< 0.05
Phenanthrene	mg/kg	0.05	MCERTS	-	< 0.05	-	-	< 0.05
Anthracene	mg/kg	0.05	MCERTS	-	< 0.05	-	-	< 0.05
Fluoranthene	mg/kg	0.05	MCERTS	-	< 0.05 < 0.05	-	-	< 0.05
Pyrene Benzo(a)anthracene	mg/kg mg/kg	0.05	MCERTS MCERTS	-	< 0.05	-	-	< 0.05
Chrysene	mg/kg	0.05	MCERTS	-	< 0.05	-	-	< 0.05
Benzo(b)fluoranthene	mg/kg	0.05	MCERTS	-	< 0.05	-	-	< 0.05
Benzo(k)fluoranthene	mg/kg	0.05	MCERTS	-	< 0.05	-	-	< 0.05
Benzo(a)pyrene	mg/kg	0.05	MCERTS	-	< 0.05	-	-	< 0.05
Indeno(1,2,3-cd)pyrene	mg/kg	0.05	MCERTS	-	< 0.05	-	-	< 0.05
Dibenz(a,h)anthracene	mg/kg	0.05	MCERTS	-	< 0.05	-	-	< 0.05
Benzo(ghi)perylene	mg/kg	0.05	MCERTS	-	< 0.05	-	-	< 0.05
Total PAH		r			i		-	
Speciated Total EPA-16 PAHs	mg/kg	0.8	MCERTS	-	< 0.80	-	-	< 0.80
Heavy Metals / Metalloids	-							
Arsenic (aqua regia extractable)	mg/kg	1	MCERTS	-	10	-	-	19
Barium (aqua regia extractable)	mg/kg	1	MCERTS	-	69	-	-	52
Beryllium (aqua regia extractable)	mg/kg	0.06	MCERTS	-	1.5	-	-	0.69
Boron (water soluble) Cadmium (aqua regia extractable)	mg/kg mg/kg	0.2	MCERTS MCERTS	-	1.4 < 0.2	-		0.3
Cadmium (aqua regia extractable) Chromium (hexavalent)	mg/kg	4	MCERTS	-	< 4.0	-	-	< 4.0
Chromium (nexavalent) Chromium (aqua regia extractable)	mg/kg	4	MCERTS	-	< 4.0 42	-	-	27
Copper (aqua regia extractable)	mg/kg	1	MCERTS	-	24	-	-	13
Lead (aqua regia extractable)	mg/kg	1	MCERTS	-	13	-	-	13
Mercury (aqua regia extractable)	mg/kg	0.3	MCERTS	-	< 0.3	-	-	< 0.3
Nickel (aqua regia extractable)	mg/kg	1	MCERTS	-	42	-	-	18
Selenium (aqua regia extractable)	mg/kg	1	MCERTS	-	< 1.0	-	-	< 1.0
Vanadium (aqua regia extractable)	mg/kg	1	MCERTS	-	47	-	-	45
Zinc (aqua regia extractable)	mg/kg	1	MCERTS	-	47	-	-	48

Project / Site name: Witham St Hughs Ph3 S38 Design Your Order No: POR014675

Lab Sample Number				855739	855740	855741	855742	855743
Sample Reference				TP11	TP12	TP14	TP15	TP16
Sample Number				1	1	1	1	1
Depth (m)				0.20-0.20	0.60-0.60	0.30-0.30	0.10-0.10	0.40-0.40
Date Sampled		07/11/2017	07/11/2017	08/11/2017	09/11/2017	09/11/2017		
Time Taken				None Supplied				
Analytical Parameter (Soil Analysis)								
Petroleum Hydrocarbons	<u></u>	8	8					
TPH C10 - C40	mg/kg	10	MCERTS	-	< 10	-	-	< 10
TPH2 (C6 - C10)	mg/kg	0.1	MCERTS	-	< 0.1	-	-	< 0.1

Environmental Forensics

Organochlorine Pesticides								
Aldrin	µg/kg	10	NONE	< 10	-	-	< 10	-
Alpha-HCH (Alpha BHC)	µg/kg	10	NONE	< 10	-	-	< 10	-
Beta-HCH (Beta-BHC)	µg/kg	10	NONE	< 10	-	-	< 10	-
Chlordane (sum of cis & trans isomers)	µg/kg	10	NONE	< 10	-	-	< 10	-
Delta-HCH (Delta-BHC)	µg/kg	10	NONE	< 10	-	-	< 10	-
Dieldrin	µg/kg	10	NONE	< 10	-	-	< 10	-
Endosulphan A	μg/kg	10	NONE	< 10	-	-	< 10	-
Endosulphan B	µg/kg	10	NONE	< 10	-	-	< 10	-
Endrin	µg/kg	10	NONE	< 10	-	-	< 10	-
Gamma-HCH (Lindane) (Gamma-BHC)	μg/kg	10	NONE	< 10	-	-	< 10	-
HCB (Hexachlorobenzene)	μg/kg	10	NONE	< 10	-	-	< 10	-
Heptachlor	μg/kg	10	NONE	< 10	-	-	< 10	-
Heptachlor Epoxide	μg/kg	10	NONE	< 10	-	-	< 10	-
Isodrin	μg/kg	10	NONE	< 10	-	-	< 10	-
pp-Methoxychlor	µg/kg	10	NONE	< 10	-	-	< 10	-
o,p-DDE	μg/kg	10	NONE	< 10	-	-	< 10	-
o,p-DDT	μg/kg	10	NONE	< 10	-	-	< 10	-
o,p-TDE (o,p-DDD)	μg/kg	10	NONE	< 10	-	-	< 10	-
p,p-DDE	μg/kg	10	NONE	< 10	-	-	< 10	-
p,p-DDT	μg/kg	10	NONE	< 10	-	-	< 10	-
p,p-TDE (p,p-DDD)	µg/kg	10	NONE	< 10	-		< 10	
Trifluralin	μg/kg	10	NONE	< 10		-	< 10	
Organonitrogen Pesticides Bentazone	mg/kg	0.1	NONE	< 0.10	-	-	< 0.10	-
Pendimethalin	mg/kg	0.1	NONE	< 0.10	-	-	< 0.10	-
Triclorpyr	mg/kg	0.1	NONE	< 0.10	-	-	< 0.10	-
Triadimefon	mg/kg	0.1	NONE	< 0.10	-	-	< 0.10	-
Organophosphorous pesticides		10	NONE	< 10			10	
Azinphos-methyl	µg/kg		NONE		-	-	< 10	
Chlorfenvinphos I (cis)	µg/kg	10 10	NONE	< 10 < 10	-	-	< 10	-
Chlorfenvinphos II (trans)	µg/kg	10	NONE	< 10	-		< 10 < 10	
Chlorfenvinphos-methyl	µg/kg		NONE		-			-
Diazinon	µg/kg	10	NONE	< 10	-	-	< 10	-
Dichlorvos	µg/kg	10	NONE	< 10	-	-	< 10	-
Dimethoate	µg/kg	10	NONE	< 10	-	-	< 10	-
E-mevinphos	µg/kg	10	NONE	< 10	-	-	< 10	-
Z-mevinphos	µg/kg	10	NONE	< 10	-	-	< 10	-
Fenitrothion	µg/kg	10	NONE	< 10	-	-	< 10	-
Fenthion	µg/kg	10	NONE	< 10	-	-	< 10	-
Malathion	µg/kg	10	NONE	< 10	-	-	< 10	-
Parathion-ethyl	µg/kg	10	NONE	< 10	-	-	< 10	-
Parathion-methyl	µg/kg	10 10	NONE	< 10	-	-	< 10 < 10	-
Phorate	µg/kg		NONE	< 10		_		

Iss No 17-67277-1 Witham St Hughs Ph3 S38 Design NTM2082

This certificate should not be reproduced, except in full, without the express permission of the laboratory. The results included within the report are representative of the samples submitted for analysis.

Project / Site name: Witham St Hughs Ph3 S38 Design Your Order No: POR014675

Lab Sample Number 855739 855740 855741 855742 855743 Sample Reference TP11 TP12 TP14 TP15 TP16 Sample Number 1 1 1 1 1 0.20-0.20 0.30-0.30 0.10-0.10 0.40-0.40 Depth (m) 0.60-0.60 07/11/2017 07/11/2017 08/11/2017 09/11/2017 09/11/2017 Date Sampled Time Taken None Supplied None Supplied None Supplied None Supplied None Supplied Analytical Parameter (Soil Analysis)

Project / Site name: Witham St Hughs Ph3 S38 Design Your Order No: POR014675

Lab Sample Number	b Sample Number						855747	855748
Sample Reference				TD10	TP18	TP23	TP24	TP25
Sample Number				TP18 1	6	1 1 1	1 1 1	3
Depth (m)				0.20-0.20	3.40-3.50	0.15-0.15	0.20-0.20	1.20-1.20
Date Sampled				08/11/2017	08/11/2017	09/11/2017	07/11/2017	07/11/2017
Time Taken				None Supplied	None Supplied	None Supplied	None Supplied	None Supplied
		1.1						
Analytical Parameter	-							
(Soil Analysis)	-	1.1						
Stone Content	%	0.1	NONE	-	< 0.1	< 0.1	< 0.1	< 0.1
Moisture Content	%	N/A	NONE	-	13	22	21	13
Total mass of sample received	kg	0.001	NONE	-	0.46	1.8	0.58	0.61
			•					
Asbestos in Soil	Туре	N/A	ISO 17025	Not-detected	-	Not-detected	-	-
General Inorganics	_			r	i	i .	1	
pH - Automated	pH Units	N/A	MCERTS	-	7.5	7.2	-	7.5
Total Cyanide	mg/kg	1	MCERTS	-	< 1	< 1	-	< 1
Complex Cyanide	mg/kg	1	MCERTS	-	< 1	< 1	-	< 1
Free Cyanide Water Soluble SO4 16hr extraction (2:1 Leachate	mg/kg		MCERTS	-	< 1	< 1	-	< 1
Equivalent)	g/l	0.00125	MCERTS		0.42	0.0093	-	0.042
Total Sulphur	mg/kg	50	MCERTS	-	19000	380	-	85
Fraction Organic Carbon (FOC)	N/A	0.001	NONE	-	0.017	0.021	-	0.0016
Total Phenols								
Total Phenols (monohydric)	mg/kg	1	MCERTS	-	< 1.0	< 1.0	-	< 1.0
Speciated PAHs								
Naphthalene	mg/kg	0.05	MCERTS	-	< 0.05	< 0.05	-	< 0.05
Acenaphthylene	mg/kg	0.05	MCERTS	-	< 0.05	< 0.05	-	< 0.05
Acenaphthene	mg/kg	0.05	MCERTS	-	< 0.05	< 0.05	-	< 0.05
Fluorene	mg/kg	0.05	MCERTS	-	< 0.05	< 0.05	-	< 0.05
Phenanthrene Anthracene	mg/kg	0.05	MCERTS MCERTS	-	< 0.05 < 0.05	< 0.05	-	< 0.05
Fluoranthene	mg/kg mg/kg	0.05	MCERTS	-	< 0.05	< 0.05 < 0.05	-	< 0.05
Pyrene	mg/kg	0.05	MCERTS	-	< 0.05	< 0.05	-	< 0.05
Benzo(a)anthracene	mg/kg	0.05	MCERTS	-	< 0.05	< 0.05	-	< 0.05
Chrysene	mg/kg	0.05	MCERTS	-	< 0.05	< 0.05	-	< 0.05
Benzo(b)fluoranthene	mg/kg	0.05	MCERTS	-	< 0.05	< 0.05	-	< 0.05
Benzo(k)fluoranthene	mg/kg	0.05	MCERTS	-	< 0.05	< 0.05	-	< 0.05
Benzo(a)pyrene	mg/kg	0.05	MCERTS	-	< 0.05	< 0.05	-	< 0.05
Indeno(1,2,3-cd)pyrene	mg/kg	0.05	MCERTS	-	< 0.05	< 0.05	-	< 0.05
Dibenz(a,h)anthracene	mg/kg	0.05	MCERTS	-	< 0.05	< 0.05	-	< 0.05
Benzo(ghi)perylene	mg/kg	0.05	MCERTS	-	< 0.05	< 0.05	-	< 0.05
Total PAH		0.0			A A A	c	1	~ ~~
Speciated Total EPA-16 PAHs	mg/kg	0.8	MCERTS	-	< 0.80	< 0.80	-	< 0.80
Lleonar Metale (Metalleida								
Heavy Metals / Metalloids Arsenic (agua regia extractable)	m ~ //	1	MCERTS		10	11		^ ^ ^
Barium (aqua regia extractable)	mg/kg mg/kg	1	MCERTS	-	12 27	49	-	3.3 21
Beryllium (aqua regia extractable)	mg/kg	0.06	MCERTS	-	1.1	1.0	-	0.27
Boron (water soluble)	mg/kg	0.00	MCERTS	-	4.9	3.8	-	< 0.2
Cadmium (agua regia extractable)	mg/kg	0.2	MCERTS	-	< 0.2	< 0.2	-	< 0.2
Chromium (hexavalent)	mg/kg	4	MCERTS	-	< 4.0	< 4.0	-	< 4.0
Chromium (aqua regia extractable)	mg/kg	1	MCERTS	-	34	32	-	8.5
Copper (aqua regia extractable)	mg/kg	1	MCERTS	-	27	19	-	12
Lead (aqua regia extractable)	mg/kg	1	MCERTS	-	13	24	-	4.5
Mercury (aqua regia extractable)	mg/kg	0.3	MCERTS	-	< 0.3	< 0.3	-	< 0.3
Nickel (aqua regia extractable)	mg/kg	1	MCERTS	-	31	19	-	8.6
Selenium (aqua regia extractable)	mg/kg	1	MCERTS	-	< 1.0	< 1.0	-	< 1.0
Vanadium (aqua regia extractable)	mg/kg	1	MCERTS	-	31	48	-	11
Zinc (aqua regia extractable)	mg/kg	1	MCERTS	-	47	53	-	20

Project / Site name: Witham St Hughs Ph3 S38 Design Your Order No: POR014675

Lab Sample Number				855744	855745	855746	855747	855748
Sample Reference				TP18	TP18	TP23	TP24	TP25
Sample Number				1	6	1	1	3
Depth (m)				0.20-0.20	3.40-3.50	0.15-0.15	0.20-0.20	1.20-1.20
Date Sampled				08/11/2017	08/11/2017	09/11/2017	07/11/2017	07/11/2017
Time Taken				None Supplied				
Analytical Parameter (Soil Analysis)								
Petroleum Hydrocarbons	-		8					
TPH C10 - C40	mg/kg	10	MCERTS	-	< 10	< 10	-	< 10
TPH2 (C6 - C10)	mg/kg	0.1	MCERTS	-	< 0.1	< 0.1	-	< 0.1

Environmental Forensics

Z-mevinphos

Fenitrothion

Fenthion

Malathion

Phorate

Parathion-ethyl

Parathion-methyl

Organochlorine Pesticides								
Aldrin	µg/kg	10	NONE	-	-	-	< 10	-
Alpha-HCH (Alpha BHC)	µg/kg	10	NONE	-	-	-	< 10	-
Beta-HCH (Beta-BHC)	µg/kg	10	NONE	-	-	-	< 10	-
Chlordane (sum of cis & trans isomers)	µg/kg	10	NONE	-	-	-	< 10	-
Delta-HCH (Delta-BHC)	µg/kg	10	NONE	-	-	-	< 10	-
Dieldrin	µg/kg	10	NONE	-	-	-	< 10	-
Endosulphan A	µg/kg	10	NONE	-	-	-	< 10	-
Endosulphan B	µg/kg	10	NONE	-	-	-	< 10	-
Endrin	µg/kg	10	NONE	-	-	-	< 10	-
Gamma-HCH (Lindane) (Gamma-BHC)	µg/kg	10	NONE	-	-	-	< 10	-
HCB (Hexachlorobenzene)	µg/kg	10	NONE	-	-	-	< 10	-
Heptachlor	µg/kg	10	NONE	-	-	-	< 10	-
Heptachlor Epoxide	µg/kg	10	NONE	-	-	-	< 10	-
Isodrin	µg/kg	10	NONE	-	-	-	< 10	-
pp-Methoxychlor	µg/kg	10	NONE	-	-	-	< 10	-
o,p-DDE	µg/kg	10	NONE	-	-	-	< 10	-
p,p-DDT	µg/kg	10	NONE	-	-	-	< 10	-
p,p-TDE (o,p-DDD)	µg/kg	10	NONE	-	-	-	< 10	-
p,p-DDE	µq/kq	10	NONE	-	-	-	< 10	-
p,p-DDT	µg/kg	10	NONE	-	-	-	< 10	-
p,p-TDE (p,p-DDD)	µg/kg	10	NONE	-	-	-	< 10	-
Trifluralin	µg/kg	10	NONE	-	-	-	< 10	-
Organonitrogen Pesticides		0.1				1	0.40	
Bentazone	mg/kg	0.1	NONE	-	-	-	< 0.10	-
Pendimethalin	mg/kg	0.1	NONE	-	-	-	< 0.10	-
Triclorpyr	mg/kg	0.1	NONE	-	-	-	< 0.10	-
Triadimefon	mg/kg	0.1	NONE	-	-	-	< 0.10	-
Organophosphorous pesticides								
Azinphos-methyl	µg/kg	10	NONE	-	-	-	< 10	-
Chlorfenvinphos I (cis)	µg/kg	10	NONE	-	-	-	< 10	-
Chlorfenvinphos II (trans)	µg/kg	10	NONE	-	-	-	< 10	-
Chlorfenvinphos-methyl	µg/kg	10	NONE	-	-	-	< 10	-
Diazinon	µg/kg	10	NONE	-	-	-	< 10	-
Dichlorvos	µg/kg	10	NONE	-		-	< 10	-
Dimethoate	µg/kg	10	NONE	-	-	-	< 10	-
E-mevinphos	μg/kg	10	NONE	-	-	-	< 10	-
7	, <u>,</u> , , , ,	10					10	

10

10

10

10

10 10

10

NONE

NONE

NONE

NONE

NONE

NONE

NONE

µg/kg

µg/kg

µg/kg

µg/kg

µg/kg

µg/kg

µg/kg

< 10

< 10

< 10

< 10

< 10 < 10

< 10

Project / Site name: Witham St Hughs Ph3 S38 Design Your Order No: POR014675

Lab Sample Number	855744	855745	855746	855747	855748			
Sample Reference				TP18	TP18	TP23	TP24	TP25
Sample Number			1	6	1	1	3	
Depth (m)				0.20-0.20	3.40-3.50	0.15-0.15	0.20-0.20	1.20-1.20
Date Sampled				08/11/2017	08/11/2017	09/11/2017	07/11/2017	07/11/2017
Time Taken				None Supplied				
Analytical Parameter (Soil Analysis)	•							

Project / Site name: Witham St Hughs Ph3 S38 Design

* These descriptions are only intended to act as a cross check if sample identities are questioned. The major constituent of the sample is intended to act with respect to MCERTS validation. The laboratory is accredited for sand, clay and loam (MCERTS) soil types. Data for unaccredited types of solid should be interpreted with care.

Stone content of a sample is calculated as the % weight of the stones not passing a 10 mm sieve. Results are not corrected for stone content.

Lab Sample Number	Sample Reference	Sample Number	Depth (m)	Sample Description *
855734	TP02	3	1.70-1.70	Brown sand with gravel.
855735	TP04	1	0.20-0.20	Brown loam and clay.
855736	TP05	3	1.60-1.60	Brown sand.
855737	TP08	1	0.20-0.20	Brown clay with vegetation.
855738	TP10	6	2.00-2.00	Grey clay.
855739	TP11	1	0.20-0.20	Brown clay.
855740	TP12	1	0.60-0.60	Brown clay with vegetation.
855741	TP14	1	0.30-0.30	-
855742	TP15	1	0.10-0.10	Brown clay and sand with vegetation.
855743	TP16	1	0.40-0.40	Brown clay and sand.
855744	TP18	1	0.20-0.20	-
855745	TP18	6	3.40-3.50	Grey clay.
855746	TP23	1	0.15-0.15	Brown clay and loam with vegetation.
855747	TP24	1	0.20-0.20	Brown clay with vegetation.
855748	TP25	3	1.20-1.20	Brown sand with gravel.

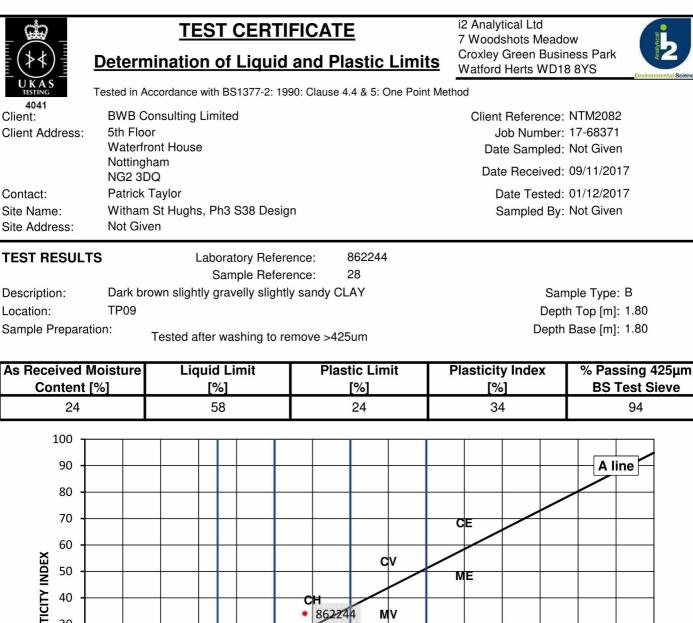
Project / Site name: Witham St Hughs Ph3 S38 Design

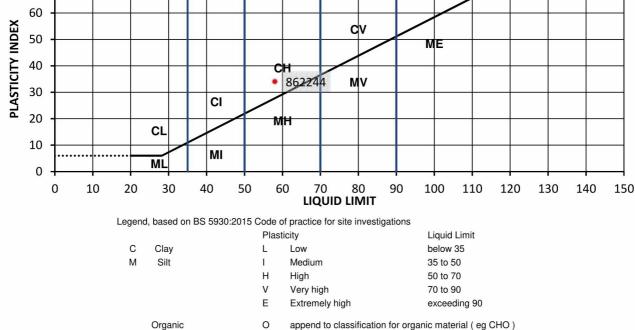
Water matrix abbreviations: Surface Water (SW) Potable Water (PW) Ground Water (GW) Process Water (PrW)

					Т
Analytical Test Name	Analytical Method Description	Analytical Method Reference	Method number	Wet / Dry Analysis	Accreditation Status
Asbestos identification in soil	Asbestos Identification with the use of polarised light microscopy in conjunction with disperion staining techniques.	In house method based on HSG 248	A001-PL	D	ISO 17025
Boron, water soluble, in soil	Determination of water soluble boron in soil by hot water extract followed by ICP-OES.	In-house method based on Second Site Properties version 3	L038-PL	D	MCERTS
Complex Cyanide in soil	Determination of complex cyanide by calculation.	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton (Skalar)	L080-PL	W	MCERTS
Fraction of Organic Carbon in soil	Determination of fraction of organic carbon in soil by oxidising with potassium dichromate followed by titration with iron (II) sulphate.	In-house method based on BS1377 Part 3, 1990, Chemical and Electrochemical Tests	L009-PL	D	NONE
Free cyanide in soil	Determination of free cyanide by distillation followed by colorimetry.	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton (Skalar)	L080-PL	W	MCERTS
Hexavalent chromium in soil	Determination of hexavalent chromium in soil by extraction in water then by acidification, addition of 1,5 diphenylcarbazide followed by colorimetry.	In-house method	L080-PL	W	MCERTS
Metals in soil by ICP-OES	Determination of metals in soil by aqua-regia digestion followed by ICP-OES.	In-house method based on MEWAM 2006 Methods for the Determination of Metals in Soil.	L038-PL	D	MCERTS
Moisture Content	Moisture content, determined gravimetrically.	In-house method based on BS1377 Part 2, 1990, Chemical and Electrochemical Tests	L019-UK/PL	W	NONE
Monohydric phenols in soil	Determination of phenols in soil by extraction with sodium hydroxide followed by distillation followed by colorimetry.	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton (skalar)	L080-PL	W	MCERTS
pH in soil (automated)	Determination of pH in soil by addition of water followed by automated electrometric measurement.	In-house method based on BS1377 Part 3, 1990, Chemical and Electrochemical Tests	L099-PL	D	MCERTS
4					1

Project / Site name: Witham St Hughs Ph3 S38 Design

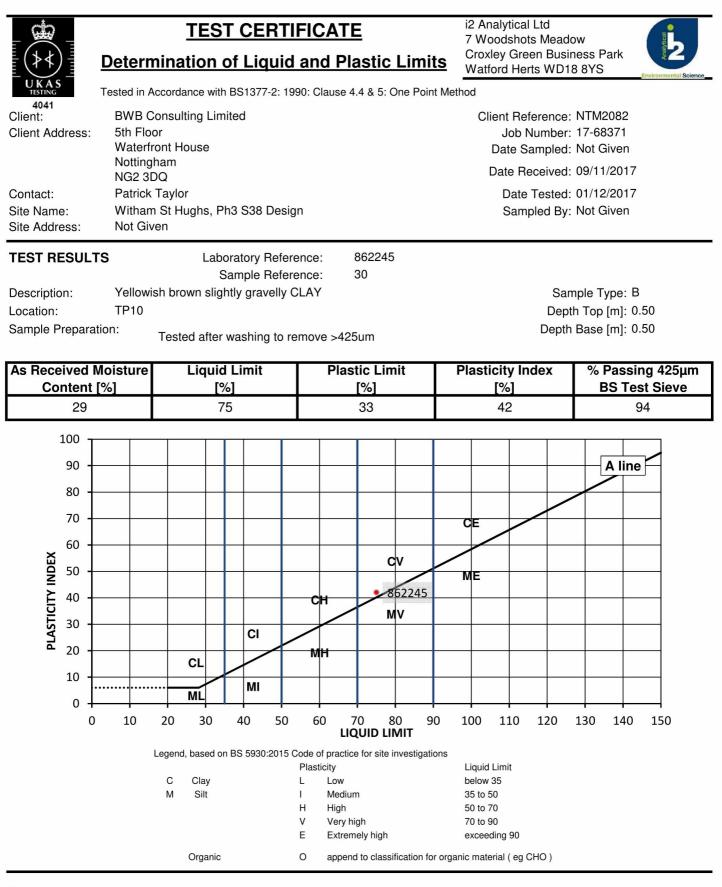
Water matrix abbreviations: Surface Water (SW) Potable Water (PW) Ground Water (GW) Process Water (PrW)


	1				
Analytical Test Name	Analytical Method Description	Analytical Method Reference	Method number	Wet / Dry Analysis	Accreditation Status
Speciated EPA-16 PAHs in soil	Determination of PAH compounds in soil by extraction in dichloromethane and hexane followed by GC-MS with the use of surrogate and internal standards.	In-house method based on USEPA 8270	L064-PL	D	MCERTS
Stones content of soil	Standard preparation for all samples unless otherwise detailed. Gravimetric determination of stone > 10 mm as % dry weight.	In-house method based on British Standard Methods and MCERTS requirements.	L019-UK/PL	D	NONE
Sulphate, water soluble, in soil (16hr extraction)	Determination of water soluble sulphate by ICP- OES. Results reported directly (leachate equivalent) and corrected for extraction ratio (soil equivalent).	In-house method based on BS1377 Part 3, 1990, Chemical and Electrochemical Tests, 2:1 water:soil extraction, analysis by ICP- OES.	L038-PL	D	MCERTS
TO - Organochlorine pesticides in soil	Determination of OCPs by extraction with hexane followed by GC-MS.	In-house method		W	NONE
TO - Organonitrogen pesticides in soil	Determination of organonitrogen pesticides by LC- Q	In-house method		W	NONE
TO - Organophosphorous pesticides in soil	Determination of OPPs by extraction with DCM followed by GC-MS.	In-house method		W	NONE
Total cyanide in soil	Determination of total cyanide by distillation followed by colorimetry.	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton (Skalar)	L080-PL	W	MCERTS
Total Sulphur in soil	Determination of total sulphur in soil by extraction with aqua-regia, potassium bromide/bromate followed by ICP-OES.	In-house method based on BS1377 Part 3, 1990, and MEWAM 2006 Methods for the Determination of Metals in Soil	L038-PL	D	MCERTS
TPH Banding in Soil by FID	Determination of hexane extractable hydrocarbons in soil by GC-FID.	In-house method, TPH with carbon banding.	L076-PL	W	MCERTS
TPH2 (Soil)	Determination of hydrocarbons C6-C10 by headspace GC-MS.	In-house method based on USEPA8260	L088-PL	W	MCERTS


For method numbers ending in 'UK' analysis have been carried out in our laboratory in the United Kingdom. For method numbers ending in 'PL' analysis have been carried out in our laboratory in Poland. Soil analytical results are expressed on a dry weight basis. Where analysis is carried out on as-received the results obtained are multiplied by a moisture correction factor that is determined gravimetrically using the moisture content which is carried out at a maximum of 300C.

APPENDIX 4

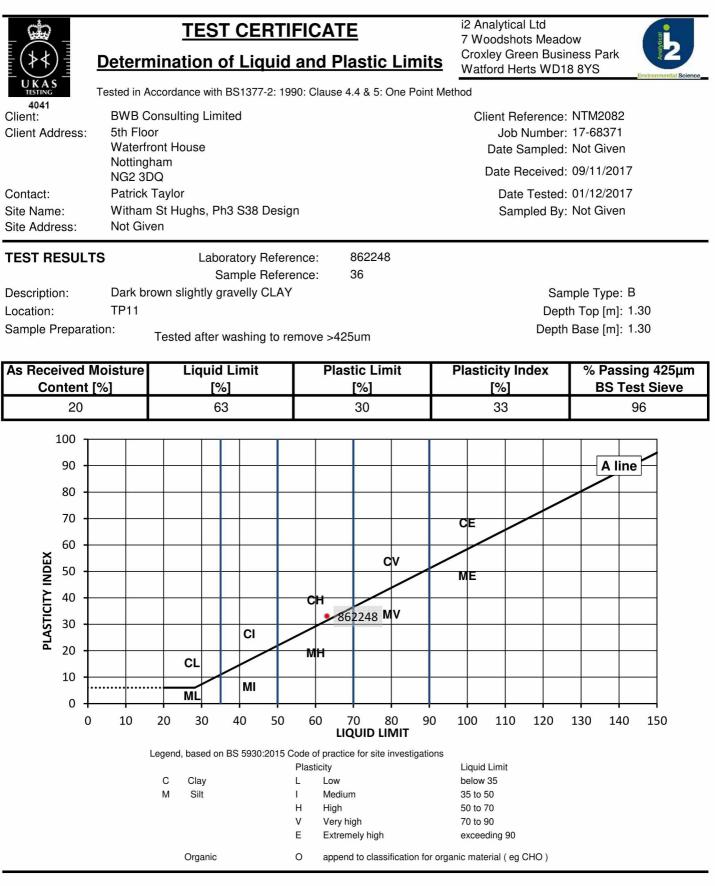
GEOTEC HNICAL LABORATORY TESTING RESULTS


Approved:		l	Signed:	
Dariusz Piotrowski PL Laboratory			Darren Berrill Geotechnical General	
Manager Geotechnical Section			Manager	
Date Reported:	06/12/2017			

Page 1 of 1

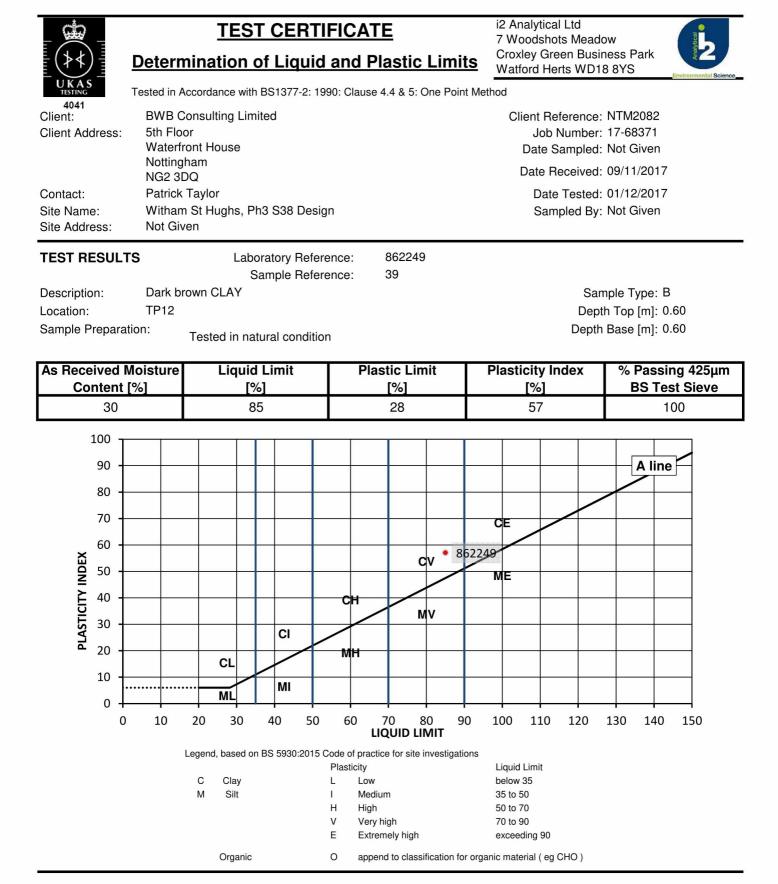
"Opinions and interpretations expressed here in are outside of the scope of the UKAS Accreditation. This report may not be reproduced other than in full without the prior written approval of the issuing laboratory. The results included within the report are representative of the samples submitted for analysis. The analysis was carried out at i2 Analytical Limited, ul. Pionierow 39, 41-711 Ruda Slaska, Poland."

for and on behalf of i2 Analytical Ltd


94

Approved:	Signed:
Dariusz Piotrowski PL Laboratory Manager Geotechnical Section Date Reported: 06/12/2017	Darren Berrill Geotechnical General Manager

Page 1 of 1


"Opinions and interpretations expressed here in are outside of the scope of the UKAS Accreditation. This report may not be reproduced other than in full without the prior written approval of the issuing laboratory. The results included within the report are representative of the samples submitted for analysis. The analysis was carried out at i2 Analytical Limited, ul. Pionierow 39, 41-711 Ruda Slaska, Poland."

Approved:		Signed:	
Dariusz Piotrowski		Darren Berrill	
PL Laboratory		Geotechnical General	
Manager Geotechnical		Manager	
Section			
Date Reported:	06/12/2017		

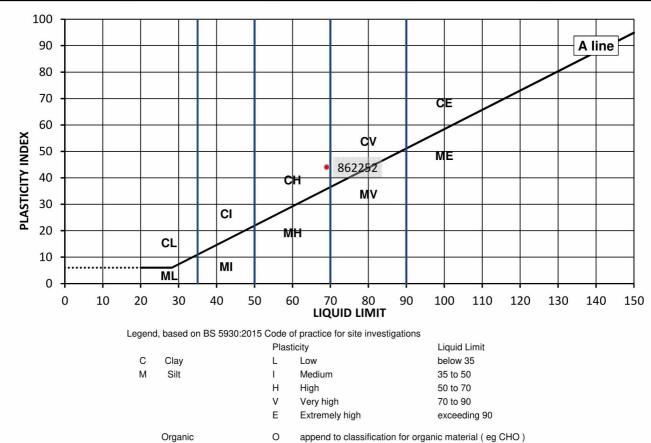
Page 1 of 1

"Opinions and interpretations expressed here in are outside of the scope of the UKAS Accreditation. This report may not be reproduced other than in full without the prior written approval of the issuing laboratory. The results included within the report are representative of the samples submitted for analysis. The analysis was carried out at i2 Analytical Limited, ul. Pionierow 39, 41-711 Ruda Slaska, Poland."

Approved: Signed: Dariusz Piotrowski Darren Berrill PL Laboratory Geotechnical General Manager Geotechnical Manager Section 06/12/2017 Date Reported:

"Opinions and interpretations expressed here in are outside of the scope of the UKAS Accreditation. This report may not be reproduced other than in full without the prior written approval of the issuing laboratory. The results included within the report are representative of the samples submitted for analysis. The analysis was carried out at i2 Analytical Limited, ul. Pionierow 39, 41-711 Ruda Slaska, Poland."

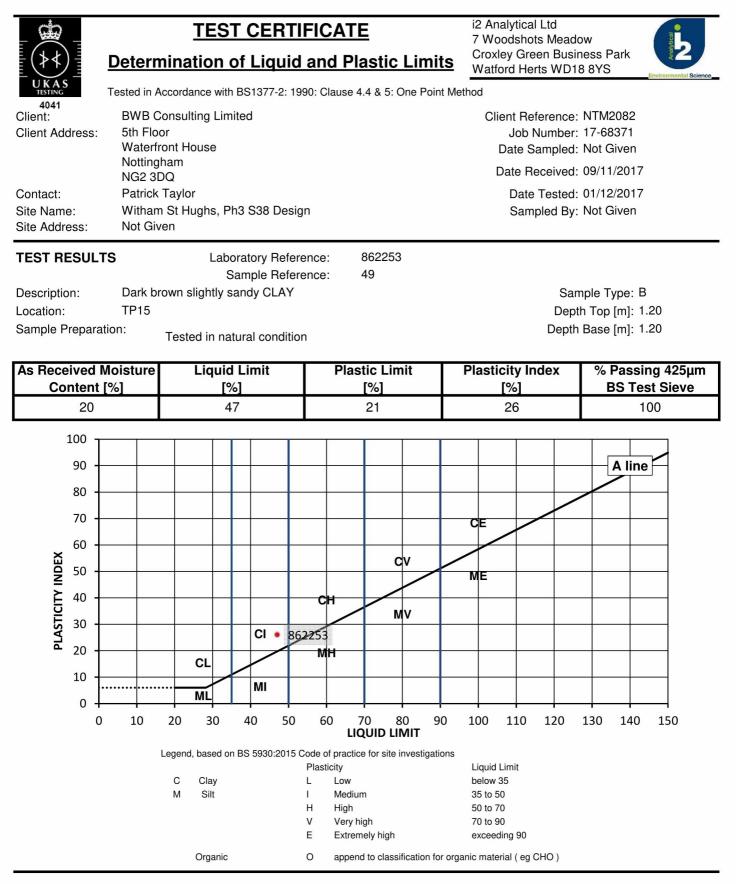
i2 Analytical Ltd 7 Woodshots Meadow Croxley Green Business Park Watford Herts WD18 8YS


Tested in Accordance with BS1377-2: 1990: Clause 4.4 & 5: One Point Method

4041		
Client:	BWB Consulting Limited	Client Reference: NTM2082
Client Address:	5th Floor	Job Number: 17-68371
	Waterfront House	Date Sampled: Not Given
	Nottingham	Date Received: 09/11/2017
	NG2 3DQ	Date Received: 09/11/2017
Contact:	Patrick Taylor	Date Tested: 01/12/2017
Site Name:	Witham St Hughs, Ph3 S38 Design	Sampled By: Not Given
Site Address:	Not Given	

TEST RESULTS

862252 Laboratory Reference: Sample Reference: 46 Description: Yellowish brown CLAY Sample Type: B **TP14** Location: Depth Top [m]: 0.50 Depth Base [m]: 0.50 Sample Preparation: Tested in natural condition



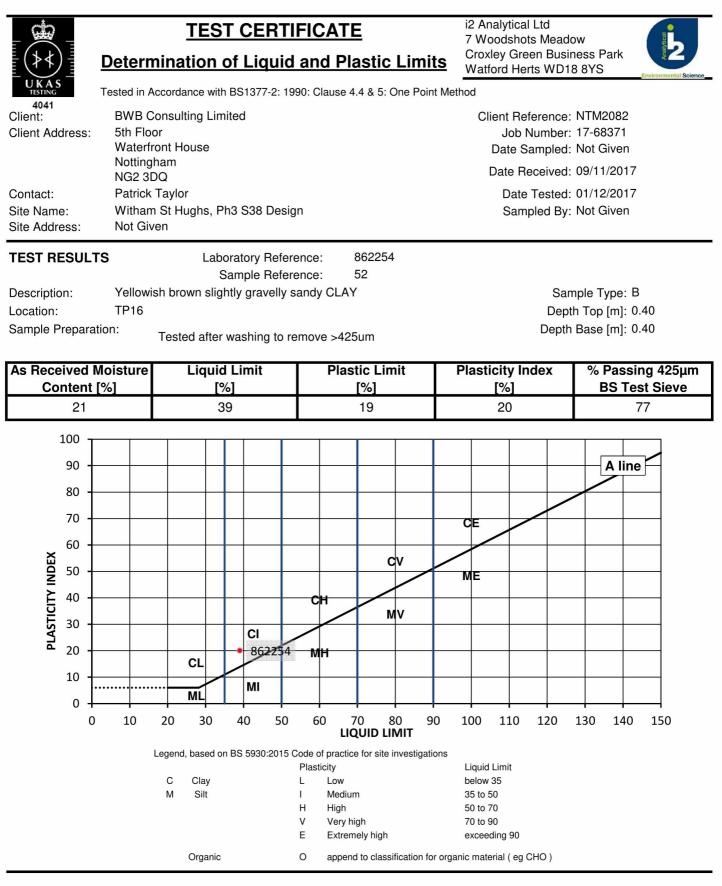
Remarks

Approved:	Signed:
Dariusz Piotrowski PL Laboratory Manager Geotechnical Section Date Reported: 06/12/2017	Darren Berrill Geotechnical General Manager for and on behalf of i2 Analytical I td

"Opinions and interpretations expressed here in are outside of the scope of the UKAS Accreditation. This report may not be reproduced other than in full without the prior written approval of the issuing laboratory. The results included within the report are representative of the samples submitted for analysis. The analysis was carried out at i2 Analytical Limited, ul. Pionierow 39, 41-711 Ruda Slaska, Poland."

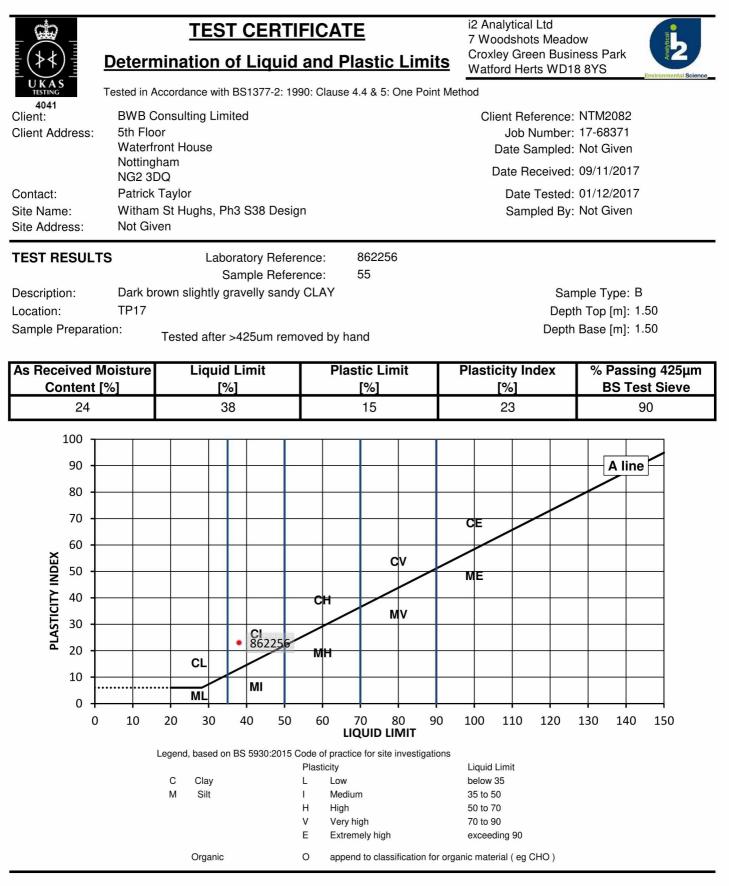
 Approved:
 Signed:

 Dariusz Piotrowski
 Darren Berrill


 PL Laboratory
 Darren Berrill

 Manager Geotechnical
 Geotechnical General

 Manager Geotechnical
 Manager

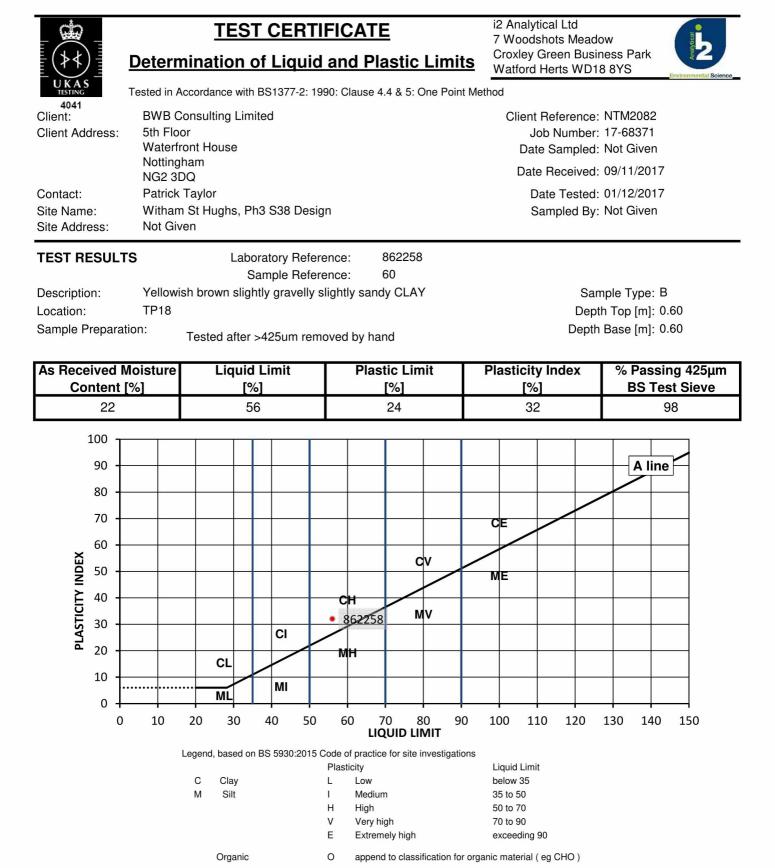

 Section
 06/12/2017

"Opinions and interpretations expressed here in are outside of the scope of the UKAS Accreditation. This report may not be reproduced other than in full without the prior written approval of the issuing laboratory. The results included within the report are representative of the samples submitted for analysis. The analysis was carried out at i2 Analytical Limited, ul. Pionierow 39, 41-711 Ruda Slaska, Poland."

Approved:	Signed:
Dariusz Piotrowski PL Laboratory Manager Geotechnical Section Date Reported: 06/	Darren Berrill Geotechnical General Manager

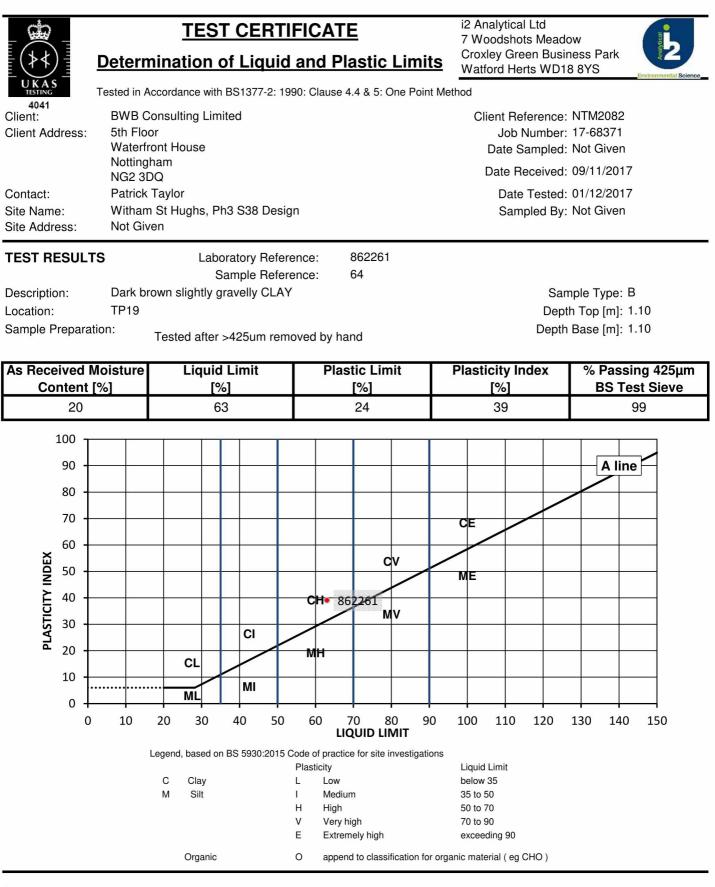
"Opinions and interpretations expressed here in are outside of the scope of the UKAS Accreditation. This report may not be reproduced other than in full without the prior written approval of the issuing laboratory. The results included within the report are representative of the samples submitted for analysis. The analysis was carried out at i2 Analytical Limited, ul. Pionierow 39, 41-711 Ruda Slaska, Poland."

 Approved:
 Signed:

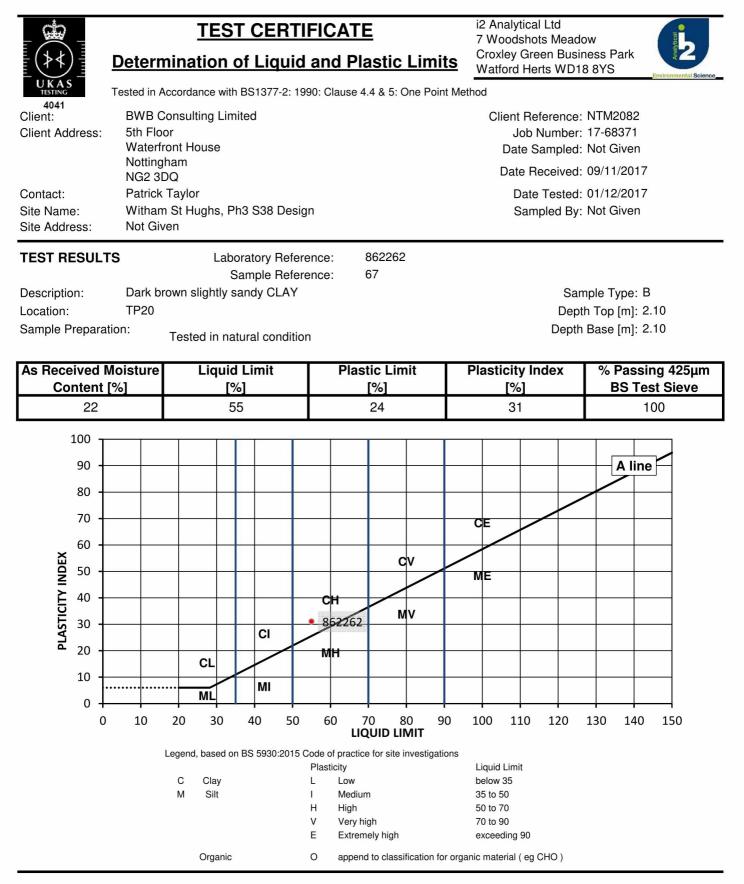

 Dariusz Piotrowski
 Darren Berrill

 PL Laboratory
 Darren Berrill

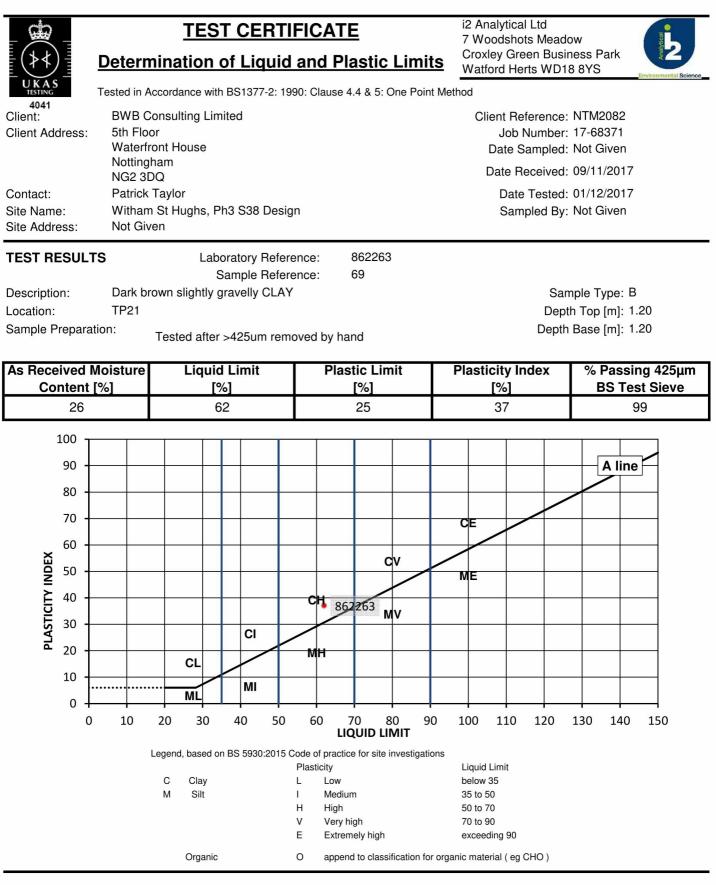
 Manager Geotechnical Section
 Manager


 Date Reported:
 06/12/2017

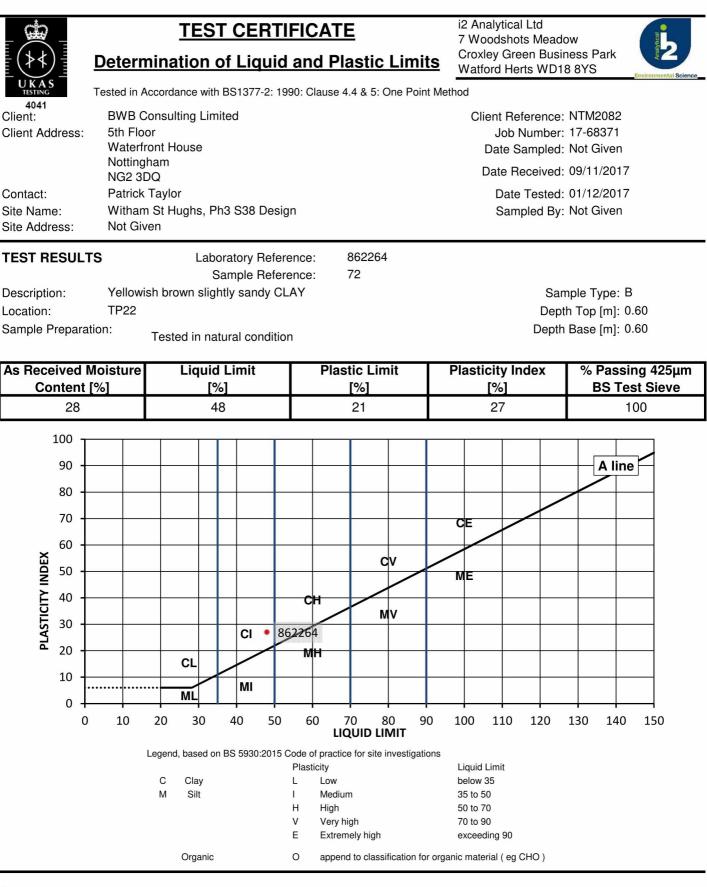
"Opinions and interpretations expressed here in are outside of the scope of the UKAS Accreditation. This report may not be reproduced other than in full without the prior written approval of the issuing laboratory. The results included within the report are representative of the samples submitted for analysis. The analysis was carried out at i2 Analytical Limited, ul. Pionierow 39, 41-711 Ruda Slaska, Poland."


Approved: Dariusz Piotrowski PL Laboratory Manager Geotechnical Section Date Reported: 06/12/2017 Section

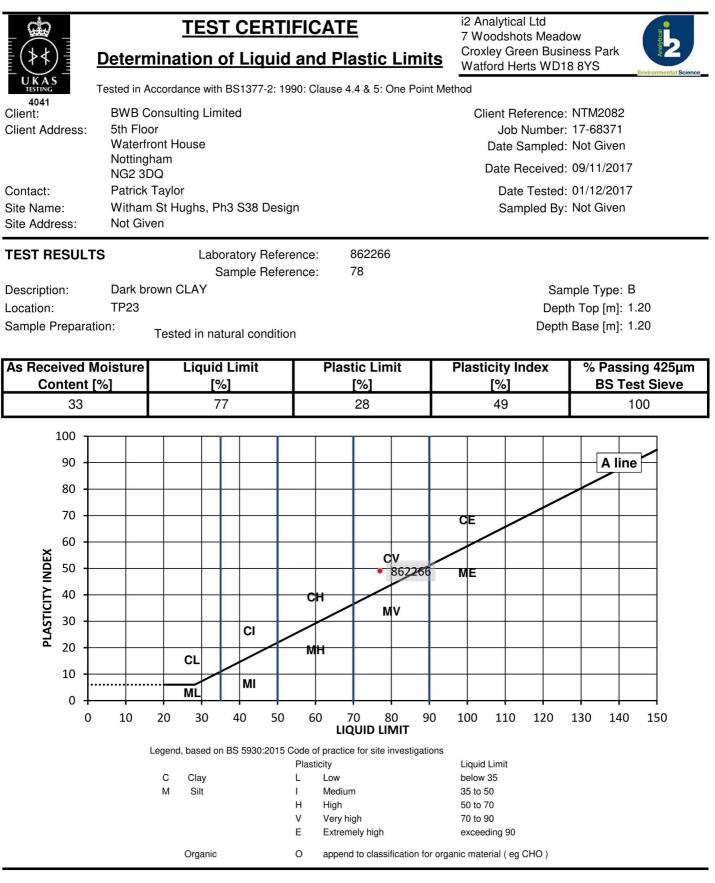
"Opinions and interpretations expressed here in are outside of the scope of the UKAS Accreditation. This report may not be reproduced other than in full without the prior written approval of the issuing laboratory. The results included within the report are representative of the samples submitted for analysis. The analysis was carried out at i2 Analytical Limited, ul. Pionierow 39, 41-711 Ruda Slaska, Poland."


Approved:		Signed:
Dariusz Piotrowski PL Laboratory Manager Geotechnical Section Date Reported:	06/12/2017	Darren Berrill Geotechnical General Manager for and on behalf of i2 Analytical I td

"Opinions and interpretations expressed here in are outside of the scope of the UKAS Accreditation. This report may not be reproduced other than in full without the prior written approval of the issuing laboratory. The results included within the report are representative of the samples submitted for analysis. The analysis was carried out at i2 Analytical Limited, ul. Pionierow 39, 41-711 Ruda Slaska, Poland."

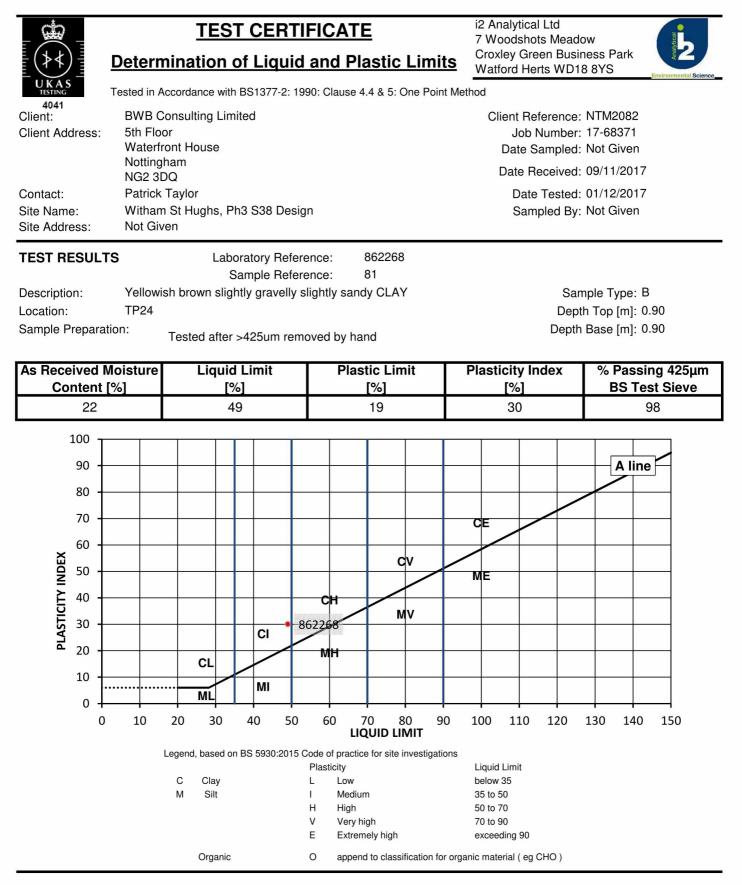

Approved:	Signed:	
Dariusz Piotrowski PL Laboratory Manager Geotechnical Section Date Reported: 06/12/2017	Darren Berrill Geotechnical General Manager	

"Opinions and interpretations expressed here in are outside of the scope of the UKAS Accreditation. This report may not be reproduced other than in full without the prior written approval of the issuing laboratory. The results included within the report are representative of the samples submitted for analysis. The analysis was carried out at i2 Analytical Limited, ul. Pionierow 39, 41-711 Ruda Slaska, Poland."

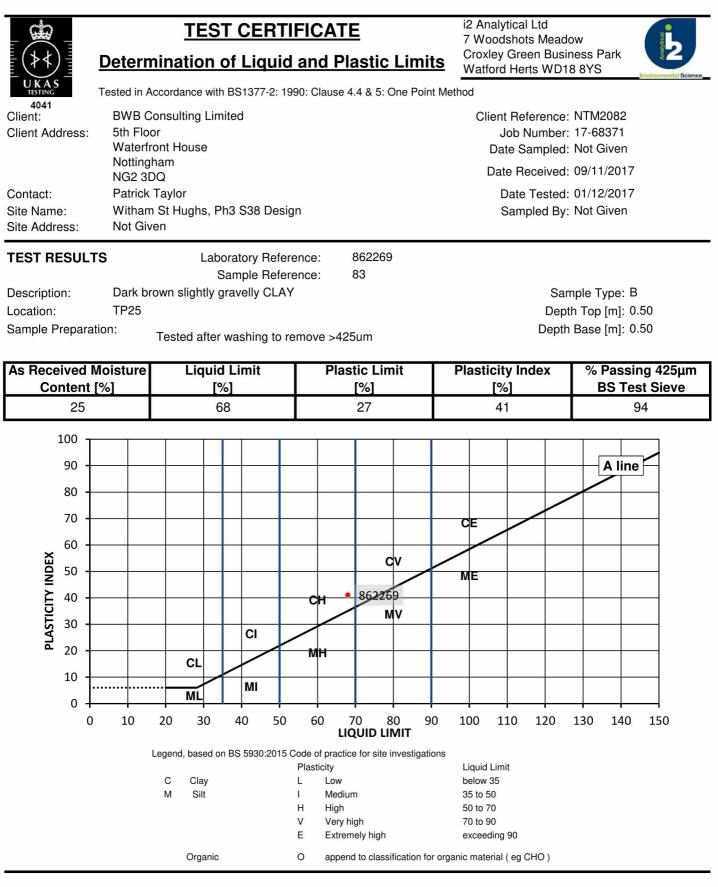

Approved:	Signed:
Dariusz Piotrowski PL Laboratory Manager Geotechnical Section Date Reported: 06/12/2017	Darren Berrill Geotechnical General Manager for and on behalf of i2 Analytical I td

"Opinions and interpretations expressed here in are outside of the scope of the UKAS Accreditation. This report may not be reproduced other than in full without the prior written approval of the issuing laboratory. The results included within the report are representative of the samples submitted for analysis. The analysis was carried out at i2 Analytical Limited, ul. Pionierow 39, 41-711 Ruda Slaska, Poland."

Approved:	Signed:
Dariusz Piotrowski PL Laboratory Manager Geotechnical Section Date Reported: 06/12/2017	Darren Berrill Geotechnical General Manager


"Opinions and interpretations expressed here in are outside of the scope of the UKAS Accreditation. This report may not be reproduced other than in full without the prior written approval of the issuing laboratory. The results included within the report are representative of the samples submitted for analysis. The analysis was carried out at i2 Analytical Limited, ul. Pionierow 39, 41-711 Ruda Slaska, Poland."

Approved:		Signed:	
Dariusz Piotrowski PL Laboratory Manager Geotechnical Section		Darren Berrill Geotechnical General Manager	
Date Reported:	06/12/2017		


Page 1 of 1

"Opinions and interpretations expressed here in are outside of the scope of the UKAS Accreditation. This report may not be reproduced other than in full without the prior written approval of the issuing laboratory. The results included within the report are representative of the samples submitted for analysis. The analysis was carried out at i2 Analytical Limited, ul. Pionierow 39, 41-711 Ruda Slaska, Poland."

Approved:		Signed:	
Dariusz Piotrowski PL Laboratory Manager Geotechnical Section Date Reported:	06/12/2017	Darren Berrill Geotechnical General Manager	

"Opinions and interpretations expressed here in are outside of the scope of the UKAS Accreditation. This report may not be reproduced other than in full without the prior written approval of the issuing laboratory. The results included within the report are representative of the samples submitted for analysis. The analysis was carried out at i2 Analytical Limited, ul. Pionierow 39, 41-711 Ruda Slaska, Poland."

Approved:	Signed:
Dariusz Piotrowski PL Laboratory Manager Geotechnical Section Date Reported: 06/12/2017	Darren Berrill Geotechnical General Manager

Page 1 of 1

"Opinions and interpretations expressed here in are outside of the scope of the UKAS Accreditation. This report may not be reproduced other than in full without the prior written approval of the issuing laboratory. The results included within the report are representative of the samples submitted for analysis. The analysis was carried out at i2 Analytical Limited, ul. Pionierow 39, 41-711 Ruda Slaska, Poland."

Summary of Classification Test Results

Client:	BWB Consulting Limited
Client Address:	5th Floor
	Waterfront House
	Nottingham
	NG2 3DQ
Contact:	Patrick Taylor
Site Name:	Witham St Hughs, Ph3 S38 Design
Site Address:	Not Given

Test results

Client Reference: NTM2082 Job Number: 17-68371 Date Sampled: Not Given Date Received: 09/11/2017 Date Tested: 01/12/2017 Sampled By: Not Given

			Sa	mple			Density		M/C		PD			
Laboratory Reference	Hole No.	Reference	Top depth [m]	Base depth [m]	Туре	Soil Description	bulk	dry		% Passing 425um	LL	PL	PI	
862235	TP01	2	1.50	1.50	В	Yellowish brown slightly clayey gravelly SAND	Mg/m3	Mg/m3	% 12	%	%	%	%	Mg/m3
862237	TP03	7	0.90	0.90	В	Yellowish brown gravelly clayey SAND			11					
862240	TP06	16	1.50	1.50	В	Brown clayey very sandy GRAVEL			7.7					
862243	TP08	24	0.90	0.90	В	Yellowish brown clayey very sandy GRAVEL			7.0					
862244	TP09	28	1.80	1.80	В	Dark brown slightly gravelly slightly sandy CLAY			24	94	58	24	34	
862245	TP10	30	0.50	0.50	В	Yellowish brown slightly gravelly CLAY			29	94	75	33	42	
862248	TP11	36	1.30	1.30	В	Dark brown slightly gravelly CLAY			20	96	63	30	33	
862249	TP12	39	0.60	0.60	В	Dark brown CLAY			30	100	85	28	57	
862252	TP14	46	0.50	0.50	В	Yellowish brown CLAY			33	100	69	25	44	
862253	TP15	49	1.20	1.20	В	Dark brown slightly sandy CLAY			20	100	47	21	26	

Comments:

Approved:

Dariusz Piotrowski PL Laboratory Manager Geotechnical Section

Date Reported: 06/12/2017

"Opinions and interpretations expressed herein are outside of the scope of the UKAS Accreditation. This report may not be reproduced other than in full without the prior written approval of the issuing laboratory. The results included within the report are representative of the samples submitted for analysis. The analysis was carried out at i2 Analytical Limited, ul. Pionierow 39, 41-711 Ruda Slaska, Poland."

Signed:

Darren Berrill

Geotechnical General Manager

Summary of Classification Test Results

Client:	BWB Consulting Limited	
Client Address:	5th Floor	
	Waterfront House	
	Nottingham	
	NG2 3DQ	
Contact:	Patrick Taylor	
Site Name:	Witham St Hughs, Ph3 S38 Design	
Site Address:	Not Given	
Site Name:	Nottingham NG2 3DQ Patrick Taylor Witham St Hughs, Ph3 S38 Design	

Test results

Client Reference: NTM2082 Job Number: 17-68371 Date Sampled: Not Given Date Received: 09/11/2017 Date Tested: 01/12/2017 Sampled By: Not Given

			Sa	mple			De	nsity	M/C		Atter	berg		PD
Laboratory Reference	Hole No.	Reference	Top depth [m]	Base depth [m]	Туре	Soil Description	bulk	dry		% Passing 425um	LL	PL	PI	
							Mg/m3	Mg/m3	%	%	%	%	%	Mg/m3
862254	TP16	52	0.40	0.40	В	Yellowish brown slightly gravelly sandy CLAY			21	77	39	19	20	
862256	TP17	55	1.50	1.50	В	Dark brown slightly gravelly sandy CLAY			24	90	38	15	23	
862258	TP18	60	0.60	0.60	В	Yellowish brown slightly gravelly slightly sandy CLAY			22	98	56	24	32	
862260	TP18	62	3.40	3.50	В	Dark grey CLAY			18					
862261	TP19	64	1.10	1.10	В	Dark brown slightly gravelly CLAY			20	99	63	24	39	
862262	TP20	67	2.10	2.10	В	Dark brown slightly sandy CLAY			22	100	55	24	31	
862263	TP21	69	1.20	1.20	В	Dark brown slightly gravelly CLAY			26	99	62	25	37	
862264	TP22	72	0.60	0.60	В	Yellowish brown slightly sandy CLAY			28	100	48	21	27	
862266	TP23	78	1.20	1.20	В	Dark brown CLAY			33	100	77	28	49	
862268	TP24	81	0.90	0.90	В	Yellowish brown slightly gravelly slightly sandy CLAY			22	98	49	19	30	

Comments:

Approved:

Dariusz Piotrowski PL Laboratory Manager Geotechnical Section

Date Reported: 06/12/2017

"Opinions and interpretations expressed herein are outside of the scope of the UKAS Accreditation. This report may not be reproduced other than in full without the prior written approval of the issuing laboratory. The results included within the report are representative of the samples submitted for analysis. The analysis was carried out at Z Analytical Limited, ul. Pionierow 39, A1-711 Ruds Isaka, Poland." Signed:

Darren Berrill

Geotechnical General Manager

Summary of Classification Test Results

Client:	BWB Consulting Limited
Client Address:	5th Floor
	Waterfront House
	Nottingham
	NG2 3DQ
Contact:	Patrick Taylor
Site Name:	Witham St Hughs, Ph3 S38 Design
Site Address:	Not Given

Test results

i2 Analytical Ltd 7 Woodshots Meadow Croxley Green Business Park Watford Herts WD18 8YS

Client Reference: NTM2082 Job Number: 17-68371 Date Sampled: Not Given Date Received: 09/11/2017 Date Tested: 01/12/2017 Sampled By: Not Given

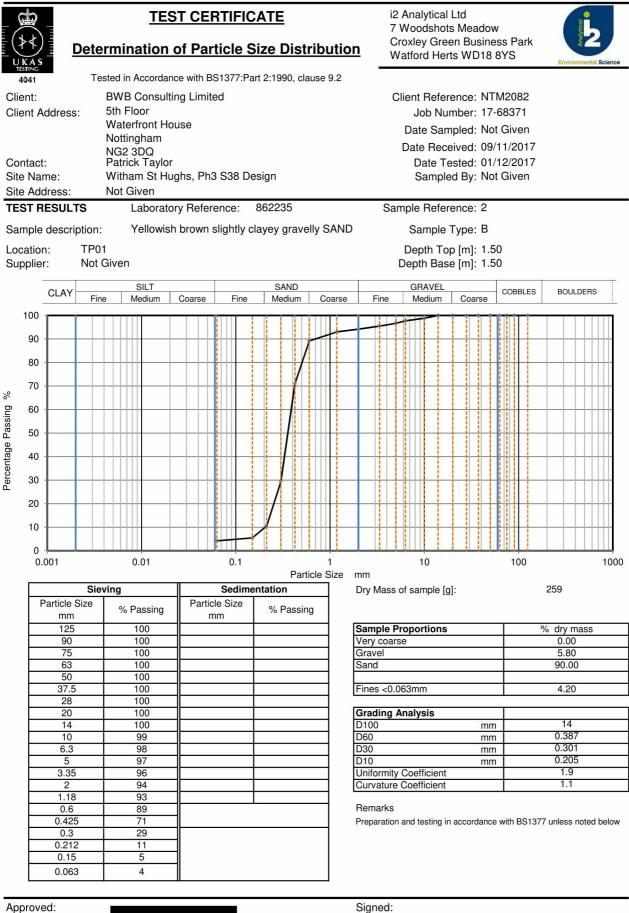
		Sample					Density		M/C	Atterberg				PD
Laboratory Reference	Hole No.	Reference	Top depth [m]	Base depth [m]	Туре	Soil Description	bulk	dry	W/O	% Passing 425um	LL	PL	PI	10
			6.9				Mg/m3	Mg/m3	%	%	%	%	%	Mg/m3
862269	TP25	83	0.50	0.50	В	Dark brown slightly gravelly CLAY			25	94	68	27	41	
														9 B

Comments:

Approved:

Dariusz Piotrowski PL Laboratory Manager Geotechnical Section

Date Reported: 06/12/2017

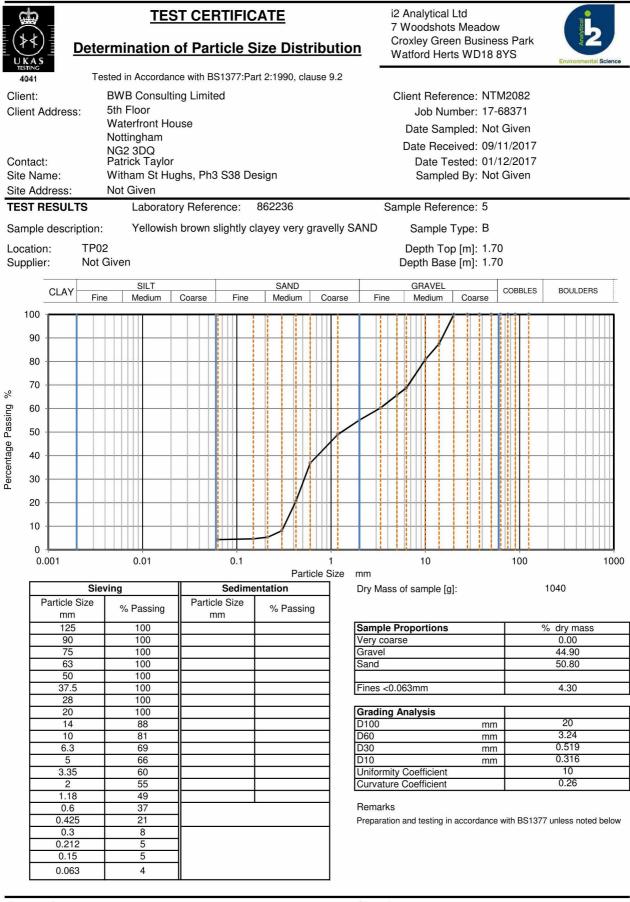

Signed:

Geotec

Darren Berrill Geotechnical General Manager

"Opinions and interpretations expressed herein are outside of the scope of the UKAS Accreditation. This report may not be reproduced other than in full without the prior written approval of the issuing laboratory. The results included within the report are representative of the samples submitted for analysis. The analysis was carried out at 12 Analytical Limited, ul. Pionierow 39, 41-711 Ruda Slaska, Poland."

Dariusz Piotrowski PL Laboratory Manager Geotechnical Section


Date Reported:

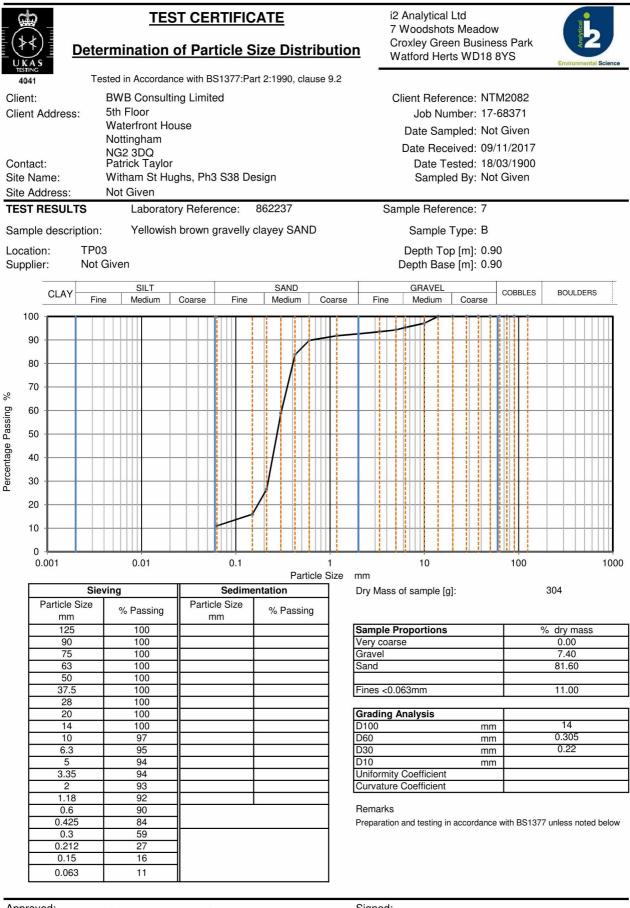
06/12/2017

"Opinions and interpretations expressed herein are outside of the scope of the UKAS Accreditation. This report may not be reproduced other than in full without the prior written approval of the issuing laboratory. The results included within the report are representative of the samples submitted for analysis The analysis was carried out at i2 Analytical Limited, ul. Pionierow 39, 41-711 Ruda Slaska, Poland.'

Darren Berrill Geotechnical General Manager

Dariusz Piotrowski PL Laboratory Manager Geotechnical Section

Date Reported:


06/12/2017

"Opinions and interpretations expressed herein are outside of the scope of the UKAS Accreditation. This report may not be reproduced other than in full without the prior written approval of the issuing laboratory. The results included within the report are representative of the samples submitted for analysis The analysis was carried out at i2 Analytical Limited, ul. Pionierow 39, 41-711 Ruda Slaska, Poland.'

Signed:

Darren Berrill Geotechnical General Manager

Dariusz Piotrowski PL Laboratory Manager Geotechnical Section

Date Reported:

06/12/2017

Signed:

Darren Berrill Geotechnical General Manager

for and on behalf of i2 Analytical Ltd

"Opinions and interpretations expressed herein are outside of the scope of the UKAS Accreditation. This report may not be reproduced other than in full without the prior written approval of the issuing laboratory. The results included within the report are representative of the samples submitted for analysis

The analysis was carried out at i2 Analytical Limited, ul. Pionierow 39, 41-711 Ruda Slaska, Poland.'

		Determi		T CERTIF		ATE ze Distrib	utic	on i2 Analytical Ltd 7 Woodshots Meadow Croxley Green Business Park Watford Herts WD18 8YS
Clier Clier Con Site	nt Address	BWE 5th F Wate Notti NG2 Patri With	3 Consultii Floor erfront Hou ingham 2 3DQ ick Taylor	ng Limited		2:1990, clause ign	9.2	Client Reference: NTM2082 Job Number: 17-68371 Date Sampled: Not Given Date Received: 09/11/2017 Date Tested: 01/12/2017 Sampled By: Not Given
TES	T RESULT	ſS	Laborator	y Reference	: 8	62238		Sample Reference: 11
Sam	ple descri	otion:	Brown gra	avelly clayey	SAN	D		Sample Type: B
	ation: plier:	TP04 Not Giver	1					Depth Top [m]: 1.20 Depth Base [m]: 1.20
	CLAY	Fine	SILT Medium	Coarse F	ine	SAND Medium C	oarse	e Fine Medium Coarse COBBLES BOULDERS
	90						_	
	80					- <i>(</i>		
	70					/		
g %	60							
assin								
ge I	50							
enta	40					/		
Perc	30							
	20							
	10							
	0.001		0.01	0.	.1	Particle	1 Size	10 100 1000
	Dertiele	Sieving				tation		Dry Mass of sample [g]: 324
	Particle S mm	Size %	Passing	Particle Siz mm	2e	% Passing		
	125 90		100 100					Sample Proportions % dry mass Very coarse 0.00
	75		100					Gravel 6.80
	63 50		100 100					Sand 77.90
	37.5		100					Fines <0.063mm 15.30
	28 20		100 100					Grading Analysis
	14		100					D100 mm 14
	10 6.3		97 96		$-\Gamma$		-	D60 mm 0.292 D30 mm 0.165
	5		95					D30 mm 0.165 D10 mm
	3.35		94]	Uniformity Coefficient
	2		93 92					Curvature Coefficient
	0.6		90				1	Remarks
	0.425	5	84 62				-	Preparation and testing in accordance with BS1377 unless noted below
	0.212		41					
	0.15		26					
	0.063	3	15					
App	roved:							Signed:

Dariusz Piotrowski PL Laboratory Manager Geotechnical Section

Date Reported: 06/

06/12/2017

"Opinions and interpretations expressed herein are outside of the scope of the UKAS Accreditation. This report may not be reproduced other than in full without the prior written approval of the issuing laboratory. The results included within the report are representative of the samples submitted for analysis. The analysis was carried out at i2 Analytical Limited, ul. Pionierow 39, 41-711 Ruda Slaska, Poland."

Signed:

Darren Berrill Geotechnical General Manager

Tested in Accordance with BS1377:Part 2:1980, clause 9.2 Client: EWB Consulting Limited Waterfront House Nottingham NO2 3DO Client Reference: NM2082 Job Number: 17-68371 Date Sampled: Not Clingham Not 2 3DO Date Sampled: Not Clingham Contact: Witham St Hughs, Ph3 S38 Design Date Sampled: Not Clingham Sample description: Vellowish brown gravelly SAND Sample Reference: 18 Contact: Not Given Depth Top [11:60] Bound Sampled: Bound Sampled: <th< th=""><th></th><th></th><th>Deterr</th><th></th><th>ST CEF</th><th></th><th><u>CATE</u> Size Distri</th><th>butio</th><th>i2 Analytical Ltd 7 Woodshots Meado Croxley Green Busin Watford Herts WD1</th><th>ness Park</th><th>Environmental Science</th></th<>			Deterr		ST CEF		<u>CATE</u> Size Distri	butio	i2 Analytical Ltd 7 Woodshots Meado Croxley Green Busin Watford Herts WD1	ness Park	Environmental Science
TEST RESULTS Laboratory Reference: 862239 Sample Reference: 13 Sample description: Yellowish brown gravelly SAND Sample Type: B Location: TP05 Depth Top (m): 1.60 Supplier: Not Given Depth Top (m): 1.60 CLAV Fine Medum Coarse Fine Medum Coarse coesse coesse <td< td=""><td>Clie Clie Cor Site</td><td>ent: ent Address ntact: e Name:</td><td>8 5 N N P W</td><td>WB Consul th Floor /aterfront He ottingham G2 3DQ atrick Taylo /itham St He</td><td>ting Limite ouse r</td><td>ed</td><td></td><td>se 9.2</td><td>Job Number: 1 Date Sampled: N Date Received: 0 Date Tested: 0</td><td>7-68371 ot Given 9/11/2017 1/12/2017</td><td></td></td<>	Clie Clie Cor Site	ent: ent Address ntact: e Name:	8 5 N N P W	WB Consul th Floor /aterfront He ottingham G2 3DQ atrick Taylo /itham St He	ting Limite ouse r	ed		se 9.2	Job Number: 1 Date Sampled: N Date Received: 0 Date Tested: 0	7-68371 ot Given 9/11/2017 1/12/2017	
Location: TP05 Supplier: Depth Top [m]: 1.60 Depth Base [m]: 1.60 V Fine SAND Carse Fine SAND Carse Correct Correct Boulders 100 00 00 00 Fine Medium Coarse Fine SAND SA	-				ory Refere	ence:	862239		Sample Reference: 1	3	
Location: TP05 Supplier: Not Given CLAY Fine Medium Coarse Fine Medium Coarse OBBLES BOULDERS CLAY Fine Medium Coarse Fine Medium Coarse OBBLES BOULDERS Dy Mass of sample [g]: 000 HILL OF THE Size Medium Coarse OBBLES BOULDERS Dy Mass of sample [g]: 006 HILL OF THE Size Medium Coarse OBBLES BOULDERS Dy Mass of sample [g]: 006 HILL OF THE Size Medium Coarse OBBLES BOULDERS Dy Mass of sample [g]: 006 HILL OF THE Size Medium Coarse OBBLES BOULDERS Dy Mass of sample [g]: 006 HILL OF THE Size Medium Coarse OBBLES BOULDERS Dy Mass of sample [g]: 006 HILL OF THE Size Medium Coarse OBBLES BOULDERS Dy Mass of sample [g]: 006 HILL OF THE Size Medium Coarse OBBLES BOULDERS Dy Mass of sample [g]: 006 HILL OF THE Size Medium Coarse	Sar	nple descrir	otion:	Yellowis	h brown c	ravelly	SAND		Sample Type: B		
CLAN Fine Medium Coarse Fine Medium Coarse Fine Medium Coarse BOULES	Loc	ation:	TP05						Depth Top [m]: 1	.60	
$ \frac{10^{\circ}}{90} \frac{10^{\circ}}{90}$		CLAY	Fine		Caaraa	Fine		Caaraa		COBBLES	BOULDERS
No No<		100	Fine	wealum	Coarse	Fine		Coarse	Fine Medium Coarse	\$8-8-8-	
No No<											
Sieving Sedimentation 90 10 0.1 0.1 10 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>Γ</td> <td></td> <td></td> <td></td> <td></td>							Γ				
Signal Signal<											
20 10 10 100 100 0 0.001 0.01 0.1 1 10 100 100 Particle Size mm mm Dry Mass of sample [g]: 306 Particle Size % Passing Particle Size mm Dry Mass of sample [g]: 306 125 100 100 140 140 140 140 10 90 100 140 140 140 140 10 99 100 140 100 140 100 20 100 100 100 100 100 100 11 10 99 100 100 100 100 100 120 100 <td rowspan="2"></td> <td></td>											
20 10 0 10 10 100 10 0 0.001 0.01 0.1 1 10 100 100 Particle Size mm Dry Mass of sample [g]: 306 Sedimentation 125 100 Dry Mass of sample [g]: 306 Sample Proportions % dry mass 90 100 0 <td< td=""><td>60</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>		60									
20 10 0 10 10 100 10 0 0.001 0.01 0.1 1 10 100 100 Particle Size mm Dry Mass of sample [g]: 306 Sedimentation 125 100 Dry Mass of sample [g]: 306 Sample Proportions % dry mass 90 100 0 <td< td=""><td>e Pas</td><td>50</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>	e Pas	50									
20 10 10 100 100 0 0.001 0.01 0.1 1 10 100 100 Particle Size mm mm Dry Mass of sample [g]: 306 Particle Size % Passing Particle Size mm Dry Mass of sample [g]: 306 125 100 100 140 140 140 140 10 90 100 140 140 140 140 10 99 100 140 100 140 100 20 100 100 100 100 100 100 11 10 99 100 100 100 100 100 120 100 <td>ntage</td> <td>40</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	ntage	40									
20 10 10 100 100 0 0.001 0.01 0.1 1 10 100 100 Particle Size mm mm Dry Mass of sample [g]: 306 Particle Size % Passing Particle Size mm Dry Mass of sample [g]: 306 125 100 100 140 140 140 140 10 90 100 140 140 140 140 10 99 100 140 100 140 100 20 100 100 100 100 100 100 11 10 99 100 100 100 100 100 120 100 <td>erce</td> <td>30</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	erce	30									
Sieving Sedimentation Particle Size mm 125 100 125 100 125 100 125 100 125 100 125 100 125 100 125 100 125 100 125 100 37.5 100 20 100 20 100 14 100 10 99 20 100 14 100 1335 95 2 94 0.6 88 0.425 63 0.3 24 0.15 4	ш.	20									
0.001 0.01 0.1 1 10 100 100 Particle Size mm Particle Size mm 125 100 100 100 125 100 100 100 125 100 100 100 125 100 100 100 125 100 100 100 125 100 100 100 125 100 100 100 125 100 100 100 125 100 100 100 50 100 100 100 14 100 100 100 14 100 100 100 14 100 100 100 1335 95 100 100 1.18 94 100 100 0.6 88 100 110 0.75 4 100 100 1.18 94 100 110 0.212 9 111 10 0.15 4 100 111		10									
Sieving Sedimentation Particle Size mm % Passing Particle Size mm % Passing 125 100 90 100 75 100 63 100 37.5 100 28 100 20 100 14 100 6.3 98 6.3 98 1.18 94 0.6 88 0.425 63 0.212 9 0.15 4				0.01		0.1				100	1000
Particle Size mm % Passing mm Particle Size mm % Passing 125 100			Sievir	na		Sedim		e Size			306
Imm Imm <td></td> <td>and the second second second second</td> <td></td> <td></td> <td></td> <td>e Size</td> <td>10.000 mil</td> <td></td> <td>Dry made of campio [g].</td> <td></td> <td></td>		and the second second second second				e Size	10.000 mil		Dry made of campio [g].		
90 100 Very coarse 0.00 75 100 560 560 63 100 50 100 37.5 100 58 91.40 20 100 50 91.40 20 100 50 50 14 100 50 100 5 96 50 50 3.35 95 50 50 2 94 50 1.18 94 0.6 88 50 1.11 1.11 1.18 94 50 1.11 1.11 0.6 88 50 1.11 1.11 1.18 94 50 1.11 1.11 Net and testing in accordance with BS1377 unless noted below 1.11 1.11					m	m			Sample Proportions		% drv mass
63 100 91.40 50 100 100 37.5 100 100 28 100 100 14 100 14 10 99 14 5 96 100 3.35 95 100 2 94 100 1.18 94 1.1 0.6 88 1.1 0.4225 63 63 0.3 24 1.15 0.15 4 4		90		100					Very coarse		0.00
50 100 37.5 100 28 100 20 100 14 100 10 99 6.3 98 5 96 3.35 95 2 94 1.18 94 0.6 88 0.425 63 0.3 24 0.212 9 0.15 4					-			_			
28 100 20 100 14 100 10 99 6.3 98 5 96 3.35 95 2 94 1.18 94 0.6 88 0.425 63 0.3 24 0.15 4		50		100							
20 100 Grading Analysis 14 100 99 10 99 0.416 6.3 98 0.416 5 96 0.317 0.6 88 0.425 0.3 24 0.212 0.15 4					-			_	Fines <0.063mm		2.90
10 99 0.416 6.3 98 0.317 5 96 0.317 3.35 95 0.010 1.18 94 0.15 0.6 88 0.425 0.3 24 0.212 0.15 4 0.15		20		100					Grading Analysis		
6.3 98 0.317 5 96 96 3.35 95 95 2 94 94 1.18 94 94 0.6 88 0.425 0.3 24 9 0.15 4								_			
3.35 95 Informity Coefficient 1.9 2 94 Informity Coefficient 1.1 1.18 94 Informity Coefficient 1.1 0.6 88 Informity Coefficient 1.1 0.425 63 Informity Coefficient 1.1 0.3 24 Informity Coefficient 1.1 0.15 4 Informity Coefficient 1.1		6.3		98					D30 m		0.317
2 94 Curvature Coefficient 1.1 1.18 94 Image: Curvature Coefficient 1.1 0.6 88 Image: Curvature Coefficient 1.1 0.425 63 Image: Curvature Coefficient 1.1 0.3 24 Image: Curvature Coefficient 1.1 0.212 9 Image: Curvature Coefficient 1.1 0.15 4 Image: Curvature Coefficient 1.1										m	
1.18 94 0.6 88 0.425 63 0.3 24 0.212 9 0.15 4					-			-			
0.6 88 Remarks 0.425 63 Preparation and testing in accordance with BS1377 unless noted bell 0.3 24 Preparation and testing in accordance with BS1377 unless noted bell 0.212 9 Preparation and testing in accordance with BS1377 unless noted bell				AUG. 2012				-	Survature Coomolont		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		0.6		88							
0.212 9 0.15 4				A 5-41-67-0				_	Preparation and testing in accordan	ce with BS137	7 unless noted below
0.15 4					-1						

Dariusz Piotrowski PL Laboratory Manager Geotechnical Section

Date Reported:

06/12/2017

Signed:

Darren Berrill Geotechnical General Manager

for and on behalf of i2 Analytical Ltd

 $"\ensuremath{\mathsf{Opinions}}$ and interpretations expressed herein are outside of the scope of the UKAS Accreditation. This report may not be reproduced other than in full without the prior written approval of the issuing laboratory. The results included within the report are representative of the samples submitted for analysis.

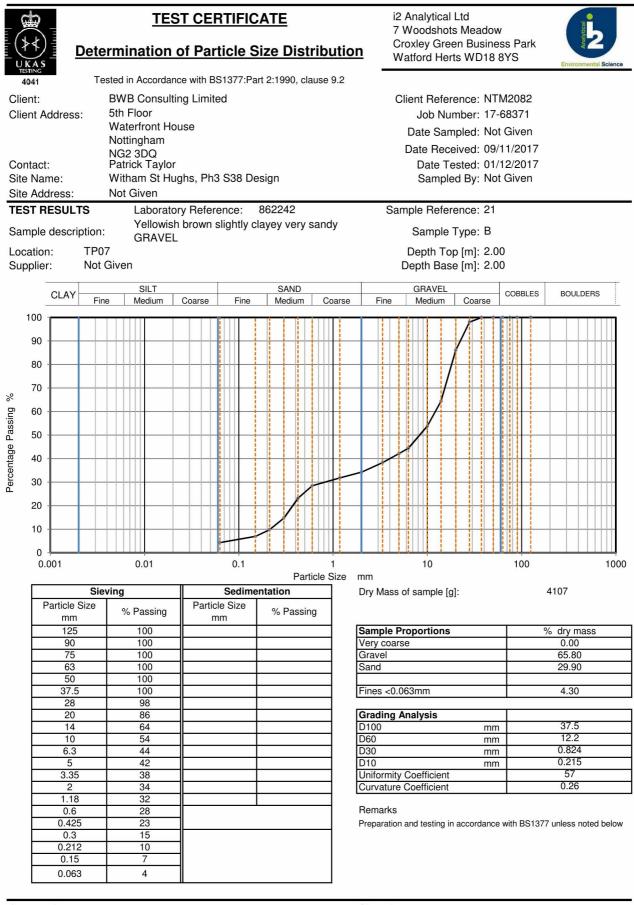
The analysis was carried out at i2 Analytical Limited, ul. Pionierow 39, 41-711 Ruda Slaska, Poland."

		Determ			RTIFIC	ATE Size Distrib	utic	i2 Analytical Ltd 7 Woodshots Meado Croxley Green Busine Watford Herts WD18	ess Park	Environmental Science
Conta Site N	ıt: It Address	BW 5th Wa Not Pat Wit	in Accordance B Consultin Floor terfront Hoo tingham 2 3DQ rick Taylor ham St Hug Given	ng Limite use	ed	rt 2:1990, clause esign	9.2	Client Reference: NT Job Number: 17 Date Sampled: No Date Received: 09 Date Tested: 01 Sampled By: No	-68371 t Given /11/2017 /12/2017	
	RESULT		Laborato	ry Refer	ence:	862240		Sample Reference: 16		
Sam	ple descrip	otion:	Brown cla	ayey ver	y sandy	GRAVEL		Sample Type: B		
Loca ⁻ Supp	tion:	TP06 Not Give						Depth Top [m]: 1.5 Depth Base [m]: 1.5		
	CLAY	-	SILT	0	E.	SAND		GRAVEL	COBBLES	BOULDERS
1(6	Fine	Medium	Coarse	Fine	Medium C	oarse	Fine Medium Coarse		
ç	90									
8	80									
%	70									
	60 -		+++							
Percentage Passing	50									
itage	40						1			
ercer	30					Γ				
	20									
	0.001		0.01		0.1			10	100	1000
	0.001		0.01		0.1	Particle	ı Size	mm	100	1000
ļ		Sieving			Sedime	entation		Dry Mass of sample [g]:		2661
	Particle S mm	%	% Passing		le Size Im	% Passing				
	125		100					Sample Proportions	0	% dry mass
ŀ	90 75		100	∦────			-	Very coarse Gravel	-	0.00 55.20
t	63		100					Sand		39.70
-	50 37.5		100 100					Fines <0.063mm	_	5.10
ŀ	28		100			-				5.10
	20		83					Grading Analysis		
ļ	14		69				-	D100 mn	_	28 10.1
ŀ	10 6.3		60 52	╢────			-	D60 mn D30 mn	_	0.52
	5		50					D10 mn		0.302
	3.35		48]	Uniformity Coefficient		34
ļ	2		45				4	Curvature Coefficient		0.088
ŀ	1.18 0.6		42 36	╢────			-	Remarks		
ŀ	0.425		22	1				Preparation and testing in accordance	e with BS137	7 unless noted below
	0.3		10				1			
ļ	0.212		7	1						
-	0.15		6							
L	0.063		5							
Appro	oved:							Signed:		

Dariusz Piotrowski PL Laboratory Manager Geotechnical Section

Date Reported: 06/12

06/12/2017


Signed:

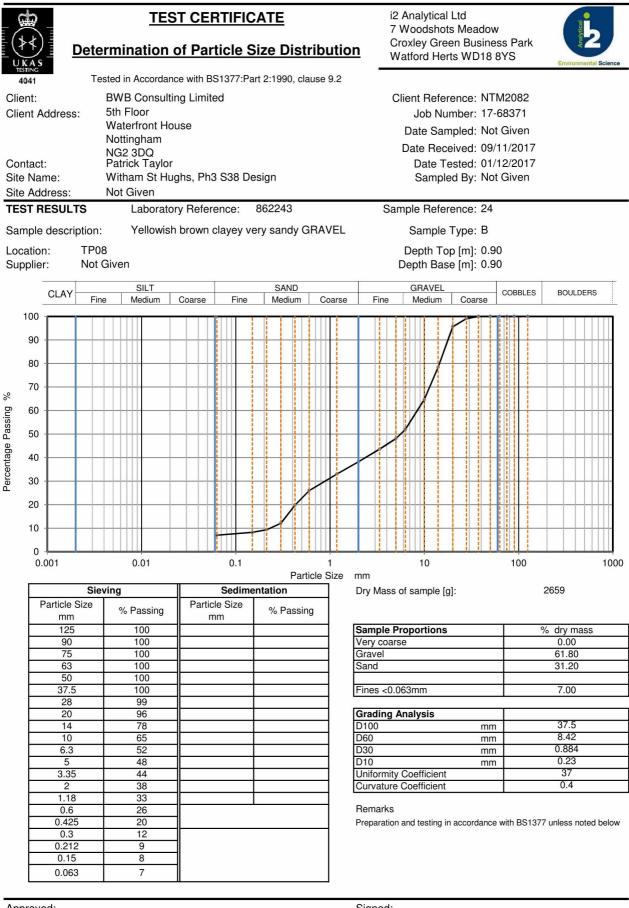
Darren Berrill Geotechnical General Manager

for and on behalf of i2 Analytical Ltd

"Opinions and interpretations expressed herein are outside of the scope of the UKAS Accreditation. This report may not be reproduced other than in full without the prior written approval of the issuing laboratory. The results included within the report are representative of the samples submitted for analysis. The analysis was carried out at i2 Analytical Limited, ul. Pionierow 39, 41-711 Ruda Slaska, Poland."

Dariusz Piotrowski PL Laboratory Manager Geotechnical Section

Date Reported: 06/12

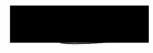

06/12/2017

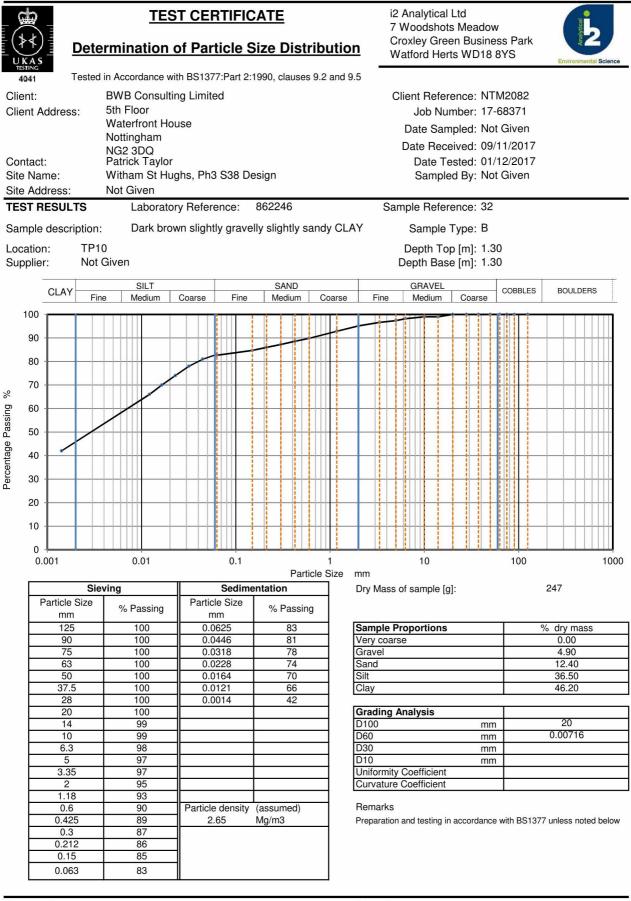
"Opinions and interpretations expressed herein are outside of the scope of the UKAS Accreditation. This report may not be reproduced other than in full without the prior written approval of the issuing laboratory. The results included within the report are representative of the samples submitted for analysis. The analysis was carried out at i2 Analytical Limited, ul. Pionierow 39, 41-711 Ruda Slaska, Poland."

Signed:

Darren Berrill Geotechnical General Manager

Dariusz Piotrowski PL Laboratory Manager Geotechnical Section


Date Reported:


06/12/2017

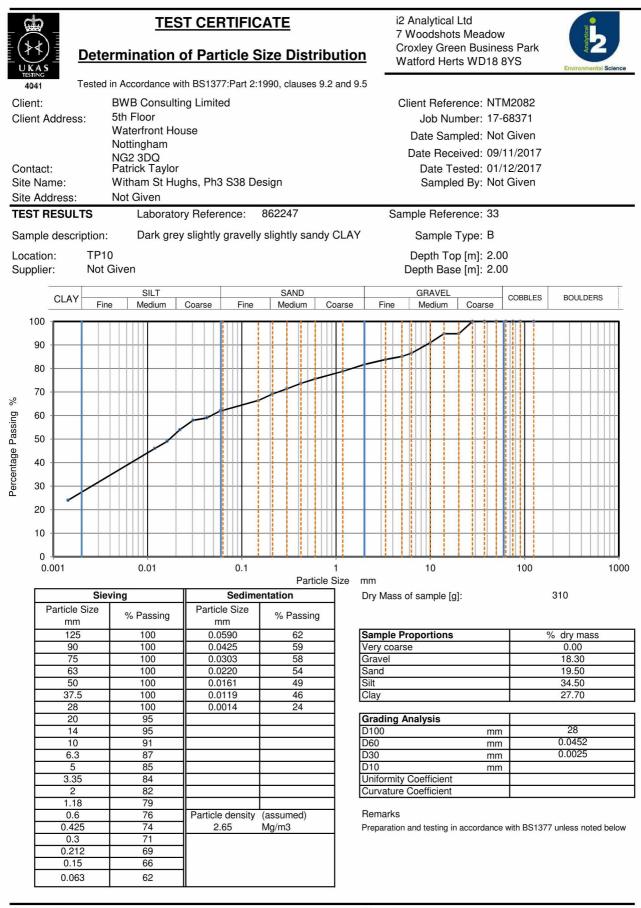
"Opinions and interpretations expressed herein are outside of the scope of the UKAS Accreditation. This report may not be reproduced other than in full without the prior written approval of the issuing laboratory. The results included within the report are representative of the samples submitted for analysis The analysis was carried out at i2 Analytical Limited, ul. Pionierow 39, 41-711 Ruda Slaska, Poland.'

Signed:

Darren Berrill Geotechnical General Manager

Dariusz Piotrowski PL Laboratory Manager Geotechnical Section

Date Reported: 06/


06/12/2017

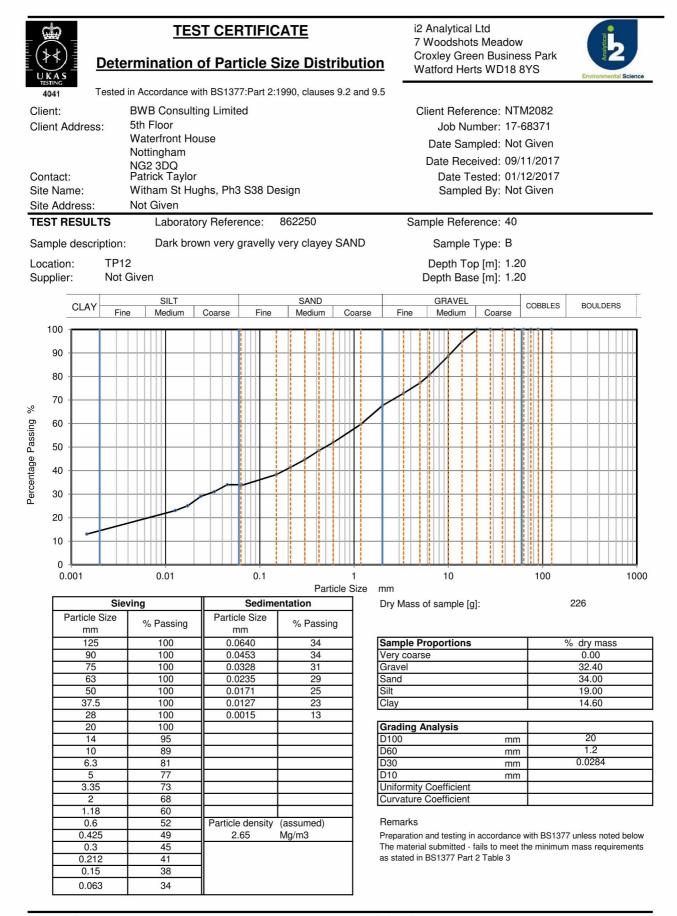
"Opinions and interpretations expressed herein are outside of the scope of the UKAS Accreditation. This report may not be reproduced other than in full without the prior written approval of the issuing laboratory. The results included within the report are representative of the samples submitted for analysis. The analysis was carried out at i2 Analytical Limited, ul. Pionierow 39, 41-711 Ruda Slaska, Poland."

Signed:

Darren Berrill Geotechnical General Manager

Dariusz Piotrowski PL Laboratory Manager Geotechnical Section

Date Reported:


06/12/2017

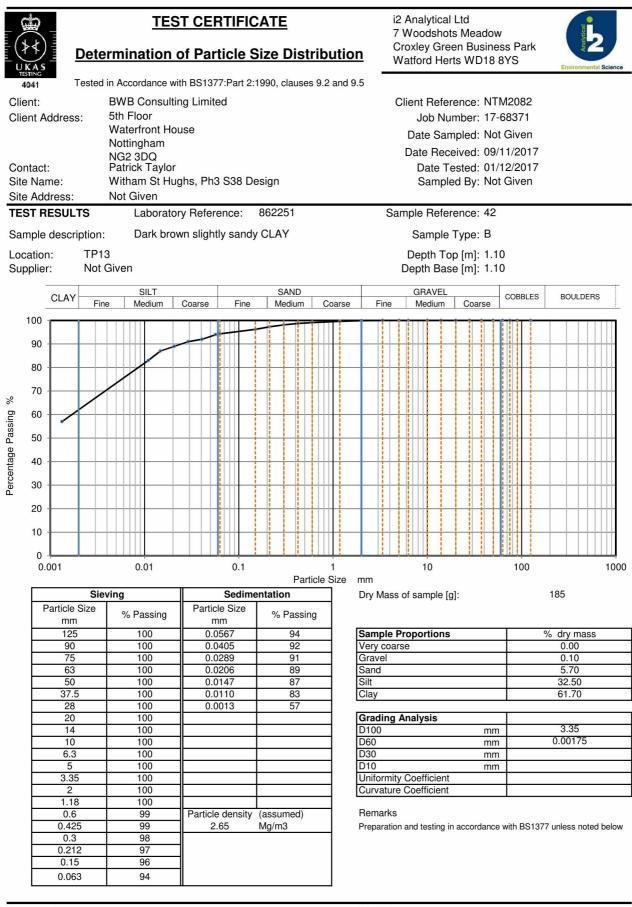
"Opinions and interpretations expressed herein are outside of the scope of the UKAS Accreditation. This report may not be reproduced other than in full without the prior written approval of the issuing laboratory. The results included within the report are representative of the samples submitted for analysis The analysis was carried out at i2 Analytical Limited, ul. Pionierow 39, 41-711 Ruda Slaska, Poland.'

Signed:

Darren Berrill Geotechnical General Manager

Dariusz Piotrowski PL Laboratory Manager Geotechnical Section

Date Reported: 06/12


06/12/2017

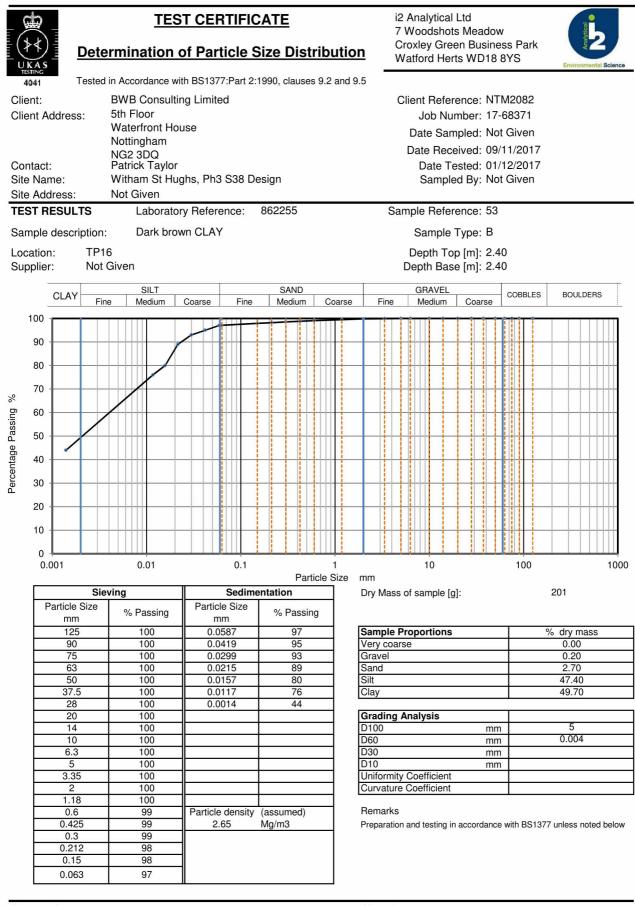
"Opinions and interpretations expressed herein are outside of the scope of the UKAS Accreditation. This report may not be reproduced other than in full without the prior written approval of the issuing laboratory. The results included within the report are representative of the samples submitted for analysis. The analysis was carried out at i2 Analytical Limited, ul. Pionierow 39, 41-711 Ruda Slaska, Poland."

Signed:

Darren Berrill Geotechnical General Manager

Dariusz Piotrowski PL Laboratory Manager Geotechnical Section

Date Reported: 06/


06/12/2017

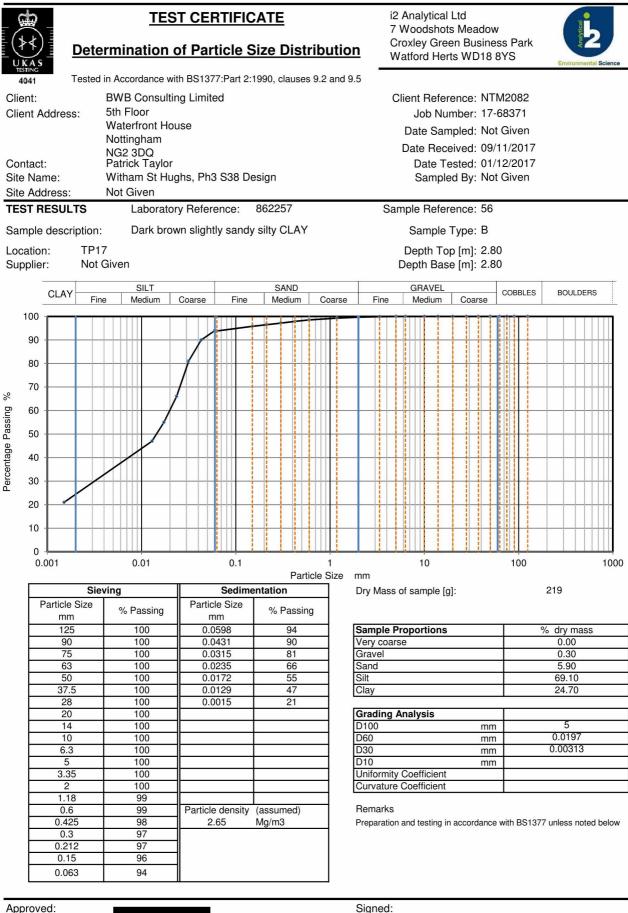
"Opinions and interpretations expressed herein are outside of the scope of the UKAS Accreditation. This report may not be reproduced other than in full without the prior written approval of the issuing laboratory. The results included within the report are representative of the samples submitted for analysis. The analysis was carried out at i2 Analytical Limited, ul. Pionierow 39, 41-711 Ruda Slaska, Poland."

Signed:

Darren Berrill Geotechnical General Manager

Dariusz Piotrowski PL Laboratory Manager Geotechnical Section

Date Reported: 06/

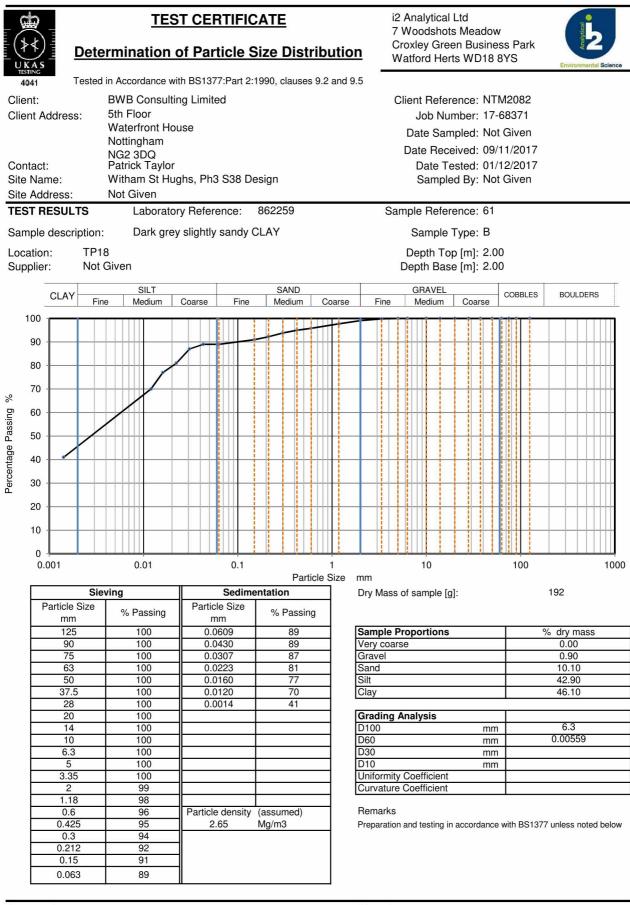

06/12/2017

"Opinions and interpretations expressed herein are outside of the scope of the UKAS Accreditation. This report may not be reproduced other than in full without the prior written approval of the issuing laboratory. The results included within the report are representative of the samples submitted for analysis. The analysis was carried out at i2 Analytical Limited, ul. Pionierow 39, 41-711 Ruda Slaska, Poland."

Signed:

Darren Berrill Geotechnical General Manager

Dariusz Piotrowski PL Laboratory Manager Geotechnical Section


Date Reported:

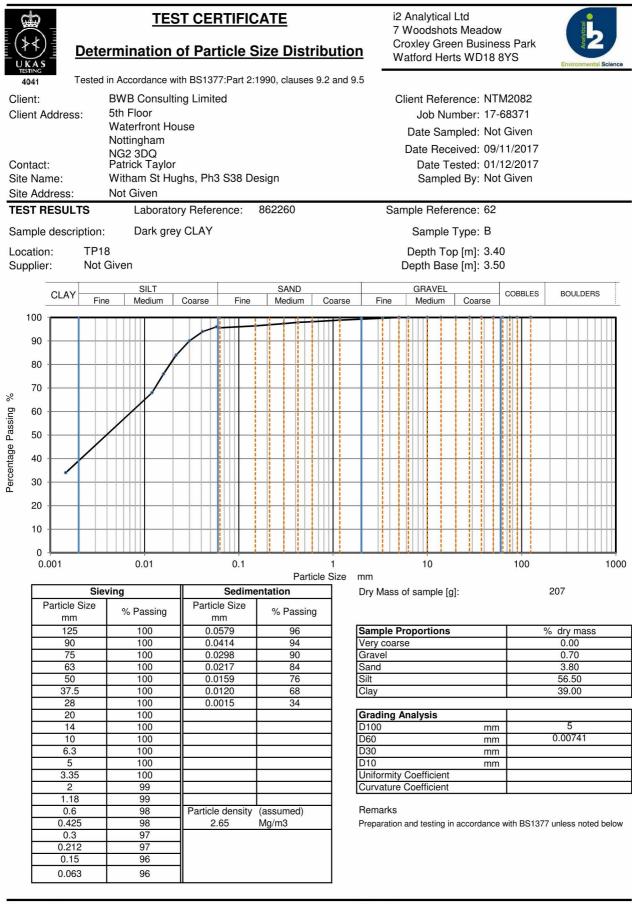
06/12/2017

"Opinions and interpretations expressed herein are outside of the scope of the UKAS Accreditation. This report may not be reproduced other than in full without the prior written approval of the issuing laboratory. The results included within the report are representative of the samples submitted for analysis The analysis was carried out at i2 Analytical Limited, ul. Pionierow 39, 41-711 Ruda Slaska, Poland.'

Darren Berrill Geotechnical General Manager

Dariusz Piotrowski PL Laboratory Manager Geotechnical Section

Date Reported: 06/12/


06/12/2017

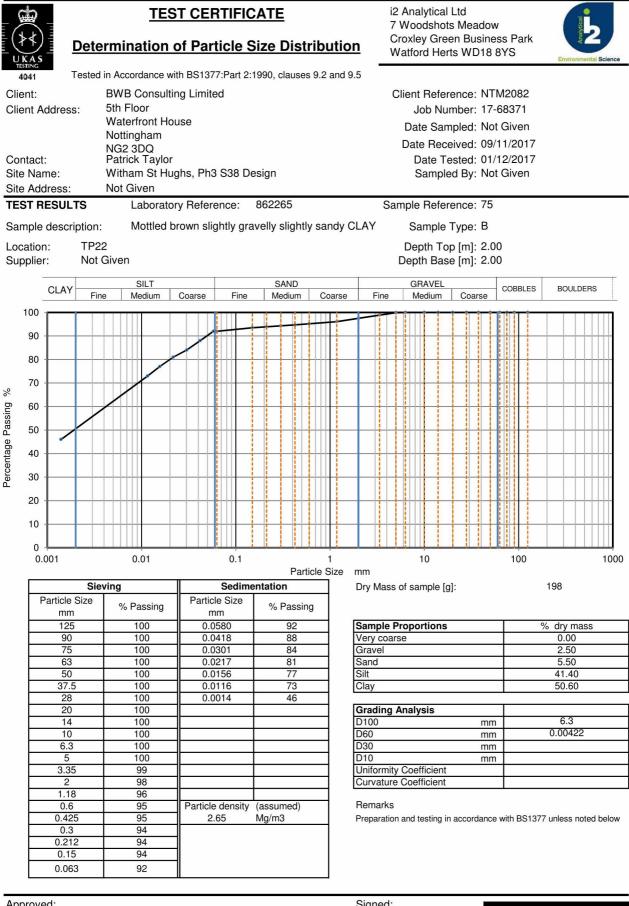
"Opinions and interpretations expressed herein are outside of the scope of the UKAS Accreditation. This report may not be reproduced other than in full without the prior written approval of the issuing laboratory. The results included within the report are representative of the samples submitted for analysis. The analysis was carried out at i2 Analytical Limited, ul. Pionierow 39, 41-711 Ruda Slaska, Poland."

Signed:

Darren Berrill Geotechnical General Manager

Dariusz Piotrowski PL Laboratory Manager Geotechnical Section

Date Reported: 06/12


06/12/2017

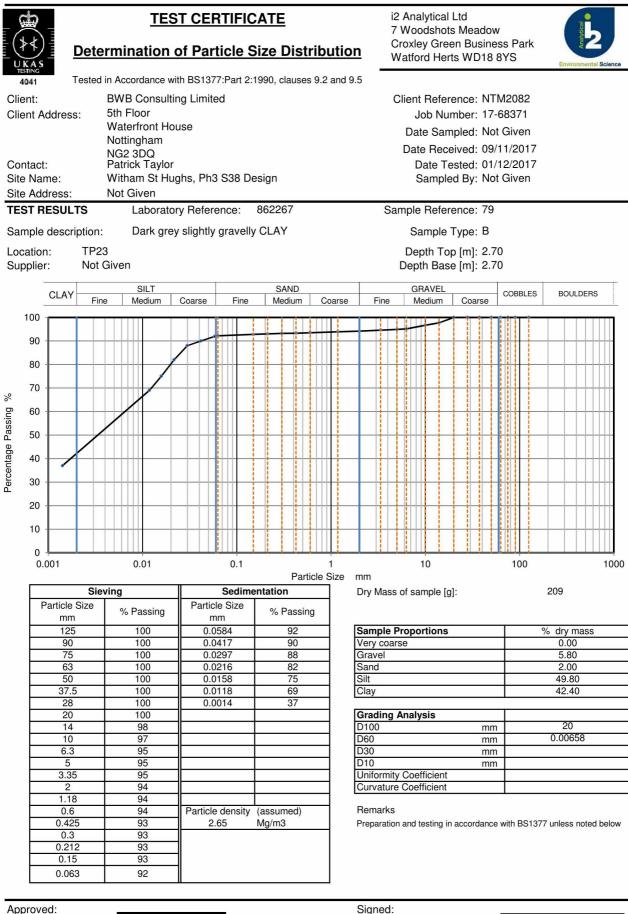
"Opinions and interpretations expressed herein are outside of the scope of the UKAS Accreditation. This report may not be reproduced other than in full without the prior written approval of the issuing laboratory. The results included within the report are representative of the samples submitted for analysis. The analysis was carried out at i2 Analytical Limited, ul. Pionierow 39, 41-711 Ruda Slaska, Poland."

Signed:

Darren Berrill Geotechnical General Manager

Dariusz Piotrowski PL Laboratory Manager Geotechnical Section

Date Reported:


06/12/2017

"Opinions and interpretations expressed herein are outside of the scope of the UKAS Accreditation. This report may not be reproduced other than in full without the prior written approval of the issuing laboratory. The results included within the report are representative of the samples submitted for analysis The analysis was carried out at i2 Analytical Limited, ul. Pionierow 39, 41-711 Ruda Slaska, Poland.'

Signed:

Darren Berrill Geotechnical General Manager

Dariusz Piotrowski PL Laboratory Manager Geotechnical Section

Date Reported:

06/12/2017

"Opinions and interpretations expressed herein are outside of the scope of the UKAS Accreditation. This report may not be reproduced other than in full without the prior written approval of the issuing laboratory. The results included within the report are representative of the samples submitted for analysis The analysis was carried out at i2 Analytical Limited, ul. Pionierow 39, 41-711 Ruda Slaska, Poland.'

Darren Berrill Geotechnical General Manager

		TEST CI	ERTIFIC	ATE			2 Analytic 7 Woodsł	cal Ltd nots Meadow			tical
(≯∢)	Determin	ation of C	alifornia	Bearing	Ratio			ireen Busines			Alaak
	0	ccordance w					Watford H	lerts WD18 8	BYS	F	Environmental Sci
4041 Client:	BWB Co	nsulting Lim	ited				Client B	eference: NT	M2082		
Client Address:	5th Floor	, 						Number: 17-			
	Waterfrom							Sampled: No			
	Nottingha NG2 3DC							Received: 09/			
Contact:	Patrick T							e Tested: 01/			
Site Name:		St Hughs, P	h3 S38 De	sign				npled By: No			
Site Address:	Not Give	n						,			
Test Results											
Laboratory Refe Hole No.:	rence: 8622 TP0							Top [m]: 0.90 Base [m]: 0.90			
Sample Referer								ole Type: B	•		
Specimen Prepa	ation:										
Condi	ion Rem	noulded						g details	No	ot soake	d
Detail	Rec	ompacted wit	h specified s	standard ef	fort using 2.	5kg ramm	er	of soaking			days
		-			-	U	Time to	o surface			days
•	e Description: al retained on 2	Yellowish b		y clayey SA	AND 2	%		t of swell reco			mm Ma/m2
							÷	nsity after soał	king		Mg/m3
Initial	Specimen detail		density		2.08	Mg/m3	Surcha	rge applied		8	kg
			ensity		1.85 13	Mg/m3 %				4.8	kPa
		WOISI	ure content		15	70					
7.00			Force v	Penetratio	on Plots				٦		
6.00					***				1		
5.00						×				- Top d	lata
7			×	* J			***			·· Top u	
¥ 4.00 •								^	4		orrectio
2.00 -										- Base	
e Ap		/	\boldsymbol{X}							Base	
0 2.00 -			-					_	·	- Base	Correcti
		N									
1.00 -		/							1		
0.00				*			* •		1		
0	1	2	3 Pe	netration n	nm 5	6		7	8		
Results		Curve		CBR Va	alues, %			Moisture			
		correction applied	2.5mm	5mm	Highest	Average	e	Content %			
	TOP	Yes	36.0	25.0	36.0	10.000		11			
	BASE	Yes	31.0	27.0	31.0	34.0		12			
Remarks:						est/ Spec ecific rem					
Approved:						Signed:					
	.1.2					D	D				
Dariusz Piotrow PL Laboratory N	Land The Content of Co					Darren Geoteci	Berrill nnical Ge	neral			

06/12/2017 Date Reported:

"Opinions and interpretations expressed herein are outside of the scope of the UKAS Accreditation.

This report may not be reproduced other than in full without the prior written approval of the issuing laboratory.

The results included within the report are representative of the samples submitted for analysis.

The analysis was carried out at i2 Analytical Limited, ul. Pionierow 39, 41-711 Ruda Slaska, Poland."

	Determin	TEST CE ation of C ccordance wi	alifornia	Bearing		7 C	roxley G	cal Ltd hots Meadow Green Busines Herts WD18 8	VS	Environmental Scie
Client: Client Address:	5th Floor Waterfror Nottingha	m	ited				Job Date	eference: NTI Number: 17-0 Sampled: Not	68371 Given	
Contact: Site Name: Site Address:	NG2 3DQ Patrick Ta Witham S Not Giver	aylor it Hughs, Pl	n3 S38 De	sign			Dat	Received: ^{09/*} e Tested: 01/* npled By: Not	12/2017	
Test Results _aboratory Refe Hole No.: Sample Referen	rence: 8622 TP05 ce: 13						Depth	n Top [m]: 1.60 Base [m]: 1.60 ple Type: B		
-	ion Rem Reco e Description:	oulded ompacted with Yellowish bi	rown gravel				Period Time t Amou	ng details I of soaking o surface nt of swell recor		days days mm
	al retained on 20 Specimen details	s Bulk o Dry de	lensity		1 2.04 1.80 13	% Mg/m3 Mg/m3 %		ensity after soak arge applied	8 4.9	Mg/m3 kg kPa
7.00 6.00 5.00 ₹ 4.00			Force v	Penetratio	n Plots	•			—————————————————————————————————————	
3.00 3.00 1.00							****		Base	
0.00	1	2	3 Pe	enetration m		*			3	
	TOP BASE	Curve correction applied Yes Yes	2.5mm 30.0 36.0	CBR Va 5mm 19.0 28.0	Highest 30.0 36.0	Average 33.0		Moisture Content % 10 12		
Remarks:						est/ Spec ecific rem				
Approved:						Signed:				

Dariusz Piotrowski PL Laboratory Manage Geotechnical Section

Date Reported: 06/

06/12/2017

"Opinions and interpretations expressed herein are outside of the scope of the UKAS Accreditation. This report may not be reproduced other than in full without the prior written approval of the issuing laboratory.

The results included within the report are representative of the samples submitted for analysis.

The analysis was carried out at i2 Analytical Limited, ul. Pionierow 39, 41-711 Ruda Slaska, Poland."

Darren Berrill

Manager

Geotechnical General

4041	

Determination of California Bearing Ratio

Tested in Accordance with BS 1377-4: 1990: Clause 7

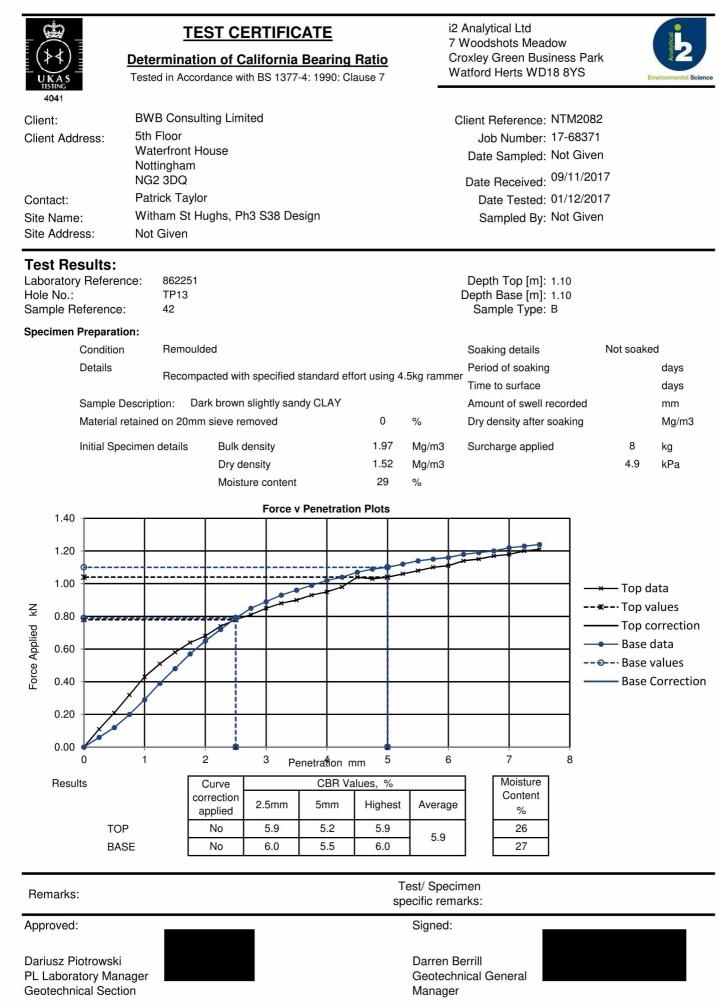
i2 Analytical Ltd 7 Woodshots Meadow Croxley Green Business Park Watford Herts WD18 8YS

Client Address: 5th F Wate Nottir Not	rfront House ngham 3DQ		Client Reference: NTM2082 Job Number: 17-68371 Date Sampled: Not Given Date Received: 09/11/2017						
	ck Taylor am St Hughs, Ph3 S38 Desig Biven	n	Date Tested: 01/1 Sampled By: Not						
Hole No.:	862241 TP07 19		Depth Top [m]: 0.70 Depth Base [m]: 0.70 Sample Type: B						
Specimen Preparation:									
Condition	Remoulded Recompacted with specified star	ndard effort using 2.5kg rai	Soaking details Period of soaking mmer	Not soaked days					
		,	Time to surface	days					
Sample Description			Amount of swell record						
	on 20mm sieve removed	5 %	Dry density after soaki						
Initial Specimen d	etails Bulk density Dry density Moisture content	2.06 Mg/m 1.86 Mg/m 11 %		8 kg 4.9 kPa					
8.00		netration Plots							
7.00									
7.00			- * * * * * * *						
6.00				v Top data					
- 5.00				—×— Top data ∗ Top values					
S.00				Top correction					
4.00 *				Base data					
8.00 ¥ 100 ¥				e· Base values					
B 2.00				—— Base Correctio					
1.00									
0.00		↓							
0 1		ration mm 5	6 7 8						
Results	correction	CBR Values, %	Moisture Content						
	applied 2.5mm	5mm Highest Ave	rage %						
TOP	Yes 31.0	33.0 33.0	11						
BASE	No 14.0	23.0 23.0	11						
Remarks:		Test/ Sj specific i	pecimen remarks:						
Approved:		-	Signed:						
Dariusz Piotrowski PL Laboratory Manager		Darre	en Berrill echnical General						

"Opinions and interpretations expressed herein are outside of the scope of the UKAS Accreditation.

This report may not be reproduced other than in full without the prior written approval of the issuing laboratory.

The results included within the report are representative of the samples submitted for analysis.


06/12/2017

Geotechnical Section

Date Reported:

The analysis was carried out at i2 Analytical Limited, ul. Pionierow 39, 41-711 Ruda Slaska, Poland."

Manager

Date Reported: 06/

06/12/2017

"Opinions and interpretations expressed herein are outside of the scope of the UKAS Accreditation. This report may not be reproduced other than in full without the prior written approval of the issuing laboratory.

The results included within the report are representative of the samples submitted for analysis.

The analysis was carried out at i2 Analytical Limited, ul. Pionierow 39, 41-711 Ruda Slaska, Poland."

4041	

Determination of California Bearing Ratio

Tested in Accordance with BS 1377-4: 1990: Clause 7

i2 Analytical Ltd 7 Woodshots Meadow Croxley Green Business Park Watford Herts WD18 8YS

-	041														
Clier	nt:		BWB Con	sulting Lim	ited						Client Re	ference: NT	M2082		
Clier	nt Addı	ress:	5th Floor							Job N	Number: 17	-68371			
			Waterfron								Date S	ampled: No	ot Given		
			Nottinghai NG2 3DQ	n								eceived: 09	/11/2017		
~	Flavo Sel Dec		Patrick Ta	vlor											
	tact:				2 620 D	ocian						Tested: 01			
	Name Addre		Not Given		13 538 DE	S38 Design Sampled By: Not Given									
Sile	Addres	55.	Not Given												
Tes	t Res	sults:													
Labo	oratory	Referenc	e: 8622	54							Гор [m]: 0.4				
	No.:		TP16									ase [m]: 0.4	-0		
Sam	ple Re	eference:	52								Samp	le Type: B			
Spec	imen F	Preparatio	n:												
		Condition	Remo	oulded							Soaking	details	No	ot soak	ed
		Details	Pooo	Recompacted with specified standard effor						romm	Period o	of soaking			days
			neco	inpacted wit	n specilieu	Stanua	aru en	on using	2.3KY	amm	Time to	surface			days
	3	Sample De	scription:	Yellowish b	rown slightl	ly grav	elly sa	andy CLA	λY		Amount	of swell reco	orded		mm
	J	Material re	tained on 20	mm sieve re	moved			19	%		Dry den	sity after soa	king		Mg/m3
		Initial Space	imon dotaile	Bulk	loncity			2.05	Mo	/m2	Surebar	an applied		8	ka
		miliai Spec	imen details		density			1.70	0	ı/m3	Surchar	ge applied		4.9	kg kPa
				Dry de				21		ı/m3				4.9	кра
				IVIOISI	ure content			21	%						
	0.45				Force	v Pene	etratio	n Plots							
	0.45												7		
	0.40		-			;						×	-		
	0.35										×**				
									/	**	000			Top	40+0
_	0.30	*												- Top o	
ХХ	0.25	¢					-*-						*		
Force Applied kN						- ×								÷.	correction
App	0.20	1												- Base	
Ce	0.15	¥			4								-		values
Foi		1	/											- Base	Correctio
	0.10	1											1		
	0.05												-		
	0.00														
	0.00	0	1	2	, З Р	enetra	tion n	nm 5		6		7	8		
	Result	te		Curve				alues, %				Noisture			
	nesui	15		correction								Content			
				applied	2.5mm	5n	nm	Highe	st A	verag	e	%			
		TOP		No	1.3	1	.5	1.5				19			
		BASI	Ξ	No	1.1	1	.4	1.4		1.4		19			
-									Test/	Spec	cimen				
Rer	narks:								specifi						
Ann	roved:								-	gned:					
~hh	oveu:								21	jneu:					
		otrowski							D -		Berrill				
			der									neral			
	PL Laboratory Manager					Geotechnical General Manager									

Date Reported: (

06/12/2017

"Opinions and interpretations expressed herein are outside of the scope of the UKAS Accreditation. This report may not be reproduced other than in full without the prior written approval of the issuing laboratory.

The results included within the report are representative of the samples submitted for analysis.

The analysis was carried out at i2 Analytical Limited, ul. Pionierow 39, 41-711 Ruda Slaska, Poland."

	Determin Tested in Ad		alifornia	Bearing		7 C	2 Analytical Ltd 7 Woodshots Mea Droxley Green Bu Vatford Herts WE	siness Park		invironmental Scien	
Client: Client Address:	5th Floor Waterfron Nottingha	m	ited			Client Reference: NTM2082 Job Number: 17-68371 Date Sampled: Not Given					
Contact: Site Name: Site Address:	NG2 3DQ Patrick Ta Witham S Not Given	aylor it Hughs, P	h3 S38 De	sign			Date Received Date Tested Sampled By	: 01/12/201	7		
Test Results Laboratory Refer Hole No.: Sample Referen	rence: 8622 TP21						Depth Top [m] Depth Base [m] Sample Type	: 1.20			
Specimen Prepar											
Condit Details		oulded				-1	Soaking details Period of soakin	g	Not soake	d days	
	Reco	mpacted wit	h specified	standard eff	fort using 2.	okg ramm	er Time to surface			days	
Sample	e Description:	Dark brown	slightly gra	velly CLAY			Amount of swell	recorded		mm	
Materia	al retained on 20)mm sieve re	emoved		0	%	Dry density after	soaking		Mg/m3	
Initial S	Specimen details	Dry d	density ensity		1.96 1.55 26	Mg/m3 Mg/m3 %	Surcharge appli	ed	8 4.9	kg kPa	
		WOIST	ure content	Penetratio		70					
1.20											
1.00											
						***			— Тор с	ətə	
0.80 3								*	Top v		
									— Тор с	orrection	
								-•	— Base		
0.60 Percer Applied Point Poin								0	Base Base	values Correctior	
0.20											
0.20											
0.00	****										
0	1	2	3 Pe	enetration n		6	7	8			
Results		Curve correction	0.5		alues, %	A	Moisture Content				
_		applied	2.5mm	5mm	Highest	Average	%	4			
	TOP BASE	No No	3.2 4.2	4.1 3.9	4.1 4.2	4.1	25 24	-			
			1948-7		6.5 S-4		Press, Br				
Remarks:						est/ Spec ecific rem					
Approved:						Signed:					
Dariusz Piotrows PL Laboratory M Geotechnical Se	anager					Darren I Geotech Manage	nnical General				

Date Reported: 06/12/2017

"Opinions and interpretations expressed herein are outside of the scope of the UKAS Accreditation. This report may not be reproduced other than in full without the prior written approval of the issuing laboratory.

The results included within the report are representative of the samples submitted for analysis.

The analysis was carried out at i2 Analytical Limited, ul. Pionierow 39, 41-711 Ruda Slaska, Poland."

4041	

Determination of California Bearing Ratio

Tested in Accordance with BS 1377-4: 1990: Clause 7

i2 Analytical Ltd 7 Woodshots Meadow Croxley Green Business Park Watford Herts WD18 8YS

4041	1														
Client:		BWB Cor	sulting Limi	ited				Client Reference	e: NTM2082						
Client A	Address:	5th Floor					Job Number: 17-68371								
		Waterfron					Date Sampled: Not Given								
		Nottingha NG2 3DC						Date Receive	d. 09/11/201	7					
Contact	t.	Patrick Ta					Date Received: 09/11/2017 Date Tested: 01/12/2017 Sampled By: Not Given								
Site Na			st Hughs, Pl	13 S38 De	sign										
Site Ad		Not Giver			0			eampied -	.,.						
_															
	Results: tory Reference	ce: 8622	61					Depth Top [n	ol: 1 10						
Hole No		TP19						Depth Base [n							
	le Reference: 64							Sample Typ							
Specim	en Preparatio	n:													
	Condition		oulded					Soaking detail	S	Not soake	d				
	Details	Deer		: ((Period of soak	ing		days				
		Reco	mpacted witl	n specified	standard er	fort using 4	.5kg ramn	Time to surfac	е		days				
	Sample De	escription:	Dark brown	slightly gra	velly CLAY			Amount of swe	ell recorded		mm				
	Material re	tained on 20)mm sieve re	moved		0	%	Dry density aft	er soaking		Mg/m3				
	Initial Spec	imen details	s Bulkic	lensity		2.06	Mg/m3	Surcharge app	blied	8	kg				
	initial oppor		Dry de			1.71	Mg/m3			4.9	kPa				
				ure content		21	%				ni u				
3.	.50			Force \	Penetratio	on Plots									
									•						
3.	.00								F (44)						
1277					-				*						
2.	.50									— Top d	ata				
Z¥ 2	.00 0				*	**			*	· Top v	alues				
ре 2.	.00									— Тор с	orrection				
ild 1.	.50 *		A	*						— Base o	data				
Force Applied kN .1 .7		1							0	Base v	values				
ŭ 1.	.00		×							- Base	Correctio				
0.	.50	1													
0	.00					1									
0.	0	1	2	3 Pr	enetration r	nm 5	6	6 7	8						
Re	esults		Curve			alues, %		Moistur	e						
110	oounto		correction	2.5mm	5mm		Averag	Conter							
			applied			Highest	Averaç	70							
	TOP		No	11.0	12.0	12.0	4	20							
	BAS	E	No	15.0	14.0	15.0		20							
Remar	rks:						est/ Spe								
· · · · · · · · · ·						sp	ecific rer	narks:							

Dariusz Piotrowski PL Laboratory Manager **Geotechnical Section**

Date Reported:

06/12/2017

Geotechnical General Manager

Darren Berrill

for and on behalf of i2 Analytical Ltd

"Opinions and interpretations expressed herein are outside of the scope of the UKAS Accreditation. This report may not be reproduced other than in full without the prior written approval of the issuing laboratory.

The results included within the report are representative of the samples submitted for analysis.

The analysis was carried out at i2 Analytical Limited, ul. Pionierow 39, 41-711 Ruda Slaska, Poland."

4041

Determination of California Bearing Ratio

Tested in Accordance with BS 1377-4: 1990: Clause 7

i2 Analytical Ltd 7 Woodshots Meadow Croxley Green Business Park Watford Herts WD18 8YS

404	4 1										
Client:		BWB Con	sulting Lim	ited				Client Ref	erence: NTI	M2082	
Client Address: 5th Floor Waterfront House							Job N	umber: 17-	68371		
		Date Sampled: Not Given									
		Nottingha NG2 3DQ						Data Ba	coived. 09/	11/2017	
Contact: Patrick Taylor				Date Received: 09/11/2017 Date Tested: 01/12/2017							
Site N			t Hughs, P	h3 S38 De	sian				led By: Not		
	ddress:	Not Given			0			oum	, iou Dy.		
Test	Results:										
	atory Reference	ce: 8622	69					Depth T	op [m]: 0.50	0	
Hole N		TP25	i						ise [m]: 0.50	C	
Sampl	le Reference:	83						Sampl	е Туре: В		
Specin	nen Preparatio										
	Condition	Remo	oulded					Soaking		Not soal	ked
	Details	Reco	mpacted wit	h specified	standard ef	fort using 4	.5kg ramme	ər	f soaking		days
	Name II Aller					-	-	Time to s			days
	Sample De		Dark brown		velly CLAY				of swell recor		mm
	Material re	tained on 20	mm sieve re	emoved		0	%	Dry dens	sity after soak	king	Mg/m3
	Initial Spec	cimen details	Bulk o	density		2.00	Mg/m3	Surchar	ge applied	8	kg
			Dry d	ensity		1.60	Mg/m3			4.9	kPa
			Moist	ure content		25	%				
				Force	Penetratio	n Plots					
1	1.60						1			1	
-	1.40								-		
	1.40							***	***		
1	1.20						**				
	1 00				***					<mark>──</mark> ×── Тор	
ΥN N	1.00									*Тор	
ied (D.80 *									1 .	correction
Force Applied										Base	
(e)	0.60									O·Base	
Ъ Ц	0.40			_						Base	e Correctio
(0.20									1	
C	0.00									ļ	
	0	1	2	3 Pe	enetration r	nm 5	6	1	7 8	8	
F	Results					alues, % Moisture					
			correction	2.5mm	5mm	Highest	Average		Content		
	TOP		applied	25			, working of	<u> </u>	%		
	TOP		No	6.1	5.8	6.1	-		24		
	BAS	E	No	4.9	4.9	4.9			24		
						т	oct/ Spool	imon			
Rema	arks:						est/ Speci ecific rem				
Approv	ved:						Signed:				
							0				
Darius	z Piotrowski						Darren E	Berrill			
PL Lab	boratory Mana						Geotech	nical Gen	eral		
Geote	chnical Sectio	n					Manage	r			

Date Reported: 00

06/12/2017

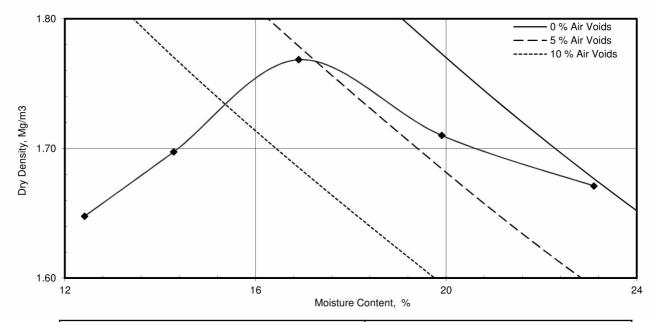
"Opinions and interpretations expressed herein are outside of the scope of the UKAS Accreditation.

This report may not be reproduced other than in full without the prior written approval of the issuing laboratory.

The results included within the report are representative of the samples submitted for analysis.

The analysis was carried out at i2 Analytical Limited, ul. Pionierow 39, 41-711 Ruda Slaska, Poland."

Dry Density / Moisture Content Relationship Light Compaction i2 Analytical Ltd 7 Woodshots Meadow Croxley Green Business Park Watford Herts WD18 8YS



Tested in accordance with BS 1377-4:1990: Clause 3.3 using 2.5kg[light] Rammer

Client: Client Address: Contact: Site Name:	BWB Consulting Limited 5th Floor Waterfront House Nottingham NG2 3DQ	Client Reference: NTM2082 Job Number: 17-68371 Date Sampled: Not Given Date Received: 09/11/2017
	Patrick Taylor Witham St Hughs, Ph3 S38 Design	Date Tested: 04/12/2017 Sampled By: Not Given
Site Address:	Not Given	

TEST RESULTS

IEST RESULTS		
Laboratory Reference:	862246	
Hole No.:	TP10	Depth Top [m]: 1.30
Sample Reference:	32	Depth Base [m]: 1.30
Sample Description:	Dark brown slightly gravelly slightly sandy CLAY	Sample Type: B

Preparation		Material used was natural
Mould Type		1 Litre
Samples Used		Composite specimens tested
Material Retained on 37.5 mm Sieve	%	3
Material Retained on 20.0 mm Sieve	%	4
Particle Density - Assumed	Mg/m³	2.74
As received Moisture Content	%	23
Maximum Dry Density	Mg/m³	1.77

Remarks:

Insufficient material - compacted in proctor mould

Signed:

Manager

Darren Berrill

Geotechnical General

%

Approved:

Dariusz Piotrowski PL Laboratory Manager Geotechnical Section

Date Reported: 06/12/2017

"Opinions and interpretations expressed herein are outside of the scope of the UKAS Accreditation. This report may not be reproduced other than in full without the prior written approval of the issuing laboratory. The results included within the report are representative of the samples submitted for analysis. The analysis was carried out at i2 Analytical Limited, ul. Pionierow 39, 41-711 Ruda Slaska, Poland."

Optimum Moisture Content

17

Dry Density / Moisture Content Relationship Light Compaction i2 Analytical Ltd 7 Woodshots Meadow Croxley Green Business Park Watford Herts WD18 8YS



Tested in accordance with BS 1377-4:1990: Clause 3.3 using 2.5kg[light] Rammer

Client: Client Address:	BWB Consulting Limited 5th Floor Waterfront House Nottingham NG2 3DQ	Client Reference: NTM2082 Job Number: 17-68371 Date Sampled: Not Given Date Received: 09/11/2017 Date Tested: 02/12/2017				
Contact: Site Name: Site Address:	Patrick Taylor Witham St Hughs, Ph3 S38 Design Not Given	Sampled By: Not Given				
TEOT DEOL						

TEST RESULTS

Laboratory Reference: 862253 TP15 Depth Top [m]: 1.20 Hole No.: 49 Depth Base [m]: 1.20 Sample Reference: Dark brown slightly sandy CLAY Sample Description: Sample Type: B 1.80 0 % Air Voids – – 5 % Air Voids ----- 10 % Air Voids Dry Density, Mg/m3 1.70

Preparation		Material used was natural
Mould Type		1 Litre
Samples Used		Composite specimens tested
Material Retained on 37.5 mm Sieve	%	0
Material Retained on 20.0 mm Sieve	%	0
Particle Density - Assumed	Mg/m³	2.60
As received Moisture Content	%	20
Maximum Dry Density	Mg/m³	1.74
Optimum Moisture Content	%	18

Remarks:

Approved:

Dariusz Piotrowski PL Laboratory Manager Geotechnical Section

Date Reported: 06/12/2017

"Opinions and interpretations expressed herein are outside of the scope of the UKAS Accreditation. This report may not be reproduced other than in full without the prior written approval of the issuing laboratory. The results included within the report are representative of the samples submitted for analysis. The analysis was carried out at i2 Analytical Limited, ul. Pionierow 39, 41-711 Ruda Slaska, Poland."

Signed:

Darren Berrill Geotechnical General Manager

Dry Density / Moisture Content Relationship **Light Compaction**

i2 Analytical Ltd 7 Woodshots Meadow Croxley Green Business Park Watford Herts WD18 8YS

Tested in accordance with BS 1377-4:1990: Clause 3.3 using 2.5kg[light] Rammer

Client: Client Address:	BWB Consulting Limited 5th Floor Waterfront House Nottingham NG2 3DQ	Client Reference: NTM2082 Job Number: 17-68371 Date Sampled: Not Given Date Received: 09/11/2017 Date Tested: 04/12/2017
Contact: Site Name: Site Address:	Patrick Taylor Witham St Hughs, Ph3 S38 Design Not Given	Sampled By: Not Given

1.50

12

TEST RESULTS Laboratory Reference: Hole No.: Sample Reference: Sample Description:		862262 TP20 67 Dark brown slight	ly sandy CLAY	Depth Top [m]: 2.10 Depth Base [m]: 2.10 Sample Type: B
1.70 - Em/6W				0 % Air Voids — — - 5 % Air Voids 10 % Air Voids
Dry Density, Mg/m3 091				

20

16

Preparation		Material used was natural
Mould Type		1 Litre
Samples Used		Composite specimens tested
Material Retained on 37.5 mm Sieve	%	0
Material Retained on 20.0 mm Sieve	%	0
Particle Density - Assumed	Mg/m ³	2.53
As received Moisture Content	%	22
Maximum Dry Density	Mg/m ³	1.66
Optimum Moisture Content	%	20

Remarks:

Approved:

Dariusz Piotrowski PL Laboratory Manager Geotechnical Section

Date Reported: 06/12/2017

"Opinions and interpretations expressed herein are outside of the scope of the UKAS Accreditation. This report may not be reproduced other than in full without the prior written approval of the issuing laboratory. The results included within the report are representative of the samples submitted for analysis. The analysis was carried out at i2 Analytical Limited, ul. Pionierow 39, 41-711 Ruda Slaska, Poland."

Signed:

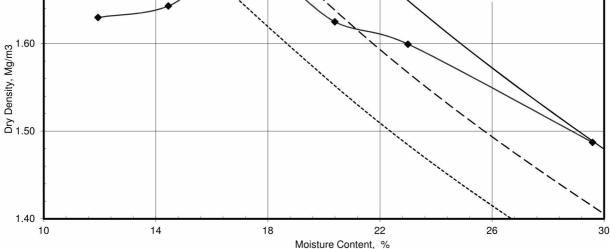
Darren Berrill Geotechnical General Manager

for and on behalf of i2 Analytical Ltd

24

Heavy Compaction

i2 Analytical Ltd 7 Woodshots Meadow Dry Density / Moisture Content Relationship Croxley Green Business Park Watford Herts WD18 8YS



Tested in accordance with BS 1377-4: 1990: Clause 3.5 using 4.5kg [heavy] Rammer

Client: Client Address:	BWB Consulting Limited 5th Floor Waterfront House Nottingham NG2 3DQ	Client Reference: NTM2082 Job Number: 17-68371 Date Sampled: Not Given Date Received: ^{09/11/2017}
Contact: Site Name:	Patrick Taylor Witham St Hughs, Ph3 S38 Design	Date Tested: 02/12/2017 Sampled By: Not Given
Site Address:	Not Given	interesting the prime interesting

TEST REPORTS

IESI NEFUNIS			
Laboratory Reference:	862249		
Hole No.:	TP12	Depth Top [m]:	0.60
Sample Reference:	39	Depth Base [m]:	0.60
Sample Description:	Dark brown CLAY	Sample Type:	В
1 70			
1.70		5	% Air Voids % Air Voids 0 % Air Voids

woodure content,	Moisture	Content,	9
------------------	----------	----------	---

Preparation		Material used was natural
Mould Type		1 Litre
Samples Used		Composite specimens tested
Material Retained on 37.5 mm Sieve	%	0
Material Retained on 20.0 mm Sieve	%	0
Particle Density - Assumed	Mg/m ³	2.66
As received Moisture Content	%	30
Maximum Dry Density	Mg/m³	1.70
Optimum Moisture Content	%	17

Remarks:

Approved:

Dariusz Piotrowski PL Laboratory Manager Geotechnical Section

Date Reported:

06/12/2017

Signed:

Darren Berrill Geotechnical General Manager

for and on behalf of i2 Analytical Ltd

"Opinions and interpretations expressed herein are outside of the scope of the UKAS Accreditation. This report may not be reproduced other than in full without the prior written approval of the issuing laboratory. The results included within the report are representative of the samples submitted for analysis.

The analysis was carried out at i2 Analytical Limited, ul. Pionierow 39, 41-711 Ruda Slaska, Poland."

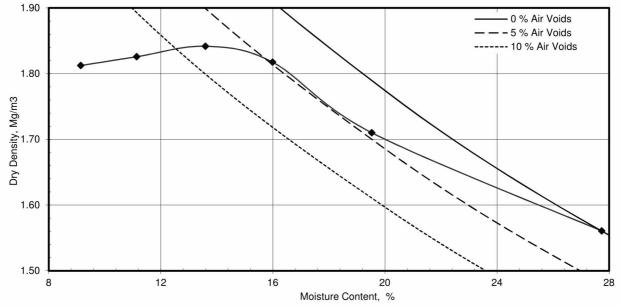
GF 110.9

404

TEST CERTIFICATE

Heavy Compaction

i2 Analytical Ltd 7 Woodshots Meadow Dry Density / Moisture Content Relationship Watford Herts WD18 8YS



Tested in accordance with BS 1377-4: 1990: Clause 3.5 using 4.5kg [heavy] Rammer

Client:	BWB Consulting Limited	Client Reference: NTM2082
Client Address:	5th Floor	Job Number: 17-68371
	Waterfront House Nottingham	Date Sampled: Not Given
	NG2 3DQ	Date Received: 09/11/2017
Contact:	Patrick Taylor	Date Tested: 04/12/2017
Site Name:	Witham St Hughs, Ph3 S38 Design	Sampled By: Not Given
Site Address:	Not Given	

TEST REPORTS

Laboratory Reference:	862264		
Hole No.:	TP22	Depth Top [m]:	0.60
Sample Reference:	72	Depth Base [m]:	0.60
Sample Description:	Yellowish brown slightly sandy CLAY	Sample Type:	В

Preparation		Material used was natural
Mould Type		1 Litre
Samples Used		Composite specimens tested
Material Retained on 37.5 mm Sieve	%	0
Material Retained on 20.0 mm Sieve	%	0
Particle Density - Assumed	Mg/m ³	2.75
As received Moisture Content	%	28
Maximum Dry Density	Mg/m ³	1.84
Optimum Moisture Content	%	14

Signed:

Manager

Darren Berrill

Geotechnical General

Remarks:

Approved:

Dariusz Piotrowski PL Laboratory Manager Geotechnical Section

Date Reported:

06/12/2017

"Opinions and interpretations expressed herein are outside of the scope of the UKAS Accreditation. This report may not be reproduced other than in full without the prior written approval of the issuing laboratory. The results included within the report are representative of the samples submitted for analysis.

The analysis was carried out at i2 Analytical Limited, ul. Pionierow 39, 41-711 Ruda Slaska, Poland."

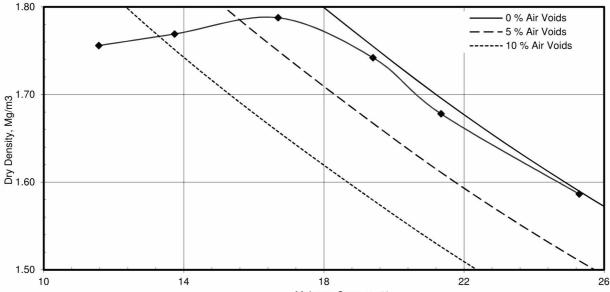
Page 1 of 1

404

TEST CERTIFICATE

Dry Density / Moisture Content Relationship Croxley Green Business Park **Heavy Compaction**

i2 Analytical Ltd 7 Woodshots Meadow Watford Herts WD18 8YS



Tested in accordance with BS 1377-4: 1990: Clause 3.5 using 4.5kg [heavy] Rammer

Client: Client Address:	BWB Consulting Limited 5th Floor Waterfront House Nottingham	Client Reference: NTM2082 Job Number: 17-68371 Date Sampled: Not Given
	NG2 3DQ	Date Received: 09/11/2017
Contact:	Patrick Taylor	Date Tested: 03/12/2017
Site Name:	Witham St Hughs, Ph3 S38 Design	Sampled By: Not Given
Site Address:	Not Given	

TEST REPORTS

ILSI NEFONIS				
Laboratory Reference:	862269			
Hole No.:	TP25	Depth Top [m]:	0.50	
Sample Reference:	83	Depth Base [m]:	0.50	
Sample Description:	Dark brown slightly gravelly CLAY	Sample Type:	В	

Preparation		Material used was natural
Mould Type		1 Litre
Samples Used		Composite specimens tested
Material Retained on 37.5 mm Sieve	%	0
Material Retained on 20.0 mm Sieve	%	0
Particle Density - Assumed	Mg/m ³	2.66
As received Moisture Content	%	25
Maximum Dry Density	Mg/m ³	1.79
	-	
Optimum Moisture Content	%	17

Signed:

Manager

Darren Berrill

Geotechnical General

for and on behalf of i2 Analytical Ltd

Remarks:

Approved:

Dariusz Piotrowski PL Laboratory Manager Geotechnical Section

Date Reported:

"Opinions and interpretations expressed herein are outside of the scope of the UKAS Accreditation. This report may not be reproduced other than in full without the prior written approval of the issuing laboratory. The results included within the report are representative of the samples submitted for analysis.

The analysis was carried out at i2 Analytical Limited, ul. Pionierow 39, 41-711 Ruda Slaska, Poland."

Patrick Taylor BWB Consulting Limited 5th Floor Waterfront House Nottingham NG2 3DQ

i2 Analytical Ltd. 7 Woodshots Meadow, Croxley Green Business Park, Watford, Herts, WD18 8YS

t: 01923 225404 f: 01923 237404 e: reception@i2analytical.com

e: patrick.taylor@bwbconsulting.com

Analytical Report Number : 17-68284

Replaces Analytical Report Number : 17-68284, issue no. 1

Project / Site name:	Witham St. Hughs Phase 3 S38 Design	Samples received on:	20/11/2017
Your job number:	NTM2082	Samples instructed on:	20/11/2017
Your order number:	POR014856	Analysis completed by:	01/12/2017
Report Issue Number:	2	Report issued on:	05/12/2017
Samples Analysed:	10 soil samples		

Jordan Hill Reporting Manager For & on behalf of i2 Analytical Ltd.

Standard Geotechnical, Asbestos and Chemical Testing Laboratory located at: ul. Pionierów 39, 41 -711 Ruda Śląska, Poland.

Accredited tests are defined within the report, opinions and interpretations expressed herein are outside the scope of accreditation.

Standard sample disposal times, unless otherwise agreed with the laboratory, are : soils - 4 weeks from reporting leachates - 2 weeks from reporting waters - 2 weeks from reporting

asbestos - 6 months from reporting

Excel copies of reports are only valid when accompanied by this PDF certificate.

Analytical Report Number: 17-68284 Project / Site name: Witham St. Hughs Phase 3 S38 Design

Your Order No: POR014856

Lab Sample Number				861754	861755	861756	861757	861758
Sample Reference				TP01	TP04	TP07	TP10	TP11
Sample Number			None Supplied					
Depth (m)			1.50-1.50	1.20-1.20	0.70-0.70	0.60-0.60	1.30-1.30	
Date Sampled			08/11/2017	07/11/2017	07/11/2017	07/11/2017	07/11/2017	
Time Taken			None Supplied					
Analytical Parameter (Soil Analysis)	:							
Stone Content	%	0.1	NONE	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Moisture Content	%	N/A	NONE	11	12	8.3	21	16
Total mass of sample received	ka	0.001	NONE	0.44	0.35	0.52	0.26	0.39

General Inorganics

pH - Automated	pH Units	N/A	MCERTS	7.8	7.8	7.5	7.8	7.8
Water Soluble SO4 16hr extraction (2:1 Leachate								
Equivalent)	g/l	0.00125	MCERTS	0.016	0.059	0.039	0.035	0.086

Analytical Report Number: 17-68284 Project / Site name: Witham St. Hughs Phase 3 S38 Design

Your Order No: POR014856

Lab Sample Number				861759	861760	861761	861762	861763
Sample Reference				TP16	TP17	TP19	TP23	TP24
Sample Number				None Supplied				
Depth (m)			0.40-0.40	1.60-1.60	1.10-1.10	1.20-1.20	0.90-0.90	
Date Sampled			09/11/2017	08/11/2017	08/11/2017	09/11/2017	07/11/2017	
Time Taken			None Supplied					
Analytical Parameter (Soil Analysis)								
Stone Content	%	0.1	NONE	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Moisture Content	%	N/A	NONE	15	17	16	22	16
Total mass of sample received	ka	0.001	NONE	0.31	0.36	0.52	0.37	0.31

General Inorganics

pH - Automated	pH Units	N/A	MCERTS	7.8	7.5	6.8	8.0	8.3
Water Soluble SO4 16hr extraction (2:1 Leachate								
Equivalent)	g/l	0.00125	MCERTS	0.019	0.14	0.12	0.078	0.075

Analytical Report Number : 17-68284

Project / Site name: Witham St. Hughs Phase 3 S38 Design

* These descriptions are only intended to act as a cross check if sample identities are questioned. The major constituent of the sample is intended to act with respect to MCERTS validation. The laboratory is accredited for sand, clay and loam (MCERTS) soil types. Data for unaccredited types of solid should be interpreted with care.

Stone content of a sample is calculated as the % weight of the stones not passing a 10 mm sieve. Results are not corrected for stone content.

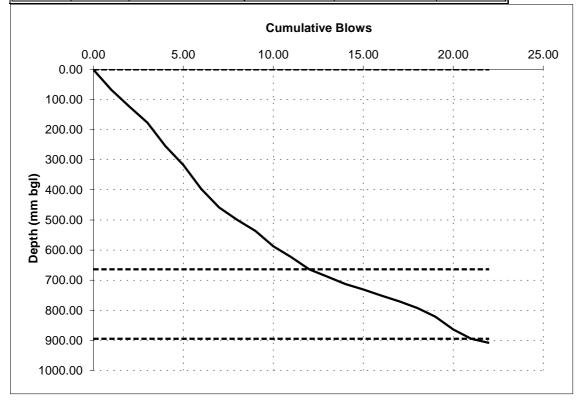
Lab Sample Number	Sample Reference	Sample Number	Depth (m)	Sample Description *
861754	TP01	None Supplied	1.50-1.50	Brown sand.
861755	TP04	None Supplied	1.20-1.20	Brown sandy clay.
861756	TP07	None Supplied	0.70-0.70	Brown sand with gravel.
861757	TP10	None Supplied	0.60-0.60	Brown clay.
861758	TP11	None Supplied	1.30-1.30	Grey clay with gravel.
861759	TP16	None Supplied	0.40-0.40	Brown clay.
861760	TP17	None Supplied	1.60-1.60	Brown clay with gravel.
861761	TP19	None Supplied	1.10-1.10	Brown clay.
861762	TP23	None Supplied	1.20-1.20	Brown clay with vegetation.
861763	TP24	None Supplied	0.90-0.90	Brown clay and sand with vegetation.

Analytical Report Number : 17-68284

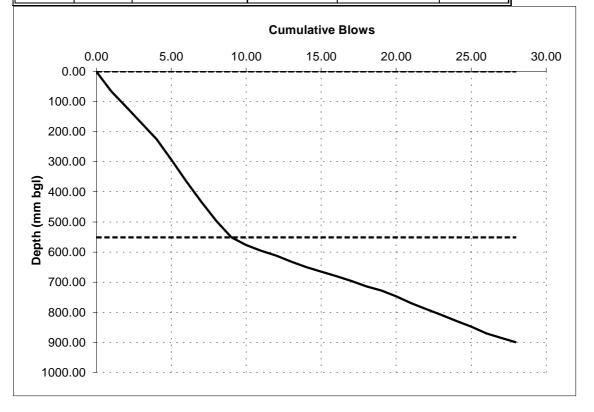
Project / Site name: Witham St. Hughs Phase 3 S38 Design

Water matrix abbreviations: Surface Water (SW) Potable Water (PW) Ground Water (GW) Process Water (PrW)

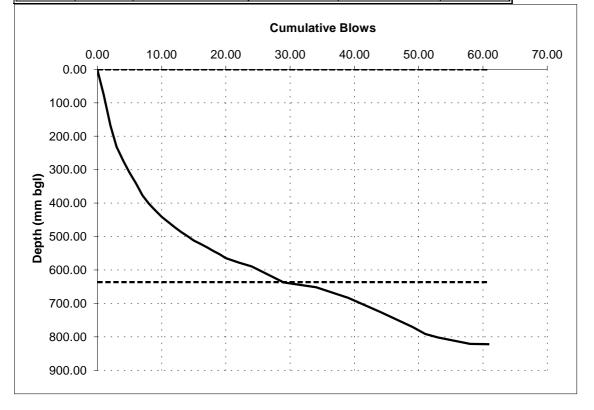
Analytical Test Name	Analytical Method Description	Analytical Method Reference	Method number	Wet / Dry Analysis	Accreditation Status
Moisture Content	Moisture content, determined gravimetrically.	In-house method based on BS1377 Part 2, 1990, Chemical and Electrochemical Tests	L019-UK/PL	W	NONE
pH in soil (automated)	Determination of pH in soil by addition of water followed by automated electrometric measurement.	In-house method based on BS1377 Part 3, 1990, Chemical and Electrochemical Tests	L099-PL	D	MCERTS
Stones content of soil	Standard preparation for all samples unless otherwise detailed. Gravimetric determination of stone > 10 mm as % dry weight.	In-house method based on British Standard Methods and MCERTS requirements.	L019-UK/PL	D	NONE
Sulphate, water soluble, in soil (16hr extraction)	Determination of water soluble sulphate by ICP- OES. Results reported directly (leachate equivalent) and corrected for extraction ratio (soil equivalent).	In-house method based on BS1377 Part 3, 1990, Chemical and Electrochemical Tests, 2:1 water:soil extraction, analysis by ICP- OES.	L038-PL	D	MCERTS


For method numbers ending in 'UK' analysis have been carried out in our laboratory in the United Kingdom. For method numbers ending in 'PL' analysis have been carried out in our laboratory in Poland. Soil analytical results are expressed on a dry weight basis. Where analysis is carried out on as-received the results obtained are multiplied by a moisture correction factor that is determined gravimetrically using the moisture content which is carried out at a maximum of 30oC.

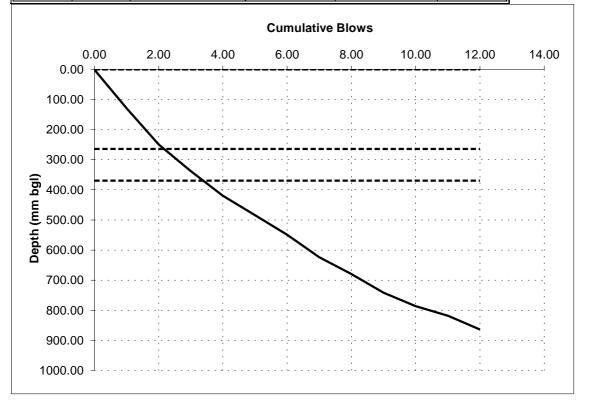
APPENDIX 5 DCP-TRL TEST RESULTS


PROJECT NUMBER	NTM2082	
PROJECT TITLE	Witham St Hughs Ph3 S38 Design	
TEST REFERENCE	TP09	
DATE	07-Nov-17	
MATERIAL/ STRATA TYPE	Sandy Gravelly Clay	
START DEPTH (mm bgl)	0.30	
WEATHER/ GROUND CONDITION	Dry	

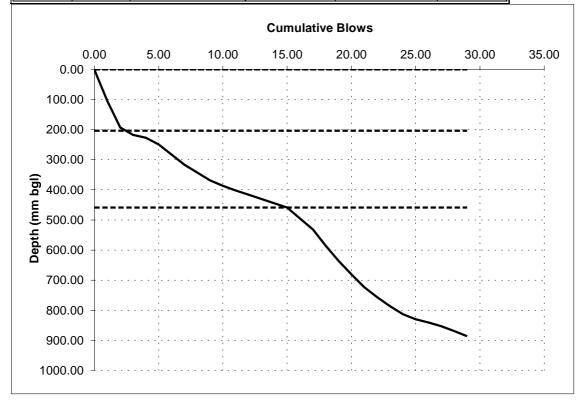
Layer	Blows	Cumulative Blows	Layer Thickness (mm)	Total Depth (mm bgl)	CBR (%)
1	11	11	664	664	4.0
2	9	20	231	895	9.8
3	1	21	13	908	20.1


PROJECT NUMBER	NTM2082	
PROJECT TITLE	Witham St Hughs Ph3 S38 Design	
TEST REFERENCE	TP11	
DATE	07-Nov-17	
MATERIAL/ STRATA TYPE	Sandy Clay	
START DEPTH (mm bgl)	0.30	
WEATHER/ GROUND CONDITION	Dry	

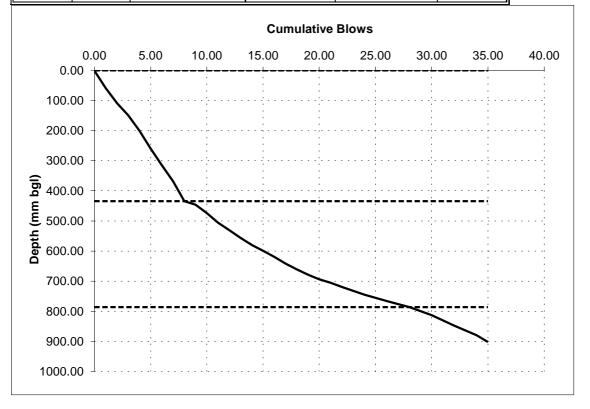
Layer	Blows	Cumulative Blows	Layer Thickness (mm)	Total Depth (mm bgl)	CBR (%)
1	8	8	551	551	3.4
2	19	27	349	900	13.9


PROJECT NUMBER	NTM2082	
PROJECT TITLE	Witham St Hughs Ph3 S38 Design	
TEST REFERENCE	TP12	
DATE	07-Nov-17	
MATERIAL/ STRATA TYPE	Grasvelly Sandy Clay	
START DEPTH (mm bgl)	0.32	
WEATHER/ GROUND CONDITION	Dry	
	Note: terminated due to bouncing	

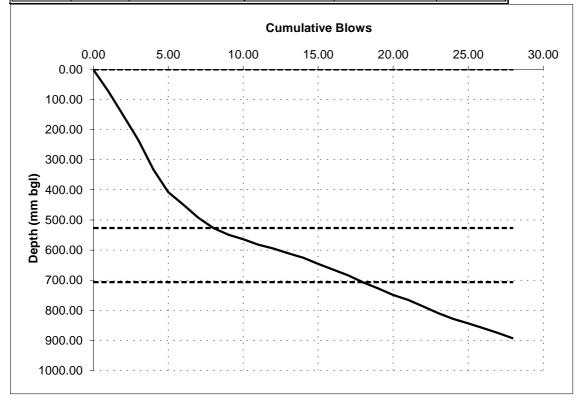
Layer	Blows	Cumulative Blows	Layer Thickness (mm)	Total Depth (mm bgl)	CBR (%)
1	24	24	636	636	9.5
2	29	53	184	820	42.8


PROJECT NUMBER	NTM2082	
PROJECT TITLE	Witham St Hughs Ph3 S38 Design	
TEST REFERENCE	TP14	
DATE	08-Nov-17	
MATERIAL/ STRATA TYPE	Sandy Clay	
START DEPTH (mm bgl)	0.35	
WEATHER/ GROUND CONDITION	Dry	

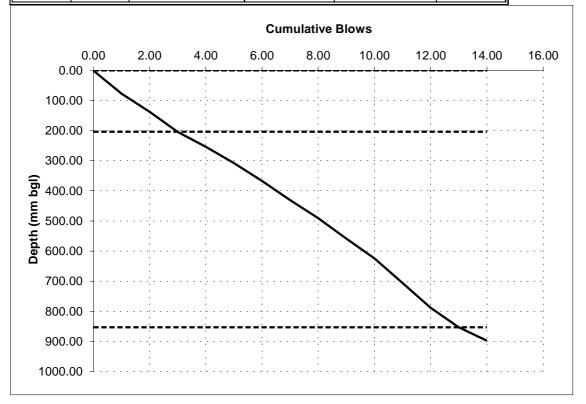
Layer	Blows	Cumulative Blows	Layer Thickness (mm)	Total Depth (mm bgl)	CBR (%)
1	2	2	264	264	1.7
2	1	3	106	370	2.2
3	8	11	494	864	3.9


PROJECT NUMBER	NTM2082	
PROJECT TITLE	Witham St Hughs Ph3 S38 Design	
TEST REFERENCE	TP16	
DATE	09-Nov-17	
MATERIAL/ STRATA TYPE	Gravelly Sandy Clay	
START DEPTH (mm bgl)	0.35	
WEATHER/ GROUND CONDITION	Dry	

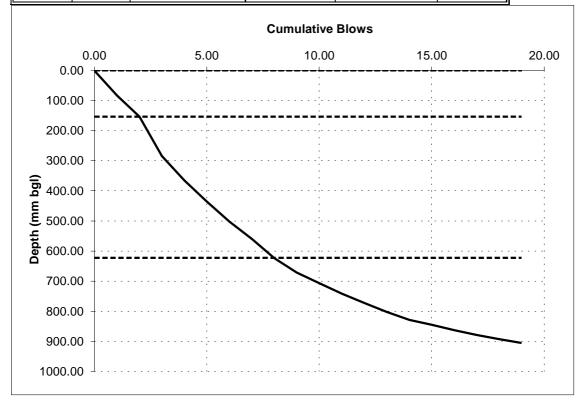
Layer	Blows	Cumulative Blows	Layer Thickness (mm)	Total Depth (mm bgl)	CBR (%)
1	2	2	204	204	2.3
2	10	12	255	459	9.8
3	16	28	427	886	9.4


PROJECT NUMBER	NTM2082	
PROJECT TITLE	Witham St Hughs Ph3 S38 Design	
TEST REFERENCE	TP19	
DATE	08-Nov-17	
MATERIAL/ STRATA TYPE	Sandy Clay	
START DEPTH (mm bgl)	0.48	
WEATHER/ GROUND CONDITION	Dry	

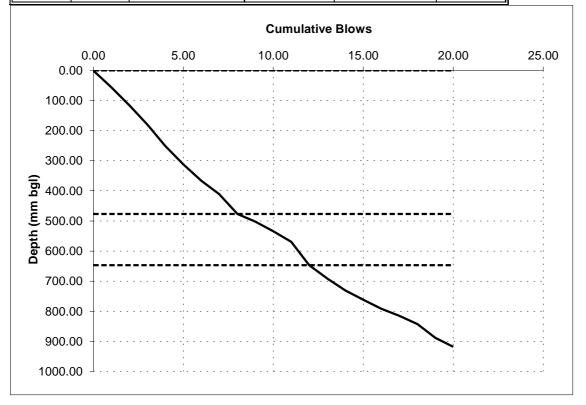
Layer	Blows	Cumulative Blows	Layer Thickness (mm)	Total Depth (mm bgl)	CBR (%)
1	7	7	434	434	3.9
2	19	26	352	786	13.8
3	8	34	116	902	17.9


PROJECT NUMBER	NTM2082	
PROJECT TITLE	Witham St Hughs Ph3 S38 Design	
TEST REFERENCE	TP20	
DATE	07-Nov-17	
MATERIAL/ STRATA TYPE	Sandy Clay	
START DEPTH (mm bgl)	0.30	
WEATHER/ GROUND CONDITION	Dry	

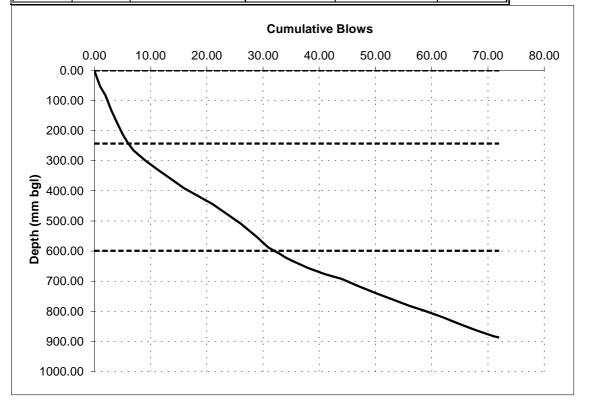
Layer	Blows	Cumulative Blows	Layer Thickness (mm)	Total Depth (mm bgl)	CBR (%)
1	7	7	527	527	3.1
2	10	17	180	707	14.2
3	10	27	186	893	13.7


PROJECT NUMBER	NTM2082	
PROJECT TITLE	Witham St Hughs Ph3 S38 Design	
TEST REFERENCE	TP21	
DATE	09-Nov-17	
MATERIAL/ STRATA TYPE	Sandy Clay	
START DEPTH (mm bgl)	0.35	
WEATHER/ GROUND CONDITION	Dry	

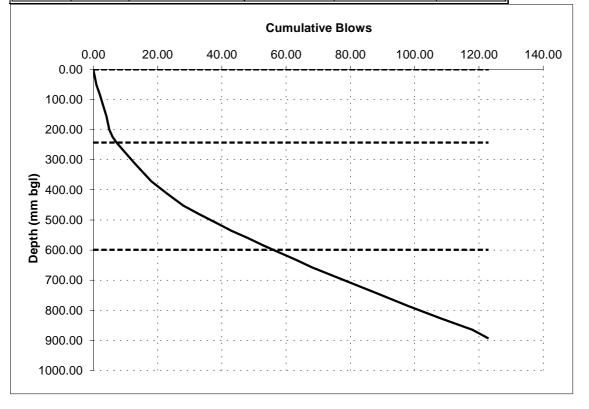
Layer	Blows	Cumulative Blows	Layer Thickness (mm)	Total Depth (mm bgl)	CBR (%)
1	2	2	204	204	2.3
2	10	12	649	853	3.7
3	1	13	45	898	5.4


PROJECT NUMBER	NTM2082	
PROJECT TITLE	Witham St Hughs Ph3 S38 Design	
TEST REFERENCE	TP22	
DATE	09-Nov-17	
MATERIAL/ STRATA TYPE	Sandy Clay	
START DEPTH (mm bgl)	0.35	
WEATHER/ GROUND CONDITION	Dry	

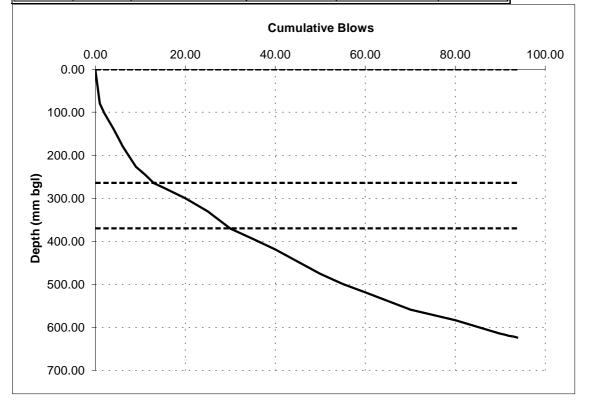
Layer	Blows	Cumulative Blows	Layer Thickness (mm)	Total Depth (mm bgl)	CBR (%)
1	1	1	154	154	1.5
2	6	7	469	623	3.0
3	11	18	282	905	9.8


PROJECT NUMBER	NTM2082	
PROJECT TITLE	Witham St Hughs Ph3 S38 Design	
TEST REFERENCE	TP25	
DATE	07-Nov-17	
MATERIAL/ STRATA TYPE	Sandy Clay	
START DEPTH (mm bgl)	0.34	
WEATHER/ GROUND CONDITION	Dry	

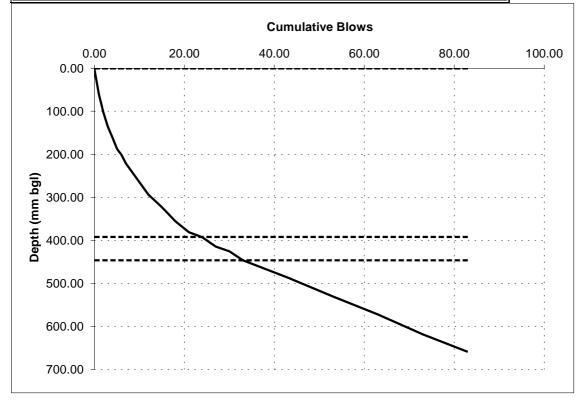
Layer	Blows	Cumulative Blows	Layer Thickness (mm)	Total Depth (mm bgl)	CBR (%)
1	7	7	477	477	3.5
2	4	11	170	647	5.7
3	8	19	271	918	7.3


PROJECT NUMBER	NTM2082	
PROJECT TITLE	Witham St Hughs Ph3 S38 Design	
TEST REFERENCE	TP01	
DATE	07-Nov-17	
MATERIAL/ STRATA TYPE	Gravelly Sand	
START DEPTH (mm bgl)	0.42	
WEATHER/ GROUND CONDITION	Dry	

Layer	Blows	Cumulative Blows	Layer Thickness (mm)	Total Depth (mm bgl)	CBR (%)
1	5	5	243	243	5.0
2	26	31	356	599	19.0
3	40	71	288	887	37.5
-					
-					


PROJECT NUMBER	NTM2082	
PROJECT TITLE	Witham St Hughs Ph3 S38 Design	
TEST REFERENCE	TP03	
DATE	08-Nov-17	
MATERIAL/ STRATA TYPE	Gravelly Clayey Sand	
START DEPTH (mm bgl)	0.45	
WEATHER/ GROUND CONDITION	Dry	

Layer	Blows	Cumulative Blows	Layer Thickness (mm)	Total Depth (mm bgl)	CBR (%)
1	7	7	243	243	7.1
2	46	53	356	599	34.7
3	65	118	288	887	62.6


-		
PROJECT NUMBER	NTM2082	
PROJECT TITLE	Witham St Hughs Ph3 S38 Design	
TEST REFERENCE	TP06	
DATE	08-Nov-17	
MATERIAL/ STRATA TYPE	Gravelly Sand	
START DEPTH (mm bgl)	0.45	
WEATHER/ GROUND CONDITION	Dry	
	Ferminated due to bouncing of weigh	

Layer	Blows	Cumulative Blows	Layer Thickness (mm)	Total Depth (mm bgl)	CBR (%)
1	11	11	264	264	10.5
2	14	25	106	370	35.5
3	68	93	254	624	75.0

PROJECT NUMBER	NTM2082	
PROJECT TITLE	Witham St Hughs Ph3 S38 Design	
TEST REFERENCE	TP08	
DATE	08-Nov-17	
MATERIAL/ STRATA TYPE	Clayey Gravelly Sand	
START DEPTH (mm bgl)	0.45	
WEATHER/ GROUND CONDITION	Dry	
	Ferminated due to angled penetratior	

Layer	Blows	Cumulative Blows	Layer Thickness (mm)	Total Depth (mm bgl)	CBR (%)
1	21	21	392	392	13.7
2	9	30	54	446	45.4
3	43	73	213	659	55.7

APPENDIX 6 DERIVATION OF BWB GSAC

BWB HUMAN HEALTH GENERIC QUANTITATIVE RISK ASSESSMENT (GQRA)

Human Health Generic Screening Criteria

The Environment Agency published the revised CLEA framework for assessing the risk to human health from soil contamination in January 2009. The framework comprises a technical background document (EA, 2009a), toxicological assessment EA 2009b and CLEA spreadsheet model (EA 2009c). The new framework supersedes the 2002 CLEA model and subsequent briefing notes. The 2002 CLEA software and CLEA 2005 have also been withdrawn. All previously published Soil Guideline Values (SGV) have been withdrawn. The EA plan to issue revised SGVs for selected substances in a rolling programme from early in 2009. To date SGVs have been issued for the following substances.

Arsenic

Phenol

- cadmium
- nickel

- selenium
- benzene
- toluene

- ethylbenzene
- xylene
- dioxins and dioxin like PCBS
- Mercury

In the absence of an SGV for a particular contaminant Generic assessment criteria have been generated by BWB using the CLEA framework. This is a similar approach to Generic screening criteria published by LQM/CIEH and CLAIRE/EIC.

Conceptual Site Model

The standard exposure pathways and Conceptual Models for human exposure to contaminants for different site uses are set out in the updated technical background to the CLEA model (Environment Agency 2009a).

Descriptive Conceptual Models (From Environment Agency 2009a)

Residential

This generic scenario assumes a typical residential property consisting of a two-storey house built on a ground bearing slab with a private garden consisting of lawn, flower beds and a small fruit and vegetable patch. The occupants are assumed to be parents with young children, who make regular use of the garden area.

The key assumptions for BWB GSACs are

Critical receptor is a young female child (aged zero to six years old)

Exposure duration is six years

Exposure pathways include direct soil and indoor dust ingestion, consumption of homegrown produce, consumption of soil attached to home grown produce, skin contact with soils and indoor dusts, and inhalation of indoor and outdoor dust and vapours.

Soil type is a Sandy Loam with 1% organic matter

Building type is a two storey small terraced house

Commercial/industrial

There are many different kinds of workplace and work-related activities. This generic scenario assumes a typical commercial or light industrial property consisting of a three storey building at which employees spend most time indoors and are involved in office based or relatively light physical work.

The key assumptions for BWB GSACs are

Critical receptor is a working female adult (aged 16 to 65 years)

Exposure duration is a working lifetime of 49 years

Exposure pathways include direct soil and indoor dust ingestion, skin contact with soils and dusts, and inhalation of dust and vapours.

Soil type is a Sandy Loam with 1% organic matter

Building type is a three storey office (post 1970) (Representative of new buildings)

The 2009a report identifies 10 potential exposure pathways by which contaminated soils may impact human health and also sets out which pathways are applicable for four standard land uses. The pathways for the residential and commercial end uses are shown below.

Screening Criteria Modelling

The CLEA model version 1.06 has been used to calculate BWB GSACs. BWB have used the model to calculate Individual criteria for each relevant pathway so, for example, in a residential with vegetable uptake scenario we would need six individual criteria: -

- Ingestion of soil and dust
- Ingestion of contaminated vegetables and soil attached to vegetables
- Dermal contact indoors and outdoors
- Particulate dust inhalation indoors and outdoors
- Vapour inhalation indoors
- Vapour inhalation outdoors

The final overall assessment criteria is calculated by adding together the reciprocal of the individual criteria for each pathway, therefore if several of the individual criteria are of similar magnitude the final criteria may be substantially lower than the lowest individual criteria so that total exposure is below the respective health threshold.

$1/GSAC = \sum 1/ASC_{ingestion} + 1/ASC_{inhalation} + 1/ASC_{dermal}$

By adopting this methodology BWB are able to provide a more flexible site specific approach to generic human health risk assessment.

Pathway Selection - Generic Site Assessment Criteria

Pathway	Residential	Commercial / Industrial
Ingestion of Soil	Yes	Yes
Ingestion of site derived household dust	Yes	Yes
Ingestion of contaminated homegrown produce	Optional	No
Ingestion of soil attached to homegrown produce	Optional	No
Dermal contact with Soil	Yes	Yes
Dermal contact with site derived household dust	Yes	Yes
Inhalation of fugitive soil dust	Yes	Yes
Inhalation of fugitive site derived household dust	Yes	Yes
Inhalation of vapours outside	Yes	Yes
Inhalation of vapours inside	Yes	Yes

Health Criteria Values

The general hierarchy for selecting health criteria values is as follows:

- 1. EA / DEFRA TOX report
- 2. Other UK authoritative body e.g. Committee on toxicity, Food Standards Agency
- 3. EU authoritative body
- 4. Other EU body e.g. RIVM
- 5. Other US/International Body

In the absence of updated TOX reports which take into account the recommendations of EA report (2009b) TOX reports produced under the old regime have been used and GSACs will be updated accordingly as further authoritative information is issued.

REFERENCES

Environment Agency, 2009a, Updated Technical Background to the CLEA Model, Science Report SC050021/SR3 ISBN 978-1-84432-856-7

Environment Agency, 2009b, Human health Toxicological Assessment of Contaminants in Soil, Science Report SC050021/SR2 ISBN 978-1-84432-858-1

Environment Agency 2009c, CLEA Software Handbook (version 1.06) Science Report SC050021/SR4, ISBN 978-1-84432-857-4

EIC/AGS/CL: AIRE (2010), Soil Generic Assessment Criteria for Human Health Risk Assessment. Environment Industries Commission (EIC), Association of Geotechnical and Geoenvironmental Specialists (AGS), Contaminated Land: Applications in Real Environments (CL:AIRE). Published by CL:AIRE. ISBN: 978-1-905046-20-1. Nathanail, C.P., McCaffrey,C., Ashmore,M.H., Cheng, Y.Y., Gillett, A., Ogden,R. & Scott,D. (2009). The LQM/CIEH Generic Assessment Criteria for Human Health Risk Assessment (2nd Edition). Land Quality Press, Nottingham. ISBN: 0-9547474-7-X.

Residential Pathway Specific Assessment Sub Criteria derived March 2009	Vapour Inhalation (Indoors)	Vapour I nhalation (Outdoors)	Soil Ingestion	I ngestion of Contaminated Vegetables and soil attached to vegetables	Dermal contact	Particulat e Dust I nhalation	Residentia I GSAC	Soil Saturatio n Limit
	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	mg/kg	mg/kg
Arsenic	NR	NR	4.04E+01	4.29E+02	2.62E+02	8.50E+01	3.24E+01	N/A
Barium	NR	NR	1.35E+04	1.48E+03	NR	4.25E+06	1.33E+03	N/A
Beryllium	NR	NR	1.56E+02	1.03E+03	NR	2.89E+01	2.38E+01	N/A
Boron	NR	NR	1.08E+04	1.50E+02	NR	3.40E+06	1.48E+02	N/A
Cadmium	NR	NR	1.20E+02	1.22E+01	1.64E+04	1.82E+02	1.04E+01	N/A
Chromium III	NR	NR	1.44E+04	1.91E+04	NR	4.53E+06	8.18E+03	N/A
Chromium VI	NR	NR	3.06E+02	4.05E+02	NR	4.25E+01	3.42E+01	N/A
Copper	NR	NR	1.08E+04	5.13E+03	NR	3.40E+06	3.47E+03	N/A
Lead							4.50E+02	N/A
Inorganic Mercury	NR	NR	2.62E+02	5.81E+02	NR	2.55E+03	1.69E+02	N/A
Nickel	NR	NR	8.09E+02	1.64E+03	3.15E+04	1.27E+02	1.27E+02	N/A
Selenium	NR	NR	5.97E+02	8.51E+02	NR	1.88E+05	3.50E+02	N/A
Vanadium	NR	NR	2.30E+02	1.82E+02	NR	8.29E+03	1.00E+02	N/A
Zinc	NR	NR	4.37E+04	5.82E+03	NR	1.38E+07	5.13E+03	N/A
Cyanide (free)							4.30E+01	N/A
Cyanide (Complex)							2.13E+02	N/A
Phenol	5.89E+02	5.52E+05	9.17E+04	4.53E+02	6.63E+02	3.22E+05	1.84E+02	4.16E+04
Ethylbenzene	1.70E+02	1.79E+06	1.34E+04	1.07E+02	2.62E+04	9.01E+06	6.52E+01	5.18E+02
m-xylene	5.56E+01	5.04E+05	2.42E+04	2.05E+02	4.71E+04	2.19E+06	4.36E+01	6.25E+02
p-xylene	5.34E+01	4.94E+05	2.42E+04	1.93E+02	4.71E+04	2.19E+06	4.17E+01	5.76E+02
o-xylene	5.98E+01	5.23E+05	2.42E+04	1.87E+02	4.71E+04	2.19E+06	4.52E+01	4.78E+02
TPH (EC5-6) aliphatic	2.97E+00	2.53E+06	6.74E+05	9.69E+03	1.01E+06	1.12E+08	2.97E+00	3.10E+02
TPH (>EC6-8) aliphatic	7.75E+00	4.08E+06	6.74E+05	3.30E+04	1.01E+06	1.12E+08	7.75E+00	1.51E+02
TPH (>EC8-10) aliphatic	2.14E+00	4.99E+05	6.74E+03	2.29E+03	1.01E+04	6.08E+06	2.13E+00	8.17E+01
TPH (>EC10-12) aliphatic	1.27E+01	1.22E+06	6.74E+03	1.75E+04	1.01E+04	6.08E+06	1.26E+01	4.98E+01

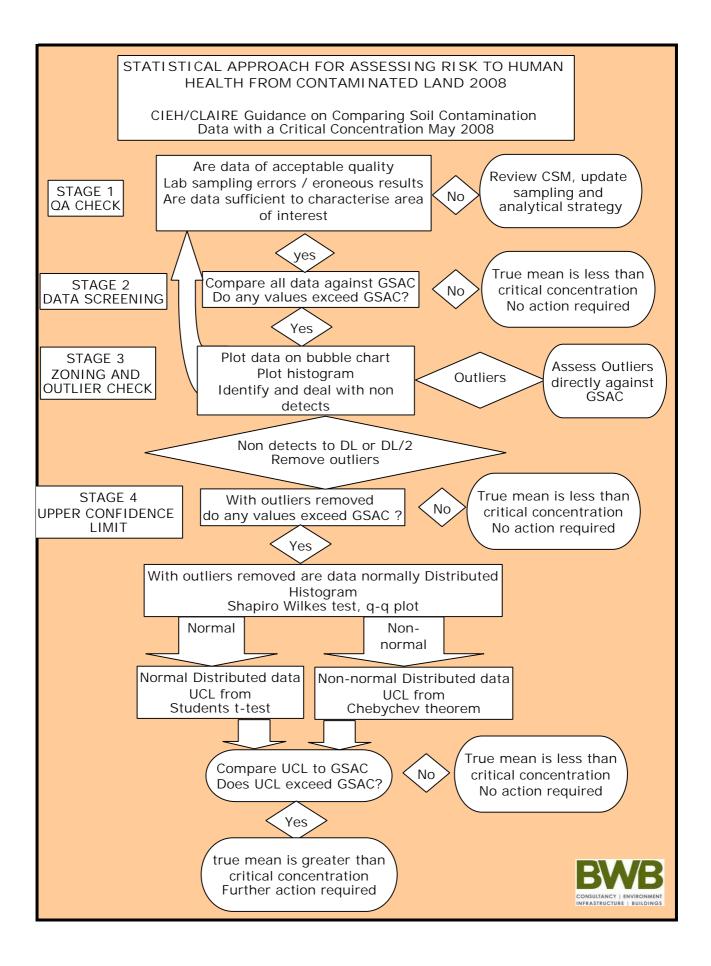
Residential Pathway Specific Assessment Sub Criteria derived March 2009	Vapour Inhalation (Indoors)	Vapour I nhalation (Outdoors)	Soil Ingestion	Ingestion of Contaminated Vegetables and soil attached to vegetables	Dermal contact	Particulat e Dust I nhalation	Residentia I GSAC	Soil Saturatio n Limit
TPH (>EC12-16) aliphatic	6.38E+01	2.73E+06	6.74E+03	2.23E+05	1.01E+04	6.08E+06	6.28E+01	2.21E+01
TPH (>EC16-21) aliphatic	7.35E+03	7.74E+07	1.35E+05	1.16E+07	2.02E+05	4.25E+07	6.73E+03	9.15E+00
TPH (>EC21-35) aliphatic	7.35E+03	7.74E+07	1.35E+05	1.16E+07	2.02E+05	4.25E+07	6.73E+03	9.15E+00
TPH (>EC35-44) aliphatic	7.35E+03	7.74E+07	1.35E+05	1.16E+07	2.02E+05	4.25E+07	6.73E+03	9.15E+00
TPH (>EC6-7) aromatic (benzene)	2.69E-01	5.63E+03	3.91E+01	1.13E-01	7.61E+01	5.95E+04	7.92E-02	1.22E+03
TPH (>EC7-8) aromatic (toluene)	6.26E+02	8.62E+06	3.00E+04	1.48E+02	5.84E+04	5.81E+07	1.19E+02	8.69E+02
TPH (>EC8-10) aromatic	3.64E+00	2.91E+05	2.70E+03	7.45E+01	4.04E+03	1.21E+06	3.46E+00	6.18E+02
TPH (>EC10-12) aromatic	2.18E+01	7.11E+05	2.70E+03	9.71E+01	4.04E+03	1.21E+06	1.76E+01	3.71E+02
TPH (>EC12-16) aromatic	1.23E+02	1.68E+06	2.70E+03	1.67E+02	4.04E+03	1.21E+06	6.77E+01	1.70E+02
TPH (>EC16-21) aromatic	9.47E+02	3.34E+06	2.02E+03	3.45E+02	3.03E+03	6.37E+05	2.09E+02	5.99E+01
TPH (>EC21-35) aromatic	1.21E+05	2.50E+07	2.02E+03	2.66E+03	3.03E+03	6.37E+05	8.26E+02	4.82E+00
TPH (>EC35-44) aromatic	1.21E+05	2.50E+07	2.02E+03	2.66E+03	3.03E+03	6.37E+05	8.26E+02	4.82E+00
Naphthalene	1.64E+00	3.17E+04	2.64E+03	2.72E+01	3.96E+03	2.93E+04	1.54E+00	7.64E+01
Acenaphthylene	1.36E-01	8.48E+02	2.70E+02	8.15E+00	4.04E+02	2.97E+02	1.33E-01	2.39E+02
Acenaphthene	5.27E+00	1.84E+04	2.70E+03	2.34E+02	4.04E+03	2.97E+03	5.13E+00	1.57E+02
Fluorene	8.67E+03	1.77E+07	5.39E+03	8.53E+02	8.07E+03	1.70E+06	6.26E+02	1.53E+02
Phenanthrene	3.44E+01	3.91E+04	2.70E+03	6.69E+02	4.04E+03	2.97E+03	3.17E+01	1.46E+02
Anthracene	3.41E+05	2.69E+08	4.04E+04	1.30E+04	6.06E+04	1.27E+07	8.27E+03	7.71E+00
Fluoranthene	1.59E+01	7.09E+03	2.70E+02	5.59E+01	4.04E+02	2.97E+02	1.11E+01	1.89E+01
Pyrene	1.52E+02	6.71E+04	2.70E+03	4.96E+02	4.04E+03	2.97E+03	1.04E+02	2.20E+00
Benzo(a)anthracene	1.12E+01	1.57E+03	2.70E+01	2.72E+01	4.04E+01	2.97E+01	4.50E+00	1.71E+00
Chrysene	5.91E+02	1.37E+04	2.70E+02	1.87E+02	4.04E+02	2.97E+02	6.00E+01	4.40E-01
Benzo(b)fluoranthene	1.72E+02	1.93E+03	2.70E+01	3.81E+01	4.04E+01	2.97E+01	7.81E+00	1.22E+00
Benzo(k)fluoranthene	2.83E+02	2.30E+03	2.70E+01	5.52E+01	4.04E+01	2.97E+01	8.51E+00	6.87E-01
Benzo(a)pyrene	2.44E+01	2.13E+02	2.70E+00	4.75E+00	4.04E+00	2.97E+00	8.26E-01	9.11E-01

Residential Pathway Specific Assessment Sub Criteria derived March 2009	Vapour Inhalation (Indoors)	Vapour Inhalation (Outdoors)	Soil Ingestion	Ingestion of Contaminated Vegetables and soil attached to vegetables	Dermal contact	Particulat e Dust I nhalation	Residentia I GSAC	Soil Saturatio n Limit
Indeno(123-cd)pyrene	1.43E+02	1.79E+03	2.70E+01	3.13E+01	4.04E+01	2.97E+01	7.41E+00	6.14E-02
Dibenzo(ah)anthracene	1.22E+01	2.65E+02	2.70E+00	7.15E+00	4.04E+00	2.97E+00	8.47E-01	3.93E-03
Benzo(g,h,i)perylene	2.56E+07	1.66E+08	4.04E+03	2.41E+04	6.06E+03	1.27E+06	2.20E+03	1.87E-02
Tetrachloroethene (PCE)	1.35E+00	2.65E+05	1.82E+03	1.07E+01	3.55E+03	2.50E+06	1.20E+00	4.24E+02
Trichloroethene (TCE)	1.10E-01	2.22E+04	7.01E+02	2.85E+00	1.05E+03	2.21E+05	1.06E-01	1.54E+03
cis-1,2-Dichloroethene	1.20E-01	2.33E+04	7.30E+02	1.75E+00	1.42E+03	2.30E+05	1.12E-01	3.94E+03
Vinyl Chloride (VC)	5.43E-04	3.59E+02	1.89E+00	3.70E-03	3.67E+00	1.27E+04	4.73E-04	1.36E+03
1,1,2,2-Tetrachloroethane (PCA)	2.76E+00	1.17E+05	7.67E+02	2.72E+00	1.49E+03	2.41E+05	1.37E+00	2.67E+03
1,1,1-Trichloroethane (TCA)	6.33E+00	1.79E+06	8.09E+04	3.22E+02	1.57E+05	2.46E+07	6.21E+00	1.43E+03
1,2-Dichloroethane	6.46E-03	8.09E+02	1.62E+01	3.07E-02	3.15E+01	5.10E+03	5.34E-03	3.41E+03
Carbon Tetrachloride	1.81E-02	5.07E+03	1.90E+02	1.06E+00	3.70E+02	6.93E+04	1.78E-02	1.52E+03

ASC exceeds soil saturation limit

Commercial/Industrial Pathway Specific Assessment Sub Criteria derived March 2009	Vapour Inhalation (Indoors)	Vapour Inhalation (Outdoors)	Soil Ingestion	Dermal contact	Particulate Dust Inhalation	Commercial GSAC	Soil Saturation Limit
	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	mg/kg
Arsenic	NR	NR	6.67E+02	1.35E+04	6.95E+02	6.35E+02	N/A
Barium	NR	NR	2.22E+05	NR	3.48E+07	2.21E+05	N/A
Beryllium	NR	NR	3.97E+03	NR	2.36E+02	2.23E+02	N/A
Boron	NR	NR	2.38E+05	NR	3.72E+07	2.37E+05	N/A
Cadmium	NR	NR	4.00E+02	2.42E+05	3.87E+02	2.30E+02	N/A
Chromium III	NR	NR	3.09E+05	NR	4.83E+07	3.07E+05	N/A
Chromium VI	NR	NR	6.25E+03	NR	3.48E+02	3.29E+02	N/A
Copper	NR	NR	1.78E+05	NR	2.78E+07	1.77E+05	N/A
Lead						7.50E+02	N/A
Inorganic Mercury	NR	NR	4.41E+03	NR	2.09E+04	3.64E+03	N/A
Nickel	NR	NR	2.25E+04	2.73E+06	1.79E+03	1.79E+03	N/A
Selenium	NR	NR	1.31E+04	NR	2.05E+06	1.30E+04	N/A
Vanadium	NR	NR	5.94E+03	NR	9.20E+04	5.58E+03	N/A
Zinc	NR	NR	8.79E+05	NR	1.38E+08	8.74E+05	N/A
Cyanide (free)						4.30E+01	N/A
Cyanide (Complex)						2.13E+02	N/A
Phenol	2.72E+05	1.43E+06	1.54E+06	4.23E+04	3.28E+06	3.20E+03	4.16E+04
Ethylbenzene	2.90E+04	3.83E+06	2.22E+05	1.34E+06	7.58E+07	2.50E+04	5.18E+02
m-xylene	1.04E+04	1.18E+06	4.00E+05	2.42E+06	2.02E+07	9.99E+03	6.25E+02
p-xylene	9.99E+03	1.16E+06	4.00E+05	2.42E+06	2.02E+07	9.63E+03	5.76E+02
o-xylene	1.12E+04	1.22E+06	4.00E+05	2.42E+06	2.02E+07	1.07E+04	4.78E+02
TPH (EC5-6) aliphatic	5.47E+02	5.26E+06	1.11E+07	5.17E+07	9.14E+08	5.47E+02	3.10E+02
TPH (>EC6-8) aliphatic	1.42E+03	8.49E+06	1.11E+07	5.17E+07	9.14E+08	1.42E+03	1.51E+02
TPH (>EC8-10) aliphatic	3.93E+02	1.04E+06	1.11E+05	5.17E+05	4.97E+07	3.91E+02	8.17E+01
TPH (>EC10-12) aliphatic	2.33E+03	2.53E+06	1.11E+05	5.17E+05	4.97E+07	2.27E+03	4.98E+01

Commercial/Industrial Pathway Specific Assessment Sub Criteria derived March 2009	Vapour Inhalation (Indoors)	Vapour Inhalation (Outdoors)	Soil Ingestion	Dermal contact	Particulate Dust Inhalation	Commercial GSAC	Soil Saturation Limit
TPH (>EC12-16) aliphatic	1.17E+04	5.68E+06	1.11E+05	5.17E+05	4.97E+07	1.04E+04	2.21E+01
TPH (>EC16-21) aliphatic	1.35E+06	1.61E+08	2.22E+06	1.03E+07	3.48E+08	7.72E+05	9.15E+00
TPH (>EC21-35) aliphatic	1.35E+06	1.61E+08	2.22E+06	1.03E+07	3.48E+08	7.72E+05	9.15E+00
TPH (>EC35-44) aliphatic	1.35E+06	1.61E+08	2.22E+06	1.03E+07	3.48E+08	7.72E+05	9.15E+00
TPH (>EC6-7) aromatic (benzene)	4.75E+01	1.17E+04	6.44E+02	3.90E+03	4.87E+05	4.36E+01	1.22E+03
TPH (>EC7-8) aromatic							
(toluene)	1.09E+05	1.83E+07	4.95E+05	3.00E+06	4.84E+08	8.62E+04	8.69E+02
TPH (>EC8-10) aromatic	6.69E+02	6.05E+05	4.44E+04	2.07E+05	9.91E+06	6.56E+02	6.18E+02
TPH (>EC10-12) aromatic	4.03E+03	1.48E+06	4.44E+04	2.07E+05	9.91E+06	3.62E+03	3.71E+02
TPH (>EC12-16) aromatic	2.27E+04	3.50E+06	4.44E+04	2.07E+05	9.91E+06	1.39E+04	1.70E+02
TPH (>EC16-21) aromatic	1.81E+05	6.96E+06	3.33E+04	1.55E+05	5.21E+06	2.36E+04	5.99E+01
TPH (>EC21-35) aromatic	3.64E+07	5.20E+07	3.33E+04	1.55E+05	5.21E+06	2.73E+04	4.82E+00
TPH (>EC35-44) aromatic	3.64E+07	5.20E+07	3.33E+04	1.55E+05	5.21E+06	2.73E+04	4.82E+00
Naphthalene	3.22E+02	7.85E+04	4.42E+04	2.06E+05	2.85E+05	3.17E+02	7.64E+01
Acenaphthylene	2.69E+01	1.77E+03	4.44E+03	2.07E+04	2.43E+03	2.60E+01	2.39E+02
Acenaphthene	8.32E+02	3.83E+04	4.44E+04	2.07E+05	2.43E+04	7.71E+02	1.57E+02
Fluorene	1.39E+06	3.70E+07	8.88E+04	4.14E+05	1.39E+07	6.90E+04	1.53E+02
Phenanthrene	7.91E+03	8.13E+04	4.44E+04	2.07E+05	2.43E+04	4.83E+03	1.46E+02
Anthracene	7.22E+07	5.60E+08	6.67E+05	3.10E+06	1.04E+08	5.41E+05	7.71E+00
Fluoranthene	4.38E+03	1.47E+04	4.44E+03	2.07E+04	2.43E+03	1.02E+03	1.89E+01
Pyrene	4.29E+04	1.40E+05	4.44E+04	2.07E+05	2.43E+04	1.01E+04	2.20E+00
Benzo(a)anthracene	3.47E+03	3.27E+03	4.44E+02	2.07E+03	2.43E+02	1.34E+02	1.71E+00
Chrysene	2.23E+05	2.85E+04	4.44E+03	2.07E+04	2.43E+03	1.38E+03	4.40E-01
Benzo(b)fluoranthene	6.56E+04	4.02E+03	4.44E+02	2.07E+03	2.43E+02	1.41E+02	1.22E+00
Benzo(k)fluoranthene	1.09E+05	4.78E+03	4.44E+02	2.07E+03	2.43E+02	1.42E+02	6.87E-01
Benzo(a)pyrene	9.37E+03	4.43E+02	4.44E+01	2.07E+02	2.43E+01	1.41E+01	9.11E-01


Commercial/Industrial Pathway Specific Assessment Sub Criteria derived March 2009	Vapour Inhalation (Indoors)	Vapour Inhalation (Outdoors)	Soil Ingestion	Dermal contact	Particulate Dust Inhalation	Commercial GSAC	Soil Saturation Limit
Indeno(123-cd)pyrene	5.46E+04	3.72E+03	4.44E+02	2.07E+03	2.43E+02	1.40E+02	6.14E-02
Dibenzo(ah)anthracene	4.49E+03	5.51E+02	4.44E+01	2.07E+02	2.43E+01	1.42E+01	3.93E-03
Benzo(g,h,i)perylene	9.73E+09	3.46E+08	6.66E+04	3.10E+05	1.04E+07	5.46E+04	1.87E-02
Tetrachloroethene (PCE)	2.59E+02	6.38E+05	3.08E+04	1.87E+05	2.37E+07	2.57E+02	4.24E+02
Trichloroethene (TCE)	1.89E+01	4.63E+04	1.16E+04	5.38E+04	1.81E+06	1.88E+01	1.54E+03
cis-1,2-Dichloroethene	2.32E+01	5.26E+04	1.30E+04	7.88E+04	2.04E+06	2.32E+01	3.94E+03
Vinyl Chloride (VC)	1.03E-01	7.47E+02	3.11E+01	1.88E+02	1.04E+05	1.03E-01	1.36E+03
1,1,2,2-Tetrachloroethane (PCA)	4.69E+02	2.49E+05	1.28E+04	7.76E+04	2.01E+06	4.49E+02	2.67E+03
1,1,1-Trichloroethane (TCA)	1.11E+03	3.81E+06	1.33E+06	8.07E+04	2.07E+08	1.11E+03	1.43E+03
1,2-Dichloroethane	1.14E+00	1.68E+03	2.67E+02	1.61E+03	4.17E+04	1.14E+00	3.41E+03
Carbon Tetrachloride	4.81E+00	1.65E+04	3.15E+03	1.91E+04	8.85E+05	4.80E+00	1.52E+03

ASC exceeds soil saturation limit

APPENDIX 7

CLEA FLOW CHART & SCREENING WORKSHEETS

Human Health Generic QRA Worksheet

Phase 3 - Witham St Hughs

NTM2082

All samples were used as one averaging area.

Copyright Land Quality Management Limited reproduced with permission; Publication Number S4UL3271

GSAC Type (BWB, LQM S4UL, C4SL, Bespoke)	BWB_GSAC
Key Receptor/CSM (Residential/Commercial/POS)	Residential
Organic Matter % (If unknown use 1%)	1

Exposure Pathway Selection for BWB GSAC	
(Residential/Commercial scenarios only)	
Soil Ingestion, dermal contact, particulate inhalation	TRUE
Ingestion of site grown vegetables and soil attached to	
vegetables	FALSE
Inhalation of vapours Indoors	TRUE
Inhalation of vapours Outdoors	TRUE

Default	pathways
Residential	Commercial
TRUE	TRUE
Optional	FALSE
TRUE	TRUE
TRUE	TRUE

V5, March 2016

Generic Assessment Criteria		
		DAAD
Phase 3 - Witham St Hughs	Residential	CONSULTANCY ENVIRONMENT
NTM2082	mg/kg	Source
Arsenic	3.50E+01	BWB_GSAC
Barium	1.34E+03	BWB_GSAC BWB_GSAC
Beryllium	1.21E+00 1.08E+04	BWB_GSAC
Boron Cadmium	6.19E+04	BWB_GSAC
Chromium VI	4.01E+00	BWB_GSAC
Chromium III	6.37E+02	BWB_GSAC
	5.16E+03	BWB_GSAC
Copper Lead*	2.00E+02	DEFRA_C4SL
Inorganic Mercury	5.59E+01	BWB_GSAC
Nickel	1.27E+02	BWB_GSAC
Selenium	4.30E+02	BWB_GSAC
Vanadium	5.49E+02	BWB_GSAC
Zinc	4.04E+02	BWB_GSAC
Cyanide (Free)	4.30E+01	BWB_GSAC
Cyanide (Complex)	2.13E+02	BWB_GSAC
Phenols (Total)	2.25E+02	BWB_GSAC
Benzene	2.66E-01	BWB_GSAC
Toluene	6.18E+02	BWB_GSAC
Ethyl benzene	5.82E+01	BWB_GSAC
Total Xylene	5.55E+01	BWB_GSAC
TPH (EC5-6) aliphatic	2.88E+01	BWB_GSAC
TPH (>EC6-8) aliphatic	7.02E+01	BWB_GSAC
TPH (>EC8-10) aliphatic	1.81E+01	BWB_GSAC
TPH (>EC10-12) aliphatic	8.84E+01	BWB_GSAC
TPH (>EC12-16) aliphatic	6.45E+02	BWB GSAC
TPH (>EC16-21) aliphatic	4.45E+04	BWB_GSAC
TPH (>EC21-35) aliphatic	4.45E+04	BWB_GSAC
TPH (>EC35-44) aliphatic	4.45E+04	BWB_GSAC
TPH (>EC6-7) aromatic (benzene)	2.66E-01	BWB_GSAC
TPH (>EC7-8) aromatic (toluene)	6.07E+02	BWB_GSAC
TPH (>EC8-10) aromatic	3.16E+01	BWB_GSAC
TPH (>EC10-12) aromatic	1.59E+02	BWB_GSAC
TPH (>EC12-16) aromatic	9.27E+02	BWB_GSAC
TPH (>EC16-21) aromatic	1.29E+03	BWB_GSAC
TPH (>EC21-35) aromatic	1.34E+03	BWB_GSAC
TPH (>EC35-44) aromatic	1.34E+03	BWB_GSAC
Total TPH	5.00E+02	BWB_GSAC
Naphthalene	1.64E+00	BWB_GSAC
Acenaphthylene	1.95E+03	BWB_GSAC
Acenaphthene	2.02E+03	BWB_GSAC
Fluorene	1.85E+03	BWB_GSAC
Phenanthrene	8.34E+02	BWB_GSAC
Anthracene	1.98E+04	BWB_GSAC
Fluoranthene	9.73E+02	BWB_GSAC
Pyrene	2.33E+03	BWB_GSAC
Benzo(a)anthracene	7.27E+00	BWB_GSAC
Chrysene	1.93E+01	BWB_GSAC
Benzo(b)fluoranthene	2.56E+00	BWB_GSAC
Benzo(k)fluoranthene	6.83E+01	BWB_GSAC
Benzo(a)pyrene	2.05E+00	BWB_GSAC
Indeno(1,2,3-c,d)pyrene	2.89E+01	BWB_GSAC

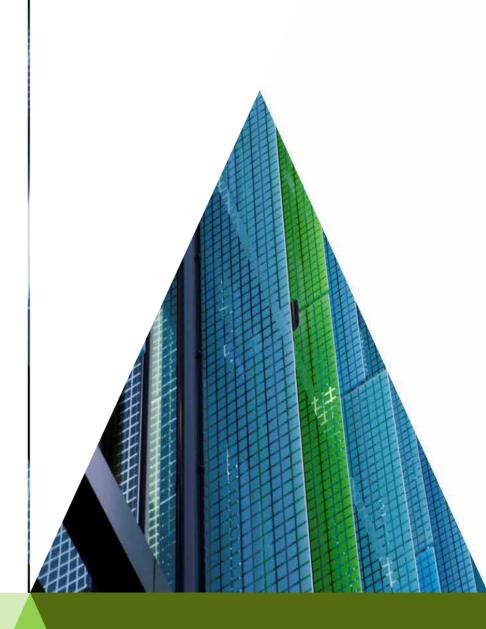
Phase 3 - Witham St Hughs NTM2082	Residential mg/kg	CONSULTANCY ENVIRONMENT INFRASTRUCTURE BUILDINGS SOURCE
Dibenzo(a,h)anthracene	2.01E-01	BWB_GSAC
Benzo(g,hi)perylene	2.30E+02	BWB_GSAC
Coal Tar (B(a)P as surrogate marker	7.54E-01	BWB_GSAC
Tetrachloroethene (PCE)	1.26E-01	BWB_GSAC
Trichloroethene (TCE)	1.21E-02	BWB_GSAC
cis-1,2-Dichloroethene	1.20E-01	BWB_GSAC
Vinyl Chloride (VC)	5.43E-04	BWB_GSAC
1,1,2,2-Tetrachloroethane (PCA)	2.74E+00	BWB_GSAC
1,1,1-Trichloroethane (TCA)	6.33E+00	BWB_GSAC
1,2-Dichloroethane	6.46E-03	BWB_GSAC
Carbon Tetrachloride	1.81E-02	BWB_GSAC
Carbon disulphide	1.01E-01	BWB_GSAC

Location	Sample depth	Easting	Northing	Strata Type	Arsenic	Barium	Beryllium	Boron	Cadmium	Chromium VI	Chromium 111	Copper	Lead	l norganic Mercury	Nickel	Selenium	Vanadium	Zinc	Cyanide (Free)	Cyanide (Complex)	8.0 Phenols (Total)
Detection GSAC	n Limit				0.2 35.05	1.5 1344.03	0.2	0.2	0.1 61.94	1 4.01	0.15	0.2 5158.21	0.3	0.03 55.88	0.2	0.5 430.08	0.8 548.61	1 40400.13	0.1 43.00	0.1 213.00	0.3 225.03
TP02	1.70-1.70				18	91	0.34	10754.59 0.2	01.94	4.01	8.7	9.8		0.3	127.44	430.08	15	40400.13	+3.00 1		225.03
TP04 TP05	1.70-1.70 0.20-0.20 1.60-1.60				2.1	19	0.17		0.2	4	3.9	11	5.9	0.3	6.7	1	7	20	1	1	1
TP05	0.20-0.20				14	84	0.82	0.2	0.2	4 4 4	3.9	18	20	0.3	15	1	45	55	1	1	1
TP10	0.20-0.20 2.00-2.00 0.20-0.20				21	28	0.8	1.6	0.2	4	27	20	13	0.3	26	1	35	54	1	1	1
TP11 TP12	0.20-0.20				10	69	1.5	1.4	0.2	4	42	24	13	0.3	42	1	47	47	1	1	1
TP14	0.30-0.30				10	0,			0.2		12	21	10	0.0	12						
TP15 TP16	0.10-0.10				19	52	0.69	0.3	0.2	4	27	13	12	0.3	18	1	45	48	1	1	1
TP18	0.20-0.20				17	52	0.09	0.3	0.2	4	21	13	12	0.3	10	'	45	40		1	
TP18	3.40-3.50				12	27		4.9	0.2	4		27			31		31	47		1	1
TP23 TP24	0.15-0.15				11	49	1	3.8	0.2	4	32	19	24	0.3	19	1	48	53	1	1	1
TP25	1.20-1.20				3.3	21	0.27	0.2	0.2	4	8.5	12	4.5	0.3	8.6	1	11	20	1	1	1
										-											

Location	sample depth	Benzene 0.01	Toluene 0.01	0.01 58.20	9.0 10.0 11.00 12.00 12.00	8 80 10 10 10 10 10 10 10 10 10 10 10 10 10	년 6 8 모머H (>EC6-8) allphatic	명 명.0 1010 TPH (>EC8-10) 도미phatic	8 1 TPH (>EC10-12) 5 <mark>13</mark> aliphatic	TPH (>EC12-16) aliphatic	44445 86.64716-21) 86.64716-21	4445 86.64779 86.64771-35) 86.64777	TPH (≻EC35-44) aliphatic	o TPH (>EC6-7) aromatic N <mark>0</mark> (benzene)	o TPH (>EC7-8) aromatic C (toluene)	15 16 10 10 10 10 10 10 10	200 120-12) 120-12 120-12 120-12	0 TPH (>EC12-16) Do aromatic	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	TPH (>EC21-35) aromatic
Detectic GSAC TP04 TP05 TP08 TP10 TP11 TP12 TP14 TP15 TP16 TP18 TP23	T Entite	0.01	0.01 617.89	0.01	0.01	0.01	0.01	0.01	1.5 88.40	1.2 645.28	1.5 44479.98	3.4 44479.98	3.4	0.01	0.01 606.77	0.9	0.5	0.6 927.21	1.4	1.4 1336.68
TP02	1.70-1.70	0.27	017.07	00.20	00.01	20.00	70.10	10.10	00.10	010.20	111/7.70			0.27	000.77	01.02	107.20	121.21	1200.21	1000.00
TP04 TP05	0.20-0.20																			
TP08	0.20-0.20																			
TP10	2.00-2.00																			↓
TP12	0.60-0.60																			
TP14	0.30-0.30																			
TP15	0.40-0.40																			
TP18	1.70-1.70 0.20-0.20 1.60-1.60 0.20-0.20 2.00-2.00 0.20-0.20 0.60-0.60 0.30-0.30 0.10-0.10 0.40-0.40 0.40-0.40 0.20-0.20 3.40-3.50 0.15-0.15 0.20-0.20																			
TP18 TP23	3.40-3.50																			├ ──┤
TP23 TP24 TP25	0.20-0.20																			
TP25	1.20-1.20																			
																				L
																				↓
																				L
																				<u> </u>
																				───┤
																				\vdash
																				\vdash
																				───┤
-																				

Location Detection	t Sample depth	o TPH (>EC35-44) aromatic	d Total TPH	Naphthalene	Acenaphthylene	Acenaphthene	Fluorene 0.1	10 Phenanthrene	0.1	Fluoranthene	Dyrene	0. Benzo(a)anthracene	Chrysene 0.1	Benzo(b) fluoranthene	0 Benzo(k)fluoranthene	Benzo(a)pyrene	o Indeno(1,2,3- c.d)pyrene	0 Diben zo(a,h) an thracen e	Benzo(g.hi)perylene	o Benzo(a)pyrene (as surrogate marker)	000 1000 1000 1000	00.0 Trichloroethene (TCE)	0000 10010 10010	Vinyl Chloride (VC)	0 1,1,2,2- Tetrachloroethane (PCA)	1.1.1.Trichloroethane ((TCA) 1.2.Dichloroethane
GSAC		1336.68	500.00	1.64	1951.34	2020.86	1854.93	834.37	19836.52	973.45	2328.67	7.27	19.28	2.56	68.30	2.05	28.88	0.20	229.50	0.75	1.26E-01	1.21E-02				.33E+00 6.46E-03
TP02 TP04	1.70-1.70 0.20-0.20 1.60-1.60		10	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05		0.05		0.05	0.05	0.05	0.05						
TP05 TP08	1.60-1.60 0.20-0.20		10	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05						
TP10	2.00-2.00		10	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05						
TP11 TP12	0.20-0.20 0.60-0.60		10	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05						
TP14 TP15	0.30-0.30																									
TP15 TP16	0.40-0.40		10	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05						
TP18 TP18	0.20-0.20 3.40-3.50		10	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05						
TP23 TP24	0.15-0.15		10	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05						
TP25	1.20-1.20		10	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05						
																								\vdash		
L	I		I																				[

Location	Sample depth	1.81 0.00 100'0 Tetrachloride
Detectio	n Limit	0.001
GSAC		1.81E-02
TP02	1.70-1.70	
GSAC TP02 TP04	0.20-0.20	
TP05	1.60-1.60	
TP08	0.20-0.20	
TP10	2.00-2.00	
TP11	0.20-0.20	
TP12	0.60-0.60	
TP11 TP12 TP14	0.60-0.60	
TP15	0.10-0.10	
TP16	0.40-0.40	
TP18	0.20-0.20	
TP18 TP18	3 40-3 50	
TD22	0.15-0.15	
TP23 TP24 TP25	0.15-0.15 0.20-0.20 1.20-1.20	
TP24	0.20-0.20	
TP25	1.20-1.20	
<u> </u>		
<u> </u>		
<u> </u>		
 		
 		
 		
I		
I		
I		
L		
L	· · · · · ·	с



APPENDIX 8

SOIL CHEMICAL RESULTS SUMMARY

Determinand	Number of tests	Range (mg/kg)	Residential GSAC (mg/kg)	Detection Limit (mg/kg)	Min	Мах	No. of Exceedances	No. Non detects < or not
Arsenic	9	2.1 to 21	3.50E+01	0.2	2.1	21	0	
Barium	9	19 to 91	1.34E+03	1.5	19	91	0	
Beryllium	9	0.17 to 1.5	1.21E+00	0.2	0.17	1.5	1	
Boron	9	<0.2 to 4.9	1.08E+04	0.2	0.2	4.9	0	
Cadmium	9	0.2 to 0.2	6.19E+01	0.1	0.2	0.2	0	
Chromium VI	9	4 to 4	4.01E+00	1	4	4	0	
Chromium III	9	3.9 to 42	6.37E+02	0.15	3.9	42	0	
	9						0	
Copper		9.8 to 27	5.16E+03	0.2	9.8	27		
Lead*	9	4.5 to 24	2.00E+02	0.3	4.5	24	0	
Inorganic Mercury	9	0.3 to 0.3	5.59E+01	0.03	0.3	0.3	0	
Nickel	9	6.7 to 42	1.27E+02	0.2	6.7	42	0	
Selenium	9	1 to 1	4.30E+02	0.5	1	1	0	
Vanadium	9	7 to 48	5.49E+02	0.8	7	48	0	
Zinc	9	20 to 55	4.04E+04	1	20	55	0	0
Cyanide (Free)	9	1 to 1	4.30E+01	0.1	1	1	0	0
Cyanide (Complex)	9	1 to 1	2.13E+02	0.1	1	1	0	0
Phenols (Total)	9	1 to 1	2.25E+02	0.3	1	1	0	0
Benzene	0	0 to 0	2.66E-01	0.01	0	0	0	0
Toluene	0	0 to 0	6.18E+02	0.01	0	0	0	
Ethyl benzene	0	0 to 0	5.82E+01	0.01	0	0	0	
Total Xylene	0	0 to 0	5.55E+01	0.01	0	0	0	
TPH (EC5-6) aliphatic	0	0 to 0	2.88E+01	0.01	0	0	0	
TPH (>EC6-8) aliphatic	0	0 to 0	7.02E+01	0.01	0	0	0	
TPH (>EC8-10) aliphatic	0	0 to 0	1.81E+01	0.01	0	0	0	
							0	
TPH (>EC10-12) aliphatic	0	0 to 0	8.84E+01	1.5	0	0		-
TPH (>EC12-16) aliphatic	0	0 to 0	6.45E+02	1.2	0	0	0	
TPH (>EC16-21) aliphatic	0	0 to 0	4.45E+04	1.5	0	0	0	-
TPH (>EC21-35) aliphatic	0	0 to 0	4.45E+04	3.4	0	0	0	
TPH (>EC35-44) aliphatic	0	0 to 0	4.45E+04	3.4	0	0	0	
TPH (>EC6-7) aromatic (benzene)	0	0 to 0	2.66E-01	0.01	0	0	0	
TPH (>EC7-8) aromatic (toluene)	0	0 to 0	6.07E+02	0.01	0	0	0	
TPH (>EC8-10) aromatic	0	0 to 0	3.16E+01	0.9	0	0	0	
TPH (>EC10-12) aromatic	0	0 to 0	1.59E+02	0.5	0	0	0	
TPH (>EC12-16) aromatic	0	0 to 0	9.27E+02	0.6	0	0	0	0
TPH (>EC16-21) aromatic	0	0 to 0	1.29E+03	1.4	0	0	0	0
TPH (>EC21-35) aromatic	0	0 to 0	1.34E+03	1.4	0	0	0	0
TPH (>EC35-44) aromatic	0	0 to 0	1.34E+03	0.1	0	0	0	0
Total TPH	9	<10 to 10	5.00E+02	10	10	10	0	9 <
Naphthalene	9	0.05 to 0.05	1.64E+00	0.1	0.05	0.05	0	0
Acenaphthylene	9	0.05 to 0.05	1.95E+03	0.1	0.05	0.05	0	
Acenaphthene	9	0.05 to 0.05	2.02E+03	0.1	0.05	0.05	0	0
Fluorene	9	0.05 to 0.05	1.85E+03	0.1	0.05	0.05	0	-
Phenanthrene	9	0.05 to 0.05	8.34E+02	0.1	0.05	0.05	0	
Anthracene	9	0.05 to 0.05	1.98E+04	0.1	0.05	0.05	0	
Fluoranthene	9	0.05 to 0.05	9.73E+02	0.1	0.05	0.05	0	
Pyrene	9	0.05 to 0.05	2.33E+03	0.1	0.05	0.05	0	
Benzo(a)anthracene	9	0.05 to 0.05	7.27E+00	0.1	0.05	0.05	0	
Chrysene	9	0.05 to 0.05	1.93E+01	0.1	0.05	0.05	0	
Benzo(b)fluoranthene	9	0.05 to 0.05	2.56E+00	0.1	0.05	0.05	0	
				0.1	0.05	0.05	0	
Benzo(k)fluoranthene	9	0.05 to 0.05	6.83E+01					
Benzo(a)pyrene	9	0.05 to 0.05	2.05E+00	0.1	0.05	0.05	0	
Indeno(1,2,3-c,d)pyrene	9	0.05 to 0.05	2.89E+01	0.1	0.05	0.05	0	
Dibenzo(a,h)anthracene	9	0.05 to 0.05	2.01E-01	0.1	0.05	0.05	0	
Benzo(g,hi)perylene	9	0.05 to 0.05	2.30E+02	0.1	0.05	0.05	0	
Coal Tar (B(a)P as surrogate mark		0.05 to 0.05	7.54E-01	0.1	0.05	0.05	0	
Tetrachloroethene (PCE)	0	0 to 0	1.26E-01	0.001	0	0	0	
Trichloroethene (TCE)	0	0 to 0	1.21E-02	0.001	0	0	0	0
cis-1,2-Dichloroethene	0	0 to 0	1.20E-01	0.001	0	0	0	0
Vinyl Chloride (VC)	0	0 to 0	5.43E-04	0.001	0	0	0	0
1,1,2,2-Tetrachloroethane (PCA)	0	0 to 0	2.74E+00	0.001	0	0	0	0
	-		212.00	0.001	Ũ	•	•	

www.bwbconsultina.con