

Appendix D - Risk Definitions

Contaminated Land Risk Definitions

The following methodology is based on the methodology presented in CIRIA C552 Contaminated Land Risk Assessment: A Guide to Good Practice 2001. It requires the classification of the:

Magnitude of the potential consequence (severity) of the Risk occurring: and

Magnitude of the Probability (likelihood) of the Risk occurring.

The classifications are then compared to indicate the risk presented by each pollutant linkage.

Consequence to Receptor Definition Matrix

	Human Health	Controlled Waters	Buildings/Services
Severe Consequence	impact on numan nealth	Sensitive controlled water pollution ongoing, or just about to occur.	Catastrophic collapse
	Chronic permanent impact on human health	Gradual pollution of sensitive controlled water	Degradation of materials
		Gradual pollution of non- sensitive controlled water	Damage to building rendering it unsafe.to occupy (e.g. foundation damage resulting in instability).
Minor Consequence	Non-permanent health effects to human health (easily prevented by means such as personal protective clothing etc).	Slight discoloration of	Easily repairable effects of damage to buildings, structures and services, i.e. discoloration of concrete

Probability Definitions

Probability	Definition in Context
Higher	There is a pollution linkage and an event that either appears very likely in the short term and almost inevitable over the long term, or there is evidence at the receptor of harm or pollution. Positive evidence of source, pathway and receptor.
Likely	There is a pollution linkage and all the elements are present and in the right place, which means that it is probable that an event will occur. Circumstances are such that an event is not inevitable, but possible in the short term and likely over the long term. Suspect source, pathway, and receptor
Low Likelihood	There is a pollution linkage and circumstances are possible under which an event could occur. However, it is by no means certain that even over a longer period such event would take place, and is less likely in the shorter term.
Unlikely	There is a pollution linkage but circumstances are such that it is improbable that an event would occur even in the very long term. No evidence of hazard, pathway, and receptor

Standard Risk Matrix

			Consequence/Ma	agnitude of impact	
		Severe	Medium	Mild	Minor
Α	High	Very High	High	Moderate	Moderate/Low
Probability	Likely	High	Moderate	Moderate/low	Low
Prob	Low Likelihood	Moderate	Moderate/low	Low	Very Low
	Unlikely	Moderate/low	Low	Very Low	Very Low

Classified risks and likely action

Significance Level	Definition/Comments
	There is a high probability that severe harm could arise to a designated receptor from an identified hazard, OR, there is evidence that severe harm to a designated receptor is currently happening.
Very High Risk	This risk, if realised, is likely to result in a substantial liability. Urgent investigation (if not undertaken already) and remediation are likely to be required.
	Demonstrable contaminated land situation, highest threat & liability level, urgent action recommended.
	Harm is likely to arise to a designated receptor from an identified hazard.
High Risk	Realisation of the risk is likely to present a substantial liability. Urgent investigation (if not undertaken already) is required and remedial works may be necessary in the short term and are likely over the longer term.
	Likely contaminated land situation, risk assessment and action recommended.
	It is possible that harm could arise to a designated receptor from an identified hazard. However, if is either relatively unlikely that any such harm would be severe, or if any harm were to occur it is more likely that the harm would be relatively mild.
Moderate	Investigation (if not already undertaken) is normally required to clarify the risk and to determine the potential liability. Some remedial works may be required in the longer term.
	Plausible contaminated land situation, risk assessment and possible action recommended.
Low Risk	It is possible that harm could arise to a designated receptor from an identified hazard, but it is likely that this harm, if realised, would at worst normally be mild.
	Unlikely contaminated land situation, possible risk assessment and possible action.
Very Low Risk	There is a low possibility that harm could arise to a receptor. In the event of such harm being realised it is not likely to be severe.
	Negligible risk, no action recommended except vigilance for changes in conditions.

Geotechnical Risk Classification

The geohazards listed in the report within Section 4 follow guidance presented in Clayton, C.R.I. (2001) *Managing Geotechnical Risk*, Thomas Telford and the Highways Agency document CD622 '*Managing Geotechnical Risk*' (2008) which aims to identify and manage the geotechnical risks associated with a scheme throughout its lifespan, from planning to construction to maintenance.

For each geohazard the probability of the hazard occurring (P) has been considered together with the impact it would have (I) if it were to happen to calculate the risk rating between 1 and 25.

Risks that fall within Moderate, Significant and Severe categories below are considered to be *substantial* and are therefore listed within the report.

Probability	(P)	
Very Likely (VLk)	5	
Likely (Lk)	4	χ
Plausible (P)	3	
Unlikely (U)	2	
Very Unlikely (VU)	1	

Impact	(I)	
Very High (VH)	5	
High (H)	4	=
Medium (M)	3	
Low (L)	2	
Very Low (VL)	1	

(R)	Risk
20 – 25	Severe
15 – 19	Substantial
10 – 14	Moderate
5 – 9	Minor
1 – 4	Negligible

Appendix E – Exploratory Hole Logs and SPT Calibration Certificate

KEY TO BOREHOLE AND TRIAL PIT LOGS MATERIAL LEGENDS

	Topsoil		Made Ground		Bituminous Material
	Concrete		Clay	× × : × × : × × :	Silt
	Sand		Gravel	alic alic alic alic alic alic alic alic	Peat
0 0 0 0 0	Cobbles		Boulders		Mudstone
× × × × × × × × × × × ×	Siltstone		Sandstone		Limestone
<u> </u>	Chalk		Coal		Breccia
0000C 0000C 0000C 0000C	Conglomerate	-+++ -++- +++	Igneous		Metamorphic
	Pyroclastic (volcanic ash)	- <	Gypsum		Shale
• • •	Ironstone		Bedrock (Unidentified)		Void

INSTALLATION/BACKFILL LEGENDS

Sand	Gravel		Bentonite/Grout
Arisings	Concrete		Plain Pipe
Slotted Pipe			

Legend symbols in general accordance with BS 5930:2015+A1:2020 and standard industry practice.

SAMPLE TYPES

ACM	Asbestos Containing Material Sample	
В	Bulk Disturbed Sample	
BLK	Block Sample	
С	Core Sample	
CBR	Undisturbed Sample for California Bearing Ratio Test – 154mm diameter	
D	Disturbed Sample - Tub	
ES	Soil Sample for Environmental Testing	
EW	Water Sample for Environmental Testing	
G	Gas Sample	
U	Undisturbed Driven Tube Sample – 70/102mm diameter, 450mm long	
W	Water Sample	

TEST TYPES

СРТ	Cone Penetrometer Test (kN/m²)		
FID	Flame Ionisation Detector Test (ppm)		
HV	In-Situ Hand Shear Vane Test (kN/m²)		
PID	Photoionisation Detector Test (ppm)		
SPT (S)	Standard Penetration Test – Split Spoon Sampler		
SPT (C)	Standard Penetration Test – Solid 60 Degree Cone		

CORE DETAILS

If	Fracture Spacing (mm) – Minimum, Average, Maximum	
NI	Non-Intact where >25 fracture spacings per metre	
TCR	Total Core Recovery (%)	
SCR	Solid Core Recovery (%)	
RQD	Rock Quality Designation (%)	
AF	Air Flush Return (%)	
WF	Water Flush Return (%)	
NIDD	Non-Intact - Drilling Disturbed	
AZCL	Assessed Zone of Core Loss	

WATER COLUMN DETAILS

2.00	Water Strike
1.00	Water Level

3 Henley Way, Doddington Road Lincoln, LN6 3QR Tel: +44 (0) 1522 882555 Email: info@deltasimons.com Project No: **12-0310.03**

Hole ID: DS101

Page: 1 of 1

Project:

Environment - Health & Safety - Sustainability Email: info@deltasimons.com					lorgate Lane, Bassingnam							
Dynan	Dynamic Sampler Log					Date: 31/08/2021 Client: Linds				Lindu	m Gro	oup
		Strata	Strata	Reduced	Casing		Sample De	etails		Test Details		
Description of Strata	Lege	nd Depth (m bgl)	Thickness (m)	Level (mAOD)	Diameter (mm)	Water	Depth (m)	Type & Ref	Depth (m)	Resul	ts	Backfill
TOPSOIL: Yellowish brown gravelly mosAND with frequent fine rootlets. Grav		N -										
sub-angular to rounded fine to medium			(0.50)									
		0.50		13.82			0.40 - 0.45	ES1				
Brown fine to coarse SAND and sub- angular to rounded fine to coarse flint		_										
GRAVEL. (BALDERTON SAND AND GRAVEL MEMBER).			(0.70)									
			(0.70)									
		1.20		13.12			1.10 - 1.15	ES2	1.00	CDT(C) N	1-44	
Dense light brown mottled orange slight clayey fine to medium SAND and sub-		1.40	(0.20)	12.92					1.20	SPT(S) N (7,8/9,11,		
angular to rounded fine to medium flint GRAVEL. (BALDERTON SAND AND	t h	1.40		12.02								
GRAVEL MEMBER). Dense orangish brown fine to medium			(0.40)									
SAND. (BALDERTON SAND AND GR MEMBER).		1.80		12.52								
Medium dense brown fine to coarse Sand sub-angular to rounded fine to coarse						2.00			2.00	SPT(S) I		
flint GRAVEL. (BALDERTON SAND AI GRAVEL MEMBER).			(2.22)			2.00				(6,6/8,7,	6,7)	
0 <u></u>			(0.90)									
Firm blueish grey slightly gravelly CLA	v	2.70		11.62								
Gravel is sub-angular to sub-rounded flint. (SCUNTHORPE MUDSTONE			(0.30)				2.80 - 2.85	D1				:::H::
FORMATION). Borehole complete at 3.00 m bgl.	fine	3.00		11.32					3.00	SPT(S) N (1,2/2,2,		
Borenoie complete at 5.00 m bgt.		F								(1,2/2,2,	4,3)	
		_										
		-										
		-										
		_										
		L										
		-										
		-										
		-										
		-										
		-										
		_										
		L										
		E										
		F										
		_										
Remarks: 1) Engineer verified logged in general a	marks: Engineer verified logged in general accordance to BS 5930:2015+A1:2020. 2) Area C <i>F</i>						er Strike		Water			Diameter
scanned prior to excavation. 3) Ground	Englineer vernied logged in general accordance to be 390.201941.2020. 2) Area CAT anned prior to excavation. 3) Groundwater encountered at 2.00 m bgl and remained at 2 bgl after 20 minutes. 4) Borehole completed at 3.00 m bgl. 5) Installed with a 63 mm HD						Depth (m) Rem	arks Du	uration (m	in) Depth D	epth Base	Diamete
bgl after 20 minutes. 4) Borenole completed at 3.00 m bgl. 5) Installed with a 63 mm HDF andpipe to 2.80 m bgl due to slightly collapsed well.			_									
	Elevation (mAOD)			III no co	Plant U							Scale:
E491332.82 N359662.61	14.32		Delta-Dri	ıııng		Pren	nier 110		JJR	LD	JR	1:32

Head Office

3 Henley Way, Doddington Road Lincoln, LN6 3QR Tel: +44 (0) 1522 882555

Project No: 12-0310.03 Hole ID: **DS102** Page: 1 of 1

Project:

Tel: +44 (0) 1522 882555 Environment - Health & Safety - Sustainability Tel: +44 (0) 1522 882555 Email: info@deltasimons.com					Torgate Lane, Bassingham							
Dynamic	Sampler L	og			Date:	31	/08/2021		Client: Lindum Group			
Description of Strata	Legend	Strata Depth (m bgl)	Strata Thickness (m)	Reduced Level (mAOD)	Casing Diameter (mm)	Water	Sample De	tails Type & Ref	Depth (m)	Test Detai	ils	Back
OPSOIL: Dark brown gravelly fine to		_						1101	(,			
parse SAND with frequent fine rootlets. ravel is sub-angular to rounded fine to		_	(0.50)				0.20 - 0.25	ES1				
parse flint.		_	(5.55)									
rown clayey fine to medium SAND and		0.50		13.66								
ib-angular to sub-rounded fine to coarse		_										
nt GRAVEL. (BALDERTON SAND AND RAVEL MEMBER).		_	(0.70)									
		_	(0.70)									
				40.00								
oose light brownish grey slightly silty		1.20		12.96					1.20		S) N=9 (,2,3,2)	
edium SAND and sub-angular to rounded eto medium flint GRAVEL.		_								(1,2/2	.,2,3,2)	
ALDERTON SAND AND GRAVEL		_	(0.70)									
EMBER).		_	(511.5)									
		1.90		12.26								
oft blueish grey gravelly CLAY. Gravel is		1.90		12.20					2.00	SDT/9	S) N=5	
gular to sub-rounded fine flint. CUNTHORPE MUDSTONE		_							2.00		,1,2,1)	
DRMATION).		_	(0.60)									
		- 0.50		44.00								
oft blueish grey gravelly sandy CLAY.		2.50		11.66			0.00 0.70	D.				
ravel is angular to sub-rounded fine flint. and is fine. (SCUNTHORPE MUDSTONE		_					2.60 - 2.70	D1				
DRMATION).		_	(0.50)									
Borehole complete at 3.00 m bgl.		3.00		11.16					3.00	SPT(S	s) N=20	
emarks: Engineer verified logged in general accor anned prior to excavation. 3) Borehole re	mained dry upo				Dat		er Strike Depth (m) Rema	arks Du	Water L	_	Borehole Depth Bas	
mpleted at 3.00 m bgl. 5) Backfilled with a	arisings.											
ordinates: Eleva E491366.10 N359666.98	tion (mAOD):	Drilled By:	Delta-Dril	ling	Plant Us		nier 110		ged: C	Checked:	Approved:	Scale:

3 Henley Way, Doddington Road Lincoln, LN6 3QR Tel: +44 (0) 1522 882555 Email: info@deltasimons.com Project No: **12-0310.03**

Hole ID: DS103

Page: 1 of 1

Project:

Environment - Health & Safety - Sustainability Environment - Health & Safety - Sustainability				Torgate Lane, Bassingham								
Dynar	mic Sampler L	og			Date:	31	/08/202	1	Clien	oup		
-		Strata	Strata	Reduced	Casing		Sample	Details		Test Deta	ails	
Description of Strata	Legend	Depth (m bgl)	Thickness (m)	Level (mAOD)	Diameter (mm)	Water	Depth (m)	Type Ref			esults	Backfil
TOPSOIL: Dark brown gravelly fine to coarse SAND with frequent fine rootle	ets.	-										
Gravel is sub-angular to rounded fine coarse flint.	to											
coarse min.		-	(0.80)									
		0.80		13.27			0.70 - 0.7	5 ES1	ı			
Yellowish brown coarse SAND and su		0.00		10.21								
angular to rounded fine to coarse flint GRAVEL. (BALDERTON SAND AND		-	(0.55)									
GRAVEL MEMBER).		Ī	(0.55)						1.20	SPT	C) N=32	
		1.35		12.72							7,8,8,9)	
Firm orangish brown gravelly clayey f coarse SAND. Gravel is sub-rounded	l to	Ţ										
rounded fine to medium flint. (BALDE SAND AND GRAVEL MEMBER).	RTON	}	(0.45)			1.60 ¥	1.60 - 1.6	5 D1				
Loose brown medium SAND and sub		1.80		12.27								
angular to rounded fine to medium flir	nt i	-							0.00	CDT	(O) N-5	
GRAVEL. (BALDERTON SAND AND GRAVEL MEMBER).		F	(0.70)						2.00		(C) N=5 1,1,1,2)	
,		-	(0.70)									
				11 57								
Very stiff blueish grey gravelly CLAY.	Gravel -	2.50		11.57								
is angular to sub-angular fine to medi flint. (SCUNTHORPE MUDSTONE	ium ————————————————————————————————————	-	(0.50)									
FORMATION).		_	(0.00)									
Borehole complete at 3.00 m bgl		3.00		11.07					3.00		C) N=50	
		-									0/50 for 0mm)	
		-										
		<u> </u>										
		_										
		_										
		-										
		_										
		-										
		_										
		=										
		_										
		<u> </u>										
		_										
		_										
		_										
		F										
		_										
		F										
Pomorko:						167 -	au 04::!:	1	187 1	m l av!	D'	Di 1
Remarks: 1) Engineer verified logged in general scanned prior to excavation. 3) Groun					n Da		er Strike Depth (m) Re	emarks [Wate Duration (r	r Level	Borehole Depth Bas	
					31/08/		1.60		20	1.6	1	
	ompiete at 3.00 m bg				1					1	1	1
m bgl after 20 minutes. 4) Borehole co	ompiete at 3.00 m bg											
	ompiete at 3.00 m bg											
	omplete at 3.00 m by											
	Elevation (mAOD):	Drilled By:	Delta-Dril		Plant U		nier 110	L	ogged: JJR	Checked:	Approved:	Scale: 1:32

3 Henley Way, Doddington Road Lincoln, LN6 3QR Tel: +44 (0) 1522 882555 Email: info@deltasimons.com Project No: **12-0310.03**

Hole ID: DS104

Page: 1 of 1

Project:

Environment - Health & Safety - Sustainability Email: info@deltasimons.com					Torgate Lane, bassingnam							
Dyna	mic Sampler	Log			Date:	31	1/08/2021		Client: Lindum Group			
		Strata	Strata	Reduced	Casing		Sample De	tails		Test Details		
Description of Strata	Leger		Thickness (m)		Diameter (mm)	Water	Depth (m)	Type & Ref	Depth (m)	Results	Backfill	
TOPSOIL: Light brown slightly grave SAND with frequent fine rootlets. Grasub-angular to sub-rounded fine to matter.	avel is	0.50	(0.50)	40.00			0.30 - 0.35	ES1				
Brown mottled orange medium SANI sub-angular to sub-rounded fine to m flint GRAVEL. (BALDERTON SAND GRAVEL MEMBER).	nedium	0.50	(0.40)	13.88								
Very stiff brown mottled orange sand slightly gravelly CLAY. Gravel is subto sub-rounded fine to medium flint. \$\text{Model} medium. (BALDERTON SAND AND)	angular ⊨ 💳	:	(0.20)	13.28					1.20	SPT(C) N=41		
GRAVEL MEMBER). Dense brown medium SAND and sul rounded to rounded fine to coarse flir GRAVEL. (BALDERTON SAND AND	nt i	1.70	(0.60)	10.60						(5,7/8,10,11,12)		
GRAVEL MEMBER). Firm brownish orange mottled grey s sandy gravelly CLAY. Gravel is sub-r to rounded fine to coarse flint. Sand coarse. (BALDERTON SAND AND G	ounded s	2.00	(0.30)	12.68		1.80			2.00	SPT(C) N=12		
MEMBER). Medium dense brown coarse SAND sub-angular to sub-rounded fine to coalling the sub-rounded fine sub-roun	oarse	2.60	(0.60)	11.78						(2,4/4,4,2,2)		
Firm blueish grey slightly sandy sligh gravelly CLAY. Gravel is sub-angular flint. Sand is fine. (SCUNTHORPE MUDSTONE FORMATION). Borehole complete at 3.00 m bg	fine	3.00	(0.40)	11.38			2.80 - 2.85	D1	3.00	SPT(C) N=12		
		- - - - - - - - - - - - - - - - - - -										
Remarks: 1) Engineer verified logged in genera scanned prior to excavation. 3) Grour m bgl after 20 minutes. 4) Borehole c	ndwater encounter	ed at 1.80 m	bgl and rem	nained at 1.8	31/08/	ite	er Strike Depth (m) Rem	arks Du	Water I		e Diameter se Diamete	
Coordinates: E491334.02 N359648.24	Elevation (mAOD):		Delta-Dri	lling	Plant U		nier 110		ged:	Checked: Approved: JR	Scale: 1:32	

3 Henley Way, Doddington Road Lincoln, LN6 3QR Tel: +44 (0) 1522 882555 Email: info@deltasimons.com Project No: **12-0310.03**

Hole ID: DS105

Page: 1 of 1

Project:

Environment - Health & Safety - Sus		Email: info	o@deltasimor	asimons.com Torgat				gate Lane, Bassingham					
Dynai	Dynamic Sampler Log				Date:	31	/08/2021		Client: Lindum Group				
		Strata	Strata	Reduced	Casing		Sample De	etails		Test Deta	ils		
Description of Strata	Legend	Depth (m bgl)	Thickness (m)	Level (mAOD)	Diameter (mm)	Water	Depth (m)	Type & Ref	Depth (m)	Re	sults	Backfill	
TOPSOIL: Dark brown gravelly fine to coarse SAND with frequent fine rootle		_											
Gravel is sub-angular to rounded fine coarse flint.			(0.40)	40.00								5 of N (12)	
Yellowish brown medium SAND and		0.40		13.60									
rounded to rounded fine to coarse flir GRAVEL. (BALDERTON SAND AND GRAVEL MEMBER).		_	(0.40)										
Firm light brown mottled dark brown s		0.80		13.20									
gravelly sandy CLAY. Gravel is sub-a to sub-rounded fine flint. Sand is coal							1.00 - 1.05	ES1					
(BALDERTON SAND AND GRAVEL MEMBER).			(0.60)						1.20	SPT(S	S) N=16		
,		1.40		12.60						(4,3/3	3,4,4,5)		
Light grey slightly gravelly medium Sa Gravel is sub-angular to sub-rounded			(0.30)										
flint. (BALDERTON SAND AND GRA'MEMBER).		1.70	(0.30)	12.30									
Loose reddish brown gravelly fine to						1.90 -							
medium SAND. Gravel is sub-angula sub-rounded fine to coarse flint.	T to		(0.70)			1.90 1.90			2.00	SPT(C) N=8		
(BALDERTON SAND AND GRAVEL MEMBER).		_	(0.70)				2.10 - 2.15	D1		(1,1/2	2,1,2,3)		
		2.40		11.60									
Stiff blueish grey silty slightly gravelly Gravel is sub-angular to sub-rounded	I fine to $\stackrel{\times}{\longrightarrow} \stackrel{\times}{\longrightarrow} \stackrel{\times}{\longrightarrow} \stackrel{\times}{\longrightarrow} =$			11.00									
medium flint. (SCUNTHORPE MUDS	STONE X		(0.60)										
FORMATION).	××		(0.60)										
B 1 1 1000	X X X	3.00		11.00					3.00	SPT(S	S) N=45		
Borehole complete at 3.00 m bgl		_									0,12,8,5)		
		_											
		_											
		_											
		_											
		_											
		_											
		_											
		_											
		_											
		_											
		_											
		_											
		_											
		_											
		_											
								<u> </u>			Г		
Remarks: 1) Engineer verified logged in general					Da		er Strike Depth (m) Rem	arke D.	Water I		Borehole Depth Bas	Diameter e Diamete	
scanned prior to excavation. 3) Groun m bgl after 20 minutes. 4) Borehole co					·		1.90 Rem	ains Du	20	1.9	Dehiii Das	Diamete	
standpipe to 2.50 m bgl.													
Coordinates:	Elevation (mAOD):	Drilled By:			Plant U					Checked:	Approved:	Scale:	
E491384.29 N359646.91	14.00		Delta-Dril	lling		Pren	nier 110	•	JJR	LD	JR	1:32	

3 Henley Way, Doddington Road Lincoln, LN6 3QR Tel: +44 (0) 1522 882555 Email: info@deltasimons.com

Project No: 12-0310.03

Project:

Hole ID:

HP101/ **CBR101** Page: 1 of 1

Hand Pit Log					Date: 31/08/2021 Client: Line					dum G	roup		
			Strata	Strata	Reduced	Casing		Samp	le Details		Test Deta	ils	
Description of Strata		Legend	Depth (m bgl)	Thickness (m)	Level (mAOD)	Diameter (mm)	Water	Depth (m)	Type R	Depth (m)	Re	sults	Backfill
TOPSOIL: Dark brown gravelly fine coarse SAND with frequent fine root Gravel is sub-angular to rounded fin coarse flint.	lets. e to		- - - 0.35	(0.35)	13.86								
Yellowish brown medium SAND and rounded to rounded fine to medium GRAVEL. (BALDERTON SAND AND GRAVEL MEMBER).	flint		- - -	(0.55)				0.60 - 0.80		- CB R1			
Hand pit complete at 0.90 m bo	1		0.90		13.31								
												ı	
Remarks: 1) Engineer verified logged in general	al accordance	ce to BS 59	930:2015+/	A1:2020. 3)	Hand Pit	Date			vel Observa Strike (m)	ntions Duration	Standing		nmeter Diameter (mm
remained dry and stable upon completion. 4) Hand pit completed at 0.90 m bgl. 5) Ha backfilled with arisings.			o) Hand pit	Date		inne S	STINE (III)	our auton	Stanting	Dehm (III)	Prairieter (mm		
Coordinates: E491347.76 N359659.02	Elevation (Excavated	_{d By:} Delta-Sim	one	Plant Us		d Tools		Logged:			Scale:
E491347.76 N359659.02	14	.21		ena-Sim	IUIIS		nan	d Tools	•	JJR	LD	JR	1:30

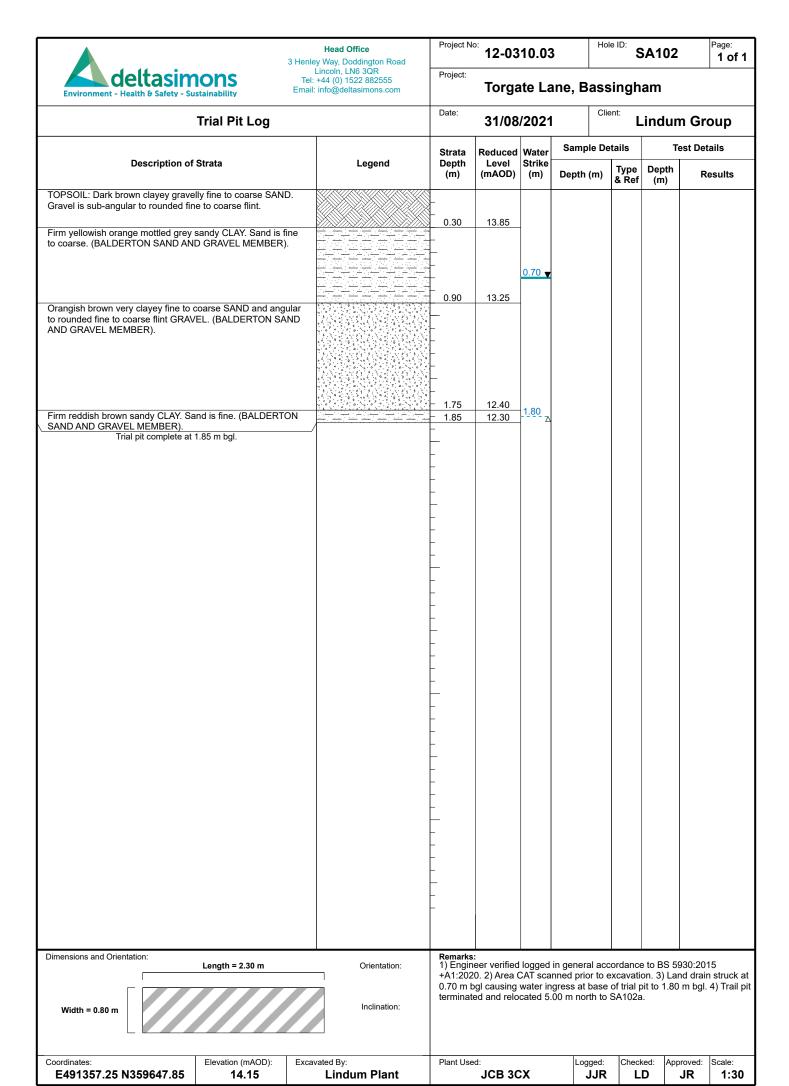
3 Henley Way, Doddington Road Lincoln, LN6 3QR Tel: +44 (0) 1522 882555 Email: info@deltasimons.com Project No: **12-0310.03**

Hole ID:

HP102/ CBR102 Page: 1 of 1

Project:

Environment - Health & Safety - Sus	Torgate Lane, Bassingham											
Hand Pit Log						Date: 31/08/2021 Client: Lindu						roup
		Strata	Strata	Reduced	Casing		Samp	ole Deta	ils	Test De	tails	
Description of Strata	Legend	Depth (m bgl)	Thickness (m)	Level (mAOD)	Diameter (mm)	Water	Depth (m)	Туре		epth (m)	Results	Backfill
TOPSOIL: Dark brown gravelly fine t coarse SAND with frequent fine root Gravel is sub-angular to rounded fine coarse flint.	lets. e to	0.30	(0.30)	13.78								
Firm brown mottled orange sandy sli gravelly CLAY. Gravel is sub-angular rounded fine to medium flint. Sand is medium. (BALDERTON SAND AND CRAVEL MEMBER)	r to sub-		(0.50)				0.50 - 0.70	В	CB R1			
GRAVEL MEMBER). Hand pit complete at 0.80 m bg		0.80		13.28								
Remarks:	marks: Engineer verified logged in general accordance to BS 5930:2015+A1:2020. 3) Hand						Water Lev	/el Obse	vations		Pit Di	ameter
 Engineer verified logged in general remained dry and stable upon completackfilled with arisings. 	al accordance to BS etion. 4) Hand pit co	5930:2015+ mpleted at	-A1:2020. 3) 0.80 m bgl. !) Hand Pit 5) Hand pit	Date			Strike (m	_	ion Standing		
baokiiiled with anolligo.												
Coordinates:	Elevation (mAOD):	Excavate							Scale:			
E491401.91 N359653.91	14.08	I	Delta-Sim	nons		Han	d Tools	3	JJI	R LD	JR	1:30

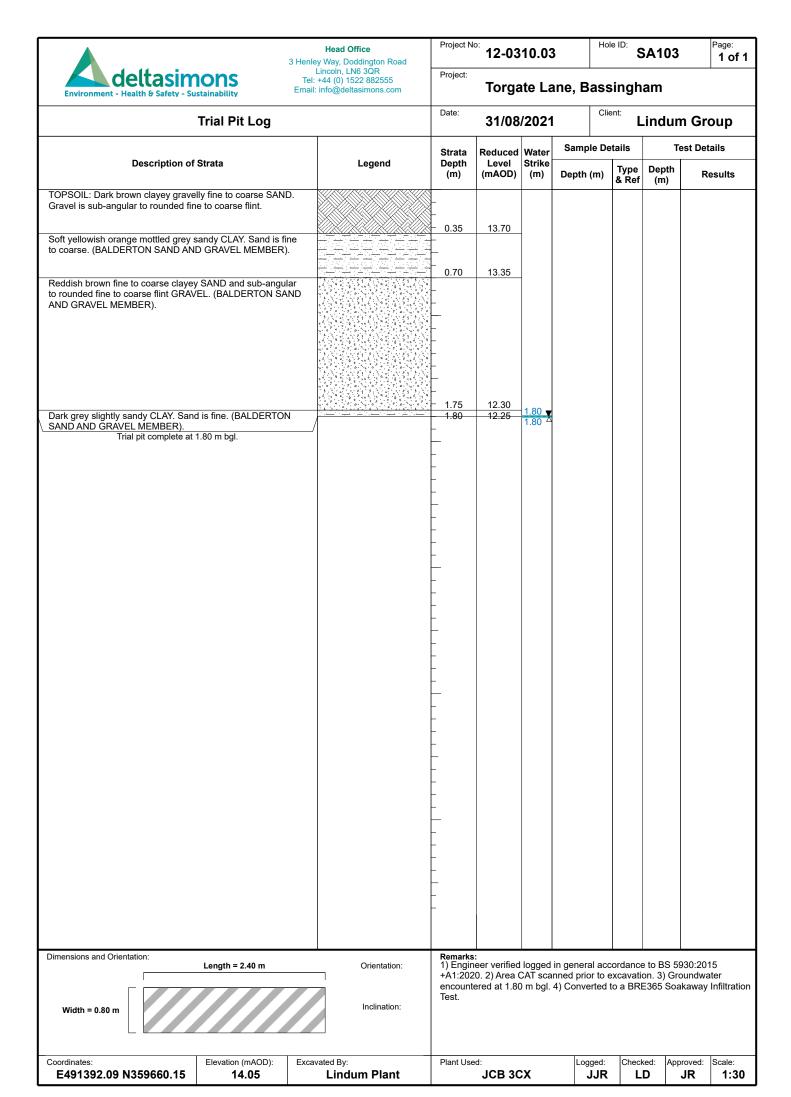

3 Henley Way, Doddington Road

Project No: **12-0310.03**

SA101

Page: **1 of 1**

-1-11		3 Henley Way, Doddington Road Lincoln, LN6 3QR	Drain-4	t: 40						
deltasimo	ons ainability	Tel: +44 (0) 1522 882555 Email: info@deltasimons.com								
Т	rial Pit Log		Date:	31/08	/2021		Client	Li	ndum G	roup
			Strata	Reduced	Water	Sample	e Deta	ils	Test D	etails
Description of St		Legend	Depth (m)	Level (mAOD)	Strike (m)	Depth (m) 1	Гуре k Ref	Depth (m)	Results
TOPSOIL: Dark brown clayey gravelly Gravel is sub-angular to rounded fine	fine to coarse SANI to coarse flint.	D.	_							
			_							
			0.50	13.71						
Firm yellowish orange mottled grey sa to coarse. (BALDERTON SAND AND	ndy CLAY. Sand is f	ine	_							
	,		-							
			-							
			_							
			-							
			- -							
			_ 4.05	40.50						
Trial pit complete at 1.6	65 m bgl.		- 1.65 -	12.56						
			-							
			_							
			- -							
			-							
			_							
			_							
			_							
			_							
			_							
			-							
			_							
			_							
			-							
			-							
			_							
			_							
			-							
			_							
			-							
			-							
			- -							
			-							
			_							
			_							
			_							
			-							
Dimensions and Orientation:	L 40	2	Remarks	: :	loca: ·'	in con		done	to BC 5000 1	2015
	Length = 2.40 m	Orientation:	+A1:202	0. 2) Area (CAT sca	nned prior	to exc	cavatio	to BS 5930:2 n. 3) Trial Pit	remained
Width = 0.80 m		Inclination:	dry upor	i completion	n. 4) Co	nverted to	a BRE	:365 S	oakaway Infi	tration Test.
	Elevation (mAOD):	Excavated By:	Plant Use			Logg		Checke		
E491358.77 N359668.71	14.21	Lindum Plant		JCB 3C	X	J	JR	LD	JR	1:30



3 Henley Way, Doddington Road Lincoln, LN6 3QR

Project No: **12-0310.03**

Hole ID: SA102a Page: **1 of 1**

deltasimo Environment - Health & Safety - Sustain	Torgate Lane, Bassingham									
Tr	ial Pit Log		Date:	31/08	/2021	Client: Lindum				Group
			Strata	Reduced	Water	Samı	ple De	tails	Tes	t Details
Description of Stra	ata	Legend	Depth (m)	Level (mAOD)	Strike (m)	Depth	(m)	Type & Ref	Depth (m)	Results
OPSOIL: Dark brown clayey gravelly fi iravel is sub-angular to rounded fine to	ine to coarse SANI coarse flint.	D.	- - 0.25	13.80						
rm yellowish orange mottled grey san- medium. (BALDERTON SAND AND (dy CLAY. Sand is f GRAVEL MEMBER	ine R).	0.90	13.15						
angish brown very clayey fine to coar gular to rounded fine to medium flint (ALDERTON SAND AND GRAVEL ME	GRAVEL.		- - - -							
Trial pit complete at 1.60) m bgl.		1.60 -	12.45						
			_							
			_							
			_ _							
			_							
			_							
			_							
			_							
			_							
			_ _							
			_							
			_							
			_							
			<u> </u>							
			_ _							
			_							
nensions and Orientation:	ength = 2.30 m	Orientation:	Remarks 1) Engin	eer verified	logged	in gene	ral acc	ordance	to BS 593	0:2015
Width = 0.80 m		Inclination:	+A1:202	20. 2) Area (n completion	CAT sca	nned pri	ior to e	xcavatio	n. 3) Trial I	Pit remaine
	levation (mAOD):	Excavated By:	Plant Use		·v		gged:	Check		
E491357.44 N359647.91	14.05	Lindum Plant		JCB 3C	X		JJR	LI) Ji	₹ 1:3

SPT Hammer Energy Test Report

in accordance with BSEN ISO 22476-3:2005

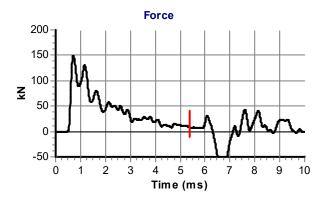
SPT Hammer Ref: DS 110.99
Test Date: 26/02/2021

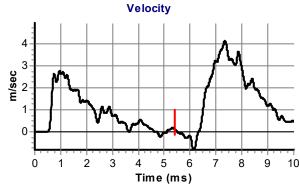
Report Date:

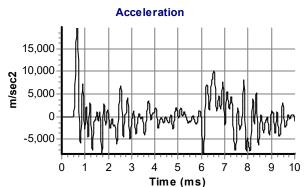
File Name: DS 110.99.spt

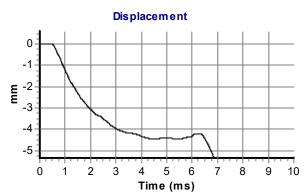
Test Operator: MC

Instrumented Rod Data


Diameter d_r (mm): 54
Wall Thickness t_r (mm): 6.4
Assumed Modulus E_a (GPa): 208
Accelerometer No.1: 63177
Accelerometer No.2: 63178


SPT Hammer Information


Hammer Mass m (kg): 63.5 Falling Height h (mm): 760 SPT String Length L (m): 12.6


Comments / Location

JMD YARD

Calculations

Area of Rod A (mm2): 957 Theoretical Energy E_{theor} (J): 473 Measured Energy E_{meas} (J): 343

Energy Ratio E_r (%):

73

Juli

Signed: Richard Walter
Title: Drilling Manager

Appendix F – Geotechnical Analysis Results

Tested in Accordance with:BS 1377-2:1990:Clause 4.4 and 5

i2 Analytical Ltd Unit 8 Harrowden Road Brackmills Industrial Estate Northampton NN4 7EB

404

Client: Delta-Simons

Client Address: Suite C1, Joseph's Well,

Hanover Walk, Leeds,

LS3 1AB

Contact: Luke Donovan

Site Address: Torgate Lane, Bassingham

Testing carried out at i2 Analytical Limited, ul. Pionierow 39, 41-711 Ruda Slaska, Poland

Client Reference: 12-0310 03 Job Number: 21-96469 Date Sampled: 31/08/2021 Date Received: 01/09/2021 Date Tested: 09/09/2021

Depth Top [m]: 2.10

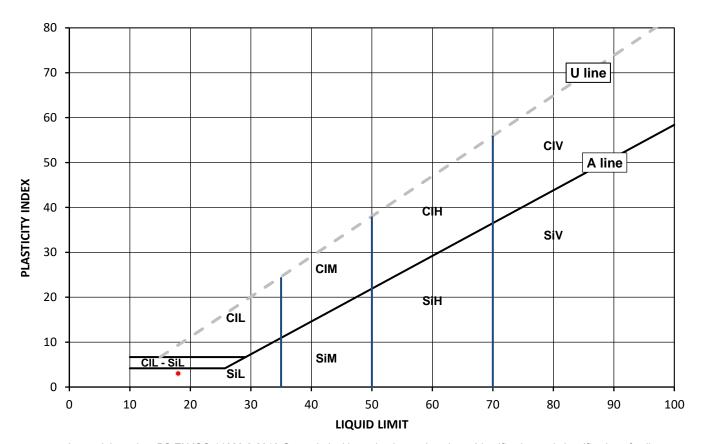
Depth Base [m]: 2.15

Sample Type: D

Sampled By: Not Given

Test Results:

Laboratory Reference: 1993623


Hole No.: DS105

Sample Reference: Not Given

Sample Description: Brown gravelly SAND

Sample Preparation: Tested after washing to remove >425um

As Received Moisture	Liquid Limit	Plastic Limit	Plasticity Index	% Passing 425µm
Content [W] %	[WL] %	[Wp]%	[lp] %	BS Test Sieve
13	18	15	3	51

Legend, based on BS EN ISO 14688 2:2018 Geotechnical investigation and testing – Identification and classification of soil

Plasticity Liquid Limit below 35 CI Clay L Low Si Silt Medium 35 to 50 М Н High 50 to 70 ٧ Very high exceeding 70

O Organic append to classification for organic material (eg CIHO)

Note: Moisture Content by BS 1377-2: 1990: Clause 3.2

Remarks: Re-issue 1: Additional results of CBR Soak.

Opinions and interpretations expressed herein are outside of the scope of the UKAS Accreditation. This

Signed:

Szczepan Bielatowicz PL Deputy Head of Geotechnical Section

for and on behalf of i2 Analytical Ltd

Tested in Accordance with:BS 1377-2:1990:Clause 4.3 and 5

i2 Analytical Ltd Unit 8 Harrowden Road Brackmills Industrial Estate Northampton NN4 7EB

4041

Client: Delta-Simons

Client Address: Suite C1, Joseph's Well,

Hanover Walk, Leeds,

LS3 1AB

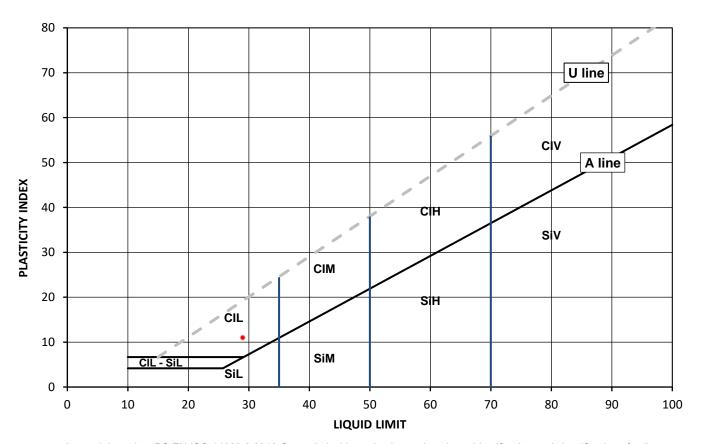
Contact: Luke Donovan

Site Address: Torgate Lane, Bassingham

Testing carried out at i2 Analytical Limited, ul. Pionierow 39, 41-711 Ruda Slaska, Poland

Client Reference: 12-0310 03 Job Number: 21-96469 Date Sampled: 31/08/2021 Date Received: 01/09/2021 Date Tested: 09/09/2021

Sampled By: Not Given


Test Results:

Laboratory Reference:1993619Depth Top [m]: 2.80Hole No.:DS101Depth Base [m]: 2.85Sample Reference:Not GivenSample Type: D

Sample Description: Grey slightly gravelly slightly very sandy CLAY

Sample Preparation: Tested after washing to remove >425um

As Received Moisture	Liquid Limit	Plastic Limit	Plasticity Index	% Passing 425μm
Content [W] %	[WL] %	[Wp] %	[lp] %	BS Test Sieve
13	29	18	11	83

Legend, based on BS EN ISO 14688 2:2018 Geotechnical investigation and testing – Identification and classification of soil

Plasticity Liquid Limit below 35 CI Clay L Low Si Silt Medium 35 to 50 М Н High 50 to 70 ٧ Very high exceeding 70 0 Organic append to classification for organic material (eg CIHO)

Note: Moisture Content by BS 1377-2: 1990: Clause 3.2

Remarks: Re-issue 1: Additional results of CBR Soak.

Opinions and interpretations expressed herein are outside of the scope of the UKAS Accreditation. This

Signed:

Szczepan Bielatowicz

PL Deputy Head of Geotechnical Section for and on behalf of i2 Analytical Ltd

report may not be reproduced other than in full without the prior written approval of the issuing laboratory. The results included within the report relate only to the sample(s) submitted for testing.

Page 1 of 1

Tested in Accordance with:BS 1377-2:1990:Clause 4.3 and 5

i2 Analytical Ltd Unit 8 Harrowden Road Brackmills Industrial Estate Northampton NN4 7EB

404

Client: Delta-Simons

Client Address: Suite C1, Joseph's Well,

Hanover Walk, Leeds,

LS3 1AB

Contact: Luke Donovan

Site Address: Torgate Lane, Bassingham

Testing carried out at i2 Analytical Limited, ul. Pionierow 39, 41-711 Ruda Slaska, Poland

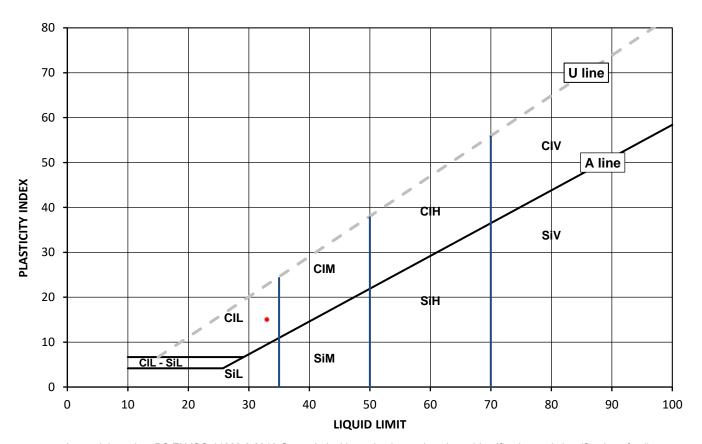
Client Reference: 12-0310 03 Job Number: 21-96469 Date Sampled: 31/08/2021 Date Received: 01/09/2021

Test Results:

Laboratory Reference: 1993620 Hole No.: DS102 Sample Reference: Not Given

Sample Description: Grey very sandy CLAY

Sample Preparation: Tested in natural condition


Date Sampled:	31/08/2021
Date Received:	01/09/2021
Date Tested:	09/09/2021
Sampled By:	Not Given

Depth Top [m]: 2.60

Depth Base [m]: 2.70

Sample Type: D

As Received Moisture	Liquid Limit	Plastic Limit	Plasticity Index	% Passing 425μm
Content [W] %	[WL] %	[Wp]%	[lp] %	BS Test Sieve
18	33	18	15	100

Legend, based on BS EN ISO 14688 2:2018 Geotechnical investigation and testing – Identification and classification of soil

Plasticity Liquid Limit below 35 CI Clay L Low Si Silt Medium 35 to 50 М Н High 50 to 70 ٧ Very high exceeding 70

O Organic append to classification for organic material (eg CIHO)

Note: Moisture Content by BS 1377-2: 1990: Clause 3.2

Remarks: Re-issue 1: Additional results of CBR Soak.

Opinions and interpretations expressed herein are outside of the scope of the UKAS Accreditation. This

Signed:

Szczepan Bielatowicz

PL Deputy Head of Geotechnical Section for and on behalf of i2 Analytical Ltd

Tested in Accordance with:BS 1377-2:1990:Clause 4.3 and 5

i2 Analytical Ltd Unit 8 Harrowden Road Brackmills Industrial Estate Northampton NN4 7EB

Delta-Simons Client:

Client Address: Suite C1, Joseph's Well,

Hanover Walk, Leeds,

LS3 1AB

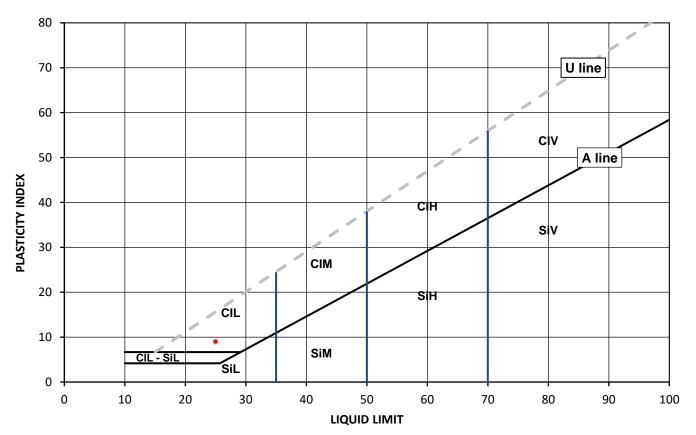
Contact: Luke Donovan

Site Address: Torgate Lane, Bassingham

Testing carried out at i2 Analytical Limited, ul. Pionierow 39, 41-711 Ruda Slaska, Poland

Client Reference: 12-0310 03 Job Number: 21-96469 Date Sampled: 31/08/2021 Date Received: 01/09/2021

> Date Tested: 09/09/2021 Sampled By: Not Given


Test Results:

Laboratory Reference: 1993621 Depth Top [m]: 1.60 DS103 Depth Base [m]: 1.65 Hole No.: Sample Reference: Not Given Sample Type: D

Sample Description: Orangish brown gravelly clayey SAND

Sample Preparation: Tested after washing to remove >425um

As Received Moisture	Liquid Limit	Plastic Limit	Plasticity Index	% Passing 425µm
Content [W] %	[WL] %	[Wp]%	[lp] %	BS Test Sieve
11	25	16	9	57

Legend, based on BS EN ISO 14688 2:2018 Geotechnical investigation and testing - Identification and classification of soil

Plasticity Liquid Limit below 35 CI Clay L Low Si Silt Medium 35 to 50 М Н High 50 to 70 ٧ Very high exceeding 70

> 0 Organic append to classification for organic material (eg CIHO)

Note: Moisture Content by BS 1377-2: 1990: Clause 3.2

Re-issue 1: Additional results of CBR Soak. Remarks:

Signed:

Szczepan Bielatowicz

PL Deputy Head of Geotechnical Section

Opinions and interpretations expressed herein are outside of the scope of the UKAS Accreditation. This report may not be reproduced other than in full without the prior written approval of the issuing laboratory. The results included within the report relate only to the sample(s) submitted for testing.

Page 1 of 1

for and on behalf of i2 Analytical Ltd

Date Reported: 29/09/2021

GF 236.11

SUMMARY OF CLASSIFICATION TEST RESULTS

Tested in Accordance with:

i2 Analytical Ltd Unit 8 Harrowden Road Brackmills Industrial Estate Northampton NN4 7EB

4041

Client Address:

Client: Delta-Simons

> Suite C1, Joseph's Well, Hanover Walk, Leeds,

> > LS3 1AB

Luke Donovan Contact:

Site Address: Torgate Lane, Bassingham

Testing carried out at i2 Analytical Limited, ul. Pionierow 39, 41-711 Ruda Slaska, Poland

Moisture Content by BS 1377-2: 1990: Clause 3.2; Water Content by BS EN 17892-1: 2014; Atterberg by BS 1377-2: 1990: Clause 4.3 (4 Point Test), Clause 4.4 (1 Point Test) and 5; PD by BS 1377-2: 1990: Clause 8.2

Client Reference: 12-0310 03 Job Number: 21-96469 Date Sampled: 31/08/2021 Date Received: 01/09/2021 Date Tested: 09/09/2021

Sampled By: Not Given

Test results

			Sample	9				ntent	tent		Atte	rberg			Density		#	
Laboratory Reference	Hole No.	Reference	Description Remarks । हु । हु		Water Content [W]	% Passing 425um	WL	Wp	lp	bulk	dry	PD	Total Porosity#					
			m	m				%	%	%	%	%	%	Mg/m3	Mg/m3	Mg/m3	%	
1993619	DS101	Not Given	2.80	2.85	D	Grey slightly gravelly slightly very sandy CLAY	Atterberg 4 Point	13		83	29	18	11					
1993620	DS102	Not Given	2.60	2.70	D	Grey very sandy CLAY	Atterberg 4 Point	18		100	33	18	15					
1993621	DS103	Not Given	1.60	1.65	D	Orangish brown gravelly clayey SAND	Atterberg 4 Point	11		57	25	16	9					
1993622	DS104	Not Given	2.80	2.85	D	Brownish grey very gravelly very sandy CLAY		11										
1993623	DS105	Not Given	2.10	2.15	D	Brown gravelly SAND	Atterberg 1 Point	13		51	18	15	3					

Note: # Non accredited; NP - Non plastic

Re-issue 1: Additional results of CBR Soak. Comments:

Signed:

PL Deputy Head of Geotechnical Section for and on behalf of i2 Analytical Ltd

Opinions and interpretations expressed herein are outside of the scope of the UKAS Accreditation. This report may not be reproduced other than in full without the prior written approval of the issuing laboratory. The results included within the report relate only to the sample(s) submitted for testing.

> GF 234.13 Page 1 of 1 Date Reported: 29/09/2021

Szczepan Bielatowicz

TEST CERTIFICATE

Particle Size Distribution

i2 Analytical Ltd Unit 8 Harrowden Road Brackmills Industrial Estate Northampton NN4 7EB

Tested in Accordance with: BS 1377-2: 1990

Client: Delta-Simons

Client Address: Suite C1, Joseph's Well,

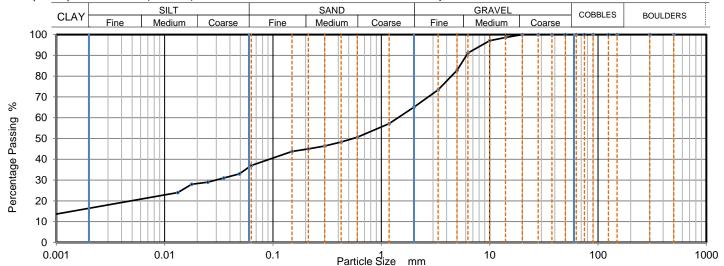
Hanover Walk, Leeds,

LS3 1AB

Contact: Luke Donovan

Site Address: Torgate Lane, Bassingham

Testing carried out at i2 Analytical Limited, ul. Pionierow 39, 41-711 Ruda Slaska, Poland


Client Reference: 12-0310 03 Job Number: 21-96469 Date Sampled: 31/08/2021 Date Received: 01/09/2021 Date Tested: 09/09/2021 Sampled By: Not Given

Test Results:

Laboratory Reference:1993622Depth Top [m]: 2.80Hole No.:DS104Depth Base [m]: 2.85Sample Reference:Not GivenSample Type: D

Sample Description: Brownish grey very gravelly very sandy CLAY

Sample Preparation: Sample was quartered, oven dried at 108.7 °C and broken down by hand.

Siev	ing	Sedime	entation
Particle Size mm	% Passing	Particle Size mm	% Passing
500	100	0.0630	37
300	100	0.0489	33
150	100	0.0351	31
125	100	0.0250	29
90	100	0.0178	28
75	100	0.0132	24
63	100	0.0009	13
50	100		
37.5	100		
28	100		
20	100		
14	99		
10	97		
6.3	91		
5	83		
3.35	73	Particle density	(assumed)
2	65	2.65	Mg/m3
1.18	57		
0.6	51	1	
0.425	48	1	
0.3	46	1	
0.212	45		
0.15	44		
0.063	37	1	

Sample Proportions	% dry mass
Very coarse	0
Gravel	35
Sand	28
Silt	20
Clay	17

Grading Analysis	\$	
D100	mm	20
D60	mm	1.42
D30	mm	0.0298
D10	mm	
Uniformity Coefficient		> 1700
Curvature Coefficient		

Uniformity Coefficient and Coefficient of Curvature calculated in accordance with BS EN ISO 14688-2: 2004 + A1: 2013

Note: Tested in Accordance with BS1377: Part 2:1990, clauses 9.2 and 9.5

Opinions and interpretations expressed herein are outside of the scope of the UKAS Accreditation. This

Remarks: Re-issue 1: Additional results of CBR Soak.

Signed:

Szczepan Bielatowicz

PL Deputy Head of Geotechnical Section for and on behalf of i2 Analytical Ltd

report may not be reproduced other than in full without the prior written approval of the issuing laboratory. The results included within the report relate only to the sample(s) submitted for testing.

Page 1 of 1

Date Reported: 29/09/2021 **GF 100.20**

Determination of California Bearing Ratio

i2 Analytical Ltd Unit 8 Harrowden Road Brackmills Industrial Estate Northampton NN4 7EB

Tested in Accordance with: BS 1377-4: 1990: Clause 7

Delta-Simons Client:

Client Address: Suite C1, Joseph's Well,

Hanover Walk, Leeds,

LS3 1AB

Contact: Luke Donovan

Site Address: Torgate Lane, Bassingham

Testing carried out at i2 Analytical Limited, ul. Pionierow 39, 41-711 Ruda Slaska, Poland

Client Reference: 12-0310 03 Job Number: 21-96469 Date Sampled: 31/08/2021 Date Received: 01/09/2021 Date Tested: 14/09/2021

Sampled By: Not Given

Test Results:

Laboratory Reference: 1993624 **CBR101** Hole No.: Sample Reference: Not Given

Light brown to yellowish brown very sandy CLAY Sample Description:

Depth Top [m]: 0.60 Depth Base [m]: 0.80

Sample Type: B

4.9

kPa

Specimen Preparation:

Condition Remoulded Soaking details Not soaked Details Period of soaking days Recompacted with specified standard effort using 2.5kg rammer Time to surface days Amount of swell recorded mm 0 Mg/m3 Material retained on 20mm sieve removed % Dry density after soaking Initial Specimen details **Bulk density** 2.03 Mg/m3 Surcharge applied kg

> Dry density 1.68 Mg/m3 Moisture content 21

Force v Penetration Plots 0.35 0.30 0.25 - Top data Force Applied kN **x--**·Top values 0.20 Top correction Base data 0.15 -- •-- Base values 0.10 **Base Correction** 0.05 0.00 6 2 3 5 7 8 Penetration mm

Results

TOP **BASE**

Curve		CBR Va	lues, %	
correction applied	2.5mm	5mm	Highest	Average
Yes	1.0	0.9	1.0	
No	1.3	1.3	1.3	

Moisture Content % 21 21

Remarks:

Re-issue 1: Additional results of CBR Soak.

Test/ Specimen specific remarks:

Signed:

Szczepan Bielatowicz PL Deputy Head of Geotechnical Section

Opinions and interpretations expressed herein are outside of the scope of the UKAS Accreditation. This report may not be reproduced other than in full without the prior written approval of the issuing laboratory. The results included within the report relate only to the sample(s) submitted for testing.

Date Reported: 29/09/2021

for and on behalf of i2 Analytical Ltd

Page 1 of 1

GF 108.15

Determination of California Bearing Ratio

i2 Analytical Ltd Unit 8 Harrowden Road Brackmills Industrial Estate Northampton NN4 7EB

Tested in Accordance with: BS 1377-4: 1990: Clause 7

Delta-Simons Client:

Client Address: Suite C1, Joseph's Well,

Hanover Walk, Leeds,

LS3 1AB

Contact: Luke Donovan

Site Address: Torgate Lane, Bassingham

Testing carried out at i2 Analytical Limited, ul. Pionierow 39, 41-711 Ruda Slaska, Poland

Client Reference: 12-0310 03 Job Number: 21-96469 Date Sampled: 31/08/2021 Date Received: 01/09/2021 Date Tested: 14/09/2021

Sampled By: Not Given

Test Results:

Laboratory Reference: 1993625 CBR102 Hole No.: Sample Reference: Not Given

Light brown to yellowish brown very sandy CLAY Sample Description:

Depth Top [m]: 0.50 Depth Base [m]: 0.70

Sample Type: B

Specimen Preparation:

Condition Remoulded

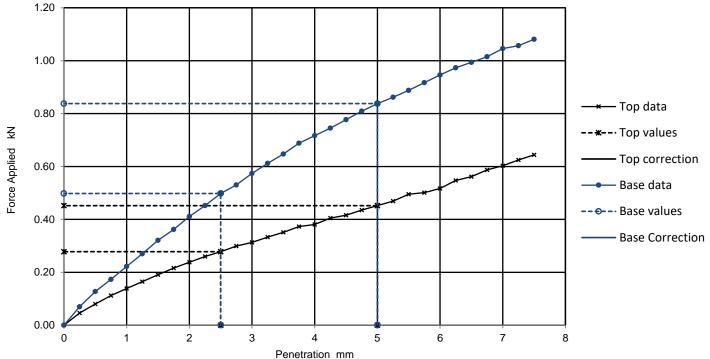
Details

Recompacted with specified standard effort using 2.5kg rammer

Soaking details Not soaked Period of soaking days Time to surface days Amount of swell recorded mm Mg/m3 Dry density after soaking

Material retained on 20mm sieve removed

0 %


Force v Penetration Plots

Initial Specimen details **Bulk density** 2.11 Mg/m3

Dry density 1.88 Mg/m3 Moisture content 13

Surcharge applied kg 4.9 kPa

Results

TOP **BASE**

Curve		CBR Va	lues, %	
correction applied	2.5mm	5mm	Highest	Average
No	2.1	2.3	2.3	
No	3.8	4.2	4.2	

Moisture Content % 13 13

Remarks:

Re-issue 1: Additional results of CBR Soak.

Test/ Specimen specific remarks:

Signed:

Szczepan Bielatowicz PL Deputy Head of Geotechnical Section

Opinions and interpretations expressed herein are outside of the scope of the UKAS Accreditation. This report may not be reproduced other than in full without the prior written approval of the issuing laboratory. The results included within the report relate only to the sample(s) submitted for testing.

Page 1 of 1

for and on behalf of i2 Analytical Ltd

Date Reported: 29/09/2021

GF 108.15

California Bearing Ratio Soaked

TEST CERTIFICATE

i2 Analytical Ltd Unit 8 Harrowden Road Brackmills Industrial Estate Northampton NN4 7EB

Tested in Accordance with: BS 1377-4: 1990: Clause 7

Delta-Simons Client:

Client Address: Suite C1, Joseph's Well,

Hanover Walk, Leeds,

LS3 1AB

Contact: Luke Donovan

Site Address: Torgate Lane, Bassingham

Testing carried out at i2 Analytical Limited, ul. Pionierow 39, 41-711 Ruda Slaska, Poland

Client Reference: 12-0310 03 Job Number: 21-96469 Date Sampled: 31/08/2021 Date Received: 01/09/2021 Date Tested: 20/09/2021 Sampled By: Not Given

Test Results:

Laboratory Reference: 1993624 **CBR101** Hole No.: Sample Reference: Not Given

Light brown to yellowish brown very sandy CLAY Sample Description:

Depth Top [m]: 0.60 Depth Base [m]: 0.80

Sample Type: B

Specimen Preparation:

Condition Remoulded

Details Recompacted with specified standard effort using 2.5kg rammer

Soaking details Period of soaking Time to surface

Amount of swell recorded

7 days days -0.02 mm

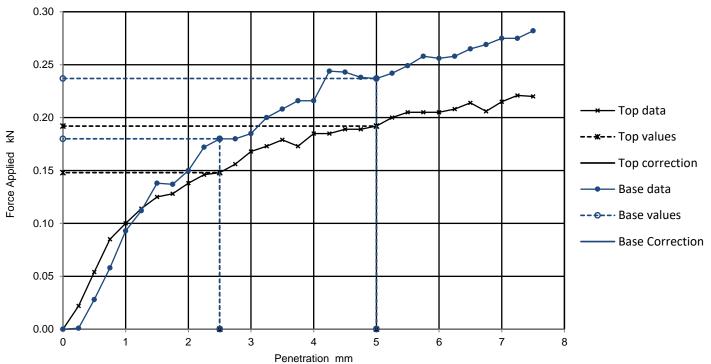
Material retained on 20mm sieve removed

0 %

1.67 Dry density after soaking Mg/m3

Initial Specimen details

Bulk density Dry density


Moisture content

2.02 Mg/m3 1.67 Mg/m3

21

Surcharge applied 8 kg 4.9 kPa

Force v Penetration Plots

Results

TOP **BASE**

Curve		CBR Va	ılues, %	
correction applied	2.5mm	5mm	Highest	Average
No	1.1	1.0	1.1	12
No	1.4	1.2	1.4	1.2

Moisture Content % 21

Remarks:

Re-issue 1: Additional results of CBR Soak.

Test/ Specimen specific remarks:

Signed:

Szczepan Bielatowicz PL Deputy Head of Geotechnical Section for and on behalf of i2 Analytical Ltd

Opinions and interpretations expressed herein are outside of the scope of the UKAS Accreditation. This report may not be reproduced other than in full without the prior written approval of the issuing laboratory. The results included within the report relate only to the sample(s) submitted for testing.

Date Reported: 29/09/2021

California Bearing Ratio Soaked

i2 Analytical Ltd Unit 8 Harrowden Road Brackmills Industrial Estate Northampton NN4 7EB

Tested in Accordance with: BS 1377-4: 1990: Clause 7

Client: Delta-Simons

Client Address: Suite C1, Joseph's Well,

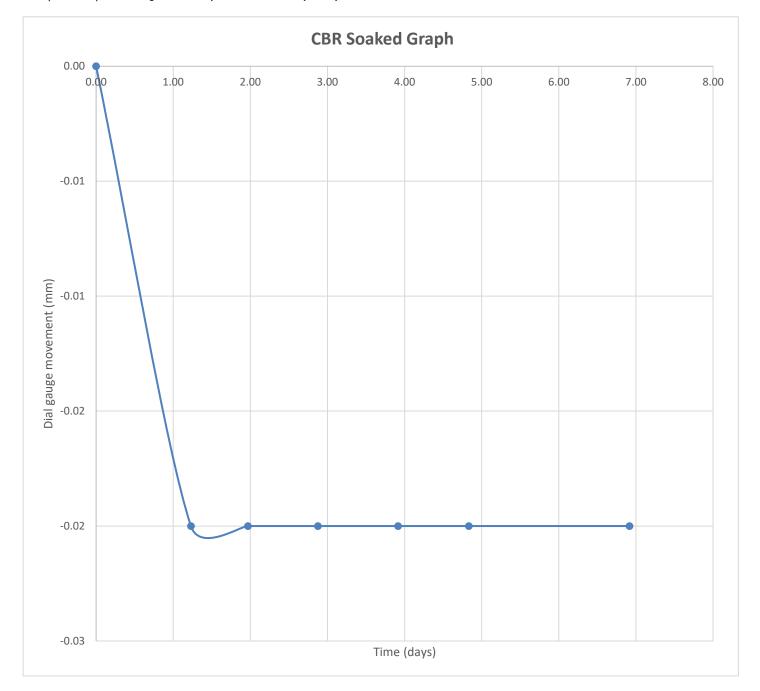
Hanover Walk, Leeds,

LS3 1AB

Contact: Luke Donovan

Site Address: Torgate Lane, Bassingham

Testing carried out at i2 Analytical Limited, ul. Pionierow 39, 41-711 Ruda Slaska, Poland


Client Reference: 12-0310 03 Job Number: 21-96469 Date Sampled: 31/08/2021 Date Received: 01/09/2021 Date Tested: 20/09/2021 Sampled By: Not Given

Test Results:

Laboratory Reference: 1993624
Hole No.: CBR101
Sample Reference: Not Given

Sample Description: Light brown to yellowish brown very sandy CLAY

Depth Top [m]: 0.60 Depth Base [m]: 0.80 Sample Type: B

Remarks: Re-issue 1: Additional results of CBR Soak.

Test/ Specimen specific remarks:

Signed:

Szczepan Bielatowicz PL Deputy Head of Geotechnical Section for and on behalf of i2 Analytical Ltd

Opinions and interpretations expressed herein are outside of the scope of the UKAS Accreditation. This report may not be reproduced other than in full without the prior written approval of the issuing laboratory. The results included within the report relate only to the sample(s) submitted for testing.

Page 2 of 2

Date Reported: 29/09/2021

TEST CERTIFICATE

i2 Analytical Ltd Unit 8 Harrowden Road Brackmills Industrial Estate Northampton NN4 7EB

Amount of swell recorded

 mm

California Bearing Ratio Soaked

Tested in Accordance with: BS 1377-4: 1990: Clause 7

Delta-Simons Client:

Client Address: Suite C1, Joseph's Well,

Hanover Walk, Leeds,

LS3 1AB

Contact: Luke Donovan

Site Address: Torgate Lane, Bassingham

Testing carried out at i2 Analytical Limited, ul. Pionierow 39, 41-711 Ruda Slaska, Poland

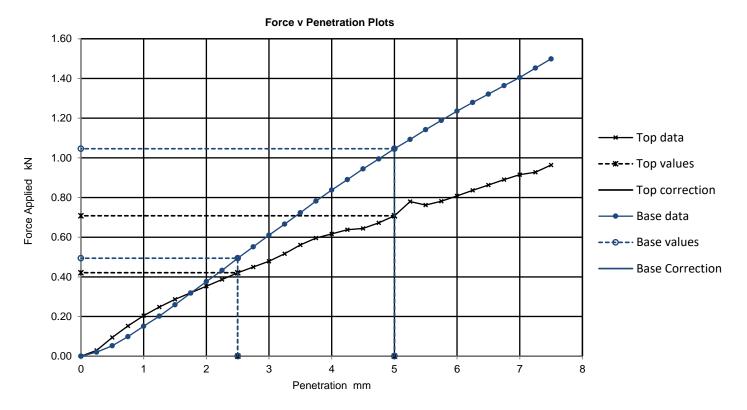
Client Reference: 12-0310 03 Job Number: 21-96469 Date Sampled: 31/08/2021 Date Received: 01/09/2021 Date Tested: 20/09/2021 Sampled By: Not Given

Test Results:

Laboratory Reference: 1993625 Depth Top [m]: 0.50 CBR102 Depth Base [m]: 0.70 Hole No.: Sample Reference: Not Given Sample Type: B

Light brown to yellowish brown slightly gravelly very sandy CLAY Sample Description:

Specimen Preparation:


Condition Remoulded Soaking details Details

Period of soaking 7 days Recompacted with specified standard effort using 2.5kg rammer Time to surface days -0.05

2 1.96 Material retained on 20mm sieve removed % Dry density after soaking Mg/m3

Initial Specimen details **Bulk density** 2.19 Mg/m3 Surcharge applied 8 kg Dry density 1.96 Mg/m3 4.9 kPa

> Moisture content 12

Results

TOP **BASE**

Curve		CBR Va	alues, %	
correction applied	2.5mm	5mm	Highest	Average
No	3.2	3.5	3.5	
No	3.7	5.2	5.2	

Moisture Content % 12 12

Re-issue 1: Additional results of CBR Soak. Remarks:

Test/ Specimen specific remarks:

Signed:

Szczepan Bielatowicz PL Deputy Head of Geotechnical Section for and on behalf of i2 Analytical Ltd

Opinions and interpretations expressed herein are outside of the scope of the UKAS Accreditation. This report may not be reproduced other than in full without the prior written approval of the issuing laboratory. The results included within the report relate only to the sample(s) submitted for testing.

Page 1 of 2

Date Reported: 29/09/2021

California Bearing Ratio Soaked

i2 Analytical Ltd Unit 8 Harrowden Road Brackmills Industrial Estate Northampton NN4 7EB

Tested in Accordance with: BS 1377-4: 1990: Clause 7

Client: Delta-Simons

Client Address: Suite C1, Joseph's Well,

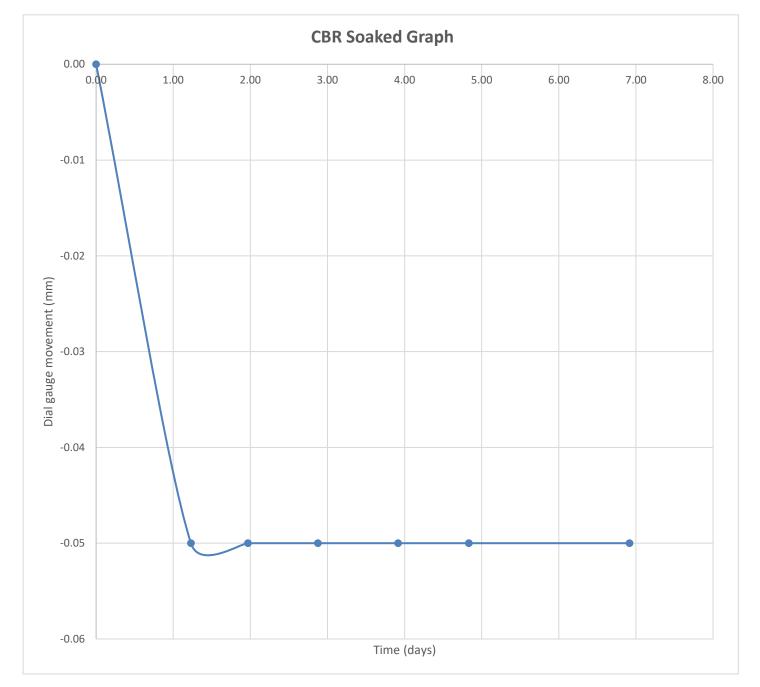
Hanover Walk, Leeds,

LS3 1AB

Contact: Luke Donovan

Site Address: Torgate Lane, Bassingham

Testing carried out at i2 Analytical Limited, ul. Pionierow 39, 41-711 Ruda Slaska, Poland


Client Reference: 12-0310 03 Job Number: 21-96469 Date Sampled: 31/08/2021 Date Received: 01/09/2021 Date Tested: 20/09/2021 Sampled By: Not Given

Test Results:

Laboratory Reference: 1993625
Hole No.: CBR102
Sample Reference: Not Given

Sample Description: Light brown to yellowish brown slightly gravelly very sandy CLAY

Depth Top [m]: 0.50 Depth Base [m]: 0.70 Sample Type: B

Remarks: Re-issue 1: Additional results of CBR Soak.

Test/ Specimen specific remarks:

Signed:

Szczepan Bielatowicz PL Deputy Head of Geotechnical Section for and on behalf of i2 Analytical Ltd

Opinions and interpretations expressed herein are outside of the scope of the UKAS Accreditation. This report may not be reproduced other than in full without the prior written approval of the issuing laboratory. The results included within the report relate only to the sample(s) submitted for testing.

Date Reported: 29/09/2021

Appendix G – Soil Chemical Analysis Results

Luke Donovan

Delta-Simons Suite C1 Joseph's Well Hanover Walk

Leeds LS3 1AB i2 Analytical Ltd. 7 Woodshots Meadow, Croxley Green Business Park, Watford, Herts, **WD18 8YS**

t: 01923 225404 f: 01923 237404

e: reception@i2analytical.com

e: Luke.Donovan@deltasimons.com

Analytical Report Number: 21-96473

Project / Site name: Torgate Lane, Bassingham Samples received on: 01/09/2021

Your job number: 12-0310 03 Samples instructed on/ 01/09/2021

Analysis started on:

Your order number: DS63191 Analysis completed by: 14/09/2021

Report Issue Number: Report issued on: 14/09/2021

Samples Analysed: 4 soil samples

> Izabela Wojcik Signed:

Izabela Wójcik

Technical Reviewer (Reporting Team) For & on behalf of i2 Analytical Ltd.

Standard Geotechnical, Asbestos and Chemical Testing Laboratory located at: ul. Pionierów 39, 41 -711 Ruda Śląska, Poland.

Accredited tests are defined within the report, opinions and interpretations expressed herein are outside the scope of accreditation.

Standard sample disposal times, unless otherwise agreed with the laboratory, are: - 4 weeks from reporting

leachates - 2 weeks from reporting waters - 2 weeks from reporting asbestos - 6 months from reporting

Excel copies of reports are only valid when accompanied by this PDF certificate.

Any assessments of compliance with specifications are based on actual analytical results with no contribution from uncertainty of measurement. Application of uncertainty of measurement would provide a range within which the true result lies. An estimate of measurement uncertainty can be provided on request.

Analytical Report Number: 21-96473 Project / Site name: Torgate Lane, Bassingham

Your Order No: DS63191

Lab Sample Number	1993635	1993636	1993637	1993638			
Sample Reference	DS101	DS102	DS103	DS105			
Sample Number				None Supplied	None Supplied	None Supplied	None Supplied
Depth (m)				2.80-2.85	2.60-2.70	1.60-1.65	2.10-2.15
Date Sampled				31/08/2021	31/08/2021	31/08/2021	31/08/2021
Time Taken	None Supplied	None Supplied	None Supplied	None Supplied			
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status				
Stone Content	%	0.1	NONE	< 0.1	< 0.1	< 0.1	< 0.1
Moisture Content	%	0.01	NONE	11	12	9.9	11
Total mass of sample received	kg	0.001	NONE	0.20	0.20	0.20	0.20

General Inorganics

pH - Automated	pH Units	N/A	MCERTS	8.7	8.2	8.8	8.4
Total Sulphate as SO4	%	0.005	MCERTS	0.052	0.055	0.029	0.031
Water Soluble Sulphate as SO4 16hr extraction (2:1)	mg/kg	2.5	MCERTS	60	73	22	19
Water Soluble SO4 16hr extraction (2:1 Leachate Equivalent)	g/l	0.00125	MCERTS	0.030	0.037	0.011	0.0097
Water Soluble SO4 16hr extraction (2:1 Leachate Equivalent)	mg/l	1.25	MCERTS	29.8	36.7	11.2	9.7
Total Sulphur	%	0.005	MCERTS	0.093	0.084	< 0.005	< 0.005

 $\label{eq:U/S} \text{U/S} = \text{Unsuitable Sample} \qquad \text{I/S} = \ \text{Insufficient Sample}$

Analytical Report Number : 21-96473 Project / Site name: Torgate Lane, Bassingham

* These descriptions are only intended to act as a cross check if sample identities are questioned. The major constituent of the sample is intended to act with respect to MCERTS validation. The laboratory is accredited for sand, clay and loam (MCERTS) soil types. Data for unaccredited types of solid should be interpreted with care.

Stone content of a sample is calculated as the % weight of the stones not passing a 10 mm sieve. Results are not corrected for stone content.

Lab Sample Number	Sample Reference	Sample Number	Depth (m)	Sample Description *
1993635	DS101	None Supplied	2.80-2.85	Grey clay and sand with gravel and vegetation.
1993636	DS102	None Supplied	2.60-2.70	Grey clay and gravel.
1993637	DS103	None Supplied	1.60-1.65	Brown sandy clay with gravel.
1993638	DS105	None Supplied	2.10-2.15	Brown sand with gravel and vegetation.

Analytical Report Number: 21-96473 Project / Site name: Torgate Lane, Bassingham

Water matrix abbreviations: Surface Water (SW) Potable Water (PW) Ground Water (GW)

Analytical Test Name	Analytical Method Description	Analytical Method Reference	Method number	Wet / Dry Analysis	Accreditation Status
Sulphate, water soluble, in soil (16hr extraction)	Determination of water soluble sulphate by ICP-OES. Results reported directly (leachate equivalent) and corrected for extraction ratio (soil equivalent).	In house method.	L038-PL	D	MCERTS
Moisture Content	Moisture content, determined gravimetrically. (30 oC)	In house method.	L019-UK/PL	w	NONE
pH in soil (automated)	Determination of pH in soil by addition of water followed by automated electrometric measurement.	In house method.	L099-PL	D	MCERTS
Stones content of soil	Standard preparation for all samples unless otherwise detailed. Gravimetric determination of stone > 10 mm as % dry weight.	In-house method based on British Standard Methods and MCERTS requirements.	L019-UK/PL	D	NONE
Total Sulphate in soil as %	Determination of total sulphate in soil by extraction with 10% HCl followed by ICP-OES.	In house method.	L038-PL	D	MCERTS
Total Sulphur in soil as %	Determination of total sulphur in soil by extraction with aqua-regia, potassium bromide/bromate followed by ICP-OES.	In house method.	L038-PL	D	MCERTS
Sulphate, water soluble, in soil	Determination of water soluble sulphate by ICP-OES. Results reported directly (leachate equivalent) and corrected for extraction ratio (soil equivalent).	In house method.	L038-PL	D	MCERTS

For method numbers ending in 'UK' analysis have been carried out in our laboratory in the United Kingdom.

For method numbers ending in 'PL' analysis have been carried out in our laboratory in Poland.

Soil analytical results are expressed on a dry weight basis. Where analysis is carried out on as-received the results obtained are multiplied by a moisture correction factor that is determined gravimetrically using the moisture content which is carried out at a maximum of 30oC.

Unless otherwise indicated, site information, order number, project number, sampling date, time, sample reference and depth are provided by the client. The instructed on date indicates the date on which this information was provided to the laboratory.

Luke Donovan

Delta-Simons Suite C1 Joseph's Well Hanover Walk Leeds LS3 1AB

e: Luke.Donovan@deltasimons.com

i2 Analytical Ltd.
7 Woodshots Meadow,
Croxley Green
Business Park,
Watford,
Herts,
WD18 8YS

t: 01923 225404 **f:** 01923 237404

e: reception@i2analytical.com

01/09/2021

Analytical Report Number: 21-96596

Project / Site name: Torgate Lane, Bassingham Samples received on: 01/09/2021

Your job number: 12-0310.03 Samples instructed on/

Analysis started on:

Your order number: DS63191 Analysis completed by: 08/09/2021

Report Issue Number: 1 Report issued on: 08/09/2021

Samples Analysed: 3 soil samples

Signed: Keroline Harel

Karolina Marek

PL Head of Reporting Team

For & on behalf of i2 Analytical Ltd.

Standard Geotechnical, Asbestos and Chemical Testing Laboratory located at: ul. Pionierów 39, 41 -711 Ruda Śląska, Poland.

Accredited tests are defined within the report, opinions and interpretations expressed herein are outside the scope of accreditation.

Standard sample disposal times, unless otherwise agreed with the laboratory, are : soils - 4 weeks from reporting

leachates - 2 weeks from reporting waters - 2 weeks from reporting asbestos - 6 months from reporting

Excel copies of reports are only valid when accompanied by this PDF certificate.

Any assessments of compliance with specifications are based on actual analytical results with no contribution from uncertainty of measurement. Application of uncertainty of measurement would provide a range within which the true result lies.

An estimate of measurement uncertainty can be provided on request.

Analytical Report Number: 21-96596 Project / Site name: Torgate Lane, Bassingham

Your Order No: DS63191

Lab Sample Number	1994513	1994514	1994515			
Sample Reference				DS101	DS103	DS105
Sample Number				None Supplied	None Supplied	None Supplied
Depth (m)				0.40-0.45	0.70-0.75	1.00-1.05
Date Sampled				31/08/2021	31/08/2021	31/08/2021
Time Taken				None Supplied	None Supplied	None Supplied
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status			
Stone Content	%	0.1	NONE	< 0.1	< 0.1	< 0.1
Moisture Content	5.4	11	9.1			
Total mass of sample received	kg	0.001	NONE	1.0	1.0	1.0

	Asbestos in Soil	Type	N/A	ISO 17025	Not-detected	Not-detected	Not-detected
--	------------------	------	-----	-----------	--------------	--------------	--------------

General Inorganics

pH - Automated	pH Units	N/A	MCERTS	6.7	6.8	7.0
Water Soluble Sulphate as SO4 16hr extraction (2:1)	mg/kg	2.5	MCERTS	18	36	13
Water Soluble SO4 16hr extraction (2:1 Leachate Equivalent)	g/l	0.00125	MCERTS	0.0091	0.018	0.0063
Water Soluble SO4 16hr extraction (2:1 Leachate Equivalent)	mg/l	1.25	MCERTS	9.1	17.9	6.3

Speciated PAHs

Naphthalene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05
Acenaphthylene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05
Acenaphthene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05
Fluorene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05
Phenanthrene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05
Anthracene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05
Fluoranthene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05
Pyrene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05
Benzo(a)anthracene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05
Chrysene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05
Benzo(b)fluoranthene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05
Benzo(k)fluoranthene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05
Benzo(a)pyrene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05
Indeno(1,2,3-cd)pyrene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05
Dibenz(a,h)anthracene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05
Benzo(ghi)perylene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05

Total PAH

Speciated Total EPA-16 PAHs	mg/kg	0.8	MCERTS	< 0.80	< 0.80	< 0.80

Heavy Metals / Metalloids

Arsenic (aqua regia extractable)	mg/kg	1	MCERTS	7.2	5.9	5.9
Cadmium (aqua regia extractable)	mg/kg	0.2	MCERTS	< 0.2	< 0.2	< 0.2
Chromium (hexavalent)	mg/kg	1.2	MCERTS	< 1.2	< 1.2	< 1.2
Chromium (aqua regia extractable)	mg/kg	1	MCERTS	10	8.2	9.4
Copper (aqua regia extractable)	mg/kg	1	MCERTS	7.6	8.7	5.9
Lead (aqua regia extractable)	mg/kg	1	MCERTS	13	23	12
Mercury (aqua regia extractable)	mg/kg	0.3	MCERTS	< 0.3	< 0.3	< 0.3
Nickel (aqua regia extractable)	mg/kg	1	MCERTS	7.8	6.1	5.1
Zinc (aqua regia extractable)	mg/kg	1	MCERTS	18	19	12

Monoaromatics & Oxygenates

Benzene	mg/kg	0.001	MCERTS	< 0.001	< 0.001	< 0.001
Toluene	mg/kg	0.001	MCERTS	< 0.001	< 0.001	< 0.001
Ethylbenzene	mg/kg	0.001	MCERTS	< 0.001	< 0.001	< 0.001
p & m-xylene	mg/kg	0.001	MCERTS	< 0.001	< 0.001	< 0.001
o-xylene	mg/kg	0.001	MCERTS	< 0.001	< 0.001	< 0.001
MTBE (Methyl Tertiary Butyl Ether)	mg/kg	0.001	MCERTS	< 0.001	< 0.001	< 0.001

Analytical Report Number: 21-96596 Project / Site name: Torgate Lane, Bassingham

Your Order No: DS63191

Lab Sample Number	1994513	1994514	1994515			
Sample Reference				DS101	DS103	DS105
Sample Number	None Supplied	None Supplied	None Supplied			
Depth (m)	0.40-0.45	0.70-0.75	1.00-1.05			
Date Sampled	31/08/2021	31/08/2021	31/08/2021			
Time Taken	None Supplied	None Supplied	None Supplied			
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status			
Petroleum Hydrocarbons	-				=	<u>-</u>
TPH-CWG - Aliphatic >EC5 - EC6	mg/kg	0.001	MCERTS	< 0.001	< 0.001	< 0.001
TPH-CWG - Aliphatic >EC6 - EC8	mg/kg	0.001	MCERTS	< 0.001	< 0.001	< 0.001
TPH-CWG - Aliphatic >EC8 - EC10	mg/kg	0.001	MCERTS	< 0.001	< 0.001	< 0.001
TPH-CWG - Aliphatic >EC10 - EC12	mg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0
TPH-CWG - Aliphatic >EC12 - EC16	mg/kg	2	MCERTS	< 2.0	< 2.0	< 2.0
TPH-CWG - Aliphatic >EC16 - EC21	mg/kg	8	MCERTS	< 8.0	< 8.0	< 8.0
TPH-CWG - Aliphatic >EC21 - EC35	mg/kg	8	MCERTS	< 8.0	< 8.0	< 8.0
TPH-CWG - Aliphatic >EC35 - EC40	mg/kg	10	NONE	< 10	< 10	< 10
TPH-CWG - Aliphatic (EC5 - EC35)	mg/kg	10	MCERTS	< 10	< 10	< 10
TPH-CWG - Aromatic >EC5 - EC7	mg/kg	0.001	MCERTS	< 0.001	< 0.001	< 0.001
TPH-CWG - Aromatic > EC7 - EC8	mg/kg	0.001	MCERTS	< 0.001	< 0.001	< 0.001
FPH-CWG - Aromatic > EC8 - EC10	mg/kg	0.001	MCERTS	< 0.001	< 0.001	< 0.001
TPH-CWG - Aromatic >EC10 - EC12	mg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0
TPH-CWG - Aromatic >EC12 - EC16	mg/kg	2	MCERTS	< 2.0	< 2.0	< 2.0
TPH-CWG - Aromatic >EC16 - EC21	mg/kg	10	MCERTS	< 10	< 10	< 10
TPH-CWG - Aromatic >EC21 - EC35	mg/kg	10	MCERTS	< 10	< 10	< 10
TPH-CWG - Aromatic >EC35 - EC40	mg/kg	10	NONE	< 10	< 10	< 10
TPH-CWG - Aromatic (EC5 - EC35)	mg/kg	10	MCERTS	< 10	< 10	< 10
TPH (C35 - C40)	mg/kg	10	MCERTS	< 10	< 10	< 10

 $\label{eq:U/S} \text{U/S} = \text{Unsuitable Sample} \qquad \text{I/S} = \ \text{Insufficient Sample}$

Analytical Report Number : 21-96596 Project / Site name: Torgate Lane, Bassingham

* These descriptions are only intended to act as a cross check if sample identities are questioned. The major constituent of the sample is intended to act with respect to MCERTS validation. The laboratory is accredited for sand, clay and loam (MCERTS) soil types. Data for unaccredited types of solid should be interpreted with care.

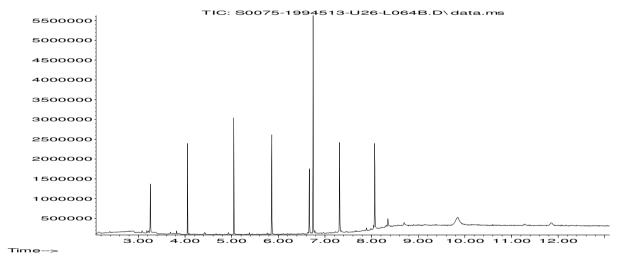
Stone content of a sample is calculated as the % weight of the stones not passing a 10 mm sieve. Results are not corrected for stone content.

Lab Sample Number	Sample Reference	Sample Number	Depth (m)	Sample Description *
1994513	DS101	None Supplied	0.40-0.45	Brown clay and sand with gravel.
1994514	DS103	None Supplied	0.70-0.75	Brown clay and sand with gravel and vegetation.
1994515	DS105	None Supplied	1.00-1.05	Brown clay and sand with gravel.

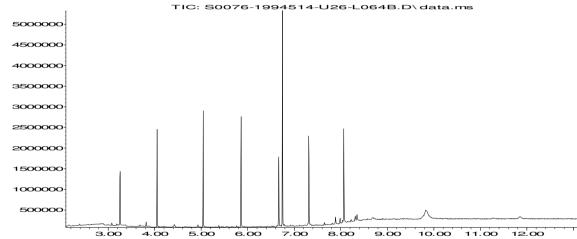
Analytical Report Number : 21-96596 Project / Site name: Torgate Lane, Bassingham

Water matrix abbreviations: Surface Water (SW) Potable Water (PW) Ground Water (GW)

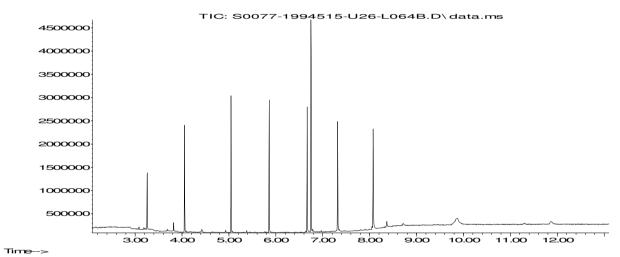
Analytical Test Name	Analytical Method Description	Analytical Method Reference	Method number	Wet / Dry Analysis	Accreditation Status
Sulphate, water soluble, in soil (16hr extraction)	Determination of water soluble sulphate by ICP-OES. Results reported directly (leachate equivalent) and corrected for extraction ratio (soil equivalent).	In house method.	L038-PL	D	MCERTS
Metals in soil by ICP-OES	Determination of metals in soil by aqua-regia digestion followed by ICP-OES.	In-house method based on MEWAM 2006 Methods for the Determination of Metals in Soil.	L038-PL	D	MCERTS
Asbestos identification in soil	Asbestos Identification with the use of polarised light microscopy in conjunction with disperion staining techniques.	In house method based on HSG 248	A001-PL	D	ISO 17025
Hexavalent chromium in soil (Lower Level)	Determination of hexavalent chromium in soil by extraction in water then by acidification, addition of 1,5 diphenylcarbazide followed by colorimetry.	In-house method	L080-PL	W	MCERTS
Moisture Content	Moisture content, determined gravimetrically. (30 oC)	In house method.	L019-UK/PL	W	NONE
Speciated EPA-16 PAHs in soil	Determination of PAH compounds in soil by extraction in dichloromethane and hexane followed by GC-MS with the use of surrogate and internal standards.	In-house method based on USEPA 8270	L064-PL	D	MCERTS
pH in soil (automated)	Determination of pH in soil by addition of water followed by automated electrometric measurement.	In house method.	L099-PL	D	MCERTS
Stones content of soil	Standard preparation for all samples unless otherwise detailed. Gravimetric determination of stone > 10 mm as % dry weight.	In-house method based on British Standard Methods and MCERTS requirements.	L019-UK/PL	D	NONE
TPH Chromatogram in Soil	TPH Chromatogram in Soil.	In-house method	L064-PL	D	NONE
TPH in (Soil)	Determination of TPH bands by HS-GC-MS/GC-FID	In-house method, TPH with carbon banding and silica gel split/cleanup.	L076-PL	D	NONE
TPHCWG (Soil)	Determination of hexane extractable hydrocarbons in soil by GC-MS/GC-FID.	In-house method with silica gel split/clean up.	L088/76-PL	W	MCERTS
BTEX and MTBE in soil (Monoaromatics)	Determination of BTEX in soil by headspace GC-MS.	In-house method based on USEPA8260	L073B-PL	W	MCERTS
Sulphate, water soluble, in soil	Determination of water soluble sulphate by ICP-OES. Results reported directly (leachate equivalent) and corrected for extraction ratio (soil equivalent).	In house method.	L038-PL	D	MCERTS


For method numbers ending in 'UK' analysis have been carried out in our laboratory in the United Kingdom.

For method numbers ending in 'PL' analysis have been carried out in our laboratory in Poland.


Soil analytical results are expressed on a dry weight basis. Where analysis is carried out on as-received the results obtained are multiplied by a moisture correction factor that is determined gravimetrically using the moisture content which is carried out at a maximum of 30oC.

Unless otherwise indicated, site information, order number, project number, sampling date, time, sample reference and depth are provided by the client. The instructed on date indicates the date on which this information was provided to the laboratory.



Abundance

Time-->

Abundance

Luke Donovan

Delta-Simons Suite C1 Joseph's Well Hanover Walk Leeds LS3 1AB

e: Luke.Donovan@deltasimons.com

i2 Analytical Ltd. 7 Woodshots Meadow, Croxley Green Business Park, Watford, Herts, **WD18 8YS**

t: 01923 225404 f: 01923 237404

e: reception@i2analytical.com

Analytical Report Number: 21-96598

Project / Site name: Torgate Lane, Bassingham Samples received on: 01/09/2021

Your job number: 12-0310.03 Samples instructed on/ 01/09/2021

Analysis started on:

Your order number: DS63191 Analysis completed by: 08/09/2021

Report issued on: 08/09/2021 **Report Issue Number:**

Samples Analysed: 2 10:1 WAC Samples

Signed: Keroline Harel

Karolina Marek

PL Head of Reporting Team

For & on behalf of i2 Analytical Ltd.

Standard Geotechnical, Asbestos and Chemical Testing Laboratory located at: ul. Pionierów 39, 41 -711 Ruda Śląska, Poland.

Accredited tests are defined within the report, opinions and interpretations expressed herein are outside the scope of accreditation.

Standard sample disposal times, unless otherwise agreed with the laboratory, are : soils - 4 weeks from reporting

leachates - 2 weeks from reporting waters - 2 weeks from reporting asbestos - 6 months from reporting

Excel copies of reports are only valid when accompanied by this PDF certificate.

Any assessments of compliance with specifications are based on actual analytical results with no contribution from uncertainty of measurement. Application of uncertainty of measurement would provide a range within which the true result lies. An estimate of measurement uncertainty can be provided on request.

i2 Analytical

7 Woodshots Meadow Croxley Green Business Park Watford, WD18 8YS Telephone: 01923 225404 Fax: 01923 237404 email:reception@i2analytical.com

Report No:		21-96598						
				Client:	DELTASIM			
Location		Torgate Lane, Bassingham	1					
			-	Landfill Waste Acceptance Criteria				
Lab Reference (Sample Number)		1994529 / 1994530			Limits			
Sampling Date		31/08/2021			Stable Non- reactive			
Sample ID Depth (m)		DS101 1.10-0.45		Inert Waste Landfill	HAZARDOUS waste in non- hazardous Landfill	Hazardous Waste Landfil		
Solid Waste Analysis		-						
TOC (%)**	1.1			3%	5%	6%		
oss on Ignition (%) **	2.6					10%		
BTEX (μg/kg) **	< 10			6000				
Sum of PCBs (mg/kg) **	< 0.007			1				
Mineral Oil (mg/kg)	< 10			500	-			
Total PAH (WAC-17) (mg/kg)	< 0.85			100				
oH (units)**	6.9				>6			
Acid Neutralisation Capacity (mol / kg)	-0.86				To be evaluated			
	0.00				es for compliance le			
Eluate Analysis	10:1		10:1					
(BS EN 12457 - 2 preparation utilising end over end leaching procedure)	mg/l		mg/kg	using BS EN	12457-2 at L/S 10	I/Kg (mg/Kg)		
• • • • • • • • • • • • • • • • • • • •				0.5	1 2	25		
Arsenic *	0.0051		0.0468	0.5	2	25		
Barium *	0.0105		0.0975	20	100	300		
Cadmium *	< 0.0001		< 0.0008	0.04	1 10	5		
Chromium *	0.0019		0.017	0.5 2	50	70		
Copper * Mercury *	0.012		0.11 < 0.0050	0.01	0.2	100		
Molybdenum *	< 0.0005 < 0.0004		< 0.0040	0.01	10	30		
Vickel *	0.0059		0.055	0.4	10	40		
Lead *	0.0059		0.055	0.4	10	50		
Antimony *			< 0.017	0.06	0.7	5		
Selenium *	< 0.0017 < 0.0040		< 0.017	0.06	0.7	7		
Zinc *	0.031		0.28	4	50	200		
Chloride *	1.7		15	800	15000	25000		
Fluoride	0.31		2.9	10	15000	500		
Sulphate *	3.4		32	1000	20000	50000		
TDS*	30		280	4000	60000	100000		
Phenol Index (Monohydric Phenols) *	< 0.010		< 0.10	1	-	-		
DOC			228		800			
	24.6		228	500	800	1000		
Leach Test Information								
Stone Content (%)	< 0.1							
Sample Mass (kg)	1.0							
Ory Matter (%)	93							
Moisture (%)	6.6							
				-				
	1		1	1		alysis only)		

Landfill WAC analysis (specifically leaching test results) must not be used for hazardous waste classification purposes as defined by the Waste (England and Wales) Regulations 2011 (as amended) and EA Guidance WM3.

This analysis is only applicable for landfill acceptance criteria (The Environmental Permitting (England and Wales) Regulations) and does not give any indication as to whether a waste may be hazardous or non-hazardous.

i2 Analytical

7 Woodshots Meadow Croxley Green Business Park Watford, WD18 8YS Telephone: 01923 225404 Fax: 01923 237404 email:reception@i2analytical.com

Waste Acceptance Criteria Analytical Report No:		21-9	6598				
					Client:	DELTASIM	
Location		Torgate Lane	, Bassingham				
					Landfill	Waste Acceptanc	e Criteria
Lab Reference (Sample Number)		1994531 /				Limits	
Sampling Date		31/08 DS:				Stable Non- reactive	
Sample ID Depth (m)		0.30-			Inert Waste Landfill	HAZARDOUS waste in non- hazardous Landfill	Hazardous Waste Landfill
Solid Waste Analysis							
TOC (%)**	1.1				3%	5%	6%
Loss on Ignition (%) **	2.5						10%
BTEX (µg/kg) **	< 10				6000		
Sum of PCBs (mg/kg) **	< 0.007				1		
Mineral Oil (mg/kg)	< 10				500		
Total PAH (WAC-17) (mg/kg)	< 0.85				100		
pH (units)**	6.5					>6	
Acid Neutralisation Capacity (mol / kg)	-1.1					To be evaluated	To be evaluated
Eluate Analysis	10:1			10:1		es for compliance l	
(BS EN 12457 - 2 preparation utilising end over end leaching procedure)	mg/l			mg/kg	using BS EN	I 12457-2 at L/S 10	I/kg (mg/kg)
Arsenic *	< 0.0010			< 0.0100	0.5	2	25
Barium *	0.0147			0.136	20	100	300
Cadmium *	< 0.0001			< 0.0008	0.04	1	5
Chromium *	0.0018			0.017	0.5	10	70
Copper *	0.013			0.12	2	50	100
Mercury *	< 0.0005			< 0.0050	0.01	0.2	2
Molybdenum *	< 0.0004			< 0.0040	0.5	10	30
Nickel *	0.0062			0.057	0.4	10	40
Lead *	0.0039			0.036	0.5	10	50
Antimony *	< 0.0017			< 0.017	0.06	0.7	5
Selenium *	< 0.0040			< 0.040	0.1	0.5	7
Zinc *	0.012			0.11	4	50	200
Chloride *	1.5			14	800	15000	25000
Fluoride	0.25			2.3	10	150	500
Sulphate *	3.7			34	1000	20000	50000
TDS*	26			240	4000	60000	100000
Phenol Index (Monohydric Phenols) *	< 0.010			< 0.10	1	-	
DOC	23.8			220	500	800	1000
Leach Test Information							
Stone Content (%)	< 0.1						
Sample Mass (kg)	1.0						
Dry Matter (%)	93						
Moisture (%)	7.2						
Results are expressed on a dry weight basis, after correction for m	noisture content who	ere annlicable	l		*- IIKAS accredi	ted (liquid eluate an	alveie only)
Stated limits are for guidance only and i2 cannot be held responsible.					** = MCERTS acc		uiyələ Ulify)

Landfill WAC analysis (specifically leaching test results) must not be used for hazardous waste classification purposes as defined by the Waste (England and Wales) Regulations 2011 (as amended) and EA Guidance WM3.

This analysis is only applicable for landfill acceptance criteria (The Environmental Permitting (England and Wales) Regulations) and does not give any indication as to whether a waste may be hazardous or non-hazardous.

Analytical Report Number : 21-96598 Project / Site name: Torgate Lane, Bassingham

* These descriptions are only intended to act as a cross check if sample identities are questioned. The major constituent of the sample is intended to act with respect to MCERTS validation. The laboratory is accredited for sand, clay and loam (MCERTS) soil types. Data for unaccredited types of solid should be interpreted with care.

Stone content of a sample is calculated as the % weight of the stones not passing a 10 mm sieve. Results are not corrected for stone content.

Lab Sample Number	Sample Reference	Sample Number	Depth (m)	Sample Description *
1994529	DS101	None Supplied	1.10-0.45	Brown loam and sand with gravel.
1994531	DS104	None Supplied	0.30-0.35	Brown loam and sand with gravel.

Analytical Report Number : 21-96598 Project / Site name: Torgate Lane, Bassingham

Water matrix abbreviations: Surface Water (SW) Potable Water (PW) Ground Water (GW)

Analytical Test Name	Analytical Method Description	Analytical Method Reference	Method number	Wet / Dry Analysis	Accreditation Status
BS EN 12457-2 (10:1) Leachate Prep	10:1 (as recieved, moisture adjusted) end over end extraction with water for 24 hours. Eluate filtered prior to analysis.	In-house method based on BSEN12457-2.	L043-PL	W	NONE
Acid neutralisation capacity of soil	Determination of acid neutralisation capacity by addition of acid or alkali followed by electronic probe.	In-house method based on Guidance an Sampling and Testing of Wastes to Meet Landfill Waste Acceptance"	L046-PL	W	NONE
Loss on ignition of soil @ 450oC	Determination of loss on ignition in soil by gravimetrically with the sample being ignited in a muffle furnace.	In house method.	L047-PL	D	MCERTS
Mineral Oil (Soil) C10 - C40	Determination of mineral oil fraction extractable hydrocarbons in soil by GC-MS/GC-FID.	In-house method with silica gel split/clean up.	L076-PL	D	NONE
Moisture Content	Moisture content, determined gravimetrically. (30 oC)	In house method.	L019-UK/PL	W	NONE
Speciated WAC-17 PAHs in soil	Determination of PAH compounds in soil by extraction in dichloromethane and hexane followed by GC-MS with the use of surrogate and internal standards.	In-house method based on USEPA 8270. MCERTS accredited except Coronene.	L064-PL	D	NONE
PCB's By GC-MS in soil	Determination of PCB by extraction with acetone and hexane followed by GC-MS.	In-house method based on USEPA 8082	L027-PL	D	MCERTS
pH at 20oC in soil	Determination of pH in soil by addition of water followed by electrometric measurement.	In house method.	L005-PL	W	MCERTS
Stones content of soil	Standard preparation for all samples unless otherwise detailed. Gravimetric determination of stone > 10 mm as % dry weight.	In-house method based on British Standard Methods and MCERTS requirements.	L019-UK/PL	D	NONE
Total organic carbon (Automated) in soil	Determination of organic matter in soil by oxidising with potassium dichromate followed by titration with iron (II) sulphate.	In house method.	L009-PL	D	MCERTS
BTEX in soil (Monoaromatics)	Determination of BTEX in soil by headspace GC-MS.	In-house method based on USEPA8260	L073B-PL	W	MCERTS
Total BTEX in soil (Poland)	Determination of BTEX in soil by headspace GC-MS.	In-house method based on USEPA8260	L073-PL	W	MCERTS
Metals in leachate by ICP-OES	Determination of metals in leachate by acidification followed by ICP-OES.	In-house method based on MEWAM 2006 Methods for the Determination of Metals in Soil""	L039-PL	W	ISO 17025
Chloride 10:1 WAC	Determination of Chloride colorimetrically by discrete analyser.	In house based on MEWAM Method ISBN 0117516260.	L082-PL	W	ISO 17025
Fluoride 10:1 WAC	Determination of fluoride in leachate by 1:1ratio with a buffer solution followed by Ion Selective Electrode.	In-house method based on Use of Total Ionic Strength Adjustment Buffer for Electrode Determination"	L033B-PL	W	ISO 17025
Sulphate 10:1 WAC	Determination of sulphate in leachate by ICP-OES	In-house method based on MEWAM 1986 Methods for the Determination of Metals in Soil""	L039-PL	W	ISO 17025
Total dissolved solids 10:1 WAC	Determination of total dissolved solids in water by EC probe using a factor of 0.6.	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton	L004-PL	W	ISO 17025

Analytical Report Number : 21-96598 Project / Site name: Torgate Lane, Bassingham

Water matrix abbreviations: Surface Water (SW) Potable Water (PW) Ground Water (GW)

Analytical Test Name	Analytical Method Description	Analytical Method Reference	Method number	Wet / Dry Analysis	Accreditation Status
Monohydric phenols 10:1 WAC	Determination of phenols in leachate by distillation followed by colorimetry.	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton	L080-PL	W	ISO 17025
Dissolved organic carbon 10:1 WAC	Determination of dissolved inorganic carbon in leachate by TOC/DOC NDIR Analyser.	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton	L037-PL	W	NONE

For method numbers ending in 'UK' analysis have been carried out in our laboratory in the United Kingdom.

For method numbers ending in 'PL' analysis have been carried out in our laboratory in Poland.

Soil analytical results are expressed on a dry weight basis. Where analysis is carried out on as-received the results obtained are multiplied by a moisture correction factor that is determined gravimetrically using the moisture content which is carried out at a maximum of 30oC.

Unless otherwise indicated, site information, order number, project number, sampling date, time, sample reference and depth are provided by the client. The instructed on date indicates the date on which this information was provided to the laboratory.

Appendix H – Gas Monitoring Data

	Site	Name				Torgate	Lane, Bas	singham				Job numbe	er		12-03	310.03		WEATHER	Start	End				
																		Time	11.00	12.00				
	Cli	ient				L	indum Gro	qı			_							Weather (dry/rain/snow/ice)	DRY	DRY				
											F	Recorded b	ру			JB		Pressure (mb)	1023.00	1023.00				
	•	MM/YYYY)					06/09/2021											Risking/Falling Trend		sing				
		nalyser					Kit 1-GCE					isit Numb			1			Wind Speed (m/s)	3.00	3.00				
	Reading	s at start		CH₄ ((% v/v)	<0.1	CO ₂ (% v/v)	<0.1	O ₂ (%	% v/v)	21.0	H₂S (ppm)	0			Wind Dir. (From)						
	General o	comments																Temperature °C						
							ROUND G	A C						CB	OUNDWA	TED		SWL Measured from	Groun	id Level				
			l				IKOUND G	43	1			I =			1	1	Notes							
	FI	ow	c	H₄	C	O ₂	() ₂	H ₂ S	СО	voc	Differential (Relative) Pressure	Atmos. Pressure	Depth to free product	Depth to water	Depth to base		r colour, sheen, odour, damage to well oth to water state	or gas tap, flooded gr	ound etc.)				
Ref	.,				-			,				fere telat	Atm ress	of to	ģ	5	Depth to	water or Dry or NR (= Not Recorde	d - provide reason if	monitoring was				
	1/	hr	%	v/v		v/v	%	v/v		ppm		F .	` ∟	pre	tg.) th	intended)							
	Mat	Steady	Wat	Steady	Mat	Steady	Mir	Steady	Max	Max	wat	mb	mb					oth to Product state detected - product looked for but a	bsent) or NR (= Not	Recorded -				
				lae requir	e that only	numbers.		around a	as and flov		•	dwater are	entered i	m n the shee	m et	m	instrumer	nt used unable to detect product)						
DS101	<0.1	<0.1	<0.1	<0.1	0.6	0.6	20.6	20.6	0.0	0.0	NR	0.0	1021	NR	1.50	2.62	Clear water	er, no aroma.						
		-	1	-	1	1						1				ļ	-	·						
DS105	<0.1	<0.1	<0.1	<0.1	0.5	0.5	20.7	20.7	0.0	0.0	NR	0.0	1022.0	NR	1.25	2.30	Clear water	er, no aroma.						
		ļ		-	1										1		ļ							
					1																			
					1																			
					†																			
		 		 	+						1				 									
		 		1	+				1		1				 		-							
		1		1	+						-				1		-							
					<u> </u>																			
					1																			
		<u></u>	<u> </u>	<u></u>	<u> </u>						<u> </u>				<u></u>									
					1																			
		<u> </u>			1						1				<u> </u>									
		-		1	+				1						-									
		1		1	+				-		1				1		-							
		-			1										1		ļ							
		L																						
	No. C101		Version: 2				e: 14/10/20		Authors: J							Authorise	d By: Richa	rd Lawless						
© Delta-Si	mons Envi	ronmental (Consultants	Limited. I	No part of t	nis docume	nt may be r	eproduced	unless prio	r written pe	ermission h	as been gra	anted.							leltasimons				

																		WEATHER	Start	F	nd
	Site N	Name				Torgate	Lane, Bas	singham			,	Job numbe	er		12-0	310.03		Time	9:36		:49
																		Weather (dry/rain/snow/ice)	Dry		Ory
	Cli	ent				L	indum Gro	up			F	Recorded b	οv		J	JR		Pressure (mb)	1014.00		4.00
	Date (DD/I	MM/YYYY))				15/09/202	1										Risking/Falling Trend		Falling	
	Gas Ar				GF	M435 (Gas	Kit 5-GCE	N-LIN) - 12	233		١	isit Numb	er			2		Wind Speed (m/s)	2.68	2.	.68
	Reading	s at start		CH₄ (% v/v)	<0.1	CO ₂	(% v/v)	<0.1	O ₂ (%	% v/v)	20.9	H ₂ S ((ppm)	<0.1			Wind Dir. (From)	NW	N	IW
	0									NI					•			Temperature °C		15.00	
	General c	omments								No con	nments.							SWL Measured from		Ground Level	
						G	ROUND G	AS						GR	OUNDWA	TER	Notes				
	Flo	ow	c	:H ₄	c	O ₂	١ ,	O ₂	H₂S	со	voc	Differential (Relative) Pressure	,, <u>e</u>	99	ter	base	(e.g. water	r colour, sheen, odour, damage to wel	or gas tap, floo	ded ground etc.)	
Ref												eren Ilativ	Atmos. Pressure	Depth to free product	Depth to water	o P		oth to water state water or Dry or NR (= Not Records	son if monitoring	n was	
	I/I	hr	%	v/v	%	v/v	%	v/v		ppm		Re Pre	A F	pt pro	Ē,	듄	intended)				
		PBs.		lts.	.+	lts.	.0	182	.+	.+		mb	mb	<u> </u>	Dep	Det					
	Wat	Steady	Mat	Steady	Wat	Steady	Mir	Steady	Mat	Mat	Mat			m	m	m		nt used unable to detect product)	= Not Recorded -		
				1	1	numbers,		ground ga				1		1		ı					
DS101	<0.1	<0.1	<0.1	<0.1	0.6	0.6	20.5	20.5	<0.1	<0.1	2.6	0.0	1011	NR	1.43	2.57		Light brown sludge or	na.		
DS105	<0.1	<0.1	<0.1	<0.1	0.6	0.6	20.5	20.5	<0.1	<0.1	1.1	0.0	1011.0	NR	1.18	2.09		Light brown sludge or	probe. No aron	na.	
				1	1			-													
																					-
			1	<u> </u>				<u> </u>							1						
			1	1	1		1	 					1		1						
				-	 		 	-													
				-	-		-	-													
			ļ										ļ		ļ						
				1	1		1	1													
				t	1		1	<u> </u>													
			1	 	 		 	 							1						
				-	-		-														
Doguera	No C404		Voroine o	0 (Einal)	I	Janua Det	0: 14/40/00	20	Authors '	obo Phasil	00 / Chair I	- - - -	<u> </u>		<u> </u>	Authorio -	d Dun Diek -	rd Lowloop			
Document © Delta-Si		onmental C	Version: 2		No part of the	his docume	e: 14/10/20			ohn Rhoad			anted			Authorise	d By: Richa	IU Lawless		deltasin	nons
e Della-Sil	IIIOIIS EIIVII	orini c nial C	Julialitalita	Limiteu. I	vo pari ui li	ns accume	iii iiiay be	eproduced	ariicas hijo	willen pe	iiiilosiiiiii	as neen gl	ainteu.							uettasin	HOMS

																		WEATHER	Start	End			
	Site I	Name				Torgate	Lane, Bas	singham			,	Job numbe	er		12-0	310.03		Time	9:56	10:03			
																		Weather (dry/rain/snow/ice)	Dry	Dry			
	Cli	ent				L	indum Gro	up			F	Recorded b	ov		J	JR		Pressure (mb)	1027.00	1027.00			
	Date (DD/I	MM/YYYY)	1				22/09/202	1					•					Risking/Falling Trend		Rising	-		
	Gas Ar				GF	M435 (Gas			233		V	isit Numb	er			3		Wind Speed (m/s)	4.02	4.47	-		
		s at start		CH ₄ (% v/v)	<0.1		/% v/v)	<0.1	0,1%	6 v/v)	20.8		(ppm)	<0.1			Wind Dir. (From)	WSW	WSW	-		
				- 40	, ,	10.1	2 (,,	40.1	- 2 (,	20.0		u-1- /	10.1			Temperature °C					
	General c	omments								No cor	mment.							SWL Measured from		14.00 Ground Level	$\overline{}$		
				l		G	ROUND G	AS						GR	OUNDWA	TER	N-4						
	Flo	DW	_	H ₄		O ₂		O_2	H₂S	СО	voc	tial e)	. 9	e e	ter	se	Notes (e.g. water	colour, sheen, odour, damage to well	or gas tap, flood	led ground etc.)			
Ref			J	4		, O ₂	,	J 2	1120		100	lativ Ssu	nss	uct r	Depth to free product Depth to water		Depth to free product Depth to water Depth to base			oth to water state	16 16		
IVOI	1/1	hr	%	v/v	%	v/v	%	v/v		ppm		Differential (Relative) Pressure	Atmos. Pressure	or of the	Ŧ	ŧ	intended)						
		la.	4	m	4	las la		18	4	4				Dec	Depi	Depth to	# For Dep	oth to Product state					
	Mat	Steady	Wat	Steady	Max	Steady	Mir	Steady	Mat	Max	Wat	mb	mb	m	m	m		detected - product looked for but a at used unable to detect product)	: Not Recorded -				
			The formu	lae require	e that only	numbers,	"<0.1" for	ground ga	as and flow	v or "DRY"	for groun	dwater are	e entered i	n the shee	t		mstrumer	it used unable to detect product)					
DS101	<0.1	<0.1	<0.1	<0.1	0.6	0.6	20.4	20.4	<0.1	<0.1	NR	0.0	1025	NR	1.48	2.56		Water is					
DS105	<0.1	<0.1	<0.1	<0.1	0.5	0.5	20.5	20.5	<0.1	<0.1	NR	0.0	1025.0	NR	1.18	2.08		Water is clear. Brown	sludge on prob	e.			
																					-		
						-																	
			ļ			ļ	ļ						ļ		ļ								
]										
								1															
			1			1	1	 							1						-		
			1				1	1					1		1								
			-			-	-	1					1		-								
						ļ																	
																			,				
Document			Version: 2				e: 14/10/20			ohn Rhoad						Authorise	d By: Richa	rd Lawless					
© Delta-Si	mons Envir	onmental C	Jonsultants	Limited. N	No part of t	his docume	nt may be i	reproduced	unless prio	r written pe	rmission h	as been gra	anted.							deltasimo	าร		

Appendix I – BRE365 Soakaway Results

	units	Infill 1	Infill 2	Infill 3
Length	m		2.40	,
Width	m		0.80	
Depth	m		1.65	
Gravel type			20mm single size	
Voids ratio			0.40	
Resting groundwater level at time of testing	m		1.80	
Depth of first reading	m	1.05	0.00	0.00
Depth of final reading	m	1.29	0.00	0.00
Did soakage test reach 25% of maximum fill depth?		No	No	No
Did soakage test reach near empty?		No	No	No
Depth at 75% full/effective depth	m	1.11	0.00	0.00
Depth at 25% full/effective depth	m	1.23	0.00	0.00
Time at 75% full/effective depth	mins	10.00	#N/A	#N/A
Time at 25% full/effective depth	mins	506.25	#N/A	#N/A
Vp75 - 25 (volume outflowing between 75% and 25% full/effective depth)	m ³	0.09	0.00	0.00
Mean surface area for outflow (50% full/effective depth)	m ²	2.69	1.92	1.92
tp75 (time for the water level to fall from 75% to 25% full/effective depth)	mins	496.25	#N/A	#N/A
Soil infiltration rate, f =	m/s	Failed Test	Failed Test	Failed Test
or	m/s	Failed Test	Failed Test	Failed Test

Recommended soil infiltration rate

Failed Test

m/s

Note:

Where water level reaches nearly empty (5% full), soil infiltration based on 'Full' depth. Where water level did not reach nearly empty (5% full), soil infiltration rate is based on 'Effective' drainage achieved only. Where water level did not fall below 25% of the maximum fill level, this is considered to be a 'Failed' test.

BACKFILL Time (minutes) LOG 1200 1400 DEPTH (m) TOPSOIL: Dark brown clayey gravelly fine to coarse SAND. 0.0 Arisings —Infill 1 - · Infill 2 ---Infill 3 --- Resting Groundwater Level
--- 25% Full ----75% Full 0.5 Firm yellowish orange mottled grey sandy CLAY. 0.5 Depth (ဣ) 2.5 3.5

Soakaway Test Results Torgate Lane, Bassingham Lindum Group

In accordance with BRE Digest 365 (2016)

 DRAWN BY:
 SCALE:
 PROJECT NUMBER:

 JR
 Not to Scale
 12-0310.03

 CHECKED BY:
 REVISION:
 1

 DATE:
 01/09/2021
 SOAKAWAY NUMBER:

 SA101
 SA101

	units	Infill 1	Infill 2	Infill 3
Length	m		2.30	•
Width	m		0.80	
Depth	m		1.60	
Gravel type			20mm single size	
Voids ratio			0.40	
Resting groundwater level at time of testing	m		1.80	
Depth of first reading	m	0.75	0.00	0.00
Depth of final reading	m	1.08	0.00	0.00
Did soakage test reach 25% of maximum fill depth?		No	No	No
Did soakage test reach near empty?		No	No	No
Depth at 75% full/effective depth	m	0.83	0.00	0.00
Depth at 25% full/effective depth	m	1.00	0.00	0.00
Time at 75% full/effective depth	mins	5.21	#N/A	#N/A
Time at 25% full/effective depth	mins	147.50	#N/A	#N/A
Vp75 - 25 (volume outflowing between 75% and 25% full/effective depth)	m ³	0.12	0.00	0.00
Mean surface area for outflow (50% full/effective depth)	m ²	2.86	1.84	1.84
tp75 (time for the water level to fall from 75% to 25% full/effective depth)	mins	142.29	#N/A	#N/A
Soil infiltration rate, f =	m/s	Failed Test	Failed Test	Failed Test
or	m/s	Failed Test	Failed Test	Failed Test

Recommended soil infiltration rate

Failed Test

m/s

BACKFILL

Note:

Where water level reaches nearly empty (5% full), soil infiltration based on 'Full' depth. Where water level did not reach nearly empty (5% full), soil infiltration rate is based on 'Effective' drainage achieved only. Where water level did not fall below 25% of the maximum fill level, this is considered to be a 'Failed' test.

LOG

Time (minutes) 1200 1400 DEPTH (m) TOPSOIL: Dark brown clayey gravelly fine to coarse SAND. 0.0 Arisings —Infill 1 - · Infill 2 ---Infill 3 --- Resting Groundwater Level
--- 25% Full Firm yellowish orange mottled grey sandy CLAY. 0.3 ----75% Full Orangish brown clayey gravelly fine to coarse SAND. 0.9

deltasimons

0.5

1.5

Depth (ဣ) 2.5

3.5

Soakaway Test Results Torgate Lane, Bassingham Lindum Group

In accordance with BRE Digest 365 (2016)

CALE: Not to Scale 12-0310.03 CHECKED BY: OAKAWAY NUMBER: 01/09/2021 SA102a

	units	Infill 1	Infill 2	Infill 3
Length	m		2.40	•
Width	m	0.80		
Depth	m	1.80		
Gravel type		20mm single size		
Voids ratio		0.40		
Resting groundwater level at time of testing	m	1.80		
Depth of first reading	m	1.30	0.00	0.00
Depth of final reading	m	1.30	0.00	0.00
Did soakage test reach 25% of maximum fill depth?		No	No	No
Did soakage test reach near empty?		No	No	No
Depth at 75% full/effective depth	m	1.30	0.00	0.00
Depth at 25% full/effective depth	m	1.30	0.00	0.00
Time at 75% full/effective depth	mins	#DIV/0!	#N/A	#N/A
Time at 25% full/effective depth	mins	#DIV/0!	#N/A	#N/A
Vp75 - 25 (volume outflowing between 75% and 25% full/effective depth)	m ³	0.00	0.00	0.00
Mean surface area for outflow (50% full/effective depth)	m ²	1.92	1.92	1.92
tp75 (time for the water level to fall from 75% to 25% full/effective depth)	mins	#DIV/0!	#N/A	#N/A
Soil infiltration rate, f =	m/s	Failed Test	Failed Test	Failed Test
or	m/s	Failed Test	Failed Test	Failed Test

Lindum Group

Recommended soil infiltration rate

Failed Test

m/s

Note:

Where water level reaches nearly empty (5% full), soil infiltration based on 'Full' depth. Where water level did not reach nearly empty (5% full), soil infiltration rate is based on 'Effective' drainage achieved only. Where water level did not fall below 25% of the maximum fill level, this is considered to be a 'Failed' test.

01/09/2021

SA103

BACKFILL Time (minutes) LOG 1400 DEPTH (m) TOPSOIL: Dark brown clayey gravelly fine to coarse SAND. 0,0 Arisings —Infill 1 - · Infill 2 ---Infill 3 --- Resting Groundwater Level
--- 25% Full ----75% Full Soft yellowish orange mottled grey sandy CLAY. 0.4 0.5 Reddish brown fine to coarse clayey SAND and GRAVEL. 0.7 Gravel Depth (ဣ) 2.5 3.5 Soakaway Test Results CALE: Not to Scale 12-0310.03 Torgate Lane, Bassingham CHECKED BY: In accordance with BRE Digest 365 (2016) deltasimons SOAKAWAY NUMBER: