GHBullard \& Associates LLP
Civil and Traffic Engineering Consultants

Commercial Development
Anglia Business Park, Wattisham Road
Ringshall, Suffolk

FLOOD RISK ASSESSMENT AND DRAINAGE STRATEGY

Date:
April 2022
GHB Reference:
246/2021/FRADS
Revision:
P2

Status:
Final

Prepared By:

Elizabeth Rahim, M.Eng (Hons.) CEng MICE Associate, G.H. Bullard \& Associates LLP

Checked By:

Jeff Horner, B.Eng (Hons.)
Partner, G.H. Bullard \& Associates LLP

[^0]
Flood Risk Assessment (FRA) Checklist

This document should be attached to the front of the Floor Risk Assessment (FRA) issued to Local Planning Authorities (LPA) in support of a development proposal which may be at risk of flooding. This document is not a substitute for a FRA. Please note, under our responsibilities as a statutory consultee we will review any submitted FRA only in respect to fluvial and tidal risk. Your FRA should also consider other sources of flooding such as surface water, drainage, and ground water flooding.

1.Development Proposal

Site name	Anglian Business Park, Wattisham Road, Ringshall, Suffolk, IP14 HX
National Grid Reference (NGR)	TM 022523
Flood Risk Assessment	Reference/Title: 246/2021/FRA P2 Date: January 2022
Existing site use \& vulnerability classification	Less Vulnerable (Commercial)
Proposed site use \& vulnerability classification	Less Vulnerable (Commercial)
2. Flood Risk	Flood Zone 1
Flood Zone(s) affecting the site/property	Low risk pluvial flooding in three localised site areas.
Sources of flooding affecting the site Have you considered flood storage compensation?	N/A

3. Please provide a node map and accompanying table in the Flood Risk Assessment similar to the example given (see Appendix A). You should clearly demonstrate the highest and most representative flood levels for your proposed development. For example, if it is a small extension (< 250 square metres) then approximately $5-10$ nodes would be sufficient. For larger sites, approximately 10 to 20 nodes would be appropriate. Refer to Appendix B and D.

4. Mitigation

Finished floor levels (in m AOD) for each proposed floor.

Have you considered a freeboard for these Finished Floor Levels?***
Drawing reference showing Finished Floor Levels for proposed development
Have you considered suitable internal and external access for safe refuge above the flood level?
5. Proximity to the watercourse/ flood defence/ culvert

Are the proposed developments on, over, under or within 8 metres of a fluvial main river or 16 metres of a tidal main river or flood defence?

No
If yes, please provide a cross section drawing in your planning application showing the distance of the proposed development in relation to the watercourse/flood defence/culvert.

If yes, this will require a Flood Risk Activity Permit.

Map Many of our flood datasets are available online:
Flood Map For Planning (Flood Zone 2, Flood Zone 3 , Flood Storage Areas, Flood Defences, Areas Benefiting from Defences, , Risk of Flooding from Rivers and Sea, Historic Flood Map, Current Flood Warnings

GHBullard \& Associates LLP

1.0 INTRODUCTION

1.1. This flood risk assessment is being submitted to accompany a detailed planning application for Erection of 20 no. commercial units consisting of Classes $\mathrm{E}(\mathrm{g})$ (office and light industrial) and B2 (general industrial) at Anglia Business Park, Ringshall, Suffolk. A site location plan is shown in Appendix A.
1.2. \quad This report is produced for the sole use by Anglia Business Park.
1.3. The report includes a thorough review of commercially available flood risk and Environment Agency (EA) supplied data indicating potential sources of flood risk to the site.
1.4. The information provided within this report is based on the best available data currently recorded or provided by a third party. The accuracy of this report is therefore not guaranteed and does not obviate the need to make additional appropriate searches, inspections and enquiries.
1.5. The National Planning Policy Framework (NPPF, July 2021), Section 14 (Meeting the challenge of climate change, flooding and coastal change), Paragraph 159 states that:
"Inappropriate development in areas at risk of flooding should be avoided by directing development away from areas at highest risk (whether existing or future). Where development is necessary in such areas, the development should be made safe for its lifetime without increasing flood risk elsewhere."
1.6. The NPPF recommends the Environment Agency (EA) Flood Maps as a starting point for Flood Risk Assessment. An extract from the EA Flood maps is reproduced in Figure 1.1.

Figure 1.1 - Environment Agency Flood Map (Rivers and Seas)
1.7. The Environment Agency has produced standing guidance for developments dependent on their size and location. As can be seen from Figure 1.1 above, the site is located within Flood Zone 1, with a low probability of flooding.
1.8. Industry best practice requires assessment of all flooding sources to be carried out. Despite this document having now been superseded by the NPPF, Figure 3.2 of the "PPS25: Development and Flood Risk" (PPS25) Practice Guide lists five key sources of flooding:
i. Fluvial (refer to Section 5);
ii. Tidal (refer to Section 6);
iii. Pluvial (refer to Section 7);
iv. Groundwater (refer to Section 8); and
v. Infrastructure Failure (refer to Section 9).

2. POLICY CONTEXT

2.1. The purpose of the planning system is to contribute to the achievement of sustainable development - NPPF, Paragraph 7.
2.2. At the heart of the National Planning Policy Framework is a presumption in favour of sustainable development which does not change the statutory status of the development plan as the starting point for decision making - NPPF, Paragraph 12.
2.3. Inappropriate development in areas at risk of flooding should be avoided by directing development away from areas at highest risk (whether existing or future). Where development is necessary in such areas, the development should be made safe for its lifetime without increasing flood risk elsewhere- NPPF, Paragraph 159.
2.4. The aim of the Sequential Test is to steer new development to areas with the lowest probability of flooding - NPPF, Paragraph 162.
2.5. Following the Sequential Test, both elements of the Exception Test will have to be passed for development to be allocated or permitted - NPPF, Paragraph 165.
2.6. The Mid Suffolk Core Strategy (2008), Policy CS 4.
2.7. The Mid Suffolk Core Strategy Focused Review (2012) Policies FC1 and FC1.1.
2.8. The Environment Agency provide standing advice guidance.
2.9. Suffolk County Council, as lead local flood authority, document Suffolk Flood Risk Management Strategy advises on the standards to be used at a local level

3. EXISTING SITE INFORMATION

3.1. The site is located Wattisham Road, Ringshall, Suffolk. Site location plans are attached in Appendix A.
3.2. The site is brownfield comprising four buildings, containers, concrete surfaced access roads, areas of asphalt surfacing, grass and vegetation. The site is currently occupied by an engineering joinery company.
3.3. The site is bound by Wattisham Road to the south, an un-named road with agricultural land beyond to the east, further commercial land use to the west and agricultural land to the north. There are un-named watercourses located at the north, east and south boundaries which were identified during a site visit and observed to be surrounded by dense vegetation.
3.4. The site can be located from the following information:
i. Postcode: IP14 2HX
ii. NG Reference: TM022523
iii. The site levels vary from 87.50 m AOD to 85.90 with the site generally sloping from west to east at an approximate gradient of 1:89 The topographical site levels are shown on the drawing in Appendix B.
$i v$. The site area is 1.93ha.
v. Existing impermeable area is 0.64 ha .
3.5. \quad The existing site layout is shown on the drawing in Appendix B.
3.6. The nearest Main River is located 3km north-west of the site, which flows to the River Rat to the north at Stowmarket.
3.7. The site appears to drain via overland flow to the east and a via gullies located within the access road at the west of the site. A concrete outfall arrangement was observed during a site visit, within the watercourse at the north-east corner. It is thought that this serves the site and also the commercial area to the west of the site. It was not possible to survey the outfall due to overgrown vegetation.
3.8. The greenfield runoff rate using FEH methodology is assessed as $Q_{b a r}=4.5 \mathrm{I} / \mathrm{s} / \mathrm{ha}$.
3.9. There are un-named mapped watercourses located 100 m north and 375 m north-east of the site and a pond indicated 35 m north of the site.
3.10. A Phase 1 Desk Study and Preliminary Risk Assessment was carried by Geosphere Environmental which indicates an un-named watercourse located 29 m north-east of the site. The report also indicates a sluice or similar was present within the east of the site, which is shown on the topographical survey (refer to Appendix B). It is not known what the purpose of this feature is.
3.11. The BGS 1:50,000 scale drift maps in Figure 3.1 shows the form of the superficial deposits.
3.12. The BGS records describe the geology as:
i. Superficial: Lowestoft Formation - Diamicton
ii. Bedrock: Newhaven Chalk Formation - Chalk
3.13. BGS records show there is a borehole record (Ref: TM 05SW/17) located 250 m west of the site, along Wattisham Road, which describes the ground conditions to comprise Clay strata to 10 m bg (to a level of 76.6 m AOD). The borehole record indicates that no water entries were encountered

GHBulard \& Associates LLP
during boring, with a water level at 83.3 m AOD recorded within the standpipe at a later date. Refer to Appendix C for the borehole log.

Figure 3.1 - BGS 1:50,000 Scale Superficial Geology Map
3.14. The Environment Agency has mapped Source Protection Zones, and this shows that the site is located over a Zone III Total Catchment; this zone is defined as the total area needed to support the abstraction or discharge from the protected groundwater source.
3.15. Environment Agency Aquifer (Bedrock Geology) mapping shows that the site is located over a Principal Aquifer.
3.16. Environment Agency Superficial Drift Geology Aquifer Designations mapping information shows that the site is over a Secondary (Undifferentiated) Aquifer; these are aquifers where it is not possible to apply either a Secondary A or B definition because of the variable characteristics of the rock type. These have only a minor value.
3.17. The Environment Agency has mapped groundwater vulnerability and Figure 3.2 shows the site is located over an area of Medium vulnerability.

Figure 3.2 - Environment Agency Groundwater Vulnerability Zones
GHBullard \& Associates LLP

4. PROPOSED DEVELOPMENT

4.1. The proposed development comprises a mix of 20 no. commercial units consisting of Classes E (g) (office and light industrial) and B2 (general industrial). General Industrial units with associated parking areas, access roads and landscaping. The development proposal is attached in Appendix D.
4.2. The residential development is classified as 'less vulnerable'; Buildings used for shops; financial, professional and other services; restaurants, cafes and hot food takeaways; offices; general industry, storage and distribution; non-residential institutions not included in the 'more vulnerable' class; and assembly and leisure.
4.3. The Environment Agency table below (Table 4.1) shows that the development is appropriate at the site based on the development vulnerability classification within Flood Zone 1.

Table 4.1: Environment Agency Flood Zone/ Classification Table
4.4. The design life of the development is 75 years.

5. FLUVIAL FLOODING

5.1. Fluvial flooding is the flooding associated with rivers. This can take the form of:
i. Inundation of floodplains from rivers and watercourses
ii. Inundation of areas outside the floodplain due to influence of bridges, embankments and other features that artificially raise water levels
iii. Overtopping of defences
iv. Breaching of defences
v. Blockages of culverts
vi. Blockages of flood channels or corridors
5.2. The nearest Main River is located 3 km north-west of the site.
5.3. Figure 1.1 shows that the site is located within Flood Zone $1(<0.1 \%$ AEP) with a low probability of flooding.

6. TIDAL FLOODING

6.1. Tidal flooding is a risk of water levels from the sea or an estuary exceeding the normal tidal range. This can take the form of:
i. Overtopping of defences
ii. Breaching of defences
iii. Other flows (fluvial surface water) that could pond due to tide locking
iv. Wave action
6.2. As outlined in 5.3, the Environment Agency Flood Map for Rivers and Seas shows the site is located within Flood Zone 1, where the likelihood of fluvial flooding is $<0.1 \%$ AEP; the site is located too far from the sea to be affected by tidal flooding.

7. PLUVIAL FLOODING

7.1. Pluvial flooding is a risk of overland flows and ponding associated with extreme rainfall events. This can take the form of:
i. Sheet run-off from adjacent land (urban or rural)
ii. Surcharged sewers
7.2. As rain falls everywhere within the United Kingdom, there will always be a residual risk of flooding from extreme rainfall events.
7.3. The Environment Agency have produced maps with risk classifications (Table 7.1) that show the risk of flooding from surface water runoff. A mapping extract for the area is reproduced in Figure 7.1 which shows that the site area is at Very Low risk of flooding with the exception of three localised areas at Low risk. These areas appear to correlate with localised depressions in ground level, with the southern area located where the Sluice is identified. These areas at Low risk will be levelled as part of the development design. It will need to be determined whether the sluice is still in use, and if necessary, the associated network relocated as part of the development detailed drainage design.

Risk Classification	Probability	
Very Low	$<0.1 \%$	$(<1: 1,000)$
Low	$1 \%-0.1 \%$	$(1: 100-1: 1000)$
Medium	$3.3 \%-1 \%$	$(1: 30-1: 100)$
High	$>3.3 \%$	$(>1: 30)$

Table 7.1: Surface Water Flooding Classifications
7.4. Figure 7.2 shows the depth of flooding during the medium risk scenario (0.1% AEP to 1% AEP), which shows that the site is not at risk of flooding in this scenario.

Figure7.1 - Surface water flooding extents

Figure 7.2 - Medium Risk Scenario Surface water flooding extents

8. GROUNDWATER FLOODING

8.1. Groundwater flooding is a risk of the water table rising after prolonged rainfall to emerge above ground level remote from a watercourse. It is most likely to occur in low lying areas underlain by aquifers of high vulnerability.
8.2. The Environment Agency has mapped groundwater vulnerability and Figure 3.2 shows the site is located over an area of Medium vulnerability.
8.3. Given the soil type, depth to groundwater and the proximity of the watercourses allowing an outlet for groundwater, the risk of water coming up to the surface through the ground at the site is considered to be Low to Medium. Any water that was to rise up to the surface would flow to the watercourse to the east, reducing the risk to Low.

9. INFRASTRUCTURE FAILURE FLOODING

9.1. Infrastructure failure flooding is a risk of collapse, failure or surcharging of man-made structures and drainage systems. This could take the form of:
i. Reservoirs
ii. Canals
iii. Burst water mains
iv. Blocked sewers
v. Failed pumping stations
9.2. The Environment Agency have mapped the extent of flooding from reservoirs and this indicates that the site is not within the maximum extent of flooding from reservoirs, therefore the risk to the site is very low.
9.3. The risk of flooding from blocked sewers is considered to be very low as any flood water would flow east to the watercourse, following the existing flow paths.
10. CLIMATE CHANGE
10.1. The National Planning Policy Framework (NPPF) sets out how the planning system should help to minimise vulnerability and provide resilience to the impacts of climate change.
10.2. The climate change allowances are predictions of anticipated change for:
i. Peak river flow by river basin district
ii. Peak rainfall intensity
iii. Sea level rise
iv. Offshore wind speed and extreme wave height.
10.3. The climate change allowance predictions of anticipated change applicable to this development are for:

Peak rainfall intensity

Applies across all of England	Total potential change anticipated for the '2020s' (2015 to 2039)	Total potential change anticipated for the '2050s' (2040 to 2069)	Total potential change anticipated for the '2080s' (2070 to 2115)
Upper end 10% 20% 40% Central 5% 10% 20%			

10.4. An allowance should be made to the rainfall in the design of the drainage system in accordance with the climate changes highlighted above, based on Environment Agency guidance.

DRAINAGE STRATEGY

11. PROPOSED DRAINAGE

11.1. The proposed development comprises a mix of 20 no. commercial units consisting of Classes E (g) (office and light industrial) and B2 (general industrial). General Industrial units with associated parking areas, access roads and landscaping. The development proposal is attached in Appendix D.
11.2. The development characteristics are summarised as follows:

- Site Development Area $=1.93 \mathrm{ha}$
- Proposed Impermeable Area = 1.10ha
- $\mathrm{Q}_{\text {bar FEH }}(1.1 \mathrm{ha})=4.95 \mathrm{l} / \mathrm{s}$
11.3. The proposed drainage strategy layout and construction details for the development are attached in Appendix E.

Surface Water Disposal

11.4. In accordance with Government and Local Plan Policies and the requirements of the Building Regulations, surface water runoff from the development will be drained at source in a sustainable way by making full use of Sustainable Drainage Systems (SuDS) where possible.
11.5. The SuDS hierarchy dictates that infiltration at source is considered first. After infiltrating at source has been considered, the next stage is to deal with runoff in individual catchments, followed finally by site wide drainage solutions. Runoff from the development should not adversely impact upon drainage systems outside of the site boundary.
11.6. Detailed surface water drainage design should take into account all three key SuDS principles in equal measure:
i. Reducing peak quantity;
ii. Improving quality; and
iii. Providing amenity and biodiversity value.
11.7. Based on the BGS site geological information and nearby BGS borehole log, discharge of surface water runoff via infiltration is not considered viable due to the presence of Lowestoft Diamicton (Clay) to depth of 10 m bgl. Refer to section 3.11 to 3.13.
11.8. It is proposed that the surface water runoff is discharged to the existing watercourse at the north-east of the site, mimicking the existing system, at a restricted rate of 4.91/s (equivalent to the greenfield runoff rate for the proposed impermeable area) via an orifice flow control. This discharge will be via the existing outfall at the north-east of the site or a new outfall subject to a Suffolk County Council S23 Discharge Consent.
11.9. It is proposed that the surface water runoff will be attenuated on site within conveyance swales and an attenuation basin. The building roof areas will discharge via downpipe filter chambers prior to the basin, and the parking and road areas will discharge via swales prior to the basin.
11.10. The drainage strategy drawing in Appendix E shows the layout of the attenuation basin and the swales.
11.11. Table 11.1 below summarises how the use of SuDS components has been considered and utilised in this drainage strategy.

GHBullard \& Associates LLP

SUDS Type	Component Type	Suitable	Explanation/Comments
Source Control	Rainwater Harvesting systems	No	Not feasible with the type and purpose of the buildings.
	Green Roofs	No	Not appropriate for development architectural aesthetics.
	Rain gardens	No	Limited scope to incorporate these due to the development type and layout.
	Permeable Paving	No	Not practical due to the heavy vehicular movements in many of the external impermeable areas.
Infiltration	Soakaway	No	Infiltration is not viable due to the ground geology.
	Filter Drain/Strips	No	
	Infiltration Basin	No	
	Swale	No	
	Tree Pits	No	
Conveyance	Swale	Yes	Swales to convey runoff from parking and road areas.
Detention	Sub-surface Storage	No	Not required as part of the drainage strategy.
	Detention Basin	Yes	To attenuate and cleanse runoff prior to discharge off site.
	Pond	No	Not practical due to maintenance requirements.
	Wetland	No	Lack of open space available.

Table 11.1: Table summarising the use of SuDS components.

Quantity

11.12. Micro-Drainage has been used to design the attenuation basin and swale storage to contain rainfall events up to the 1 in 100 year plus an allowance for 40% climate change with a controlled discharge of 4.91/s; the calculations, using FEH data, are attached in Appendix F. An allowance for urban creep has not been included for due to the nature of the development and the limited scope to increase the impermeable area.
11.13. The calculations for the 1 in 30 year and the 1 in 100 year plus climate change rainfall events are attached in Appendix F, which show the basin and swales can contain the runoff without flooding during these events.
11.14. The water level within the basin for the 1 in 100 year $+40 \%$ cc event is predicted to be 85.992 m AOD (basin volume $=804 \mathrm{~m}^{3}$) and for the 1 in 30 year event is 85.731 m AOD.

GHBullard \& Associates LLP

Quality

11.15. The water discharging to the watercourse must be cleansed and therefore treatment processes are introduced through the drainage network. These have been assessed using the simple qualitative method and index approach in accordance with Chapter 26 of the Ciria SuDS Manual C753, where the hazard of low to medium is mitigated with the various SuDS components to equal or exceed the hazard indices. Refer to Tables 26.2 and 26.3 which show the hazard and mitigation indices associated with the proposed drainage scheme.

TABLE26.2	Pollution hazard indices for different land use classifications				
	Land use	Pollution hazard level	Total suspended solids (TSS)	Metals	Hydrocarbons
	Residential roofs	Very low	0.2	0.2	0.05
	Other roofs (typically commercial/ industrial roofs)	Low	0.3	0.2 (up to 0.8 where there is potential for metals to leach from the roof)	0.05
	Individual property driveways, residential car parks, low traffic roads (eg cul de sacs, homezones and general access roads) and nonresidential car parking with infrequent change (eg schools, offices) ie < 300 traffic movements/day	Low	0.5	0.4	0.4
	Commercial yard and delivery areas, non-residential car parking with frequent change (eg hospitals, retail), all roads except low traffic roads and trunk roads/motorways ${ }^{1}$	Medium	0.7	0.6	0.7
	Sites with heavy pollution (eg haulage yards, lorry parks, highly frequented lorry approaches to industrial estates, waste sites), sites where chemicals and fuels (other than domestic fuel oil) are to be delivered, handled, stored, used or manufactured; industrial sites; trunk roads and motorways ${ }^{1}$	High	$0.8{ }^{2}$	$0.8{ }^{2}$	$0.9{ }^{2}$

TABLE Indicative SuDS mitigation indices for discharges to surface waters 26.3

	Mitigation indices 1		
Type of SuDS component	TSS	Metals	Hydrocarbons
Filter strip	0.4	0.4	0.5
Filter drain	0.4^{2}	0.4	0.4
Swale	0.5	0.6	0.6
Bioretention system	0.8	0.8	0.8
Permeable pavement	0.7	0.6	0.7
Detention basin	0.7^{3}	0.5	0.6
Pond ${ }^{4}$	0.8^{3}	0.7	0.5
Wetland	These must demonstrate that they can address each of the contaminant types to acceptable levels for frequent events up to approximately the 1 in 1 year return period event, for inflow concentrations relevant to the contributing drainage area.		
Proprietary treatment systems			

11.16. The runoff from the roofs will discharge via the attenuation basin and the road and parking areas will discharge to the swales prior to the attenuation basin. It can be seen from tables 26.2 and 26.3 the mitigation indices for the swale and attenuation pond exceed the hazard indices for the road and parking areas (cumulative mitigation indices: $T S S=0.75$, Metals $=0.85$, Hydrocarbons $=$ 0.9).

Exceedance

11.17. In an exceedance event in which rainfall surpasses the design capacity, the excess will be directed away from vulnerable buildings and infrastructure towards the watercourse at the east as currently occurs.
11.18. The exceedance flow paths are shown on the drawing in Appendix E.
11.19. Site ground levels will be locally contoured to deflect water away from building thresholds, with floor levels being set at least 150 mm above surrounding ground levels.

Foul Water Disposal

11.20. Part H of the Building Regulations (2015) states that "Foul drainage should be connected to a public foul or combined sewer wherever this is reasonably practicable".
11.21. There is an existing foul network within the south-east corner of the site; it is proposed that the foul water from the development will discharge to the existing foul sewer subject to Anglian Water consent and infrastructure charges.

12. ADOPTION \& MAINTENANCE

12.1. It is important to establish the adopting authorities at an early stage to define the requirement and how these meet the standards.
12.2. It is proposed that the drainage network, swales and attenuation basin will remain in private ownership and will be maintained by the Anglia Business Park site management company.
12.3. Maintenance of the system will include for frequent inspections and regular intervals of cleansing.
12.4. Guttering, downpipes and trapped gullies should be routinely inspected and cleaned out to minimise debris reaching the swales and basin.
12.5. Maintenance of the swales, attenuation basin and flow control should be undertaken in accordance with Tables attached in Appendix G.
12.6. It is also important to prevent construction silt from entering the pipework and attenuation system, and so a Construction Surface Water Management Plan should be developed and implemented by the Contractor during the works.

13. SUMMARY

13.1. It has been demonstrated that the site is located within Flood Zone 1.
13.2. Table 13.1 summarises the probability of the site flooding from the five key sources as listed in PPS25.

Source	Description	Risk	
Fluvial	Rivers		Flood Zone 1
Tidal	Seas		(<0.1\% AEP)
Pluvial	Surface Water		Very Low to Low
Groundwater	Aquifers		L<0.1\% to $\mathbf{1 \%})$
Infrastructure failure	Reservoirs Blocked Sewers	Within maximum extent of flooding when there is also flooding from rivers Very Low	(Very Low)

Table 13.1 - Flood Risk Summary
13.3. Following the standing advice from the Environment Agency, the development will be safe for its lifetime without increasing flood risk elsewhere.
13.4. In accordance with government policy, SuDS should be used on site, where possible, and surface water drainage of the site carried out in a sustainable way.
13.5. Any inflows are to be diverted around the development and passed on.
13.6. Surface water runoff will be attenuated on-site within swales and a basin and then discharged to the existing watercourse at a rate of $4.9 \mathrm{l} / \mathrm{s}\left(\mathrm{Q}_{\mathrm{bar} \text { FEH }}\right)$, via an orifice flow control.
13.7. The swales and basin will provide cleansing of the runoff prior to discharge to the watercourse.
13.8. As long as maintenance of the new drainage systems are correctly carried out, the risk of flooding and the subsequent risks from infrastructure failure is very low.
13.9. Exceedance flow paths will be maintained to the east as currently occurs.
13.10. The Environment Agency accepts that extreme floods will occur and it will never be possible to eliminate flood risk altogether.
13.11. It is considered that the risk of flooding to the site has been adequately considered and therefore development of the site does not pose an unacceptable flood risk either to occupants of the site or to others off site.
14. LIST OF APPENDICES

Appendix A -	Site Location Plans
Appendix B -	Existing Site Layout
Appendix C -	BGS Borehole Log
Appendix D -	Development Proposal
Appendix E -	Proposed Drainage Strategy Layout and Details
Appendix F -	Micro-Drainage Calculations
Appendix G -	Maintenance Requirements

APPENDIX A

Site Location Plans

Site Location Plan (1 of 2)

Anglia Business Park

Commerical Development, Anglia Busines
Park, Wattisham Road, Ringshall

Site Location Plan

5442-0100
Scale - unless otherwise stated \quad Issued For

BS 1192 Ref.
KLH
The Old Steelyar
The Old Stee
Poplar Lane
Sproughton
Poplar
Sprough
Ipswich
IP8 3 H P8 3HL 689532

FLOOD RISK ASSESSMENT AND DRAINAGE STRATEGY

APPENDIX B

Existing Site Layout

FLOOD RISK ASSESSMENT AND DRAINAGE STRATEGY

APPENDIX C

BGS Borehole Log

FLOOD RISK ASSESSMENT AND DRAINAGE STRATEGY

APPENDIX D

Development Proposal

No dimensions to be scaleo from This drawina

planting Scheovie
(Proosed Tree
0 Exsing Tree
_Application Site e 1.9 .10 O a 4.7 .719 acres)
_.- visibily Splay -4.5×95 metes

Anglia Business Park

Site Plan as Proposed - Phase 1

5442-0103
 P05

\qquad
KLH
The Old Steely
Poplar Lane
Sproution Poplar Lane
Sprughton
loswich pswich
P8
PBL
01473689532

FLOOD RISK ASSESSMENT AND DRAINAGE STRATEGY

APPENDIX E

Proposed Drainage Strategy Layout and Details

TYPICAL ORIFICE PLATE FLOW CONTROL CATCHPIT DETAIL

TYPICAL SWALE PROFILE

Road Construction (Depht Vaies)
or
.
 As-Dug Material to shW Clause 503.3 (i)
Pipe (Diameter as Detailed on Plan)
Pipy (Dameieler as Deialied on Pan)

TYPICAL CLASS Z PIPE BEDDING CONSTRUCTION DETAIL

TYPICAL HEADWALL DETAIL

TYPICAL SECTION: ATTENUATION BASIN

FLOOD RISK ASSESSMENT AND DRAINAGE STRATEGY

APPENDIX F

Micro-Drainage Calculations

G H Bullard \& Associates	Page 1	
27 Barton Road Thurston	SW NETWORK	
Bury St Edmunds	WATTISHAM ROAD, RINGSHALL	
Suffolk IP31 3PA	Designed by ER Checked by JAH	Micra
Date 16/02/2022	Network 2018.1.1	
File 246-2021-SW NETWORK_160222.MDX		

STORM SEWER DESIGN by the Modified Rational Method
Design Criteria for Storm
Pipe Sizes STANDARD Manhole Sizes STANDARD
FEH Rainfall Model
Return Period (years)
FEH Rainfall Version
Site Location
Data Type
Maximum Rainfall (mm/hr)

Designed with Level Soffits
Time Area Diagram for Storm

Time	Area	Time	Area
(mins)	(ha)	(mins)	(ha)

Total Area Contributing (ha) $=1.102$
Total Pipe Volume $\left(\mathrm{m}^{3}\right)=171.484$

Network Design Table for Storm

< - Indicates pipe capacity < flow
\wedge - Indicates Time of Concentration is too low and the pipe is not sized using the rainfall

PN Length Fall Slope I.Area T.E. Base n HYD DIA Section Type Auto
(m) (m) ($1: \mathrm{X}$) (ha) (mins) Flow ($1 / \mathrm{s}$ 0.045 Design

Network Results Table

PN	$\begin{aligned} & \text { Rain } \\ & (\mathrm{mm} / \mathrm{hr}) \end{aligned}$	$\begin{aligned} & \text { T.C. } \\ & \text { (mins) } \end{aligned}$	$\begin{aligned} & \text { US/IL } \\ & \text { (m) } \end{aligned}$	$\begin{gathered} \Sigma \text { I. Area } \\ \text { (ha) } \end{gathered}$	$\begin{gathered} \Sigma \text { Base } \\ \text { Flow }(1 / s) \end{gathered}$	$\begin{aligned} & \text { Foul } \\ & (1 / s) \end{aligned}$	Add Flow (1/s)	$\begin{aligned} & \text { Vel } \\ & (\mathrm{m} / \mathrm{s}) \end{aligned}$	$\begin{aligned} & \text { Cap } \\ & (1 / s) \end{aligned}$	$\begin{aligned} & \text { Flow } \\ & (1 / s) \end{aligned}$
S1.000	50.00	5.86	86.200	0.656	0.0	0.0	0.0	0.45	107.7	88.8
S2.000	0.00	4.85^{\wedge}	86.300	0.356	0.0	0.0	0.0	0.67	160.0	0.0
S3.000	0.00	4.17^{\wedge}	85.500	0.090	0.0	0.0	0.0	0.20	3.5	0.0

G H Bullard \& Associates	Page 2	
27 Barton Road Thurston	SW NETWORK	
Bury St Edmunds	WATTISHAM ROAD, RINGSHALL	
Suffolk IP31 3PA	Designed by ER Checked by JAH	MiCrO
Date 16/02/2022	Network 2018.1.1	
File 246-2021-SW NETWORK_160222.MDX		
Micro Drainage		

Network Design Table for Storm

Network Results Table

Number of Input Hydrographs 0 Number of Offline Controls 0 Number of Time/Area Diagrams 0 Number of Online Controls 1 Number of Storage Structures 1 Number of Real Time Controls 0

Synthetic Rainfall Details

Rainfall Model	FEH	Summer Storms	Yes
Return Period (years)	100	Winter Storms	Yes
FEH Rainfall Version	2013	Cv (Summer)	0.750
Site Location GB 602173	252336 TM	02173	52336

G H Bullard \& Associates		Page
27 Barton Road Thurston Bury St Edmunds Suffolk IP31 3PA	SW NETWORK WATTISHAM ROAD, RINGSHALL P1	
Date 16/02/2022 File 246-2021-SW NETWORK 160222.MDX	Designed by ER Checked by JAH	Drainace
Micro Drainage	Network 2018.1.1	

Online Controls for Storm

Orifice Manhole: S4, DS/PN: S1.001, Volume (m³): 170.5
Diameter (m) 0.056 Discharge Coefficient 0.600 Invert Level (m) 85.400

G H Bullard \& Associates		Page 6
27 Barton Road Thurston Bury St Edmunds Suffolk IP31 3PA	SW NETWORK WATTISHAM ROAD, RINGSHALL P1	
Date 16/02/2022 File 246-2021-SW NETWORK 160222.MDX	Designed by ER Checked by JAH	Drainage
Micro Drainage	Network 2018.1.1	

Tank or Pond Manhole: S4, DS/PN: S1.001

Invert Level (m) 85.400

Depth (m) Area $\left(\mathrm{m}^{2}\right)$ Depth (m) Area $\left(\mathrm{m}^{2}\right)$
0.000
1130.0
0.600
1560.4

G H Bullard \& Associates		Page 7
27 Barton Road Thurston Bury St Edmunds Suffolk IP31 3PA	SW NETWORK WATTISHAM ROAD, RINGSHALL P1	
Date 16/02/2022 File 246-2021-SW NETWORK 160222.MDX	Designed by ER Checked by JAH	Drainage
Micro Drainage	Network 2018.1.1	

Number of Input Hydrographs 0 Number of Offline Controls 0 Number of Time/Area Diagrams 0 Number of Online Controls 1 Number of Storage Structures 1 Number of Real Time Controls 0

Synthetic Rainfall Details

Profile(s) Summer and Winter
Duration(s) (mins) 15, 30, 60, 120, 180, 240, 360, 480, 600, 720, 960, 1440, 2160, 2880, 4320, 5760, 7200, 8640, 10080

2, 30, 100

Return Period(s) (years)
Climate Change (\%)
$0,0,40$

PN	US/MH Name		Storm	Return Period	Climate Change	First (X) Surcharge	```First (Y) Flood```	First (Z) Overflow	Overflow Act.	Water Level (m)	Surcharged Depth (m)	Flooded Volume $\left(\mathrm{m}^{3}\right)$
S1. 000	S1	15	Winter	2	+0\%					86.347	-0.453	0.000
S2.000	S3	15	Winter	2	+0\%					86.385	-0.515	0.000
S3.000	S3	120	Winter	2	+0\%					85.650	0.000	0.000
S1.001	S4	600	Winter	2	+0\%	2/180 Winter				85.582	0.032	0.000

G H Bullard \& Associates		Page 8
27 Barton Road Thurston Bury St Edmunds Suffolk IP31 3PA	SW NETWORK WATTISHAM ROAD, RINGSHALL P1	Micro Drainage
Date 16/02/2022 File 246-2021-SW NETWORK_160222.MDX	Designed by ER Checked by JAH	
Micro Drainage	Network 2018.1.1	
30 year Return Period Summary of	tical Results by Maximum	for Storm

Number of Input Hydrographs 0 Number of Offline Controls 0 Number of Time/Area Diagrams 0 Number of Online Controls 1 Number of Storage Structures 1 Number of Real Time Controls 0

Synthetic Rainfall Details

Profile(s) Summer and Winter
Duration(s) (mins) 15, 30, 60, 120, 180, 240, 360, 480, 600, 720, 960, 1440, 2160, 2880, 4320, 5760, 7200, 8640, 10080

Return Period(s) (years)
Climate Change (\%)

PN	US/MH Name		Storm	Return Period	Climate Change	First (X) Surcharge	$\begin{gathered} \text { First (Y) } \\ \text { Flood } \end{gathered}$	First (Z) Overflow	Overflow Act.	Water Level (m)	Surcharged Depth (m)	Flooded Volume $\left(\mathrm{m}^{3}\right)$
S1.000	S1	15	Winter	30	+0\%					86.422	-0.378	0.000
S2.000	S3	15	Winter	30	+0\%					86.432	-0.468	0.000
S3.000	S3	60	Winter	30	+0\%					85.650	0.000	0.000
S1.001	S4	600	Winter	30	+0\%	2/180 Winter				85.731	0.181	0.000

PN	Pipe					
	$\begin{aligned} & \text { US/MH } \\ & \text { Name } \end{aligned}$	Flow / Cap.	Overflow (1/s)	Flow (1/s)	Status	Level Exceeded
S1.000	S1	0.12		233.8	FLOOD RISK*	
S2.000	S3	0.04		127.5	OK	
S3.000	S3	3.39		14.9	FLOOD RISK*	
S1.001	S4	0.59		3.6	FLOOD RISK	

G H Bullard \& Associates		Page 9
27 Barton Road Thurston Bury St Edmunds Suffolk IP31 3PA	SW NETWORK WATTISHAM ROAD, RINGSHALL P1	
Date 16/02/2022 File 246-2021-SW NETWORK 160222.MDX	Designed by ER Checked by JAH	Drainage
Micro Drainage	Network 2018.1.1	

Number of Input Hydrographs 0 Number of Offline Controls 0 Number of Time/Area Diagrams 0 Number of Online Controls 1 Number of Storage Structures 1 Number of Real Time Controls 0

Synthetic Rainfall Details

Profile(s) Summer and Winter
Duration(s) (mins) 15, 30, 60, 120, 180, 240, 360, 480, 600, 720, 960, 1440, 2160, 2880, 4320, 5760, 7200, 8640, 10080

Return Period(s) (years)
Climate Change (\%)

2, 30, 100
$0,0,40$

PN	US/MH Name		Storm	Return Period	Climate Change	First (X) Surcharge	$\begin{gathered} \text { First (Y) } \\ \text { Flood } \end{gathered}$	First (Z) Overflow	Overflow Act.	Water Level (m)	Surcharged Depth (m)	Flooded Volume (m^{3})
S1. 000	S1	15	Winter	100	+40\%					86.495	-0.305	0.000
S2.000	S3	15	Winter	100	+40\%					86.480	-0.420	0.000
S3.000	S3	360	Winter	100	+40\%					85.650	0.000	0.000
S1.001	S4	720	Winter	100	+40\%	2/180 Winter				85.992	0.442	0.000

PN	Pipe					
	US/MH Name	$\begin{gathered} \text { Flow / } \\ \text { Cap. } \end{gathered}$	$\begin{aligned} & \text { Overflow } \\ & (1 / s) \end{aligned}$	$\begin{aligned} & \text { Flow } \\ & \text { (l/s) } \end{aligned}$	Status	Level Exceeded
S1.000	S1	0.21		416.5	FLOOD RISK*	
S2.000	S3	0.08		227.4	FLOOD RISK*	
S3.000	S3	1.71		7.5	FLOOD RISK*	
S1.001	S4	0.80		4.9	FLOOD RIS	

FLOOD RISK ASSESSMENT AND DRAINAGE STRATEGY

APPENDIX G

Maintenance Requirements

SuDS Element	Orifice Flow Control		
Maintenance Issues	Blockages		
Schedule	Action	Frequency	Responsibility
Regular	Inspect water level within chamber	Quarterly	Private Owner
	Remove chamber mesh screen and inspect	Quarterly	Private Owner
	Inspect up and down stream filter baskets for debris	Quarterly	Private Owner
Occasional	Clean chamber mesh screen	Quarterly	Private Owner
	Clean filter baskets	Annually	Private Owner
Remedial	If blockages occur frequently, rearrange aggregate within baskets	As required	Private Owner

GHBullard \& Associates LLP

SuDS Element	Dry Swale		
Maintenance Issues	Frequency		Responsibility
Schedule	Action	Monthly, or as required	Private owner
	Remove litter and debris	Cut grass- to retain grass height within specified design range	Monthly (during growing season), or as required
	Manage other vegetation and remove nuisance plants	Private owner	
	Monthly at start, then as required	Private owner	
	Inspect inlets, outlets and overflows for blockages, and clear if required.	Monthly	Paintenance

SuDS Element	Detention Basin		
Maintenance Issues	Siltation and Blockages		
Schedule	Action	Frequency	Responsibility
Regular maintenance	Remove litter and debris	Monthly	Private Owner
	Cut grass- for spillways and access routes	Monthly (during growing season), or as required	Private Owner
	Cut grass- meadow in and around basin.	Half yearly (spring- before nesting season, and autumn)	Private Owner
	Manage other vegetation and remove nuisance plants.	monthly (at start, then as required)	Private Owner
	Inspect inlets, outlets and overflow for blockages and clear if required.	Monthly	Private Owner
	Inspect banksides, structures, pipework etc for evidence of physical damage.	Monthly	Private Owner
	Inspect inlets and facility surface for silt accumulation. Establish appropriate silt removal frequencies.	Monthly (for first year), then annually or as required)	Private Owner
	Check any penstock and other mechanical devices.	Annually	Private Owner
	Tidy all dead growth before start of growing season.	Annually	Private Owner
	Remove sediment from inlets, outlet and forebay.	Annually (or as required)	Private Owner
Occasional maintenance	Reseed areas of poor vegetation growth.	As required	Private Owner
	Prune and trim any trees and remove cuttings	Every 5 years, or as required (likely to be minimal requirements where effective upstream source control is provided)	Private Owner
	Remove sediment from inlets, outlets, forebay and re-turfing when required.	As required	Private Owner
Remedial actions	Repair erosion or other damage by reseeding or re-turfing.	As required	Private Owner
	Re-alignment of rip-rap.	As required	Private Owner
	Repair/rehabilitation of inlets, outlets, and overflows.	As required	Private Owner
	Relevel uneven surfaces and reinstate design levels.	As required	Private Owner

[^0]: G.H. Bullard \& Associates LLP, 27 Barton Road, Thurston, Suffolk, IP31 3PA

 Tel: 01359235071 Fax: 01359231138 Web-site: http://www.ghbullard.co.uk/

