

GROUND INVESTIGATION SERVICES (Southern) Ltd

Our Ref: S.5848

Your Ref:

David Beattie

08 February 2022

Dear Sirs

GROUND INVESTIGATION: GRACELANDS, HILLESDEN MK18 4DD

We write to inform you of the ground conditions encountered in respect of the above and make recommendations with regard to the proposed development. Accordingly, please find enclosed location plan, borehole logs, trial pit logs, infiltration test data and laboratory test results.

It is proposed to construct a new house over the footprint of the existing bungalow which will be demolished.

Therefore, prior to development it was required to undertake a site investigation to establish permeability and strength of the underlying soils to determine the potential of the ground to accept surface drainage water discharge and allow design of foundations and drainage infrastructure.

Reference to the geological map for the area indicates the site is underlain by Till-Diamicton characterised by clay.

GEOTECHNICAL SURVEY

On the 17 and 18 January 2022 GIS personnel attended site and conducted a geotechnical survey which comprised the following works:

- Two boreholes were sunk to depths of 10.00m and 3.00m using windowless sampling techniques utilising 66-116mm diameter bores located close to the proposed development footprint. In-situ Standard Penetration Tests (SPTs) were performed at regular 1.00m depth intervals in order to provide an indication of the engineering behaviour of the soil. Representative Class 3 small disturbed samples from the SPT sampling tool were recovered. Upon completion the boreholes were decommissioned with arisings.
- Three trial pits were excavated to depths of 0.60m, 1.00m and 1.50m depth and subject to percolation testing in accordance with BRE Digest DG365 soakaway design.
- Soil samples were obtained from each intrusive test position for geotechnical land chemicals laboratory soil analysis.

The weather was cold and dry

Soil samples were submitted to the chemical laboratories of Element Materials Technologies Ltd on the 24 January 2022 for analysis of a range of chemical determinants. Other laboratory tests including Atterberg limits/natural water content were undertaken in-house.

All information pertaining to the excavation works above is presented in the Borehole Logs, Trial Pit logs and Infiltration test logs and with reference to the Notes and Abbreviations Sheet, presented to the rear of this report

RESULTS OF SITE INVESTIGATION

The site consists of a large plot of residential land which until recently was occupied by a bungalow which has been razed. Notably a large Acacia tree was also removed which has been classified as moderate water demand¹ for species identified. The client recorded this as between 10-12m distance from the nearest edge of the south west elevation to the proposed new property.

In summary, the results of the intrusive site work indicate the site is underlain by a capping layer of topsoil and made ground overlying Till-Diamicton.

Made ground was exposed in BH2, SA1 and SA3 from ground level to depths between 0.45m (SA3) and 1.20m (BH2). The formation consists of loose dark brown silty sand with much gravel sized and cobble sized brick, general stone and concrete.

Topsoil was recorded in BH1 and SA2 to depths of 0.40m/0.25m and found to comprise dark brown silty fine humic sand.

The Till Diamicton was encountered in each test position beneath the capping layers of made ground and topsoil, consisting of a mantle of generally soft to firm in SA1, SA2 and BH2 and firm to stiff in BH1/SA3, light grey and light brown intact clay with rare fine medium flint gravel. This layer becomes progressively stiff to very stiff with increasing depth. There was a notable difference in the consistency in the shallow (<2.00m depth) clay mantle between the front/side garden where soils are described as soft/firm and the rear garden where the clay is described as stiff. This stiffness is ascribed to induration of clay soils resulting from localised tree root dehydration. With increasing depth the clay becomes very stiff, dark grey with traces of fine medium sandstone gravel and selenite crystals.

Infiltration tests (BRE DG365) were performed in three trial pits. Potable water was introduced into the pits and allowed to fall while measurements of the falling water levels were recorded over a single day

Water levels in SA1 and SA2 remained static while in SA3, water levels fell by 350mm in six hours. There were insufficient data to calculate a soil infiltration rate for either trial pit.

The results of geotechnical laboratory testing indicate the Till-Diamicton from 0.50m to 3.00m depths is classified as inorganic clay of high and very plasticity and predominantly high volume change potential.

All samples, apart from 1.00m depth sample from BH1 which were desiccated² were normally hydrated with natural water content values in equilibrium condition.

¹ NHBC Technical Standards Chapter 4.2 *Building near trees 2005*

² BRE 412 Desiccation in clay soils

Chemical testing indicate neutral to alkaline pH soil conditions in all samples and elevated concentrations of water soluble and acid soluble sulphate and sulphur.

GEOTECHNICAL ASSESSMENT AND FOUNDATION OPTIONS

New development will comprise a two-storey house located over the footprint of the original structure

Anticipated bearing pressures for the new structure are estimated to be in the order of 50kN/metre run for perimeter walls including suspended floor slab but excluding other factors including wind and live loads.

Assessment of the foundation options relevant to the proposed design build are predicated on the basis of ground conditions, anticipated bearing pressures, site history and design layout.

It is understood that a number of mature and semi-mature trees are located along site boundaries and into neighbouring property within proximity to the new building, therefore the first principal critical governing factor influencing foundation design at this site is the volume change potential of the soil and the type and distance of trees to new foundations.

At this site one tree of note was identified according to the client as an Acacia approximately 10-12m distance from the closest foundation edge.

Site plan provided by the client has been used to calculate projected minimum foundations depths as follows:

Tree Species	Keep or Removed (K or R)	Minimum Distance to proposed foundations (m)	Tree Height – existing (m)	Water Demand Tree classification (NHBC)	Minimum foundation depth (NHBC) (m) Existing tree height
	1				
Acacia	R	10.00m (Southwest Facing elevation)	15	Moderate	1.25m

Table 4: Tree Spaces and Foundation Depths – Main House

Because the site was previously developed with substructures in place (foundations) and walls above, the soil beneath these load bearing structures will have been compressed to a greater magnitude than neighbouring unstressed soils. The footprint of the new development (main house and garage) will overlie both of these soil units and settlement characteristics will not be uniform, i.e. settlement for new foundations will less over previously stressed soils when compared to unstressed soils leading to potential differential settlement.

Therefore, the ground beneath the existing foundations will have been stressed to a depth $1\frac{1}{2}$ times the breadth of the foundation (assuming 0.60m wide and 1.00m deep for main house equivalent to 1.90m depth.

Therefore, to avoid the possibility of large differential movements occurring beneath different sections of load bearing walls, foundations for the house should be constructed at a minimum depth of 1.90m (based on the above assumptions).

At this level, a net allowable bearing pressure of 110kpa is advised for 600mm wide strip foundations which would provide an adequate factor of safety against shear failure and limit settlements to within 25mm which should take place over a number of years.

The impact of potential heave from re-hydration and conversely continued desiccation and volumetric shrinkage from tree root moisture uptake cannot be overstated. Measures to mitigate these effects on buried foundation concrete should be implemented such as the use of clayboard on the inside face and plastic slip membrane on exterior faces.

Notwithstanding the above recommendations, the final depths of all foundations will have to be determined with respect to their proximity to the existing trees and hedging on and bordering the site and beyond (either those to be removed or retained and future planting), their water demand classification and the shrinkage potential of the soil. In addition, where the foundations are likely to be affected by either shrinkage or soil heave they should be designed to withstand these possible effects.

It is recommended suspended ground floor slabs are adopted for the development as a result of the potential for clay soil shrinkage and swelling. Reference to NHBC Standards, Chapter 5.2 – *Suspended Floors* is advised.

EXCAVATIONS

Excavations for foundations and service trenches will remain stable in the long term but will require temporary shoring if left open for an extended period of time.

It is recommended all excavations in excess of 1.20m depth should be supported or the excavation sides cut back to a safe angle of repose (approximately 35°) although steeper angles (50°) may be permitted for short term duration in compliance with health and safety at work requirements and in accordance with advice given the Construction Design and Management Regulations (2015).

BURIED CONCRETE SPECIFICATION

The characteristic value for the water soluble sulphate results for the soils tested falls into Design Sulphate Class of DS-1, DS-2 and DS-3 in Table C2 of the BRE Special Digest 1. As the site is potentially pyritic and assuming the concrete may be exposed to disturbed ground in which pyrite may oxidize to sulphate, the oxidisable sulphide content of the soils must be calculated using the total sulphur and acid soluble sulphate results.

The results indicate two samples (3.00m and 8.00m depths) of the bedrock soils have an oxidisable sulphide content which exceeds the 0.3% level given in the Digest and indicates that pyrite is probably present. The remaining samples <3.00m depths have an oxidisable sulphide content which does not exceed the 0.3% level.

Therefore, given that buried concrete will not exceed 2.50m depths The calculated characteristic value for total potential sulphate gives a sulphate class equivalent of DS-2.

It recommended that Design Sulphate Class of DS-2 and ACEC class of AC-1s would be appropriate for concrete in contact with the bedrock soils.

PERMEABILITY ASSESSMENT AND SOAKAWAY DESIGN

Infiltration testing has demonstrated in general the poor drainage characteristics of the host soils to discharge drainage waters.

The test data has revealed that the bedrock soils are generally unsuitable for discharge of surface drainage water via local soakaway drains.

If it is decided ground conditions are unsuitable for local discharge of surface drainage waters then all surface water run-off from impermeable surfaces should be directed off site via the public sewer, subject to approval by the local authority/water company.

Alternatively, the client may consider the possibility that drainage via the limestone rock bed may be feasible if this layer could be penetrated by heavy duty plant for a thickness of at least 1.00m and retested to determine its effectiveness as a drainage medium.

Should you have any queries with regard to the report, please do not hesitate to contact the undersigned.

For and on behalf of Ground Investigation Services (Southern) Ltd Yours sincerely

P Boby Se

Martyn P Boughton (Director)

Email: <u>martyn@gis-geotec.com</u>

enc

Site Plan Borehole Logs Trial Pit Logs and Infiltration Test results Notes and Abbreviations Sheet Laboratory test data

NOTES ON EXPLORATORY HOLE RECORDS

GENERAL NOTES

1 OPERATING PROCEDURES

The procedure used for cable percussion boring, rotary drilling, trial pitting, sampling, in situ and laboratory testing and sample descriptions are generally in accordance with BS5930:2015+A1:2021'Code of practice for Ground investigations', BS EN ISO 14688-1:2002 'Geotechnical investigation and testing – Identification and classification of soil – Part 1 Identification and description', BS EN ISO 14689-1:2003 'Geotechnical investigation and testing – Identification and classification of rock – Part 1 Identification and description' as appropriate, and BS1 377:1990 'Methods of test for soils for civil engineering purposes', unless stated otherwise.

2 GROUNDWATER

Exploratory hole water levels are recorded together with the depths at which seepages or inflows of water are detected. These observations are noted on the Records, but may be misleading for the following reasons:

- a) The exploratory hole is rarely left open at the relevant depth for a sufficient time for the water level to reach equilibrium.
- b) A permeable stratum may have been sealed off by the borehole casing.
- c) Water may have been added to the borehole to facilitate progress.
- d) The permeability may have been altered by the excavation/boring/drilling process.

Standpipes or piezometers should be installed when an accurate record of groundwater level is required, however, it should be noted that groundwater levels may vary significantly due to seasonal, climatic or man made effects. Water levels recorded during the investigation and any advice or comment made accordingly may, therefore, not be appropriate to particular foundation, geotechnical design, or temporary works solutions. Long term monitoring of standpipes or piezometers is always recommended when water levels are likely to have a significant effect on design.

3 CHISELLING

The remarks in the Borehole Records contain information on the time spent advancing the borehole by 'Chiselling Techniques', and the depth of borehole over which it was required. Such information may be affected by a wide range of variable factors, unrelated to the geotechnical properties of the strata. Such factors include, but are not restricted to: plant, equipment and operator. The data should, therefore, only be used subjectively and with extreme caution.

4 IDENTIFICATION AND DESCRIPTION OF SOILS - SEE SEPARATE SHEET

The identification system follows the Company's Engineering: Geotechnical Procedures Manual which is based on BS EN ISO 14688-1:2002 and appropriate clarifications in the National Foreword, BS 5930:1999 and BS EN ISO 14689- 1:2003

Relative density terms are given where supported by SPT N values, with the exception of Made Ground. The field assessment of compactness or relative density for coarse grained soils is only given on trial pit records where appropriate assessment of the soils has been undertaken.

Where the terms 'soft to firm', 'firm to stiff' etc. are used they indicate a strength which is close to the borderline between the two terms and cannot be precisely defined by inspection only, and/or which is indicated as borderline or ranging between the two terms after consideration also of in situ and laboratory test results. Consistencies may have been amended in the light of test results

Where 'to' links two terms, as in 'slightly sandy to sandy' this again represents a borderline case or a range, where the precise proportions cannot be determined as outlined previously.

The name of the geological formation is only given where this has been requested and can be determined with confidence (see Clause 41.5 of BS 5930:1999).

5 INTERPRETATION OF THE RESULTS OF THE INVESTIGATION

The description of ground conditions encountered and any engineering interpretation included in the report are based on the results of the boreholes and trial pits and the field and laboratory testing carried out. There may be ground conditions at the site which have not been revealed by the investigation and consequently have not been taken into account.

Any interpolation or extrapolation of strata between exploratory holes shown on any cross sections or site plans is an estimate only of the likely stratification based on general experience of the ground conditions and is subject to the interpretation of the reader.

The term "TOPSOIL" is used in this report to describe the surface, usually organic rich, layer including turf, subsoil and weathered material with roots. The use of this term may not imply that the soil satisfies the requirements of Clause 3 of BS 3882:1994, 'Specification for topsoil', or is suitable for general horticultural and agricultural purposes.

Laboratory test results in this report give the soil properties of individual specimens tested under specified conditions. Individual results or groups of results may not be appropriate for use as design parameters for some geotechnical analyses. The samples may be non-representative, disturbed internally, or prepared and tested under conditions suited for different geotechnical applications. Unless the selection of design parameters is discussed in this report, it is recommended that the advice of a Geotechnical Specialist is sought.

NOTES ON EXPLORATORY HOLE RECORDS

IN SITU TESTING AND SAMPLING

STANDARD PENETRATION TESTS

- S() Standard Penetration Test (SPT). A 50mm diameter split barrel sampler is driven 450mm into the soil using a 63.6kg hammer with a 760mm drop. The penetration resistance (also known as the 'N' value) is expressed as the number of blows required to obtain 300mm penetration below an initial seating drive of 150mm which is taken through any ground which may be disturbed at the base of the borehole. The test is usually completed when the number of blows recorded during the test drive only reaches 50 in soils or 100 in weak rock. If a sample is not recovered in the sampler, a disturbed sample is taken on completion of the test and given the same depth as the top of the Standard Penetration Test drive.
- C() Standard Penetration Test carried out with a 60 degree cone. The test is usually conducted in coarse granular soils or weak rock using the same procedure as for the SPT, but with a 50mm diameter, 60 degree apex, solid cone fitted to the split barrel. A bulk disturbed sample is taken and given the same depth as the top of the test drive.

The depth on the borehole record at the left hand side of the 'depth' column is that at the start of the normal 450mm penetration. Where the full penetration of 300mm for the test drive is obtained, the penetration resistance ('N' value) is reported in the 'SPT Blows/N' column. If the full penetration of 300mm in the test drive is not obtained, then the length of drive (test length in mm) and the penetration resistance (number of blows) are both reported. Blows through the initial seating drive (normally 150mm) are not reported.

in the 'Test Length' column denotes that the blows and penetration were all in the initial Seating Drive section.

OTHER IN SITU TESTS

The following in situ tests are reported on the **Exploratory Hole Records**, in the 'Test' or 'Type' and 'Results' columns where appropriate.

- k In situ Permeability Test refer to detailed test results for permeability values
- PMT Pressuremeter Test refer to detailed test results for modulus values, etc.
- VN/R() Borehole Shear Vane Test (undrained shear strength cu in kPa) refer also to detailed test results, N 'Natural' or peak shear strength, R Remoulded shear strength
- VN/R() Hand Shear Vane Test (Direct reading of undrained shear strength in kPa). 'N' and 'R' as above. The values are indicative and should not be taken as being equivalent to laboratory test results. The Pilcon vane results have a factor varying from about a sixth for the 33mm vane to a third for the 19mm vane which reduces the BS1 377 shear vane value. The values presented are therefore approximate and should be treated with great caution if used for design purposes
- PP() Pocket Penetrometer. Unconfined Strength (UCS) reported in kg/cm² to the nearest 0.25 kg/cm² or kPa with the same accuracy. Equivalent c_u in kPa is very approximately UCS x 50. Pocket Penetrometers are an aid to logging of cohesive soils, the results are indicative and should not be relied upon. The equipment used is not calibrated
- CBR() California Bearing Ratio Test (CBR%) refer also to detailed test results
- PID() Photo-Ionisation Detector Readings in headspace of small disturbed chemical samples. Result given in ppm by volume

SAMPLES

- U General purpose open tube sample. Sample normally taken with open tube sampler approximately 0.1m diameter and 0.45m long and driven with 80kg sinker bar and 56kg sliding hammer, unless noted otherwise. "XX" in U100 blows column denotes the number of hammer blows. The height of hammer drop can be variable depending on operator technique. Depths are given to the top of the sample if full penetration and recovery are achieved, otherwise actual lengths of penetration and recovery are given in the appropriate columns.
- U(X) General purpose open tube sample (X) mm diameter
- TW(X) Thin wall (push) sample (X) mm diameter
- P(X) Piston sample (X) mm diameter
- CBR Sample taken in CBR Mould
- D Small disturbed sample (plastic tub or jar with air tight lid)
- B Bulk disturbed sample (polythene bag, tied at neck size dependent on purpose)
- W Water sample
- # Sample not recovered
- C Core sample (CS short core, generally about 100mm; CL long core, generally 200mm to 300mm)

CD	Sample for chemical analysis in a plastic tub	K	Sample for chemical analysis in an amber
			glass jar
V	Sample for chemical analysis in a glass vial	CDKV	Set of samples for chemical analysis as above
WAC	Sample for Waste Acceptance Criteria		
ES	Environmental Sample	EW	Environmental Water Sample

Recommended symbols for soils and rocks – BS 5930:2015+A1:2021

Made ground

Topsoil

Boulders and Cobbles

Gravel

Sand

Silt

Clay

Peat

Composite soil types may signified By combined symbols, e.g.

....

.....

Mudstone/Claystone

Sandy CLAY with a trace of fine medium gravel

Silty slightly clayey SAND

Limestone

Brecia

Coal

Shale

Siltstone

Sandstone

Conglomerate

NOTES ON EXPLORATORY HOLE RECORDS

IDENTIFICATION AND DESCRIPTION OF SOILS

	Basic Soil Ty	/pe	Particle Size (mm))	Visual Identification	Composite Soil T (Mixtures of basic s	ypes soil				Density / Cor	nsistency / Pea	at Condition
es o	BOULD	ERS			Large Boulders >630mm. These soils only seen complete in pits	Scale of secondary coarse soils. Term	constitu	ents with o	coarse and on after	very	For very coar	se soils qualitat	tive description
Very Coal Soils	COBBI	ES		200	or exposures. Often difficult to recover from boreholes	Term before	_ e			Approx	by inspection packaging.	on of voids	and particle
			coarse	63	Easily visible to naked eye; particle	be used for 2 nd ry	incipa oil Tyl	Descript	ion after	soil	Standard Per	etration Test i	n Boreholes
			medium	20	shape can be described, grading can be described.	Slightly (sandy*)	r y	Used to	describe	type	No of blows	Relative Dens	sity
	GRAVI	-1	mediam	6.3	Well graded: wide range of grain sizes, well distributed. Poorly graded:	[occasional / little]		compone seconda	ents of ry	<5	<4	Very Loose	
	GRAVI	-L			not well graded. (May be uniform: size of most particles lies between	(sandy*)	OR	constituer	ts. el is		4-10	Loose	
izes)			fine		narrow limits; or gap graded; an intermediate size of particle is markedly under represented)	[some]	3BLES notes)	fine and me	dium r fine	5 – 20	10-30	Medium Dens	se
avel S			coarse	2	Visible to naked eye; no cohesion when dry: grading can be described	Very (sandy*) [much / many]	; (COE	mudston	e and e.	20 to 40†	30-50	Dense	
ษี			000100	0.63	Well graded and poorly graded: as		AVEL				>50	Very Dense	
E SOILS Ily over 65% Sand	SAND		medium	0.2	above		SAND. GR	and (sa	and") or obbles+)	50†	Slightly cemented	Visual Examir removes soil ir can be abrade	nation: pick I lumps which ed.
COARS (Typica			fine			 * Fine or coarse + Very coarse s + described as 	soil type soil type fine soi	be as appl - see No dependir	opriate tes a on beha	viour			
			coarse	0.063	Only coarse silt visible with hand lens;	Scale of secondary	constitu	ients with f	ine soils. T	erms	Silty CLAY or	clayey SILT – u	ise prefix only
	SILT		medium	0.02	dilatancy; slightly granular or silky to touch. Disintegrates in water; lumps		ype		notituent.	Approx % 2 [™] rv	affect on main 'slightly' or 've	erial character ry' not applicab	istics. Terms le.
			fine	0.0063	dry quickly; possesses cohesion but powders easily between fingers.	Term before	Princi Soil T	Descript	ion after	soil type	Consistency		
ay Sizes)				0.002	Term "SILT" or "CLAY" must be used, "SILT/CLAY" not allowed.	Slightly (sandy*)	SILT	Used to d compone seconda	escribe ents of	<35	Very soft	Finger easily p 25mm. Exu fingers	oushed in up to des between
s S					Dry lumps can be broken but not	(sandy*)	OR	constitue	ents vellv	35 to 65†	Soft	Finger push 10mm Mould	ed in up to
35% Silt	CLAY				also disintegrate under water but more slowly than silt; smooth to the	Very (sandy*)	CLAY	sandy Cl Gravel is rounded	AY. coarse quartzite	>65†	Firm	Thumb make asily. Rolls to	es impression o thread
ILS y over 3					dilatancy; sticks to the fingers and dries slowly; shrinks appreciably on drying usually showing cracks	* Coarse soil type a † or described as co behaviour	as appr arse soi	opriate I dependinț	g on mass		Stiff	Can be indent thumb. Crumb	ted slightly by bles if rolled
E SO oical					Intermediate and high plasticity clays show these properties to a moderate	EXAMPLES OF COM	IPOSITE	TYPES			Very Stiff	Indented b Cannot be mo	by thumbnail. Dulded
I A					and high degree, respectively.	Loose brown very san	dv suban	gular coarse	GRAVEL wi	th many	Hard	Can be scratch	ned by thumb
	ORGAN	JIC			Contains varying amounts of organic	pockets (<5mm acros	s) of sof	grey clay.		aht	Firm Peat	Fibres compre	essed together
anic	CLAY,		Varies		vegetable matter - defined by colour: grey - slightly organic;	brown clayey fine and	medium	SAND	AT. Dense i	gin	Spongy Peat	Verv compres	sible, open
Soil	SAND				dark grey – organic; black – very organic.						Plastic Peat	Moulded in ha	and smears
Structur													Particle
Tom	е Т												Nature Particle
Homo-		Denos	sit consists e	ssentially	of one type	Interval Scales							Shape &
geneous		Depot		sociality (Scale of Bedding S	Spacing]	Mean Spa (mm)	acing	Scale of Spacir Discontinuities	ig of Other s / [Blocks]	Very angular
Interbed	ded or <i>i</i> inated i	Alterna n equ suborc	ating layers o al proportion dinate layers	of varying f s. Otherwi defined	types. Pre-qualified by thickness term if se thickness of, and spacing between,	Very thickly bedde	d		over 200	0	Very widely spa large]	iced / [Very	(Sub) angular (Sub) rounded Well rounded
Hetero- geneous		A mix	ture of types			Thickly bedded			2000-60	D	Widely space	d / [Large]	Low Sphericity
Weathere (granular	d)	Partic	les may be w	eakened a	and may show concentric layering	Medium bedded			600-200		Medium space	ed / [Medium]	Elongate
(cohesive	ed e)	Usual	ly has crumb	or columr	har structure	Thinly bedded			200-60		Closely space	d / [Small]	High Sphericity
Fissured		Break	s into blocks	along unp	olished discontinuities	Very thinly bedded	1		60-20		Very closely /	[Very small]	Cubic
Sheared	_	Break	s into blocks	along poli	shed discontinuities	Thickly laminated			20-6 under 6		Extremely clo	sely spaced	
Fibrous F	Peat	Plant r	emains recog	nisable an	d retain some strength. When	Spacing terms ma	v also	he used fo	r distance	hetween i	artings isolate	d beds or	Particle Surface
Pseudo- fibrous Pe	eat	squee Plant r Furbid	zed only wate remains recogorial water when	<u>er, no solio</u> gnisable, s squeezed	ds trength lost. Partial decomposition. . <50% solids	laminae, desiccatio used for laminae l	on crac ess tha	ks, rootlets n 2mm an	etc. Term d less that	n 0.6mm re	partings, isolate partings or dust espectively.	ings may be	Texture
Amorphou	us I	Recog	nisable plant	remains at	sent, full decomposition. When	Discontinuity S	hane	Small	cale (mm'	s) rough	mooth		Rough
Gyttja	5	Decor	∠eu oniy pas nposed plant	.e with >50	remains, maybe inorganic constituents	(See Standard	for	Mediun	n scale (cr	i's) planar,	stepped, undula	ating	Smooth Polished
Humus		Plant	remains, livin	ig organisi	ms & inorganic constituents in topsoil	r craisterice/Openr	1000)	Larges	care (IIIS)	wavy, Cur	vou, suaigni		
NOTES	Identifi	cation	and descrip	tive metho	d, and descriptions, generally in accorda	nce with BS5930:20)15+A1	:2021 Sec	tion 6 clau	ses 41 an	d 43 and BS EN	I ISO 14688 1:2	2002

Additional to the relating to BS EN ISO 14688-2:2004 – modified terms for content of secondary fraction given in Annex B Table B1 are not comparable to 5930 and are not be used. Organic Content :- Low – 2 to 6%; Medium - 6 to 20%; High - >20%. Terms not used on borehole records Carbonate content :- Only noted if field test with dilute HCI undertaken – Carbonate free if no effervescence; Calcareous if slight effervescence; Highly calcareous if strong reaction

Undrained shear strength :- trims from laboratory or in situ tests not given on borehole records. Very Coarse Soils – described by initially removing very coarse materials and describing residue before adding back the very coarse soils. If residue is cohesive then described as ' (COBBLES / BOULDERS) with low (cobble / boulder) content with (some / much etc) matrix of ' If residue is granular then described as ' with matrix of ' or as a coarse soil. **Cobbles :-**<10% - low cobble content; 10 to 20% - medium content; >20% - high content; **Boulders** <5% - low boulder content; 5 to 20% - medium content; >20% - high content

			(GF	20	C	U	ND) IN	VE	STI	GAT	0	N S	ERVI	CES			Date			Bore	ehole N	0.
9	P		(S	0	U	T	ΉE	RN	I) L	_TD							Fe	ebruary 2	2022		(Dne	
							_	C			20					Ground	Level (m OD)	C	o-ordina	ates		Sh	ieet 1 of 1	
										Sult						Borin	g Method:	Diamete	r of (ca	sings) and			
						_	S	IIE	LOC							Windowk	ess Sampling		bore:		,	Re	port No	
	G	rac	ela	an	ds,	, I	he	Bar	racks	, Hill	lesden	MK18 4	4DL)		VVII IGOWI	ess camping	76, 8	6, 96,10	1 & 110	6	S	5.5848	2
Depth metres	SAMP Type & No.	SF	T rec rat	ords io = 58	ene 8.3%	ergy	N. Value	PID	Hand pen' kN/m2	Windowless ample Recovery	Water depth	Reduced Level	C (thi	Depth ckness) netres	Legend		Str	ata Descr	iption				Backfill/ Installation	Depth
_		5	2	12	7.	12				GL-1.00		. ,	E			Dark brov	vn sandy clay w	ith some fin	e mediu	m root	s		ARISINGS	; -
-										90%				0.40		Firm to st	- iff brown mottle	d grey intac	t CLAY	with so	me fine		-	
-														(0.40) 0.80		medium r	oots	light group	ad brown	intert			_	-
1.20-1.65 1.20-2.00	1/DS 2/U116	4	4	4	5	5	18			1.00-2.00 100%				(1.00)		with many	/ fine medium ro	ngni grey a pots		Tintact	CLAT			1-
_														()										
_													Ē	1.80										
2.00-2.45	3/DS 4/U101	4	3	4	4	5	16			2.00-3.00 100%				1.00		Stiff grey	mottled brownis	sh grey inta	ct CLAY					2 -
	.,0101													(0.80)										
														2.60		Stiff to ve	rv stiff brownieb	arev intact	and fiss	ured a	nd		-	
3.00-3.45	5/DS	7	5	6	8	10	29			3.00-4.00						blocky CL	AY. Joint sets a	are sub hori	zontal ar	nd sub	vertical			3_
- 3.00-4.00	6/U101									80%														=
-														(2.20)										=
- 4 00 4 45	7/DS		7		0	10	24																	
4.00-5.00	8/U96	3	ľ		3	10	54			100%			E											4
-													E											=
_														4 80									_	
5.00-5.45 5.00-6.00	9/DS 10/U96	11	8	10	10	11	39			5.00-6.00 100%						Very stiff	grey and dark g um sandstone o	rey intact C ravel	LAY with	h a trac	ce of			5 -
_																								=
																								=
_ 6.00-6.45	11/DS	5	5	5	7	9	26			6.00-7.00			E											6
- 6.00-7.00 -	12/U86									100%														1 -
-																								=
- - - 7.00-7.45	13/DS	8	5	7	7	8	27			7 00 8 00														=
- 7.00-8.00	14/U86			ľ	1		21			100%														7-
-														(5.20)										=
-													E	(0.20)										=
- 8.00-8.45 - 8.00-9.00	15/DS 16/U76	10	8 (9	10	10	37			8.00-9.00 100%														8 -
-																								=
-																								
9.00-9.45	17/DS	12	9	10	9	10	38			9-10.00														9
- 8.00-9.00 -	18/U76									100%			È											=
-																								
- - 10.00-10.45	19/DS	13	10	10	8	10	38							10.00		TILL - DI	AMICTON							10
	Casing	Rec	orc	ł					С	hiselli	ng reco	rd				Water leve	el Observation	s (depths	in metr	es bel	ow GL)			
Date	Diar	n' (m	ım)		De	pth		Ti	me	Fro	om (m)	To (m)		Date	Time	strike	Water level (after 20min)	Flow	Casing	level	Standing	1	Remarks	
														18.01.22		dry					dry			
Kev													+	DEMAS						1.5-	al hu :-	0.0		
U	Undisturbed	Sam	ple						SPT/S		Split Spoor	1		REMARKS	5					Logge	u DY:	SD 18.0	1.22	
B D	Bulk sample Disturbed Sa	ample	•						SPT/C HSV		Solid Cone Hand Shea	r Vane								Check	ed by	JM		
W	Water Samp	al Cr	ase '	ar/P	astin	tuh			Hand per	ı'	Hand pene	trometer er strike								Date:		07.0	2.22	
PID	Photo-ionisa	tion E	los J Detec	tor	asılü	ເພນ			Ĭ.		Groundwat	er standing		Weather: 0	Cold and dry					Approv	ved by	MPE	3	
For explanation	of symbols and	l abbro	eviation tim	ons se	e pre	face	to Bo	rehole rec	ords. All de	epths in m	netres. Logge	d in accordance v	with BS	5930:2015				Scale :	1:60	Date		08.0	2.22	
Servi	ices (So	out	ner	m)	Lto	b						R	OF	ЯЕН		106				Re	eport	No.	Figu	re
40 Hom	e Close, W Tel 01865	ootto 326	on O 6011	X13	6DI	D										200					S.584	8	2	
				-	-	-																		

G	5		(G S	R (0	0	U	ND He) IN ERM	IVE N) l	STI _TD	GATI	ON S	ERVI	CES		Fe	Date bruary 2	2022	Bore	ehole N WO	о.
								C Day	LIE	NT Pattie	j				Ground L	Level (m OD)	Co	o-ordina	ites	Sh	eet 1 of 1	
							S	ITE			ON				Boring	g Method:	Diameter	r of (cas	ings) and	Re	port No	
	G	rac	ela	and	ds,	, т	he	Bar	racks	s, Hil	lesder	n MK18 4	1DD		Windowle	ess Sampling	96	bore: 6,101 & 1	116	S	.5848	
	SAMP	LES	5 A	ND	TE	EST	rs			'ss overy	Water	Reduced	Depth						·		l/	6
Depth	Type & No	SP	T reco rati	ords io = 58	ene 3.3%	ergy	V' Value	PID	Hand pen'	Windowle mple Rec	depth	Level	(thickness)	Legend		Str	ata Descr	iption			Backfil nstallat	Dept
-		150	75	15	75	75	-	ppin	KIVIII2	ගී GL-1.00				××××	Grass ove	er dark brown h	umic clayey	sand wit	th some grave)	ARISINGS	; _
										90%			- 0.35	$\sim \sim \sim \sim$	sized bricl Loose gra	k and glass and avel sized brick	I fine roots with some c	obble siz	zed brick		-	
- - - 1.20-1.65	1/DS	2	1	1	2	2	6			1.00-2.00			(0.85)									
- 1.20-2.00 -	2/U116									100%			1.20	\cong	MADE GF	ROUND arey mottled ar	ev intact CL	AY			-	-
-													(0.60)		·	g , g.	-,					
2.00-2.45	3/DS	2	2	3	3	4	12			2.00-3.00			1.80		Firm to sti	iff grey mottled	olive brown	intact CL	LAY			2
2.00-3.00	4/U101									100%			(0.80)									
													2.60		Stiff grey	mottled olive br	own intact C	CLAY with	h selenite crys	stals	-	
3.00-3.45	5/DS	4	4	5	6	7	22						(0.40) 3.00		TILL - DIA	AMICTON						3_
_																						
-																						
-																						4 -
_																						
-													-									
-													-									5 -
-																						
-													-									
-													_									6 -
													-									
-																						
-													-									7-
-																						
-													L F									
-																						8
-																						
-																						9
_																						
-																						
_													_									10
	Casing	Rec	ord	1	-				С	hisell	ing reco	rd	_		Water leve	Vater level	s (depths	in metre	es below GL)	D	
Date	Diar	n' (m	im)	-	De	pth		Ti	me	Fro	om (m)	To (m)	Date 18.01.22	Time	strike dry	(after 20min)	Flow	Casing le	evel Standin dry	g	Remarks	
K																						
Key U	Undisturbed	Sam	ole						SPT/S		Split Spoo	n	REMARK	S					Logged by: Date:	SD	1.22	
B D	Bulk sample Disturbed Sa	ample							SPT/C HSV		Solid Cone Hand Shea	ar Vane							Checked by	JM		
W E	Water Samp Environment	ole al Gla	ass Ja	ar/Pla	astic	tub			Hand pe	n'	Hand pene Groundwa	etrometer ter strike							Date:	07.0	2.22	
PID For explanation	Photo-ionisa of symbols and	tion D	etec	tor ns se	e pre	eface	to Bo	rehole rec	cords. All d	lepths in r	Groundwa netres. Logg	ter standing ed in accordance v	Weather: 0	Cold and dry			Scale :	1:60	Approved by Date	MPE 08.0	s 2.22	

Ground Investigation Services (Southern) Ltd

40 Home Close, Wootton OX13 6DD Tel 01865 326011 **BOREHOLE LOG**

Report No. Figure S.5848 3

G	G 40	ROU	IND Close, V	INV (S Voottor CLIE	ESTIC Southe h, Abingdon	GATIO ern) Lt	N SER d 3 GDD Tel 018	VICES 65 326011	Date: February 2022 Ground Level : Orientation: East-west	TRIAL PIT
	Gracelar	ıds, T	Da SITE he Ba	avid E E LO arrack	Beattie CATION	l den MK1	8 4DD		Co-Ordinates (NGR):	Sheet 1 of 1 Report No. S.5848
SA Depth No. metres	Type	TESTS PID % v/v	Hand pen' kN/m2	HSV kN/m2	water depth	Reduced Level m (AOD)	Depth (thickness) metres	Legend	STRATA AND DESCRI	PTION
- 0.50 - 0.50 	D						0.10 (0.40) (0.10) 0.60		Soft dark brown clayey humic SAND (Topsoil) Loose light brown very clayey SAND with much g sized brick, concrete and general stone MADE GROUND Firm light brown mottled light grey intact CLAY wit medium coarse rounded gravel and occasional s: TILL - DIAMICTON	ravel and cobble th some fine and pockets

0	GROUND IN	VESTIG	GITA	N SER	/ICES	Date:	February 2022	TRIAL PIT
		Southe	rn) Lt	d		Ground Level :		SA2
	40 Home Close, Woot	on, Abingdon,	Oxon OX13	6DD Tel 018	65 326011			
	CL	ENT				Orientation:	East-west	
	David	Beattie						Sheet 1 of 1
	SITE L	OCATION				Co-Ordinates (NGF	२):	Report No.
	Gracelands, The Barra	ks, Hillesc	len MK1	8 4DD				S.5848
	SAMPLES AND TESTS	water	Reduced	Depth				
Depth	No. Type PID Hand HS	/ depth	Level	(thickness)	Legend		STRATA AND DESCRIP	TION

	21.0		pen'				(/	-	
metres		% v/v	kN/m2	kN/m2	m	m (AOD)	metres		
									Grass over dark brown clayey fine humic SAND with some roots
							0.25		TOPSOIL Soft light brown mottled orange moist slightly sandy intact CLAY with a little fine medium rounded gravel
0.50	D						 (0.55)		
							0.80	- <u>«</u> ĝ.	Firm brown mottled grey intact CLAY
1.00	D						1.00	`	TILL - DIAMICTON
<u>-</u>									

Tel 01865 326011

G	1	GF	ROU		INV (S	ESTIC	GATIO	N SERV d		Date: February 2022 Ground Level :	TRIAL PIT
		40	Home	510Se, v	CLIE	ENT	Oxon OX13		05 320011	Orientation: East-west	
				Da	avid E	Beattie					Sheet 1 of 1
		Gracelan	ds, T	SITE he Ba	E LOO	CATION s, Hilleso	den MK1	8 4DD		Co-Ordinates (NGR):	Report No. S.5848
	SA	MPLES AND	TESTS			water	Reduced	Depth			
Depth metres	No.	Туре	PID % v/v	Hand pen' kN/m2	HSV kN/m2	depth	Level m (AOD)	(thickness) metres	Legend	STRATA AND DESCRIP	ΓΙΟΝ
										Loose dark brown humic silty SAND with much grav general stone and brick and fine to coarse roots	vel sized

0.50	D	0.45 MADE GROUND 0.45 Loose orange brown slightly clayey SAND with a little fine medium white flint gravel
- 1.00	D	(0.70)

			CALCU	LATION OF SOIL	INFILTRATIC	N RATE		
Elapsed	Dep	oth to wate	er (m)	TRIAL PIT	SA1	Logge	d by: S Dodd	
time in minutes	Test 1	Test 2	Test 3	Test No.	1	00-		
minutes	1	2	0	rest NO.		Checkee	d by: M Bought	on
0	0.34			Groundwater	dni	Date of	test 17 Januar	y 2022
5	0.34			Standing:	dry			
15	0.34			Weather	Cold and dry	J		
30	0.34			weather				
45 60	0.34							
90	0.34				Soakage Tria	I Pit Width W	_t (m) = 0.70	
120	0.34				Soakage Tria	l Pit Length L	_{-t} (m) = 2.00	
180 240	0.34				Ū	0		
300	0.34			То	tal Depth from gr	ound level D _t	_b (m) = 0.60	
				Inter	nal Surface Area	of trial pit a _{p5}	₀ (m) = n/a	
						75.05% \/		
				Storag	e volume betwee	en 75-25% V _p	(m) = n/a	
				Time for wa	ter to fall from 75	5-25% t _p (min	utes) = #DIV/0!	
				Allowance for	infiltration throug	h soakaway k	base NO/ YES	
					Free volume	in aggregate	(%) = 100	
				SOIL INFILT	RATION RAT	ΓE (f) =	N/a	
GL 0.10 0.20 0.30 0.40 0.50 0.60	0.40	60 5m - 25% e 0.535m -	90 empty			240 270) 300 33	0 360
CL I	ENT	David	Beattie			F	BRE DIGEST I)G365· 2(
S	SITE :	Grace MK18	lands, Tl 4DD	he Barracks, Hil	lesden		SOAKAWAY	DESIGN
	Date:	Febru	ary 2022					
Groun	a inve	stigatio		INFILTR	ATION TE	EST	Report No.	Fig
Comin		- CO CO I					-	

Flanged	Den	th to water	()						
time in	Test		Test	TRIAL PIT	SA2	Lo	ogged by:	S Dodd	
minutes	1	2	3	Test No.	1	Che	ecked by:	M Boughtor	ı
0	0.26			Groundwater		On	soned by.	W Boughton	
5	0.20			Strike:	dry	Da	ate of test	17 January	2022
10	0.26			Standing:	dry				
15 30	0.26			Weather	Cold and dry	/			
45	0.26								
60	0.26				Soakage Tri	ial Pit Wid	Ith $W_t(m) =$	0.70	
120	0.26				Soakage Tri	al Dit I on	ath L (m) -	- 1.60	
180	0.26				ooakage m		911 L _t (111) -	1.00	
300	0.26			Tot	al Depth from g	ground lev	el D _{tb} (m) =	1.00	
				Intern	al Surface Area	a of trial p	it a _{p50} (m) =	n/a	
				Storage	Volume betwe	en 75-25	%V (m)=	= n/a	
]	Clorage				11/0	
				Time for wat	ter to fall from 7	7 5-2 5% t _p	(minutes) =	#DIV/0!	
				Allowance for i	nfiltration throug	gh soaka\	way base	NO/ YES	
					Free volum	e in aggre	egate (%) =	100	
				SOIL INFILTE	RATION RA	ATE (f)	= N/a		
0.10									
0.20 0.30 0.40 0.50 0.50 0.60 0.70 0.80 0.90		0.445n 0.815	n - 25% empt	Y Sty				-• TEST 1	
0.20 0.30 0.40 0.50 0.50 0.70 0.80 0.90 1.00		0.445n 0.815	n - 25% empt m - 75% emp	y bty				-• TEST 1	
0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.00		0.445n 0.815	n - 25% empt	SY				-• TEST 1	
0.20 0.30 0.40 0.50 0.50 0.60 0.70 0.80 0.90 1.00 MMENTS:		0.445n 0.815	n - 25% empt	y y oty bty			BRE I	- TEST 1	G365: 2
0.20 0.30 0.30 0.50 0.50 0.70 0.80 0.90 1.00 VMENTS: CLL	IENT:	0.445n 0.815 0.815 David Gracel MK18	m - 25% empt m - 75% empt Beattie ands, TI 4DD	bty he Barracks, Hil	lesden		BREI	DIGEST DO	G365: 2 ¹ DESIGN
0.20 0.30 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.00 MMENTS: CLI	IENT: SITE : Date:	0.445n 0.815 0.815 David Gracel MK18 Februa	m - 25% empt m - 75% emp Beattie ands, Ti 4DD ary 2022	bty	lesden		BREI	DIGEST D	G365: 24

			UALUUL	ATION OF SOIL I	NFILIRATIO	N RATE									
Elapsed	Dep	th to water	(m)		SV3		ad by:	S Dodd							
time in	Test	Test	Test		JAJ	LUGG	eu by.	S Doud							
minutes	1	2	3	Test No.	1	Checke	ed by:	M Boughtor	ı						
0	0.50			Groundwater	dan i	Date	of test	17 January	2022						
5 10	0.66			Strike: Standing:	ary dry										
15	0.70			Weather	Cold and dry	·									
30 45	0.72				,										
60	0.75				Soakage Tria	Pit Width \	$N_{t}(m) =$	0.50							
90	0.77				O salas as Tris	Dit Law with									
180	0.83			Soakage Trial Pit Length $L_t(m) = 1.70$											
240 300	0.84		Total Depth from ground level D _{tb} (m) = 1.00												
				Intern	al Surface Area	of trial pit a	₅₀ (m) =	n/a							
				Storage	Volumo hotwoo	n 75 05% \	((m) -	n la							
				Storage		117J-2J/0 V	_p (III) –	n/a							
				Time for wat	er to fall from 75	-25% t _p (mi	nutes) =	#DIV/0!							
				Allowance for i	nfiltration throug	n soakaway	base	NO/ YES							
					Free volume	in addredat	e (%) =	100							
						- 39.094	(**)								
				SOIL INFILTE	RATION RAT	TE (f) =	N/a								
0.20 0.40				0.75m - 25% empty											
Depth (m 1.00						······································		• TEST 1							
0.80 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0			1.25m - 759	% empty				• TEST 1							
ерина 0.80 1.00 1.20 1.40			1.25m - 759	% empty				• TEST 1							
ци ци и и и и и и и и и и и и и и и и и			1.25m - 755	% empty				• TEST 1							
0.80 1.00 1.20 1.40 0.80	IENT:	David I	1.25m - 759	% empty			BRE D	• TEST 1	G365: 20						
ц ц ц ц ц ц ц ц ц ц ц ц ц ц	IENT: SITE :	David I Gracela MK18 4	1.25m - 759 Beattie ands, Th IDD	% empty	lesden		BRE D SO/	• TEST 1	G365: 20						
ц 0.80 1.00 1.20 1.40	IENT: SITE : Date:	David I Gracela MK18 4 Februa	1.25m - 759 Beattie ands, Th IDD iry 2022	% empty	lesden		BRE D SO/	• TEST 1	G365: 20 DESIGN						
Щ 0.80 1.00 1.20 1.40 ММЕНТБ: СLI Service	IENT: SITE : Date: nd Inves	David I Gracela MK18 4 Februa Stigatior	1.25m - 759 Beattie ands, Th IDD Iry 2022	% empty	lesden ATION TE	ST	BRE D SO/	• TEST 1	G365: 20 DESIGN						

Sample		Sample	Moisture	Liquid	Plastic	Plasticity	Plasticity	Mass	ential ines	on : 1990	Sample			
Ref No.	No.	Depth	content	Limit	Limit	Index	Index (Adjusted)	Passing 425µm	age pot Guidel	sificati 7-Part 2	Descriptio	on		
		m	%	%	%	%	%	%	Shrinka NHBC	Clas BS 137				
BH1	1	0.50	32	73	29	44	44	100	Н	CV	Clay			
	1	1.00	29	73	27	46	46	100	Н	CV	Clay			
	3	2.00	29	75	28	47	48	100	Н	CV	Clay			
	5	3.00	25	63	25	38	38	100	Μ	СН	Clay			
BH2	2	2.00	29	72	27	45	45	100	Н	CV	Clay			
	3	3.00	32	74	29	45	45	100	Н	CV	Clay			
REMA	RKS:				CL CI	Inorganic CLA Inorganic CLA	Y low plasticity Y medium plast	city	ML MI	Inorga Inorga	anic SILT low compressibility anic SILT medium compress	/ ibility		
12 BRE Dig	Des jest 4	siccated in ac 12 <i>desiccatio</i>	cordance v n in clay se	with oils	CH CV CE N L H	Inorganic CLA Inorganic CLA Inorganic CLA Non shrinkage Low shrinkage Medium shrink High shrinkag	Y very high plasticity Y very high plas Y extremely hig Potential Potential kage Potential e Potential	ticity h plasticity	MH MV ME (O)	Inorga Inorga Inorga Orgar	anic SiL I nign compressibili anic SILT very high compres anic SILT extremely high cor nic matter	y sibility npressibility		
CLIEN	IT:	David Beat	ttie				(BS EN ISO 2018)	17892-12 : Cla	auses 5.3 and	15.5 :	Checked by			
SI	ſE:	Graceland	s, The Ba	rracks,	Hillesde	n MK18	Natural wate	er content cone penetror	neter		In Ha	_		
DAT	ſE:	February 2	022				method (def Plastic limit	initive method) and plasticity ir	ndex		Approved by	0		
Gr	ound	l Investiga	ation				I				Report No.	Table		
Ser\ 40 Hor	ne Clo Tel	se, Wootton O 01865 326011	X13 6DD		INDEX PROPERTIES S.5848 B1									

Element Materials Technology Unit 3 Deeside Point Zone 3 Deeside Industrial Park Deeside CH5 2UA P: +44 (0) 1244 833780 F: +44 (0) 1244 833781

W: www.element.com

Ground Investigation Services 40 Home Close Wooton Oxon OX13 6DD

Attention :	Martyn Boughton
Date :	8th February, 2022
Your reference :	
Our reference :	Test Report 22/1354 Batch 1
Location :	Gracelands The Barracks Hillesden
Date samples received :	28th January, 2022
Status :	Final Report
Issue :	1

Six samples were received for analysis on 28th January, 2022 of which six were scheduled for analysis. Please find attached our Test Report which should be read with notes at the end of the report and should include all sections if reproduced. Interpretations and opinions are outside the scope of any accreditation, and all results relate only to samples supplied.

All analysis is carried out on as received samples and reported on a dry weight basis unless stated otherwise. Results are not surrogate corrected.

Authorised By:

Phil Sommerton BSc Senior Project Manager

Please include all sections of this report if it is reproduced

Element Materials Technology

Client Name:	Ground In	vestigatior	n Services				Report : Solid								
Reference: Location: Contact:	Gracelands The Barracks Hillesden Solids: V=60g VOC jar, J=250g glass jar, T=plastic tub														
	22/1354										1				
EMT Sample No.	1	2	3	4	5	6									
Sample ID	BH1	BH1	BH1	BH1	BH2	BH2									
Depth	0.50	2.00	3.00	8.00	2.00	3.00					Plaasa sa	o attachod n	otos for all		
COC No / misc											abbrevi	ations and a	cronyms		
Containers	т	т	т	т	т	т									
Sample Date	26/01/2022	26/01/2022	26/01/2022	26/01/2022	26/01/2022	26/01/2022									
Sample Turo	Soil	Soil	Soil	Soil	Soil	Soil									
Sample Type	301	3011	3011	3011	301	301									
Batch Number	1	1	1	1	1	1					LOD/LOR	Units	Method No.		
Date of Receipt	28/01/2022	28/01/2022	28/01/2022	28/01/2022	28/01/2022	28/01/2022									
Sulphur as S	0.03	0.09	0.16	0.96	0.04	1.72					<0.01	%	TM30/PM15		
Total Sulphate as SO4 BRE	0.05	0.20	0.37	0.24	0.08	5.59AA					<0.01	70	TIVI50/PIVI28		
Sulphate as SO4 (2:1 Ext) [#]	NDP	0.8770	1.7513	0.1831	0.2542	1.8613					<0.0015	g/l	TM38/PM20		
Sulphate as SO4 (2:1 Ext)	0.0795	-	-	-	-	-					<0.0015	g/l	TM38/PM60		
рН [#]	8.08	8.00	7.58	7.89	8.12	7.46					<0.01	pH units	TM73/PM11		

Element Materials Technology

NDP Reason Report

Matrix : Solid

Client Name:Ground Investigation ServicesReference:Gracelands The Barracks HillesdenLocation:Gracelands The Barracks HillesdenContact:Martyn Boughton

EMT Job No.	Batch	Sample ID	Depth	EMT Sample No.	Method No.	NDP Reason
22/1354	1	BH1	0.50	1	TM38/PM20	Sample too absorbent for this test

Element Materials Technology

Client Name: Ground Investigation Services

Reference: Location:

Gracelands The Barracks Hillesden Martyn Boughton

	Reason												
	Analysis	No deviating sample report results for job 22/1354											about another second of M botheli and columns on M therein a 114 of the
	EMT Sample No.												
ıghton	Depth												A second se
Martyn Bou	Sample ID												and the second sec
ij	Batch												- An Alanta
Contac	Job No.												

Please note that only samples that are deviating are mentioned in this report. If no samples are listed it is because none were deviating. Only analyses which are accredited are recorded as deviating if set criteria are not met.

NOTES TO ACCOMPANY ALL SCHEDULES AND REPORTS

EMT Job No.: 22/1354

SOILS and ASH

Please note we are only MCERTS accredited (UK soils only) for sand, loam and clay and any other matrix is outside our scope of accreditation.

Where an MCERTS report has been requested, you will be notified within 48 hours of any samples that have been identified as being outside our MCERTS scope. As validation has been performed on clay, sand and loam, only samples that are predominantly these matrices, or combinations of them will be within our MCERTS scope. If samples are not one of a combination of the above matrices they will not be marked as MCERTS accredited.

It is assumed that you have taken representative samples on site and require analysis on a representative subsample. Stones will generally be included unless we are requested to remove them.

All samples will be discarded one month after the date of reporting, unless we are instructed to the contrary. Asbestos samples are retained for 6 months.

If you have not already done so, please send us a purchase order if this is required by your company.

Where appropriate please make sure that our detection limits are suitable for your needs, if they are not, please notify us immediately.

All analysis is reported on a dry weight basis unless stated otherwise. Limits of detection for analyses carried out on as received samples are not moisture content corrected. Results are not surrogate corrected. Samples are dried at $35^{\circ}C \pm 5^{\circ}C$ unless otherwise stated. Moisture content for CEN Leachate tests are dried at $105^{\circ}C \pm 5^{\circ}C$. Ash samples are dried at $37^{\circ}C \pm 5^{\circ}C$.

Where Mineral Oil or Fats, Oils and Grease is quoted, this refers to Total Aliphatics C10-C40.

Where a CEN 10:1 ZERO Headspace VOC test has been carried out, a 10:1 ratio of water to wet (as received) soil has been used.

% Asbestos in Asbestos Containing Materials (ACMs) is determined by reference to HSG 264 The Survey Guide - Appendix 2 : ACMs in buildings listed in order of ease of fibre release.

Sufficient amount of sample must be received to carry out the testing specified. Where an insufficient amount of sample has been received the testing may not meet the requirements of our accredited methods, as such accreditation may be removed.

Negative Neutralization Potential (NP) values are obtained when the volume of NaOH (0.1N) titrated (pH 8.3) is greater than the volume of HCI (1N) to reduce the pH of the sample to 2.0 - 2.5. Any negative NP values are corrected to 0.

The calculation of Pyrite content assumes that all oxidisable sulphides present in the sample are pyrite. This may not be the case. The calculation may be an overesitimate when other sulphides such as Barite (Barium Sulphate) are present.

WATERS

Please note we are not a UK Drinking Water Inspectorate (DWI) Approved Laboratory .

ISO17025 accreditation applies to surface water and groundwater and usually one other matrix which is analysis specific, any other liquids are outside our scope of accreditation.

As surface waters require different sample preparation to groundwaters the laboratory must be informed of the water type when submitting samples.

Where Mineral Oil or Fats, Oils and Grease is quoted, this refers to Total Aliphatics C10-C40.

STACK EMISSIONS

Where an MCERTS report has been requested, you will be notified within 48 hours of any samples that have been identified as being outside our MCERTS scope. As validation for Dioxins and Furans and Dioxin like PCBs has been performed on XAD-2 Resin, only samples which use this resin will be within our MCERTS scope.

Where appropriate please make sure that our detection limits are suitable for your needs, if they are not, please notify us immediately.

DEVIATING SAMPLES

All samples should be submitted to the laboratory in suitable containers with sufficient ice packs to sustain an appropriate temperature for the requested analysis. The temperature of sample receipt is recorded on the confirmation schedules in order that the client can make an informed decision as to whether testing should still be undertaken.

SURROGATES

Surrogate compounds are added during the preparation process to monitor recovery of analytes. However low recovery in soils is often due to peat, clay or other organic rich matrices. For waters this can be due to oxidants, surfactants, organic rich sediments or remediation fluids. Acceptable limits for most organic methods are 70 - 130% and for VOCs are 50 - 150%. When surrogate recoveries are outside the performance criteria but the associated AQC passes this is assumed to be due to matrix effect. Results are not surrogate corrected.

DILUTIONS

A dilution suffix indicates a dilution has been performed and the reported result takes this into account. No further calculation is required.

BLANKS

Where analytes have been found in the blank, the sample will be treated in accordance with our laboratory procedure for dealing with contaminated blanks.

NOTE

Data is only reported if the laboratory is confident that the data is a true reflection of the samples analysed. Data is only reported as accredited when all the requirements of our Quality System have been met. In certain circumstances where all the requirements of the Quality System have not been met, for instance if the associated AQC has failed, the reason is fully investigated and documented. The sample data is then evaluated alongside the other quality control checks performed during analysis to determine its suitability. Following this evaluation, provided the sample results have not been effected, the data is reported but accreditation is removed. It is a UKAS requirement for data not reported as accredited to be considered indicative only, but this does not mean the data is not valid.

Where possible, and if requested, samples will be re-extracted and a revised report issued with accredited results. Please do not hesitate to contact the laboratory if further details are required of the circumstances which have led to the removal of accreditation.

EMT Job No.: 22/1354

REPORTS FROM THE SOUTH AFRICA LABORATORY

Any method number not prefixed with SA has been undertaken in our UK laboratory unless reported as subcontracted.

Measurement Uncertainty

Measurement uncertainty defines the range of values that could reasonably be attributed to the measured quantity. This range of values has not been included within the reported results. Uncertainty expressed as a percentage can be provided upon request.

ABBREVIATIONS and ACRONYMS USED

#	ISO17025 (UKAS Ref No. 4225) accredited - UK.
SA	ISO17025 (SANAS Ref No.T0729) accredited - South Africa
В	Indicates analyte found in associated method blank.
DR	Dilution required.
М	MCERTS accredited.
NA	Not applicable
NAD	No Asbestos Detected.
ND	None Detected (usually refers to VOC and/SVOC TICs).
NDP	No Determination Possible
SS	Calibrated against a single substance
SV	Surrogate recovery outside performance criteria. This may be due to a matrix effect.
W	Results expressed on as received basis.
+	AQC failure, accreditation has been removed from this result, if appropriate, see 'Note' on previous page.
>>	Results above calibration range, the result should be considered the minimum value. The actual result could be significantly higher.
*	Analysis subcontracted to an Element Materials Technology approved laboratory.
AD	Samples are dried at 35°C ±5°C
со	Suspected carry over
LOD/LOR	Limit of Detection (Limit of Reporting) in line with ISO 17025 and MCERTS
ME	Matrix Effect
NFD	No Fibres Detected
BS	AQC Sample
LB	Blank Sample
Ν	Client Sample
ТВ	Trip Blank Sample
ОС	Outside Calibration Range
AA	x10 Dilution

Method Code Appendix

Element Materials Technology

EMT Job No: 22/1354

Reported on dry weight basis	Yes	Yes	Yes	Yes	oN			
Analysis done on As Received (AR) or Dried (AD)	AD	AD	AR	AD	AR			
MCERTS (UK soils only)								
ISO 17025 (UKAS/S ANAS)		Yes			Yes			
Description	Acid digestion of dried and ground solld samples using Aqua Regia refluxed at 112.5 °C. Samples containing asbestos are not dried and ground.	Extraction of dried and ground or as received samples with deionised water in a 2:1 water to solid ratio using a reciprocal shaker for all analytes except hexavalent chromium. Extraction of as received sample using 10:1 ratio of 0.2M sodium hydroxide to solid for hexavalent chromium using a reciprocal shaker.	As received solid samples are extracted with deionised water in a 2:1 ratio of water to solid.	A hot hydrochloric acid digest is performed on a dried and ground sample, and the resulting liquor is analysed.	Extraction of as received solid samples using one part solid to 2.5 parts deionised water.			
Prep Method No. (if appropriate)	PM15	PM20	PM60	PM29	PM11			
Description	Determination of Trace Metals by ICP-OES (Inductively Coupled Plasma – Optical Emission Spectrometry): WATERS by Modified USEPA Method 200.7, Rev. 4.4, 1994; Modified EPA Method 6010B, Rev.2, Dec 1996; Modified BS EN ISO 11885:2009: SOILS by Modified USEP 6010B, Rev.2, Dec. 1996; Modified EPA Method 3050B, Rev.2, Dec. 1995	Soluble Ion analysis using Discrete Analyser. Modified US EPA methods. Chloride 325.2 (1978), Sulphate 375.4 (Rev. 2 1993), TON 353.1 (Rev. 2 1993), TON 353.1 (Rev. 2 1993), Nitrite 354.1 (1971), Hex Cr 7196A (1992), NH4+ 350.1 (Rev. 2 1993) – All anions comparable to BS ISO 15923-1: 2013I	Soluble Ion analysis using Discrete Analyser. Modified US EPA methods. Chloride 325.2 (1978), Sulphate 375.4 (Rev.2 1993), TON 353.1 (Rev.2 1993), TON 353.1 (Rev.2 1993), Nitrite 354.1 (1971), Hex Cr 7196A (1992), NH4+ 350.1 (Rev.2 1993) – All anions comparable to BS ISO 15923-1: 2013I	Acid soluble sulphate (Total Sulphate) analysed by ICP-OES	Modified US EPA methods 150.1 (1982) and 9045D Rev. 4 - 2004) and BS1377- 3:1990. Determination of pH by Metrohm automated probe analyser.			
Test Method No.	TM30	TM38	TM38	TM50	TM73			