Proposed Aldi Food Store

Salisbury Rd, Calmore, Totton

TRANSPORT ASSESSMENT

Entran is an independent environmental and transportation consultancy formed in 2005, with specific abilities and expertise in traffic engineering, transport planning, environmental impact assessment, air quality and noise assessment and monitoring. © Entran Ltd. All rights reserved.

TRANSPORT ASSESSMENT

Revision	Date	Notes	Author	Checked	Approved
V1	April 2021	Draft prepared	AKL	DJA	RGW
V2	Nov 2021	Report finalised	AKL	DJA	RGW
V3	Mar 2022	Updated Layout	AKL	DJA	RGW
V4	Apr 2022	Updated Layout	AKL	DJA	RGW
V5	Apr 2022	Revised assessment years	AKL	DJA	RGW

Entran Limited

CONTENTS

1. INTRODUCTION 4
2. SITE LOCATION 5
3. LOCAL TRANSPORT NETWORK 7
4. PROPOSED DEVELOPMENT 13
5. TRANSPORT IMPLEMENTATION STRATEGY 17
6. DELIVERY AND SERVICING 21
7. TRIP GENERATION, DISTRIBUTION AND ASSIGNMENT 23
8. TRANSPORT EFFECTS 32
9. TRANSPORT IMPROVEMENTS 39
10. SUMMARY AND CONCLUSIONS 40
TABLES
5.1 Indicative Staff Mode Share Targets
5.2 Summary of Travel Plan Measures
7.1 Consented Site Trip Generation
7.2 ALDI Trip Generation
7.3 Industrial Units Trip Generation
7.4 Total Development Trip Generation
7.5 Proposed ALDI Person Trip Generation
7.6 Proposed Industrial Units Person Trip Generation
8.1 Base Traffic Growth Rates
8.2 Junction Capacity Assessment of the Site Access / A36 Salisbury Rd
8.3 Junction Capacity Assessment of Calmore Drive / Salisbury Road Roundabout
8.4 Total Net Development Trip Generation
FIGURES
2.1 Strategic Site Location
2.2 Local Context
2.3 Site Red Line Plan
3.1 Existing Site Accesses
3.2 A36 Footway and Crossing Point
$3.3 \quad 1 \mathrm{~km}$ and 2 km Walking Isochrones
3.4 Local Cycle Routes

3.5 Local Bus Routes

3.6 Personal Injury Accidents
3.7 Existing Traffic Flows
4.1 Proposed Site Layout
4.2 Proposed A36 Access Junction Layout
4.3 NewMotion EVCP cover design
7.1 Trade Draw to Proposed ALDI Foodstore
7.2 ALDI Primary New Trip Distribution
7.3 ALDI Primary New Trip Assignment
7.4 ALDI Secondary Pass-by Trip Assignment
7.5 ALDI Secondary Diverted Trip Assignment
7.6 Total ALDI Trip Assignment
7.7 Industrial Units Trip Distribution
7.8 Light Industrial Unit Trip Assignment
7.9 All Development Trip Assignment
8.1 2023 Baseline Traffic Flows
8.2 2028 Baseline Traffic Flows
8.3 2023 Baseline + Development Traffic Flows
8.4 2028 Baseline + Development Traffic Flows
8.5 Change in Traffic Flows on A36 Salisbury Road
8.6 Parking Accumulation

APPENDICES

A Bus Timetables
B PIA Data
C Application Site Layout and Swept Path Analysis
D TRICS Data
E Junctions 10 Output

1. INTRODUCTION

Overview

1.1. This Transport Assessment (TA) has been prepared by Entran Ltd to detail and assess transport matters associated with a proposed mixed-use development including employment land uses and an enabling Aldi discount foodstore located on land at Little Testwood Farm, Calmore, Totton in Hampshire.
1.2. The proposed development has been the subject of two previous planning applications for commercial land uses and currently has extant planning permission for 5,595 sq.m. of Class B1c, B2 and B8 employment uses (under planning application ref. 20/10109).
1.3. The hybrid planning application for the new development seeks full planning permission for the discount foodstore together with outline planning consent for employment units all contained within the red line boundary. The intention is for the discount foodstore to form an enabling development for the remaining employment uses.
1.4. This TA report considers all land uses included within the site boundary. The proposal comprises:

- 1,890 sqm GFA Class E Foodstore including a total 140 customer car parking spaces (5.0 m x 2.5 m) of which 4 EVCP spaces and 20 passive spaces, 6 disabled parking bays, 8 P\&C parking bays and 2 click and collect bays, together with 8 customer cycle parking spaces under a shelter (staff cycle parking internal to the warehouse) with pedestrian access from Salisbury Road. 4 further staff car parking spaces would be provided in the service yard area.
- 1,848 sqm Class E light industrial unit with 47 associated parking spaces of which 4 EVCP spaces and 10 passive spaces, 2 disabled spaces and 6 cycle spaces.
1.5. Full details of the proposed development are contained in section 4 of this report.
1.6. This TA has sought to reference both National and Local Policy and Plan Documents including:
- NPPF 2021
- Travel Plans, Transport Assessments and Statements in decision making (2014)
- DfT- GTA (2007)
- NFDC Local Plan
- NFDC Parking Guidance SPD
1.7. The DCLG Planning Practice Guidance "Travel plans, transport assessments and statements in decision taking" has superseded the 2007 guidance as current government guidance on the transport related effects of development but many highway authorities still refer to it as useful advice on detailed matters of transport assessment.

Structure of Report

1.8. This report provides details of the traffic and transportation issues associated with the development proposals and addresses the following:

- The Existing Site and Surrounding Area
- Development Proposals
- Delivery and Servicing
- Trip Generation, Distribution and Assignment
- Highway Impact
- Summary and Conclusions

2. SITE LOCATION

2.1. The application site is located in Calmore about 2.5 km to the north of Totton within the boundary of the existing built-up area.
2.2. The site comprises a level vacant plot of approximately 1.59 Ha located on the eastern side of A36 Salisbury Road.
2.3. To the south of the site are football pitches with associated stands and buildings belonging to the Snows Stadium of AFC Totton Football Club.
2.4. To the north is Little Testwood Farmhouse and a traveller's site which includes an informal builder's yard which wraps around the north and east of the site. Immediately to north of that is a large commercial building currently occupied by MSX bonded warehousing.
2.5. Opposite the site on Salisbury Road is an extensive building currently used as a nursing home by Laurel Care Home.
2.6. Immediately to the south of the Football Club are the large industrial estates of South Hampshire Industrial Park and Calmore Industrial Estate which are both served off Salisbury Road via Brunel Way.
2.7. The strategic site location is illustrated in Figure 2.1 with the local context shown in Figure 2.2 below.

Figure 2.1-Strategic Site Location

Figure 2.2 - Local Context

©OpenStreetMap contributors
2.8. The application red/blue line boundary is included as Appendix A and a location plan is included as Figure 2.3 below:

Figure 2.3 -Site Red Line Plan

3. LOCAL TRANSPORT NETWORK

Site Access

3.1. The site currently takes vehicle and pedestrian access from A36 Salisbury Road via the existing access to AFC Totton Football Club, which maintains a right of access across the site. The site also has an additional right of access via the private road leading to Little Testwood Farm traveller's site.
3.2. The access onto Salisbury Road forms a simple priority junction with a wide 10 m radius bellmouth and a minor arm width of 6 m . A footway is provided on the southern side of the access road. No dedicated right turning lane facility is provided on Salisbury Road.
3.3. The existing site access arrangement is illustrated below in Figure 3.1.

Figure 3.1 - Existing Site Access

Local Highway Network
3.4. A36 Salisbury Road forms a c.7.3m wide street lit single carriageway major distributor road linking the centre of Totton to the south and the A326 to the north.
3.5. The local speed limit on Salisbury Road is 40 mph which reduces to 30 mph approximately 200 m to the south of the site access.
3.6. Approximately 250 metres to the south of the Site, Salisbury Road joins Calmore Road and Brunel Road at a four-arm 60m ICD roundabout junction.
3.7. Calmore Road provides access into the residential areas of Calmore.
3.8. Salisbury Road continues southwards for 2 km to join the A336 at a four-arm roundabout in the centre of Totton. The A336 links to the Totton bypass and towards Southampton.
3.9. To the north of the site access, Salisbury Road continues for 1.2 km to join the A326 at a prioritycontrolled grade separated junction with slip lanes provided onto the A326 dual carriageway. The A326 continues north to link to the M27 Junction 2 (Ower Interchange).

Sustainability audit

3.10. Initial pedestrian, cycle and public transport audits have been carried out for the area surrounding the site to include an analysis of the current facilities for journeys by modes other than the private car.

Pedestrian and Cyclists

3.11. The Design Manual for Roads and Bridges (DMRB) TD 91/05 "Provision for Non-Motorised Users" states in paragraph 2.3 that "walking is used to access a wide variety of destinations including educational facilities, shops, and places of work, normally within a range of up to 2 miles. Walking and rambling can also be undertaken as a leisure activity, often over longer distances".
3.12. Acceptable walking distances will vary considerably depending on various factors such as fitness and land topography; however, guidelines by the Institution of Highways and Transportation (IHT) state the acceptability of distances in metres to various attractions, are as follows:

- Desirable : 500m
- Acceptable : 1,000m (12-13 mins)
- Preferred Maximum : 2,000m
3.13. Manual for Streets usefully states 'The propensity to walk is influenced not only by distance, but also by the quality of the walking experience. A 20-minute walk alongside a busy highway can seem endless, yet in a rich and stimulating street, such as in a town centre, it can pass without noticing. Residential areas can offer a pleasant walking experience if good quality landscaping, gardens or interesting architecture are present' (MfS, Para 6.3.1).
3.14. TD 91/05 states in paragraph 2.11 that "cycling is used for accessing a variety of different destinations, including educational facilities, shops and places of work, up to a range of around 5 miles. Cycling is also undertaken as a leisure activity, often over much longer distances. As well as being a mode of transport in its own right, cycling frequently forms part of a journey in combination with cars and public transport".
3.15. Local Transport Note (LTN) 2/08 Cycle Infrastructure Design details in paragraph 1.5 "Typical cycle trip distances". In common with other modes, many utility cycle journeys are less than three miles, although, for commuter journeys a trip distance of over five miles is not uncommon. Novice and occasional leisure cyclists cycle longer distances where the cycle ride is the primary purpose of their journey. A round trip on a way-marked leisure route could easily involve distances of 20-30 miles. Experienced cyclists will often be prepared to cycle longer distances for whatever journey purpose".
3.16. Within a walk distance of 2.0 km , the site is accessible on foot via footways along all local roads, providing a continuous link between the site and the local area. This includes uncontrolled pedestrian crossing points with dropped kerbs. Figure 3.2 illustrates the standard of footways viewed northwards, just south of the site access.
Figure 3.2 - A36 Footway and Crossing Point

3.17. There is a 1.5 m wide footway provided to the west side of the road and a short length of 1.8 m wide footway on the east side leading from the site access southwards to a bus layby and a further point of foot access to the ATC Totton Football Club.
3.18. There are two bus laybys provided on Salisbury Road immediately to the south of the site access. These facilities form simple flag stops with seating provided. A basic dropped kerbed crossing point is provided over Salisbury Road 50m south of the site access as illustrated above.
3.19. Cooks Lane is also stopped up opposite the northbound bus layby on Salisbury Road which provides a direct and low traffic connection for NMU trips between the site and the existing residential areas of Calmore.
3.20. The Calmore Road and Brunel Road roundabout junction includes uncontrolled pedestrian crossing points over three approach splitter islands, to include dropped kerbs.
3.21. Calmore Road includes footway facilities separated from the carriageway by wide verges. There is good permeability of footway links through the local area.
3.22. These links also help reduce severance of the site to surrounding areas in foot. Figure 3.3 provides an illustration of the extent of the surrounding urban area which is located within a comfortable 1,000m and $2,000 \mathrm{~m}$ walk of the site. Within $2,000 \mathrm{~m}$ walk of the site there is a population of 16,000 residents.

Figure 3.3 - 1 km and 2km Walking Isochrones

©OpenStreetMap contributors
3.23. Figure 3.4 provides an illustration of local cycle (blue lines) and footpath routes though the local area. There is an on-road shared cycle route along Salisbury Rd to the south of the Calmore Rd roundabout and local routes within the Calmore residential estates. The NCR route 236 is located approximately 2 km to the south in Totton.

Figure 3.4 - Local Cycle Routes

OOpenStreetMap contributors
3.24. This review of facilities and routes has identified that there are no major obstacles to customers or staff walking or cycling to and from the site, other than the limited crossing of the A36 in the vicinity of the site access, which is considered and addressed in the following sections.

Public Transport

3.25. Bus services are provided adjacent to the site on Salisbury Road. There are bus stops adjacent to the site within 50 metres / 1 minutes' walk and these include lay-bys in both directions, flag with timetable and seating. These stops are served by Bluestar Route X7/X7R. Route X7 is an hourly service between 0730 and 1830 Monday to Saturday linking Salisbury, to Romsey and Southampton.
3.26. A more frequent local service is provided by Bluestar 12 which passes through the Calmore residential estate areas. This service is every 20 minutes during the day, Monday to Saturday and every hour on a Sunday. The nearest stop is located on Coppice Road, within 400 m of the site.
3.27. An illustration of the routes and the areas served is provided in Figure 3.5. More details can be found at https://www.bluestarbus.co.uk/ and the local timetables are attached at Appendix A.

Figure 3.5 - Local Bus Routes

©OpenStreetMap contributors
3.28. The nearest railway station is Totton which is located 3 km south of the site. This station is on the South Western Main Line and served with an hourly stopping service between Poole, Southampton and on to London Waterloo.
3.29. It is evident that opportunities exist to travel to and from the site by foot, by bike, or using local public transport. This is a good site to promote sustainable travel and reduce reliance on the private car.

Road Safety

3.30. Personal injury accident data for the local area has been obtained from www.crashmap.co.uk for the same local area included by the transport reports supporting the extant planning consent. Figure 3.6 illustrates the accidents recorded in the local study area over a five-year period 2016 to 2020.
Figure 3.6 - Personal Injury Accidents

3.31. The data indicates that within proximity of the site access there have been no personal injury accidents. There were two accidents of slight severity recorded at the Calmore Road / Salisbury Road roundabout. The relevant accident data is contained at Appendix B to this report.
3.32. A review of the accident detail identifies no blackspots or frequent common causes relating to highway deficiencies. The current accident rate in the vicinity of the site is very low, and the rate at the roundabout is much lower than the typical mean frequency of accidents of 1.08 per annum as advocated in DMRB TD 16/07.

Existing Traffic Flows

3.33. Due to the Covid-19 pandemic it was not possible to collect reliable traffic data reflective of normal traffic conditions on the local highways surrounding the site.
3.34. Therefore, in order to understand the local traffic conditions and to complete an assessment meeting the normal requirements of the local highway authority, it was necessary to make use of historical data. Information was obtained from the Transport Assessment report produced in support of the extant planning permission on the site for 5,595 sq.m. of Class B1c, B2 and B8 employment uses (under planning application ref. 20/10109).
3.35. The weekday recorded flows at the site access and the Calmore Road / Salisbury Road roundabout on Thursday 18th October 2018 are summarised in Figure 3.7. There are no Saturday traffic counts available.

Figure 3.7 - Existing Traffic Flows

4. PROPOSED DEVELOPMENT

Development Composition

4.1. As stated in section 1 , the proposed development comprises:

- 1,890 sqm GFA Class E Foodstore including a total 140 customer car parking spaces (5.0 m $x 2.5 \mathrm{~m}$) of which 4 EVCP spaces and 20 passive spaces, 6 disabled parking bays, 8 P\&C parking bays and 2 click and collect bays, together with 8 customer cycle parking spaces under a shelter (staff cycle parking internal to the warehouse) with pedestrian access from Salisbury Road. Four further staff parking spaces would be provided in the service yard area.
- 1,848 sqm Class E light industrial unit with 47 associated parking spaces of which 4 EVCP spaces and 10 passive spaces, 2 disabled spaces and 6 cycle spaces.
4.2. Cycle parking is to be provided on site including 8 customer cycle parking spaces under shelter. Staff cycle parking would be provided internal to the warehouse and industrial units. The constituent design components of the proposed development layout are discussed in more detail below.
4.3. Requirements for the site are set out in the Local Plan Sites and Development Management DPD 2014 at Policy TOT12 which includes details about how the site should be developed and provision for access by vehicles and cycles.

Development Layout

4.4. A plan extract of the current proposed development layout is illustrated in Figure 4.1 and included as architect's plans at Appendix C including HGV swept path tracking plots.
Figure 4.1 - Proposed Site Layout

Access

4.5. As shown above in Figure 4.1, the proposed site access would be formed from A36 Salisbury Road via an extension to the existing access to AFC Totton Football Club. The existing junction has operated successfully with no known issues and there are no recorded accidents in the past five years. Therefore, no issues are expected with the re-use of the junction to also serve employment and discount foodstore land uses.
4.6. The detail of the proposed access would remain the same as the agreed layout for the extant planning permission for 5,595 sq.m. of Class B1c, B2 and B8 employment uses (under planning application ref. 20/10109) together with some additional improvements.
4.7. It is anticipated that the works to the existing access would be undertaken via a Section 278 agreement with the highway authority. The proposed access has previously been the subject of a Stage 1 Road Safety Audit with extensive negotiation and discussion with the local highway authority.
4.8. The site access would form an extension from the existing access road into the football club and the existing junction onto A36 Salisbury Road would be upgraded from a simple T-junction to a T-junction with a ghost island right turn lane on the A36.
4.9. The access junction would include a 15 m radii bellmouth with 4 m wide entry and exit lanes separated by a central reservation.
4.10. There would be an uncontrolled pedestrian crossing point provided over the site access to include dropped kerbs and tactile paving with central refuge island. A further pedestrian crossing point would be provided over the A36 immediately north of the site access to include dropped kerbs, tactile paving and a central refuge island.
4.11. The southbound bus layby would be retained as part of the design and the footway relocated and reconstructed to allow for the wider bellmouth.
4.12. As part of the ALDI proposals, a $2 m$ wide pedestrian footway would also be provided on both sides of the access road leading into the site from the A36. This would provide a contiguous link to all existing footways and further improve the public realm for trips on foot.
4.13. The access layout was previously fully tested and tracked for articulated HGV movements as part of the supporting documentation to the consented planning application ref. 20/10109. The consented layout would ensure continued access for emergency vehicles to the football club and also to the proposed development site. Details of the road makings for the site access junction are illustrated in Figure 4.2.

Figure 4.2 - Proposed A36 Access Junction Layout

Source: planning application ref. 20/10109
4.14. The site access visibility envelope would be in compliance with local design standards and accord with DMRB compliant visibility splays for a 40 mph zone. The visibility splays remain the same as the drawings contained within the previously consented planning applications, which are understood to be acceptable by the local highway authority

Internal Layout

4.15. The ALDI store would include circulating areas for parking designed in accordance with normal design standards and commensurate with the known needs for an operational ALDI store. Parking bays would be set perpendicular with a minimum reversing (or aisle width) of 6 m .
4.16. Pedestrian footways with uncontrolled crossing facilities including dropped kerbs and tactile paving (as required) would be provided alongside the main spur road leading into the site to ensure direct access to the pedestrian crossing over the A36 to the main pedestrian entrance into the foodstore. On the south side a similar footway would provide access on foot to the B2 light industrial building, with a crossing point provided over the access to the football club. It is understood that there is an existing right of way inside and along the southern boundary of the site and space for this would be maintained with a boundary fence set back.
4.17. Within the ALDI car park, a shared surface would operate inside a low-speed environment.
4.18. The internal layout for the industrial unit forecourt would be commensurate with normal employment requirements. A footway would be provided to the main access and a space provided around the curtilage of the entire building to allow easy foot access to help reduce interactions between vehicles and pedestrians.
4.19. The internal layout of the site facilitates access and egress for service vehicles from the ALDI service access that will be able to be undertaken in a forward gear. As per ALDI's standard operational requirements, servicing is provided to the rear of the site. Further details are presented in Section 6.

Parking

4.20. Parking standards are contained in the adopted New Forest District Local Plan, "Parking Standards" SPD dated October 2012.
4.21. Table 2 in the Parking Standards SPD considers that for B2 open classification industrial units, a maximum of 1 space per 45 sq.m. should be provided together with a minimum of 1 cycle stand per 350sqm GEA for long stay parking plus 1 stand per 500sqm GEA for short stay parking.
4.22. Table 3 in the Parking Standards SPD considers that for Food retail a maximum of 1 space per 14 sq.m. should be provided together with a minimum of 1 cycle stand per 300sqm GEA (or 1 per 6 staff) for long stay parking plus 1 stand per 200sqm GEA for short stay parking.
4.23. Motorcycle parking should be provided 1 space per 25 car parking spaces
4.24. According to the above standards, assuming 1,890 sqm GFA for the ALDI unit with 27 FTE staff and 1,849 sqm GFA for the industrial unit, the following standards may apply:

- Total 135 car parking spaces for ALDI with a minimum of 6 cycle spaces for staff and 10 spaces for customers.
- Total of 41 car parking spaces for the industrial units and a minimum of 10 cycle spaces for staff and visitors.
- Site total car parking of 176 car parking spaces with a minimum of 26 cycle parking spaces, with 7 motorcycle parking spaces.
4.25. The proposed development envisages a total of 140 customer spaces for the ALDI store (including 2 No. click and collect, 8 No. Parent and Child, 5 No. Disabled, 4 No. active Electric Vehicle Charging Points with provision for 20 additional) plus 4 staff spaces in the delivery area, and 8 cycle spaces (4 stands) located in a secure and safe location under a shelter, with staff parking provided internally to the warehousing area.
4.26. The proposed parking provision for the light industrial unit would be 47 parking spaces, of which 4 EVCP spaces and 10 passive spaces, 2 disabled spaces and 6 cycle spaces.
4.27. The proposed vehicle parking provision for the ALDI store would therefore be slightly above the adopted maximum parking standards. If the LHA require, an additional cycle hoops can be provided to meet the minimum cycle parking standards. The parking provision for the industrial units would also be slightly greater than the standards. However, overall, the parking provision for the site is broadly in line with the SPD parking standards.
4.28. Based on extensive local experience at other recently consented and nearby ALDI stores, the proposed parking would ensure adequate provision and considered to be appropriate and commensurate with both trading and operational requirements to help efficient operation of the car park given turnover and to prevent overspill onto adjacent roads. The following sections provide a parking accumulation check.
4.29. Cycle parking would be located in proximity of the main entrance to the ALDI store in a step free and convenient location as illustrated on the architect's plans. Cycle parking for ALDI is normally provided at the front of the store in an easy to locate and convenient position. More details are provided in the Travel Plan.
4.30. It is noted that ALDI seek to encourage travel by cycle whenever possible and in this regard will, through their Travel Plan, review the occupation of cycle stands and, if necessary and justified, introduce additional shoppers cycle parking facilities.
4.31. In terms of EV parking provision, the ALDI development would include:
4.32. 4 live EVCPs, 20 no future EVCPs
4.33. The first two EVCP bays would be designed as accessible bays. In order to highlight that they are EVCPs the white lining of these bays will be changed to blue.
4.34. The NewMotion EVCP design is shown in Figure 4.3.

Figure 4.3 - NewMotion EVCP cover design

5. TRANSPORT IMPLEMENTATION STRATEGY

5.1. As stated in the introduction, this TA has been developed to seek to influence modes of travel to the proposed redevelopment rather than merely predicting travel patterns and providing mitigation.
5.2. The aim of the Transport Implementation Strategy (TIS) for ALDI is to set out the measures the development proposal will support to provide travel choice and support the objectives of the Local Plan and in this regard presents:

Target Modal Split

5.3. The initial draft target mode split for the TIS for all journeys to and from the development proposal is summarised in Table 5.1. This has been derived by inspection of the 2011 census data for the local workplace population (Zone E33038103). The only target is car driver, with the targets for individual sustainable travel modes indications only of what one might expect the approximate split of journeys to be, but not specific targets in their own right. (i.e. all non-car driver modes of travel are 'sustainable travel modes').
5.4. Provided the overall contribution of sustainable travel modes helps deliver the car driver target, variations from the targets for sustainable travel modes is acceptable. Indeed, in some instances it is hoped they are exceeded.

Table 5.1 - Indicative Staff Mode Share Targets

Mode of Travel	Expected Initial Modal Split	2-year Modal Split Target	5-Year Modal Split Target
Car Driver	75%	73%	71%
Car Passenger, Cycle, Walk, Bus	25%	27%	29%

TIS Measures

5.5. The TIS aims to make the inevitable step change shift in overall travel mode across the area easier and quicker, providing travel choice for all. A Travel Plan should include the provision of up-to-date information about public transport services, timetables, and opportunities for car sharing (e.g. via a car share website).
5.6. The measures within the TIS, which are set out in the ALDI Staff Travel Plan, aimed at providing this travel choice include (In addition, all employees will receive details of the TP upon commencement of employment and a copy of the TP will be kept in the staff room).

Measures and Actions

5.7. The Travel Plan Co-ordinator will ensure that the Travel Plan is implemented; operating efficiently and that all the measures for encouraging sustainable travel are in place. Responsibilities include:

- Promoting and encouraging travel modes other than the car, including providing information to staff via a notice board in the staff room, which will be checked every three months. Travel options will also be discussed at staff meetings;
- Ensuring that all information relating to public transport, cycling, walking and car sharing is displayed on staff notice boards and is kept accurate and up to date, as well as discussing the TP at staff meetings to continually encourage use of alternative modes than the private car;
- Ensuring that all information relating to public transport, cycling, walking are available to customers via availability of bus timetables etc, on the packing shelf at the front of the store and that the provided information is kept accurate and up to date;
- Promoting car sharing during both the staff interview and induction process as well as ongoing reminders from the TPC;
- Identify employee travel habits through staff surveys;
- Monitoring and reviewing the Travel Plan as set out in the TP;
- Training / induction of staff to cover Travel Plan and travel options;
- Ensuring the needs of the less mobile is incorporated in the Plan; and
- Coordinate and monitor the TP, update as required and liaise with external bodies and other relevant developers (in discussion with NFDC) in accordance with the contents of this TP.
5.8. The measures developed on site shall be largely based on the outcomes of the initial travel survey. Some measures are essential in meeting with current standards, for example the quantity of cycle and car parking provision, other measures will be unique to the site.
5.9. As such the following sections are intended to give an overview of the potential measures that could be implemented by the Travel Plan Co-ordinator if the travel survey highlights them as being appropriate.
5.10. TP Measures
5.11. Due to the changing characteristics of the development over time it would be ineffective for the TP to specify TP measures or funding for measures that may not be required, Nevertheless, funding will be made available for the implementation of measures should the need arise through the monitoring process.
5.12. In this regard therefore, required measures must be determined by reference to travel surveys and importantly, an understanding of the factors that would motivate staff to alter their travel behaviour. The programme of surveys and monitoring therefore not only needs to identify travel behaviour but also attitudes to travel and key motivators for change.
5.13. Notwithstanding this, the TP's measures are divided into sub-categories:
- Hard measures - these are infrastructure provision or improvements;
- Soft measures - these are management measure, incentives, marketing initiatives etc;
- Secured measures - these are measures that will be implemented; and
- Failsafe measures - these are an 'arsenal' of measures available to the TP Coordinator to be chosen according to survey feedback so that resources can be targeted towards those measures found to be most effective.
5.14. The following tables describe both secure and failsafe measures per mode. Secure measures are those that will be adopted prior to recruitment of staff or as part of the build process, with the failsafe measures being those that could be introduced should the need arise.
5.15. In addition, all employees will receive details of the TP upon commencement of employment and a copy of the TP will be kept in the staff room.

Table 5.2 - Summary of Travel Plan Measures

Walking - Hard measures

Secured	Failsafe
• Good on-site lighting;	$\bullet \quad$ Additional pedestrian signage;
• Lockers;	
• New footway across store frontage	

Walking - Soft measures

Secured	Failsafe
• Marketing - promoting walking in all	$\bullet \quad$ Personalised Travel Planning.
written and electronic material - Travel pack	
Notice board in staff room displaying the above	

Cycling - Hard measures

Secured	Failsafe
- Good on-site lighting;	• Additional cycle parking
- \quadpexternal prominent and covered cycle parking spaces via Sheffield loops- usage to be monitored - via the TP	
-Provision for in-store cycle storage facilities for employees convenient to staff room -Implement the Government backed cycle purchase scheme (Aldi standard)\quad	

Cycling - Soft measures

Secured	Failsafe
Marketing - promoting cycling in all	• Negotiated discount with local bike shop;
written and electronic material - Travel pack	• Personalised travel planning.
Notice board in staff room displaying cycle routes to and from the development	

Public Transport - Soft measures

Secured	Failsafe
• Marketing - promoting the use of public	• Personalised travel planning;
transport in all written and electronic	
material; Travel pack (including bus	
routes and bus/train timetable info)	• Investigate bus discounts for staff
Travel notice board in staff room displaying bus timetables	

Car Sharing - Hard measures

Secured	Failsafe
• Marketing - promoting car sharing in all	• Personalised travel planning
written and electronic material as well as interview and induction process	
• Guaranteed ride home (emergency only)	

5.16. The Travel Pack (to be agreed with NFDC) will contain information on the alternatives to singleoccupancy car use available to staff including;

- Comprehensive walking and cycling route maps linking the site to local infrastructure including shops, residential areas and bus facilities;
- Bus maps and timetables as well as leaflets describing the health benefits of cycling and walking;
- contact details of the Travel Plan Co-ordinator for the site; and
- Useful resources such as Journey Planner website to enable people to plan their own journeys.
5.17. Travel Packs will be issued to all staff as part of their induction process. Staff will also be advised of the Travel Plan and Pack during the interview process.
5.18. TP submitted under separate cover.

6. DELIVERY AND SERVICING

ALDI Company Specific Servicing Arrangements

6.1. ALDI, as a company, operate the following specific servicing arrangements and working practices.
6.2. A store in Totton as per Aldi's other nearby stores will be serviced from Aldi's Regional Distribution Centre (RDC) in Swindon.
6.3. This RDC currently supplies goods to in excess of 80 stores across the south region of England.
6.4. Between 30-50 staff (27 FTE) are employed at each store, comprising a Store Manager, Assistant Store Manager and Store Assistants, although not all staff are present on site at all times.
6.5. Delivery routes are planned to minimise distances travelled by each vehicle and maximise efficiency of goods per delivery. This practice is economically prudent for Aldi but also sustainable by virtue of reducing vehicle kilometres travelled. Each vehicle will visit between 1 and 6 stores per trip depending on the nature of the delivery and the geographical location of the stores.
6.6. On average each store will have only two deliveries by articulated lorry per day plus a modest number of smaller vehicles delivering locally sourced fresh produce. This compares with an average of 6 to 10 articulated lorries and up to 20 subsidiary vehicles (including HGVs) per day usually associated with the larger supermarkets.
6.7. Each store manager will have an allotted time each day by which the main delivery will have taken place. Each driver is furnished with a mobile phone and is able to inform the distribution centre if any delay is likely. However, this is very rare and allocated delivery times are consistently met by the distribution teams.
6.8. Delivery practices are identical at each store. Goods delivery is a one-man function carried out by the driver. The vehicle is reversed down the delivery ramp to the loading bay which is fitted with a "dock leveller" to provide a flush ramp from the floor of the lorry to the floor of the storage area.
6.9. The driver gains access to the building by means of a "driver's door" located next to the loading bay. The driver opens the roller shutter door from within the building then unloads the goods directly into the storage area. The driver is then responsible for locking the shutter and the side door before leaving. Contact with the store manager is only required where site specific special arrangements dictate.
6.10. The daily HGV delivery arrival journey will normally take place outside peak highway network hours as well as peak store trading hours;

- The standard delivery period is $1 / 2$ hour;
- Vehicular access to the delivery ramp will be through the car park;
- Aldi's service vehicles benefit from operational safety improvements including;
- Rear Cameras;
- Audible Warning Systems; and
- Reversing Object Sensors.
6.11. ALDI has a long-established approach of ensuring minimal off-site impacts to neighbours and aims to be a responsible neighbour developing good relationships within the community and ensuring any disturbances are kept to a minimum.

Site Specific Operational Requirements

6.12. Aldi, as a company, operate the following specific servicing arrangements and working practices:

- The store will normally be served by two HGV's and a number of smaller vehicles per day, which will unload their goods using a dock leveller adjacent to the store building;
- Access for service vehicles will be from the site access.
- Turning and reversing manoeuvres undertaken within the staff car park area;
- Egress in a forward gear;
- The daily HGV delivery arrival journey will normally take place outside peak highway network hours; and
- Any non-staff vehicles remaining anywhere in the car park once the store is closed will be warned/fined and eventually removed.
6.13. The swept path of the HGV to and from Salisbury Road and the ALDI dock leveller is illustrated in Appendix C.
6.14. The location of the ALDI dock leveller is on the southeast side and as such the proposed building is located between the service and delivery operation and the existing residential buildings located to the north of the site. To the south of the site is the Football Club. This arrangement should naturally limit any impact to residential amenity.
6.15. It is noted that the extant site permission under planning application ref. 20/10109 includes conditions relating to the installation of a 4.5 m acoustic fence along the northern boundary of the site, a noise level condition, and limitations to deliveries, dispatches and refuse collections to between 0600-2200 Monday to Friday, 0700-2200 on Saturdays and 1000-2000 on Sundays.
6.16. There are no height or weight restrictions on A36 Salisbury Road that would result in HGV diversion routes near the site but as a principle, all drivers will be advised to use the highest category of road legally available to them and to avoid residential roads where practicable.
6.17. It is anticipated that as part of the planning application process, necessary conditions would be reviewed and agreed between the developer and NFDC and applied to any planning consent in order to reach a mutual agreement to protect both the interests of the end users and local residents.
6.18. The information presented in this section should allow this process to occur however if NFDC consider a requirement for a formal Delivery and Servicing Plan to help further reduce the impact of commercial goods and servicing vehicle activity in and out of the ALDI development, a DSP could be prepared in partnership with NFDC prior to the proposed development being occupied.
6.19. The operational requirements for the light industrial unit are unknown at this stage given the final occupiers are also unknown. The hybrid planning application includes only for outline consent for the commercial units and further details would be provided in due course as part of the full planning application. It is anticipated that the same conditions would be sought for the industrial units as per the consented application ref. 20/10109.
6.20. In the interim and to demonstrate access to the commercial units, swept path track plots of the largest potential vehicles to and from the industrial starter units are also provided at Appendix C.
6.21. Commercial refuse collection would be undertaken in a similar manner as per the existing arrangements with local industrial and commercial units in Calmore. Refuse vehicles would be able to access the development via the main spur road for waste and recycling collection with refuse and recycling bins collected directly and wheeled to the vehicles to minimal carry/transfer distances to each unit. The refuse vehicle would be able to utilise the same HGV turning head provided at the end of the spur road to ensure no long reversing manoeuvres occur on site.

7. TRIP GENERATION, DISTRIBUTION AND ASSIGNMENT

Introduction

7.1. As described in Chapter 4 of this report, it is proposed to develop this site for an ALDI discount food store of 1,890 sqm GFA, including access with associated parking and servicing facilities, together with 1,848 sqm GFA Class B2 light industrial unit with associated parking spaces. The planning application seeks full permission for the ALDI store as an enabling development for the remaining industrial commercial land uses of which outline consent is sought, however for the purposes of this assessment all the development quanta is considered.
7.2. In order to determine the potential future vehicular trip generating characteristics of the proposed site, use has been made of the standardised TRICS database. The trip generation of the consented extant planning permission for 5,595 sq.m. of Class B1c, B2 and B8 employment uses (under planning application ref. 20/10109) is also considered and compared.

Consented Site Vehicle Trip Generation

7.3. The expected trip generation from the consented permission on the site has been obtained from the supporting Transport Assessment (ref. Figure 4.2) which is reproduced below in Table 7.1.
Table 7.1 - Consented Site Trip Generation

Peak	Trip Rates		Trip Generation			
	Inbound	Outbound	Two-Way	Inbound	Outbound	Two-Way
AM Peak	0.581	0.297	0.878	32	16	49
PM Peak	0.206	0.527	0.733	11	29	41

Source: RGP TA report
7.4. The consented site would be expected to generate 49 trips in the weekday AM peak and 41 trips in the weekday PM peak, with a daily traffic flow of 496 vehicles.
7.5. The previous assessment work undertaken as part of the consented development (ref. 20/10109) provided information regarding the number of trips that could be expected as part of AFC Totton Football Club. The club confirmed that the stadium is typically used from 13:30 on a Saturday and and from 18:15 on a Tuesday evening. This is outside the peak periods of this assessment.

Proposed Site Vehicle Trip Generation

7.6. The expected trip generation from the proposed development on the site has been obtained from standardised trip rates from the TRICS v7.8.1 database.
7.7. The expected gross Class E foodstore trips are summarised below in Table $\mathbf{7 . 2}$ and the full TRICS outputs can be found at Appendix D.
Table 7.2 - ALDI Trip Generation

Peak	Trip Rates			Trip Generation		
	Inbound	Outbound	Two-Way	Inbound	Outbound	Two-Way
AM Peak	2.443	1.620	4.063	46	31	77
PM Peak	3.772	3.985	7.757	71	75	147

Source: TRICS

7.8. The ALDI development would be expected to generate 77 trips in the weekday AM peak and 147 trips in the weekday PM peak, with a daily traffic flow of 1,768 vehicles.
7.9. The expected class E light industrial unit trip generation was also obtained from the TRICS v7.8.1 database and is summarised below in Table 7.3. The full TRICS outputs can be found at Appendix D.

Table 7.3 - Industrial Unit Trip Generation

Peak	Trip Rates		Trip Generation			
	Inbound	Outbound	Two-Way	Inbound	Outbound	Two-Way
AM Peak	0.746	0.438	1.184	14	8	22
PM Peak	0.242	0.597	0.839	4	11	16

Source: TRICS

7.10. The industrial units trip rates are greater than was assumed for the consented development and as such the vehicle trip generation should be seen as very robust. The industrial units could be expected to generate 22 trips in the weekday AM peak and 16 trips in the weekday PM peak, with a daily traffic flow of 238 vehicles.
7.11. The total proposed development trips are summarised in Table 7.4.

Table 7.4 - Total Development Trip Generation

Peak	Trip Generation		
	Inbound	Outbound	Two-Way
AM Peak	60	39	99
PM Peak	76	86	162

7.12. The total gross development traffic flows would therefore be 99 trips in the weekday AM peak and 162 trips in the weekday PM peak, with a daily traffic flow of 1,921 trips.

Proposed Site Multi Modal Trip Generation

7.13. The TRICS database has been interrogated to determine the likely modal split of travel by ALDI customers. Table 7.5 provides a summary of the trips, with the TRICS outputs contained at Appendix D.

Table 7.5 - Proposed ALDI Person Trip Generation

Peak	Trip Generation			
	Walk	Cycle	Public Transport	Person Trips
AM Peak	31	2	5	134
PM Peak	66	4	13	284
Daily	$\mathbf{7 0 2}$	$\mathbf{3 4}$	$\mathbf{1 2 6}$	$\mathbf{3 , 3 0 4}$

7.14. The assessment indicates that there would be 3,304 daily person trips of which 21% would be on foot, 1% by cycle and 4% by public transport.
7.15. The majority of NMU trips to the proposed discount foodstore would be made on foot with a smaller proportion of trips made by public transport and cycling.
7.16. A similar exercise can be undertaken for the class E/B2 light / general industrial starter units using the TRICS database to provide a complete picture of the likely transport demands of the proposed development site. Table 7.6 provides a summary of the trips, with the TRICS outputs contained at Appendix D.

Table 7.6 - Proposed Industrial Units Person Trip Generation

Peak	Trip Generation			
	Walk	Cycle	Public Transport	Person Trips
AM Peak	1	0	1	30
PM Peak	1	0	1	26
Daily	$\mathbf{9}$	$\mathbf{1}$	$\mathbf{4}$	$\mathbf{3 3 6}$

7.17. The assessment indicates that there would be 336 daily person trips of which 5% would be on foot, 1% by cycle and 2% by public transport. The proportions of NMU trips are substantially lower than for the discount foodstore.
7.18. The full development is therefore likely to generate 3,640 daily person trips, with 164 person trips in the AM peak and 310 person trips in the PM peak.

Trip Distribution and Assignment

7.19. Whilst the above illustrates the trip generation from ALDI and the industrial units, this forms the gross trip generation and makes no allowances for secondary trips already on the local network nor for the existing consented land use.
7.20. The trip generation that an ALDI store might have in this location only forms a part of the exercise. An ALDI store will also attract trips that are already on the local highway network and take the opportunity of passing the site to use the new opportunities; such trips are known as secondary diverted or pass-by trips.
7.21. Therefore, in order to understand the overall impact of the development on the local highway network, it is necessary to clearly identify the actual impact after external factors are considered such as trip types.
7.22. Typically, new food stores only lead to about 10% completely new traffic, with the remainder forming pass-by and diverted trips (secondary trips) which are already on the local highway network.
7.23. The definition of pass-by trips is that which actually passes the site, which in this case is adjacent to A36 Salisbury Road. Diverted trips are those which make a diversion from their original route to an existing foodstore.

ALDI Pass-by, Diverted and Linked Trips

7.24. TRICS research report $14 / 1$ sets out that the standard application of the pass-by and diverted trip proportions in research report 95/2 is not considered so relevant and a site-by-site approach should be used instead.
7.25. The quanta of pass by / diverted / linked trips for this store were undertaken using first principles also in reference to the Retail Impact Assessment which provides predictions of the trade draw from existing other foodstores.
7.26. An assessment methodology set out at section 11 in TRICS paper 14/1. The location type for the proposed store is in an intermediate location close a primary route into the Totton area therefore the pass-by/diverted percentage is likely to be reasonable.
7.27. The number of facilities at the store is more limited as a result of the limited offer. There is limited click and collect at ALDI, and the GFA is much less than 4,000 sq.m which might suggest the ALDI store would act more as a convenience store with corresponding higher pass-by levels, however ALDI also contains some comparison elements (20\%) and as a result some diverted trips may occur. The proposed development is located in a reasonable proximity to residential areas.
7.28. Information about the trade draw to the proposed ALDI from existing other food stores has been provided by the planning consultant and we understand this information will be included within the Retail Impact Assessment contained with the Planning and Retail Statement supporting the planning application. Figure 7.1 provides a summary of the expected distribution.

Figure 7.1 - Trade Draw to Proposed ALDI Foodstore

7.29. It can be seen from Figure 7.1 that 67% of diverted trade draw is likely to come from the direction of Totton town centre, 31% from the direction of the $\mathrm{A} 326 / \mathrm{A} 36(\mathrm{~N})$ and 2% from within Calmore itself.
7.30. Given the above information, the following secondary trip proportions were considered:

- 30\% pass-by on A36 Salisbury Road
- 30\% diverted trips from other foodstores; and
- 40% new primary trips (effective only on local roads - 'real' new primary trips $=10 \%$)
7.31. For a robust assessment, it is assumed that none of the diverted trips already pass through the study area along A36 Salisbury Road, and as such all diverted trips would be considered as new trips to the local highway network.
7.32. The assessment also assumes zero linked trips between the proposed foodstore and the industrial building although in practice some daily trips are likely to be contained within the site.
7.33. These assumptions are considered robust for the purposes of this assessment and it is proposed that the above trip proportions are taken forward to assess the impact of development on the local highways.
7.34. In order to determine the distribution of primary trips from the proposed ALDI development, a population-distance gravity model was developed using 2011 census data.
7.35. Population numbers were obtained for each of the MSOA areas within a reasonable distance of the site, and the journey time from the weighted population centre of each MSOA was derived using google driving directions set to PM peak time. The MSOA are, on average, within a 10-minute drive time.
7.36. The detailed calculations are provided for the distribution to be used in the assessment at Figure 7.2.

Figure 7.2 - ALDI Primary New Trip Distribution

7.37. The primary trip distribution based on populations and distance on a weighted basis would result in 38% of trips arriving from A36 Salisbury Road (N), 48\% arriving from Salisbury Road (S) via Totton town centre and the remaining 14\% arriving from Calmore Drive and the local residential areas.
7.38. Figure 7.3 provides the Primary new trip assignment for the proposed ALDI development.

Figure 7.3 - ALDI Primary New Trip Assignment

7.39. The secondary pass-by trip assignment for the proposed ALDI development is provided in Figure 7.4. Trips are weighted based on the observed traffic flows in Figure 3.7.

Figure 7.4 - ALDI Secondary Pass-by Trip Assignment

7.40. Figure 7.5 provides the secondary diverted trip assignment for the ALDI store. The weighting of trips was based on the numbers shown on Figure 7.1. All other diverted trips associated with the other stores were assumed to not be present on the A36 local highway network. i.e. no reductions.

Figure 7.5 - ALDI Secondary Diverted Trip Assignment

7.41. \quad The sum total of the ALDI trips is summarised in Figure 7.6.

Figure 7.6 - Total ALDI Trip Assignment

Light Industrial Unit

7.42. In order to determine the distribution of trips from the proposed industrial unit in the development, the travel to work 2011 census data was used for the local MSOA area (New Forest 003). This includes the Calmore Industrial Estate which is located close by. Figure 7.7 illustrates the trip distribution calculations.

Figure 7.7 - Industrial Units Trip Distribution

7.43. The trip assignment for the industrial units is on the local study area is summarised in Figure 7.8.

Figure 7.8 - Light Industrial Unit Trip Assignment

PM Peak Weekday B2 Trips
$(1700-1800)$

(1700-1800)	Key:
	Total 0

7.44. The sum total of both the ALDI and the industrial units development trips is provided in Figure 7.9.

Figure 7.9 - All Development Trip Assignment

7.45. The above flows were then taken forward for junction capacity testing of the site access junction and the Calmore Drive/Salisbury Road Roundabout using industry standard Junctions 10 software.

8. TRANSPORT EFFECTS

Introduction

8.1. In order to determine the impact on the local highway network from the proposed development, normal practice is to undertake an assessment by comparing the baseline situation to the 'with development' situation.
8.2. Where the site has an existing use, the impact is often determined by comparing the net increase in journeys between the existing and proposed uses. The DfT Guidance on Transport Assessment (March 2007) advises at paragraph 4.7 that baseline traffic data should be derived as follows:

"Baseline transport data

- The quantification of person trips generated from the existing site and their modal distribution, or, where the site is vacant or partially vacant, the person trips which might realistically be generated by any extant planning permission or permitted uses;"
8.3. In this case there is an extant permission on the site for 5,595 sq.m. of Class B1c, B2 and B8 employment uses (under planning application ref. 20/10109). The trip generation from this land use was set out previously in Table 7.1.
8.4. As the site is currently vacant, the assessment of local junctions within the study area considers the gross development flows as indicated in Figure 7.8, on top of the baseline traffic flows.
8.5. However, the net impact of the development would be less, given consent has already been given by the local planning for industrial uses and therefore an element of development traffic from the site has already been considered and approved as shown in Table 7.1. The effective change in development traffic flows is considered later in this section.

Future Year Traffic Assignment

8.6. Figure 3.7 in the previous sections summarised the MCTC data collected in 2018 for the weekday AM and PM peaks for the two local junctions in the study area. These are the same junctions previously requested for assessment by the local highway authority.
8.7. In order to undertake the operational assessment, the derivation of traffic flows for the baseline, opening year and future year are required. A reasonable baseline should be 2023 for the assumed opening year and a future year test of 2028, five years hence.
8.8. In order to determine the baseline flows, traffic growth was based on TEMPro 7.2c with the 2018 RTF dataset for the average of MSOA 003 New Forest. The growth rates are summarised in Table 8.1.

Table 8.1 - Base Traffic Growth Rates

Period	AM Peak	PM Peak
$2018-2023$	1.0370	1.0319
$2018-2028$	1.0635	1.0567

8.9. The expected baseline flows in the 2023 Opening Year are provided at Figure 8.1.

Figure 8.1-2023 Baseline Traffic Flows

PM Peak Weekday 2023 Baseline

| (1700-1800) | | Key:

 8 | 3 |
| :---: | :---: | :---: | :---: | | Total | 0 |
| ---: | :--- |

8.10. The expected baseline flows in the 2028 Future Year are provided at Figure 8.2.

Figure 8.2-2028 Baseline Traffic Flows
AM Peak Weekday 2028 Baseline (0730-0830)
Key
Total 0

TEMPro 7.2c RTF18 dataset MSOA New Forest 003

PM Peak Weekday 2028 Baseline
$(1700-1800)$

 4
0

$$
\begin{array}{ll}
\text { Key: } & \\
\text { Total } & 0 \\
\text { HGV } & 0
\end{array}
$$

0

TEMPro 7.2c RTF18 dataset MSOA New Forest 003
8.11. The expected baseline + development flows in the 2023 Opening Year are provided at Figure 8.3.

Figure 8.3 - 2023 Baseline + Development Traffic Flows

PM Peak Weekday 2023 Baseline + Dev

(1700-1800)		Key:	
			Total

8.12. The expected baseline + development flows in the 2028 Future Year are provided at Figure 8.4.

Figure 8.4-2028 Baseline + Development Traffic Flows

PM Peak Weekday 2028 Baseline + Dev (1700-1800)

8.13. The traffic figures shown in the above figures were then taken forward for capacity testing of the local junction contained within the study area.

Operational Assessment - Site Access Junction

8.14. An operational assessment of the site access/A36 Salisbury Road junction was carried out using Junctions 10 (PICADY module) software. For the purposes of consistency and acceptability, the geometric parameters used in this assessment follow those used in the transport work undertaken to support the consented industrial use.
8.15. A summary of the operational assessment is provided in Table 8.2. The full model output results are at Appendix E.

Table 8.2 - Junction Capacity Assessment of the Site Access / A36 Salisbury Rd

Peak	Arm	AM			PM		
		Delay	RFC	Queue	Delay	RFC	
2023 Baseline		0	16 s	0.06	0	14 s	0.10
	A36 Right Turn	0	10 s	0.03	0	8 s	0.00
2023 Baseline +Development	Site Access	0	13 s	0.17	1	16 s	0.36
	A36 Right Turn	0	10 s	0.12	0	9 s	0.11
2028 Baseline	Site Access	0	17 s	0.06	0	16 s	0.11
	A36 Right Turn	0	10 s	0.03	0	9 s	0.00
2028 Baseline +Development	Site Access	0	14 s	0.18	1	17 s	0.36
	A36 Right Turn	0	10 s	0.12	0	9 s	0.11

8.16. The results of the capacity assessment reveal that the Site Access is predicted to remain within capacity in the 2023 opening year and 2028 future year. The expected level of queues and delay at the junction would be very minor.
8.17. The results reveal that with the addition of development traffic, the expected impact would be minor and the change in performance not significant. The addition of development traffic is not expected to lead to any capacity issues in either the opening year or the future year. The greatest RFC (ratio of flow to capacity) of 0.36 occurs on the site access arm in the 2028 PM peak.
8.18. The A36 right turn movement is expected to remain well within capacity with a maximum RFC value of 0.12 , a queue of less than 1 vehicle on average and delay of 10 seconds.
8.19. The expected impact of the proposed development on the site access junction is shown by the capacity assessment to be modest in scale and would not lead to any significant nor severe effects on the local highway network.

Operational Assessment - Calmore Road / Salisbury Rd Roundabout

8.20. An operational assessment of the A36 Salisbury Road / Calmore Drive / Brunel Road Roundabout was carried out using Junctions 10 (ARCADY module) software. A summary of the operational assessment is provided in Table 8.3. The full model output results are at Appendix \mathbf{E}.

Table 8.3 - Junction Capacity Assessment of Calmore Drive / Salisbury Road Roundabout

Peak	Arm	AM			PM		
		Queue	Delay	RFC	Queue	Delay	RFC
2022 Baseline	Salisbury Rd (N)	1	5 s	0.49	1	4 s	0.49
	Brunel Way	0	3s	0.17	1	5 s	0.43
	Salisbury Rd (S)	1	4 s	0.44	1	4 s	0.40
	Calmore Drive	1	4 s	0.36	0	3 s	0.21
2022 Baseline +Development	Salisbury Rd (N)	1	5 s	0.51	1	4s	0.52
	Brunel Way	0	3s	0.17	1	5 s	0.44
	Salisbury Rd (S)	1	4 s	0.45	1	4s	0.41
	Calmore Drive	1	4s	0.37	0	3s	0.21
2027 Baseline	Salisbury Rd (N)	1	5 s	0.51	1	4 s	0.52
	Brunel Way	0	3 s	0.17	1	5 s	0.43
	Salisbury Rd (S)	1	4 s	0.46	1	4s	0.42
	Calmore Drive	1	4 s	0.36	0	3 s	0.21
2027 Baseline +Development	Salisbury Rd (N)	1	5 s	0.52	1	4s	0.53
	Brunel Way	0	3 s	0.17	1	5 s	0.45
	Salisbury Rd (S)	1	4s	0.47	1	4s	0.43
	Calmore Drive	1	4s	0.38	0	3s	0.22

8.21. The results of the capacity assessment reveal that the Calmore Drive / Salisbury Road Roundabout is predicted to remain within capacity in the 2023 opening year and 2028 future year. The expected level of queues and delay at the junction is very minor.
8.22. The results reveal that with the addition of development traffic, the expected impact would be minor and the change in performance not significant. The addition of development traffic is not expected to lead to any capacity issues in either the opening year or the future year. The greatest RFC (ratio of flow to capacity) of 0.53 occurs on the A36 Salisbury Road (N) arm in the PM peak. Expected queues are no more than about 1 vehicle and delays less than 5 seconds per vehicle.
8.23. The expected impact of the proposed development on the roundabout is therefore shown by the capacity assessment to be modest in scale and would not lead to any significant nor severe effects on the local highway network.

Percentage Impact Assessment
8.24. As part of the assessment for the extant permission on the site for 5,595 sq.m. of Class B1c, B2 and B8 employment uses (under planning application ref. 20/10109) evidence was requested to identify the level of additional traffic at the A36/A326 junction. Figure 8.5 provides a summary of the changes in link flow as a result of the proposed development.

Figure 8.5 - Change in Traffic Flows on A36 Salisbury Road

8.25. The expected change in two-way flows as a result of the development on A36 Salisbury Road (N) in the Opening Year 2023 would be 2% in the AM peak and 3% in the PM peak. In real terms this is 27 vehicles per hour in the AM peak and 44 vehicles in the PM peak, or about one extra vehicle every other minute in the AM peak and under one vehicle per minute in the PM peak.
8.26. This level of traffic is negligible and within usual day to day variations and is very unlikely to have any material effect on the A36/A326 junction in terms of highway safety and capacity.
8.27. The previous assessment indicated a total of up to 34 movements in the AM peak and 29 movements in the PM peak onto the $\mathrm{A} 36(\mathrm{~N})$ which is very similar level of traffic which was considered a low concentration and found to be acceptable by the LHA as indiscernible with no further requirements for assessment.
8.28. The assessment in this section has considered the gross impact of the proposed development with no allowance for the consented land use. Table 8.4 illustrates the net increase in traffic expected as a result of this development.

Table 8.4 - Total Net Development Trip Generation

Peak	Trip Generation		
	Inbound	Outbound	Two-Way
AM Peak	27	22	50
PM Peak	64	57	121

8.29. The net increase in traffic flows is therefore modest in scale and unlikely to give rise to any traffic issue, as demonstrated by the junction capacity assessments and the percentage impact assessment.
8.30. As a result of this analysis, it is clear that the proposed development would have no material effect on highway junction capacity or safety and no material impact on the rest of the local transport network.
8.31. The enabling foodstore development would improve local facilities for NMU's to the benefit of the whole site and surroundings and assist the ability to promote greater travel via sustainable travel than might otherwise be the case.

Road Safety

8.32. The review of historical accidents in Section 3 revealed a relation to arbitrary human error. The level of accidents over the last five years in the vicinity of the site is not considered significant, and no accidents were recorded in the vicinity of the existing site access.
8.33. The addition of the development traffic is modest in scale compared to the daily flows on Salisbury Road and the development is considered unlikely to introduce or lead to any new material road safety issues given the development adds only a minor increase to traffic volumes of up to 1-2 vehicles per
minute at peak times, and the site access junction would be upgraded to provide additional right turn lane protection for vehicles and enhanced new uncontrolled pedestrian crossing facilities.

Summary

8.34. The results of the highway impact assessment can be summarised as follows:

- The operational assessment for the site access junction onto A36 Salisbury Road and the Calmore Drive / A36 Salisbury Road Roundabout has demonstrated that both junctions would remain well within capacity for the proposed opening year and future year, with minimal predicted queuing and delay.
- The impact of development traffic on the local roads would be of the order of 2-3 \%, less than 1 vehicles per minute at local junctions, which would form an imperceptible increase to existing traffic levels.
- The proposed ALDI car park can accommodate the expected parking accumulation and movements at the busiest times during the week to avoid any overspill parking highway impact onto local areas and attendant negative effects.
8.35. The assessment has demonstrated that the highway impacts of a proposed ALDI discount foodstore would not be significant nor severe.

9. TRANSPORT IMPROVEMENTS

9.1. As discussed in Section 4, it is proposed that the proposed development would follow the same offsite highway improvements identified, designed and agreed with the local highway and planning authority as part of the extant planning permission for 5,595 sq.m. of Class B1c, B2 and B8 employment uses (under planning application ref. 20/10109) together with some additional improvements.
9.2. As part of the ALDI proposals, a 2-metre-wide pedestrian footway would also be provided on both sides of the access road leading into the site from the A36. This would provide a contiguous link to all existing footways and further improve the public realm for trips on foot.
9.3. It is anticipated that the works to the existing access would be undertaken via a Section 278 agreement with the highway authority. The proposed access has previously been the subject of a Stage 1 Road Safety Audit with negotiation and discussion with the local highway authority.

10. SUMMARY AND CONCLUSIONS

10.1. This Transport Assessment (TA) has been prepared by Entran Ltd to detail and assess transport matters associated with a proposed mixed-use development including industrial employment land uses and an enabling Aldi discount foodstore located on land at Little Testwood Farm, Calmore, Totton in Hampshire.

Summary

10.2. The proposed ALDI development would comprise;

- 1,890 sqm GFA Class E Foodstore including a total 140 customer car parking spaces ($5.0 \mathrm{~m} x$ 2.5 m) of which 4 EVCP spaces and 20 passive spaces, 6 disabled parking bays, 8 P\&C parking bays and 2 click and collect bays, together with 8 customer cycle parking spaces under a shelter (staff cycle parking internal to the warehouse) with pedestrian access from Salisbury Road. Plus four staff car spaces in the service yard.
- 1,848 sqm Class E light industrial unit with 47 associated parking spaces of which 4 EVCP spaces and 10 passive spaces, 2 disabled spaces and 6 cycle spaces.
10.3. Personal injury accident data has been examined on the local highways and there has been no accidents recorded in the vicinity of the site access. The addition of the modest amount of development traffic is considered unlikely to introduce or lead to any new material road safety issues.
10.4. The existing site access would be re-used and enhanced for the development following the same offsite highway improvements identified, designed and agreed with the local highway and planning authority as part of the extant planning permission. Further additions are proposed to be included with a 2-metre-wide pedestrian footway provided on both sides of the access road leading into the site from the A36.
10.5. Servicing would be consistent with ALDI's long established methods and the site access will be designed to provide safe and efficient access for turning of service vehicles;
10.6. Adequate car parking is proposed, commensurate with the needs and expected operation of the development proposal, and an assessment demonstrates avoidance of overspill onto local roads and attendant negative effects. Secure, covered and illuminated cycle parking spaces for the discount food store would be provided;
10.7. The site includes for a Staff Travel Plan and a Transport Implementation Strategy which provides the opportunity to reduce dependence on travel by private car and seeks to influence travel to and from the site rather than merely assessing its impact.
10.8. Proposed trip generation rates have been obtained from TRICS surveys to form a reasonable and robust analysis of the expected traffic from the enabling ALDI foodstore and industrial uses. The proposed development would lead to a net increase of 50 two-way trips in the AM peak and an increase of 121 trips in the PM Peak.
10.9. An operational assessment for the site access junction onto A36 Salisbury Road and the Calmore Drive / A36 Salisbury Road Roundabout has demonstrated that both junctions would remain well within capacity for the proposed opening year and future year, with minimal predicted queuing and delay.
10.10. The expected change in traffic on the A36 local highway would be of the order of $2-3 \%$, less than 1 vehicles per minute at local junctions, which would form an imperceptible increase to existing traffic levels and should not lead to significant nor severe effects on the local highway network.

Conclusion

10.11. The information presented in this TA Report has been presented to help the local authority review the likely effects on the surrounding transportation network of a proposed mixed-use development including industrial employment land uses and an enabling ALDI foodstore at Calmore, Totton.
10.12. Based on these findings, the development proposals are not expected to lead to any localised material off-site highways issues on the adjacent transportation network. The provision of the proposed development offers an opportunity to enhance this area and should be supported by the local highway authority.
10.13. It is therefore concluded that the impact has been fairly and reasonably addressed and there should be no reason for highways related objection to the proposed development.

Appendix A

Bus Timetables

bluertar 解位

Mondays to Fridays except public holidays
route no
Calmore Embley Close Testwood Co-op
West Totton Stonechat Drive West Totton Goodies Totton College
Totton Shopping Precinct Millbrook Roundabout

* Southampton Central Station

Southampton Westquay
route no
Calmore Embley Close
Testwood Co-op
West Totton Stonechat Drive West Totton Goodies Totton College
Totton Shopping Precinct Millbrook Roundabout \geqslant Southampton Central Station

Southampton Westquay
route no
Calmore Embley Close Testwood Co-op
West Totton Stonechat Drive
West Totton Goodies
Totton College
Totton Shopping Precinct Millbrook Roundabout ₹ Southampton Central Station Southampton Westquay

CALMORE/WEST TOTTON | TOTTON | SOUTHAMPTON

12	12	11	12	12	11	12	11	12	11	12	11	12	11	12
0555	0615		0648	0701		0725		0745		0810		0842		0906
0604	0624		0658	0711		0735		0755		0821		0853		0916
∇	∇	0635	∇	∇	0710	∇	0736	∇	0755	∇	0825	∇	0855	∇
∇	∇	0638	∇	∇	0714	∇	0740	∇	0800	∇	0830	∇	0859	∇
∇	∇	0642	∇	∇	$\nabla 720$	∇	0746	∇	0806	∇	0836	∇	0904	∇

060806280648070207150728074107540804081708300845090009120923 $\begin{array}{lllllllllllllll}0612 & 0632 & 0652 & 0706 & 0720 & 0734 & 0747 & 0800 & 0810 & 0823 & 0836 & 0851 & 0906 & 0917 & 0927\end{array}$ 062006400700071507300744075708100820083308460901091609260936 $\begin{array}{lllllllllllllllll}0625 & 0645 & 0705 & 0720 & 0735 & 0749 & 0802 & 0815 & 0825 & 0838 & 0851 & 0906 & 0921 & 0931 & 0941\end{array}$

Saturdays and Bank Holiday Mondays

CALMORE/WEST TOTTON | TOTTON | SOUTHAMPTON

12	12	11	12	8	12	11	12	8	12	12	12	12	12	these journeys run as Bluestar 8
1646	1711		1736		1806		1833		1907	1947	2047	2147	2247	
1656	1721		1746		1816		1843		1916	1956	2056	2156	2256	
V	V	1722	V		V	1822	V		∇	V	V	∇	∇	
∇	∇	1726	∇		∇	1826	∇		∇	∇	∇	∇	∇	
∇	∇	1731	V		∇	1830	∇		∇	∇	∇	∇	∇	
1703	1728	1738	1751	1801	1821	1836	1851	1905	1921	2001	2101	2201	2301	
1707	1732	1742	1755	1805	1825	1840	1855	1909	1925	2005	2105	2205	2305	
1716	1741	1751	1802	1813	1832	1847	1902	1916	1932	2012	2112	2212	2312	
1721	1746	1756	1807	1818	1837	1852	1907	1920	1937	2015	2115	2215	2315	

CALMORE/WEST TOTTON | TOTTON | SOUTHAMPTON

12	12	11	12	11		12	11		11	12	12	12	12	12	12
0736	0831		0926		4	26				1726	1847	1947	2047	2147	2247
0745	0840		0936		\#	36				1736	1856	1956	2056	2156	2256
V	∇	0902	∇	0957	듣	V	57		1657	∇	∇	∇	∇	∇	∇
V	∇	0905	∇	1001	,	∇	01		1701	∇	∇	∇	V	V	∇
∇	∇	0909	∇	1006	\%	∇	06	\subseteq	1706	∇	∇	∇	∇	∇	∇
0750	0845	0915	0943	1013	†	43	13		1713	1743	1901	2001	2101	2201	2301
0753	0848	0918	0947	1017	\%	47	17		1717	1747	1905	2005	2105	2205	2305
0800	0855	0925	0955	1025	¢	55	25		1725	1755	1912	2012	2112	2212	2312
0805	0900	0930	1000	1030	+	00	30		1730	1800	1915	2015	2115	2215	2315

bluertar 德做

Mondays to Fridays except public holidays
route no
Southampton Westquay ₹ Southampton Central Station Millbrook Roundabout Totton opp RC Church

Totton College
West Totton Stonechat Drive West Totton Goodies

Calmore Corner
Testwood Co-op Calmore Embley Close
route no
Southampton Westquay
$₹$ Southampton Central Station Millbrook Roundabout Totton opp RC Church

Totton College
West Totton Stonechat Drive West Totton Goodies

Calmore Corner
Testwood Co-op Calmore Embley Close
route no
Southampton Westquay ₹ Southampton Central Station Millbrook Roundabout Totton opp RC Church

Totton College
West Totton Stonechat Drive West Totton Goodies Calmore Corner Testwood Co-op Calmore Embley Close

SOUTHAMPTON | TOTTON | WEST TOTTON/CALMORE

12	11	12	11	12	11	12	12	11	12	11	12	11	12	11
1440	1450	1500	1510	1520	1540	1550	1600	1610	1620	1630	1645	1700	1710	1720
1445	1455	1505	1515	1525	1545	1556	1606	1616	1626	1636	1651	1706	1716	1726
1455	1506	1516	1526	1536	1556	1607	1618	1628	1638	1648	1703	1718	1728	1738
1501	1512	1522	1532	1543	1603	1614	1625	1635	1646	1657	1711	1725	1735	1745
V	1518	∇	1538	V	1609	\checkmark	∇	1641	V	1703	∇	1730	V	1750
∇	1520	∇	1540	∇	1611	∇	∇	1643	∇	1705	∇	1732	∇	1752
∇	1524	∇	1544	∇	1615	∇	∇	1647	∇	1709	∇	1736	∇	1755
∇	1528	∇	1548	∇	1619	∇	∇	1651	∇	1713	∇	1740	∇	1758
1505		1526		1547		1618	1629		1650		1714		1738	
1508		1529		1550		1621	1632		1653		1717		1741	

Saturdays and Bank Holiday Mondays

₹ Southampton Central Station Millbrook Roundabout Totton opp RC Church Totton College
West Totton Stonechat Drive West Totton Goodies Calmore Corner Testwood Co-op Calmore Embley Close

Southampton Westquay
₹Southampton Central Station
Millbrook Roundabout
Totton opp RC Church Totton College
West Totton Stonechat Drive
West Totton Goodies Calmore Corner Testwood Co-op Calmore Embley Close

SOUTHAMPTON | TOTTON | WEST TOTTON/CALMORE

SOUTHAMPTON | TOTTON | WEST TOTTON/CALMORE

12	12	12	11		12	11		12	11	12	12	12	12	12	12
0810	0905	1000	1030	8	00	30		1700	1730	1825	1925	2025	2125	2225	2325
0814	0909	1005	1035	5	05	35		1705	1734	1829	1929	2029	2129	2229	2329
0822	0917	1014	1044	ㅌ,	14	44		1714	1742	1837	1937	2037	2137	2237	2336
0826	0921	1020	1050	E	20	50		1720	1747	1842	1942	2042	2142	2242	2340
V	V	∇	1055	$\stackrel{0}{0}$	∇	55	판	∇	1752	∇	∇	∇	∇	∇	∇
∇	∇	∇	1057	+	∇	57	5	∇	1754	∇	∇	∇	∇	∇	∇
∇	∇	∇	1101	\pm		01		∇	1757	∇	∇	∇	∇	∇	∇
∇	∇	∇	1105			05		∇	1800	∇	∇	∇	∇	∇	∇
0828	0923	1023		¢	23			1723		1844	1944	2044	2144	2244	2342
0831	0926	1026		+	26			1726		1847	1947	2047	2147	2247	2344

Appendix B
 PIA Data

For more information about the data please visit: www.crashmap.co.uk/home/Faq
To subscribe to unlimited reports using CrashMap Pro visit www.crashmap.co.uk/Home/Premium_Services
Page 1 of 2
30/03/2021 04:28 PM

Casualties

Vehicle Ref	Casualty Ref	Injury Severity	Casualty Class	Gender	Age Band	Pedestrian Location	Pedestrian Movement
1	1	Slight	Driver or rider	Male	21-25	Unknown or other	Unknown or other

For more information about the data please visit: www.crashmap.co.uk/home/Faq
To subscribe to unlimited reports using CrashMap Pro visit www.crashmap.co.uk/Home/Premium_Services

For more information about the data please visit: www.crashmap.co.uk/home/Faq
To subscribe to unlimited reports using CrashMap Pro visit www.crashmap.co.uk/Home/Premium_Services
Page 1 of 2
30/03/2021 04:26 PM

Provisional Data does not include vehicle and casualty records

For more information about the data please visit: www.crashmap.co.uk/home/Faq
To subscribe to unlimited reports using CrashMap Pro visit www.crashmap.co.uk/Home/Premium_Services

Appendix C

Application Site Layout and Swept Path Analysis

Appendix D
 TRICS Data

TRICS 7.8.1 B2 WD MM	240321 B20.15	Database right of TRICS Consortium Limited, 2021. All rights reserved	Wednesday 05/05/ 21 Page $\mathbf{1}$
Entran Ltd	Chapel Pill Lane	Bristol	Licence No: 337901

Filtering Summary
Land Use 02/D

[^0]Selected Trip Rate Calculation Parameter Range 552-5000 sqm GFA
Actual Trip Rate Calculation Parameter Range $\quad 1138-4876$ sqm GFA
Date Range Minimum: 01/01/13

Parking Spaces Range
Days of the week selected

Main Location Types selected

Population within 500 m
Population <1 Mile ranges selected

Population <5 Mile ranges selected

Car Ownership < 5 Mile ranges selected

PTAL Rating

Filter by Site Operations Breakdown

Minimum: 01/01/13
All Surveys Included
Monday 4
Tuesday 3
Wednesday 1
Friday 2
Suburban Area (PPS6 Out of Centre) 2
Edge of Town 8

All Surveys Included
1,001 to $5,000 \quad 2$
5,001 to $10,000 \quad 1$
10,001 to $15,000 \quad 2$
15,001 to $20,000 \quad 1$
20,001 to 25,000 -
25,001 to 50,0003
5,001 to 25,000 1
125,001 to 250,000 7
250,001 to $500,000 \quad 1$
500,001 or More 1
0.6 to $1.0 \quad 5$
1.1 to 1.5 3
1.6 to $2.0 \quad 2$

No PTAL Present 9
1b Very poor 1
All Surveys Included

TRICS 7.8.1	240321 B20.15	Database right of TRICS Consortium Limited, 2021. All rights reserved
B2 WD MM		Wednesday 05/05/21
Page 2		
Entran Ltd	Chapel Pill Lane	Bristol

TRIP RATE CALCULATI ON SELECTION PARAMETERS:

Land Use $\quad: \quad 02$ - EMPLOYMENT
Category \quad D INDUSTRIAL ESTATE
MULTI-MODAL TOTAL VEHICLES

01 GREATER LONDON		
	BE BEXLEY	1 days
02	SOUTH EAST	
	EX ESSEX	1 days
03	SOUTH WEST	
	DV DEVON	1 days
04	EAST ANGLIA	
	CA CAMBRIDGESHIRE	1 days
06	WEST MIDLANDS	
	WM WEST MIDLANDS	1 days
07	YORKSHIRE \& NORTH LI NCOLNSHIRE	
	WY WEST YORKSHIRE	3 days
12	CONNAUGHT	
	RO ROSCOMMON	1 days
13	MUNSTER	
	CR CORK	1 days

This section displays the number of survey days per TRICS® sub-region in the selected set

Primary Filtering selection:

This data displays the chosen trip rate parameter and its selected range. Only sites that fall within the parameter range are included in the trip rate calculation.

Parameter:	Gross floor area
Actual Range:	1138 to 4876 (units: sqm)
Range Selected by User:	552 to 5000 (units: sqm)
Parking Spaces Range:	All Surveys Included

Public Transport Provision: Selection by: Include all surveys

Date Range: $\quad 01 / 01 / 13$ to $14 / 10 / 19$
This data displays the range of survey dates selected. Only surveys that were conducted within this date range are included in the trip rate calculation.

Selected survey days:

Monday	4 days
Tuesday	3 days
Wednesday	1 days
Friday	2 days

This data displays the number of selected surveys by day of the week.

Selected survey types:	10 days
Manual count	0 days
Directional ATC Count	

This data displays the number of manual classified surveys and the number of unclassified ATC surveys, the total adding up to the overall number of surveys in the selected set. Manual surveys are undertaken using staff, whilst ATC surveys are undertaking using machines.

Selected Locations:
Suburban Area (PPS6 Out of Centre) 2
Edge of Town 8
This data displays the number of surveys per main location category within the selected set. The main location categories consist of Free Standing, Edge of Town, Suburban Area, Neighbourhood Centre, Edge of Town Centre, Town Centre and Not Known

Selected Location Sub Categories:

Industrial Zone 5
Development Zone 1
Residential Zone 1
No Sub Category 3
This data displays the number of surveys per location sub-category within the selected set. The location sub-categories consist of Commercial Zone, Industrial Zone, Development Zone, Residential Zone, Retail Zone, Built-Up Zone, Village, Out of Town, High Street and No Sub Category.

Secondary Filtering selection:

Use Class:
Not Known
10 days
This data displays the number of surveys per Use Class classification within the selected set. The Use Classes Order 2005 has been used for this purpose, which can be found within the Library module of TRICS $®$.

Filter by Site Operations Breakdown:
All Surveys Included
Population within 500 m Range:
All Surveys Included
Population within 1 mile:
$\frac{2}{1,001}$ to $5,000 \quad 2$ days
5,001 to $10,000 \quad 1$ days
10,001 to $15,000 \quad 2$ days
15,001 to $20,000 \quad 1$ days
20,001 to $25,000 \quad 1$ days
25,001 to 50,0003 days
This data displays the number of selected surveys within stated 1 -mile radii of population.

Population within 5 miles:	
5,001 to 25,000	1 days
125,001 to 250,000	7 days
250,001 to 500,000	
500,001 or More	1 days

This data displays the number of selected surveys within stated 5 -mile radii of population.
Car ownership within 5 miles:

0.6 to 1.0	5 days
1.1 to 1.5	3 days
1.6 to 2.0	2 days

This data displays the number of selected surveys within stated ranges of average cars owned per residential dwelling, within a radius of 5 -miles of selected survey sites.

Travel Plan:
No 10 days
This data displays the number of surveys within the selected set that were undertaken at sites with Travel Plans in place, and the number of surveys that were undertaken at sites without Travel Plans.

PTAL Rating:

No PTAL Present	9 days
$1 b$ Very poor	1 days

This data displays the number of selected surveys with PTAL Ratings.

TRICS 7.8.1 240321 B20.15	Database right of TRICS Consortium Limited, 2021. All rights reserved	Wednesday 05/ 05/ 21 B2 WD MM	
Page $\mathbf{4}$			
Entran Ltd	Chapel Pill Lane	Bristol	Licence No: 337901

LIST OF SITES relevant to selection parameters

1 BE-02-D-01 I NDUSTRI AL ESTATE
CRABTREE MANORWAY N.
ERITH
Edge of Town
Industrial Zone
$\begin{array}{cc}\text { Total Gross floor area: } & 3300 \mathrm{sqm} \\ \text { Survey date: WEDNESDAY } & 19 / 09 / 18\end{array}$
2 CA-02-D-04 INDUSTRIAL ESTATE
LINCOLN ROAD
PETERBOROUGH
Suburban Area (PPS6 Out of Centre)
No Sub Category
Total Gross floor area: 4133 sqm Survey date: TUESDAY 02/12/14
3 CR-02-D-02
I NDUSTRI AL ESTATE
EAST CORK PARKWAY
CORK
GLANMIRE
Edge of Town
Industrial Zone
Total Gross floor area:
4727 sqm Survey date: MONDAY 14/10/19
4 DV-02-D-07 INDUSTRIAL ESTATE
BITTERN ROAD
EXETER
SOWTON IND. ESTATE
Edge of Town
Industrial Zone
Total Gross floor area: 3600 sqm
Survey date: MONDAY 03/07/17
5
I NDUSTRI AL ESTATE
WYNCOLLS ROAD
COLCHESTER
SEVERALLS INDUSTRIAL PK
Edge of Town
Industrial Zone
$\begin{array}{cc}\text { Total Gross floor area: } & 4876 \mathrm{sqm} \\ \text { Survey date: FRIDAY } & 18 / 05 / 18\end{array}$
6 RO-02-D-01 INDUSTRIAL ESTATE
ÁTHLONE ROAD
ROSCOMMON
ARDSALLAGH MÓRE
Edge of Town
No Sub Category
Total Gross floor area: 2030 sqm Survey date: FRIDAY 27/04/18
7 WM-02-D-03 INDUSTRI AL ESTATE
JUNCTION ROAD
STOURBRIDGE
AUDNAM
Suburban Area (PPS6 Out of Centre)
Residential Zone
Total Gross floor area: 1138 sqm Survey date: TUESDAY 28/11/17
8 WY-02-D-05 INDUSTRIAL ESTATE
CARR WOOD ROAD
CASTLEFORD
Edge of Town
Development Zone
Total Gross floor area
1776 sqm Survey date: MONDAY 22/05/17
9 WY-02-D-06 I NDUSTRIAL ESTATE (PART)
PIONEER WAY
CASTLEFORD
Edge of Town
Industrial Zone
Total Gross floor area: 4328 sqm
Survey date: TUESDAY 23/05/17

BEXLEY

Survey Type: MANUAL CAMBRIDGESHI RE

Survey Type: MANUAL

CORK

Survey Type: MANUAL DEVON

Survey Type: MANUAL ESSEX

Survey Type: MANUAL ROSCOMMON

Survey Type: MANUAL WEST MI DLANDS

Survey Type: MANUAL WEST YORKSHIRE

Survey Type: MANUAL WEST YORKSHIRE

TRICS 7.8.1	240321 B20.15	Database right of TRICS Consortium Limited, 2021. All rights reserved	Wednesday 05/ 05/21 P2 WD MM
Entran Ltd	Chapel Pill Lane	Bristol	Licence No: 337901

LIST OF SITES relevant to selection parameters (Cont.)
10 WY-02-D-07 INDUSTRIAL ESTATE
THUNDERHEAD RIDGE RD
CASTLEFORD
GLASSHOUGHTON
Edge of Town
No Sub Category
Total Gross floor area: Survey date: MONDAY 15/05/17 Survey Type: MANUAL

This section provides a list of all survey sites and days in the selected set. For each individual survey site, it displays a unique site reference code and site address, the selected trip rate calculation parameter and its value, the day of the week and date of each survey, and whether the survey was a manual classified count or an ATC count.

TRIP RATE for Land Use 02 - EMPLOYMENT/D - INDUSTRIAL ESTATE
MULTI-MODAL TOTAL VEHICLES
Calculation factor: $\mathbf{1 0 0} \mathbf{~ s q m}$
BOLD print indicates peak (busiest) period

	ARRIVALS			DEPARTURES			TOTALS		
Time Range	No. Days	Ave. GFA	Trip Rate	No. Days	Ave. GFA	Trip Rate	No. Days	Ave. GFA	Trip Rate
00:00-00:30									
00:30-01:00									
01:00-01:30									
01:30-02:00									
02:00-02:30									
02:30-03:00									
03:00-03:30									
03:30-04:00									
04:00-04:30									
04:30-05:00									
05:00-05:30	1	4727	0.106	1	4727	0.021	1	4727	0.127
05:30-06:00	1	4727	0.021	1	4727	0.021	1	4727	0.042
06:00-06:30	1	4727	0.127	1	4727	0.085	1	4727	0.212
06:30-07:00	1	4727	0.085	1	4727	0.063	1	4727	0.148
07:00-07:30	10	3310	0.166	10	3310	0.066	10	3310	0.232
07:30-08:00	10	3310	0.293	10	3310	0.163	10	3310	0.456
08:00-08:30	10	3310	0.393	10	3310	0.224	10	3310	0.617
08:30-09:00	10	3310	0.381	10	3310	0.254	10	3310	0.635
09:00-09:30	10	3310	0.281	10	3310	0.236	10	3310	0.517
09:30-10:00	10	3310	0.308	10	3310	0.227	10	3310	0.535
10:00-10:30	10	3310	0.314	10	3310	0.269	10	3310	0.583
10:30-11:00	10	3310	0.384	10	3310	0.329	10	3310	0.713
11:00-11:30	10	3310	0.323	10	3310	0.344	10	3310	0.667
11:30-12:00	10	3310	0.366	10	3310	0.432	10	3310	0.798
12:00-12:30	10	3310	0.314	10	3310	0.323	10	3310	0.637
12:30-13:00	10	3310	0.369	10	3310	0.381	10	3310	0.750
13:00-13:30	10	3310	0.335	10	3310	0.338	10	3310	0.673
13:30-14:00	10	3310	0.284	10	3310	0.233	10	3310	0.517
14:00-14:30	10	3310	0.311	10	3310	0.332	10	3310	0.643
14:30-15:00	10	3310	0.257	10	3310	0.314	10	3310	0.571
15:00-15:30	10	3310	0.242	10	3310	0.239	10	3310	0.481
15:30-16:00	10	3310	0.299	10	3310	0.269	10	3310	0.568
16:00-16:30	10	3310	0.272	10	3310	0.311	10	3310	0.583
16:30-17:00	10	3310	0.181	10	3310	0.311	10	3310	0.492
17:00-17:30	10	3310	0.166	10	3310	0.462	10	3310	0.628
17:30-18:00	10	3310	0.112	10	3310	0.242	10	3310	0.354
18:00-18:30	10	3310	0.057	10	3310	0.127	10	3310	0.184
18:30-19:00	10	3310	0.039	10	3310	0.073	10	3310	0.112
19:00-19:30	2	4014	0.025	2	4014	0.062	2	4014	0.087
19:30-20:00	2	4014	0.012	2	4014	0.012	2	4014	0.024
20:00-20:30	2	4014	0.037	2	4014	0.025	2	4014	0.062
20:30-21:00	2	4014	0.000	2	4014	0.012	2	4014	0.012
21:00-21:30									
21:30-22:00									
22:00-22:30									
22:30-23:00									
23:00-23:30									
23:30-24:00									
Total Rates:			6.860			6.800			13.660

This section displays the trip rate results based on the selected set of surveys and the selected count type (shown just above the table). It is split by three main columns, representing arrivals trips, departures trips, and total trips (arrivals plus departures). Within each of these main columns are three sub-columns. These display the number of survey days where count data is included (per time period), the average value of the selected trip rate calculation parameter (per time period), and the trip rate result (per time period). Total trip rates (the sum of the column) are also displayed at the foot of the table.

To obtain a trip rate, the average (mean) trip rate parameter value (TRP) is first calculated for all selected survey days that have count data available for the stated time period. The average (mean) number of arrivals, departures or totals (whichever applies) is also calculated (COUNT) for all selected survey days that have count data available for the stated time period. Then, the average count is divided by the average trip rate parameter value, and multiplied by the stated calculation factor (shown just above the table and abbreviated here as FACT). So, the method is: COUNT/TRP*FACT. Trip rates are then rounded to 3 decimal places.

The survey data, graphs and all associated supporting information, contained within the TRICS Database are published by TRICS Consortium Limited ("the Company") and the Company claims copyright and database rights in this published work. The Company authorises those who possess a current TRICS licence to access the TRICS Database and copy the data contained within the TRICS Database for the licence holders' use only. Any resulting copy must retain all copyrights and other proprietary notices, and any disclaimer contained thereon.

The Company accepts no responsibility for loss which may arise from reliance on data contained in the TRICS Database. [No warranty of any kind, express or implied, is made as to the data contained in the TRICS Database.]

Parameter summary

Trip rate parameter range selected:
1138-4876 (units: sqm)
Survey date date range:
01/01/13-14/10/19
Number of weekdays (Monday-Friday):
Number of Saturdays:
0
Number of Sundays:
Surveys automatically removed from selection:
Surveys manually removed from selection:
This section displays a quick summary of some of the data filtering selections made by the TRICS ${ }^{\circledR}$ user. The trip rate calculation parameter range of all selected surveys is displayed first, followed by the range of minimum and maximum survey dates selected by the user. Then, the total number of selected weekdays and weekend days in the selected set of surveys are show. Finally, the number of survey days that have been manually removed from the selected set outside of the standard filtering procedure are displayed.

TRIP RATE for Land Use 02 - EMPLOYMENT/D - INDUSTRIAL ESTATE
MULTI-MODAL TAXIS
Calculation factor: 100 sqm
BOLD print indicates peak (busiest) period

	ARRIVALS			DEPARTURES			TOTALS		
Time Range	No. Days	Ave. GFA	Trip Rate	No. Days	Ave. GFA	Trip Rate	No. Days	Ave. GFA	Trip Rate
00:00-00:30									
00:30-01:00									
01:00-01:30									
01:30-02:00									
02:00-02:30									
02:30-03:00									
03:00-03:30									
03:30-04:00									
04:00-04:30									
04:30-05:00									
05:00-05:30	1	4727	0.000	1	4727	0.000	1	4727	0.000
05:30-06:00	1	4727	0.000	1	4727	0.000	1	4727	0.000
06:00-06:30	1	4727	0.000	1	4727	0.000	1	4727	0.000
06:30-07:00	1	4727	0.000	1	4727	0.000	1	4727	0.000
07:00-07:30	10	3310	0.000	10	3310	0.000	10	3310	0.000
07:30-08:00	10	3310	0.000	10	3310	0.000	10	3310	0.000
08:00-08:30	10	3310	0.000	10	3310	0.000	10	3310	0.000
08:30-09:00	10	3310	0.000	10	3310	0.000	10	3310	0.000
09:00-09:30	10	3310	0.000	10	3310	0.000	10	3310	0.000
09:30-10:00	10	3310	0.000	10	3310	0.000	10	3310	0.000
10:00-10:30	10	3310	0.000	10	3310	0.000	10	3310	0.000
10:30-11:00	10	3310	0.003	10	3310	0.003	10	3310	0.006
11:00-11:30	10	3310	0.000	10	3310	0.000	10	3310	0.000
11:30-12:00	10	3310	0.000	10	3310	0.000	10	3310	0.000
12:00-12:30	10	3310	0.000	10	3310	0.000	10	3310	0.000
12:30-13:00	10	3310	0.003	10	3310	0.003	10	3310	0.006
13:00-13:30	10	3310	0.003	10	3310	0.000	10	3310	0.003
13:30-14:00	10	3310	0.000	10	3310	0.003	10	3310	0.003
14:00-14:30	10	3310	0.003	10	3310	0.000	10	3310	0.003
14:30-15:00	10	3310	0.000	10	3310	0.003	10	3310	0.003
15:00-15:30	10	3310	0.000	10	3310	0.000	10	3310	0.000
15:30-16:00	10	3310	0.003	10	3310	0.000	10	3310	0.003
16:00-16:30	10	3310	0.000	10	3310	0.000	10	3310	0.000
16:30-17:00	10	3310	0.000	10	3310	0.000	10	3310	0.000
17:00-17:30	10	3310	0.000	10	3310	0.000	10	3310	0.000
17:30-18:00	10	3310	0.000	10	3310	0.000	10	3310	0.000
18:00-18:30	10	3310	0.000	10	3310	0.000	10	3310	0.000
18:30-19:00	10	3310	0.000	10	3310	0.000	10	3310	0.000
19:00-19:30	2	4014	0.000	2	4014	0.000	2	4014	0.000
19:30-20:00	2	4014	0.000	2	4014	0.000	2	4014	0.000
20:00-20:30	2	4014	0.000	2	4014	0.000	2	4014	0.000
20:30-21:00	2	4014	0.000	2	4014	0.000	2	4014	0.000
21:00-21:30									
21:30-22:00									
22:00-22:30									
22:30-23:00									
23:00-23:30									
23:30-24:00									
Total Rates:			0.015			0.012			0.027

This section displays the trip rate results based on the selected set of surveys and the selected count type (shown just above the table). It is split by three main columns, representing arrivals trips, departures trips, and total trips (arrivals plus departures). Within each of these main columns are three sub-columns. These display the number of survey days where count data is included (per time period), the average value of the selected trip rate calculation parameter (per time period), and the trip rate result (per time period). Total trip rates (the sum of the column) are also displayed at the foot of the table.

To obtain a trip rate, the average (mean) trip rate parameter value (TRP) is first calculated for all selected survey days that have count data available for the stated time period. The average (mean) number of arrivals, departures or totals (whichever applies) is also calculated (COUNT) for all selected survey days that have count data available for the stated time period. Then, the average count is divided by the average trip rate parameter value, and multiplied by the stated calculation factor (shown just above the table and abbreviated here as FACT). So, the method is: COUNT/TRP*FACT. Trip rates are then rounded to 3 decimal places.

TRIP RATE for Land Use 02 - EMPLOYMENT/D - INDUSTRIAL ESTATE
MULTI-MODAL OGVS
Calculation factor: 100 sqm
BOLD print indicates peak (busiest) period

	ARRIVALS			DEPARTURES			TOTALS		
Time Range	No. Days	Ave. GFA	Trip Rate	No. Days	Ave. GFA	Trip Rate	No. Days	Ave. GFA	Trip Rate
00:00-00:30									
00:30-01:00									
01:00-01:30									
01:30-02:00									
02:00-02:30									
02:30-03:00									
03:00-03:30									
03:30-04:00									
04:00-04:30									
04:30-05:00									
05:00-05:30	1	4727	0.000	1	4727	0.000	1	4727	0.000
05:30-06:00	1	4727	0.000	1	4727	0.000	1	4727	0.000
06:00-06:30	1	4727	0.000	1	4727	0.021	1	4727	0.021
06:30-07:00	1	4727	0.000	1	4727	0.063	1	4727	0.063
07:00-07:30	10	3310	0.009	10	3310	0.012	10	3310	0.021
07:30-08:00	10	3310	0.021	10	3310	0.021	10	3310	0.042
08:00-08:30	10	3310	0.039	10	3310	0.024	10	3310	0.063
08:30-09:00	10	3310	0.042	10	3310	0.048	10	3310	0.090
09:00-09:30	10	3310	0.018	10	3310	0.018	10	3310	0.036
09:30-10:00	10	3310	0.036	10	3310	0.033	10	3310	0.069
10:00-10:30	10	3310	0.018	10	3310	0.018	10	3310	0.036
10:30-11:00	10	3310	0.018	10	3310	0.030	10	3310	0.048
11:00-11:30	10	3310	0.021	10	3310	0.030	10	3310	0.051
11:30-12:00	10	3310	0.027	10	3310	0.030	10	3310	0.057
12:00-12:30	10	3310	0.018	10	3310	0.015	10	3310	0.033
12:30-13:00	10	3310	0.021	10	3310	0.018	10	3310	0.039
13:00-13:30	10	3310	0.021	10	3310	0.012	10	3310	0.033
13:30-14:00	10	3310	0.021	10	3310	0.018	10	3310	0.039
14:00-14:30	10	3310	0.024	10	3310	0.018	10	3310	0.042
14:30-15:00	10	3310	0.012	10	3310	0.027	10	3310	0.039
15:00-15:30	10	3310	0.030	10	3310	0.006	10	3310	0.036
15:30-16:00	10	3310	0.033	10	3310	0.033	10	3310	0.066
16:00-16:30	10	3310	0.021	10	3310	0.012	10	3310	0.033
16:30-17:00	10	3310	0.021	10	3310	0.030	10	3310	0.051
17:00-17:30	10	3310	0.021	10	3310	0.009	10	3310	0.030
17:30-18:00	10	3310	0.006	10	3310	0.015	10	3310	0.021
18:00-18:30	10	3310	0.006	10	3310	0.012	10	3310	0.018
18:30-19:00	10	3310	0.000	10	3310	0.009	10	3310	0.009
19:00-19:30	2	4014	0.012	2	4014	0.037	2	4014	0.049
19:30-20:00	2	4014	0.000	2	4014	0.000	2	4014	0.000
20:00-20:30	2	4014	0.025	2	4014	0.000	2	4014	0.025
20:30-21:00	2	4014	0.000	2	4014	0.000	2	4014	0.000
21:00-21:30									
21:30-22:00									
22:00-22:30									
22:30-23:00									
23:00-23:30									
23:30-24:00									
Total Rates:			0.541			0.619			1.160

This section displays the trip rate results based on the selected set of surveys and the selected count type (shown just above the table). It is split by three main columns, representing arrivals trips, departures trips, and total trips (arrivals plus departures). Within each of these main columns are three sub-columns. These display the number of survey days where count data is included (per time period), the average value of the selected trip rate calculation parameter (per time period), and the trip rate result (per time period). Total trip rates (the sum of the column) are also displayed at the foot of the table.

To obtain a trip rate, the average (mean) trip rate parameter value (TRP) is first calculated for all selected survey days that have count data available for the stated time period. The average (mean) number of arrivals, departures or totals (whichever applies) is also calculated (COUNT) for all selected survey days that have count data available for the stated time period. Then, the average count is divided by the average trip rate parameter value, and multiplied by the stated calculation factor (shown just above the table and abbreviated here as FACT). So, the method is: COUNT/TRP*FACT. Trip rates are then rounded to 3 decimal places.

TRIP RATE for Land Use 02 - EMPLOYMENT/D - INDUSTRIAL ESTATE
MULTI-MODAL PSVS
Calculation factor: 100 sqm
BOLD print indicates peak (busiest) period

	ARRIVALS			DEPARTURES			TOTALS		
Time Range	No. Days	Ave. GFA	Trip Rate	No. Days	Ave. GFA	Trip Rate	No. Days	Ave. GFA	Trip Rate
00:00-00:30									
00:30-01:00									
01:00-01:30									
01:30-02:00									
02:00-02:30									
02:30-03:00									
03:00-03:30									
03:30-04:00									
04:00-04:30									
04:30-05:00									
05:00-05:30	1	4727	0.000	1	4727	0.000	1	4727	0.000
05:30-06:00	1	4727	0.000	1	4727	0.000	1	4727	0.000
06:00-06:30	1	4727	0.000	1	4727	0.000	1	4727	0.000
06:30-07:00	1	4727	0.000	1	4727	0.000	1	4727	0.000
07:00-07:30	10	3310	0.000	10	3310	0.000	10	3310	0.000
07:30-08:00	10	3310	0.000	10	3310	0.000	10	3310	0.000
08:00-08:30	10	3310	0.000	10	3310	0.000	10	3310	0.000
08:30-09:00	10	3310	0.000	10	3310	0.000	10	3310	0.000
09:00-09:30	10	3310	0.000	10	3310	0.003	10	3310	0.003
09:30-10:00	10	3310	0.000	10	3310	0.000	10	3310	0.000
10:00-10:30	10	3310	0.000	10	3310	0.000	10	3310	0.000
10:30-11:00	10	3310	0.000	10	3310	0.000	10	3310	0.000
11:00-11:30	10	3310	0.000	10	3310	0.000	10	3310	0.000
11:30-12:00	10	3310	0.000	10	3310	0.000	10	3310	0.000
12:00-12:30	10	3310	0.000	10	3310	0.000	10	3310	0.000
12:30-13:00	10	3310	0.000	10	3310	0.000	10	3310	0.000
13:00-13:30	10	3310	0.000	10	3310	0.000	10	3310	0.000
13:30-14:00	10	3310	0.000	10	3310	0.000	10	3310	0.000
14:00-14:30	10	3310	0.000	10	3310	0.000	10	3310	0.000
14:30-15:00	10	3310	0.000	10	3310	0.000	10	3310	0.000
15:00-15:30	10	3310	0.000	10	3310	0.000	10	3310	0.000
15:30-16:00	10	3310	0.000	10	3310	0.000	10	3310	0.000
16:00-16:30	10	3310	0.000	10	3310	0.000	10	3310	0.000
16:30-17:00	10	3310	0.000	10	3310	0.000	10	3310	0.000
17:00-17:30	10	3310	0.000	10	3310	0.000	10	3310	0.000
17:30-18:00	10	3310	0.000	10	3310	0.000	10	3310	0.000
18:00-18:30	10	3310	0.000	10	3310	0.000	10	3310	0.000
18:30-19:00	10	3310	0.000	10	3310	0.000	10	3310	0.000
19:00-19:30	2	4014	0.000	2	4014	0.000	2	4014	0.000
19:30-20:00	2	4014	0.000	2	4014	0.000	2	4014	0.000
20:00-20:30	2	4014	0.000	2	4014	0.000	2	4014	0.000
20:30-21:00	2	4014	0.000	2	4014	0.000	2	4014	0.000
21:00-21:30									
21:30-22:00									
22:00-22:30									
22:30-23:00									
23:00-23:30									
23:30-24:00									
Total Rates:			0.000			0.003			0.003

This section displays the trip rate results based on the selected set of surveys and the selected count type (shown just above the table). It is split by three main columns, representing arrivals trips, departures trips, and total trips (arrivals plus departures). Within each of these main columns are three sub-columns. These display the number of survey days where count data is included (per time period), the average value of the selected trip rate calculation parameter (per time period), and the trip rate result (per time period). Total trip rates (the sum of the column) are also displayed at the foot of the table.

To obtain a trip rate, the average (mean) trip rate parameter value (TRP) is first calculated for all selected survey days that have count data available for the stated time period. The average (mean) number of arrivals, departures or totals (whichever applies) is also calculated (COUNT) for all selected survey days that have count data available for the stated time period. Then, the average count is divided by the average trip rate parameter value, and multiplied by the stated calculation factor (shown just above the table and abbreviated here as FACT). So, the method is: COUNT/TRP*FACT. Trip rates are then rounded to 3 decimal places.

Chapel Pill Lane Bristol
Licence No: 337901

TRIP RATE for Land Use 02 - EMPLOYMENT/D - INDUSTRIAL ESTATE
 MULTI-MODAL CYCLISTS
 Calculation factor: 100 sqm
 BOLD print indicates peak (busiest) period

Time Range	ARRIVALS			DEPARTURES			TOTALS		
	No. Days	Ave. GFA	Trip Rate	No. Days	Ave. GFA	Trip Rate	No. Days	Ave. GFA	Trip Rate
00:00-00:30									
00:30-01:00									
01:00-01:30									
01:30-02:00									
02:00-02:30									
02:30-03:00									
03:00-03:30									
03:30-04:00									
04:00-04:30									
04:30-05:00									
05:00-05:30	1	4727	0.000	1	4727	0.000	1	4727	0.000
05:30-06:00	1	4727	0.000	1	4727	0.000	1	4727	0.000
06:00-06:30	1	4727	0.000	1	4727	0.000	1	4727	0.000
06:30-07:00	1	4727	0.000	1	4727	0.000	1	4727	0.000
07:00-07:30	10	3310	0.003	10	3310	0.000	10	3310	0.003
07:30-08:00	10	3310	0.006	10	3310	0.000	10	3310	0.006
08:00-08:30	10	3310	0.000	10	3310	0.003	10	3310	0.003
08:30-09:00	10	3310	0.003	10	3310	0.000	10	3310	0.003
09:00-09:30	10	3310	0.000	10	3310	0.000	10	3310	0.000
09:30-10:00	10	3310	0.000	10	3310	0.000	10	3310	0.000
10:00-10:30	10	3310	0.000	10	3310	0.000	10	3310	0.000
10:30-11:00	10	3310	0.000	10	3310	0.003	10	3310	0.003
11:00-11:30	10	3310	0.000	10	3310	0.003	10	3310	0.003
11:30-12:00	10	3310	0.003	10	3310	0.000	10	3310	0.003
12:00-12:30	10	3310	0.000	10	3310	0.000	10	3310	0.000
12:30-13:00	10	3310	0.003	10	3310	0.000	10	3310	0.003
13:00-13:30	10	3310	0.000	10	3310	0.000	10	3310	0.000
13:30-14:00	10	3310	0.003	10	3310	0.000	10	3310	0.003
14:00-14:30	10	3310	0.000	10	3310	0.006	10	3310	0.006
14:30-15:00	10	3310	0.000	10	3310	0.003	10	3310	0.003
15:00-15:30	10	3310	0.000	10	3310	0.000	10	3310	0.000
15:30-16:00	10	3310	0.000	10	3310	0.000	10	3310	0.000
16:00-16:30	10	3310	0.000	10	3310	0.000	10	3310	0.000
16:30-17:00	10	3310	0.006	10	3310	0.003	10	3310	0.009
17:00-17:30	10	3310	0.003	10	3310	0.009	10	3310	0.012
17:30-18:00	10	3310	0.000	10	3310	0.003	10	3310	0.003
18:00-18:30	10	3310	0.000	10	3310	0.000	10	3310	0.000
18:30-19:00	10	3310	0.000	10	3310	0.000	10	3310	0.000
19:00-19:30	2	4014	0.000	2	4014	0.000	2	4014	0.000
19:30-20:00	2	4014	0.000	2	4014	0.000	2	4014	0.000
20:00-20:30	2	4014	0.000	2	4014	0.000	2	4014	0.000
20:30-21:00	2	4014	0.000	2	4014	0.000	2	4014	0.000
21:00-21:30									
21:30-22:00									
22:00-22:30									
22:30-23:00									
23:00-23:30									
23:30-24:00									
Total Rates:		0.030		0.033					0.063

This section displays the trip rate results based on the selected set of surveys and the selected count type (shown just above the table). It is split by three main columns, representing arrivals trips, departures trips, and total trips (arrivals plus departures). Within each of these main columns are three sub-columns. These display the number of survey days where count data is included (per time period), the average value of the selected trip rate calculation parameter (per time period), and the trip rate result (per time period). Total trip rates (the sum of the column) are also displayed at the foot of the table.

To obtain a trip rate, the average (mean) trip rate parameter value (TRP) is first calculated for all selected survey days that have count data available for the stated time period. The average (mean) number of arrivals, departures or totals (whichever applies) is also calculated (COUNT) for all selected survey days that have count data available for the stated time period. Then, the average count is divided by the average trip rate parameter value, and multiplied by the stated calculation factor (shown just above the table and abbreviated here as FACT). So, the method is: COUNT/TRP*FACT. Trip rates are then rounded to 3 decimal places.

TRIP RATE for Land Use 02 - EMPLOYMENT/D - INDUSTRIAL ESTATE

MULTI-MODAL VEHICLE OCCUPANTS

Calculation factor: 100 sqm

BOLD print indicates peak (busiest) period

	ARRIVALS			DEPARTURES			TOTALS		
Time Range	No. Days	Ave. GFA	Trip Rate	No. Days	Ave. GFA	Trip Rate	No. Days	Ave. GFA	Trip Rate
00:00-00:30									
00:30-01:00									
01:00-01:30									
01:30-02:00									
02:00-02:30									
02:30-03:00									
03:00-03:30									
03:30-04:00									
04:00-04:30									
04:30-05:00									
05:00-05:30	1	4727	0.106	1	4727	0.021	1	4727	0.127
05:30-06:00	1	4727	0.021	1	4727	0.021	1	4727	0.042
06:00-06:30	1	4727	0.148	1	4727	0.085	1	4727	0.233
06:30-07:00	1	4727	0.085	1	4727	0.063	1	4727	0.148
07:00-07:30	10	3310	0.196	10	3310	0.069	10	3310	0.265
07:30-08:00	10	3310	0.357	10	3310	0.202	10	3310	0.559
08:00-08:30	10	3310	0.474	10	3310	0.275	10	3310	0.749
08:30-09:00	10	3310	0.459	10	3310	0.293	10	3310	0.752
09:00-09:30	10	3310	0.335	10	3310	0.287	10	3310	0.622
09:30-10:00	10	3310	0.429	10	3310	0.266	10	3310	0.695
10:00-10:30	10	3310	0.411	10	3310	0.341	10	3310	0.752
10:30-11:00	10	3310	0.547	10	3310	0.429	10	3310	0.976
11:00-11:30	10	3310	0.417	10	3310	0.444	10	3310	0.861
11:30-12:00	10	3310	0.502	10	3310	0.583	10	3310	1.085
12:00-12:30	10	3310	0.414	10	3310	0.414	10	3310	0.828
12:30-13:00	10	3310	0.471	10	3310	0.486	10	3310	0.957
13:00-13:30	10	3310	0.420	10	3310	0.453	10	3310	0.873
13:30-14:00	10	3310	0.353	10	3310	0.281	10	3310	0.634
14:00-14:30	10	3310	0.387	10	3310	0.453	10	3310	0.840
14:30-15:00	10	3310	0.317	10	3310	0.420	10	3310	0.737
15:00-15:30	10	3310	0.314	10	3310	0.335	10	3310	0.649
15:30-16:00	10	3310	0.369	10	3310	0.357	10	3310	0.726
16:00-16:30	10	3310	0.326	10	3310	0.414	10	3310	0.740
16:30-17:00	10	3310	0.230	10	3310	0.399	10	3310	0.629
17:00-17:30	10	3310	0.211	10	3310	0.613	10	3310	0.824
17:30-18:00	10	3310	0.139	10	3310	0.323	10	3310	0.462
18:00-18:30	10	3310	0.069	10	3310	0.163	10	3310	0.232
18:30-19:00	10	3310	0.042	10	3310	0.085	10	3310	0.127
19:00-19:30	2	4014	0.025	2	4014	0.062	2	4014	0.087
19:30-20:00	2	4014	0.012	2	4014	0.012	2	4014	0.024
20:00-20:30	2	4014	0.037	2	4014	0.012	2	4014	0.049
20:30-21:00	2	4014	0.000	2	4014	0.012	2	4014	0.012
21:00-21:30									
21:30-22:00									
22:00-22:30									
22:30-23:00									
23:00-23:30									
23:30-24:00									
Total Rates:			8.623			8.673			17.296

This section displays the trip rate results based on the selected set of surveys and the selected count type (shown just above the table). It is split by three main columns, representing arrivals trips, departures trips, and total trips (arrivals plus departures). Within each of these main columns are three sub-columns. These display the number of survey days where count data is included (per time period), the average value of the selected trip rate calculation parameter (per time period), and the trip rate result (per time period). Total trip rates (the sum of the column) are also displayed at the foot of the table.

To obtain a trip rate, the average (mean) trip rate parameter value (TRP) is first calculated for all selected survey days that have count data available for the stated time period. The average (mean) number of arrivals, departures or totals (whichever applies) is also calculated (COUNT) for all selected survey days that have count data available for the stated time period. Then, the average count is divided by the average trip rate parameter value, and multiplied by the stated calculation factor (shown just above the table and abbreviated here as FACT). So, the method is: COUNT/TRP*FACT. Trip rates are then rounded to 3 decimal places.

TRIP RATE for Land Use 02-EMPLOYMENT/D - INDUSTRIAL ESTATE
MULTI-MODAL PEDESTRIANS
Calculation factor: 100 sqm
BOLD print indicates peak (busiest) period

	ARRIVALS			DEPARTURES			TOTALS		
Time Range	No. Days	Ave. GFA	Trip Rate	No. Days	Ave. GFA	Trip Rate	No. Days	Ave. GFA	Trip Rate
00:00-00:30									
00:30-01:00									
01:00-01:30									
01:30-02:00									
02:00-02:30									
02:30-03:00									
03:00-03:30									
03:30-04:00									
04:00-04:30									
04:30-05:00									
05:00-05:30	1	4727	0.000	1	4727	0.000	1	4727	0.000
05:30-06:00	1	4727	0.000	1	4727	0.000	1	4727	0.000
06:00-06:30	1	4727	0.000	1	4727	0.000	1	4727	0.000
06:30-07:00	1	4727	0.000	1	4727	0.000	1	4727	0.000
07:00-07:30	10	3310	0.003	10	3310	0.000	10	3310	0.003
07:30-08:00	10	3310	0.030	10	3310	0.006	10	3310	0.036
08:00-08:30	10	3310	0.006	10	3310	0.006	10	3310	0.012
08:30-09:00	10	3310	0.015	10	3310	0.018	10	3310	0.033
09:00-09:30	10	3310	0.009	10	3310	0.009	10	3310	0.018
09:30-10:00	10	3310	0.012	10	3310	0.012	10	3310	0.024
10:00-10:30	10	3310	0.006	10	3310	0.018	10	3310	0.024
10:30-11:00	10	3310	0.006	10	3310	0.006	10	3310	0.012
11:00-11:30	10	3310	0.003	10	3310	0.006	10	3310	0.009
11:30-12:00	10	3310	0.009	10	3310	0.003	10	3310	0.012
12:00-12:30	10	3310	0.012	10	3310	0.018	10	3310	0.030
12:30-13:00	10	3310	0.024	10	3310	0.012	10	3310	0.036
13:00-13:30	10	3310	0.009	10	3310	0.009	10	3310	0.018
13:30-14:00	10	3310	0.018	10	3310	0.024	10	3310	0.042
14:00-14:30	10	3310	0.009	10	3310	0.006	10	3310	0.015
14:30-15:00	10	3310	0.009	10	3310	0.006	10	3310	0.015
15:00-15:30	10	3310	0.018	10	3310	0.009	10	3310	0.027
15:30-16:00	10	3310	0.009	10	3310	0.033	10	3310	0.042
16:00-16:30	10	3310	0.012	10	3310	0.021	10	3310	0.033
16:30-17:00	10	3310	0.018	10	3310	0.021	10	3310	0.039
17:00-17:30	10	3310	0.006	10	3310	0.012	10	3310	0.018
17:30-18:00	10	3310	0.003	10	3310	0.009	10	3310	0.012
18:00-18:30	10	3310	0.003	10	3310	0.003	10	3310	0.006
18:30-19:00	10	3310	0.003	10	3310	0.006	10	3310	0.009
19:00-19:30	2	4014	0.000	2	4014	0.000	2	4014	0.000
19:30-20:00	2	4014	0.000	2	4014	0.000	2	4014	0.000
20:00-20:30	2	4014	0.000	2	4014	0.000	2	4014	0.000
20:30-21:00	2	4014	0.000	2	4014	0.000	2	4014	0.000
21:00-21:30									
21:30-22:00									
22:00-22:30									
22:30-23:00									
23:00-23:30									
23:30-24:00									
Total Rates:			0.252			0.273			0.525

This section displays the trip rate results based on the selected set of surveys and the selected count type (shown just above the table). It is split by three main columns, representing arrivals trips, departures trips, and total trips (arrivals plus departures). Within each of these main columns are three sub-columns. These display the number of survey days where count data is included (per time period), the average value of the selected trip rate calculation parameter (per time period), and the trip rate result (per time period). Total trip rates (the sum of the column) are also displayed at the foot of the table.

To obtain a trip rate, the average (mean) trip rate parameter value (TRP) is first calculated for all selected survey days that have count data available for the stated time period. The average (mean) number of arrivals, departures or totals (whichever applies) is also calculated (COUNT) for all selected survey days that have count data available for the stated time period. Then, the average count is divided by the average trip rate parameter value, and multiplied by the stated calculation factor (shown just above the table and abbreviated here as FACT). So, the method is: COUNT/TRP*FACT. Trip rates are then rounded to 3 decimal places.

TRIP RATE for Land Use 02 - EMPLOYMENT/D - INDUSTRIAL ESTATE

MULTI-MODAL BUS/ TRAM PASSENGERS

Calculation factor: 100 sqm

BOLD print indicates peak (busiest) period

	ARRIVALS			DEPARTURES			TOTALS		
Time Range	No. Days	Ave. GFA	Trip Rate	No. Days	Ave. GFA	Trip Rate	No. Days	Ave. GFA	Trip Rate
00:00-00:30									
00:30-01:00									
01:00-01:30									
01:30-02:00									
02:00-02:30									
02:30-03:00									
03:00-03:30									
03:30-04:00									
04:00-04:30									
04:30-05:00									
05:00-05:30	1	4727	0.000	1	4727	0.000	1	4727	0.000
05:30-06:00	1	4727	0.000	1	4727	0.000	1	4727	0.000
06:00-06:30	1	4727	0.000	1	4727	0.000	1	4727	0.000
06:30-07:00	1	4727	0.000	1	4727	0.000	1	4727	0.000
07:00-07:30	10	3310	0.006	10	3310	0.000	10	3310	0.006
07:30-08:00	10	3310	0.009	10	3310	0.000	10	3310	0.009
08:00-08:30	10	3310	0.015	10	3310	0.000	10	3310	0.015
08:30-09:00	10	3310	0.018	10	3310	0.003	10	3310	0.021
09:00-09:30	10	3310	0.006	10	3310	0.000	10	3310	0.006
09:30-10:00	10	3310	0.012	10	3310	0.000	10	3310	0.012
10:00-10:30	10	3310	0.006	10	3310	0.000	10	3310	0.006
10:30-11:00	10	3310	0.000	10	3310	0.003	10	3310	0.003
11:00-11:30	10	3310	0.003	10	3310	0.000	10	3310	0.003
11:30-12:00	10	3310	0.006	10	3310	0.000	10	3310	0.006
12:00-12:30	10	3310	0.009	10	3310	0.000	10	3310	0.009
12:30-13:00	10	3310	0.006	10	3310	0.009	10	3310	0.015
13:00-13:30	10	3310	0.003	10	3310	0.006	10	3310	0.009
13:30-14:00	10	3310	0.003	10	3310	0.000	10	3310	0.003
14:00-14:30	10	3310	0.000	10	3310	0.003	10	3310	0.003
14:30-15:00	10	3310	0.000	10	3310	0.003	10	3310	0.003
15:00-15:30	10	3310	0.003	10	3310	0.006	10	3310	0.009
15:30-16:00	10	3310	0.003	10	3310	0.018	10	3310	0.021
16:00-16:30	10	3310	0.000	10	3310	0.012	10	3310	0.012
16:30-17:00	10	3310	0.006	10	3310	0.012	10	3310	0.018
17:00-17:30	10	3310	0.000	10	3310	0.018	10	3310	0.018
17:30-18:00	10	3310	0.000	10	3310	0.030	10	3310	0.030
18:00-18:30	10	3310	0.000	10	3310	0.006	10	3310	0.006
18:30-19:00	10	3310	0.000	10	3310	0.003	10	3310	0.003
19:00-19:30	2	4014	0.000	2	4014	0.000	2	4014	0.000
19:30-20:00	2	4014	0.000	2	4014	0.000	2	4014	0.000
20:00-20:30	2	4014	0.000	2	4014	0.000	2	4014	0.000
20:30-21:00	2	4014	0.000	2	4014	0.000	2	4014	0.000
21:00-21:30									
21:30-22:00									
22:00-22:30									
22:30-23:00									
23:00-23:30									
23:30-24:00									
Total Rates:			0.114			0.132			0.246

This section displays the trip rate results based on the selected set of surveys and the selected count type (shown just above the table). It is split by three main columns, representing arrivals trips, departures trips, and total trips (arrivals plus departures). Within each of these main columns are three sub-columns. These display the number of survey days where count data is included (per time period), the average value of the selected trip rate calculation parameter (per time period), and the trip rate result (per time period). Total trip rates (the sum of the column) are also displayed at the foot of the table.

To obtain a trip rate, the average (mean) trip rate parameter value (TRP) is first calculated for all selected survey days that have count data available for the stated time period. The average (mean) number of arrivals, departures or totals (whichever applies) is also calculated (COUNT) for all selected survey days that have count data available for the stated time period. Then, the average count is divided by the average trip rate parameter value, and multiplied by the stated calculation factor (shown just above the table and abbreviated here as FACT). So, the method is: COUNT/TRP*FACT. Trip rates are then rounded to 3 decimal places.

TRIP RATE for Land Use 02 - EMPLOYMENT/D - INDUSTRIAL ESTATE

MULTI-MODAL TOTAL RAIL PASSENGERS
Calculation factor: 100 sqm
BOLD print indicates peak (busiest) period

	ARRIVALS			DEPARTURES			TOTALS		
Time Range	No. Days	Ave. GFA	Trip Rate	No. Days	Ave. GFA	Trip Rate	No. Days	Ave. GFA	Trip Rate
00:00-00:30									
00:30-01:00									
01:00-01:30									
01:30-02:00									
02:00-02:30									
02:30-03:00									
03:00-03:30									
03:30-04:00									
04:00-04:30									
04:30-05:00									
05:00-05:30	1	4727	0.000	1	4727	0.000	1	4727	0.000
05:30-06:00	1	4727	0.000	1	4727	0.000	1	4727	0.000
06:00-06:30	1	4727	0.000	1	4727	0.000	1	4727	0.000
06:30-07:00	1	4727	0.000	1	4727	0.000	1	4727	0.000
07:00-07:30	10	3310	0.000	10	3310	0.000	10	3310	0.000
07:30-08:00	10	3310	0.003	10	3310	0.000	10	3310	0.003
08:00-08:30	10	3310	0.003	10	3310	0.000	10	3310	0.003
08:30-09:00	10	3310	0.003	10	3310	0.000	10	3310	0.003
09:00-09:30	10	3310	0.000	10	3310	0.000	10	3310	0.000
09:30-10:00	10	3310	0.003	10	3310	0.000	10	3310	0.003
10:00-10:30	10	3310	0.000	10	3310	0.000	10	3310	0.000
10:30-11:00	10	3310	0.000	10	3310	0.000	10	3310	0.000
11:00-11:30	10	3310	0.003	10	3310	0.000	10	3310	0.003
11:30-12:00	10	3310	0.000	10	3310	0.000	10	3310	0.000
12:00-12:30	10	3310	0.000	10	3310	0.000	10	3310	0.000
12:30-13:00	10	3310	0.000	10	3310	0.000	10	3310	0.000
13:00-13:30	10	3310	0.000	10	3310	0.000	10	3310	0.000
13:30-14:00	10	3310	0.000	10	3310	0.003	10	3310	0.003
14:00-14:30	10	3310	0.000	10	3310	0.000	10	3310	0.000
14:30-15:00	10	3310	0.000	10	3310	0.000	10	3310	0.000
15:00-15:30	10	3310	0.000	10	3310	0.000	10	3310	0.000
15:30-16:00	10	3310	0.000	10	3310	0.003	10	3310	0.003
16:00-16:30	10	3310	0.000	10	3310	0.006	10	3310	0.006
16:30-17:00	10	3310	0.000	10	3310	0.003	10	3310	0.003
17:00-17:30	10	3310	0.000	10	3310	0.003	10	3310	0.003
17:30-18:00	10	3310	0.000	10	3310	0.000	10	3310	0.000
18:00-18:30	10	3310	0.000	10	3310	0.000	10	3310	0.000
18:30-19:00	10	3310	0.000	10	3310	0.000	10	3310	0.000
19:00-19:30	2	4014	0.000	2	4014	0.000	2	4014	0.000
19:30-20:00	2	4014	0.000	2	4014	0.000	2	4014	0.000
20:00-20:30	2	4014	0.000	2	4014	0.000	2	4014	0.000
20:30-21:00	2	4014	0.000	2	4014	0.000	2	4014	0.000
21:00-21:30									
21:30-22:00									
22:00-22:30									
22:30-23:00									
23:00-23:30									
23:30-24:00									
Total Rates:			0.015			0.018			0.033

This section displays the trip rate results based on the selected set of surveys and the selected count type (shown just above the table). It is split by three main columns, representing arrivals trips, departures trips, and total trips (arrivals plus departures). Within each of these main columns are three sub-columns. These display the number of survey days where count data is included (per time period), the average value of the selected trip rate calculation parameter (per time period), and the trip rate result (per time period). Total trip rates (the sum of the column) are also displayed at the foot of the table.

To obtain a trip rate, the average (mean) trip rate parameter value (TRP) is first calculated for all selected survey days that have count data available for the stated time period. The average (mean) number of arrivals, departures or totals (whichever applies) is also calculated (COUNT) for all selected survey days that have count data available for the stated time period. Then, the average count is divided by the average trip rate parameter value, and multiplied by the stated calculation factor (shown just above the table and abbreviated here as FACT). So, the method is: COUNT/TRP*FACT. Trip rates are then rounded to 3 decimal places.

TRIP RATE for Land Use 02 - EMPLOYMENT/D - INDUSTRIAL ESTATE

MULTI-MODAL PUBLIC TRANSPORT USERS
Calculation factor: 100 sqm
BOLD print indicates peak (busiest) period

	ARRIVALS			DEPARTURES			TOTALS		
Time Range	No. Days	Ave. GFA	Trip Rate	No. Days	Ave. GFA	Trip Rate	No. Days	Ave. GFA	Trip Rate
00:00-00:30									
00:30-01:00									
01:00-01:30									
01:30-02:00									
02:00-02:30									
02:30-03:00									
03:00-03:30									
03:30-04:00									
04:00-04:30									
04:30-05:00									
05:00-05:30	1	4727	0.000	1	4727	0.000	1	4727	0.000
05:30-06:00	1	4727	0.000	1	4727	0.000	1	4727	0.000
06:00-06:30	1	4727	0.000	1	4727	0.000	1	4727	0.000
06:30-07:00	1	4727	0.000	1	4727	0.000	1	4727	0.000
07:00-07:30	10	3310	0.006	10	3310	0.000	10	3310	0.006
07:30-08:00	10	3310	0.012	10	3310	0.000	10	3310	0.012
08:00-08:30	10	3310	0.018	10	3310	0.000	10	3310	0.018
08:30-09:00	10	3310	0.021	10	3310	0.003	10	3310	0.024
09:00-09:30	10	3310	0.006	10	3310	0.000	10	3310	0.006
09:30-10:00	10	3310	0.015	10	3310	0.000	10	3310	0.015
10:00-10:30	10	3310	0.006	10	3310	0.000	10	3310	0.006
10:30-11:00	10	3310	0.000	10	3310	0.003	10	3310	0.003
11:00-11:30	10	3310	0.006	10	3310	0.000	10	3310	0.006
11:30-12:00	10	3310	0.006	10	3310	0.000	10	3310	0.006
12:00-12:30	10	3310	0.009	10	3310	0.000	10	3310	0.009
12:30-13:00	10	3310	0.006	10	3310	0.009	10	3310	0.015
13:00-13:30	10	3310	0.003	10	3310	0.006	10	3310	0.009
13:30-14:00	10	3310	0.003	10	3310	0.003	10	3310	0.006
14:00-14:30	10	3310	0.000	10	3310	0.003	10	3310	0.003
14:30-15:00	10	3310	0.000	10	3310	0.003	10	3310	0.003
15:00-15:30	10	3310	0.003	10	3310	0.006	10	3310	0.009
15:30-16:00	10	3310	0.003	10	3310	0.021	10	3310	0.024
16:00-16:30	10	3310	0.000	10	3310	0.018	10	3310	0.018
16:30-17:00	10	3310	0.006	10	3310	0.015	10	3310	0.021
17:00-17:30	10	3310	0.000	10	3310	0.021	10	3310	0.021
17:30-18:00	10	3310	0.000	10	3310	0.030	10	3310	0.030
18:00-18:30	10	3310	0.000	10	3310	0.006	10	3310	0.006
18:30-19:00	10	3310	0.000	10	3310	0.003	10	3310	0.003
19:00-19:30	2	4014	0.000	2	4014	0.000	2	4014	0.000
19:30-20:00	2	4014	0.000	2	4014	0.000	2	4014	0.000
20:00-20:30	2	4014	0.000	2	4014	0.000	2	4014	0.000
20:30-21:00	2	4014	0.000	2	4014	0.000	2	4014	0.000
21:00-21:30									
21:30-22:00									
22:00-22:30									
22:30-23:00									
23:00-23:30									
23:30-24:00									
Total Rates:			0.129			0.150			0.279

This section displays the trip rate results based on the selected set of surveys and the selected count type (shown just above the table). It is split by three main columns, representing arrivals trips, departures trips, and total trips (arrivals plus departures). Within each of these main columns are three sub-columns. These display the number of survey days where count data is included (per time period), the average value of the selected trip rate calculation parameter (per time period), and the trip rate result (per time period). Total trip rates (the sum of the column) are also displayed at the foot of the table.

To obtain a trip rate, the average (mean) trip rate parameter value (TRP) is first calculated for all selected survey days that have count data available for the stated time period. The average (mean) number of arrivals, departures or totals (whichever applies) is also calculated (COUNT) for all selected survey days that have count data available for the stated time period. Then, the average count is divided by the average trip rate parameter value, and multiplied by the stated calculation factor (shown just above the table and abbreviated here as FACT). So, the method is: COUNT/TRP*FACT. Trip rates are then rounded to 3 decimal places.

TRIP RATE for Land Use 02-EMPLOYMENT/D - INDUSTRIAL ESTATE
MULTI-MODAL TOTAL PEOPLE
Calculation factor: 100 sqm
BOLD print indicates peak (busiest) period

	ARRIVALS			DEPARTURES			TOTALS		
Time Range	No. Days	Ave. GFA	Trip Rate	No. Days	Ave. GFA	Trip Rate	No. Days	Ave. GFA	Trip Rate
00:00-00:30									
00:30-01:00									
01:00-01:30									
01:30-02:00									
02:00-02:30									
02:30-03:00									
03:00-03:30									
03:30-04:00									
04:00-04:30									
04:30-05:00									
05:00-05:30	1	4727	0.106	1	4727	0.021	1	4727	0.127
05:30-06:00	1	4727	0.021	1	4727	0.021	1	4727	0.042
06:00-06:30	1	4727	0.148	1	4727	0.085	1	4727	0.233
06:30-07:00	1	4727	0.085	1	4727	0.063	1	4727	0.148
07:00-07:30	10	3310	0.208	10	3310	0.069	10	3310	0.277
07:30-08:00	10	3310	0.405	10	3310	0.208	10	3310	0.613
08:00-08:30	10	3310	0.499	10	3310	0.284	10	3310	0.783
08:30-09:00	10	3310	0.499	10	3310	0.314	10	3310	0.813
09:00-09:30	10	3310	0.350	10	3310	0.296	10	3310	0.646
09:30-10:00	10	3310	0.456	10	3310	0.278	10	3310	0.734
10:00-10:30	10	3310	0.423	10	3310	0.360	10	3310	0.783
10:30-11:00	10	3310	0.553	10	3310	0.441	10	3310	0.994
11:00-11:30	10	3310	0.426	10	3310	0.453	10	3310	0.879
11:30-12:00	10	3310	0.520	10	3310	0.586	10	3310	1.106
12:00-12:30	10	3310	0.435	10	3310	0.432	10	3310	0.867
12:30-13:00	10	3310	0.505	10	3310	0.508	10	3310	1.013
13:00-13:30	10	3310	0.432	10	3310	0.468	10	3310	0.900
13:30-14:00	10	3310	0.378	10	3310	0.308	10	3310	0.686
14:00-14:30	10	3310	0.396	10	3310	0.468	10	3310	0.864
14:30-15:00	10	3310	0.326	10	3310	0.432	10	3310	0.758
15:00-15:30	10	3310	0.335	10	3310	0.350	10	3310	0.685
15:30-16:00	10	3310	0.381	10	3310	0.411	10	3310	0.792
16:00-16:30	10	3310	0.338	10	3310	0.453	10	3310	0.791
16:30-17:00	10	3310	0.260	10	3310	0.438	10	3310	0.698
17:00-17:30	10	3310	0.221	10	3310	0.656	10	3310	0.877
17:30-18:00	10	3310	0.142	10	3310	0.366	10	3310	0.508
18:00-18:30	10	3310	0.073	10	3310	0.172	10	3310	0.245
18:30-19:00	10	3310	0.045	10	3310	0.094	10	3310	0.139
19:00-19:30	2	4014	0.025	2	4014	0.062	2	4014	0.087
19:30-20:00	2	4014	0.012	2	4014	0.012	2	4014	0.024
20:00-20:30	2	4014	0.037	2	4014	0.012	2	4014	0.049
20:30-21:00	2	4014	0.000	2	4014	0.012	2	4014	0.012
21:00-21:30									
21:30-22:00									
22:00-22:30									
22:30-23:00									
23:00-23:30									
23:30-24:00									
Total Rates:			9.040			9.133			18.173

This section displays the trip rate results based on the selected set of surveys and the selected count type (shown just above the table). It is split by three main columns, representing arrivals trips, departures trips, and total trips (arrivals plus departures). Within each of these main columns are three sub-columns. These display the number of survey days where count data is included (per time period), the average value of the selected trip rate calculation parameter (per time period), and the trip rate result (per time period). Total trip rates (the sum of the column) are also displayed at the foot of the table.

To obtain a trip rate, the average (mean) trip rate parameter value (TRP) is first calculated for all selected survey days that have count data available for the stated time period. The average (mean) number of arrivals, departures or totals (whichever applies) is also calculated (COUNT) for all selected survey days that have count data available for the stated time period. Then, the average count is divided by the average trip rate parameter value, and multiplied by the stated calculation factor (shown just above the table and abbreviated here as FACT). So, the method is: COUNT/TRP*FACT. Trip rates are then rounded to 3 decimal places.

TRIP RATE for Land Use 02 - EMPLOYMENT/D - INDUSTRIAL ESTATE
MULTI-MODAL CARS
Calculation factor: 100 sqm
BOLD print indicates peak (busiest) period

	ARRIVALS			DEPARTURES			TOTALS		
Time Range	No. Days	Ave. GFA	Trip Rate	No. Days	Ave. GFA	Trip Rate	No. Days	Ave. GFA	Trip Rate
00:00-00:30									
00:30-01:00									
01:00-01:30									
01:30-02:00									
02:00-02:30									
02:30-03:00									
03:00-03:30									
03:30-04:00									
04:00-04:30									
04:30-05:00									
05:00-05:30	1	4727	0.021	1	4727	0.021	1	4727	0.042
05:30-06:00	1	4727	0.000	1	4727	0.000	1	4727	0.000
06:00-06:30	1	4727	0.021	1	4727	0.021	1	4727	0.042
06:30-07:00	1	4727	0.021	1	4727	0.000	1	4727	0.021
07:00-07:30	10	3310	0.106	10	3310	0.024	10	3310	0.130
07:30-08:00	10	3310	0.187	10	3310	0.039	10	3310	0.226
08:00-08:30	10	3310	0.205	10	3310	0.027	10	3310	0.232
08:30-09:00	10	3310	0.218	10	3310	0.082	10	3310	0.300
09:00-09:30	10	3310	0.175	10	3310	0.091	10	3310	0.266
09:30-10:00	10	3310	0.181	10	3310	0.094	10	3310	0.275
10:00-10:30	10	3310	0.160	10	3310	0.115	10	3310	0.275
10:30-11:00	10	3310	0.230	10	3310	0.172	10	3310	0.402
11:00-11:30	10	3310	0.151	10	3310	0.172	10	3310	0.323
11:30-12:00	10	3310	0.196	10	3310	0.251	10	3310	0.447
12:00-12:30	10	3310	0.175	10	3310	0.193	10	3310	0.368
12:30-13:00	10	3310	0.202	10	3310	0.218	10	3310	0.420
13:00-13:30	10	3310	0.224	10	3310	0.227	10	3310	0.451
13:30-14:00	10	3310	0.148	10	3310	0.127	10	3310	0.275
14:00-14:30	10	3310	0.175	10	3310	0.211	10	3310	0.386
14:30-15:00	10	3310	0.136	10	3310	0.190	10	3310	0.326
15:00-15:30	10	3310	0.124	10	3310	0.175	10	3310	0.299
15:30-16:00	10	3310	0.157	10	3310	0.145	10	3310	0.302
16:00-16:30	10	3310	0.133	10	3310	0.181	10	3310	0.314
16:30-17:00	10	3310	0.115	10	3310	0.218	10	3310	0.333
17:00-17:30	10	3310	0.097	10	3310	0.393	10	3310	0.490
17:30-18:00	10	3310	0.085	10	3310	0.169	10	3310	0.254
18:00-18:30	10	3310	0.036	10	3310	0.088	10	3310	0.124
18:30-19:00	10	3310	0.030	10	3310	0.048	10	3310	0.078
19:00-19:30	2	4014	0.012	2	4014	0.025	2	4014	0.037
19:30-20:00	2	4014	0.012	2	4014	0.012	2	4014	0.024
20:00-20:30	2	4014	0.012	2	4014	0.025	2	4014	0.037
20:30-21:00	2	4014	0.000	2	4014	0.012	2	4014	0.012
21:00-21:30									
21:30-22:00									
22:00-22:30									
22:30-23:00									
23:00-23:30									
23:30-24:00									
Total Rates:			3.745			3.766			7.511

This section displays the trip rate results based on the selected set of surveys and the selected count type (shown just above the table). It is split by three main columns, representing arrivals trips, departures trips, and total trips (arrivals plus departures). Within each of these main columns are three sub-columns. These display the number of survey days where count data is included (per time period), the average value of the selected trip rate calculation parameter (per time period), and the trip rate result (per time period). Total trip rates (the sum of the column) are also displayed at the foot of the table.

To obtain a trip rate, the average (mean) trip rate parameter value (TRP) is first calculated for all selected survey days that have count data available for the stated time period. The average (mean) number of arrivals, departures or totals (whichever applies) is also calculated (COUNT) for all selected survey days that have count data available for the stated time period. Then, the average count is divided by the average trip rate parameter value, and multiplied by the stated calculation factor (shown just above the table and abbreviated here as FACT). So, the method is: COUNT/TRP*FACT. Trip rates are then rounded to 3 decimal places.

TRIP RATE for Land Use 02 - EMPLOYMENT/D - INDUSTRIAL ESTATE
MULTI-MODAL LGVS
Calculation factor: 100 sqm
BOLD print indicates peak (busiest) period

	ARRIVALS			DEPARTURES			TOTALS		
Time Range	No. Days	Ave. GFA	Trip Rate	No. Days	Ave. GFA	Trip Rate	No. Days	Ave. GFA	Trip Rate
00:00-00:30									
00:30-01:00									
01:00-01:30									
01:30-02:00									
02:00-02:30									
02:30-03:00									
03:00-03:30									
03:30-04:00									
04:00-04:30									
04:30-05:00									
05:00-05:30	1	4727	0.085	1	4727	0.000	1	4727	0.085
05:30-06:00	1	4727	0.021	1	4727	0.021	1	4727	0.042
06:00-06:30	1	4727	0.106	1	4727	0.042	1	4727	0.148
06:30-07:00	1	4727	0.063	1	4727	0.000	1	4727	0.063
07:00-07:30	10	3310	0.051	10	3310	0.030	10	3310	0.081
07:30-08:00	10	3310	0.082	10	3310	0.103	10	3310	0.185
08:00-08:30	10	3310	0.145	10	3310	0.172	10	3310	0.317
08:30-09:00	10	3310	0.121	10	3310	0.124	10	3310	0.245
09:00-09:30	10	3310	0.088	10	3310	0.124	10	3310	0.212
09:30-10:00	10	3310	0.091	10	3310	0.100	10	3310	0.191
10:00-10:30	10	3310	0.136	10	3310	0.136	10	3310	0.272
10:30-11:00	10	3310	0.133	10	3310	0.124	10	3310	0.257
11:00-11:30	10	3310	0.148	10	3310	0.142	10	3310	0.290
11:30-12:00	10	3310	0.142	10	3310	0.148	10	3310	0.290
12:00-12:30	10	3310	0.121	10	3310	0.115	10	3310	0.236
12:30-13:00	10	3310	0.142	10	3310	0.142	10	3310	0.284
13:00-13:30	10	3310	0.088	10	3310	0.100	10	3310	0.188
13:30-14:00	10	3310	0.115	10	3310	0.085	10	3310	0.200
14:00-14:30	10	3310	0.109	10	3310	0.103	10	3310	0.212
14:30-15:00	10	3310	0.109	10	3310	0.094	10	3310	0.203
15:00-15:30	10	3310	0.088	10	3310	0.057	10	3310	0.145
15:30-16:00	10	3310	0.100	10	3310	0.091	10	3310	0.191
16:00-16:30	10	3310	0.118	10	3310	0.112	10	3310	0.230
16:30-17:00	10	3310	0.045	10	3310	0.060	10	3310	0.105
17:00-17:30	10	3310	0.048	10	3310	0.060	10	3310	0.108
17:30-18:00	10	3310	0.021	10	3310	0.054	10	3310	0.075
18:00-18:30	10	3310	0.015	10	3310	0.027	10	3310	0.042
18:30-19:00	10	3310	0.009	10	3310	0.015	10	3310	0.024
19:00-19:30	2	4014	0.000	2	4014	0.000	2	4014	0.000
19:30-20:00	2	4014	0.000	2	4014	0.000	2	4014	0.000
20:00-20:30	2	4014	0.000	2	4014	0.000	2	4014	0.000
20:30-21:00	2	4014	0.000	2	4014	0.000	2	4014	0.000
21:00-21:30									
21:30-22:00									
22:00-22:30									
22:30-23:00									
23:00-23:30									
23:30-24:00									
Total Rates:			2.540			2.381			4.921

This section displays the trip rate results based on the selected set of surveys and the selected count type (shown just above the table). It is split by three main columns, representing arrivals trips, departures trips, and total trips (arrivals plus departures). Within each of these main columns are three sub-columns. These display the number of survey days where count data is included (per time period), the average value of the selected trip rate calculation parameter (per time period), and the trip rate result (per time period). Total trip rates (the sum of the column) are also displayed at the foot of the table.

To obtain a trip rate, the average (mean) trip rate parameter value (TRP) is first calculated for all selected survey days that have count data available for the stated time period. The average (mean) number of arrivals, departures or totals (whichever applies) is also calculated (COUNT) for all selected survey days that have count data available for the stated time period. Then, the average count is divided by the average trip rate parameter value, and multiplied by the stated calculation factor (shown just above the table and abbreviated here as FACT). So, the method is: COUNT/TRP*FACT. Trip rates are then rounded to 3 decimal places.

TRIP RATE for Land Use 02 - EMPLOYMENT/D - INDUSTRIAL ESTATE
 MULTI-MODAL MOTOR CYCLES
 Calculation factor: 100 sqm
 BOLD print indicates peak (busiest) period

Time Range	ARRIVALS			DEPARTURES			TOTALS		
	No. Days	Ave. GFA	Trip Rate	No. Days	Ave. GFA	Trip Rate	No. Days	Ave. GFA	Trip Rate
00:00-00:30									
00:30-01:00									
01:00-01:30									
01:30-02:00									
02:00-02:30									
02:30-03:00									
03:00-03:30									
03:30-04:00									
04:00-04:30									
04:30-05:00									
05:00-05:30	1	4727	0.000	1	4727	0.000	1	4727	0.000
05:30-06:00	1	4727	0.000	1	4727	0.000	1	4727	0.000
06:00-06:30		4727	0.000	1	4727	0.000	1	4727	0.000
06:30-07:00	1	4727	0.000	1	4727	0.000	1	4727	0.000
07:00-07:30	10	3310	0.000	10	3310	0.000	10	3310	0.000
07:30-08:00	10	3310	0.003	10	3310	0.000	10	3310	0.003
08:00-08:30	10	3310	0.003	10	3310	0.000	10	3310	0.003
08:30-09:00	10	3310	0.000	10	3310	0.000	10	3310	0.000
09:00-09:30	10	3310	0.000	10	3310	0.000	10	3310	0.000
09:30-10:00	10	3310	0.000	10	3310	0.000	10	3310	0.000
10:00-10:30	10	3310	0.000	10	3310	0.000	10	3310	0.000
10:30-11:00	10	3310	0.000	10	3310	0.000	10	3310	0.000
11:00-11:30	10	3310	0.003	10	3310	0.000	10	3310	0.003
11:30-12:00	10	3310	0.000	10	3310	0.003	10	3310	0.003
12:00-12:30	10	3310	0.000	10	3310	0.000	10	3310	0.000
12:30-13:00	10	3310	0.000	10	3310	0.000	10	3310	0.000
13:00-13:30	10	3310	0.000	10	3310	0.000	10	3310	0.000
13:30-14:00	10	3310	0.000	10	3310	0.000	10	3310	0.000
14:00-14:30	10	3310	0.000	10	3310	0.000	10	3310	0.000
14:30-15:00	10	3310	0.000	10	3310	0.000	10	3310	0.000
15:00-15:30	10	3310	0.000	10	3310	0.000	10	3310	0.000
15:30-16:00	10	3310	0.006	10	3310	0.000	10	3310	0.006
16:00-16:30	10	3310	0.000	10	3310	0.006	10	3310	0.006
16:30-17:00	10	3310	0.000	10	3310	0.003	10	3310	0.003
17:00-17:30	10	3310	0.000	10	3310	0.000	10	3310	0.000
17:30-18:00	10	3310	0.000	10	3310	0.003	10	3310	0.003
18:00-18:30	10	3310	0.000	10	3310	0.000	10	3310	0.000
18:30-19:00	10	3310	0.000	10	3310	0.000	10	3310	0.000
19:00-19:30	2	4014	0.000	2	4014	0.000	2	4014	0.000
19:30-20:00	2	4014	0.000	2	4014	0.000	2	4014	0.000
20:00-20:30	2	4014	0.000	2	4014	0.000	2	4014	0.000
20:30-21:00	2	4014	0.000	2	4014	0.000	2	4014	0.000
21:00-21:30									
21:30-22:00									
22:00-22:30									
22:30-23:00									
23:00-23:30									
23:30-24:00									
Total Rates:		0.015		0.015					0.030

This section displays the trip rate results based on the selected set of surveys and the selected count type (shown just above the table). It is split by three main columns, representing arrivals trips, departures trips, and total trips (arrivals plus departures). Within each of these main columns are three sub-columns. These display the number of survey days where count data is included (per time period), the average value of the selected trip rate calculation parameter (per time period), and the trip rate result (per time period). Total trip rates (the sum of the column) are also displayed at the foot of the table.

To obtain a trip rate, the average (mean) trip rate parameter value (TRP) is first calculated for all selected survey days that have count data available for the stated time period. The average (mean) number of arrivals, departures or totals (whichever applies) is also calculated (COUNT) for all selected survey days that have count data available for the stated time period. Then, the average count is divided by the average trip rate parameter value, and multiplied by the stated calculation factor (shown just above the table and abbreviated here as FACT). So, the method is: COUNT/TRP*FACT. Trip rates are then rounded to 3 decimal places.

TRIP RATE for Land Use 02-EMPLOYMENT/D - INDUSTRIAL ESTATE
MULTI-MODAL Bus Passengers
Calculation factor: 100 sqm
BOLD print indicates peak (busiest) period

	ARRIVALS			DEPARTURES			TOTALS		
Time Range	No. Days	Ave. GFA	Trip Rate	No. Days	Ave. GFA	Trip Rate	No. Days	Ave. GFA	Trip Rate
00:00-00:30									
00:30-01:00									
01:00-01:30									
01:30-02:00									
02:00-02:30									
02:30-03:00									
03:00-03:30									
03:30-04:00									
04:00-04:30									
04:30-05:00									
05:00-05:30	1	4727	0.000	1	4727	0.000	1	4727	0.000
05:30-06:00	1	4727	0.000	1	4727	0.000	1	4727	0.000
06:00-06:30	1	4727	0.000	1	4727	0.000	1	4727	0.000
06:30-07:00	1	4727	0.000	1	4727	0.000	1	4727	0.000
07:00-07:30	10	3310	0.000	10	3310	0.000	10	3310	0.000
07:30-08:00	10	3310	0.000	10	3310	0.000	10	3310	0.000
08:00-08:30	10	3310	0.000	10	3310	0.000	10	3310	0.000
08:30-09:00	10	3310	0.003	10	3310	0.000	10	3310	0.003
09:00-09:30	10	3310	0.000	10	3310	0.000	10	3310	0.000
09:30-10:00	10	3310	0.000	10	3310	0.000	10	3310	0.000
10:00-10:30	10	3310	0.003	10	3310	0.000	10	3310	0.003
10:30-11:00	10	3310	0.000	10	3310	0.000	10	3310	0.000
11:00-11:30	10	3310	0.000	10	3310	0.000	10	3310	0.000
11:30-12:00	10	3310	0.000	10	3310	0.000	10	3310	0.000
12:00-12:30	10	3310	0.003	10	3310	0.000	10	3310	0.003
12:30-13:00	10	3310	0.000	10	3310	0.003	10	3310	0.003
13:00-13:30	10	3310	0.000	10	3310	0.000	10	3310	0.000
13:30-14:00	10	3310	0.000	10	3310	0.000	10	3310	0.000
14:00-14:30	10	3310	0.000	10	3310	0.000	10	3310	0.000
14:30-15:00	10	3310	0.000	10	3310	0.000	10	3310	0.000
15:00-15:30	10	3310	0.000	10	3310	0.003	10	3310	0.003
15:30-16:00	10	3310	0.000	10	3310	0.000	10	3310	0.000
16:00-16:30	10	3310	0.000	10	3310	0.000	10	3310	0.000
16:30-17:00	10	3310	0.000	10	3310	0.003	10	3310	0.003
17:00-17:30	10	3310	0.000	10	3310	0.000	10	3310	0.000
17:30-18:00	10	3310	0.000	10	3310	0.006	10	3310	0.006
18:00-18:30	10	3310	0.000	10	3310	0.000	10	3310	0.000
18:30-19:00	10	3310	0.000	10	3310	0.000	10	3310	0.000
19:00-19:30	2	4014	0.000	2	4014	0.000	2	4014	0.000
19:30-20:00	2	4014	0.000	2	4014	0.000	2	4014	0.000
20:00-20:30	2	4014	0.000	2	4014	0.000	2	4014	0.000
20:30-21:00	2	4014	0.000	2	4014	0.000	2	4014	0.000
21:00-21:30									
21:30-22:00									
22:00-22:30									
22:30-23:00									
23:00-23:30									
23:30-24:00									
Total Rates:			0.009			0.015			0.024

This section displays the trip rate results based on the selected set of surveys and the selected count type (shown just above the table). It is split by three main columns, representing arrivals trips, departures trips, and total trips (arrivals plus departures). Within each of these main columns are three sub-columns. These display the number of survey days where count data is included (per time period), the average value of the selected trip rate calculation parameter (per time period), and the trip rate result (per time period). Total trip rates (the sum of the column) are also displayed at the foot of the table.

To obtain a trip rate, the average (mean) trip rate parameter value (TRP) is first calculated for all selected survey days that have count data available for the stated time period. The average (mean) number of arrivals, departures or totals (whichever applies) is also calculated (COUNT) for all selected survey days that have count data available for the stated time period. Then, the average count is divided by the average trip rate parameter value, and multiplied by the stated calculation factor (shown just above the table and abbreviated here as FACT). So, the method is: COUNT/TRP*FACT. Trip rates are then rounded to 3 decimal places.

| TRICS 7.8.1
 B2 Veh | 240321 B20.15 | Database right of TRICS Consortium Limited, 2021. All rights reserved |
| :--- | :--- | :--- | | Tuesday 27/04/ 21 |
| ---: |
| Page $\mathbf{1}$ |
| Entran Ltd |
| Chapel Pill Lane |

Filtering Summary
Land Use 02/D

[^1]Selected Trip Rate Calculation Parameter Range 552-5000 sqm GFA
Actual Trip Rate Calculation Parameter Range $\quad 1138-4876$ sqm GFA
Date Range Minimum: 01/01/13

Parking Spaces Range
Days of the week selected

Main Location Types selected

Population within 500 m
Population <1 Mile ranges selected

Population <5 Mile ranges selected

Car Ownership <5 Mile ranges selected

PTAL Rating

Filter by Site Operations Breakdown

Minimum: 01/01/13
All Surveys Included
Monday 4
Tuesday 5
Wednesday 1
Thursday 2
Friday 4
Suburban Area (PPS6 Out of Centre) 5
Edge of Town 11
All Surveys Included
1,001 to $5,000 \quad 2$
5,001 to $10,000 \quad 2$
10,001 to 15,0003
15,001 to 20,000 3
20,001 to 25,000 1
25,001 to $50,000 \quad 5$
5,001 to $25,000 \quad 1$
75,001 to 100,000 1
125,001 to 250,000 9
250,001 to 500,0003
500,001 or More 2
0.6 to $1.0 \quad 9$
1.1 to $1.5 \quad 4$
1.6 to 2.0 3

No PTAL Present 14
0 None 1
1b Very poor 1

TRICS 7.8.1 B2 Veh	240321 B20.15	Database right of TRICS Consortium Limited, 2021. All rights reserved	Tuesday 27/04/21
Entran Ltd			
Page			

TRIP RATE CALCULATI ON SELECTI ON PARAMETERS:

Land Use	$: 02-$ EMPLOYMENT
Category	$:$
D-INDUSTRIAL ESTATE	

TOTAL VEHI CLES

01	GREATER LONDON	
	BE BEXLEY	1 days
	BK BARKING	1 days
02	SOUTH EAST	
	EX ESSEX	1 days
03	SOUTH WEST	
	DV DEVON	1 days
04	EAST ANGLI A	
	CA CAMBRIDGESHIRE	1 days
	SF SUFFOLK	1 days
06	WEST MI DLANDS	
	WM WEST MIDLANDS	1 days
	WO WORCESTERSHIRE	1 days
07	YORKSHIRE \& NORTH LI NCOLNSHIRE	
	WY WEST YORKSHIRE	3 days
08	NORTH WEST	
	GM GREATER MANCHESTER	1 days
	LC LANCASHIRE	2 days
12	CONNAUGHT	
	RO ROSCOMMON	1 days
13	MUNSTER	
	CR CORK	1 days

Primary Filtering selection:

Parameter:	Gross floor area
Actual Range:	1138 to 4876 (units: sqm)
Range Selected by User:	552 to 5000 (units: sqm)
Parking Spaces Range:	All Surveys Included

Public Transport Provision:
Selection by: Include all surveys

$$
\text { Date Range: } \quad 01 / 01 / 13 \text { to } 17 / 09 / 20
$$

Selected survey days:
Tonday
4 days

Tuesday 5 days
Wednesday 1 days
Thursday 2 days
Friday 4 days

Selected survey types:	
Manual count	16 days

Directional ATC Count 0 days
Selected Locations:
Suburban Area (PPS6 Out of Centre) 5
Edge of Town 11
Selected Location Sub Categories:
Industrial Zone
Commercial Zone
Development Zone 1
Residential Zone 2
No Sub Category 4

Secondary Filtering selection:

Use Class:
Not Known
16 days

Filter by Site Operations Breakdown:
All Surveys Included
Population within 500m Range:
All Surveys Included

Secondary Filtering selection (Cont.):

Population within 1 mile:

1,001 to 5,000	2 days
5,001 to 10,000	2 days
10,001 to 15,000	3 days
15,001 to 20,000	3 days
20,001 to 25,000	1 days
25,001 to 50,000	5 days

Population within 5 miles:
5,001 to $25,000 \quad 1$ days
75,001 to $100,000 \quad 1$ days
125,001 to 250,000 9 days
250,001 to 500,000 3 days
500,001 or More 2 days
Car ownership within 5 miles:

0.6 to 1.0	9 days
1.1 to 1.5	4 days
1.6 to 2.0	3 days

Travel Plan:
No 16 days
PTAL Rating:
No PTAL Present 14 days
0 None 1 days
1b Very poor
Covid-19 Restrictions Yes

At least one survey within the selected data set was undertaken at a time of Covid-19 restrictions

TRICS 7.8.1 B2 Veh	240321 B20.15	Database right of TRICS Consortium Limited, 2021. All rights reserved	Tuesday 27/04/21
Entran Ltd			Phapel Pill Lane

LIST OF SITES relevant to selection parameters

1 BE-02-D-01 I NDUSTRI AL ESTATE
CRABTREE MANORWAY N.
ERITH
Edge of Town
Industrial Zone
Total Gross floor area: Survey date: WEDNESDAY

3300 sqm 19/09/18
2 BK-02-D-01
I NDUSTRI AL ESTATE
RIVER ROAD
BARKING
Suburban Area (PPS6 Out of Centre)
Industrial Zone
Total Gross floor area: 4180 sqm Survey date: TUESDAY 08/09/20
3 CA-02-D-04 I NDUSTRI AL ESTATE
LINCOLN ROAD
PETERBOROUGH
Suburban Area (PPS6 Out of Centre)
No Sub Category
Total Gross floor area:
4133 sqm Survey date: TUESDAY 02/12/14
4 CR-02-D-02 INDUSTRIAL ESTATE
EAST CORK PARKWAY
CORK
GLANMIRE
Edge of Town
Industrial Zone
Total Gross floor area: 4727 sqm
Survey date: MONDAY 14/10/19
5 DV-02-D-07 INDUSTRI AL ESTATE
BITTERN ROAD
EXETER
SOWTON IND. ESTATE
Edge of Town
Industrial Zone
Total Gross floor area: 3600 sqm
Survey date: MONDAY 03/07/17
6 EX-02-D-03 I NDUSTRI AL ESTATE
WYNCOLLS ROAD
COLCHESTER
SEVERALLS INDUSTRIAL PK
Edge of Town
Industrial Zone
Total Gross floor area: 4876 sqm Survey date: FRIDAY 18/05/18
7 GM-02-D-07 BUSI NESS PARK
VULCAN STREET
OLDHAM
Suburban Area (PPS6 Out of Centre)
Residential Zone
Total Gross floor area: 4400 sqm Survey date: THURSDAY 22/10/15
8 LC-02-D-07 INDUSTRIAL ESTATE
CHAIN CAUL WAY
PRESTON
ASHTON-ON-RIBBLE
Edge of Town
Industrial Zone
Total Gross floor area
4700 sqm Survey date: FRIDAY $17 / 11 / 17$
9 LC-02-D-08 INDUSTRIAL ESTATE
NOOK LANE
BAMBER BRIDGE
Edge of Town
Industrial Zone
Total Gross floor area: 4000 sqm Survey date: TUESDAY 06/11/18

BEXLEY

Survey Type: MANUAL BARKI NG

Survey Type: MANUAL CAMBRIDGESHIRE

Survey Type: MANUAL CORK

Survey Type: MANUAL DEVON

Survey Type: MANUAL ESSEX

Survey Type: MANUAL GREATER MANCHESTER

Survey Type: MANUAL LANCASHIRE

Survey Type: MANUAL LANCASHIRE

TRICS 7.8.1 B2 Veh	240321 B20.15	Database right of TRICS Consortium Limited, 2021. All rights reserved	Tuesday 27/04/ 21 Page $\mathbf{5}$
Entran Ltd	Chapel Pill Lane	Bristol	Licence No: 337901

LIST OF SITES relevant to selection parameters (Cont.)

TRIP RATE for Land Use 02 - EMPLOYMENT/D - INDUSTRIAL ESTATE
TOTAL VEHI CLES
Calculation factor: 100 sqm
BOLD print indicates peak (busiest) period

	ARRIVALS			DEPARTURES			TOTALS		
Time Range	No. Days	Ave. GFA	Trip Rate	No. Days	Ave. GFA	Trip Rate	No. Days	Ave. GFA	Trip Rate
00:00-00:30									
00:30-01:00									
01:00-01:30									
01:30-02:00									
02:00-02:30									
02:30-03:00									
03:00-03:30									
03:30-04:00									
04:00-04:30									
04:30-05:00									
05:00-05:30	2	4454	0.067	2	4454	0.045	2	4454	0.112
05:30-06:00	2	4454	0.045	2	4454	0.056	2	4454	0.101
06:00-06:30	2	4454	0.146	2	4454	0.157	2	4454	0.303
06:30-07:00	2	4454	0.123	2	4454	0.146	2	4454	0.269
07:00-07:30	16	3543	0.192	16	3543	0.076	16	3543	0.268
07:30-08:00	16	3543	0.349	16	3543	0.125	16	3543	0.474
08:00-08:30	16	3543	0.404	16	3543	0.226	16	3543	0.630
08:30-09:00	16	3543	0.342	16	3543	0.212	16	3543	0.554
09:00-09:30	16	3543	0.295	16	3543	0.222	16	3543	0.517
09:30-10:00	16	3543	0.298	16	3543	0.217	16	3543	0.515
10:00-10:30	16	3543	0.284	16	3543	0.256	16	3543	0.540
10:30-11:00	16	3543	0.316	16	3543	0.273	16	3543	0.589
11:00-11:30	16	3543	0.284	16	3543	0.298	16	3543	0.582
11:30-12:00	16	3543	0.310	16	3543	0.358	16	3543	0.668
12:00-12:30	16	3543	0.275	16	3543	0.289	16	3543	0.564
12:30-13:00	16	3543	0.325	16	3543	0.349	16	3543	0.674
13:00-13:30	16	3543	0.305	16	3543	0.305	16	3543	0.610
13:30-14:00	16	3543	0.266	16	3543	0.210	16	3543	0.476
14:00-14:30	16	3543	0.266	16	3543	0.291	16	3543	0.557
14:30-15:00	16	3543	0.235	16	3543	0.302	16	3543	0.537
15:00-15:30	16	3543	0.238	16	3543	0.219	16	3543	0.457
15:30-16:00	16	3543	0.254	16	3543	0.266	16	3543	0.520
16:00-16:30	16	3543	0.226	16	3543	0.326	16	3543	0.552
16:30-17:00	16	3543	0.169	16	3543	0.344	16	3543	0.513
17:00-17:30	16	3543	0.129	16	3543	0.406	16	3543	0.535
17:30-18:00	16	3543	0.113	16	3543	0.191	16	3543	0.304
18:00-18:30	16	3543	0.055	16	3543	0.125	16	3543	0.180
18:30-19:00	16	3543	0.035	16	3543	0.076	16	3543	0.111
19:00-19:30	3	4069	0.025	3	4069	0.057	3	4069	0.082
19:30-20:00	3	4069	0.008	3	4069	0.016	3	4069	0.024
20:00-20:30	3	4069	0.025	3	4069	0.033	3	4069	0.058
20:30-21:00	3	4069	0.000	3	4069	0.016	3	4069	0.016
21:00-21:30									
21:30-22:00									
22:00-22:30									
22:30-23:00									
23:00-23:30									
23:30-24:00									
Total Rates:			6.404			6.488			12.892

Parameter summary

Trip rate parameter range selected:
Survey date date range:
Number of weekdays (Monday-Friday):
Number of Saturdays:
Number of Sundays:
Surveys automatically removed from selection:
Surveys manually removed from selection:

1138-4876 (units: sqm)
01/01/13-17/09/20
16
0
0
0
0

| TRICS 7.8.1 | 240321 B20.15 | Database right of TRICS Consortium Limited, 2021. All rights reserved |
| :--- | :--- | :--- | | Thursday 01/04/ 21 |
| ---: |
| PF MM WD |

Filtering Summary
Land Use 01/C RETAIL/DISCOUNT FOOD STORES
Selected Trip Rate Calculation Parameter Range 900-2635 sqm GFA
Actual Trip Rate Calculation Parameter Range 1023-2568 sqm GFA
Date Range Minimum: 01/01/13
Maximum: 21/10/20
Parking Spaces Range All Surveys Included

Days of the week selected

Main Location Types selected

Population within 500 m
Population <1 Mile ranges selected

Population <5 Mile ranges selected

PTAL Rating

Monday 1
Tuesday 4
Wednesday 6
Thursday 4
Friday 3

Suburban Area (PPS6 Out of Centre) 4
Edge of Town 8

Neighbourhood Centre (PPS6 Local Centre) 6
All Surveys Included
1,001 to $5,000 \quad 1$
5,001 to 10,0004
10,001 to 15,000
15,001 to 20,0002
20,001 to 25,0001
25,001 to 50,0005
50,001 to 100,0002
5,001 to 25,0001
25,001 to 50,0003
50,001 to $75,000 \quad 1$
75,001 to 100,000 3
125,001 to 250,000 3
250,001 to 500,0003
500,001 or More 4
0.6 to 1.011
1.1 to $1.5 \quad 5$
1.6 to 2.01
2.1 to 2.51

No PTAL Present 16
2 Poor 1
4 Good 1

TRIP RATE CALCULATI ON SELECTION PARAMETERS:

Land Use $: \quad 01$ - RETAIL
Category \quad C - DISCOUNT FOOD STORES
MULTI-MODAL TOTAL VEHICLES

Selected regions and areas:		
01	GREATER LONDON	
	BE BEXLEY	1 days
	MR MERTON	1 days
02	SOUTH EAST	
	WS WEST SUSSEX	2 days
03	SOUTH WEST	
	SM SOMERSET	1 days
04	EAST ANGLIA	
	CA CAMBRIDGESHIRE	1 days
	NF NORFOLK	1 days
05	EAST MI DLANDS	
	NT NOTTINGHAMSHIRE	1 days
06	WEST MIDLANDS	
	WM WEST MIDLANDS	2 days
	WO WORCESTERSHIRE	1 days
09	NORTH	
	DH DURHAM	1 days
	TW TYNE \& WEAR	1 days
10	WALES	
	CF CARDIFF	1 days
11	SCOTLAND	
	AD ABERDEEN CITY	1 days
13	MUNSTER	
	KE KERRY	1 days
15	GREATER DUBLI N	
	DL DUBLIN	1 days
17	ULSTER (NORTHERN IRELAND)	
	AN ANTRIM	1 days

This section displays the number of survey days per TRICS® sub-region in the selected set

Primary Filtering selection:

This data displays the chosen trip rate parameter and its selected range. Only sites that fall within the parameter range are included in the trip rate calculation.

Parameter:	Gross floor area
Actual Range:	1023 to 2568 (units: sqm)
Range Selected by User:	900 to 2635 (units: sqm)
Parking Spaces Range:	All Surveys Included

Public Transport Provision:
Selection by: Include all surveys
Date Range: $\quad 01 / 01 / 13$ to $21 / 10 / 20$
This data displays the range of survey dates selected. Only surveys that were conducted within this date range are included in the trip rate calculation.

Selected survey days:

Monday	1 days
Tuesday	4 days
Wednesday	6 days
Thursday	4 days
Friday	3 days

This data displays the number of selected surveys by day of the week.
Selected survey types:
Manual count 18 days
Directional ATC Count 0 days
This data displays the number of manual classified surveys and the number of unclassified ATC surveys, the total adding up to the overall number of surveys in the selected set. Manual surveys are undertaken using staff, whilst ATC surveys are undertaking using machines.

Selected Locations:
Suburban Area (PPS6 Out of Centre) 4
Edge of Town
Neighbourhood Centre (PPS6 Local Centre)

This data displays the number of surveys per location sub-category within the selected set. The location sub-categories consist of Commercial Zone, Industrial Zone, Development Zone, Residential Zone, Retail Zone, Built-Up Zone, Village, Out of Town, High Street and No Sub Category.

Secondary Filtering selection:

Use Class:
E(a)
18 days
This data displays the number of surveys per Use Class classification within the selected set. The Use Classes Order 2005 has been used for this purpose, which can be found within the Library module of TRICS ${ }^{\circledR}$.

Population within 500 m Range:
All Surveys Included
Population within 1 mile:

1,001 to 5,000	
5,001 to 10,000	4 days
10,001 to 15,000	3 days
15,001 to 20,000	2 days
20,001 to 25,000	1 days
25,001 to 50,000	5 days
50,001 to 100,000	2 days

This data displays the number of selected surveys within stated 1-mile radii of population.

Population within 5 miles:	
5,001 to 25,000	
25,001 days	
50,001 to 75,000	3 days
75,001 to 100,000	1 days
125,001 to 250,000	3 days
250,001 to 500,000	3 days
500,001 or More	3 days
	4 days

This data displays the number of selected surveys within stated 5 -mile radii of population.
Car ownership within 5 miles:

0.6 to 1.0	11 days
1.1 to 1.5	5 days
1.6 to 2.0	1 days
2.1 to 2.5	1 days

This data displays the number of selected surveys within stated ranges of average cars owned per residential dwelling, within a radius of 5 -miles of selected survey sites.

Petrol filling station:

Included in the survey count	0 days
Excluded from count or no filling station	18 days

This data displays the number of surveys within the selected set that include petrol filling station activity, and the number of surveys that do not.

Travel Plan:	
Not Known	1 days
Yes	3 days
No	14 days

This data displays the number of surveys within the selected set that were undertaken at sites with Travel Plans in place, and the number of surveys that were undertaken at sites without Travel Plans.

PTAL Rating:

No PTAL Present	16 days
2 Poor	1 days
4 Good	1 days

This data displays the number of selected surveys with PTAL Ratings.

LIST OF SITES relevant to selection parameters

1 AD-01-C-01

LI DL

GREENWELL ROAD
ABERDEEN
EAST TULLOS IND. ESTATE
Suburban Area (PPS6 Out of Centre)
Industrial Zone
Total Gross floor area: Survey date: MONDAY
2
AN-01-C-02 LIDL
BELFAST ROAD
CARRICKFERGUS
Edge of Town
Development Zone
Total Gross floor area:
Survey date: WEDNESDAY
3 BE-01-C-01 LIDL
CLYDESDALE WAY
BELVEDERE
Edge of Town
Industrial Zone
Total Gross floor area: Survey date: WEDNESDAY
4 CA-01-C-01 LIDL
CROMWELL ROAD
WISBECH
Edge of Town
Retail Zone
Total Gross floor area:
Survey da
21/10/16
5 CF-01-C-01 LIDL
EAST TYNDALL STREET
CARDIFF
Suburban Area (PPS6 Out of Centre)
Development Zone
Total Gross floor area: Survey date: THURSDAY

2568 sqm 29/06/17
6 DH-01-C-01 ALDI
WATLING ROAD
BISHOP AUCKLAND
Edge of Town
Retail Zone
Total Gross floor area: 1023 sqm Survey date: THURSDAY 06/04/17
7 DL-01-C-01 LIDL
SALLYNOGGIN ROAD
DUBLIN
THOMASTOWN
Neighbourhood Centre (PPS6 Local Centre)
Residential Zone
Total Gross floor area: 2163 sqm Survey date: WEDNESDAY 20/06/18
8 KE-01-C-01 ALDI
DEERPARK ROAD
KILLARNEY
Suburban Area (PPS6 Out of Centre)
No Sub Category
Total Gross floor area:
Survey date: THURSDAY $17 / 10 / 19$

ABERDEEN CITY

Survey Type: MANUAL ANTRIM

Survey Type: MANUAL

BEXLEY

Survey Type: MANUAL CAMBRIDGESHIRE

Survey Type: MANUAL CARDI FF

Survey Type: MANUAL

DURHAM

 DUBLI NSurvey Type: MANUAL KERRY

Survey Type: MANUAL

TRICS 7.8.1 240321 B20.15 DF MM WD	Database right of TRICS Consortium Limited, 2021. All rights reserved	Thursday 01/04/ 21 Page 5
Entran Ltd Chapel Pill Lane	Bristol	Licence No: 337901

LIST OF SITES relevant to selection parameters (Cont.)

9 MR-01-C-01
STREATHAM ROAD
MITCHAM
Neighbourhood Centre (PPS6 Local Centre)
Residential Zone
Total Gross floor area: 2400 sqm Survey date: WEDNESDAY 06/11/19
10
NF-01-C-01 LIDL
AYLSHAM ROAD
NORWICH
Neighbourhood Centre (PPS6 Local Centre)
No Sub Category
Total Gross floor area: 2555 sqm Survey date: FRIDAY 29/11/19
11 NT-01-C-01 LIDL
CHAPEL LANE
BINGHAM
Edge of Town
Industrial Zone
Total Gross floor area: Survey date: FRIDAY
12 SM-01-C-01 LIDL
SEAWARD WAY
MINEHEAD
Edge of Town
No Sub Category
Total Gross floor area:
2247 sqm
Survey date: THURSDAY 22/06/17
13 TW-01-C-01 ALDI
EDGEFIELD AVENUE
NEWCASTLE
FAWDON
Neighbourhood Centre (PPS6 Local Centre)
No Sub Category
Total Gross floor area: 1798 sqm Survey date: TUESDAY 30/04/19
14 WM-01-C-01 LIDL
MACKADOWN LANE
BIRMINGHAM
KITT'S GREEN
Neighbourhood Centre (PPS6 Local Centre)
No Sub Category
Total Gross floor area: 2085 sqm Survey date: TUESDAY 12/07/16
15 WM-01-C-02 LIDL
HIGH STREET
WEST BROMWICH
GUNS VILLAGE
Neighbourhood Centre (PPS6 Local Centre)
High Street
Total Gross floor area: 2085 sqm Survey date: TUESDAY 12/07/16

MERTON

Survey Type: MANUAL NORFOLK

Survey Type: MANUAL NOTTI NGHAMSHIRE

Survey Type: MANUAL

SOMERSET

Survey Type: MANUAL TYNE \& WEAR

Survey Type: MANUAL WEST MIDLANDS

Survey Type: MANUAL WEST MIDLANDS

Survey Type: MANUAL

LIST OF SITES relevant to selection parameters (Cont.)

16 | WO-01-C-01 LIDL |
| :--- | :--- | :--- |
| BLACKPOLE ROAD |
| WORCESTER |
| BRICKFIELDS |\quad WORCESTERSHI RE

This section provides a list of all survey sites and days in the selected set. For each individual survey site, it displays a unique site reference code and site address, the selected trip rate calculation parameter and its value, the day of the week and date of each survey, and whether the survey was a manual classified count or an ATC count.

TRIP RATE for Land Use 01 - RETAIL/C - DISCOUNT FOOD STORES

MULTI-MODAL TOTAL VEHICLES

Calculation factor: 100 sqm
BOLD print indicates peak (busiest) period

This section displays the trip rate results based on the selected set of surveys and the selected count type (shown just above the table). It is split by three main columns, representing arrivals trips, departures trips, and total trips (arrivals plus departures). Within each of these main columns are three sub-columns. These display the number of survey days where count data is included (per time period), the average value of the selected trip rate calculation parameter (per time period), and the trip rate result (per time period). Total trip rates (the sum of the column) are also displayed at the foot of the table.

To obtain a trip rate, the average (mean) trip rate parameter value (TRP) is first calculated for all selected survey days that have count data available for the stated time period. The average (mean) number of arrivals, departures or totals (whichever applies) is also calculated (COUNT) for all selected survey days that have count data available for the stated time period. Then, the average count is divided by the average trip rate parameter value, and multiplied by the stated calculation factor (shown just above the table and abbreviated here as FACT). So, the method is: COUNT/TRP*FACT. Trip rates are then rounded to 3 decimal places.

The survey data, graphs and all associated supporting information, contained within the TRICS Database are published by TRICS Consortium Limited ("the Company") and the Company claims copyright and database rights in this published work. The Company authorises those who possess a current TRICS licence to access the TRICS Database and copy the data contained within the TRICS Database for the licence holders' use only. Any resulting copy must retain all copyrights and other proprietary notices, and any disclaimer contained thereon.

The Company accepts no responsibility for loss which may arise from reliance on data contained in the TRICS Database. [No warranty of any kind, express or implied, is made as to the data contained in the TRICS Database.]

Parameter summary

Trip rate parameter range selected:
Survey date date range:
Number of weekdays (Monday-Friday):
Number of Saturdays:
Number of Sundays:
Surveys automatically removed from selection:
Surveys manually removed from selection:

1023-2568 (units: sqm)
01/01/13-21/10/20
18
0
0
0

This section displays a quick summary of some of the data filtering selections made by the TRICS ${ }^{\circledR}$ user. The trip rate calculation parameter range of all selected surveys is displayed first, followed by the range of minimum and maximum survey dates selected by the user. Then, the total number of selected weekdays and weekend days in the selected set of surveys are show. Finally, the number of survey days that have been manually removed from the selected set outside of the standard filtering procedure are displayed.

TRIP RATE for Land Use 01 - RETAIL/C - DISCOUNT FOOD STORES
MULTI-MODAL TAXIS
Calculation factor: 100 sqm
BOLD print indicates peak (busiest) period

This section displays the trip rate results based on the selected set of surveys and the selected count type (shown just above the table). It is split by three main columns, representing arrivals trips, departures trips, and total trips (arrivals plus departures). Within each of these main columns are three sub-columns. These display the number of survey days where count data is included (per time period), the average value of the selected trip rate calculation parameter (per time period), and the trip rate result (per time period). Total trip rates (the sum of the column) are also displayed at the foot of the table.

To obtain a trip rate, the average (mean) trip rate parameter value (TRP) is first calculated for all selected survey days that have count data available for the stated time period. The average (mean) number of arrivals, departures or totals (whichever applies) is also calculated (COUNT) for all selected survey days that have count data available for the stated time period. Then, the average count is divided by the average trip rate parameter value, and multiplied by the stated calculation factor (shown just above the table and abbreviated here as FACT). So, the method is: COUNT/TRP*FACT. Trip rates are then rounded to 3 decimal places.

TRIP RATE for Land Use 01 - RETAIL/C - DISCOUNT FOOD STORES

MULTI-MODAL OGVS
Calculation factor: 100 sqm
BOLD print indicates peak (busiest) period

This section displays the trip rate results based on the selected set of surveys and the selected count type (shown just above the table). It is split by three main columns, representing arrivals trips, departures trips, and total trips (arrivals plus departures). Within each of these main columns are three sub-columns. These display the number of survey days where count data is included (per time period), the average value of the selected trip rate calculation parameter (per time period), and the trip rate result (per time period). Total trip rates (the sum of the column) are also displayed at the foot of the table.

To obtain a trip rate, the average (mean) trip rate parameter value (TRP) is first calculated for all selected survey days that have count data available for the stated time period. The average (mean) number of arrivals, departures or totals (whichever applies) is also calculated (COUNT) for all selected survey days that have count data available for the stated time period. Then, the average count is divided by the average trip rate parameter value, and multiplied by the stated calculation factor (shown just above the table and abbreviated here as FACT). So, the method is: COUNT/TRP*FACT. Trip rates are then rounded to 3 decimal places.

TRIP RATE for Land Use 01 - RETAIL/C - DISCOUNT FOOD STORES

MULTI-MODAL PSVS
Calculation factor: 100 sqm
BOLD print indicates peak (busiest) period

This section displays the trip rate results based on the selected set of surveys and the selected count type (shown just above the table). It is split by three main columns, representing arrivals trips, departures trips, and total trips (arrivals plus departures). Within each of these main columns are three sub-columns. These display the number of survey days where count data is included (per time period), the average value of the selected trip rate calculation parameter (per time period), and the trip rate result (per time period). Total trip rates (the sum of the column) are also displayed at the foot of the table.

To obtain a trip rate, the average (mean) trip rate parameter value (TRP) is first calculated for all selected survey days that have count data available for the stated time period. The average (mean) number of arrivals, departures or totals (whichever applies) is also calculated (COUNT) for all selected survey days that have count data available for the stated time period. Then, the average count is divided by the average trip rate parameter value, and multiplied by the stated calculation factor (shown just above the table and abbreviated here as FACT). So, the method is: COUNT/TRP*FACT. Trip rates are then rounded to 3 decimal places.

TRIP RATE for Land Use 01 - RETAIL/C - DISCOUNT FOOD STORES

MULTI-MODAL CYCLISTS
Calculation factor: 100 sqm
BOLD print indicates peak (busiest) period

This section displays the trip rate results based on the selected set of surveys and the selected count type (shown just above the table). It is split by three main columns, representing arrivals trips, departures trips, and total trips (arrivals plus departures). Within each of these main columns are three sub-columns. These display the number of survey days where count data is included (per time period), the average value of the selected trip rate calculation parameter (per time period), and the trip rate result (per time period). Total trip rates (the sum of the column) are also displayed at the foot of the table.

To obtain a trip rate, the average (mean) trip rate parameter value (TRP) is first calculated for all selected survey days that have count data available for the stated time period. The average (mean) number of arrivals, departures or totals (whichever applies) is also calculated (COUNT) for all selected survey days that have count data available for the stated time period. Then, the average count is divided by the average trip rate parameter value, and multiplied by the stated calculation factor (shown just above the table and abbreviated here as FACT). So, the method is: COUNT/TRP*FACT. Trip rates are then rounded to 3 decimal places.

TRIP RATE for Land Use 01 - RETAIL/C - DISCOUNT FOOD STORES

MULTI-MODAL VEHICLE OCCUPANTS

Calculation factor: 100 sqm

BOLD print indicates peak (busiest) period

	ARRIVALS			DEPARTURES			TOTALS		
Time Range	No. Days	Ave. GFA	Trip Rate	No. Days	Ave. GFA	Trip Rate	No. Days	Ave. GFA	Trip Rate
00:00-01:00									
01:00-02:00									
02:00-03:00									
03:00-04:00									
04:00-05:00									
05:00-06:00									
06:00-07:00	2	1871	0.561	2	1871	0.000	2	1871	0.561
07:00-08:00	17	2024	0.590	17	2024	0.206	17	2024	0.796
08:00-09:00	18	1987	3.068	18	1987	2.008	18	1987	5.076
09:00-10:00	18	1987	4.200	18	1987	3.467	18	1987	7.667
10:00-11:00	18	1987	4.913	18	1987	4.496	18	1987	9.409
11:00-12:00	18	1987	5.509	18	1987	5.251	18	1987	10.760
12:00-13:00	18	1987	5.783	18	1987	5.903	18	1987	11.686
13:00-14:00	18	1987	5.813	18	1987	6.040	18	1987	11.853
14:00-15:00	18	1987	5.657	18	1987	5.788	18	1987	11.445
15:00-16:00	18	1987	5.811	18	1987	5.730	18	1987	11.541
16:00-17:00	18	1987	5.646	18	1987	5.909	18	1987	11.555
17:00-18:00	18	1987	5.100	18	1987	5.537	18	1987	10.637
18:00-19:00	18	1987	4.935	18	1987	5.165	18	1987	10.100
19:00-20:00	18	1987	3.649	18	1987	4.038	18	1987	7.687
20:00-21:00	18	1987	2.340	18	1987	2.922	18	1987	5.262
21:00-22:00	18	1987	1.054	18	1987	1.585	18	1987	2.639
22:00-23:00	16	2017	0.050	16	2017	0.285	16	2017	0.335
23:00-24:00									
Total Rates:			64.679			64.330			129.009

This section displays the trip rate results based on the selected set of surveys and the selected count type (shown just above the table). It is split by three main columns, representing arrivals trips, departures trips, and total trips (arrivals plus departures). Within each of these main columns are three sub-columns. These display the number of survey days where count data is included (per time period), the average value of the selected trip rate calculation parameter (per time period), and the trip rate result (per time period). Total trip rates (the sum of the column) are also displayed at the foot of the table.

To obtain a trip rate, the average (mean) trip rate parameter value (TRP) is first calculated for all selected survey days that have count data available for the stated time period. The average (mean) number of arrivals, departures or totals (whichever applies) is also calculated (COUNT) for all selected survey days that have count data available for the stated time period. Then, the average count is divided by the average trip rate parameter value, and multiplied by the stated calculation factor (shown just above the table and abbreviated here as FACT). So, the method is: COUNT/TRP*FACT. Trip rates are then rounded to 3 decimal places.

TRIP RATE for Land Use 01 - RETAIL/C - DISCOUNT FOOD STORES

MULTI-MODAL PEDESTRIANS

Calculation factor: 100 sqm

BOLD print indicates peak (busiest) period

This section displays the trip rate results based on the selected set of surveys and the selected count type (shown just above the table). It is split by three main columns, representing arrivals trips, departures trips, and total trips (arrivals plus departures). Within each of these main columns are three sub-columns. These display the number of survey days where count data is included (per time period), the average value of the selected trip rate calculation parameter (per time period), and the trip rate result (per time period). Total trip rates (the sum of the column) are also displayed at the foot of the table.

To obtain a trip rate, the average (mean) trip rate parameter value (TRP) is first calculated for all selected survey days that have count data available for the stated time period. The average (mean) number of arrivals, departures or totals (whichever applies) is also calculated (COUNT) for all selected survey days that have count data available for the stated time period. Then, the average count is divided by the average trip rate parameter value, and multiplied by the stated calculation factor (shown just above the table and abbreviated here as FACT). So, the method is: COUNT/TRP*FACT. Trip rates are then rounded to 3 decimal places.

TRIP RATE for Land Use 01 - RETAIL/C - DISCOUNT FOOD STORES

MULTI-MODAL BUS/ TRAM PASSENGERS

Calculation factor: 100 sqm

BOLD print indicates peak (busiest) period

This section displays the trip rate results based on the selected set of surveys and the selected count type (shown just above the table). It is split by three main columns, representing arrivals trips, departures trips, and total trips (arrivals plus departures). Within each of these main columns are three sub-columns. These display the number of survey days where count data is included (per time period), the average value of the selected trip rate calculation parameter (per time period), and the trip rate result (per time period). Total trip rates (the sum of the column) are also displayed at the foot of the table.

To obtain a trip rate, the average (mean) trip rate parameter value (TRP) is first calculated for all selected survey days that have count data available for the stated time period. The average (mean) number of arrivals, departures or totals (whichever applies) is also calculated (COUNT) for all selected survey days that have count data available for the stated time period. Then, the average count is divided by the average trip rate parameter value, and multiplied by the stated calculation factor (shown just above the table and abbreviated here as FACT). So, the method is: COUNT/TRP*FACT. Trip rates are then rounded to 3 decimal places.

TRIP RATE for Land Use 01 - RETAIL/C - DISCOUNT FOOD STORES

MULTI-MODAL TOTAL RAIL PASSENGERS

Calculation factor: 100 sqm

BOLD print indicates peak (busiest) period

	ARRIVALS			DEPARTURES			TOTALS		
Time Range	No. Days	Ave. GFA	Trip Rate	No. Days	Ave. GFA	Trip Rate	No. Days	Ave. GFA	Trip Rate
00:00-01:00									
01:00-02:00									
02:00-03:00									
03:00-04:00									
04:00-05:00									
05:00-06:00									
06:00-07:00	2	1871	0.000	2	1871	0.000	2	1871	0.000
07:00-08:00	17	2024	0.006	17	2024	0.000	17	2024	0.006
08:00-09:00	18	1987	0.011	18	1987	0.003	18	1987	0.014
09:00-10:00	18	1987	0.006	18	1987	0.003	18	1987	0.009
10:00-11:00	18	1987	0.011	18	1987	0.003	18	1987	0.014
11:00-12:00	18	1987	0.006	18	1987	0.003	18	1987	0.009
12:00-13:00	18	1987	0.006	18	1987	0.011	18	1987	0.017
13:00-14:00	18	1987	0.003	18	1987	0.014	18	1987	0.017
14:00-15:00	18	1987	0.006	18	1987	0.011	18	1987	0.017
15:00-16:00	18	1987	0.006	18	1987	0.006	18	1987	0.012
16:00-17:00	18	1987	0.020	18	1987	0.011	18	1987	0.031
17:00-18:00	18	1987	0.008	18	1987	0.003	18	1987	0.011
18:00-19:00	18	1987	0.008	18	1987	0.008	18	1987	0.016
19:00-20:00	18	1987	0.003	18	1987	0.003	18	1987	0.006
20:00-21:00	18	1987	0.000	18	1987	0.003	18	1987	0.003
21:00-22:00	18	1987	0.003	18	1987	0.003	18	1987	0.006
22:00-23:00	16	2017	0.000	16	2017	0.006	16	2017	0.006
23:00-24:00									
Total Rates:			0.103			0.091			0.194

This section displays the trip rate results based on the selected set of surveys and the selected count type (shown just above the table). It is split by three main columns, representing arrivals trips, departures trips, and total trips (arrivals plus departures). Within each of these main columns are three sub-columns. These display the number of survey days where count data is included (per time period), the average value of the selected trip rate calculation parameter (per time period), and the trip rate result (per time period). Total trip rates (the sum of the column) are also displayed at the foot of the table.

To obtain a trip rate, the average (mean) trip rate parameter value (TRP) is first calculated for all selected survey days that have count data available for the stated time period. The average (mean) number of arrivals, departures or totals (whichever applies) is also calculated (COUNT) for all selected survey days that have count data available for the stated time period. Then, the average count is divided by the average trip rate parameter value, and multiplied by the stated calculation factor (shown just above the table and abbreviated here as FACT). So, the method is: COUNT/TRP*FACT. Trip rates are then rounded to 3 decimal places.

TRIP RATE for Land Use 01 - RETAIL/C - DISCOUNT FOOD STORES

MULTI-MODAL PUBLIC TRANSPORT USERS

Calculation factor: 100 sqm

BOLD print indicates peak (busiest) period

This section displays the trip rate results based on the selected set of surveys and the selected count type (shown just above the table). It is split by three main columns, representing arrivals trips, departures trips, and total trips (arrivals plus departures). Within each of these main columns are three sub-columns. These display the number of survey days where count data is included (per time period), the average value of the selected trip rate calculation parameter (per time period), and the trip rate result (per time period). Total trip rates (the sum of the column) are also displayed at the foot of the table.

To obtain a trip rate, the average (mean) trip rate parameter value (TRP) is first calculated for all selected survey days that have count data available for the stated time period. The average (mean) number of arrivals, departures or totals (whichever applies) is also calculated (COUNT) for all selected survey days that have count data available for the stated time period. Then, the average count is divided by the average trip rate parameter value, and multiplied by the stated calculation factor (shown just above the table and abbreviated here as FACT). So, the method is: COUNT/TRP*FACT. Trip rates are then rounded to 3 decimal places.

TRIP RATE for Land Use 01 - RETAIL/C - DISCOUNT FOOD STORES

MULTI-MODAL TOTAL PEOPLE
Calculation factor: 100 sqm
BOLD print indicates peak (busiest) period

This section displays the trip rate results based on the selected set of surveys and the selected count type (shown just above the table). It is split by three main columns, representing arrivals trips, departures trips, and total trips (arrivals plus departures). Within each of these main columns are three sub-columns. These display the number of survey days where count data is included (per time period), the average value of the selected trip rate calculation parameter (per time period), and the trip rate result (per time period). Total trip rates (the sum of the column) are also displayed at the foot of the table.

To obtain a trip rate, the average (mean) trip rate parameter value (TRP) is first calculated for all selected survey days that have count data available for the stated time period. The average (mean) number of arrivals, departures or totals (whichever applies) is also calculated (COUNT) for all selected survey days that have count data available for the stated time period. Then, the average count is divided by the average trip rate parameter value, and multiplied by the stated calculation factor (shown just above the table and abbreviated here as FACT). So, the method is: COUNT/TRP*FACT. Trip rates are then rounded to 3 decimal places.

TRIP RATE for Land Use 01 - RETAIL/C - DISCOUNT FOOD STORES

MULTI-MODAL CARS
Calculation factor: 100 sqm
BOLD print indicates peak (busiest) period

	ARRIVALS			DEPARTURES			TOTALS		
Time Range	No. Days	Ave. GFA	Trip Rate	No. Days	Ave. GFA	Trip Rate	No. Days	Ave. GFA	Trip Rate
00:00-01:00									
01:00-02:00									
02:00-03:00									
03:00-04:00									
04:00-05:00									
05:00-06:00									
06:00-07:00	2	1871	0.401	2	1871	0.000	2	1871	0.401
07:00-08:00	17	2024	0.398	17	2024	0.131	17	2024	0.529
08:00-09:00	18	1987	2.198	18	1987	1.448	18	1987	3.646
09:00-10:00	18	1987	2.883	18	1987	2.396	18	1987	5.279
10:00-11:00	18	1987	3.230	18	1987	2.947	18	1987	6.177
11:00-12:00	18	1987	3.727	18	1987	3.546	18	1987	7.273
12:00-13:00	18	1987	3.971	18	1987	3.962	18	1987	7.933
13:00-14:00	18	1987	3.906	18	1987	4.074	18	1987	7.980
14:00-15:00	18	1987	3.800	18	1987	4.001	18	1987	7.801
15:00-16:00	18	1987	3.809	18	1987	3.817	18	1987	7.626
16:00-17:00	18	1987	3.783	18	1987	3.884	18	1987	7.667
17:00-18:00	18	1987	3.498	18	1987	3.708	18	1987	7.206
18:00-19:00	18	1987	3.157	18	1987	3.400	18	1987	6.557
19:00-20:00	18	1987	2.374	18	1987	2.615	18	1987	4.989
20:00-21:00	18	1987	1.532	18	1987	1.899	18	1987	3.431
21:00-22:00	18	1987	0.688	18	1987	1.060	18	1987	1.748
22:00-23:00	16	2017	0.031	16	2017	0.204	16	2017	0.235
23:00-24:00									
Total Rates:			43.386			43.092			86.478

This section displays the trip rate results based on the selected set of surveys and the selected count type (shown just above the table). It is split by three main columns, representing arrivals trips, departures trips, and total trips (arrivals plus departures). Within each of these main columns are three sub-columns. These display the number of survey days where count data is included (per time period), the average value of the selected trip rate calculation parameter (per time period), and the trip rate result (per time period). Total trip rates (the sum of the column) are also displayed at the foot of the table.

To obtain a trip rate, the average (mean) trip rate parameter value (TRP) is first calculated for all selected survey days that have count data available for the stated time period. The average (mean) number of arrivals, departures or totals (whichever applies) is also calculated (COUNT) for all selected survey days that have count data available for the stated time period. Then, the average count is divided by the average trip rate parameter value, and multiplied by the stated calculation factor (shown just above the table and abbreviated here as FACT). So, the method is: COUNT/TRP*FACT. Trip rates are then rounded to 3 decimal places.

TRIP RATE for Land Use 01-RETAIL/C - DISCOUNT FOOD STORES

MULTI-MODAL LGVS
Calculation factor: 100 sqm
BOLD print indicates peak (busiest) period

This section displays the trip rate results based on the selected set of surveys and the selected count type (shown just above the table). It is split by three main columns, representing arrivals trips, departures trips, and total trips (arrivals plus departures). Within each of these main columns are three sub-columns. These display the number of survey days where count data is included (per time period), the average value of the selected trip rate calculation parameter (per time period), and the trip rate result (per time period). Total trip rates (the sum of the column) are also displayed at the foot of the table.

To obtain a trip rate, the average (mean) trip rate parameter value (TRP) is first calculated for all selected survey days that have count data available for the stated time period. The average (mean) number of arrivals, departures or totals (whichever applies) is also calculated (COUNT) for all selected survey days that have count data available for the stated time period. Then, the average count is divided by the average trip rate parameter value, and multiplied by the stated calculation factor (shown just above the table and abbreviated here as FACT). So, the method is: COUNT/TRP*FACT. Trip rates are then rounded to 3 decimal places.

TRIP RATE for Land Use 01 - RETAIL/C - DISCOUNT FOOD STORES

MULTI-MODAL MOTOR CYCLES

Calculation factor: 100 sqm

BOLD print indicates peak (busiest) period

This section displays the trip rate results based on the selected set of surveys and the selected count type (shown just above the table). It is split by three main columns, representing arrivals trips, departures trips, and total trips (arrivals plus departures). Within each of these main columns are three sub-columns. These display the number of survey days where count data is included (per time period), the average value of the selected trip rate calculation parameter (per time period), and the trip rate result (per time period). Total trip rates (the sum of the column) are also displayed at the foot of the table.

To obtain a trip rate, the average (mean) trip rate parameter value (TRP) is first calculated for all selected survey days that have count data available for the stated time period. The average (mean) number of arrivals, departures or totals (whichever applies) is also calculated (COUNT) for all selected survey days that have count data available for the stated time period. Then, the average count is divided by the average trip rate parameter value, and multiplied by the stated calculation factor (shown just above the table and abbreviated here as FACT). So, the method is: COUNT/TRP*FACT. Trip rates are then rounded to 3 decimal places.

TRIP RATE for Land Use 01 - RETAIL/C - DISCOUNT FOOD STORES

MULTI-MODAL National Rail Passengers

Calculation factor: 100 sqm

BOLD print indicates peak (busiest) period

This section displays the trip rate results based on the selected set of surveys and the selected count type (shown just above the table). It is split by three main columns, representing arrivals trips, departures trips, and total trips (arrivals plus departures). Within each of these main columns are three sub-columns. These display the number of survey days where count data is included (per time period), the average value of the selected trip rate calculation parameter (per time period), and the trip rate result (per time period). Total trip rates (the sum of the column) are also displayed at the foot of the table.

To obtain a trip rate, the average (mean) trip rate parameter value (TRP) is first calculated for all selected survey days that have count data available for the stated time period. The average (mean) number of arrivals, departures or totals (whichever applies) is also calculated (COUNT) for all selected survey days that have count data available for the stated time period. Then, the average count is divided by the average trip rate parameter value, and multiplied by the stated calculation factor (shown just above the table and abbreviated here as FACT). So, the method is: COUNT/TRP*FACT. Trip rates are then rounded to 3 decimal places.

TRIP RATE for Land Use 01 - RETAIL/C - DISCOUNT FOOD STORES

MULTI-MODAL Bus Passengers

Calculation factor: 100 sqm

BOLD print indicates peak (busiest) period

This section displays the trip rate results based on the selected set of surveys and the selected count type (shown just above the table). It is split by three main columns, representing arrivals trips, departures trips, and total trips (arrivals plus departures). Within each of these main columns are three sub-columns. These display the number of survey days where count data is included (per time period), the average value of the selected trip rate calculation parameter (per time period), and the trip rate result (per time period). Total trip rates (the sum of the column) are also displayed at the foot of the table.

To obtain a trip rate, the average (mean) trip rate parameter value (TRP) is first calculated for all selected survey days that have count data available for the stated time period. The average (mean) number of arrivals, departures or totals (whichever applies) is also calculated (COUNT) for all selected survey days that have count data available for the stated time period. Then, the average count is divided by the average trip rate parameter value, and multiplied by the stated calculation factor (shown just above the table and abbreviated here as FACT). So, the method is: COUNT/TRP*FACT. Trip rates are then rounded to 3 decimal places.

TRICS 7.8.1	240321 B20.15	Database right of TRICS Consortium Limited, 2021. All rights reserved	Thursday 01/04/ 21 DF WD
Entran Ltd	Chapel Pill Lane	Bristol	Licence No: 337901

Filtering Summary

Land Use
01/C
RETAIL/DISCOUNT FOOD STORES
Selected Trip Rate Calculation Parameter Range 700-2703 sqm GFA
Actual Trip Rate Calculation Parameter Range 700-2568 sqm GFA
Date Range
Parking Spaces Range
Days of the week selected

Main Location Types selected

Population within 500 m
Population <1 Mile ranges selected

Population <5 Mile ranges selected

PTAL Rating

Maximum: 28/11/20

Monday 2
Tuesday 4
Wednesday 7
Thursday 4
Friday 3
Suburban Area (PPS6 Out of Centre) 4
Edge of Town 8 Neighbourhood Centre (PPS6 Local Centre) 8

All Surveys Included
1,001 to $5,000 \quad 1$
5,001 to $10,000 \quad 4$
10,001 to 15,0003
15,001 to 20,000 3
20,001 to $25,000 \quad 1$
25,001 to $50,000 \quad 6$
50,001 to $100,000 \quad 2$
5,001 to 25,000 1
25,001 to 50,0003
50,001 to $75,000 \quad 2$
75,001 to 100,0003
125,001 to 250,0003
250,001 to 500,0003
500,001 or More 5
0.6 to $1.0 \quad 12$
1.1 to $1.5 \quad 6$
1.6 to 2.0 1
2.1 to $2.5 \quad 1$

No PTAL Present 18
2 Poor 1
4 Good 1

TRIP RATE CALCULATION SELECTION PARAMETERS:

Land Use : 01-RETAIL
Category : C - DISCOUNT FOOD STORES

TOTAL VEHI CLES

01	GREATER LONDON	
	BE BEXLEY	1 days
	MR MERTON	1 days
02	SOUTH EAST	
	WS WEST SUSSEX	2 days
03	SOUTH WEST	
	SM SOMERSET	1 days
04	EAST ANGLIA	
	CA CAMBRIDGESHIRE	1 days
	NF NORFOLK	1 days
05	EAST MIDLANDS	
	NT NOTTINGHAMSHIRE	1 days
06	WEST MIDLANDS	
	WM WEST MIDLANDS	2 days
	WO WORCESTERSHIRE	1 days
07	YORKSHIRE \& NORTH LINCOLNSHIRE	
	WY WEST YORKSHIRE	1 days
09	NORTH	
	DH DURHAM	1 days
	TW TYNE \& WEAR	1 days
10	WALES	
	CF CARDIFF	1 days
11	SCOTLAND	
	AD ABERDEEN CITY	1 days
	SR STIRLING	1 days
13	MUNSTER	
	KE KERRY	1 days
15	GREATER DUBLI N	
	DL DUBLIN	1 days
17	ULSTER (NORTHERN IRELAND)	
	AN ANTRIM	1 days

This section displays the number of survey days per TRICS \circledR sub-region in the selected set

Primary Filtering selection:

This data displays the chosen trip rate parameter and its selected range. Only sites that fall within the parameter range are included in the trip rate calculation.

Parameter:	Gross floor area
Actual Range:	700 to 2568 (units: sqm)
Range Selected by User:	700 to 2703 (units: sqm)
Parking Spaces Range:	All Surveys Included

Public Transport Provision: Selection by:

> Include all surveys

Date Range: $\quad 01 / 01 / 13$ to 28/11/20
This data displays the range of survey dates selected. Only surveys that were conducted within this date range are included in the trip rate calculation.

Selected survey days:

Monday	2 days
Tuesday	4 days
Wednesday	7 days
Thursday	4 days
Friday	3 days

This data displays the number of selected surveys by day of the week.

Selected survey types:	20 days
Manual count	0 days

This data displays the number of manual classified surveys and the number of unclassified ATC surveys, the total adding up to the overall number of surveys in the selected set. Manual surveys are undertaken using staff, whilst ATC surveys are undertaking using machines.

Selected Locations:
Suburban Area (PPS6 Out of Centre) 4
Edge of Town

This data displays the number of surveys per main location category within the selected set. The main location categories consist of Free Standing, Edge of Town, Suburban Area, Neighbourhood Centre, Edge of Town Centre, Town Centre and Not Known.

Selected Location Sub Categories:

Industrial Zone 4
Development Zone 2
Residential Zone 3
Retail Zone 5
High Street 1
No Sub Category 5
This data displays the number of surveys per location sub-category within the selected set. The location sub-categories consist of Commercial Zone, Industrial Zone, Development Zone, Residential Zone, Retail Zone, Built-Up Zone, Village, Out of Town, High Street and No Sub Category.

Secondary Filtering selection:

Use Class:
E(a)
20 days
This data displays the number of surveys per Use Class classification within the selected set. The Use Classes Order 2005 has been used for this purpose, which can be found within the Library module of TRICS $®$.

Population within 500m Range:
All Surveys Included
Population within 1 mile:

1,001 to 5,000	1 days
5,001 to 10,000	4 days
10,001 to 15,000	3 days
15,001 to 20,000	3 days
20,001 to 25,000	1 days
25,001 to 50,000	6 days
50,001 to 100,000	2 days

This data displays the number of selected surveys within stated 1-mile radii of population.

Population within 5 miles:	
5,001 to 25,000	
25,001 days	
50,001 to 50,000	3 days
75,001 to 100,000	2 days
125,001 to 250,000	3 days
250,001 to 500,000	3 days
500,001 or More	3 days
	5 days

This data displays the number of selected surveys within stated 5 -mile radii of population.
Car ownership within 5 miles:

0.6 to 1.0	12 days
1.1 to 1.5	6 days
1.6 to 2.0	1 days
2.1 to 2.5	1 days

This data displays the number of selected surveys within stated ranges of average cars owned per residential dwelling, within a radius of 5 -miles of selected survey sites.

Petrol filling station:
Included in the survey count
0 days
Excluded from count or no filling station
This data displays the number of surveys within the selected set that include petrol filling station activity, and the number of surveys that do not.

Travel Plan:	
Not Known	1 days
Yes	3 days
No	16 days

This data displays the number of surveys within the selected set that were undertaken at sites with Travel Plans in place, and the number of surveys that were undertaken at sites without Travel Plans.

PTAL Rating:

No PTAL Present	18 days
2 Poor	1 days
4 Good	1 days

4 Good
1 days

This data displays the number of selected surveys with PTAL Ratings

1 AD-01-C-01

LIDL

GREENWELL ROAD
ABERDEEN
EAST TULLOS IND. ESTATE
Suburban Area (PPS6 Out of Centre)
Industrial Zone
Total Gross floor area: Survey date: MONDAY
2
AN-01-C-02 LIDL
BELFAST ROAD
CARRICKFERGUS
Edge of Town
Development Zone
Total Gross floor area:
Survey date: WEDNESDAY
3 BE-01-C-01
LIDL
CLYDESDALE WAY
BELVEDERE
Edge of Town
Industrial Zone
Total Gross floor area: Survey date: WEDNESDAY
4 CA-01-C-01 LIDL
CROMWELL ROAD
WISBECH
Edge of Town
Retail Zone
Total Gross floor area:
1466 sqm
21/10/16
5 CF-01-C-01 LIDL
EAST TYNDALL STREET
CARDIFF
Suburban Area (PPS6 Out of Centre)
Development Zone
Total Gross floor area: Survey date: THURSDAY

2568 sqm 29/06/17
6 DH-01-C-01 ALDI
WATLING ROAD
BISHOP AUCKLAND
Edge of Town
Retail Zone
Total Gross floor area: 1023 sqm Survey date: THURSDAY 06/04/17
7 DL-01-C-01 LIDL
SALLYNOGGIN ROAD
DUBLIN
THOMASTOWN
Neighbourhood Centre (PPS6 Local Centre)
Residential Zone
Total Gross floor area: 2163 sqm Survey date: WEDNESDAY 20/06/18
8 KE-01-C-01 ALDI
DEERPARK ROAD
KILLARNEY
Suburban Area (PPS6 Out of Centre)
No Sub Category
Total Gross floor area:
Survey date: THURSDAY $17 / 10 / 19$

ABERDEEN CITY

Survey Type: MANUAL ANTRIM

Survey Type: MANUAL

BEXLEY

Survey Type: MANUAL CAMBRIDGESHIRE

Survey Type: MANUAL CARDIFF

Survey Type: MANUAL

DURHAM

Survey Type: MANUAL DUBLI N

Survey Type: MANUAL KERRY

Survey Type: MANUAL

LIST OF SITES relevant to selection parameters (Cont.)

9 MR-01-C-01
LIDL
STREATHAM ROAD
MITCHAM
Neighbourhood Centre (PPS6 Local Centre)
Residential Zone
Total Gross floor area: 2400 sqm Survey date: WEDNESDAY 06/11/19
10
NF-01-C-01
LIDL
AYLSHAM ROAD
NORWICH
Neighbourhood Centre (PPS6 Local Centre)
No Sub Category
Total Gross floor area: 2555 sqm Survey date: FRIDAY 29/11/19
11 NT-01-C-01 LIDL
CHAPEL LANE
BINGHAM
Edge of Town
Industrial Zone
Total Gross floor area: Survey date: FRIDAY

2440 sqm 15/07/16
12 SM-01-C-01 LIDL
SEAWARD WAY
MINEHEAD
Edge of Town
No Sub Category
Total Gross floor area Survey date: THURSDAY $\quad 22 / 06 / 17$
13 SR-01-C-02
LIDL
WEAVER ROW
STIRLING
SAINT NINIANS
Neighbourhood Centre (PPS6 Local Centre)
Residential Zone
Total Gross floor area: 1559 sqm Survey date: WEDNESDAY 09/09/20
14 TW-01-C-01 ALDI
EDGEFIELD AVENUE
NEWCASTLE
FAWDON
Neighbourhood Centre (PPS6 Local Centre)
No Sub Category
Total Gross floor area: 1798 sqm Survey date: TUESDAY 30/04/19
15 WM-01-C-01 LIDL
MACKADOWN LANE
BIRMI NGHAM
KITT'S GREEN
Neighbourhood Centre (PPS6 Local Centre)
No Sub Category
Total Gross floor area: 2085 sqm Survey date: TUESDAY 12/07/16

MERTON

Survey Type: MANUAL NORFOLK

Survey Type: MANUAL NOTTI NGHAMSHI RE

SOMERSET

Survey Type: MANUAL

STI RLI NG

Survey Type: MANUAL TYNE \& WEAR

Survey Type: MANUAL WEST MI DLANDS

LIST OF SITES relevant to selection parameters (Cont.)

16	WM-01-C-02 LIDL		WEST MI DLANDS
	HIGH STREET		
	WEST BROMWICH		
	GUNS VILLAGE		
	Neighbourhood Centre (PPS6 Local Centre)		
	High Street		
	Total Gross floor area:	2085 sqm	
	Survey date: TUESDAY	12/07/16	Survey Type: MANUAL
17	WO-01-C-01 LIDL		WORCESTERSHIRE
	BLACKPOLE ROAD		
	WORCESTER		
	BRICKFIELDS		
	Edge of Town		
	Retail Zone		
	Total Gross floor area:	2417 sqm	
	Survey date: WEDNESDAY	13/07/16	Survey Type: MANUAL
18	WS-01-C-01 LIDL		WEST SUSSEX
	WESTHAMPNETT ROAD		
	CHICHESTER		
	Edge of Town		
	Retail Zone		
	Total Gross floor area:	2125 sqm	
	Survey date: TUESDAY	20/10/20	Survey Type: MANUAL
19	WS-01-C-02 LIDL		WEST SUSSEX
	FOUNDRY LANE		
	HORSHAM		
	Suburban Area (PPS6 Out of Centre)		
	Industrial Zone		
	Total Gross floor area:	1616 sqm	
	Survey date: WEDNESDAY	21/10/20	Survey Type: MANUAL
20	WY-01-C-01 FARMFOODS		WEST YORKSHIRE
	WATERLOO TERRACE		
	LEEDS		
	BRAMLEY		
	Neighbourhood Centre (PPS6 Local Centre)		
	Retail Zone		
	Total Gross floor area:	700 sqm	
	Survey date: MONDAY	19/10/15	Survey Type: MANUAL

This section provides a list of all survey sites and days in the selected set. For each individual survey site, it displays a unique site reference code and site address, the selected trip rate calculation parameter and its value, the day of the week and date of each survey, and whether the survey was a manual classified count or an ATC count.

TRIP RATE for Land Use 01 - RETAIL/C - DISCOUNT FOOD STORES
 TOTAL VEHI CLES
 Calculation factor: 100 sqm
 BOLD print indicates peak (busiest) period

This section displays the trip rate results based on the selected set of surveys and the selected count type (shown just above the table). It is split by three main columns, representing arrivals trips, departures trips, and total trips (arrivals plus departures). Within each of these main columns are three sub-columns. These display the number of survey days where count data is included (per time period), the average value of the selected trip rate calculation parameter (per time period), and the trip rate result (per time period). Total trip rates (the sum of the column) are also displayed at the foot of the table.

To obtain a trip rate, the average (mean) trip rate parameter value (TRP) is first calculated for all selected survey days that have count data available for the stated time period. The average (mean) number of arrivals, departures or totals (whichever applies) is also calculated (COUNT) for all selected survey days that have count data available for the stated time period. Then, the average count is divided by the average trip rate parameter value, and multiplied by the stated calculation factor (shown just above the table and abbreviated here as FACT). So, the method is: COUNT/TRP*FACT. Trip rates are then rounded to 3 decimal places.

The survey data, graphs and all associated supporting information, contained within the TRICS Database are published by TRICS Consortium Limited ("the Company") and the Company claims copyright and database rights in this published work. The Company authorises those who possess a current TRICS licence to access the TRICS Database and copy the data contained within the TRICS Database for the licence holders' use only. Any resulting copy must retain all copyrights and other proprietary notices, and any disclaimer contained thereon.

The Company accepts no responsibility for loss which may arise from reliance on data contained in the TRICS Database. [No warranty of any kind, express or implied, is made as to the data contained in the TRICS Database.]

Parameter summary

Trip rate parameter range selected:
Survey date date range:
Number of weekdays (Monday-Friday):
Number of Saturdays:
Number of Sundays:
Surveys automatically removed from selection:
Surveys manually removed from selection:

700-2568 (units: sqm)
01/01/13-28/11/20
20
0
0
0
0

This section displays a quick summary of some of the data filtering selections made by the TRICS® user. The trip rate calculation parameter range of all selected surveys is displayed first, followed by the range of minimum and maximum survey dates selected by the user. Then, the total number of selected weekdays and weekend days in the selected set of surveys are show. Finally, the number of survey days that have been manually removed from the selected set outside of the standard filtering procedure are displayed.

Appendix E

Junctions 10 Output

Filename: Salisbury Rd_Calmore Dr.j10
Path: F:\clients\EnTran\ALDI Totton
Report generation date: 14/04/2022 21:13:25

```
"2023 Baseline, AM
"2023 Baseline, PM
"2028 Baseline, AM
"2028 Baseline, PM
"2023 Baseline + Dev, AM
"2023 Baseline + Dev, PM
"2028 Baseline + Dev, AM
"2028 Baseline + Dev, PM
```

Summary of junction performance

	AM			PM		
	Queue (Veh)	Delay (s)	RFC	Queue (Veh)	Delay (s)	RFC
	2023 Baseline					
1 - Salisbury Rd (N)	1.0	4.59	0.49	1.0	4.11	0.49
2 - Brunel Rd	0.2	2.98	0.17	0.7	4.49	0.43
3 - Salisbury Rd (S)	0.8	3.77	0.44	0.7	3.94	0.40
4 - Calmore Drive	0.6	4.18	0.36	0.3	3.11	0.21
	2028 Baseline					
1 - Salisbury Rd (N)	1.0	4.74	0.51	1.0	4.22	0.51
2 - Brunel Rd	0.2	3.01	0.17	0.8	4.65	0.44
3 - Salisbury Rd (S)	0.8	3.86	0.45	0.7	4.04	0.41
4 - Calmore Drive	0.6	4.30	0.37	0.3	3.16	0.21
	2023 Baseline + Dev					
1 - Salisbury Rd (N)	1.0	4.69	0.51	1.1	4.32	0.52
2 - Brunel Rd	0.2	3.00	0.17	0.8	4.63	0.43
3 - Salisbury Rd (S)	0.8	3.88	0.46	0.7	4.10	0.42
4 - Calmore Drive	0.6	4.28	0.36	0.3	3.18	0.21
	2028 Baseline + Dev					
1 - Salisbury Rd (N)	1.1	4.86	0.52	1.1	4.44	0.53
2 - Brunel Rd	0.2	3.04	0.17	0.8	4.81	0.45
3 - Salisbury Rd (S)	0.9	3.98	0.47	0.8	4.21	0.43
4 - Calmore Drive	0.6	4.40	0.38	0.3	3.22	0.22

There are warnings associated with one or more model runs - see the 'Data Errors and Warnings' tables for each Analysis or Demand Set.
Values shown are the highest values encountered over all time segments. Delay is the maximum value of average delay per arriving vehicle.

File summary

File Description

Title	Calmore Drive / A36 Salisbury Rd / Brunel Rd Rbt
Location	
Site number	
Date	$07 / 05 / 2021$
Version	
Status	
Identifier	
Client	
Jobnumber	
Enumerator	al
Description	

Units

Distance units	Speed units	Traffic units input	Traffic units results	Flow units	Average delay units	Total delay units	Rate of delay units
m	kph	Veh	Veh	perHour	s	-Hour	perHour

From thow orsimil trane orriand Nohbir:
The junction diagram reflects the last run of Junctions

Analysis Options

Vehicle length (\mathbf{m})	Calculate Queue Percentiles	Calculate detailed queueing delay	Show lane queues in feet $/$ metres	Show all PICADY stream intercepts	Calculate residual capacity	RFC Threshold	Average Delay threshold (s)	Queue threshold (PCU)	Use iterations with HCM roundabouts
5.75					Max number of iterations for roundabouts				

Demand Set Summary

ID	Scenario name	Time Period name	Traffic profile type	Start time (HH:mm)	Finish time (HH:mm)	Time segment length (min)	Run automatically
D1	2023 Baseline	AM	ONE HOUR	07:15	08:45	15	\checkmark
D2	2023 Baseline	PM	ONE HOUR	16:45	18:15	15	\checkmark
D3	2028 Baseline	AM	ONE HOUR	07:15	08:45	15	\checkmark
D4	2028 Baseline	PM	ONE HOUR	16:45	18:15	15	\checkmark
D5	2023 Baseline + Dev	AM	ONE HOUR	07:15	08:45	15	\checkmark
D6	2023 Baseline + Dev	PM	ONE HOUR	16:45	18:15	15	\checkmark
D7	2028 Baseline + Dev	AM	ONE HOUR	07:15	08:45	15	\checkmark
D8	2028 Baseline + Dev	PM	ONE HOUR	16:45	18:15	15	\checkmark

Analysis Set Details

ID	Include in report	Network flow scaling factor (\%)	Network capacity scaling factor (\%)
A1	\checkmark	100.000	100.000

2023 Baseline, AM

Data Errors and Warnings

Severity	Area	Item	Description
Warning	Geometry	$3-$ Salisbury Rd $(\mathrm{S})-$ Roundabout Geometry	Effective flare length is over 30m, which is outside the normal range. Treat capacities with increasing caution.

Junction Network

Junctions

Junction	Name	Junction type	Use circulating lanes	Arm order	Junction Delay (s)	Junction LOS
$\mathbf{1}$	Calmore Drive / A36 Salisbury Rd / Brunel Rd Rbt	Standard Roundabout		$1,2,3,4$	4.05	A

Junction Network

Driving side	Lighting	Network delay (s)	Network LOS
Left	Normal/unknown	4.05	A

Arms

Arms

Arm	Name	Description	No give-way line
$\mathbf{1}$	Salisbury Rd (N)		
$\mathbf{2}$	Brunel Rd		
$\mathbf{3}$	Salisbury Rd (S)		
$\mathbf{4}$	Calmore Drive		

Roundabout Geometry

Arm	V - Approach road half-width (m)	E - Entry width (m)	I' - Effective flare length (m)	R - Entry radius (m)	D - Inscribed circle diameter (m)	PHI - Conflict (entry) angle (deg)	Entry only	$\begin{aligned} & \text { Exit } \\ & \text { only } \end{aligned}$
1-Salisbury Rd (N)	3.60	7.50	29.0	22.0	61.0	32.0		
2 - Brunel Rd	4.40	10.80	12.0	22.0	61.0	42.0		
3 - Salisbury Rd (S)	3.70	7.10	31.0	47.0	61.0	38.0		
4 - Calmore Drive	3.70	6.50	24.0	29.0	61.0	26.0		

Slope / Intercept / Capacity

Roundabout Slope and Intercept used in model

Arm	Final slope	Final intercept (PCU/hr)
1 - Salisbury Rd (N)	0.587	1912
2 - Brunel Rd	0.589	1973
3 - Salisbury Rd (S)	0.583	1884
4 - Calmore Drive	0.574	1789

The slope and intercept shown above include any corrections and adjustments.

Traffic Demand

Demand Set Details

ID	Scenario name	Time Period name	Traffic profile type	Start time (HH:mm)	Finish time (HH:mm)	Time segment length (min)	Run automatically
D1	2023 Baseline	AM	ONE HOUR	$07: 15$	$08: 45$	15	\checkmark

THE FUTURE

Vehicle mix varies over turn	Vehicle mix varies over entry	Vehicle mix source	PCU Factor for a HV (PCU)
\checkmark	\checkmark	HV Percentages	2.00

Demand overview (Traffic)

Arm	Linked arm	Profile type	Use O-D data	Average Demand (Veh/hr)	Scaling Factor (\%)
1-Salisbury Rd (N)		ONE HOUR	\checkmark	698	219
2- Brunel Rd		ONE HOUR	\checkmark	686	100.000
3-Salisbury Rd (S)		ONE HOUR	\checkmark	433	100.000
4-Calmore Drive		ONE HOUR	\checkmark	100.000	

Origin-Destination Data

Demand (Veh/hr)

	To				
From					
	1-Salisbury Rd (N)	1-Salisbury Rd (N)	2 - Brunel Rd	3 - Salisbury Rd (S)	4 - Calmore Drive
	2 - Brunel Rd	4	382	255	57
	3-Salisbury Rd (S)	151	0	52	16
	4- Calmore Drive	360	157	5	164

Vehicle Mix

Heavy Vehicle Percentages

	To					
From		1-Salisbury Rd (N)	2-Brunel Rd	3 - Salisbury Rd (S)	4 - Calmore Drive	
	1-Salisbury Rd (N)	75	6	1	2	
	2- Brunel Rd	15	0	0	0	
	3-Salisbury Rd (S)	1	0	0	1	
	4- Calmore Drive	0	0	1	0	

Results

Results Summary for whole modelled period

Arm	Max RFC	Max Delay (s)	Max Queue (Veh)	Max LOS	Average Demand (Veh/hr)	Total Junction Arrivals (Veh)
1-Salisbury Rd (N)	0.49	4.59	1.0	A	640	961
2 - Brunel Rd	0.17	2.98	0.2	A	201	
3 - Salisbury Rd (S)	0.44	3.77	0.8	A	629	
4 - Calmore Drive	0.36	4.18	0.6	A	944	

Main Results for each time segment

07:15-07:30

Arm	Total Demand (Veh/hr)	Junction Arrivals (Veh)	Circulating flow (Veh/hr)	Capacity (Veh/hr)	RFC	Throughput (Veh/hr)	Throughput (exit side) (Veh/hr)	Start queue (Veh)	End queue (Veh)	Delay (s)	Unsignalised level of service
1-Salisbury Rd (N)	525	131	335	1642	0.320	524	498	0.0	0.5	3.214	A
2 - Brunel Rd	165	41	425	1557	0.106	164	434	0.0	0.1	2.584	A
3 - Salisbury Rd (S)	516	129	171	1762	0.293	515	418	0.0	0.4	2.883	A
4-Calmore Drive	326	81	508	1479	0.220	325	178	0.0	0.3	3.117	A

THE FUTURE

07:30-07:45

Arm	Total Demand (Veh/hr)	Junction Arrivals (Veh)	Circulating flow (Veh/hr)	Capacity (Veh/hr)	RFC	Throughput (Veh/hr)	Throughput (exit side) (Veh/hr)	Start queue (Veh)	End queue (Veh)	Delay (s)	Unsignalised level of service
1-Salisbury Rd (N)	627	157	401	1604	0.391	627	596	0.5	0.6	3.681	A
2 - Brunel Rd	197	49	508	1512	0.130	197	519	0.1	0.1	2.736	A
3 - Salisbury Rd (S)	617	154	205	1740	0.354	616	500	0.4	0.5	3.201	A
4 - Calmore Drive	389	97	608	1419	0.274	389	213	0.3	0.4	3.494	A

07:45-08:00

Arm	Total Demand (Veh/hr)	Junction Arrivals (Veh)	Circulating flow (Veh/hr)	Capacity (Veh/hr)	RFC	Throughput (Veh/hr)	Throughput (exit side) (Veh/hr)	Start queue (Veh)	End queue (Veh)	Delay (s)	Unsignalised level of service
1-Salisbury Rd (N)	769	192	490	1554	0.495	767	730	0.6	1.0	4.570	A
2 - Brunel Rd	241	60	622	1450	0.166	241	635	0.1	0.2	2.976	A
3 - Salisbury Rd (S)	755	189	251	1710	0.442	754	612	0.5	0.8	3.763	A
4-Calmore Drive	477	119	745	1338	0.356	476	261	0.4	0.5	4.172	A

08:00-08:15

Arm	Total Demand (Veh/hr)	Junction Arrivals (Veh)	$\begin{aligned} & \text { Circulating } \\ & \text { flow } \\ & \text { (Veh/hr) } \\ & \hline \end{aligned}$	Capacity (Veh/hr)	RFC	Throughput (Veh/hr)	Throughput (exit side) (Veh/hr)	Start queue (Veh)	End queue (Veh)	Delay (s)	Unsignalised level of service
1-Salisbury Rd (N)	769	192	491	1553	0.495	768	731	1.0	1.0	4.587	A
2 - Brunel Rd	241	60	623	1450	0.166	241	636	0.2	0.2	2.977	A
3 - Salisbury Rd (S)	755	189	251	1710	0.442	755	613	0.8	0.8	3.769	A
4-Calmore Drive	477	119	745	1338	0.356	477	261	0.5	0.6	4.181	A

08:15-08:30

Arm	Total Demand (Veh/hr)	Junction Arrivals (Veh)	Circulating flow (Veh/hr)	Capacity (Veh/hr)	RFC	Throughput (Veh/hr)	Throughput (exit side) (Veh/hr)	Start queue (Veh)	End queue (Veh)	Delay (s)	Unsignalised level of service
1-Salisbury Rd (N)	627	157	402	1604	0.391	629	598	1.0	0.6	3.699	A
2 - Brunel Rd	197	49	510	1511	0.130	197	521	0.2	0.2	2.739	A
3 - Salisbury Rd (S)	617	154	205	1740	0.355	618	502	0.8	0.6	3.213	A
4-Calmore Drive	389	97	609	1418	0.274	390	213	0.6	0.4	3.501	A

08:30-08:45

Arm	Total Demand (Veh/hr)	Junction Arrivals (Veh)	Circulating flow (Veh/hr)	Capacity (Veh/hr)	RFC	Throughput (Veh/hr)	Throughput (exit side) (Veh/hr)	Start queue (Veh)	End queue (Veh)	Delay (s)	Unsignalised level of service
1-Salisbury Rd (N)	525	131	336	1641	0.320	526	500	0.6	0.5	3.231	A
2 - Brunel Rd	165	41	427	1556	0.106	165	436	0.2	0.1	2.587	A
3 - Salisbury Rd (S)	516	129	172	1761	0.293	517	420	0.6	0.4	2.896	A
4-Calmore Drive	326	81	510	1478	0.221	326	179	0.4	0.3	3.127	A

2023 Baseline, PM

Data Errors and Warnings

Severity	Area	Item	Description
Warning	Geometry	$3-$ Salisbury Rd $(\mathrm{S})-$ Roundabout Geometry	Effective flare length is over 30m, which is outside the normal range. Treat capacities with increasing caution.

Junction Network

Junctions

Junction	Name	Junction type	Use circulating lanes	Arm order	Junction Delay (s)	Junction LOS
$\mathbf{1}$	Calmore Drive / A36 Salisbury Rd / Brunel Rd Rbt	Standard Roundabout		$1,2,3,4$	4.03	A

Junction Network

Driving side	Lighting	Network delay (s)	Network LOS
Left	Normal/unknown	4.03	A

Traffic Demand

Demand Set Details

ID	Scenario name	Time Period name	Traffic profile type	Start time (HH:mm)	Finish time (HH:mm)	Time segment length (min)	Run automatically
D2	2023 Baseline	PM	ONE HOUR	$16: 45$	$18: 15$	15	\checkmark

Vehicle mix varies over turn	Vehicle mix varies over entry	Vehicle mix source	PCU Factor for a HV (PCU)
\checkmark	\checkmark	HV Percentages	2.00

Demand overview (Traffic)

Arm	Linked arm	Profile type	Use O-D data	Average Demand (Veh/hr)	Scaling Factor (\%)
1-Salisbury Rd (N)		ONE HOUR	\checkmark	774	100.000
2- Brunel Rd		ONE HOUR	\checkmark	539	100.000
3-Salisbury Rd (S)		ONE HOUR	\checkmark	543	100.000
4-Calmore Drive		ONE HOUR	\checkmark	273	100.000

Origin-Destination Data

Demand (Veh/hr)

	To				
From					
	1-Salisbury Rd (N)	1-Salisbury Rd (N)	2 - Brunel Rd	3-Salisbury Rd (S)	4 - Calmore Drive
	2- Brunel Rd	3	82	505	184
	3-Salisbury Rd (S)	262	0	177	100
	4- Calmore Drive	209	33	5	296

Vehicle Mix

Heavy Vehicle Percentages

	To				
From		1-Salisbury Rd (N)	2-Brunel Rd	3 - Salisbury Rd (S)	4 - Calmore Drive
	1-Salisbury Rd (N)	0	9	0	0
	2- Brunel Rd	1	0	0	0
	3-Salisbury Rd (S)	2	0	0	1
	4-Calmore Drive	0	0	1	0

Results

Results Summary for whole modelled period

Arm	Max RFC	Max Delay (s)	Max Queue (Veh)	Max LOS	Average Demand (Veh/hr)	Total Junction Arrivals (Veh)
1-Salisbury Rd (N)	0.49	4.11	1.0	A	710	
2 - Brunel Rd	0.43	4.49	0.7	A	1065	
3 - Salisbury Rd (S)	0.40	3.94	0.7	A	495	
4-Calmore Drive	0.21	3.11	0.3	A	498	

Main Results for each time segment

16:45-17:00

Arm	Total Demand (Veh/hr)	Junction Arrivals (Veh)	Circulating flow (Veh/hr)	Capacity (Veh/hr)	RFC	Throughput (Veh/hr)	Throughput (exit side) (Veh/hr)	Start queue (Veh)	End queue (Veh)	Delay (s)	Unsignalised level of service
1-Salisbury Rd (N)	583	146	191	1780	0.327	581	398	0.0	0.5	2.996	A
2 - Brunel Rd	406	101	658	1576	0.258	404	114	0.0	0.3	3.068	A
3 - Salisbury Rd (S)	409	102	413	1624	0.252	407	650	0.0	0.3	2.957	A
4-Calmore Drive	206	51	384	1560	0.132	205	436	0.0	0.2	2.655	A

17:00-17:15

Arm	Total Demand (Veh/hr)	Junction Arrivals (Veh)	Circulating flow (Veh/hr)	Capacity (Veh/hr)	RFC	Throughput (Veh/hr)	Throughput (exit side) (Veh/hr)	Start queue (Veh)	End queue (Veh)	Delay (s)	Unsignalised level of service
1-Salisbury Rd (N)	696	174	229	1758	0.396	695	476	0.5	0.7	3.385	A
2 - Brunel Rd	485	121	788	1500	0.323	484	137	0.3	0.5	3.542	A
3 - Salisbury Rd (S)	488	122	494	1577	0.310	488	778	0.3	0.4	3.303	A
4-Calmore Drive	245	61	460	1516	0.162	245	522	0.2	0.2	2.832	A

17:15-17:30

Arm	Total Demand (Veh/hr)	Junction Arrivals (Veh)	Circulating flow (Veh/hr)	Capacity (Veh/hr)	RFC	Throughput (Veh/hr)	Throughput (exit side) (Veh/hr)	Start queue (Veh)	End queue (Veh)	Delay (s)	Unsignalised level of service
1-Salisbury Rd (N)	852	213	280	1728	0.493	851	583	0.7	1.0	4.097	A
2 - Brunel Rd	593	148	964	1396	0.425	592	167	0.5	0.7	4.473	A
3 - Salisbury Rd (S)	598	149	605	1513	0.395	597	952	0.4	0.6	3.928	A
4-Calmore Drive	301	75	563	1456	0.206	300	639	0.2	0.3	3.113	A

17:30-17:45

Arm	Total Demand (Veh/hr)	Junction Arrivals (Veh)	Circulating flow (Veh/hr)	Capacity (Veh/hr)	RFC	Throughput (Veh/hr)	Throughput (exit side) (Veh/hr)	Start queue (Veh)	End queue (Veh)	Delay (s)	Unsignalised level of service
1-Salisbury Rd (N)	852	213	281	1728	0.493	852	584	1.0	1.0	4.109	A
2 - Brunel Rd	593	148	966	1395	0.425	593	167	0.7	0.7	4.488	A
3 - Salisbury Rd (S)	598	149	606	1512	0.395	598	953	0.6	0.7	3.937	A
4-Calmore Drive	301	75	564	1456	0.206	301	640	0.3	0.3	3.115	A

17:45-18:00

Arm	Total Demand (Veh/hr)	Junction Arrivals (Veh)	Circulating flow (Veh/hr)	Capacity (Veh/hr)	RFC	Throughput (Veh/hr)	Throughput (exit side) (Veh/hr)	Start queue (Veh)	End queue (Veh)	Delay (s)	Unsignalised level of service
1-Salisbury Rd (N)	696	174	230	1758	0.396	697	477	1.0	0.7	3.396	A
2 - Brunel Rd	485	121	790	1499	0.323	486	137	0.7	0.5	3.558	A
3 - Salisbury Rd (S)	488	122	495	1576	0.310	489	780	0.7	0.5	3.315	A
4 - Calmore Drive	245	61	461	1515	0.162	246	523	0.3	0.2	2.837	A

18:00-18:15

Arm	Total Demand (Veh/hr)	Junction Arrivals (Veh)	$\begin{gathered} \text { Circulating } \\ \text { flow } \\ \text { (Veh/hr) } \\ \hline \end{gathered}$	Capacity (Veh/hr)	RFC	Throughput (Veh/hr)	Throughput (exit side) (Veh/hr)	Start queue (Veh)	End queue	Delay (s)	Unsignalised level of service
1-Salisbury Rd (N)	583	146	192	1780	0.327	583	399	0.7	0.5	3.012	A
2 - Brunel Rd	406	101	661	1574	0.258	406	115	0.5	0.3	3.085	A
3 - Salisbury Rd (S)	409	102	415	1623	0.252	409	653	0.5	0.3	2.969	A
4 - Calmore Drive	206	51	386	1559	0.132	206	438	0.2	0.2	2.662	A

2028 Baseline, AM

Data Errors and Warnings

Severity	Area	Item	Description
Warning	Geometry	$3-$ Salisbury Rd $(\mathrm{S})-$ Roundabout Geometry	Effective flare length is over 30m, which is outside the normal range. Treat capacities with increasing caution.

Junction Network

Junctions

Junction	Name	Junction type	Use circulating lanes	Arm order	Junction Delay (s)	Junction LOS
$\mathbf{1}$	Calmore Drive / A36 Salisbury Rd / Brunel Rd Rbt	Standard Roundabout		$1,2,3,4$	4.16	A

Junction Network

Driving side	Lighting	Network delay (s)	Network LOS
Left	Normal/unknown	4.16	A

Traffic Demand

Demand Set Details

ID	Scenario name	Time Period name	Traffic profile type	Start time (HH:mm)	Finish time (HH:mm)	Time segment length (min)	Run automatically
D3	2028 Baseline	AM	ONE HOUR	$07: 15$	$08: 45$	15	\checkmark

Vehicle mix varies over turn	Vehicle mix varies over entry	Vehicle mix source	PCU Factor for a HV (PCU)
\checkmark	\checkmark	HV Percentages	2.00

Demand overview (Traffic)

Arm	Linked arm	Profile type	Use O-D data	Average Demand (Veh/hr)	Scaling Factor (\%)
1-Salisbury Rd (N)		ONE HOUR	\checkmark	715	100.000
2- Brunel Rd		ONE HOUR	\checkmark	224	100.000
3-Salisbury Rd (S)		ONE HOUR	\checkmark	703	100.000
4-Calmore Drive		ONE HOUR	\checkmark	444	100.000

Origin-Destination Data

Demand (Veh/hr)

	To				
From		1-Salisbury Rd (N)	2 - Brunel Rd	3 - Salisbury Rd (S)	4-Calmore Drive
	1-Salisbury Rd (N)	4	391	262	58
	2 - Brunel Rd	155	0	53	16
	3 - Salisbury Rd (S)	369	161	5	168
	4-Calmore Drive	153	40	251	0

Vehicle Mix

Heavy Vehicle Percentages

	To				
From		$\mathbf{1 - S a l i s b u r y ~ R d ~ (N) ~}$	2-Brunel Rd	3 - Salisbury Rd (S)	4 - Calmore Drive
	1-Salisbury Rd (N)	75	6	1	2
	2- Brunel Rd	15	0	0	0
	3-Salisbury Rd (S)	1	0	0	1
	4-Calmore Drive	0	0	1	0

Results

Results Summary for whole modelled period

Arm	Max RFC	Max Delay (s)	Max Queue (Veh)	Max LOS	Average Demand (Veh/hr)	Total Junction Arrivals (Veh)
1-Salisbury Rd (N)	0.51	4.74	1.0	A	656	
2 - Brunel Rd	0.17	3.01	0.2	A	984	
3 - Salisbury Rd (S)	0.45	3.86	0.8	A	206	
4 - Calmore Drive	0.37	4.30	0.6	A	645	

Main Results for each time segment

07:15-07:30

Arm	Total Demand (Veh/hr)	Junction Arrivals (Veh)	Circulating flow (Veh/hr)	Capacity (Veh/hr)	RFC	Throughput (Veh/hr)	Throughput (exit side) (Veh/hr)	Start queue (Veh)	End queue (Veh)	Delay (s)	Unsignalised level of service
1-Salisbury Rd (N)	538	135	343	1637	0.329	536	511	0.0	0.5	3.265	A
2 - Brunel Rd	169	42	435	1551	0.109	168	444	0.0	0.1	2.603	A
3 - Salisbury Rd (S)	529	132	175	1759	0.301	528	428	0.0	0.4	2.919	A
4-Calmore Drive	334	84	521	1471	0.227	333	182	0.0	0.3	3.160	A

07:30-07:45

Arm	Total Demand (Veh/hr)	Junction Arrivals (Veh)	Circulating flow (Veh/hr)	Capacity (Veh/hr)	RFC	Throughput (Veh/hr)	Throughput (exit side) (Veh/hr)	Start queue (Veh)	End queue (Veh)	Delay (s)	Unsignalised level of service
1-Salisbury Rd (N)	643	161	410	1599	0.402	642	612	0.5	0.7	3.761	A
2 - Brunel Rd	201	50	521	1505	0.134	201	532	0.1	0.2	2.761	A
3 - Salisbury Rd (S)	632	158	209	1737	0.364	631	513	0.4	0.6	3.254	A
4-Calmore Drive	399	100	623	1410	0.283	399	217	0.3	0.4	3.556	A

07:45-08:00

Arm	Total Demand (Veh/hr)	Junction Arrivals (Veh)	Circulating flow (Veh/hr)	Capacity (Veh/hr)	RFC	Throughput (Veh/hr)	Throughput (exit side) (Veh/hr)	Start queue (Veh)	End queue (Veh)	Delay (s)	Unsignalised level of service
1-Salisbury Rd (N)	787	197	502	1547	0.509	786	749	0.7	1.0	4.721	A
2 - Brunel Rd	247	62	638	1442	0.171	246	651	0.2	0.2	3.012	A
3 - Salisbury Rd (S)	774	194	256	1707	0.454	773	628	0.6	0.8	3.852	A
4 - Calmore Drive	489	122	763	1327	0.368	488	266	0.4	0.6	4.288	A

08:00-08:15

Arm	Total Demand (Veh/hr)	Junction Arrivals (Veh)	Circulating flow (Veh/hr)	Capacity (Veh/hr)	RFC	Throughput (Veh/hr)	Throughput (exit side) (Veh/hr)	Start queue (Veh)	End queue (Veh)	Delay (s)	Unsignalised level of service
1-Salisbury Rd (N)	787	197	503	1547	0.509	787	750	1.0	1.0	4.740	A
2 - Brunel Rd	247	62	639	1441	0.171	247	652	0.2	0.2	3.013	A
3 - Salisbury Rd (S)	774	194	257	1706	0.454	774	629	0.8	0.8	3.860	A
4-Calmore Drive	489	122	764	1326	0.369	489	266	0.6	0.6	4.297	A

08:15-08:30

Arm	Total Demand (Veh/hr)	Junction Arrivals (Veh)	Circulating flow (Veh/hr)	Capacity (Veh/hr)	RFC	Throughput (Veh/hr)	Throughput (exit side) (Veh/hr)	Start queue (Veh)	End queue (Veh)	Delay (s)	Unsignalised level of service
1-Salisbury Rd (N)	643	161	412	1598	0.402	644	613	1.0	0.7	3.780	A
2 - Brunel Rd	201	50	522	1504	0.134	202	533	0.2	0.2	2.766	A
3 - Salisbury Rd (S)	632	158	210	1737	0.364	633	514	0.8	0.6	3.263	A
4 - Calmore Drive	399	100	625	1409	0.283	400	218	0.6	0.4	3.570	A

08:30-08:45

Arm	Total Demand (Veh/hr)	Junction Arrivals (Veh)	Circulating flow (Veh/hr)	Capacity (Veh/hr)	RFC	Throughput (Veh/hr)	Throughput (exit side) (Veh/hr)	Start queue (Veh)	End queue (Veh)	Delay (s)	Unsignalised level of service
1-Salisbury Rd (N)	538	135	344	1636	0.329	539	513	0.7	0.5	3.285	A
2 - Brunel Rd	169	42	437	1550	0.109	169	446	0.2	0.1	2.608	A
3 - Salisbury Rd (S)	529	132	176	1759	0.301	530	430	0.6	0.4	2.932	A
4 - Calmore Drive	334	84	523	1470	0.227	335	182	0.4	0.3	3.173	A

2028 Baseline, PM

Data Errors and Warnings

Severity	Area	Item	Description
Warning	Geometry	$3-$ Salisbury Rd $(\mathrm{S})-$ Roundabout Geometry	Effective flare length is over 30m, which is outside the normal range. Treat capacities with increasing caution.

Junction Network

Junctions

Junction	Name	Junction type	Use circulating lanes	Arm order	Junction Delay (s)	Junction LOS
$\mathbf{1}$	Calmore Drive / A36 Salisbury Rd / Brunel Rd Rbt	Standard Roundabout		$1,2,3,4$	4.14	A

Junction Network

Driving side	Lighting	Network delay (s)	Network LOS
Left	Normal/unknown	4.14	A

Traffic Demand

Demand Set Details

ID	Scenario name	Time Period name	Traffic profile type	Start time (HH:mm)	Finish time (HH:mm)	Time segment length (min)	Run automatically
D4	2028 Baseline	PM	ONE HOUR	$16: 45$	$18: 15$	15	\checkmark

Vehicle mix varies over turn	Vehicle mix varies over entry	Vehicle mix source	PCU Factor for a HV (PCU)
\checkmark	\checkmark	HV Percentages	2.00

Demand overview (Traffic)

Arm	Linked arm	Profile type	Use O-D data	Average Demand (Veh/hr)	Scaling Factor (\%)
1-Salisbury Rd (N)		ONE HOUR	\checkmark	791	100.000
2- Brunel Rd		ONE HOUR	\checkmark	552	100.000
3-Salisbury Rd (S)		ONE HOUR	\checkmark	557	100.000
4-Calmore Drive		ONE HOUR	\checkmark	279	100.000

Origin-Destination Data

Demand (Veh/hr)

	To				
From		1-Salisbury Rd (N)	2 - Brunel Rd	3 - Salisbury Rd (S)	4-Calmore Drive
	1-Salisbury Rd (N)	3	83	517	188
	2 - Brunel Rd	268	0	182	102
	3 - Salisbury Rd (S)	215	34	5	303
	4-Calmore Drive	57	38	183	1

Vehicle Mix

Heavy Vehicle Percentages

	To				
From		1-Salisbury Rd (N)	2-Brunel Rd	3 - Salisbury Rd (S)	4-Calmore Drive
	1-Salisbury Rd (N)	0	9	0	0
	2- Brunel Rd	1	0	0	0
	3-Salisbury Rd (S)	2	0	0	1
	4-Calmore Drive	0	0	1	0

Results

Results Summary for whole modelled period

Arm	Max RFC	Max Delay (s)	Max Queue (Veh)	Max LOS	Average Demand (Veh/hr)	Total Junction Arrivals (Veh)
1-Salisbury Rd (N)	0.51	4.22	1.0	A	726	
2 - Brunel Rd	0.44	4.65	0.8	A	1089	
3 - Salisbury Rd (S)	0.41	4.04	0.7	A	767	
4-Calmore Drive	0.21	3.16	0.3	A	511	

Main Results for each time segment

16:45-17:00

Arm	Total Demand (Veh/hr)	Junction Arrivals (Veh)	Circulating flow (Veh/hr)	Capacity (Veh/hr)	RFC	Throughput (Veh/hr)	Throughput (exit side) (Veh/hr)	Start queue (Veh)	End queue (Veh)	Delay (s)	Unsignalised level of service
1-Salisbury Rd (N)	596	149	196	1778	0.335	593	407	0.0	0.5	3.034	A
2 - Brunel Rd	416	104	673	1567	0.265	414	116	0.0	0.4	3.118	A
3 - Salisbury Rd (S)	419	105	422	1619	0.259	418	666	0.0	0.3	2.995	A
4-Calmore Drive	210	53	394	1554	0.135	209	446	0.0	0.2	2.675	A

17:00-17:15

Arm	Total Demand (Veh/hr)	Junction Arrivals (Veh)	Circulating flow (Veh/hr)	Capacity (Veh/hr)	RFC	Throughput (Veh/hr)	Throughput (exit side) (Veh/hr)	Start queue (Veh)	End queue (Veh)	Delay (s)	Unsignalised level of service
1-Salisbury Rd (N)	711	178	234	1755	0.405	710	488	0.5	0.7	3.444	A
2 - Brunel Rd	496	124	806	1489	0.333	496	139	0.4	0.5	3.621	A
3 - Salisbury Rd (S)	501	125	505	1571	0.319	500	797	0.3	0.5	3.361	A
4-Calmore Drive	251	63	471	1509	0.166	251	533	0.2	0.2	2.859	A

17:15-17:30

Arm	Total Demand (Veh/hr)	Junction Arrivals (Veh)	Circulating flow (Veh/hr)	Capacity (Veh/hr)	RFC	Throughput (Veh/hr)	Throughput (exit side) (Veh/hr)	Start queue (Veh)	End queue (Veh)	Delay (s)	Unsignalised level of service
1-Salisbury Rd (N)	871	218	287	1725	0.505	870	597	0.7	1.0	4.203	A
2 - Brunel Rd	608	152	986	1383	0.439	607	170	0.5	0.8	4.628	A
3 - Salisbury Rd (S)	613	153	618	1505	0.407	612	975	0.5	0.7	4.028	A
4-Calmore Drive	307	77	577	1448	0.212	307	653	0.2	0.3	3.154	A

17:30-17:45

Arm	Total Demand (Veh/hr)	Junction Arrivals (Veh)	Circulating flow (Veh/hr)	Capacity (Veh/hr)	RFC	Throughput (Veh/hr)	Throughput (exit side) (Veh/hr)	Start queue (Veh)	End queue (Veh)	Delay (s)	Unsignalised level of service
1-Salisbury Rd (N)	871	218	287	1724	0.505	871	598	1.0	1.0	4.217	A
2 - Brunel Rd	608	152	988	1383	0.440	608	171	0.8	0.8	4.645	A
3 - Salisbury Rd (S)	613	153	619	1504	0.408	613	977	0.7	0.7	4.039	A
4-Calmore Drive	307	77	578	1448	0.212	307	654	0.3	0.3	3.155	A

17:45-18:00

Arm	Total Demand (Veh/hr)	Junction Arrivals (Veh)	Circulating flow (Veh/hr)	Capacity (Veh/hr)	RFC	Throughput (Veh/hr)	Throughput (exit side) (Veh/hr)	Start queue (Veh)	End queue (Veh)	Delay (s)	Unsignalised level of service
1-Salisbury Rd (N)	711	178	235	1755	0.405	712	489	1.0	0.7	3.456	A
2 - Brunel Rd	496	124	808	1488	0.333	497	140	0.8	0.5	3.636	A
3 - Salisbury Rd (S)	501	125	506	1570	0.319	502	799	0.7	0.5	3.372	A
4-Calmore Drive	251	63	473	1508	0.166	251	535	0.3	0.2	2.865	A

18:00-18:15

Arm	Total Demand (Veh/hr)	Junction Arrivals (Veh)	Circulating flow (Veh/hr)	Capacity (Veh/hr)	RFC	Throughput (Veh/hr)	Throughput (exit side) (Veh/hr)	Start queue (Veh)	End queue (Veh)	Delay (s)	Unsignalised level of service
1 - Salisbury Rd (N)	596	149	197	1777	0.335	596	409	0.7	0.5	3.049	A
2 - Brunel Rd	416	104	676	1565	0.265	416	117	0.5	0.4	3.135	A
3 - Salisbury Rd (S)	419	105	424	1618	0.259	420	669	0.5	0.4	3.008	A
4 - Calmore Drive	210	53	396	1553	0.135	210	448	0.2	0.2	2.680	A

2023 Baseline + Dev, AM

Data Errors and Warnings

Severity	Area	Item	Description
Warning	Geometry	$3-$ Salisbury Rd $(\mathrm{S})-$ Roundabout Geometry	Effective flare length is over 30m, which is outside the normal range. Treat capacities with increasing caution.

Junction Network

Junctions

Junction	Name	Junction type	Use circulating lanes	Arm order	Junction Delay (s)	Junction LOS
$\mathbf{1}$	Calmore Drive / A36 Salisbury Rd / Brunel Rd Rbt	Standard Roundabout		$1,2,3,4$	4.15	A

Junction Network

Driving side	Lighting	Network delay (s)	Network LOS
Left	Normal/unknown	4.15	A

Traffic Demand

Demand Set Details

ID	Scenario name	Time Period name	Traffic profile type	Start time (HH:mm)	Finish time (HH:mm)	Time segment length (min)	Run automatically
D5	2023 Baseline + Dev	AM	ONE HOUR	$07: 15$	$08: 45$	15	\checkmark

Vehicle mix varies over turn	Vehicle mix varies over entry	Vehicle mix source	PCU Factor for a HV (PCU)
\checkmark	\checkmark	HV Percentages	2.00

Demand overview (Traffic)

Arm	Linked arm	Profile type	Use O-D data	Average Demand (Veh/hr)	Scaling Factor (\%)
1-Salisbury Rd (N)		ONE HOUR	\checkmark	716	100.000
2- Brunel Rd		ONE HOUR	\checkmark	219	100.000
3-Salisbury Rd (S)		ONE HOUR	\checkmark	711	100.000
4-Calmore Drive		ONE HOUR	\checkmark	437	100.000

Origin-Destination Data

Demand (Veh/hr)

	To				
From		1-Salisbury Rd (N)	2 - Brunel Rd	3 - Salisbury Rd (S)	4-Calmore Drive
	1 - Salisbury Rd (N)	4	382	271	59
	2 - Brunel Rd	151	0	52	16
	3 - Salisbury Rd (S)	385	157	5	164
	4-Calmore Drive	153	39	245	0

Vehicle Mix

Heavy Vehicle Percentages

	To				
From		1-Salisbury Rd (N)	2-Brunel Rd	3 - Salisbury Rd (S)	4-Calmore Drive
	1-Salisbury Rd (N)	75	6	1	2
	2- Brunel Rd	15	0	0	0
	3-Salisbury Rd (S)	1	0	0	1
	4-Calmore Drive	0	0	1	0

Results

Results Summary for whole modelled period

Arm	Max RFC	Max Delay (s)	Max Queue (Veh)	Max LOS	Average Demand (Veh/hr)	Total Junction Arrivals (Veh)
1-Salisbury Rd (N)	0.51	4.69	1.0	A	657	
2 - Brunel Rd	0.17	3.00	0.2	A	986	
3 - Salisbury Rd (S)	0.46	3.88	0.8	A	201	
4-Calmore Drive	0.36	4.28	0.6	A	652	

Main Results for each time segment

07:15-07:30

Arm	Total Demand (Veh/hr)	Junction Arrivals (Veh)	Circulating flow (Veh/hr)	Capacity (Veh/hr)	RFC	Throughput (Veh/hr)	Throughput (exit side) (Veh/hr)	Start queue (Veh)	End queue (Veh)	Delay (s)	Unsignalised level of service
1-Salisbury Rd (N)	539	135	335	1644	0.328	537	520	0.0	0.5	3.248	A
2 - Brunel Rd	165	41	438	1550	0.106	164	434	0.0	0.1	2.598	A
3-Salisbury Rd (S)	535	134	173	1762	0.304	534	430	0.0	0.4	2.927	A
4-Calmore Drive	329	82	527	1468	0.224	328	179	0.0	0.3	3.154	A

07:30-07:45

Arm	Total Demand (Veh/hr)	Junction Arrivals (Veh)	Circulating flow (Veh/hr)	Capacity (Veh/hr)	RFC	Throughput (Veh/hr)	Throughput (exit side) (Veh/hr)	Start queue (Veh)	End queue (Veh)	Delay (s)	Unsignalised level of service
1-Salisbury Rd (N)	644	161	401	1606	0.401	643	622	0.5	0.7	3.736	A
2 - Brunel Rd	197	49	524	1503	0.131	197	519	0.1	0.2	2.754	A
3 - Salisbury Rd (S)	639	160	207	1740	0.367	639	515	0.4	0.6	3.267	A
4-Calmore Drive	393	98	631	1407	0.279	392	215	0.3	0.4	3.550	A

07:45-08:00

Arm	Total Demand (Veh/hr)	Junction Arrivals (Veh)	Circulating flow (Veh/hr)	Capacity (Veh/hr)	RFC	Throughput (Veh/hr)	Throughput (exit side) (Veh/hr)	Start queue (Veh)	End queue (Veh)	Delay (s)	Unsignalised level of service
1-Salisbury Rd (N)	788	197	490	1556	0.507	787	762	0.7	1.0	4.675	A
2 - Brunel Rd	241	60	642	1440	0.167	241	635	0.2	0.2	3.002	A
3 - Salisbury Rd (S)	783	196	253	1710	0.458	782	630	0.6	0.8	3.875	A
4-Calmore Drive	481	120	772	1323	0.364	480	263	0.4	0.6	4.271	A

08:00-08:15

Arm	Total Demand (Veh/hr)	Junction Arrivals (Veh)	Circulating flow (Veh/hr)	Capacity (Veh/hr)	RFC	Throughput (Veh/hr)	Throughput (exit side) (Veh/hr)	Start queue (Veh)	End queue (Veh)	Delay (s)	Unsignalised level of service
1-Salisbury Rd (N)	788	197	491	1555	0.507	788	763	1.0	1.0	4.694	A
2 - Brunel Rd	241	60	643	1439	0.168	241	636	0.2	0.2	3.004	A
3-Salisbury Rd (S)	783	196	253	1710	0.458	783	631	0.8	0.8	3.884	A
4-Calmore Drive	481	120	773	1322	0.364	481	263	0.6	0.6	4.281	A

08:15-08:30

Arm	Total Demand (Veh/hr)	Junction Arrivals (Veh)	Circulating flow (Veh/hr)	Capacity (Veh/hr)	RFC	Throughput (Veh/hr)	Throughput (exit side) (Veh/hr)	Start queue (Veh)	End queue (Veh)	Delay (s)	Unsignalised level of service
1-Salisbury Rd (N)	644	161	402	1606	0.401	645	624	1.0	0.7	3.755	A
2 - Brunel Rd	197	49	526	1503	0.131	197	521	0.2	0.2	2.759	A
3 - Salisbury Rd (S)	639	160	207	1740	0.367	640	516	0.8	0.6	3.276	A
4-Calmore Drive	393	98	632	1406	0.279	394	215	0.6	0.4	3.561	A

08:30-08:45

Arm	Total Demand (Veh/hr)	Junction Arrivals (Veh)	Circulating flow (Veh/hr)	Capacity (Veh/hr)	RFC	Throughput (Veh/hr)	Throughput (exit side) (Veh/hr)	Start queue (Veh)	End queue (Veh)	Delay (s)	Unsignalised level of service
1-Salisbury Rd (N)	539	135	336	1643	0.328	540	522	0.7	0.5	3.268	A
2 - Brunel Rd	165	41	440	1549	0.106	165	436	0.2	0.1	2.600	A
3 - Salisbury Rd (S)	535	134	173	1761	0.304	536	432	0.6	0.4	2.938	A
4-Calmore Drive	329	82	529	1467	0.224	329	180	0.4	0.3	3.165	A

2023 Baseline + Dev, PM

Data Errors and Warnings

Severity	Area	Item	Description
Warning	Geometry	$3-$ Salisbury Rd $(\mathrm{S})-$ Roundabout Geometry	Effective flare length is over 30m, which is outside the normal range. Treat capacities with increasing caution.

Junction Network

Junctions

Junction	Name	Junction type	Use circulating lanes	Arm order	Junction Delay (s)	Junction LOS
$\mathbf{1}$	Calmore Drive / A36 Salisbury Rd / Brunel Rd Rbt	Standard Roundabout		$1,2,3,4$	4.20	A

Junction Network

Driving side	Lighting	Network delay (s)	Network LOS
Left	Normal/unknown	4.20	A

Traffic Demand

Demand Set Details

ID	Scenario name	Time Period name	Traffic profile type	Start time (HH:mm)	Finish time (HH:mm)	Time segment length (min)	Run automatically
D6	2023 Baseline + Dev	PM	ONE HOUR	$16: 45$	$18: 15$	15	\checkmark

Vehicle mix varies over turn	Vehicle mix varies over entry	Vehicle mix source	PCU Factor for a HV (PCU)
\checkmark	\checkmark	HV Percentages	2.00

Demand overview (Traffic)

Arm	Linked arm	Profile type	Use O-D data	Average Demand (Veh/hr)	Scaling Factor (\%)
1-Salisbury Rd (N)		ONE HOUR	\checkmark	813	100.000
2- Brunel Rd		ONE HOUR	\checkmark	539	100.000
3-Salisbury Rd (S)		ONE HOUR	\checkmark	574	100.000
4 - Calmore Drive		ONE HOUR	\checkmark	277	100.000

Origin-Destination Data

Demand (Veh/hr)

	To				
From		1-Salisbury Rd (N)	2 - Brunel Rd	3 - Salisbury Rd (S)	4-Calmore Drive
	1 - Salisbury Rd (N)	3	82	539	189
	2-Brunel Rd	262	0	177	100
	3 - Salisbury Rd (S)	240	33	5	296
	4-Calmore Drive	60	37	179	1

Vehicle Mix

Heavy Vehicle Percentages

	To				
From		1-Salisbury Rd (N)	2-Brunel Rd	3 - Salisbury Rd (S)	4-Calmore Drive
	1-Salisbury Rd (N)	0	9	0	0
	2- Brunel Rd	1	0	0	0
	3-Salisbury Rd (S)	1	0	0	1
	4-Calmore Drive	0	0	1	0

Results

Results Summary for whole modelled period

Arm	Max RFC	Max Delay (s)	Max Queue (Veh)	Max LOS	Average Demand (Veh/hr)	Total Junction Arrivals (Veh)
1-Salisbury Rd (N)	0.52	4.32	1.1	A	746	
2 - Brunel Rd	0.43	4.63	0.8	A	1119	
3-Salisbury Rd (S)	0.42	4.10	0.7	A	495	
4- Calmore Drive	0.21	3.18	0.3	A	527	

Main Results for each time segment

16:45-17:00

Arm	Total Demand (Veh/hr)	Junction Arrivals (Veh)	Circulating flow (Veh/hr)	Capacity (Veh/hr)	RFC	Throughput (Veh/hr)	Throughput (exit side) (Veh/hr)	Start queue (Veh)	End queue (Veh)	Delay (s)	Unsignalised level of service
1-Salisbury Rd (N)	612	153	191	1781	0.344	610	424	0.0	0.5	3.069	A
2 - Brunel Rd	406	101	687	1559	0.260	404	114	0.0	0.4	3.114	A
3 - Salisbury Rd (S)	432	108	416	1623	0.266	431	675	0.0	0.4	3.015	A
4-Calmore Drive	209	52	407	1547	0.135	208	440	0.0	0.2	2.687	A

17:00-17:15

Arm	Total Demand (Veh/hr)	Junction Arrivals (Veh)	Circulating flow (Veh/hr)	Capacity (Veh/hr)	RFC	Throughput (Veh/hr)	Throughput (exit side) (Veh/hr)	Start queue (Veh)	End queue (Veh)	Delay (s)	Unsignalised level of service
1-Salisbury Rd (N)	731	183	229	1759	0.416	730	507	0.5	0.7	3.497	A
2 - Brunel Rd	485	121	823	1479	0.328	484	137	0.4	0.5	3.615	A
3 - Salisbury Rd (S)	516	129	498	1575	0.328	516	808	0.4	0.5	3.395	A
4 - Calmore Drive	249	62	488	1500	0.166	249	526	0.2	0.2	2.876	A

17:15-17:30

Arm	Total Demand (Veh/hr)	Junction Arrivals (Veh)	Circulating flow (Veh/hr)	Capacity (Veh/hr)	RFC	Throughput (Veh/hr)	Throughput (exit side) (Veh/hr)	Start queue (Veh)	End queue (Veh)	Delay (s)	Unsignalised level of service
1-Salisbury Rd (N)	895	224	280	1729	0.518	894	621	0.7	1.1	4.303	A
2 - Brunel Rd	593	148	1007	1371	0.433	592	167	0.5	0.8	4.615	A
3 - Salisbury Rd (S)	632	158	610	1511	0.418	631	989	0.5	0.7	4.089	A
4-Calmore Drive	305	76	597	1437	0.212	305	644	0.2	0.3	3.179	A

17:30-17:45

Arm	Total Demand (Veh/hr)	Junction Arrivals (Veh)	Circulating flow (Veh/hr)	Capacity (Veh/hr)	RFC	Throughput (Veh/hr)	Throughput (exit side) (Veh/hr)	Start queue (Veh)	End queue (Veh)	Delay (s)	Unsignalised level of service
1-Salisbury Rd (N)	895	224	281	1729	0.518	895	622	1.1	1.1	4.317	A
2 - Brunel Rd	593	148	1009	1370	0.433	593	167	0.8	0.8	4.633	A
3 - Salisbury Rd (S)	632	158	611	1510	0.419	632	991	0.7	0.7	4.100	A
4 - Calmore Drive	305	76	598	1436	0.212	305	645	0.3	0.3	3.180	A

17:45-18:00

Arm	Total Demand (Veh/hr)	Junction Arrivals (Veh)	Circulating flow (Veh/hr)	Capacity (Veh/hr)	RFC	Throughput (Veh/hr)	Throughput (exit side) (Veh/hr)	Start queue (Veh)	End queue (Veh)	Delay (s)	Unsignalised level of service
1-Salisbury Rd (N)	731	183	230	1759	0.416	732	509	1.1	0.7	3.513	A
2 - Brunel Rd	485	121	825	1478	0.328	486	137	0.8	0.5	3.630	A
3 - Salisbury Rd (S)	516	129	500	1574	0.328	517	811	0.7	0.5	3.406	A
4-Calmore Drive	249	62	489	1499	0.166	249	528	0.3	0.2	2.879	A

18:00-18:15

Arm	Total Demand (Veh/hr)	Junction Arrivals (Veh)	Circulating flow (Veh/hr)	Capacity (Veh/hr)	RFC	Throughput (Veh/hr)	Throughput (exit side) (Veh/hr)	Start queue (Veh)	End queue (Veh)	Delay (s)	Unsignalised level of service
1 - Salisbury Rd (N)	612	153	192	1781	0.344	613	426	0.7	0.5	3.084	A
2 - Brunel Rd	406	101	690	1557	0.261	406	115	0.5	0.4	3.129	A
3 - Salisbury Rd (S)	432	108	418	1622	0.266	433	678	0.5	0.4	3.028	A
4 - Calmore Drive	209	52	409	1546	0.135	209	442	0.2	0.2	2.694	A

2028 Baseline + Dev, AM

Data Errors and Warnings

Severity	Area	Item	Description
Warning	Geometry	$3-$ Salisbury Rd $(\mathrm{S})-$ Roundabout Geometry	Effective flare length is over 30m, which is outside the normal range. Treat capacities with increasing caution.

Junction Network

Junctions

Junction	Name	Junction type	Use circulating lanes	Arm order	Junction Delay (s)	Junction LOS
$\mathbf{1}$	Calmore Drive / A36 Salisbury Rd / Brunel Rd Rbt	Standard Roundabout		$1,2,3,4$	4.27	A

Junction Network

Driving side	Lighting	Network delay (s)	Network LOS
Left	Normal/unknown	4.27	A

Traffic Demand

Demand Set Details

ID	Scenario name	Time Period name	Traffic profile type	Start time (HH:mm)	Finish time (HH:mm)	Time segment length (min)	Run automatically
D7	2028 Baseline + Dev	AM	ONE HOUR	$07: 15$	$08: 45$	15	\checkmark

Vehicle mix varies over turn	Vehicle mix varies over entry	Vehicle mix source	PCU Factor for a HV (PCU)
\checkmark	\checkmark	HV Percentages	2.00

Demand overview (Traffic)

Arm	Linked arm	Profile type	Use O-D data	Average Demand (Veh/hr)	Scaling Factor (\%)
1-Salisbury Rd (N)		ONE HOUR	\checkmark	734	100.000
2- Brunel Rd		ONE HOUR	\checkmark	224	100.000
3-Salisbury Rd (S)		ONE HOUR	\checkmark	728	100.000
4-Calmore Drive		ONE HOUR	\checkmark	448	100.000

Origin-Destination Data

Demand (Veh/hr)

	To				
From		1-Salisbury Rd (N)	2 - Brunel Rd	3 - Salisbury Rd (S)	4-Calmore Drive
	1-Salisbury Rd (N)	4	391	278	61
	2-Brunel Rd	155	0	53	16
	3 - Salisbury Rd (S)	394	161	5	168
	4-Calmore Drive	157	40	251	0

Vehicle Mix

Heavy Vehicle Percentages

	To				
From		1-Salisbury Rd (N)	2-Brunel Rd	3 - Salisbury Rd (S)	4-Calmore Drive
	1-Salisbury Rd (N)	75	6	1	2
	2- Brunel Rd	15	0	0	0
	3-Salisbury Rd (S)	1	0	0	1
	4-Calmore Drive	0	0	1	0

Results

Results Summary for whole modelled period

Arm	Max RFC	Max Delay (s)	Max Queue (Veh)	Max LOS	Average Demand (Veh/hr)	Total Junction Arrivals (Veh)
1-Salisbury Rd (N)	0.52	4.86	1.1	A	674	
2- Brunel Rd	0.17	3.04	0.2	A	1010	
3-Salisbury Rd (S)	0.47	3.98	0.9	A	206	
4-Calmore Drive	0.38	4.40	0.6	A	668	

Main Results for each time segment

07:15-07:30

Arm	Total Demand (Veh/hr)	Junction Arrivals (Veh)	Circulating flow (Veh/hr)	Capacity (Veh/hr)	RFC	Throughput (Veh/hr)	Throughput (exit side) (Veh/hr)	Start queue (Veh)	End queue (Veh)	Delay (s)	Unsignalised level of service
1-Salisbury Rd (N)	553	138	343	1639	0.337	551	533	0.0	0.5	3.302	A
2 - Brunel Rd	169	42	449	1544	0.109	168	444	0.0	0.1	2.617	A
3-Salisbury Rd (S)	548	137	177	1759	0.312	546	440	0.0	0.5	2.965	A
4-Calmore Drive	337	84	540	1461	0.231	336	184	0.0	0.3	3.198	A

07:30-07:45

Arm	Total Demand (Veh/hr)	Junction Arrivals (Veh)	Circulating flow (Veh/hr)	Capacity (Veh/hr)	RFC	Throughput (Veh/hr)	Throughput (exit side) (Veh/hr)	Start queue (Veh)	End queue (Veh)	Delay (s)	Unsignalised level of service
1-Salisbury Rd (N)	660	165	410	1601	0.412	659	638	0.5	0.7	3.818	A
2 - Brunel Rd	201	50	538	1496	0.135	201	532	0.1	0.2	2.780	A
3 - Salisbury Rd (S)	654	164	212	1736	0.377	654	527	0.5	0.6	3.324	A
4-Calmore Drive	403	101	646	1398	0.288	402	220	0.3	0.4	3.615	A

07:45-08:00

Arm	Total Demand (Veh/hr)	Junction Arrivals (Veh)	Circulating flow (Veh/hr)	Capacity (Veh/hr)	RFC	Throughput (Veh/hr)	Throughput (exit side) (Veh/hr)	Start queue (Veh)	End queue (Veh)	Delay (s)	Unsignalised level of service
1-Salisbury Rd (N)	808	202	502	1549	0.522	807	781	0.7	1.1	4.840	A
2 - Brunel Rd	247	62	658	1430	0.172	246	651	0.2	0.2	3.040	A
3 - Salisbury Rd (S)	802	200	260	1706	0.470	800	645	0.6	0.9	3.972	A
4-Calmore Drive	493	123	791	1311	0.376	492	269	0.4	0.6	4.392	A

08:00-08:15

Arm	Total Demand (Veh/hr)	Junction Arrivals (Veh)	Circulating flow (Veh/hr)	Capacity (Veh/hr)	RFC	Throughput (Veh/hr)	Throughput (exit side) (Veh/hr)	Start queue (Veh)	End queue (Veh)	Delay (s)	Unsignalised level of service
1-Salisbury Rd (N)	808	202	503	1548	0.522	808	782	1.1	1.1	4.862	A
2 - Brunel Rd	247	62	659	1430	0.172	247	652	0.2	0.2	3.041	A
3 - Salisbury Rd (S)	802	200	260	1705	0.470	802	646	0.9	0.9	3.982	A
4-Calmore Drive	493	123	792	1311	0.376	493	270	0.6	0.6	4.402	A

08:15-08:30

Arm	Total Demand (Veh/hr)	Junction Arrivals (Veh)	Circulating flow (Veh/hr)	Capacity (Veh/hr)	RFC	Throughput (Veh/hr)	Throughput (exit side) (Veh/hr)	Start queue (Veh)	End queue (Veh)	Delay (s)	Unsignalised level of service
1-Salisbury Rd (N)	660	165	412	1600	0.412	661	639	1.1	0.7	3.840	A
2 - Brunel Rd	201	50	540	1495	0.135	202	533	0.2	0.2	2.783	A
3 - Salisbury Rd (S)	654	164	212	1736	0.377	656	529	0.9	0.6	3.336	A
4-Calmore Drive	403	101	647	1397	0.288	404	221	0.6	0.4	3.629	A

08:30-08:45

Arm	Total Demand (Veh/hr)	Junction Arrivals (Veh)	Circulating flow (Veh/hr)	Capacity (Veh/hr)	RFC	Throughput (Veh/hr)	Throughput (exit side) (Veh/hr)	Start queue (Veh)	End queue (Veh)	Delay (s)	Unsignalised level of service
1-Salisbury Rd (N)	553	138	344	1638	0.337	553	535	0.7	0.5	3.320	A
2 - Brunel Rd	169	42	452	1542	0.109	169	446	0.2	0.1	2.620	A
3 - Salisbury Rd (S)	548	137	178	1758	0.312	549	442	0.6	0.5	2.978	A
4-Calmore Drive	337	84	542	1459	0.231	338	185	0.4	0.3	3.210	A

2028 Baseline + Dev, PM

Data Errors and Warnings

Severity	Area	Item	Description
Warning	Geometry	$3-$ Salisbury Rd $(\mathrm{S})-$ Roundabout Geometry	Effective flare length is over 30m, which is outside the normal range. Treat capacities with increasing caution.

Junction Network

Junctions

Junction	Name	Junction type	Use circulating lanes	Arm order	Junction Delay (s)	Junction LOS
$\mathbf{1}$	Calmore Drive / A36 Salisbury Rd / Brunel Rd Rbt	Standard Roundabout		$1,2,3,4$	4.32	A

Junction Network

Driving side	Lighting	Network delay (s)	Network LOS
Left	Normal/unknown	4.32	A

Traffic Demand

Demand Set Details

ID	Scenario name	Time Period name	Traffic profile type	Start time (HH:mm)	Finish time (HH:mm)	Time segment length (min)	Run automatically
D8	2028 Baseline + Dev	PM	ONE HOUR	$16: 45$	$18: 15$	15	\checkmark

Vehicle mix varies over turn	Vehicle mix varies over entry	Vehicle mix source	PCU Factor for a HV (PCU)
\checkmark	\checkmark	HV Percentages	2.00

Demand overview (Traffic)

Arm	Linked arm	Profile type	Use O-D data	Average Demand (Veh/hr)	Scaling Factor (\%)
1-Salisbury Rd (N)		ONE HOUR	\checkmark	831	100.000
2- Brunel Rd		ONE HOUR	\checkmark	552	100.000
3-Salisbury Rd (S)		ONE HOUR	\checkmark	587	100.000
4-Calmore Drive		ONE HOUR	\checkmark	284	100.000

Origin-Destination Data

Demand (Veh/hr)

	To				
From		1-Salisbury Rd (N)	2 - Brunel Rd	3 - Salisbury Rd (S)	4-Calmore Drive
	1 - Salisbury Rd (N)	3	83	552	193
	2-Brunel Rd	268	0	182	102
	3 - Salisbury Rd (S)	245	34	5	303
	4-Calmore Drive	62	38	183	1

Vehicle Mix

Heavy Vehicle Percentages

	To				
From		1-Salisbury Rd (N)	2-Brunel Rd	3 - Salisbury Rd (S)	4-Calmore Drive
	1-Salisbury Rd (N)	0	9	0	0
	2- Brunel Rd	1	0	0	0
	3-Salisbury Rd (S)	1	0	0	1
	4-Calmore Drive	0	0	1	0

Results

Results Summary for whole modelled period

Arm	Max RFC	Max Delay (s)	Max Queue (Veh)	Max LOS	Average Demand (Veh/hr)	Total Junction Arrivals (Veh)
1-Salisbury Rd (N)	0.53	4.44	1.1	A	763	
2 - Brunel Rd	0.45	4.81	0.8	A	1144	
3-Salisbury Rd (S)	0.43	4.21	0.8	A	760	
4- Calmore Drive	0.22	3.22	0.3	A	539	

Main Results for each time segment

16:45-17:00

Arm	Total Demand (Veh/hr)	Junction Arrivals (Veh)	Circulating flow (Veh/hr)	Capacity (Veh/hr)	RFC	Throughput (Veh/hr)	Throughput (exit side) (Veh/hr)	Start queue (Veh)	End queue (Veh)	Delay (s)	Unsignalised level of service
1-Salisbury Rd (N)	626	156	196	1778	0.352	623	434	0.0	0.5	3.112	A
2 - Brunel Rd	416	104	703	1550	0.268	414	116	0.0	0.4	3.166	A
3 - Salisbury Rd (S)	442	110	425	1618	0.273	440	692	0.0	0.4	3.053	A
4-Calmore Drive	214	53	416	1542	0.139	213	449	0.0	0.2	2.708	A

17:00-17:15

Arm	Total Demand (Veh/hr)	Junction Arrivals (Veh)	Circulating flow (Veh/hr)	Capacity (Veh/hr)	RFC	Throughput (Veh/hr)	Throughput (exit side) (Veh/hr)	Start queue (Veh)	End queue (Veh)	Delay (s)	Unsignalised level of service
1-Salisbury Rd (N)	747	187	234	1756	0.425	746	519	0.5	0.7	3.560	A
2 - Brunel Rd	496	124	842	1468	0.338	496	139	0.4	0.5	3.699	A
3 - Salisbury Rd (S)	528	132	509	1569	0.336	527	828	0.4	0.5	3.453	A
4-Calmore Drive	255	64	498	1494	0.171	255	538	0.2	0.2	2.905	A

17:15-17:30

Arm	Total Demand (Veh/hr)	Junction Arrivals (Veh)	Circulating flow (Veh/hr)	Capacity (Veh/hr)	RFC	Throughput (Veh/hr)	Throughput (exit side) (Veh/hr)	Start queue (Veh)	End queue (Veh)	Delay (s)	Unsignalised level of service
1-Salisbury Rd (N)	915	229	287	1725	0.530	913	635	0.7	1.1	4.426	A
2 - Brunel Rd	608	152	1030	1358	0.448	607	170	0.5	0.8	4.785	A
3 - Salisbury Rd (S)	646	162	623	1503	0.430	645	1014	0.5	0.7	4.194	A
4-Calmore Drive	313	78	610	1429	0.219	312	658	0.2	0.3	3.222	A

17:30-17:45

Arm	Total Demand (Veh/hr)	Junction Arrivals (Veh)	Circulating flow (Veh/hr)	Capacity (Veh/hr)	RFC	Throughput (Veh/hr)	Throughput (exit side) (Veh/hr)	Start queue (Veh)	End queue (Veh)	Delay (s)	Unsignalised level of service
1-Salisbury Rd (N)	915	229	287	1725	0.530	915	636	1.1	1.1	4.443	A
2 - Brunel Rd	608	152	1032	1357	0.448	608	171	0.8	0.8	4.806	A
3 - Salisbury Rd (S)	646	162	624	1502	0.430	646	1015	0.7	0.8	4.205	A
4-Calmore Drive	313	78	611	1429	0.219	313	659	0.3	0.3	3.224	A

17:45-18:00

Arm	Total Demand (Veh/hr)	Junction Arrivals (Veh)	Circulating flow (Veh/hr)	Capacity (Veh/hr)	RFC	Throughput (Veh/hr)	Throughput (exit side) (Veh/hr)	Start queue (Veh)	End queue (Veh)	Delay (s)	Unsignalised level of service
1-Salisbury Rd (N)	747	187	235	1756	0.426	749	521	1.1	0.7	3.578	A
2 - Brunel Rd	496	124	844	1467	0.338	497	140	0.8	0.5	3.719	A
3 - Salisbury Rd (S)	528	132	511	1568	0.337	529	830	0.8	0.5	3.468	A
4 - Calmore Drive	255	64	500	1493	0.171	256	540	0.3	0.2	2.911	A

18:00-18:15

Arm	Total Demand (Veh/hr)	Junction Arrivals (Veh)	Circulating flow (Veh/hr)	Capacity (Veh/hr)	RFC	Throughput (Veh/hr)	Throughput (exit side) (Veh/hr)	Start queue (Veh)	End queue (Veh)	Delay (s)	Unsignalised level of service
1-Salisbury Rd (N)	626	156	197	1778	0.352	626	436	0.7	0.5	3.127	A
2 - Brunel Rd	416	104	706	1548	0.269	416	117	0.5	0.4	3.182	A
3 - Salisbury Rd (S)	442	110	427	1616	0.273	442	695	0.5	0.4	3.069	A
4 - Calmore Drive	214	53	418	1540	0.139	214	452	0.2	0.2	2.716	A

Junctions 10

PICADY 10 - Priority Intersection Module

© Copyright TRL Software Limited, 2021
For sales and distribution information, program advice and maintenance, contact TRL Software:
+44 (0)1344379777 software@trl.co.uk trlsoftware.com
The users of this computer program for the solution of an engineering problem are in no way relieved of their responsibility for the correctness of the solution

Filename: Salisbury Rd_Site Access.j10
Path: F:\clients\EnTran\ALDI Totton
Report generation date: 14/04/2022 21:16:53

```
#2023 Baseline, AM
"2023 Baseline, PM
"2028 Baseline, AM
"2028 Baseline, PM
"2023 Baseline + Dev, AM
"2023 Baseline + Dev, PM
"2028 Baseline + Dev, AM
"2028 Baseline + Dev, PM
```

Summary of junction performance

	AM			PM		
	Queue (Veh)	Delay (s)	RFC	Queue (Veh)	Delay (s)	RFC
	2023 Baseline					
Stream B-AC	0.1	16.15	0.06	0.1	13.77	0.10
Stream C-AB	0.0	9.53	0.03	0.0	8.03	0.00
	2028 Baseline					
Stream B-AC	0.1	16.63	0.06	0.1	14.21	0.11
Stream C-AB	0.0	9.66	0.03	0.0	8.12	0.00
	2023 Baseline + Dev					
Stream B-AC	0.2	13.35	0.17	0.5	16.09	0.36
Stream C-AB	0.1	9.35	0.12	0.1	9.15	0.11
	2028 Baseline + Dev					
Stream B-AC	0.2	14.06	0.18	0.6	16.76	0.36
Stream C-AB	0.1	9.46	0.12	0.1	9.27	0.12

[^2]
File summary

File Description

Title	A36 Salisbury Road / Site Access
Location	Calmore, Totton
Site number	
Date	$06 / 05 / 2021$
Version	
Status	
Identifier	
Client	
Jobnumber	
Enumerator	al
Description	

Units

Distance units	Speed units	Traffic units input	Traffic units results	Flow units	Average delay units	Total delay units	Rate of delay units
m	kph	Veh	Veh	perHour	s	-Hour	perHour

THE FUTURE

Analysis Options

Vehicle length (m)	Calculate Queue Percentiles	Calculate detailed queueing delay	Show lane queues in feet / metres	Show all PICADY stream intercepts	Calculate residual capacity	RFC Threshold	Average Delay threshold (s)	Queue threshold (PCU)	Use iterations with HCM roundabouts	Max number of iterations for roundabouts
5.75						0.85	36.00	20.00		500

Demand Set Summary

| ID | Scenario name | Time Period name | Traffic profile type | Start time (HH:mm) | Finish time (HH:mm) | Time segment length (min) |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | Run automatically

Analysis Set Details

ID	Include in report	Network flow scaling factor (\%)	Network capacity scaling factor (\%)
A1	\checkmark	100.000	100.000

2023 Baseline, AM

Data Errors and Warnings

No errors or warnings

Junction Network

Junctions

Junction	Name	Junction type	Arm A Direction	Arm B Direction	Arm C Direction	Use circulating lanes	Junction Delay (s)	Junction LOS
1	A36 Salisbury Road / Site Access	T-Junction	Two-way	Two-way	Two-way		0.28	A

Junction Network

Driving side	Lighting	Network delay (s)	Network LOS
Left	Normal/unknown	0.28	A

Arms

Arms

Arm	Name	Description	Arm type
A	Salisbury Rd (N)		Major
B	Site Access		Minor
C	Salisbury Rd (S)		Major

Major Arm Geometry

Arm	Width of carriageway (m)	Has kerbed central reserve	Has rightturn storage	Visibility for right turn (m)	Blocks?	Blocking queue (PCU)
C - Salisbury Rd (S)	7.00			150.0	\checkmark	5.00

Geometries for Arm C are measured opposite Arm B. Geometries for Arm A (if relevant) are measured opposite Arm D.

Minor Arm Geometry

Arm	Minor arm type	Lane width (m)	Visibility to left (m)	Visibility to right (m)
B - Site Access	One lane	4.50	110	92

Slope / Intercept / Capacity

Priority Intersection Slopes and Intercepts

Stream	Intercept (Veh/hr)	Slope for AB	Slope for AC	Slope for C-A	Slope for C-B
B-A	644	0.112	0.284	0.178	0.405
B-C	784	0.115	0.291	-	-
C-B	661	0.245	0.245	-	-

[^3]
Traffic Demand

Demand Set Details

ID	Scenario name	Time Period name	Traffic profile type	Start time (HH:mm)	Finish time (HH:mm)	Time segment length (min)	Run automatically
D1	2023 Baseline	AM	ONE HOUR	$07: 15$	$08: 45$	15	\checkmark

Vehicle mix varies over turn	Vehicle mix varies over entry	Vehicle mix source	PCU Factor for a HV (PCU)
\checkmark	\checkmark	HV Percentages	2.00

Demand overview (Traffic)

Arm	Linked arm	Profile type	Use O-D data	Average Demand (Veh/hr)	Scaling Factor (\%)
A-Salisbury Rd (N)		ONE HOUR	\checkmark	712	12
B - Site Access		ONE HOUR	\checkmark	100.000	
C - Salisbury Rd (S)		ONE HOUR	\checkmark	672	100.000

Origin-Destination Data

Demand (Veh/hr)

	To			
From		A - Salisbury Rd (N)	B - Site Access	C - Salisbury Rd (S)
	A - Salisbury Rd (N)	0	18	694
	B - Site Access	6	0	6
	C - Salisbury Rd (S)	661	11	0

Vehicle Mix

Heavy Vehicle Percentages

To				
		A - Salisbury Rd (N)	B - Site Access	C - Salisbury Rd (S)
	A - Salisbury Rd (N)	0	12	4
	B - Site Access	67	0	33
	C - Salisbury Rd (S)	4	18	0

Results

Results Summary for whole modelled period

Stream	Max RFC	Max Delay (s)	Max Queue (Veh)	Max LOS	Average Demand (Veh/hr)	Total Junction Arrivals (Veh)
B-AC	0.06	16.15	0.1	C	11	17
C-AB	0.03	9.53	0.0	A	10	15
C-A					607	910
AB					17	25
AC					637	955

THE FUTURE

Main Results for each time segment

07:15-07:30

Stream	Total Demand $(\mathbf{V e h} / \mathbf{h r})$	Junction Arrivals (Veh)	Capacity $(\mathbf{V e h} / \mathbf{h r})$	RFC	Throughput $(\mathbf{V e h} / \mathbf{h r})$	Start queue $(\mathbf{V e h})$	End queue $($ Veh $)$	Delay (s)	Unsignalised level of service
B-AC	9	2	313	0.029	9	0.0	0.0	11.825	
C-AB	8	2	443	0.019	8	0.0	0.0	8.272	A
C-A	498	124			498				
AB	14	3			14				
AC	522	131			522				

07:30-07:45

Stream	Total Demand $(\mathbf{V e h} / \mathbf{h r})$	Junction Arrivals (Veh)	Capacity (Veh/hr)	RFC	Throughput $(\mathbf{V e h} / \mathbf{h r})$	Start queue $($ Veh $)$	End queue (Veh)	Delay (s)	Unsignalised level of service
B-AC	11	3	282	0.038	11	0.0	0.0	13.289	
C-AB	10	2	421	0.023	10	0.0	0.0	8.758	A
C-A	594	149			594				
AB	16	4			16				
AC	624	156			624				

07:45-08:00

Stream	Total Demand (Veh/hr)	Junction Arrivals (Veh)	Capacity (Veh/hr)	RFC	Throughput (Veh/hr)	Start queue (Veh)	End queue (Veh)	Delay (s)	Unsignalised level of service
B-AC	13	3	236	0.056	13	0.0	0.1	16.135	
C-AB	12	3	390	0.031	12	0.0	0.0	9.530	
C-A	728	182			728				
AB	20	5			20				
AC	764	191			764				

08:00-08:15

Stream	Total Demand $($ Veh/hr)	Junction Arrivals (Veh)	Capacity (Veh/hr)	RFC	Throughput $($ Veh/hr)	Start queue (Veh)	End queue (Veh)	Delay (s)	Unsignalised level of service
B-AC	13	3	236	0.056	13	0.1	0.1	16.146	
C-AB	12	3	390	0.031	12	0.0	0.0	9.530	
C-A	728	182			728				
AB	20	5			20				
AC	764	191			764				

08:15-08:30

Stream	Total Demand (Veh/hr)	Junction Arrivals (Veh)	Capacity (Veh/hr)	RFC	Throughput (Veh/hr)	Start queue (Veh)	End queue (Veh)	Delay (s)	Unsignalised level of service
B-AC	11	3	282	0.038	11	0.1	0.0	13.299	
C-AB	10	2	421	0.023	10	0.0	0.0	8.759	A
C-A	594	149			594				
AB	16	4			16				
AC	624	156			624				

08:30-08:45

Stream	Total Demand $(\mathbf{V e h} / \mathbf{h r})$	Junction Arrivals (Veh)	Capacity (Veh/hr)	RFC	Throughput $(\mathbf{V e h} / \mathbf{h r})$	Start queue $($ Veh $)$	End queue (Veh)	Delay (s)	Unsignalised level of service
B-AC	9	2	313	0.029	9	0.0	0.0	11.836	
C-AB	8	2	443	0.019	8	0.0	0.0	8.276	A
C-A	498	124			498				
AB	14	3			14				
AC	522	131			522				

2023 Baseline, PM

Data Errors and Warnings

No errors or warnings

Junction Network

Junctions

Junction	Name	Junction type	Arm A Direction	Arm B Direction	Arm C Direction	Use circulating lanes	Junction Delay (s)	Junction LOS
1	A36 Salisbury Road / Site Access	T-Junction	Two-way	Two-way	Two-way		0.29	A

Junction Network

Driving side	Lighting	Network delay (s)	Network LOS
Left	Normal/unknown	0.29	A

Traffic Demand

Demand Set Details

ID	Scenario name	Time Period name	Traffic profile type	Start time (HH:mm)	Finish time (HH:mm)	Time segment length (min)	Run automatically
D2	2023 Baseline	PM	ONE HOUR	$16: 45$	$18: 15$	15	\checkmark

Vehicle mix varies over turn	Vehicle mix varies over entry	Vehicle mix source	PCU Factor for a HV (PCU)
\checkmark	\checkmark	HV Percentages	2.00

Demand overview (Traffic)

Arm	Linked arm	Profile type	Use O-D data	Average Demand (Veh/hr)	Scaling Factor (\%)
A-Salisbury Rd (N)		ONE HOUR	\checkmark	773	100.000
B - Site Access		ONE HOUR	\checkmark	25	100.000
C - Salisbury Rd (S)		ONE HOUR	\checkmark	604	100.000

Origin-Destination Data

Demand (Veh/hr)

	To			
From		A - Salisbury Rd (N)	B - Site Access	C - Salisbury Rd (S)
	A - Salisbury Rd (N)	0	3	770
	B - Site Access	15	0	10
	C - Salisbury Rd (S)	603	1	0

Vehicle Mix

Heavy Vehicle Percentages

	To			
From		A - Salisbury Rd (N)	B - Site Access	C - Salisbury Rd (S)
	A - Salisbury Rd (N)	0	100	1
	B - Site Access	27	0	0
	C - Salisbury Rd (S)	1	0	0

THE FUTURE

Results

Results Summary for whole modelled period

Stream	Max RFC	Max Delay (s)	Max Queue (Veh)	Max LOS	Average Demand (Veh/hr)	Total Junction Arrivals (Veh)
B-AC	0.10	13.77	0.1	B	23	
C-AB	0.00	8.03	0.0	A	0.92	
C-A					553	1
AB					3	830
AC				707	4	

Main Results for each time segment

16:45-17:00

Stream	Total Demand (Veh/hr)	Junction Arrivals (Veh)	Capacity (Veh/hr)	RFC	Throughput (Veh/hr)	Start queue (Veh)	End queue (Veh)	Delay (s)	Unsignalised level of service
B-AC	19	5	388	0.048	19	0.0	0.1	9.732	A
C-AB	0.75	0.19	516	0.001	0.75	0.0	0.0	6.983	A
C-A	454	113			454				
AB	2	1			2				
AC	580	145			580				

17:00-17:15

Stream	Total Demand (Veh/hr)	Junction Arrivals (Veh)	Capacity (Veh/hr)	RFC	Throughput (Veh/hr)	Start queue (Veh)	End queue (Veh)	Delay (s)	Unsignalised level of service
B-AC	22	6	347	0.065	22	0.1	0.1	11.081	B
C-AB	0.90	0.22	488	0.002	0.90	0.0	0.0	7.387	A
C-A	542	136			542				
AB	3	1			3				
AC	692	173			692				

17:15-17:30

Stream	Total Demand (Veh/hr)	Junction Arrivals (Veh)	Capacity (Veh/hr)	RFC	Throughput (Veh/hr)	Start queue (Veh)	End queue (Veh)	Delay (s)	Unsignalised level of service
B-AC	28	7	289	0.095	27	0.1	0.1	13.759	B
C-AB	1	0.28	449	0.002	1	0.0	0.0	8.031	A
C-A	664	166			664				
AB	3	1			3				
AC	848	212			848				

17:30-17:45

Stream	Total Demand (Veh/hr)	Junction Arrivals (Veh)	Capacity (Veh/hr)	RFC	Throughput (Veh/hr)	Start queue (Veh)	End queue (Veh)	Delay (s)	Unsignalised level of service
B-AC	28	7	289	0.095	28	0.1	0.1	13.773	B
C-AB	1	0.28	449	0.002	1	0.0	0.0	8.031	A
C-A	664	166			664				
AB	3	1			3				
AC	848	212			848				

17:45-18:00

Stream	Total Demand (Veh/hr)	Junction Arrivals (Veh)	Capacity (Veh/hr)	RFC	Throughput (Veh/hr)	Start queue (Veh)	End queue (Veh)	Delay (s)	Unsignalised level of service
B-AC	22	6	347	0.065	23	0.1	0.1	11.097	B
C-AB	0.90	0.22	488	0.002	0.90	0.0	0.0	7.390	A
C-A	542	136			542				
AB	3	1			3				
AC	692	173			692				

18:00-18:15

Stream	Total Demand (Veh/hr)	Junction Arrivals (Veh)	Capacity (Veh/hr)	RFC	Throughput (Veh/hr)	Start queue (Veh)	End queue (Veh)	Delay (s)	Unsignalised level of service
B-AC	19	5	388	0.048	19	0.1	0.1	9.748	
C-AB	0.75	0.19	516	0.001	0.75	0.0	0.0	6.986	A
C-A	454	113			454				
AB	2	1			2				
AC	580	145			580				

2028 Baseline, AM

Data Errors and Warnings

No errors or warnings

Junction Network

Junctions

Junction	Name	Junction type	Arm A Direction	Arm B Direction	Arm C Direction	Use circulating lanes	Junction Delay (s)	Junction LOS
1	A36 Salisbury Road / Site Access	T-Junction	Two-way	Two-way	Two-way		0.29	A

Junction Network

Driving side	Lighting	Network delay (s)	Network LOS
Left	Normal/unknown	0.29	A

Traffic Demand

Demand Set Details

ID	Scenario name	Time Period name	Traffic profile type	Start time (HH:mm)	Finish time (HH:mm)	Time segment length (min)	Run automatically
D3	2028 Baseline	AM	ONE HOUR	$07: 15$	$08: 45$	15	\checkmark

Vehicle mix varies over turn	Vehicle mix varies over entry	Vehicle mix source	PCU Factor for a HV (PCU)
\checkmark	\checkmark	HV Percentages	2.00

Demand overview (Traffic)

Arm	Linked arm	Profile type	Use O-D data	Average Demand (Veh/hr)	Scaling Factor (\%)
A-Salisbury Rd (N)		ONE HOUR	\checkmark	729	100.000
B - Site Access		ONE HOUR	\checkmark	12	100.000
C - Salisbury Rd (S)		ONE HOUR	\checkmark	689	100.000

Origin-Destination Data

Demand (Veh/hr)

	To			
From		A - Salisbury Rd (N)	B - Site Access	C - Salisbury Rd (S)
	A - Salisbury Rd (N)	0	18	711
	B - Site Access	6	0	6
	C - Salisbury Rd (S)	677	12	0

Vehicle Mix

Heavy Vehicle Percentages

	To			
From		A - Salisbury Rd (N)	B - Site Access	C - Salisbury Rd (S)
	A - Salisbury Rd (N)	0	12	4
	B - Site Access	67	0	33
	C - Salisbury Rd (S)	4	18	0

THE FUTURE

Results

Results Summary for whole modelled period

Stream	Max RFC	Max Delay (s)	Max Queue (Veh)	Max LOS	Average Demand (Veh/hr)	Total Junction Arrivals (Veh)
B-AC	0.06	16.63	0.1	C	11	17
C-AB	0.03	9.66	0.0	A	11	17
C-A					621	932
AB					17	25
AC				652	979	

Main Results for each time segment

07:15-07:30

Stream	Total Demand (Veh/hr)	Junction Arrivals (Veh)	Capacity (Veh/hr)	RFC	Throughput (Veh/hr)	Start queue (Veh)	End queue (Veh)	Delay (s)	Unsignalised level of service
B-AC	9	2	309	0.029	9	0.0	0.0	11.988	B
C-AB	9	2	441	0.021	9	0.0	0.0	8.340	A
C-A	510	127			510				
AB	14	3			14				
AC	535	134			535				

07:30-07:45

Stream	Total Demand (Veh/hr)	Junction Arrivals (Veh)	Capacity (Veh/hr)	RFC	Throughput (Veh/hr)	Start queue (Veh)	End queue (Veh)	Delay (s)	Unsignalised level of service
B-AC	11	3	277	0.039	11	0.0	0.0	13.538	B
C-AB	11	3	418	0.026	11	0.0	0.0	8.848	A
C-A	609	152			609				
AB	16	4			16				
AC	639	160			639				

07:45-08:00

Stream	Total Demand (Veh/hr)	Junction Arrivals (Veh)	Capacity (Veh/hr)	RFC	Throughput (Veh/hr)	Start queue (Veh)	End queue (Veh)	Delay (s)	Unsignalised level of service
B-AC	13	3	230	0.058	13	0.0	0.1	16.613	C
C-AB	13	3	386	0.034	13	0.0	0.0	9.661	A
C-A	745	186			745				
AB	20	5			20				
AC	783	196			783				

08:00-08:15

Stream	Total Demand (Veh/hr)	Junction Arrivals (Veh)	Capacity (Veh/hr)	RFC	Throughput (Veh/hr)	Start queue (Veh)	End queue (Veh)	Delay (s)	Unsignalised level of service
B-AC	13	3	230	0.058	13	0.1	0.1	16.625	C
C-AB	13	3	386	0.034	13	0.0	0.0	9.661	A
C-A	745	186			745				
AB	20	5			20				
AC	783	196			783				

08:15-08:30

Stream	Total Demand (Veh/hr)	Junction Arrivals (Veh)	Capacity (Veh/hr)	RFC	Throughput (Veh/hr)	Start queue (Veh)	End queue (Veh)	Delay (s)	Unsignalised level of service
B-AC	11	3	277	0.039	11	0.1	0.0	13.549	
C-AB	11	3	418	0.026	11	0.0	0.0	8.852	A
C-A	609	152			609				
AB	16	4			16				
AC	639	160			639				

08:30-08:45

Stream	Total Demand (Veh/hr)	Junction Arrivals (Veh)	Capacity (Veh/hr)	RFC	Throughput (Veh/hr)	Start queue (Veh)	End queue (Veh)	Delay (s)	Unsignalised level of service
B-AC	9	2	309	0.029	9	0.0	0.0	11.996	
C-AB	9	2	441	0.021	9	0.0	0.0	8.343	
C-A	510	127			510				
AB	14	3			14				
AC	535	134			535				

2028 Baseline, PM

Data Errors and Warnings

No errors or warnings

Junction Network

Junctions

Junction	Name	Junction type	Arm A Direction	Arm B Direction	Arm C Direction	Use circulating lanes	Junction Delay (s)	Junction LOS
1	A36 Salisbury Road / Site Access	T-Junction	Two-way	Two-way	Two-way		0.31	A

Junction Network

Driving side	Lighting	Network delay (s)	Network LOS
Left	Normal/unknown	0.31	A

Traffic Demand

Demand Set Details

ID	Scenario name	Time Period name	Traffic profile type	Start time (HH:mm)	Finish time (HH:mm)	Time segment length (min)	Run automatically
D4	2028 Baseline	PM	ONE HOUR	$16: 45$	$18: 15$	15	\checkmark

Vehicle mix varies over turn	Vehicle mix varies over entry	Vehicle mix source	PCU Factor for a HV (PCU)
\checkmark	\checkmark	HV Percentages	2.00

Demand overview (Traffic)

Arm	Linked arm	Profile type	Use O-D data	Average Demand (Veh/hr)	Scaling Factor (\%)
A-Salisbury Rd (N)		ONE HOUR	\checkmark	791	100.000
B - Site Access		ONE HOUR	\checkmark	27	100.000
C - Salisbury Rd (S)		ONE HOUR	\checkmark	618	100.000

Origin-Destination Data

Demand (Veh/hr)

	To			
From		A - Salisbury Rd (N)	B - Site Access	C - Salisbury Rd (S)
	A - Salisbury Rd (N)	0	3	788
	B - Site Access	16	0	11
	C - Salisbury Rd (S)	617	1	0

Vehicle Mix

Heavy Vehicle Percentages

	To			
From		A - Salisbury Rd (N)	B - Site Access	C - Salisbury Rd (S)
	A - Salisbury Rd (N)	0	100	1
	B - Site Access	27	0	0
	C - Salisbury Rd (S)	1	0	0

THE FUTURE

Results

Results Summary for whole modelled period

Stream	Max RFC	Max Delay (s)	Max Queue (Veh)	Max LOS	Average Demand (Veh/hr)	Total Junction Arrivals (Veh)
B-AC	0.11	14.21	0.1	B	25	37
C-AB	0.00	8.12	0.0	A	0.92	1
C-A					566	849
AB					3	4
AC				723	1085	

Main Results for each time segment

16:45-17:00

Stream	Total Demand (Veh/hr)	Junction Arrivals (Veh)	Capacity (Veh/hr)	RFC	Throughput (Veh/hr)	Start queue (Veh)	End queue (Veh)	Delay (s)	Unsignalised level of service
B-AC	20	5	385	0.053	20	0.0	0.1	9.854	A
C-AB	0.75	0.19	513	0.001	0.75	0.0	0.0	7.029	A
C-A	465	116			465				
AB	2	1			2				
AC	593	148			593				

17:00-17:15

Stream	Total Demand (Veh/hr)	Junction Arrivals (Veh)	Capacity (Veh/hr)	RFC	Throughput (Veh/hr)	Start queue (Veh)	End queue (Veh)	Delay (s)	Unsignalised level of service
B-AC	24	6	343	0.071	24	0.1	0.1	11.290	B
C-AB	0.90	0.22	484	0.002	0.90	0.0	0.0	7.449	A
C-A	555	139			555				
AB	3	1			3				
AC	708	177			708				

17:15-17:30

Stream	Total Demand (Veh/hr)	Junction Arrivals (Veh)	Capacity (Veh/hr)	RFC	Throughput (Veh/hr)	Start queue (Veh)	End queue (Veh)	Delay (s)	Unsignalised level of service
B-AC	30	7	283	0.105	30	0.1	0.1	14.197	B
C-AB	1	0.28	444	0.002	1	0.0	0.0	8.120	A
C-A	679	170			679				
AB	3	1			3				
AC	868	217			868				

17:30-17:45

Stream	Total Demand (Veh/hr)	Junction Arrivals (Veh)	Capacity (Veh/hr)	RFC	Throughput (Veh/hr)	Start queue (Veh)	End queue (Veh)	Delay (s)	Unsignalised level of service
B-AC	30	7	283	0.105	30	0.1	0.1	14.213	B
C-AB	1	0.28	444	0.002	1	0.0	0.0	8.120	A
C-A	679	170			679				
AB	3	1			3				
AC	868	217			868				

17:45-18:00

Stream	Total Demand (Veh/hr)	Junction Arrivals (Veh)	Capacity (Veh/hr)	RFC	Throughput (Veh/hr)	Start queue (Veh)	End queue (Veh)	Delay (s)	Unsignalised level of service
B-AC	24	6	343	0.071	24	0.1	0.1	11.306	
C-AB	0.90	0.22	484	0.002	0.90	0.0	0.0	7.449	A
C-A	555	139			555				
AB	3	1			3				
AC	708	177			708				

18:00-18:15

Stream	Total Demand (Veh/hr)	Junction Arrivals (Veh)	Capacity $($ Veh/hr)	RFC	Throughput $($ Veh/hr)	Start queue (Veh)	End queue (Veh)	Delay (s)	Unsignalised level of service
B-AC	20	5	385	0.053	20	0.1	0.1	9.870	
C-AB	0.75	0.19	513	0.001	0.75	0.0	0.0	7.031	A
C-A	465	116			465				
AB	2	1			2				
AC	593	148			593				

2023 Baseline + Dev, AM

Data Errors and Warnings

No errors or warnings

Junction Network

Junctions

Junction	Name	Junction type	Arm A Direction	Arm B Direction	Arm C Direction	Use circulating lanes	Junction Delay (s)	Junction LOS
1	A36 Salisbury Road / Site Access	T-Junction	Two-way	Two-way	Two-way		0.79	A

Junction Network

Driving side	Lighting	Network delay (s)	Network LOS
Left	Normal/unknown	0.79	A

Traffic Demand

Demand Set Details

ID	Scenario name	Time Period name	Traffic profile type	Start time (HH:mm)	Finish time (HH:mm)	Time segment length (min)	Run automatically
D5	2023 Baseline + Dev	AM	ONE HOUR	$07: 15$	$08: 45$	15	\checkmark

Vehicle mix varies over turn	Vehicle mix varies over entry	Vehicle mix source	PCU Factor for a HV (PCU)
\checkmark	\checkmark	HV Percentages	2.00

Demand overview (Traffic)

Arm	Linked arm	Profile type	Use O-D data	Average Demand (Veh/hr)	Scaling Factor (\%)
A-Salisbury Rd (N)		ONE HOUR	\checkmark	729	100.000
B - Site Access		ONE HOUR	\checkmark	51	100.000
C - Salisbury Rd (S)		ONE HOUR	\checkmark	700	100.000

Origin-Destination Data

Demand (Veh/hr)

	To			
From		A - Salisbury Rd (N)	B - Site Access	C - Salisbury Rd (S)
	A - Salisbury Rd (N)	0	42	687
	B - Site Access	22	0	29
	C - Salisbury Rd (S)	653	47	0

Vehicle Mix

Heavy Vehicle Percentages

	To			
From		A - Salisbury Rd (N)	B - Site Access	C - Salisbury Rd (S)
	A - Salisbury Rd (N)	0	5	4
	B - Site Access	18	0	7
	C - Salisbury Rd (S)	4	4	0

THE FUTURE

Results

Results Summary for whole modelled period

Stream	Max RFC	Max Delay (s)	Max Queue (Veh)	Max LOS	Average Demand (Veh/hr)	Total Junction Arrivals (Veh)
B-AC	0.17	13.35	0.2	B	47	70
C-AB	0.12	9.35	0.1	A	43	65
C-A					599	899
AB					39	58
AC					630	946

Main Results for each time segment

07:15-07:30

Stream	Total Demand (Veh/hr)	Junction Arrivals (Veh)	Capacity (Veh/hr)	RFC	Throughput (Veh/hr)	Start queue (Veh)	End queue (Veh)	Delay (s)	Unsignalised level of service
B-AC	38	10	432	0.089	38	0.0	0.1	9.121	A
C-AB	35	9	499	0.071	35	0.0	0.1	7.757	A
C-A	492	123			492				
AB	32	8			32				
AC	517	129			517				

07:30-07:45

Stream	Total Demand (Veh/hr)	Junction Arrivals (Veh)	Capacity (Veh/hr)	RFC	Throughput (Veh/hr)	Start queue (Veh)	End queue (Veh)	Delay (s)	Unsignalised level of service
B-AC	46	11	389	0.118	46	0.1	0.1	10.482	B
C-AB	42	11	473	0.089	42	0.1	0.1	8.355	A
C-A	587	147			587				
AB	38	9			38				
AC	618	154			618				

07:45-08:00

Stream	Total Demand (Veh/hr)	Junction Arrivals (Veh)	Capacity (Veh/hr)	RFC	Throughput (Veh/hr)	Start queue (Veh)	End queue (Veh)	Delay (s)	Unsignalised level of service
B-AC	56	14	326	0.172	56	0.1	0.2	13.320	B
C-AB	52	13	437	0.118	52	0.1	0.1	9.340	A
C-A	719	180			719				
AB	46	12			46				
AC	756	189			756				

08:00-08:15

Stream	Total Demand (Veh/hr)	Junction Arrivals (Veh)	Capacity (Veh/hr)	RFC	Throughput (Veh/hr)	Start queue (Veh)	End queue (Veh)	Delay (s)	Unsignalised level of service
B-AC	56	14	326	0.172	56	0.2	0.2	13.351	B
C-AB	52	13	437	0.118	52	0.1	0.1	9.346	A
C-A	719	180			719				
AB	46	12			46				
AC	756	189			756				

08:15-08:30

Stream	Total Demand (Veh/hr)	Junction Arrivals (Veh)	Capacity (Veh/hr)	RFC	Throughput (Veh/hr)	Start queue (Veh)	End queue (Veh)	Delay (s)	Unsignalised level of service
B-AC	46	11	389	0.118	46	0.2	0.1	10.510	
C-AB	42	11	473	0.089	42	0.1	0.1	8.365	A
C-A	587	147			587				
AB	38	9			38				
AC	618	154			618				

08:30-08:45

Stream	Total Demand (Veh/hr)	Junction Arrivals (Veh)	Capacity (Veh/hr)	RFC	Throughput $($ Veh/hr)	Start queue (Veh)	End queue (Veh)	Delay (s)	Unsignalised level of service
B-AC	38	10	432	0.089	39	0.1	0.1	9.147	
C-AB	35	9	499	0.071	35	0.1	0.1	7.769	A
C-A	492	123			492				
AB	32	8			32				
AC	517	129			517				

2023 Baseline + Dev, PM

Data Errors and Warnings

No errors or warnings

Junction Network

Junctions

Junction	Name	Junction type	Arm A Direction	Arm B Direction	Arm C Direction	Use circulating lanes	Junction Delay (s)	Junction LOS
1	A36 Salisbury Road / Site Access	T-Junction	Two-way	Two-way	Two-way		1.46	A

Junction Network

Driving side	Lighting	Network delay (s)	Network LOS
Left	Normal/unknown	1.46	A

Traffic Demand

Demand Set Details

ID	Scenario name	Time Period name	Traffic profile type	Start time (HH:mm)	Finish time (HH:mm)	Time segment length (min)	Run automatically
D6	2023 Baseline + Dev	PM	ONE HOUR	$16: 45$	$18: 15$	15	\checkmark

Vehicle mix varies over turn	Vehicle mix varies over entry	Vehicle mix source	PCU Factor for a HV (PCU)
\checkmark	\checkmark	HV Percentages	2.00

Demand overview (Traffic)

Arm	Linked arm	Profile type	Use O-D data	Average Demand (Veh/hr)	Scaling Factor (\%)
A-Salisbury Rd (N)		ONE HOUR	\checkmark	793	100.000
B - Site Access		ONE HOUR	\checkmark	112	100.000
C - Salisbury Rd (S)		ONE HOUR	\checkmark	638	100.000

Origin-Destination Data

Demand (Veh/hr)

	To			
From		A - Salisbury Rd (N)	B - Site Access	C - Salisbury Rd (S)
	A - Salisbury Rd (N)	0	34	759
	B - Site Access	50	0	62
	C - Salisbury Rd (S)	592	46	0

Vehicle Mix

Heavy Vehicle Percentages

	To			
From		A - Salisbury Rd (N)	B - Site Access	C - Salisbury Rd (S)
	A - Salisbury Rd (N)	0	9	1
	B - Site Access	8	0	0
	C - Salisbury Rd (S)	1	0	0

THE FUTURE

Results

Results Summary for whole modelled period

Stream	Max RFC	Max Delay (s)	Max Queue (Veh)	Max LOS	Average Demand (Veh/hr)	Total Junction Arrivals (Veh)
B-AC	0.36	16.09	0.5	C	103	154
C-AB	0.11	9.15	0.1	A	42	63
C-A					543	815
AB					31	47
AC				696	1045	

Main Results for each time segment

16:45-17:00

Stream	Total Demand (Veh/hr)	Junction Arrivals (Veh)	Capacity (Veh/hr)	RFC	Throughput (Veh/hr)	Start queue (Veh)	End queue (Veh)	Delay (s)	Unsignalised level of service
B-AC	84	21	462	0.183	83	0.0	0.2	9.489	A
C-AB	35	9	513	0.068	34	0.0	0.1	7.523	A
C-A	446	111			446				
AB	26	6			26				
AC	571	143			571				

17:00-17:15

Stream	Total Demand (Veh/hr)	Junction Arrivals (Veh)	Capacity (Veh/hr)	RFC	Throughput (Veh/hr)	Start queue (Veh)	End queue (Veh)	Delay (s)	Unsignalised level of service
B-AC	101	25	415	0.243	100	0.2	0.3	11.425	B
C-AB	41	10	484	0.085	41	0.1	0.1	8.136	A
C-A	532	133			532				
AB	31	8			31				
AC	682	171			682				

17:15-17:30

Stream	Total Demand (Veh/hr)	Junction Arrivals (Veh)	Capacity (Veh/hr)	RFC	Throughput (Veh/hr)	Start queue (Veh)	End queue (Veh)	Delay (s)	Unsignalised level of service
B-AC	123	31	347	0.355	122	0.3	0.5	15.965	C
C-AB	51	13	444	0.114	51	0.1	0.1	9.147	A
C-A	652	163			652				
AB	37	9			37				
AC	836	209			836				

17:30-17:45

Stream	Total Demand (Veh/hr)	Junction Arrivals (Veh)	Capacity (Veh/hr)	RFC	Throughput (Veh/hr)	Start queue (Veh)	End queue (Veh)	Delay (s)	Unsignalised level of service
B-AC	123	31	347	0.355	123	0.5	0.5	16.088	C
C-AB	51	13	444	0.114	51	0.1	0.1	9.153	A
C-A	652	163			652				
AB	37	9			37				
AC	836	209			836				

17:45-18:00

Stream	Total Demand (Veh/hr)	Junction Arrivals (Veh)	Capacity (Veh/hr)	RFC	Throughput (Veh/hr)	Start queue (Veh)	End queue (Veh)	Delay (s)	Unsignalised level of service
B-AC	101	25	415	0.243	102	0.5	0.3	11.518	
C-AB	41	10	484	0.085	41	0.1	0.1	8	
C-A	532	133			532				
AB	31	8			31				
AC	682	171			682				

18:00-18:15

Stream	Total Demand (Veh/hr)	Junction Arrivals (Veh)	Capacity (Veh/hr)	RFC	Throughput (Veh/hr)	Start queue (Veh)	End queue (Veh)	Delay (s)	Unsignalised level of service
B-AC	84	21	462	0.183	85	0.3	0.2	9.556	
C-AB	35	9	513	0.068	35	0.1	0.1	7.534	
C-A	446	111			446				
AB	26	6			26				
AC	571	143			571				

2028 Baseline + Dev, AM

Data Errors and Warnings

No errors or warnings

Junction Network

Junctions

Junction	Name	Junction type	Arm A Direction	Arm B Direction	Arm C Direction	Use circulating lanes	Junction Delay (s)	Junction LOS
1	A36 Salisbury Road / Site Access	T-Junction	Two-way	Two-way	Two-way		0.81	A

Junction Network

Driving side	Lighting	Network delay (s)	Network LOS
Left	Normal/unknown	0.81	A

Traffic Demand

Demand Set Details

ID	Scenario name	Time Period name	Traffic profile type	Start time (HH:mm)	Finish time (HH:mm)	Time segment length (min)	Run automatically
D7	2028 Baseline + Dev	AM	ONE HOUR	$07: 15$	$08: 45$	15	\checkmark

Vehicle mix varies over turn	Vehicle mix varies over entry	Vehicle mix source	PCU Factor for a HV (PCU)
\checkmark	\checkmark	HV Percentages	2.00

Demand overview (Traffic)

Arm	Linked arm	Profile type	Use O-D data	Average Demand (Veh/hr)	Scaling Factor (\%)
A - Salisbury Rd (N)		ONE HOUR	\checkmark	747	100.000
B - Site Access		ONE HOUR	\checkmark	52	100.000
C - Salisbury Rd (S)		ONE HOUR	\checkmark	717	100.000

Origin-Destination Data

Demand (Veh/hr)

	To			
From		A - Salisbury Rd (N)	B - Site Access	C - Salisbury Rd (S)
	A - Salisbury Rd (N)	0	42	705
	B - Site Access	23	0	29
	C - Salisbury Rd (S)	670	47	0

Vehicle Mix

Heavy Vehicle Percentages

	To			
From		A - Salisbury Rd (N)	B - Site Access	C - Salisbury Rd (S)
	A - Salisbury Rd (N)	0	5	4
	B - Site Access	19	0	7
	C - Salisbury Rd (S)	4	4	0

THE FUTURE

Results

Results Summary for whole modelled period

Stream	Max RFC	Max Delay (s)	Max Queue (Veh)	Max LOS	Average Demand (Veh/hr)	Total Junction Arrivals (Veh)
B-AC	0.18	14.06	0.2	B	48	72
C-AB	0.12	9.46	0.1	A	43	65
C-A					615	922
AB					39	58
AC					647	970

Main Results for each time segment

07:15-07:30

Stream	Total Demand (Veh/hr)	Junction Arrivals (Veh)	Capacity (Veh/hr)	RFC	Throughput (Veh/hr)	Start queue (Veh)	End queue (Veh)	Delay (s)	Unsignalised level of service
B-AC	39	10	423	0.093	39	0.0	0.1	9.355	A
C-AB	35	9	496	0.071	35	0.0	0.1	7.813	A
C-A	504	126			504				
AB	32	8			32				
AC	531	133			531				

07:30-07:45

Stream	Total Demand (Veh/hr)	Junction Arrivals (Veh)	Capacity (Veh/hr)	RFC	Throughput (Veh/hr)	Start queue (Veh)	End queue (Veh)	Delay (s)	Unsignalised level of service
B-AC	47	12	379	0.124	47	0.1	0.1	10.841	B
C-AB	42	11	469	0.090	42	0.1	0.1	8.433	A
C-A	602	151			602				
AB	38	9			38				
AC	634	158			634				

07:45-08:00

Stream	Total Demand (Veh/hr)	Junction Arrivals (Veh)	Capacity (Veh/hr)	RFC	Throughput (Veh/hr)	Start queue (Veh)	End queue (Veh)	Delay (s)	Unsignalised level of service
B-AC	57	14	313	0.183	57	0.1	0.2	14.023	B
C-AB	52	13	432	0.120	52	0.1	0.1	9.462	A
C-A	738	184			738				
AB	46	12			46				
AC	776	194			776				

08:00-08:15

Stream	Total Demand (Veh/hr)	Junction Arrivals (Veh)	Capacity (Veh/hr)	RFC	Throughput (Veh/hr)	Start queue (Veh)	End queue (Veh)	Delay (s)	Unsignalised level of service
B-AC	57	14	313	0.183	57	0.2	0.2	14.061	B
C-AB	52	13	432	0.120	52	0.1	0.1	9.465	A
C-A	738	184			738				
AB	46	12			46				
AC	776	194			776				

08:15-08:30

Stream	Total Demand (Veh/hr)	Junction Arrivals (Veh)	Capacity (Veh/hr)	RFC	Throughput (Veh/hr)	Start queue (Veh)	End queue (Veh)	Delay (s)	Unsignalised level of service
B-AC	47	12	378	0.124	47	0.2	0.1	10.872	
C-AB	42	11	469	0.090	42	0.1	0.1	8.442	A
C-A	602	151			602				
AB	38	9			38				
AC	634	158			634				

08:30-08:45

Stream	Total Demand (Veh/hr)	Junction Arrivals (Veh)	Capacity (Veh/hr)	RFC	Throughput $($ Veh/hr)	Start queue $($ Veh $)$	End queue (Veh)	Delay (s)	Unsignalised level of service
B-AC	39	10	423	0.093	39	0.1	0.1	9.386	
C-AB	35	9	496	0.071	35	0.1	0.1	7.825	A
C-A	504	126			504				
AB	32	8			32				
AC	531	133			531				

2028 Baseline + Dev, PM

Data Errors and Warnings

No errors or warnings

Junction Network

Junctions

Junction	Name	Junction type	Arm A Direction	Arm B Direction	Arm C Direction	Use circulating lanes	Junction Delay (s)	Junction LOS
1	A36 Salisbury Road / Site Access	T-Junction	Two-way	Two-way	Two-way		1.49	A

Junction Network

Driving side	Lighting	Network delay (s)	Network LOS
Left	Normal/unknown	1.49	A

Traffic Demand

Demand Set Details

ID	Scenario name	Time Period name	Traffic profile type	Start time (HH:mm)	Finish time (HH:mm)	Time segment length (min)	Run automatically
D8	2028 Baseline + Dev	PM	ONE HOUR	$16: 45$	$18: 15$	15	\checkmark

Vehicle mix varies over turn	Vehicle mix varies over entry	Vehicle mix source	PCU Factor for a HV (PCU)
\checkmark	\checkmark	HV Percentages	2.00

Demand overview (Traffic)

Arm	Linked arm	Profile type	Use O-D data	Average Demand (Veh/hr)	Scaling Factor (\%)
A - Salisbury Rd (N)		ONE HOUR	\checkmark	811	112
B - Site Access		ONE HOUR	\checkmark	653	100.000
C - Salisbury Rd (S)		ONE HOUR	\checkmark	100.000	

Origin-Destination Data

Demand (Veh/hr)

	To			
From		A - Salisbury Rd (N)	B - Site Access	C - Salisbury Rd (S)
	A - Salisbury Rd (N)	0	34	777
	B - Site Access	50	0	62
	C - Salisbury Rd (S)	607	46	0

Vehicle Mix

Heavy Vehicle Percentages

	To			
From		A - Salisbury Rd (N)	B - Site Access	C - Salisbury Rd (S)
	A - Salisbury Rd (N)	0	9	1
	B - Site Access	8	0	0
	C - Salisbury Rd (S)	1	0	0

THE FUTURE

Results

Results Summary for whole modelled period

Stream	Max RFC	Max Delay (s)	Max Queue (Veh)	Max LOS	Average Demand (Veh/hr)	Total Junction Arrivals (Veh)
B-AC	0.36	16.76	0.6	C	103	154
C-AB	0.12	9.27	0.1	A	42	63
C-A					557	835
AB					31	47
AC					713	1069

Main Results for each time segment

16:45-17:00

Stream	Total Demand (Veh/hr)	Junction Arrivals (Veh)	Capacity (Veh/hr)	RFC	Throughput (Veh/hr)	Start queue (Veh)	End queue (Veh)	Delay (s)	Unsignalised level of service
B-AC	84	21	456	0.185	83	0.0	0.2	9.632	A
C-AB	35	9	509	0.068	34	0.0	0.1	7.576	A
C-A	457	114			457				
AB	26	6			26				
AC	585	146			585				

17:00-17:15

Stream	Total Demand (Veh/hr)	Junction Arrivals (Veh)	Capacity (Veh/hr)	RFC	Throughput (Veh/hr)	Start queue (Veh)	End queue (Veh)	Delay (s)	Unsignalised level of service
B-AC	101	25	408	0.247	100	0.2	0.3	11.681	B
C-AB	41	10	480	0.086	41	0.1	0.1	8.208	A
C-A	546	136			546				
AB	31	8			31				
AC	699	175			699				

17:15-17:30

Stream	Total Demand (Veh/hr)	Junction Arrivals (Veh)	Capacity (Veh/hr)	RFC	Throughput (Veh/hr)	Start queue (Veh)	End queue (Veh)	Delay (s)	Unsignalised level of service
B-AC	123	31	338	0.365	122	0.3	0.6	16.616	C
C-AB	51	13	439	0.115	51	0.1	0.1	9.263	A
C-A	668	167			668				
AB	37	9			37				
AC	855	214			855				

17:30-17:45

Stream	Total Demand (Veh/hr)	Junction Arrivals (Veh)	Capacity (Veh/hr)	RFC	Throughput (Veh/hr)	Start queue (Veh)	End queue (Veh)	Delay (s)	Unsignalised level of service
B-AC	123	31	338	0.365	123	0.6	0.6	16.759	C
C-AB	51	13	439	0.115	51	0.1	0.1	9.269	A
C-A	668	167			668				
AB	37	9			37				
AC	855	214			855				

17:45-18:00

Stream	Total Demand (Veh/hr)	Junction Arrivals (Veh)	Capacity (Veh/hr)	RFC	Throughput (Veh/hr)	Start queue (Veh)	End queue (Veh)	Delay (s)	Unsignalised level of service
B-AC	101	25	408	0.247	102	0.6	0.3	11.786	
C-AB	41	10	480	0.086	41	0.1	0.1	8.217	A
C-A	546	136			546				
AB	31	8			31				
AC	699	175			699				

18:00-18:15

Stream	Total Demand (Veh/hr)	Junction Arrivals (Veh)	Capacity (Veh/hr)	RFC	Throughput $($ Veh/hr)	Start queue (Veh)	End queue (Veh)	Delay (s)	Unsignalised level of service
B-AC	84	21	456	0.185	85	0.3	0.2	9.702	
C-AB	35	9	509	0.068	35	0.1	0.1	7.591	A
C-A	457	114			457				
AB	26	6			26				
AC	585	146			585				

[^0]: EMPLOYMENT/INDUSTRIAL ESTATE

[^1]: EMPLOYMENT/INDUSTRIAL ESTATE

[^2]: Values shown are the highest values encountered over all time segments. Delay is the maximum value of average delay per arriving vehicle

[^3]: The slopes and intercepts shown above include custom intercept adjustments only.
 Streams may be combined, in which case capacity will be adjusted.
 Values are shown for the first time segment only; they may differ for subsequent time segments.

