

GEO-ENVIRONMENTAL ASSESSMENT

Home Farm, Bedfield, Suffolk, IP13 7EE

Chapter Build Group Ltd

May 2022

Project no: 61647

Document Review Sheet: -

Document prepared by: -	<i>Camilla Watson</i> on behalf of Richard Jackson Ltd
Date: -	05 / 05 / 2022
Document checked by: -	<i>Kay O'Reilly</i> on behalf of Richard Jackson Ltd
Date: -	11 / 05 / 2022
Document Approved by: -	<i>Kay O'Reilly</i> on behalf of Richard Jackson Ltd
Date: -	20 / 05 / 2022

Document Status

DRAFT

FINAL

Revision Status

Issue	Date	Description	Prepared	Checked	Approved

This document has been prepared for the sole use of Chapter Build Group Ltd, is copyright and its contents should not be relied upon by others without the written authority of Richard Jackson Ltd. If any unauthorised third party makes use of this report they do so at their own risk and Richard Jackson Ltd owe them no duty of care or skill.

All information provided by others is taken in good faith as being accurate, but Richard Jackson Ltd cannot, and does not, accept any liability for the detailed accuracy, errors or omissions in such information.

Contents:-

E	kecut	ive Sum	imary
1.	Intro	oduction	າ1
2.	Site	Locatio	n and Description1
3.	Revi	ew of P	revious Investigations2
	3.1. 0772 3.2	Goldfind /1, May	ch Environmental Ltd, Geo-Environmental Desk Study Report, ref. 2021
	3	Richard	
4.	Prop	osed De	evelopment3
5.	Fact	ual Grou	und Investigation Information3
	5.1.	Fieldwo	rk3
		5.1.1.	Windowless Sampling 4
		5.1.2.	Trial Pitting
		5.1.3.	Gas Monitoring 4
	5.2.	Laborat	ory Testing4
		5.2.1.	Geo-Environmental Testing 5
	5.3.	Ground	Conditions 5
		5.3.1.	Surface Materials / Made Ground5
		5.3.2.	Superficial Deposits (Unspecified) 5
		5.3.3.	Lowestoft Formation
		5.3.4.	Groundwater 6
6.	Geo-	Environ	mental Assessment7
	6.1.	Soil Ana	alysis7
		6.1.1.	Reference Criteria 7
		6.1.2.	Discussion of Analytical Results – Soils
	6.2.	Risk As	sessment10
		6.2.1.	Soil Contamination and End Users10
		6.2.2.	Soil Contamination and Controlled Waters11
		6.2.3. and the	Soil Contamination and Construction Workers, Maintenance Workers Public
		6.2.4.	Soil Contamination and Flora12
		6.2.5.	Soil Contamination and Structures and Services12
		6.2.6.	Conceptual Model12
		6.2.7.	Summary13
	6.3.	Waste .	
	6.4.	General	

RichardJackson Engineering Consultants

7.	Furt	her Works	14
	7.1.	Geo-Environmental	14
	7.2.	Geotechnical Assessment	14

Appendices

Appendix A: Figures & drawingsAppendix B: Exploratory hole logsAppendix C: Results of Chemical AnalysesAppendix D: Limitations of use

List of Tables

Page No.

Table 1:	Summary of Groundwater Levels	6
Table 2:	Results of Chemical Analyses - Soils	8
Table 3:	Summary of Encountered Soil Contamination	10
Table 4:	Conceptual Model	12

EXECUTIVE SUMMARY

Purpose:	Intrusive ground investigation to establish the prevailing ground conditions, recover soil samples, and assess the contamination status of the site.
Site Status:	At the time of investigation, the site was occupied by disused industrial buildings connected with a former engineering business, together with associated hard standing yard areas and stockpiled materials in the north. Overgrown vegetation and exposed soils were present in the south.
Review of Previous Investigations:	The Geo-Environmental Desk Study Report completed by Goldfinch Environmental Ltd (May 2021) indicated the site to be occupied by disused one-storey industrial buildings, with a concrete yard and driveway sloping on to Bedfield Road, and a soft soil landscape and overgrown vegetation in the south, with boundaries formed by trees, hedges, and wooden fences. Since the first Ordnance Survey map reviewed (1888), on-site development mainly occurred in the early 1900's, with little change since. Off-site development progressed only in the south and east from agricultural land to residential properties in the 1950s to 1970s, with the north and west staying agricultural until present day. No readily identifiable sources of contamination were reported, and
Fieldwork:	The fieldwork comprised the formation of 10no. windowless sampler (WLS) boreholes and 2no. trial pits, together with associated soil sampling and the installation of monitoring standpipes.
Ground Conditions:	 The following ground conditions were encountered during this investigation: Surface Materials / Made Ground – max depth 1.70m below ground level (bgl); Superficial Deposit (unspecified) – max depth 1.80m bgl; Lowestoft Formation – base unproven in this investigation. Groundwater was encountered at depths 0.9m bgl (WS01) to 3.0m bgl (WS03), with standing water levels at depths 0.6m bgl (WS04) to 3.85m bgl (WS03).
Soil Contamination:	Elevated concentrations of Arsenic and Lead were encountered in the Made Ground beneath the site in a limited number of locations, and remediation of soft landscaping in corresponding development plots will be required.
Further Works:	 Further works for geo-environmental purposes are recommended, which include: Completion of a gas monitoring programme to assess the gassing regime; Preparation of a Remediation Method Statement (RMS); Validation works and preparation of a verification report. A geotechnical assessment was beyond the scope of this investigation, however these works will be necessary to inform the design and construction of the proposed scheme.

1. Introduction

Richard Jackson Ltd received an instruction to undertake ground investigation works in connection with the proposed redevelopment at Home Farm, Bedfield, Suffolk, IP13 7EE.

The works were instructed by Client Chapter Build Group Ltd and were carried out in accordance with our fee proposal from 6^{th} January 2022, reference KO/61647/GFQ.

A geo-environmental desk study report has previously been prepared for the site by Goldfinch Environmental Ltd, report reference 0772/1, dated May 2021. This is briefly reviewed in this report.

The above referenced geo-environmental desk study report was submitted to support a Mid Suffolk District Council planning application (reference DC/21/03606, received 24th June 2021), and it should be noted that comments within the planning permission required intrusive ground investigation to be undertaken to assess the contamination risk to receptors.

Intrusive investigations have also previously been undertaken by Richard Jackson Ltd as part of an infiltration assessment, reference SB/61647/SLR, dated 3rd May 2022. The pertinent findings of these works are also briefly reviewed in this report.

The intrusive investigation, on which this report is based, comprised the formation of 10no. windowless sampler (WLS) boreholes, and 2no. trial pits (excavated for the infiltration assessment). In-situ testing and soil sampling were also undertaken. Semi-permanent monitoring standpipes were installed in 7no. WLS boreholes (WS01, WS03–WS04, WS06, WS08–WS10) to facilitate future monitoring programmes as required.

Chemical analyses have been undertaken in order that the contamination status of the site may be determined and the need for further investigation or remediation assessed.

A geotechnical assessment was beyond the scope of this investigation.

This report shall be read in conjunction with the limitations of use provided in Appendix D.

2. Site Location and Description

The site was located at Home Farm, to the south of Bedfield Road, Bedfield, Suffolk, IP13 7EE. The approximate Ordnance Survey grid reference for the centre of the site was TM 229 655. A site location plan is presented as Figure 1 in Appendix A.

The site was roughly level at approximately \sim 61.5m aOD. It was irregularly shaped with maximum dimensions approximately \sim 75m southwest to northeast, and \sim 70m northwest to southeast, and a total area of \sim 0.34 hectares.

At the time of the ground investigation, the site comprised an abandoned gathering of double-height barns with corrugated iron rooves, constructed over concrete floor slabs in the north. According to the Goldfinch Environmental Ltd desk study report, these buildings were relatively unchanged since 1999. The concrete hardstanding, creating the yard in the western sector, formed the driveway to the public Bedfield Road and indicated few signs of deterioration, with overgrown vegetation encroaching the buildings and multiple possible prior locations of above-ground oil tanks noted. The south of the site was soft landscaping with dense bramble growth, lined by hedges, trees, and wooden fencing. Rubble and scrap metal were found in the north-western corner of the site.

A detailed site description is presented as Section 4 of Goldfinch Environmental Ltd Geo-Environmental Desk Study report, reference 0772/1, dated May 2021.

3. Review of Previous Investigations

As mentioned in Section 1, previous investigations have been undertaken at the site. These are summarised in the following section.

3.1. Goldfinch Environmental Ltd, Geo-Environmental Desk Study Report, ref. 0772/1, May 2021

At the time of site walkover, the site was capped with a series of closely located buildings over concrete floor slabs in the northern half of site, concrete hard cover in the west, with soft soils and dense tree growth in the southern third of site. Buildings were recorded to be of variable construction type with little to no evidence of deterioration or staining from contamination or leaching of containerised fluids or industrial activities.

Off-site a disused wind pump was recorded to the southeast with residential properties beyond, Home Farm buildings and associated farmland to the northwest on the opposite side of the Bedfield Road, agricultural land to the southwest, and a series of residential properties to the northeast.

The report recorded the site to have comprised a sparsely developed rural plot from the first historic Ordnance Survey map examined (1888), with further development noted in the early 1900s and some possible further minor expansion/reconfiguration recorded in the early 2000s.

The superficial deposits were identified as Lowestoft Formation, listed as a Secondary Aquifer, with the underlying Crag Group (Sand), listed as a Principal Aquifer.

No readily identifiable sources of contamination were reported.

The report concluded that on the basis of the low risk presented by contamination an intrusive investigation may be considered unwarranted.

3.2. Richard Jackson Ltd, Infiltration Assessment, ref. SB/61647/SLR, May 2022

After the mechanical excavation of 2no. trial pits (TP01, TP02) to 2.05m bgl (below ground level) and 2.0m bgl respectively, disturbed samples were recovered, and soakage tests were completed in accordance with BRE Digest 365 (2016).

The investigation disclosed surface materials (Topsoil / Concrete) overlying in turn Made Ground, Superficial Deposits (Unspecified), and the Lowestoft Formation. The Lowestoft Formation was encountered as a firm light brownlight grey sandy gravelly clay, with gravel of chalk and occasional flint.

The soakage tests were recorded to be unsuccessful due to insufficient infiltration during the period of testing, and therefore no infiltration rate was established.

The site was not considered appropriate for the adoption of infiltration drainage, and therefore alternative methods of surface water disposal should be investigated.

4. Proposed Development

The proposed development scheme is to comprise the demolition of existing structures and the construction of 7no. new residential dwellings with associated gardens, drives/parking, access roads and infrastructure.

A proposed development plan is presented as Figure 3 in Appendix A.

5. Factual Ground Investigation Information

The findings of the factual ground investigation are provided in the following sections.

5.1. Fieldwork

The fieldwork on which the report is based was undertaken on 30^{th} - 31^{st} March 2022 and comprised the following:

- The formation of 10no. small diameter windowless sampler (WLS) boreholes – (WS01-WS10);
- The excavation of 2no. trial pits (TP01-TP02) for use in infiltration testing.

An exploratory hole location plan is presented as Figure 2 in Appendix A.

Exploratory hole logs are presented in Appendix B and give descriptions and depths of strata encountered, together with details of samples taken, in-situ tests, well installations and other relevant information.

Soil samples were recovered from throughout the depth of exploratory holes for chemical analyses and record keeping purposes. Samples recovered for

chemical analyses were stored in airtight plastic containers and amber glass jars.

Samples recovered for chemical analysis were transported to the analytical laboratory, Envirolabs Ltd, in cool boxes under chain of custody protocols.

Where applicable, investigative techniques, sampling, logging of soils and insitu testing complied with the requirements of British Standard BS5930:2015- 'Code of Practice for Site Investigations'.

5.1.1. Windowless Sampling

The windowless sampling (WLS) utilised a track-mounted hydraulic powerpack and percussive hammer to drive a series of small diameter windowless tubes into the ground.

The 10no. WLS boreholes were formed to depths of between 2.0m bgl (WS04) and 5.0m bgl (WS10). The WLS boreholes were positioned to provide a representative site coverage, whilst targeting observed sources of contamination.

In-situ standard penetration tests (SPTs) were undertaken throughout the depth of the WLS boreholes to provide an indication of the soil density / stiffness. The number of blows required to advance a standard split spoon over the final 300mm of a 450mm total drive was recorded as the 'N' value theses values were presented on the borehole logs.

Where cohesive soils were encountered, a hand shear vane was used to assess the undrained shear strength of the encountered soils. The results of these tests are recorded as the 'IVN' values and are presented on the logs in Appendix B.

On completion of 7no. of the WLS boreholes (WS01, WS03–WS04, WS06, WS08–WS10), semi-permanent 50mm diameter HDPE gas and groundwater monitoring standpipes were installed to a maximum depth of 5.0m bgl (WS10).

5.1.2. Trial Pitting

A mechanical excavator was used to form 2no. trial pits to depths of 2.04m bgl (TP01) and 2.05m bgl respectively (TP02). The trial pits were positioned to provide representative coverage of the site.

Soakage tests were undertaken in the 2no. trial pit locations in accordance with BRE Digest 365 (2016), as discussed in the Infiltration Assessment by Richard Jackson Ltd, ref. SB/61647/SLR, May 2022.

5.1.3. Gas Monitoring

At the time of preparing this report, a gas monitoring programme had not been instructed by the Client.

5.2. Laboratory Testing

Title:	GEO-ENVIRONMENTAL ASSESSMENT
Project:	Home Farm, Bedfield, Suffolk, IP13 7EE
Client:	Chapter Build Group Ltd
Project No.:	61647

5.2.1. Geo-Environmental Testing

Chemical analyses were undertaken on a number of soil samples recovered from the site. Details of chemical analyses undertaken are provided in Section 6. Results of chemical analyses are presented in full in Appendix C.

5.3. Ground Conditions

The British Geological Survey (BGS) 1:50,000 scale series online mapping of the area indicates the Lowestoft Formation to exist beneath the site, underlain by the Crag Group. The deposits encountered in this investigation comprised the following sequence:

- Surface Materials / Made Ground
- Superficial Deposits (unspecified)
- Lowestoft Formation

5.3.1. Surface Materials / Made Ground

Topsoil was encountered from ground level in 2no. exploratory holes (TP02 & WS09) to a maximum depth of 0.40m bgl (WS09). The Topsoil was encountered as a dark brown slightly gravelly sandy clay with roots and rootlets. The gravel was angular to subangular, fine to medium flint and occasional chalk.

Concrete was encountered from ground level in 8no. of the 12no. exploratory holes (TP01 & WS01-WS07), the thickness of which ranged from 0.10m bgl (WS05) to 0.25m bgl (WS06). A 0.03m thickness of orange sand was recorded from ground level in WS08, overlying concrete to 0.15m bgl.

Made Ground was encountered from ground level in WS10 and beneath the surface materials in 8no. locations (TP01, WS01-WS05, WS07 & WS08). The base of the Made Ground, where proven, ranged from 0.20m bgl (TP10) to 1.70m bgl (WS08), and remained unproven at 2.0m bgl in WS04. The Made Ground was encountered as a variable material, typically comprising either;

- Soft dark blue-grey slightly gravelly sandy clay, with decayed rootlets. The gravel was subangular to subrounded fine to coarse chalk, flint and occasional fragments of brick and cement, or;
- Orange-yellow gravelly medium to coarse sand, with gravel of subangular to subrounded fine to coarse flint.

5.3.2. Superficial Deposits (Unspecified)

Unspecific Superficial Deposits were encountered beneath the surface materials or Made Ground in 7no. locations (TP01-TP02, WS01-WS02, WS05-WS07) to a maximum depth of 1.8m bgl (WS02).

The Superficial Deposits were typically encountered as a very soft to soft green-grey/grey brown slightly sandy silty clay, with occasional decayed wood and gravel of fine to medium flint and chalk.

A loose green mottled-yellow slightly clayey, fine to medium sand was also recorded as unspecified Superficial Deposits in WS01 between 0.90m bgl and 1.30m bgl.

5.3.3. Lowestoft Formation

Soils interpreted to represent the Lowestoft Formation were encountered beneath the surfacing materials, Made Ground or Unspecified Superficial Deposits in 11no. of the 12no. exploratory holes, being absent in WS04. The base of the Lowestoft Formation remained unproven in this investigation, which extended to a maximum depth of 5.0m bgl (WS10).

The Lowestoft Formation was typically encountered as firm becoming-stiff light brown becoming blue grey silty gravelly clay, with occasional decayed root material and iron staining and gravel of subangular to subrounded chalk and flint.

Sand partings were noted throughout the Lowestoft Formation, notably in WS08 between 2.55m and 3.0m bgl, and in WS01 from 0.9m to 1.3m bgl and 2.0m to 2.5m bgl. Frequent organic material comprising roots, rootlets and peat was noted in WS02 between 0.5m and 0.65m bgl.

5.3.4. Groundwater

Groundwater was encountered in a number of the exploratory holes during formation. Table 1 provides a summary of the groundwater data and includes strike depth and observed rises in groundwater during borehole formation.

Exploratory Groundwater Strike Hole Depth (m bgl)		SWL on completion (m bgl)	Stratum (of Groundwater Strike)
TP01	NE*	N/A	N/A
TP02	NE*	N/A	N/A
WS01	0.90	1.70	Superficial Deposits
W301	2.00	1.70	Lowestoft Formation
WS02 NE*		N/A	N/A
WS03 3.00		3.85	Lowestoft Formation
WS04 1.30		0.60	Made Ground
WS05 NE*		N/A	N/A
WS06 NE*		N/A	N/A
WS07	2.45	3.65	Lowestoft Formation
WS08	1.35	2.45	Made Ground
WS09	NE*	N/A	N/A
WS10	NE*	N/A	N/A

Table 1: Summary of Groundwater Levels.

Exploratory Hole Groundwater Strike Depth (m bgl)		SWL on completion (m bgl)	Stratum (of Groundwater Strike)			
*NE – Not encountered						

6. Geo-Environmental Assessment

The purpose of this section is to provide an assessment of the contamination status of the site.

The analysis was undertaken by Envirolab Ltd., a UKAS and MCerts accredited laboratory.

6.1. Soil Analysis

A broad suite of analyses was scheduled, including metals, hydrocarbons, inorganic compounds and volatile organic compounds.

10no. samples of soil have been analysed for a broad suite of contaminants as follows:

Arsenic	рН
Cadmium	Total Cyanide
Chromium	Water Soluble Sulphate
Copper	Total Phenols
Nickel	BTEX Compounds
Lead	Total Sulphur
Mercury	Speciated Polyaromatic Hydrocarbons (PAH)
Selenium	Organic Matter Content
Zinc	Total Petroleum Hydrocarbons (TPH)

A further 5no. samples were analysed for the above listed metals and PAH compounds.

Asbestos screening was undertaken by the analytical laboratory on 9no. samples of soil.

Analysis for the presence of a range of Volatile Organic Compounds (VOC) was undertaken on 5no. soil samples.

6.1.1. Reference Criteria

Screening values have been adopted for the site to reflect site-specific parameters, such as, intended end use and the Soil Organic Matter (SOM). Screening values have been developed on the basis of current guidance as given in The Land Quality Management / Chartered Institute of Environmental Health document, 'The LQM / CIEH S4ULS for human health assessment', (2015) publication no. S4UL3379.

It is understood that the site is to be developed for residential purposes. Therefore, screening values specific to residential with home-grown plant uptake have been adopted for the site. A SOM of 1% has been adopted for organic chemicals for the purposes of the initial assessment on the basis of laboratory analysis. A SOM of 6% has been adopted for inorganic chemicals as detailed in 'The LQM / CIEH S4ULS for human health assessment', (2015).

In the absence of published S4UL for lead, the DEFRA Category 4 Screening Level (C4SL) for lead has been adopted.

Full details of the reference criteria used to derive the screening values, including the adopted values, are provided in Appendix C and summarised below.

The adopted screening values are also summarised in the following section.

6.1.2. Discussion of Analytical Results – Soils

Results of the chemical analyses undertaken on soils are presented in Appendix C and summarised in Table 2.

Contaminant	No of Samples Tested	Screening Value (mg/kg)	Range of Concentrations (mg/kg)	No of samples exceeding screening value
Arsenic	15	37	2 - 73	1
Cadmium	15	11	<0.5 - 7.3	0
Chromium	15	910	10 - 51	0
Copper	15	2,400	6 - 125	0
Nickel	15	180	10 - 124	0
Lead	15	200	12 - 1,730	4
Selenium	15	250	<1 - 2	0
Mercury	15	40	<0.17 - 1.83	0
Zinc	15	3,700	16 - 702	0
Benzo(a)pyrene	15	2.2	<0.04 - 0.79	0
Dibenz(a,h)anthracene	15	0.24	<0.04 - 0.09	0
Naphthalene	15	2.3	<0.03 - 0.05	0
Total Phenols	10	280	<0.2	0
TPH Aromatic C ₅ -C ₇	10	70	<0.01	0
TPH Aromatic C ₇ -C ₈	10	130	<0.01	0
TPH Aromatic C ₈ -C ₁₀	10	34	<1	0

Table 2: Results of Chemical Analyses - Soils

RichardJackson Engineering Consultants

Contaminant	No of Samples Tested	Screening Value (mg/kg)	Range of Concentrations (mg/kg)	No of samples exceeding screening value
TPH Aromatic C10-C12	10	74	<1 - 1	0
TPH Aromatic C ₁₂ -C ₁₆	10	140	<1 - 6	0
TPH Aromatic C16-C21	10	260	<1 - 28	0
TPH Aromatic C ₂₁ -C ₃₅	10	1,100	<1 - 100	0
TPH Aliphatic C5-C6	10	42	<0.01	0
TPH Aliphatic C ₆ -C ₈	10	100	<0.01	0
TPH Aliphatic C ₈ -C ₁₀	10	27	<1	0
TPH Aliphatic C10-C12	10	130	<1	0
TPH Aliphatic C ₁₂ -C ₁₆	10	1,100	<1	0
TPH Aliphatic C ₁₆ -C ₃₅	10	65,000	<1 - 35	0
Benzene	10	0.087	<0.01	0
Toluene	10	130	<0.01	0
Ethylbenzene	10	47	<0.01	0
M & P xylene	10	56	<0.01	0
O xylene	10	60	<0.01	0
Vinyl Chloride	5	0.00064	<0.001	0
1,2 – Dichloroethane	5	0.0071	<0.001	0
Trichloroethene	5	0.016	<0.001	0
1,1,1 – Trichloroethane	5	8.8	<0.001	0
Tetrachloroethene	5	0.18	<0.001	0
Chlorobenzene	5	0.46	<0.001	0
Hexachlorobutadiene	5	0.29	<0.001	0

Asbestos was not detected in the 9no. samples which underwent asbestos screening.

From the above it is evident that 2no. contaminants recorded concentrations in excess of their tier one screening values for the protection of human health. These are summarised in Table 3.

Contaminant	Exploratory Hole (s)	Depth (m bgl)	Stratum	Screening Value (mg/kg)	Concentration (mg/kg)
Arsenic	WS04	1.00	Made Ground	37	73
	WS02	0.40	Made Ground	200	341
Lood	WS03	0.40	Made Ground	200	592
Ledu	WS04	0.25	Made Ground	200	1730
	WS04	1.00	Made Ground	200	1640

Tahla 3.	Summary	of Encountered	Soil	Contamination
Table 5.	Summary	or Encountered	3011	Containination

6.2. Risk Assessment

As detailed in the preceding sections, elevated concentrations of 2no. contaminants were encountered within the Made Ground in WS02, WS03 and WS04, located within the footprint of the on-site structure.

6.2.1. Soil Contamination and End Users

Considering initially end users of the site, exposure to contaminants would be primarily through direct contact, ingestion or inhalation of contaminated soils where soil is exposed such as in gardens or other soft landscaping areas.

There is considered to be a significantly reduced risk beneath buildings or in paved areas as in such areas there is no pathway by which the pollutant linkage may be completed.

On the basis of the results to date, remediation is likely to be required for soft landscaping areas in the vicinity of the recorded contaminant impacts. Elevated contaminant concentrations were recorded in WS02-WS04, which correspond to proposed Plots 1, 2 and 4, as seen in Figure 3 in Appendix A. Site wide remediation is not considered to be necessary.

Remediation of Plots 1, 2 and 4 may be achieved by the capping of contaminated soils with a layer of certified imported soils, which are chemically and physically suitable for their end use. This may be achieved by excavation, raising levels of a combination of both.

At the concentrations recorded to date, a clean cover system of 600mm in thickness would be required in accordance with guidance given in BRE 465 'Cover Systems for Land Regeneration', 2004 and subject to the approval of the Local Authority.

A detailed remediation method statement (RMS) should be produced, indicating where remediation is required, and how the remediation is to be achieved. The RMS should also include information on how implemented remedial measures are to be validated.

6.2.2. Soil Contamination and Controlled Waters

The concentrations of Arsenic and Lead recorded in the Made Ground beneath the site may be considered to pose a theoretical risk to the underlying controlled waters associated with the Lowestoft Formation, a Secondary (Undifferentiated) Aquifer.

Localised groundwater has been recorded within the Lowestoft Formation beneath the site, however, given the predominantly cohesive nature of this stratum, it is believed to be localised, discrete perched pockets rather than a continuous water body in hydraulic continuity with the wider groundwater environment. On this basis the sensitivity of the underlying controlled waters is considered to be low.

In addition to the above, the recorded contaminant impacts are discrete in nature, and the low permeability cohesive nature of the prevailing soils will restrict the leaching and migration of contamination. Furthermore, both Arsenic and Lead generally have low solubility at normal geochemical soil conditions, therefore further restricting the potential for leaching or migration.

On the basis of the above, it is considered that the risk posed by soil contamination to controlled waters is low and further investigation or remediation in respect to this risk is not considered to be required.

6.2.3. Soil Contamination and Construction Workers, Maintenance Workers and the Public

Risks to site workers and site neighbours during redevelopment arise primarily through dermal contact, ingestion and inhalation of contaminants. It is considered that the degree of contamination observed poses a low risk to site workers and the general public.

In order to reduce the risk to site workers during redevelopment, appropriate safety measures should be adopted on site.

Workers should avoid contact with the soils by the use of protective boots, overalls and gloves, and should wash before eating, drinking and using the toilet.

To prevent the inhalation of contaminants by site workers and the windblown transfer of contaminants off site, the generation of dust should be avoided; this can be achieved by spraying the materials with water if necessary. Measures should be taken to ensure that contaminated materials are not accidentally transferred off site, for example on vehicle tyres.

In the absence of gas monitoring data, excavations should be checked for elevated gas concentrations and depleted oxygen levels prior to entry by site workers.

Reference should be made to CIRIA Report No.132 'A Guide for Safe Working on Contaminated Sites' (1996), and Health and Safety Guidance Document,

Protection of Workers and the General Public during the Development of Contaminated Land' (1991).

6.2.4. Soil Contamination and Flora

Concentrations of the phytotoxic contaminants, zinc, copper and nickel have been compared to the threshold values presented in Table 1 of British Standard BS3882: 'Specification for Topsoil and Requirements for Use' (2007), in order that this risk to flora may be assessed. It should be appreciated that this specification is only applicable to topsoil materials which are being placed. Topsoil which is to remain in-situ is not required to comply with the specifications of BS3882.

The screening values for phytotoxic contaminants are pH dependent and the following values have been adopted on the basis of a pH greater than 7.

- Threshold Value for Zinc 300 mg/kg
- Threshold Value for Copper 200 mg/kg
- Threshold Value for Nickel 110 mg/kg

A single sample of soil recovered from the Made Ground in WS04 at 1.0m bgl presented elevated concentrations of Zinc and Nickel when compared to the above screening values and thus this material is not considered appropriate for re-use as topsoil.

6.2.5. Soil Contamination and Structures and Services

On the basis of the results of chemical analyses on soils undertaken to date, the concentrations of contaminants are not considered to pose a risk to structures and services within the proposed development scheme.

6.2.6. Conceptual Model

On the basis of the findings detailed in Section 6.1 together with the above discussion, we have produced a conceptual model which is presented as Table 4.

Contaminant	Source(s)	Pathway(s)	Receptor(s)	Comment
Arsenic, Lead	Made Ground	Ingestion, Inhalation, Direct	Residential End Users	Remediation of soft landscaping will be required in parts of the site. Refer to Section 6.2.1.
		Contact	Site Workers, General Public	Reference should be made to Section 6.2.3.

Table 4: Conceptual Model

Ground Gases	Made Ground	Inhalation, Accumulation, Explosion	Residential End Users, General Public	A gas monitoring programme should be undertaken to assess this risk.
		Explosion	Site Workers	Refer to Section 6.2.3.

6.2.7. Summary

On the basis of the above it is considered that the site may be developed for its intended residential end use, subject to the following:

- Remediation of soft landscaping in areas of the site impacted by contamination, thereby bringing the site to a condition suitable for its end use;
- Completion of a gas monitoring programme and associated risk assessment, including the adoption of gas mitigation measures as required.

6.3. Waste

Reference should be made to the EU Waste Framework Directive, Revised Directive 2008/98/EC and 'The definition of Waste: Development Industry Code of Practice (CoP) Version 2' published by CL:AIRE (2011) to establish whether soils generated from on-site works are classified as waste.

Waste will likely be generated from excavation works. There may be limited opportunities for re-use of materials on site, subject to compliance with the CoP. There is, however, likely to be some waste to be disposed of off-site.

The groundworks contractor should classify the waste in accordance with the document entitled, 'Guidance on the classification and assessment of waste (1st Edition 2015), Technical Guidance WM3', to determine whether the soils to be disposed of off-site are considered to be hazardous or not.

Waste removed from the site, for disposal, must be classified according to the analytical methods and criteria recommended by the Landfill (England and Wales) (Amendment) Regulations 2004 and 2005. The regulations set new acceptance criteria for wastes to be disposed of at landfill sites with effect from 16th July 2005.

Results of solid soil analysis are included in Appendix C and should be forwarded to the received/haulier to assist in the off-site disposal of waste soils.

Full and detailed records should be kept of all waste soils removed from site for future reference purposes.

6.4. General

As with any sampling exercise, the sampling process is representative and it is possible that areas of contamination may be found during the redevelopment of the site. Excavations on site should be supervised and any areas of suspected contamination should be assessed by a competent professional and subject to further analysis is necessary.

It should be noted that all remediation proposals are subject to the approval of the Local Authority. It would be prudent to involve the regulatory bodies early in the development of the proposed scheme and before construction commences in order that all requirements are met.

7. Further Works

The following sections provide a summary of the further works which are recommended. It should be appreciated that the works detailed below are not a comprehensive list and additional works may be required depending on the findings of future investigation.

7.1. Geo-Environmental

The following further works are considered likely to be required from a geoenvironmental perspective:

- Completion of a gas monitoring programme to assess the gassing regime beneath the site and determine the requirement for gas mitigation measures;
- Preparation of a Remediation Method Statement (RMS) detailing the required remedial measures and how they are to be implemented;
- Validation works and preparation of a verification report.

It is possible that a contaminated land condition will be placed on the site during planning and this will also need to be considered with respect to further works. Liaison with the regulatory authorities is likely to be necessary in order to discharge contaminated land conditions.

7.2. Geotechnical Assessment

A geotechnical assessment was beyond the scope of this investigation, however, these works will be necessary to inform the design and construction of the proposed scheme.

Appendix A

Figures & Drawings

consulting civil & structural engineers 847 The Crescent, Colchester, CO4 9YQ Tel: 01206 228 800

SCALE: N.T.S.

	KEY	
	INFILTRA LOCATIO (TP01-TP	ATION TEST NS 902)
0.97 + 60.99 61.00 60.94 50.05	WINDOW LOCATIO (WS01-W	/LESS SAMPLER NS VS10)
∕ ™ 60.96		(510)
	REV DATE DESCRIPTION REVISIONS	DRAWN CHKD
	This drawing is to be read in conjunction other project information. Any discrepand other project information is to be rep	with all other Engineer's drawings and all cy between the Engineer's drawings and ported to the Engineer immediately.
	ISO BOOT	WANAGEMENT SVERMS
	Project	
	SUFFOLK, IP13 7	EE
	Title EXPLORATION HO	DLE
	LOCATION PLAN	
	Client CHAPTER BUILD	GROUP LTD
	Scale Drawn	Date
	1:250 @ A3MBJob ManagerChecked	04/04/22 Approved
	KO GB	GB
	Engineeri	ing Consultants
	847 The Crescent, Colchester, Essex CO4 9YQ Unit 06C130, 6th Floor, 1 St. Katherine's Way,	Tel: 01206 228800 ⊠ London, E1W 1UN Tel: 020 7448 9910 □
	5 guern House, Mill Court, Great Shelford, Cam 4 The Old Church, St. Matthews Road, Norwich, The Wheelhouse, Bonds Mill, Stonehouse, Gloud Email Address: mail@ri.uk.com	Norfolk NR1 1SP Tel: 01223 314794 Norfolk NR1 1SP Tel: 01603 230240 vestershire GL10 3RF Tel: 01172 020070 Website: http://www.ri.uk.com
	Drawing No.	Revision
	61647-G-	FIG02
	Drawing Status	VAL COSTING
	☐ TENDER ☐ CONST	RUCTION AS CONSTRUCTED

Appendix B

Exploratory hole logs

			Ric	hard Ja	cks	on			8	47 The	Crescent,	Trial Pit	No.
		J	Fno	vineerir	רס (Cong	sult	ant	- c 9	YQ	lei, Essex, 004	TP0	1
			5112	Sincern	<u>'8'</u>	Project						Sheet 1	of 1
Name	et :	Home Fa	arm			6164	7	Orientati	on:		Dimensions (m)	28/03/2	022
Locati	on:	Earl Soh	am Roa	ad. Bedfield. IP1	3 7EE			Leve	I (m, aOD):		1.50	Scale	;
Client		Chanter	Build G					Dept	h (m):	0.30		1:20 Logge	d
2 -	•	Sample	es & In S	itu Testina		Durth		2.	04			TS	
Grour wate		Depth	Туре	Results	(m)	Deptn (m)	Legend			Stratum	Description		
		0.50 0.75 1.40	D1 IVN D2	13		0.12 0.25		CON Brow subro conci fragn MAD Very deca SUPI Stiff I CLAN chalk LOW	CRETE in sandy bunded fi rete, woo hents. W <u>E GROU</u> soft gree yed woo ERFICIA	GRAVI ine to c od, met ith an c IND enish gr d fragm L DEP of sub	EL of subangula oarse flint, brick al and concrete organic odour. rey silty CLAY w nents. OSITS d light brown gr rounded fine to MATION	r to s, ith avelly coarse	1
		2.00	D3			2.04				End of	Pit at 2.040m		2
Groun	dwa	ter: Grou	ndwater	not encountered	•		1			sturbed	Кеу	Hand Vana	
Stabili -	ity:	Grav	el-filled	for soakage testin	g.	<u> </u>		B	Envir	Bulk onmenta	PID Por	PID Reading	l neter
Rema	rks:	Infiltr	ation tes	st undertaken betv	veen 0.	.90and 2.0)4m.	$\overline{\nabla}$	Ground	water str	ike	Standing water level	

		•	Ric	hard Ja	ck	SC	n			8	847 Th	e Cre	scent,		Trial Pit	No.
			Fnc	rinoarir	٦σ	C	ong	: 	ant	-c	9YQ	ster, t	Essex, (504	TPO)2
				Sincern	<u>'</u> g										Sheet 1	of 1
Projec Name:	t	Home Fa	ırm			P	6164	NO. 7	Orientati	on:	Γ	Dime	nsions	(m)	28/03/2	, 022
Locati	on:	Farl Soh	am Roa	ad Bedfield IP1	3 7E	F	0101		Leve	I (m, aOD):	: '		1.50	····,	Scal	e
Client		Chapter	Build G	roup I td		_			Dept	h (m):	0.80	200			1:20 Logge) ed
2 L		Sample	es & In S	Situ Testing	Ι.				2.	05					TS	
Groun		Depth	Туре	Results	Lev (m	/el 1)	Depth (m)	Legend			Stratu	m Des	cription			
							0.20		Gras TOPS Soft I	s over a SOIL prown m	a dark k	brown light g	CLAY.	/ CL/	AY.	
		0.50	D1				0.55		SUPI	ERFICIA	AL DEF	PÖSIT	S			
		0.60 0.70	D2 IVN	71			0.55		Soft I CLA SUPI	ight gre /. ERFICI/	y mottl	ed lig POSIT	ht brown	n sar	ndy	
		1.00	D3						Grave coars LOW	to stiff if elly CLA se chalk ESTOF .becomin	Ignt bro Y. Grav and ou <u>T FOR</u> g greyis	own m vel is s ccasic <u>MATION</u> <u>h br</u> ow	subrour onal flint ON <i>n from 1.</i> 0	gnt g ided 00m	rey fine to	
										.becomin .pocket o and at 1.0	rg stiff fro f orangis 60m	<u>om 1</u> .40 sh brow	Dm vn clayey	mediı	ım	
		2.00	D4				2.05				End c	of Pit at 2	2.050m			2
																3
																4 —
0.777	als -											v	0.1/			
Groun	awa ty:	Grav	nawater	for soakage testin	1a.				D	Di	isturbed	n	ey IVN DD		Hand Vane	
Remar	rks:	Infiltr	ation tes	st undertaken bet	ween	0.91	m and 2	2.05m.	ES	Envi	ironment	tal trike	PID PP	Pock	et Penetror	neter

				Ric	hard]	ack	son					847 The Crescent, Colci	nester,	Borehole	No.
				Fnc	ringor	ing	Conci	ilt-	inte	-		Essex, CO4 9YQ		WS0)1
					gineer	IIIg	CONSU	JILC	11112					Sheet 1	of 1
Proje	ct Nam	e:	Home F	arm					Da 31/0	ates 3/2022		Project no.		Hole ly	ре
Locat	ion:		Earl Sol	nam Ro	ad, Bedfield, I	P13 7EE			, _	_,	Co-	ordinates:		Scale	<u>;</u>
					, ,					G	rour	d Level (m):		1:30	Bv
Clien	t:		Chapte	r Build (Group Ltd									GB	
Well	Wate	er		S	amples & In-	situ Tesi	ts	Level (m)	Depth (m)	Legen	ł	Stratum Desc	ription		Scale
	0.90 1.70 2.00	epth Level Casing SWL Depth Type Results .90 0.30 ES1							0.21 0.90 1.30 2.00 2.50 3.00			ONCRETE ery soft to soft green ravelly slightly sandy ubangular to subrour nedium chalk and occ le and brick. <u>MADE GROUND</u> <u>no tile or brick fragmen</u> oose green mottled y lightly clayey fine to r aturated. <u>UPERFICIAL DEPOSIT</u> tiff dark blue grey mot casional small sandy taining and decayed r ravel is angular to su oarse chalk and occas <u>OWESTOFT FORMATI</u> hedium-dense green ellowish orange claye nedium SAND. <u>OWESTOFT FORMATI</u> <i>hole collapsing from 2.</i> tiff blue grey mottled range slightly gravelly ccasional small sandy on staining. Gravel is ubangular fine to coa int. <u>OWESTOFT FORMATI</u> End of Borehole a	grey s CLAY. (inded fin casional its from rellowis mediur S ottled y y CLAY y octay clay mottle cy fine ON <u>OOM</u> y CLAY y clay mottle cy fine ON <u>OOM</u> y CLAY y clay mottle cy fine	lightly Gravel is ne to al flint, <u>0.40m</u> sh orange m SAND. vellowish with ngs, iron aterial. lar fine to flint. ed to vish with ets, and ar to alk and	
															5 -
	Gr								water I	Key	S	ample Type Key	Te	est Type Ke	y
Grou	oundwater: Groundwater struck at 0.90m and 2.00m.								Ground	water	D	Disturbed	IVN	Hand va	ane
	-							-	Stri	ke	B	Bulk	S/C	SPT / CI	PT
Rema	arks:		Standir	ig watei	r Ievel at 1.70i	m.	-		Julio Water	ung evel	U FS	Environmental		PID Read	ling
									wuiti						8'''

				Ric	hard]	ack	son					847 The Crescent, Colc	hester,	Borehole	e No.
				Fnc	ringor	ing	Conci	ıl+-	nto	-		Essex, CO4 9YQ		WSC)2
					gineer	Ing	CONSU)				Sheet 1	of 1
Proje	ct Nam	e:	Home I	arm					Da 31/0	ates 13/2022		Project no. 61647		Hole Iy	/pe
Locat	ion:		Earl Sol	ham Ro	ad, Bedfield, I	P13 7EE					Co-	ordinates:		Scale	9
Client	ŀ		Chante	r Build	Group Itd					G	rour	d Level (m):		Logged	By
	.													GB	
Well	Depth	er Level	Casing	SWI	Denth		IS Results	Level (m)	Depth (m)	Legen	d	Stratum Desc	ription		Scale
	Depth		1.00	SWL	Depth 0.40 0.70 1.00 1.00 1.40 1.50 2.00 2.00 2.00 2.00 3.00 3.00 3.50	Type ES1 IVN S D1 IVN D2 S IVN D3 IVN D3 IVN D4 IVN	Results 29 N=4 (1,1/1,1,1,1) 27 N=19 (3,2/3,5,5,6) 103 100 N=21 (4,3/4,5,6,6) 115 121		 0.20 0.40 0.50 0.65 1.80 4.00 			ONCRETE rrange gravelly mediu AND. Gravel is suban ubrounded fine to co <u>MADE GROUND</u> oft dark blue grey gravel is subangular to ne to coarse chalk w rick. <u>MADE GROUND</u> oft dark brown/ black ravelly sandy CLAY w bots, rootlets, and per ubangular to subrourned ubangular to subrourned rown silty CLAY with ravel of subangular to ne to medium flint a <u>UPERFICIAL DEPOSIT</u> tiff grey slightly grave ccasional sandy pock taining and decayed in ubangular to subrourned ubangular to subrourned in of subangular to subrourned to medium chalk and occup nedium chalk and occup nedium chalk and occup medium chalk and occup nedium chalk and occup medium chalk and occup medium chalk and occup medium chalk and occup DWESTOFT FORMATI <u>becoming light grey from</u> End of Borehole a	um to c gular tr arse fli avelly C o subro ith occ k slight ith free eat. Gra nded fli S o grey r occasio o subro nd cha S elly CLA kets, irco roots. (nded fli casiona ON om 2.700	coarse o int. CLAY. Dunded asional cly quent avel is ne to mottled onal Dunded lk. AY with on Gravel is ne to al flint m	
											+				
								Ground	water I	Kev	S	ample Type Key	Te	est Type Ke	
Grou	ndwate	er:	No grou	undwat	er encountere	ed.	—		Ground	water	D	Disturbed	IVN	Hand va	ane
							·	<u> </u>	Stri	ke	В	Bulk	S/C	SPT/C	PT
Rema	arks:								Stand	aing	U 	Undisturbed		Pocket peneti	rometer ding
L									water	ופעפו	63	LINIOIIIIEIILAI	עויז		ung

				Ric	hard]	ack	son				8	847 The Crescent, Cold	chester,	Borehole	No.
			J	Fno	rineer	ing	Consi	ilta	nto		E	ssex, CO4 9YQ		WSC)3
				שיים	SILCE	118	CONSC		Da) ates		Project no.		Sheet 1 Hole Ty	of 1 /ne
Proje	ct Nam	ne:	Home I	Farm					31/0	3/2022		61647		WLS	
Locati	ion:		Earl Sol	ham Roa	ad, Bedfield, I	P13 7EE					Co-c	ordinates:		Scale 1:30) j
Client	:		Chapte	r Build (Group Ltd					G	roun	d Level (m):		Logged	Ву
	Wat	er		S	amples & In-	situ Test	ts	Level	Depth			61 L D			
weil	Depth	Level	Casing	SWL	Depth	Туре	Results	(m)	(m)	Legend	1	Stratum Des	cription		Scale
					0.40	564			0.15 0.30		Ye N	ellow medium to co IADE GROUND	arse SA	ND.	
					0.40 0.50	ES1 IVN	20				V	ery soft to soft dark	browni	sh	
					0.60	D1					gi Sa	eenish black slightly Indy CLAY with root	y gravel materia	ly slightly al. Gravel	
					0 90	IVN	35				is	angular to subangu	lar fine	to	
			1.00		1.00	S	N=5				n	edium flint and occ	asional	brick.	1
					1.00	ES2	(1,0/1,1,2,1)		1.20			fragment of scrap met	al at 0.9	0m	
					1.20	IVN	63				i Fi	rm dark blue grey o	ccasion	ally	
					1.50	ES3					gi	avelly CLAY with oc	casiona	l silty	-
										· · · · ·	sa Sa	indy partings, iron s	taining	and	
					1.80 1.80	IVN D3	88					ecayed root materia Ibangular to subrou	I. Grave nded fi	el is ne to	
	1.00 1.80 D3 N 2.00 S N					N=10 $(1 1/2 2 2 4)$				i m	edium chalk and oc	casiona	al	2 -	
							(1,1/2,2,2,4)			· · · · ·	in in	onstone and flint.			
												becoming stiff mottled	orange l	brown with	-
					2.50	D4				· · · · · ·	ra 1.	re frequent sandy silty 70m and 2.20m	v parting	s between	
										· · · · · ·		locally soft between 2	.00m an	d 2.20m	-
	2.00	\leftarrow	1.00		2.90	D5	N 17				 	becoming orange brow ty sandy partings fron	พท with 1 า 2.80m	frequent	
	3.00		1.00		3.00	S	(24,2/3,4,5,5)			· · · · · ·	•				3 -
											•				-
											•				
					3.60	IVN	64			· · · · ·	•				
	3 85				3.60	D6									-
	5.05		1.00		3.90 4.00	IVN	92 N=24				•				4
					4.00		(4,3/4,5,7,8)			· · · · · ·	•				
										· · · · ·	•				
											•				-
										· · · · ·	•				
									4.80	• <u>•</u> •	•	End of Borehole	at 4.800n	n	-
															5 -
Grou	ndwate	er:	Ground	water s	truck at 3 00	n.		Ground	water I	Key	S	Disturbed	Te	est Type Ke	y 200
									Stri	ke	B	Bulk	S/C	SPT / C	PT
Rema	rks:		Standir	ng water	level at 3.85	m.			Stand		U	Undisturbed	РР	Pocket penet	rometer

				Ric	hard]	ack	son				8	847 The Crescent, Colc	hester,	Borehole	No.
			J	Fno	oineer	rino	Consi	ilta	anto			Essex, CO4 9YQ		WSO	14
		-			Sincer	1118	CONSC		Da	ates		Proiect no.		Sheet 1 Hole Tv	of 1 vpe
Proje	ct Nam	e:	Home I	Farm					30/0	3/2022		61647		WLS	
Locat	ion:		Earl Sol	ham Ro	ad, Bedfield,	IP13 7EE					Co-o	ordinates:		Scale	į
Client	t:		Chapte	r Build (Group Ltd					G	roun	d Level (m):		Logged GB	Ву
Well	Wate	er		S	amples & In-	situ Tes	ts	Level	Depth	Legend	1	Stratum Deso	ription		Scale
	Depth	Leve	Casing	SWL	Depth	Туре	Results	(m)	(m)		C	ONCRETE			-
	0.60		1.00		0.25 1.00 1.00	ES1 S S	N=1 (1,1/1,0,0,0) 50 (13,12/50 for 75mm)		0.15		V. gy tc fl si N	ery soft dark browni ravelly sandy CLAY. G o subangular fine to o int, chalk and cemer zed brick fragments. IADE GROUND O RECOVERY	sh blac iravel is coarse nt, with	k slightly s angular brick, cobble	- 2 -
								ârounc	Iwater I	Kev Kev	S	ample Type Key	Τε	est Type Ke	4
Grou	ndwate	er:	Ground	dwater s	struck at 1.30	m.		sround	Ground	xey water	S D	Disturbed	Te IVN	Hand va	<u>y</u> ane
			Boreho	le term	inated at 2.00	Jm due t	0	\checkmark	Stri	ke	В	Bulk	S/C	SPT / C	PT
Rema	arks:		obstruc	ction pr	eventing furth	ner prog	ress.	▾¯	Stand	ding	U	Undisturbed	PP	Pocket penetr	ometer
			Standir	ng wate	r level at 0.60	m			water	Ievel	ES	Environmental	PID	PID Read	ling

			Ric	hard1	ack	son						847 The Crescent, Colc	hester,	Borehole	e No.
		J	Fng	oineer	ing	Cons	ult	ta	nts			Essex, CO4 9YQ		WSC)5
			- ' '8			20113				ites		Project no		Sheet 1	ot 1 /ne
Proje	ct Name:	Home I	Farm						31/03	3/2022		61647		WLS	урс 5
Locat	ion:	Earl Sol	ham Ro	ad, Bedfield,	IP13 7EE						Co-	ordinates:		Scale 1:30	e)
Client	t:	Chapte	r Build	Group Ltd						Gr	our	ıd Level (m):		Logged	l By
Well	Water		9	Samples & In-	situ Tes	ts	Lev	vel	Depth	Legend		Stratum Desc	cription		Scal
	Depth Leve	I.00 1.00 1.00 1.00	Lasing SWL Depth Type Result 0.10 ES1 0.10 ES1 0.10 26 1.00 0.80 ES2 0.10 26 1.00 1.00 S N=1 1.00 1.00 S N=1 1.00 1.00 S N=1 1.00 1.20 IVN 98 1.00 2.00 S N=2 1.00 2.00 S N=2 1.00 2.40 IVN 87 1.00 2.90 IVN 87 1.00 2.90 IVN 123 3.00 S S S 1.00 3.70 D6 N=3 1.00 4.00 S N=3				(n 5) 5) 0)	n)	(m) 0.10 0.25 0.90			ONCRETE off light brown mottl rey and reddish brow ravelly sandy CLAY. G ubangular to subroun hedium flint, chalk ar rick. <u>MADE GROUND</u> oft green grey slightl lightly sandy CLAY wi haterial. Gravel is sub ubrounded fine to m nd occasional flint. <u>UPERFICIAL DEPOSIT</u> tiff blue grey mottled lightly gravelly CLAY w lty sandy partings, ir ecayed root material ubangular to subroun oarse chalk, and occas onstone. OWESTOFT FORMATI frequent silty fine sand .10m and 3.40m	led grever vn sligh iravel is nded find occa y grave th root bangula edium S d orang with oc on stai I. Grave nded finasional ION	enish htly s ne to isional elly t ar to chalk ge brown ccasional ning and el is ne to flint and	2 - 3 - 4 -
Groui	ndwater:	Ground	łwater i	not encounter	red.		Grou	undv	water k	Cey water	S	ample Type Key Disturbed	Te IVN	est Type Ke Hand v.	5 - 5 -
Devi									Strik Stand	ke ling	B	Bulk	S/C PP	SPT / C	PT romete
кета	IFKS:								water	level	ES	Environmental	PID	PID Rea	ding

		Ric	hard]	ack	son				:	847 The Crescent, Colo	hester,	Borehole	e No.	
			Fnc	rinoor	ing	Cons	- - - - - -	anto	-		Essex, CO4 9YQ		WSO)6
				SILICEI	II IS	COILS	JUL)		<u> </u>		Sheet 1	of 1
Proje	ct Name:	Home I	Farm					D 30/0	ates 03/2022		Project no. 61647		Hole ly	pe
Locat	tion:	Earl Sol	ham Ro	ad, Bedfield,	P13 7EE					Co-	ordinates:		Scale	è
Clien	t:	Chapte	r Build	Group Ltd					G	roun	d Level (m):		Logged	Ву
	Water		S	Samples & In-	situ Test	ts	Lev	el Depth	n .				GB	
Well	Depth Leve	el Casing	SWL	Depth	Туре	Results	(m	i) (m)	Legend		Stratum Des	cription		Scale
								0.25		C	UNCRETE			-
				0.40	ES1			0.25		V	ery soft light brown	mottle	d reddish	
				0.60							nown and grey very s andy partings and ire	sandy C on stain	LAY WITH	
				0.60	DI					G	ravel is angular to su	ubangu	lar fine to	-
				0 90	IVN	50		0.80		n 🗍	edium flint and cha	lk. (Satı	urated).	
··. – :		1.00		0.90	ES2	N=15				<u> </u>	becoming grey mottle	S d yellow	ish orange	1 -
				1.00	S	(2,2/3,3,4,	5)			fr.	om 0.55m	مالمد	wich	-
				1.40	53						rm blue grey mottle range slightly gravel	a yellov Iv CLAY	wisn with	-
				1.40	IVN	84				SI	nall sandy partings,	iron sta	aining	-
										a	nd decayed root ma	terial. G	Bravel is	
	1.90 IVN								· · · · · ·	a	ngular to subangular	r fine to	o medium	-
		1.00		1.90	IVN	127 N-24								2 -
				2.00	S	(4,3/5,6,7,	6)		becoming stiff at 1.50m					
									· · · · ·					-
				2.40	D4	122				÷	parting of light brown	silty fine	sand at	1
				2.50	IVN	122				. 2.	40m			
										•				
				2.90	IVN	97				•				
		1.00		2.90	D5	N=34	1			<u> </u>	becoming blue grey fr	om 3.00	m	3 -
				3.00	5	(4,4/5,6,12	,1		· · · · ·	•				-
				2 50		106								-
				3.50	D6	100					becoming light grey ar 50m and 3 60m	nd silty b	petween	
									· · · · ·					
		1.00		3.90	IVN	97				•				
		1.00		4.00	S	N=37	1	4 15	· · · · · ·	•				4 -
				4.00		1)	,1	4.15			End of Borehole	at 4.150n	n	
						,								
														5 -
														-
C	ndurete	C ~ + · · · - · '		m 0.90		·	Grou	ndwater	Key	S	ample Type Key	Te	est Type Ke	y
Grou	nawater:	Saturat	.ed 0.25	orn - U.80m.			\bigtriangledown	Ground	dwater	D	Disturbed		Hand va	ane
Roma	arks						_	Stan	ding	U	Undisturbed	PP	Pocket penetr	r ı rometer
Nema	N9.							water	level	ES	Environmental	PID	PID Read	ding

	RichardJackson											847 The Crescent, Cold	chester,	Borehole	No.
			J	Fng	vineer	ing	Consi	ilta	ants	5		Essex, CO4 9YQ		WSC)7
Droio	ct Nam		Homo			<u></u> 8	CONS		Da	ates		Project no.		Sheet 1 Hole Ty	<u>of 1</u> /pe
Proje		e:	поше	FdIIII					31/0	3/2022	Co-	61647		WLS Scale	
Locat	tion:		Earl So	ham Ro	ad, Bedfield, I	P13 7EE								1:30	1
Client	t:		Chapte	r Build	Group Ltd					G	rour	nd Level (m):		Logged GB	Ву
Well	Wat	er		S	Samples & In-	situ Test	s	Level	Depth	Legend	ł	Stratum Des	cription		Scale
	Depth	Leve	Casing	SWL	Depth	Туре	Results	(,	0.14		C	ONCRETE			<u> </u>
									0.35		C (19)range slightly clayey subbase).	/ mediu	m SAND.	
					0.50	IVN	38		0.45			ADE GROUND	oru grou		/ -
					0.50	ES1			0.55		n l	nedium to coarse SA	ND. Gra	avel is	
					0.00	FS2					S	ubangular to subrou	nded fi	ne to	
			1.00		1.00	S	N=14				n n	redium flint and con ADF GROUND	crete.		1 -
					1.00	IVN	(2,1/2,3,4,5) 93				S	oft grey slightly grav	elly slig	htly	
					1.00	DZ					S	andy CLAY. Gravel is	angulaı arso flir	to tand	
		1.50 IVN 1 1.60 D3				106				c	halk.			-	
					1.00	05					S	UPERFICIAL DEPOSI	rs Hadaa		
					1.90	IVN	74	Firm to stift slightly grav			irm to stiπ grey mot lightly gravelly CLAY	tied ora with oc	inge casional		
			1.00		2.00	S	N=24				slightly gravelly CLAY with occasional small sandy partings, iron staining			2 -	
					2.00	D4	98				a	nd decayed root. Gr	avel is nded fi	ne to	
	2.45	\bigtriangledown										oarse chalk and flint			
												OWESTOFT FORMAT	ION		
												.saturated sandy pock	ets at 1.	90m	
			1 00		3.00	s	N=21				1.	becoming dark brown.	grey fro	m 2.90m	2 -
			1.00		3.00	IVN	(3,3/4,5,6,6)								
					3.00	D5	62			2					
															-
	3.65	▼			3.60	D6									
			1.00		4.00	S	N=24		4.00		 5.	End of Borehole	at 4.000r	n	4 -
							(5,4/5,6,6,7)								
															-
															5 -
															-
										-					
								Ground	 Iwater k	(ey	S	ample Type Kev	Te	est Type Ke	 :v
Grou	ndwate	er:	Ground	dwater s	struck at 2.45r	n		\sim	Ground	water	D	Disturbed	IVN	Hand va	ane
Barre	arkei		Ctardin		r loval at 2 CF	~			Stril Stanc	ke ding	BU	Bulk Undisturbed	S/C PP	SPT / C Pocket penet	PT rometer
кета	arks:		Standir	ig wate	i level at 3.65ľ	11.			water	level	ES	Environmental	PID	PID Read	ding

				Ric	hardJ	ack	son						847 The Crescent, Cold	chester,	Borehole	e No.
			J	Fno	vineer	ino	Con	sult	ta	nts			Essex, CO4 9YQ		WSC)8
				ביים	SILICE	118	COII.	500) ates		Project no		Sheet 1	of 1
Proje	ct Nam	e:	Home I	arm						30/03	3/2022		61647		WLS	, pc 5
Locat	ion:		Earl Sol	ham Ro	ad, Bedfield, If	P13 7EE						Co-	ordinates:		Scale 1:30	e)
Clien	t:		Chapte	r Build	Group Ltd						G	rour	nd Level (m):		Logged	J By
	Wate	er			Samples & In-s	itu Test		le	vel	Denth					GB	
Well	Depth	Level	Casing	SWL	Depth	Type	Results	(r	n)	(m)	Legen	ł	Stratum Des	cription	l	Scale
	1.35			0.60 IVN 25 0.60 IVN 25 0.70 D1 N=11 1.20 IVN 1.29 1.20 ES2 1.30 D2 1.30 D3 N=16 2.00 ES3 C2,2/3,3,2 2.20 D5 S 2.50 IVN 88 2.80 D4 S 3.00 S N=25 (3,3/5,6) S S Sroundwater struck at 1.35m. Image: Struct at 2.45m. S						0.03 0.15 0.80 1.70 2.00 2.55 3.00			Drange medium SAN MADE GROUND ONCRETE oft dark brown moth nd reddish brown sl lightly sandy CLAY we haterial. Gravel is an ubangular fine to medid MADE GROUND becoming sandy with nottling from 0.45m oft orange mottled generating ravelly sandy CLAY we andy partings and denaterial. Sand is fine iravel is angular to se to medium chalk, flin MADE GROUND saturated between 1.02 tiff dark blue grey sl LAY with occasional ockets and iron stain ubangular to subroud oarse chalk and occas OWESTOFT FORMAT irm to stiff dark blue ravelly CLAY with occasional int. OWESTOFT FORMAT saturated between 2.32 Medium-dense orange OWESTOFT FORMAT End of Borehole	D. Lled gre ightly g ith deca gular to edium f no reddi grey slig vith free ecayed to med ubround t and m <u>50m and</u> ightly g small si- ning. Gr inded fi asional fi asional fi asional si- TON 2 grey sl casiona on stain to subro nd occa TON <u>35m and</u> ge red S <u>TON</u> at 3.000n	en brown ravelly ayed root o flint. <i>ish-brown</i> ghtly quent root lium. ded fine netal. <i>I 1.70m</i> ravelly andy ravel is ne to flint. lightly il small ing. ounded asional <i>I 2.55m</i> AND.	
Grow	nducto		Groups	watar	struck at 1 25~	·	<u> </u>	Grou	und	water k	(ey	S	ample Type Key	Te	est Type Ke	÷y
Grou	nuwate	ar:	Ground	waters	STIUCK AL 1.35N			\bigtriangledown		Ground Stril	water ke	D B	Disturbed Bulk		Hand v	ane CPT
Rema	marks:		Standir	ng wate	r level at 2.45r	n.	F		+	Stand	ling	U	Undisturbed	PP	Pocket penet	rometer
				5				_		water	level	ES	Environmental	PID	PID Rea	ding

RichardJackson										8	847 The Crescent, Col	chester,	Borehole	No.	
				Fno	rineer	ing	Cons	ult:	anto	2	ł	Essex, CO4 9YQ		WSC)9
					Sincer	ii ig	COIIS	ulle) atos		Broject no		Sheet 1	of 1
Proje	ct Name:	: +	Home F	arm					30/0	3/2022		61647		WLS	ρc
Locat	ion:	E	Earl Soł	nam Ro	ad, Bedfield,	P13 7EE					Co-o	ordinates:		Scale) j
Client	t:	(r Build	Group Itd					G	roun	d Level (m):		Logged	Ву
									L Dauth					GB	
Well	Depth Le	evel (Casing	SWL	Depth		Results	(m)	(m)	Legend	ł	Stratum Des	cription		Scale
			8								D	ark brown slightly g	ravelly	sandy	
					0.30	ES1					C	LAY with roots and in ngular to subangula	rootlets r fine to	. Gravel is	
					0.50		67		0.40		fli	int and occasional c	halk.	meanann	
					0.50	D1	67				ц∫ т(OPSOIL			
					0.90	EC2						becoming light brown om 0.20m	mottled	orange	/
					0.80	IVN	73			· · · ·	Fi	rm grey and orange	mottle	d slightly	
					1.00	S	N=20				gi gi	ravelly CLAY with oc	casiona	l small	1 -
					1.00	D2	(3,2/4,5,5,6)				ecaved root materia	al. Grave	anu >lis	
											a	ngular to subrounde	ed fine t	to coarse	
					1.50	IVN	124				cł	nalk, flint and ironst	one wit	h	-
									ccasional chalk cobbles.						
					1.00		101		LOWESTOFT FORMATION						
					2.00	S	N=24								
					2.00	D3	(4,3/4,6,7,7)							
											`• •				
					2.50	IVN	98				•				-
									2 70		•				
									2.70		St	tiff dark brown sligh	tly grav	elly CLAY	
					2.90	IVN	85				w	rith occasional sand	y partin	gs and	2
					3.00	5 D4	N=29 (5 4/5 6 8 10	2)			i u	ubangular to subrou	inded fi	ne to	5
					5.00		(3) 1/ 3/0/0/1	- /				parse chalk and occa	asional	flint with	
					2.50	1. / 6.1	F 4					ccasional chalk cob	oles.		
					3.50	D5	54					JWESTOFT FORMAT	ION ev fine s	and	-
					0.00							arting between 3.30m	and 3.50	0m	
											•				
					4.00	S	N=26	、 				· · · · · · · · ·			4 -
					4.10	00	(4,4/5,0,7,6	,		· · · · ·	<u> </u>	becoming dark blue g	rey at 4.	10m	
									4.30		N	O RECOVERY			1
															-
					5.00	S	N=30		5.00			End of Borehole	at 5.000r	n	- 5 -
							(5,4/5,8,8,9)							
															-
		-													
							<u> </u>			 Kov:		omplo Trace Kara	-	at Ture - K-	
Grou	roundwater: No groundwater encountered.							Groun	Ground	Ney dwater	D	Disturbed		Hand va	y ane
							\searrow	Stri	ike	В	Bulk	S/C	SPT / C	PT	
Rema	arks:								Stan		U	Undisturbed	PP	Pocket penet	rometer
									l water	ievel	c3	Environmental	טויי ן	г гы кеа	anig

			Ric	hardJ	ack	son					8	847 The Crescent, Col	chester,	Borehole	e No.			
			Fnc	vineer	ing	Con	sult	ta	nts			Essex, CO4 9YQ		WS1	10			
				SILCCI	118	COII	500)		Ducient		Sheet 1	of 1			
Proje	ct Name:	Home F	arm						30/03	ates 3/2022		61647		WLS	уре 5			
Locat	tion:	Earl Sol	ham Ro	ad, Bedfield, I	P13 7EE						Co-o	ordinates:		Scal	e			
								-		G	roun	d Level (m):		Logged	J BV			
Clien	t:	Chapte	r Build (Group Ltd										GB				
Well	Water		S	amples & In-	situ Test	ts Decultu	Lev (r	vel n)	Depth (m)	Legen	ł	Stratum Des	cription		Scale			
	Deptil		SVVL	0.10	ES1	Results		-			G	rass over a dark bro	wn slig	htly	-			
									0.20		g	ravelly very sandy C	LAY wit	h				
											SI SI	ubangular fine to m	edium f	lint and				
				0.50	IVN	42					o	ccasional chalk and	brick.		-			
				0.50	ES2				0.70	· · · · · · · · · · · · · · · · · · ·	l∖	1ADE GROUND						
				0.00		66				· · · · ·	S S	oft to firm light brow	vn mot	tled				
		1.00		1.00	S	N=14				· · · · ·	g	reyish orange slight	ly grave	lly sandy	1 -			
				1.00	D2	(2,1/2,3,4	1,5)			· · · · ·	L C	ne to medium flint :	and cha	Jangular Ik				
										· · · · ·	- L(OWESTOFT FORMAT	TION					
				1 50	13/61	107				· · · · ·	Fi	Firm dark grey slightly gravelly CLAY						
				1.50	IVN	VN 107 with occasional small sandy partings					-							
											and iron staining. Gravel is angular to							
]										- SU	int and occasional i	lar fine to medium chalk and					
		1.00		2.00	S	N=22						OWESTOFT FORMAT	ronstone. TION 2					
				2.00	IVN	(3,2/4,5,6	5,7)				<u> </u>	becoming stiff at 1.50	т					
						125					`• •							
				2.50	IVN	81					•							
										· · · · ·	`• •							
											<u>.</u>	becoming dark blue g	rey from	2.70m				
				2.90	IVN	96					•							
		1.00		3.00	S	N=22				<u> </u>	`. ·				3 -			
				3.00	D3	(4,3/4,6,6	5,6)											
											•							
				3.50	IVN	130				· · · · ·					-			
				3.70	D4													
				2.00	1.7.1	120					• •							
		1.00		3.90	IVN S	120 N-37					•				4 -			
				4.00	D5	(5,5/7,8,1	0,1			· · · · · ·	* '•							
						2)	,			· · · · ·								
				0														
				4.50	D6										-			
										· · · · ·								
										· · · · ·								
		1.00		5.00	S	N=41			5.00	· · · · ·	-	End of Borehole	at 5.000r	n	- 5 -			
						(6,6/8,9,1	1,1											
						3)												
															1			
				· · · ·			Grou	ınd	water k	key	S	ample Type Key	Te	est Type Ke	≥y			
Grou	nawater:	Ground	awater r	not encounter	ea.		\square		Ground	water	D	Disturbed		Hand v	ane			
Born	arke:									ling	<u></u> U	Undisturbed	PP	Pocket penet	<u>r</u> ı trometer			
кета	11 KS.									level	ES	Environmental	PID	PID Rea	ding			

Appendix C

Results of Chemical Analyses

FINAL ANALYTICAL TEST REPORT

22/03386

1

Envirolab Job Number: Issue Number:

Date: 14 April, 2022

Client:

Richard Jackson Ltd 847 The Crescent Colchester Business Park Colchester CO4 9YQ

Project Manager:	Basil Fagg
Project Name:	Bedfield
Project Ref:	61647
Order No:	61647
Date Samples Received:	04/04/22
Date Instructions Received:	07/04/22
Date Analysis Completed:	14/04/22

Approved by:

DPA

Danielle Brierley Deputy Client Services Supervisor

Page 1 of 21

Client Project Name: Bedfield

Lab Sample ID	22/03386/1	22/03386/3	22/03386/4	22/03386/6	22/03386/8	22/03386/9	22/03386/10			
Client Sample No	1	1	2	1	1	2	1			
Client Sample ID	WS10	WS08	WS08	WS09	WS04	WS04	WS01			
Depth to Top	0.10	0.60	1.20	0.30	0.25	1.00	0.30			
Depth To Bottom									ion	
Date Sampled	30-Mar-22	30-Mar-22	30-Mar-22	30-Mar-22	30-Mar-22	30-Mar-22	31-Mar-22		etect	¥
Sample Type	Soil - ES	w	t of D	od re						
Sample Matrix Code	6AB	3A	5AB	5A	6AB	6AB	6A	Unit	Limi	Meth
% Stones >10mm _A	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	% w/w	0.1	A-T-044
pH₀ ^{M#}	-	7.87	-	-	8.25	8.33	8.45	рН	0.01	A-T-031s
Sulphate (water sol 2:1) _D ^{M#}	-	<0.01	-	-	0.03	0.07	<0.01	g/I	0.01	A-T-026s
Sulphur BRE (total)₀	-	0.02	-	-	0.08	0.30	0.06	% w/w	0.01	A-T-024s
Cyanide (total) _A ^{M#}	-	<1	-	-	<1	<1	<1	mg/kg	1	A-T-042sTCN
Phenols - Total by HPLC _A	-	<0.2	-	-	<0.2	<0.2	<0.2	mg/kg	0.2	A-T-050s
Organic matter _D ^{M#}	-	0.9	-	-	6.3	5.3	3.6	% w/w	0.1	A-T-032 OM
Arsenic ^{D^{M#}}	5	6	6	4	14	73	7	mg/kg	1	A-T-024s
Cadmium _D ^{M#}	1.0	1.3	0.9	1.0	2.0	7.3	1.4	mg/kg	0.5	A-T-024s
Copper _D ^{M#}	18	14	14	15	61	125	23	mg/kg	1	A-T-024s
Chromium _D ^{M#}	24	28	24	23	30	51	26	mg/kg	1	A-T-024s
Lead _D ^{M#}	74	43	12	25	1730	1640	110	mg/kg	1	A-T-024s
Mercury _D	<0.17	<0.17	<0.17	<0.17	<0.17	0.20	1.10	mg/kg	0.17	A-T-024s
Nickel ^{D^{M#}}	18	21	22	19	30	124	22	mg/kg	1	A-T-024s
Selenium _D ^{M#}	<1	<1	<1	<1	<1	<1	2	mg/kg	1	A-T-024s
Zinc _D ^{M#}	82	64	40	62	245	702	68	mg/kg	5	A-T-024s

Client Project Name: Bedfield

Lab Sample ID	22/03386/1	22/03386/3	22/03386/4	22/03386/6	22/03386/8	22/03386/9	22/03386/10			
Client Sample No	1	1	2	1	1	2	1			
Client Sample ID	WS10	WS08	WS08	WS09	WS04	WS04	WS01			
Depth to Top	0.10	0.60	1.20	0.30	0.25	1.00	0.30			
Depth To Bottom									tion	
Date Sampled	30-Mar-22	30-Mar-22	30-Mar-22	30-Mar-22	30-Mar-22	30-Mar-22	31-Mar-22		Detec	ef
Sample Type	Soil - ES	s	it of [Jodr						
Sample Matrix Code	6AB	3A	5AB	5A	6AB	6AB	6A	Unit	Lim	Metl
Asbestos in Soil (inc. matrix)										
Asbestos in soil _D #	-	NAD	-	-	NAD	NAD	NAD			A-T-045
Asbestos Matrix (visual)⊳	-	-	-	-	-	-	-			A-T-045
Asbestos Matrix (microscope)⊳	-	-	-	-	-	-	-			A-T-045
Asbestos ACM - Suitable for Water Absorption Test? _D	-	N/A	-	-	N/A	N/A	N/A			A-T-045

Client Project Name: Bedfield

Lab Sample ID	22/03386/1	22/03386/3	22/03386/4	22/03386/6	22/03386/8	22/03386/9	22/03386/10			
Client Sample No	1	1	2	1	1	2	1			
Client Sample ID	WS10	WS08	WS08	WS09	WS04	WS04	WS01			
Depth to Top	0.10	0.60	1.20	0.30	0.25	1.00	0.30			
Depth To Bottom									ion	
Date Sampled	30-Mar-22	30-Mar-22	30-Mar-22	30-Mar-22	30-Mar-22	30-Mar-22	31-Mar-22		etect	đ
Sample Type	Soil - ES	w	t of D	od re						
Sample Matrix Code	6AB	3A	5AB	5A	6AB	6AB	6A	Unit	Limi	Meth
PAH-16MS										
Acenaphthene _A ^{M#}	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	mg/kg	0.01	A-T-019s
Acenaphthylene _A ^{M#}	<0.01	<0.01	<0.01	<0.01	0.02	<0.01	<0.01	mg/kg	0.01	A-T-019s
Anthracene _A ^{M#}	<0.02	<0.02	<0.02	<0.02	0.04	0.03	<0.02	mg/kg	0.02	A-T-019s
Benzo(a)anthracene ^{AM#}	0.05	<0.04	<0.04	<0.04	0.22	0.16	0.11	mg/kg	0.04	A-T-019s
Benzo(a)pyrene _A ^{M#}	0.07	<0.04	<0.04	<0.04	0.26	0.16	0.12	mg/kg	0.04	A-T-019s
Benzo(b)fluoranthene _A ^{M#}	0.08	<0.05	<0.05	<0.05	0.28	0.19	0.15	mg/kg	0.05	A-T-019s
Benzo(ghi)perylene _A ^{M#}	<0.05	<0.05	<0.05	<0.05	0.12	<0.05	0.07	mg/kg	0.05	A-T-019s
Benzo(k)fluoranthene _A ^{M#}	<0.07	<0.07	<0.07	<0.07	0.11	<0.07	<0.07	mg/kg	0.07	A-T-019s
Chrysene _A ^{M#}	<0.06	<0.06	<0.06	<0.06	0.27	0.19	0.14	mg/kg	0.06	A-T-019s
Dibenzo(ah)anthracene _A ^{M#}	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	mg/kg	0.04	A-T-019s
Fluoranthene _A ^{M#}	0.13	<0.08	<0.08	<0.08	0.51	0.42	0.25	mg/kg	0.08	A-T-019s
Fluorene ^{A^{M#}}	<0.01	<0.01	<0.01	<0.01	<0.01	0.03	0.01	mg/kg	0.01	A-T-019s
Indeno(123-cd)pyrene ^{A^{M#}}	<0.03	<0.03	<0.03	<0.03	0.15	0.09	0.07	mg/kg	0.03	A-T-019s
Naphthalene A ^{M#}	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	mg/kg	0.03	A-T-019s
Phenanthrene _A ^{M#}	0.05	<0.03	<0.03	<0.03	0.20	0.24	0.12	mg/kg	0.03	A-T-019s
Pyrene ^{AM#}	0.12	<0.07	<0.07	<0.07	0.45	0.36	0.22	mg/kg	0.07	A-T-019s
Total PAH-16MS _A ^{M#}	0.50	<0.08	<0.08	<0.08	2.63	1.87	1.26	mg/kg	0.01	A-T-019s

Client Project Name: Bedfield

Lab Sample ID	22/03386/1	22/03386/3	22/03386/4	22/03386/6	22/03386/8	22/03386/9	22/03386/10			
Client Sample No	1	1	2	1	1	2	1			
Client Sample ID	WS10	WS08	WS08	WS09	WS04	WS04	WS01			
Depth to Top	0.10	0.60	1.20	0.30	0.25	1.00	0.30			
Depth To Bottom									ion	
Date Sampled	30-Mar-22	30-Mar-22	30-Mar-22	30-Mar-22	30-Mar-22	30-Mar-22	31-Mar-22		etect	Į.
Sample Type	Soil - ES		of D	od re						
Sample Matrix Code	6AB	3A	5AB	5A	6AB	6AB	6A	Units	Limit	Meth
voc										
Dichlorodifluoromethane _A	-	-	-	-	<1	<1	<1	µg/kg	1	A-T-006s
Chloromethane _A	-	-	-	-	<10	<10	<10	µg/kg	10	A-T-006s
Vinyl Chloride (Chloroethene) _A #	-	-	-	-	<1	<1	<1	µg/kg	1	A-T-006s
Bromomethane ₄ #	-	-	-	-	<1	<1	<1	µg/kg	1	A-T-006s
Chloroethane _A #	-	-	-	-	<1	<1	<1	µg/kg	1	A-T-006s
Trichlorofluoromethane _A #	-	-	-	-	<1	<1	<1	µg/kg	1	A-T-006s
1,1-Dichloroethene ⁴	-	-	-	-	<1	<1	<1	µg/kg	1	A-T-006s
Carbon Disulphide _A #	-	-	-	-	<1	<1	<1	µg/kg	1	A-T-006s
Dichloromethane _A	-	-	-	-	<5	<5	<5	µg/kg	5	A-T-006s
trans 1,2-Dichloroethene _A #	-	-	-	-	<1	<1	<1	µg/kg	1	A-T-006s
1,1-Dichloroethane _A #	-	-	-	-	<1	<1	<1	µg/kg	1	A-T-006s
cis 1,2-Dichloroethene _A #	-	-	-	-	<1	<1	<1	µg/kg	1	A-T-006s
2,2-Dichloropropane [#]	-	-	-	-	<1	<1	<1	µg/kg	1	A-T-006s
Bromochloromethane _A #	-	-	-	-	<5	<5	<5	µg/kg	5	A-T-006s
Chloroform _A #	-	-	-	-	<1	<1	<1	µg/kg	1	A-T-006s
1,1,1-Trichloroethane _A #	-	-	-	-	<1	<1	<1	µg/kg	1	A-T-006s
1,1-Dichloropropene ⁴	-	-	-	-	<1	<1	<1	µg/kg	1	A-T-006s
Carbon Tetrachloride _A #	-	-	-	-	<1	<1	<1	µg/kg	1	A-T-006s
1,2-Dichloroethane _A #	-	-	-	-	<2	<2	<2	µg/kg	2	A-T-006s
Benzene _A #	-	-	-	-	<1	<1	<1	µg/kg	1	A-T-006s
Trichloroethene _A #	-	-	-	-	<1	<1	<1	µg/kg	1	A-T-006s
1,2-Dichloropropane _A #	-	-	-	-	<1	<1	<1	µg/kg	1	A-T-006s
Dibromomethane _A [#]	-	-	-	-	<1	<1	<1	µg/kg	1	A-T-006s
Bromodichloromethane _A #	-	-	-	-	<10	<10	<10	µg/kg	10	A-T-006s
cis 1,3-Dichloropropene ⁴	-	-	-	-	<1	<1	<1	µg/kg	1	A-T-006s
Toluene _A #	-	-	-	-	<1	<1	<1	µg/kg	1	A-T-006s
trans 1,3-Dichloropropene ⁴	-	-	-	-	<1	<1	<1	µg/kg	1	A-T-006s
1,1,2-Trichloroethane [#]	-	-	-	-	<1	<1	<1	µg/kg	1	A-T-006s
1,3-Dichloropropane _A #	-	-	-	-	<1	<1	<1	µg/kg	1	A-T-006s
Tetrachloroethene₄ [#]	-	-	-	-	<1	<1	<1	µg/kg	1	A-T-006s
Dibromochloromethane _A #	-	-	-	-	<3	<3	<3	µg/kg	3	A-T-006s
1,2-Dibromoethane _A #	-	-	-	-	<1	<1	<1	µg/kg	1	A-T-006s

Limit of Detection

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

2

1

1

1

1

1

1

1

2

3

1

3

µg/kg

Method ref

A-T-006s

A-T-006s

A-T-006s A-T-006s

A-T-006s A-T-006s

A-T-006s

A-T-006s

A-T-006s

A-T-006s

A-T-006s

A-T-006s

A-T-006s A-T-006s

A-T-006s A-T-006s

A-T-006s

A-T-006s

A-T-006s A-T-006s

A-T-006s

A-T-006s

A-T-006s

A-T-006s

A-T-006s A-T-006s

A-T-006s

Envirolab Job Number: 22/03386

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

Bromobenzene_A#

n-Propylbenzene_A#

2-Chlorotoluene_A#

4-Chlorotoluene_A#

tert-Butylbenzene_A#

sec-Butylbenzene_A#

4-Isopropyltoluene_A#

1.3-Dichlorobenzene₄

1,4-Dichlorobenzene[#]

1,2-Dichlorobenzene_A#

1,2,4-Trichlorobenzene_A

Hexachlorobutadiene_A#

1,2,3-Trichlorobenzene_A

1,2-Dibromo-3-chloropropane (DCBP)A

n-Butylbenzene_A#

1,3,5-Trimethylbenzene_A#

1,2,4-Trimethylbenzene[#]

Client Project Name: Bedfield

					Client Pro	ject Ref: 61	647		
Lab Sample ID	22/03386/1	22/03386/3	22/03386/4	22/03386/6	22/03386/8	22/03386/9	22/03386/10		
Client Sample No	1	1	2	1	1	2	1		
Client Sample ID	WS10	WS08	WS08	WS09	WS04	WS04	WS01		
Depth to Top	0.10	0.60	1.20	0.30	0.25	1.00	0.30		
Depth To Bottom									
Date Sampled	30-Mar-22	30-Mar-22	30-Mar-22	30-Mar-22	30-Mar-22	30-Mar-22	31-Mar-22		
Sample Type	Soil - ES	Soil - ES	6						
Sample Matrix Code	6AB	3A	5AB	5A	6AB	6AB	6A	Unit	
Chlorobenzene _A #	-	-	-	-	<1	<1	<1	µg/kg	
1,1,1,2-Tetrachloroethane _A	-	-	-	-	<1	<1	<1	µg/kg	
Ethylbenzene _A [#]	-	-	-	-	<1	<1	<1	µg/kg	
m & p Xylene _A #	-	-	-	-	<1	<1	<1	µg/kg	
o-Xylene _A #	-	-	-	-	<1	<1	<1	µg/kg	
Styrene ⁴	-	-	-	-	<1	<1	<1	µg/kg	
Bromoform _A [#]	-	-	-	-	<1	<1	<1	µg/kg	
Isopropylbenzene _A #	-	-	-	-	<1	<1	<1	µg/kg	
1,1,2,2-Tetrachloroethane _A	-	-	-	-	<1	<1	<1	µg/kg	
1,2,3-Trichloropropane _A #	-	-	-	-	<1	<1	<1	µg/kg	

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

<1

<1

<1

<1

<1

<2

<1

<1

<1

<1

<1

<1

<1

<2

<3

<1

<3

<1

<1

<1

<1

<1

<2

<1

<1

<1

<1

<1

<1

<1

<2

<3

<1

<3

<1

<1

<1

<1

<1

<2

<1

<1

<1

<1

<1

<1

<1

<2

<3

<1

<3

Client Project Name: Bedfield

Lab Sample ID	22/03386/1	22/03386/3	22/03386/4	22/03386/6	22/03386/8	22/03386/9	22/03386/10			
Client Sample No	1	1	2	1	1	2	1			
Client Sample ID	WS10	WS08	WS08	WS09	WS04	WS04	WS01			
Depth to Top	0.10	0.60	1.20	0.30	0.25	1.00	0.30			
Depth To Bottom									ion	
Date Sampled	30-Mar-22	30-Mar-22	30-Mar-22	30-Mar-22	30-Mar-22	30-Mar-22	31-Mar-22		etect	*
Sample Type	Soil - ES		t of D	od re						
Sample Matrix Code	6AB	3A	5AB	5A	6AB	6AB	6A	Units	Limit	Meth
TPH UKCWG with Clean Up *C1										
Ali >C5-C6 _A #	-	<0.01	-	-	<0.01	<0.01	<0.01	mg/kg	0.01	A-T-022s
Ali >C6-C8 _A #	-	<0.01	-	-	<0.01	<0.01	<0.01	mg/kg	0.01	A-T-022s
Ali >C8-C10 _A	-	<1	-	-	<1	<1	<1	mg/kg	1	A-T-055s
Ali >C10-C12 _A ^{M#}	-	<1	-	-	<1	<1	<1	mg/kg	1	A-T-055s
Ali >C12-C16 _A ^{M#}	-	<1	-	-	<1	<1	<1	mg/kg	1	A-T-055s
Ali >C16-C21 _A ^{M#}	-	<1	-	-	<1	<1	<1	mg/kg	1	A-T-055s
Ali >C21-C35 ^{AM#}	-	<1	-	-	6	3	6	mg/kg	1	A-T-055s
Ali >C35-C44 _A	-	<1	-	-	4	<1	<1	mg/kg	1	A-T-055s
Total Aliphatics _A	-	<1	-	-	10	3	6	mg/kg	1	A-T-055s
Aro >C5-C7 _A #	-	<0.01	-	-	<0.01	<0.01	<0.01	mg/kg	0.01	A-T-022s
Aro >C7-C8 ₄ #	-	<0.01	-	-	<0.01	<0.01	<0.01	mg/kg	0.01	A-T-022s
Aro >C8-C10₄	-	<1	-	-	<1	<1	<1	mg/kg	1	A-T-055s
Aro >C10-C12 _A	-	<1	-	-	<1	<1	<1	mg/kg	1	A-T-055s
Aro >C12-C16 _A	-	<1	-	-	6	<1	1	mg/kg	1	A-T-055s
Aro >C16-C21 _A ^{M#}	-	<1	-	-	17	4	6	mg/kg	1	A-T-055s
Aro >C21-C35 _A	-	<1	-	-	37	12	9	mg/kg	1	A-T-055s
Aro >C35-C44 _A	-	<1	-	-	2	<1	<1	mg/kg	1	A-T-055s
Total Aromatics _A	-	<1	-	-	62	16	16	mg/kg	1	A-T-055s
TPH (Ali & Aro >C5-C44)₄	-	<1	-	-	72	19	22	mg/kg	1	A-T-055s
BTEX - Benzene _A #	-	<0.01	-	-	<0.01	<0.01	<0.01	mg/kg	0.01	A-T-022s
BTEX - Toluene _A #	-	<0.01	-	-	<0.01	<0.01	<0.01	mg/kg	0.01	A-T-022s
BTEX - Ethyl Benzene _A #	-	<0.01	-	-	<0.01	<0.01	<0.01	mg/kg	0.01	A-T-022s
BTEX - m & p Xylene _A #	-	<0.01	-	-	<0.01	<0.01	<0.01	mg/kg	0.01	A-T-022s
BTEX - o Xylene [#]	-	<0.01	-	-	<0.01	<0.01	<0.01	mg/kg	0.01	A-T-022s
MTBE _A #	-	<0.01	-	-	<0.01	<0.01	<0.01	mg/kg	0.01	A-T-022s

Client Project Name: Bedfield

Lab Sample ID	22/03386/11	22/03386/12	22/03386/13	22/03386/15	22/03386/16	22/03386/17	22/03386/19			
Client Sample No	2	1	2	1	2	1	1			
Client Sample ID	WS01	WS03	WS03	WS05	WS05	WS06	WS02			
Depth to Top	0.90	0.40	1.00	0.10	0.80	0.40	0.40			
Depth To Bottom									tion	
Date Sampled	31-Mar-22		Detect	ef						
Sample Type	Soil - ES	Solid	s	it of D	n bot					
Sample Matrix Code	4A	6A	3A	6A	3A	6A	7	Unit	Ē	Metl
% Stones >10mm _A	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	% w/w	0.1	A-T-044
pH₀ ^{M#}	8.92	8.23	-	8.27	-	11.47	8.52	рН	0.01	A-T-031s
Sulphate (water sol 2:1) _D ^{M#}	<0.01	<0.01	-	<0.01	-	0.06	<0.01	g/I	0.01	A-T-026s
Sulphur BRE (total)₀	0.01	0.07	-	0.04	-	0.06	0.05	% w/w	0.01	A-T-024s
Cyanide (total) _A ^{M#}	<1	<1	-	<1	-	<1	<1	mg/kg	1	A-T-042sTCN
Phenols - Total by HPLC _A	<0.2	<0.2	-	<0.2	-	<0.2	<0.2	mg/kg	0.2	A-T-050s
Organic matter _D ^{M#}	<0.1	4.8	-	2.7	-	0.9	5.5	% w/w	0.1	A-T-032 OM
Arsenic _D ^{M#}	3	7	7	4	2	5	5	mg/kg	1	A-T-024s
Cadmium _D ^{M#}	<0.5	1.3	1.4	1.1	1.1	1.2	1.3	mg/kg	0.5	A-T-024s
Copper _D ^{M#}	6	22	19	20	17	18	16	mg/kg	1	A-T-024s
Chromium _D ^{M#}	10	27	34	28	29	32	17	mg/kg	1	A-T-024s
Lead _D ^{M#}	15	592	19	85	15	110	341	mg/kg	1	A-T-024s
Mercury _D	<0.17	0.91	1.72	<0.17	<0.17	0.54	1.83	mg/kg	0.17	A-T-024s
Nickel ^{D^{M#}}	10	21	46	20	23	24	13	mg/kg	1	A-T-024s
Selenium _D ^{M#}	<1	<1	1	<1	<1	<1	<1	mg/kg	1	A-T-024s
Zinc _D ^{M#}	16	73	50	70	84	106	203	mg/kg	5	A-T-024s
b.										-

Client Project Name: Bedfield

Lab Sample ID	22/03386/11	22/03386/12	22/03386/13	22/03386/15	22/03386/16	22/03386/17	22/03386/19			
Client Sample No	2	1	2	1	2	1	1			
Client Sample ID	WS01	WS03	WS03	WS05	WS05	WS06	WS02			
Depth to Top	0.90	0.40	1.00	0.10	0.80	0.40	0.40			
Depth To Bottom									tion	
Date Sampled	31-Mar-22		Detect	ef						
Sample Type	Soil - ES	Solid	s	it of D	nod r					
Sample Matrix Code	4A	6A	3A	6A	3A	6A	7	Unit	Limi	Metl
Asbestos in Soil (inc. matrix)										
Asbestos in soil _D #	-	NAD	-	NAD	-	NAD	NAD			A-T-045
Asbestos Matrix (visual)⊳	-	-	-	-	-	-	-			A-T-045
Asbestos Matrix (microscope)	-	-	-	-	-	-	-			A-T-045
Asbestos ACM - Suitable for Water Absorption Test? _D	-	N/A	-	N/A	-	N/A	N/A			A-T-045

Client Project Name: Bedfield

Lab Sample ID	22/03386/11	22/03386/12	22/03386/13	22/03386/15	22/03386/16	22/03386/17	22/03386/19			
Client Sample No	2	1	2	1	2	1	1			
Client Sample ID	WS01	WS03	WS03	WS05	WS05	WS06	WS02			
Depth to Top	0.90	0.40	1.00	0.10	0.80	0.40	0.40			
Depth To Bottom									tion	
Date Sampled	31-Mar-22		etect	ef.						
Sample Type	Soil - ES	Solid	w	t of D	od re					
Sample Matrix Code	4A	6A	3A	6A	3A	6A	7	Unit	Limi	Meth
PAH-16MS										
Acenaphthene _A ^{M#}	<0.01	<0.01	<0.01	0.04	0.85	<0.01	0.05	mg/kg	0.01	A-T-019s
Acenaphthylene _A ^{M#}	<0.01	<0.01	<0.01	0.05	<0.01	<0.01	0.05	mg/kg	0.01	A-T-019s
Anthracene _A ^{M#}	<0.02	<0.02	<0.02	0.14	0.38	<0.02	0.14	mg/kg	0.02	A-T-019s
Benzo(a)anthracene _A ^{M#}	<0.04	0.08	<0.04	0.44	0.09	0.11	0.71	mg/kg	0.04	A-T-019s
Benzo(a)pyrene₄ ^{M#}	<0.04	0.08	<0.04	0.42	0.07	0.13	0.79	mg/kg	0.04	A-T-019s
Benzo(b)fluoranthene _A ^{M#}	<0.05	0.09	<0.05	0.48	0.09	0.14	0.90	mg/kg	0.05	A-T-019s
Benzo(ghi)perylene ^{AM#}	<0.05	<0.05	<0.05	0.22	<0.05	0.07	0.43	mg/kg	0.05	A-T-019s
Benzo(k)fluoranthene _A ^{M#}	<0.07	<0.07	<0.07	0.18	<0.07	<0.07	0.35	mg/kg	0.07	A-T-019s
Chrysene _A ^{M#}	<0.06	0.09	<0.06	0.51	0.10	0.13	0.83	mg/kg	0.06	A-T-019s
Dibenzo(ah)anthracene _A ^{M#}	<0.04	<0.04	<0.04	0.05	<0.04	<0.04	0.09	mg/kg	0.04	A-T-019s
Fluoranthene₄ ^{M#}	<0.08	0.22	<0.08	1.13	0.42	0.22	1.87	mg/kg	0.08	A-T-019s
Fluorene ^{A^{M#}}	<0.01	<0.01	<0.01	0.06	1.04	<0.01	0.12	mg/kg	0.01	A-T-019s
Indeno(123-cd)pyrene _A ^{M#}	<0.03	<0.03	<0.03	0.23	0.04	0.07	0.48	mg/kg	0.03	A-T-019s
Naphthalene A ^{M#}	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	0.05	mg/kg	0.03	A-T-019s
Phenanthrene _A ^{M#}	<0.03	0.08	<0.03	0.70	0.15	0.06	0.85	mg/kg	0.03	A-T-019s
Pyrene ^{A^{M#}}	<0.07	0.17	<0.07	0.94	0.30	0.20	1.56	mg/kg	0.07	A-T-019s
Total PAH-16MS _A ^{M#}	<0.08	0.81	<0.08	5.59	3.53	1.13	9.27	mg/kg	0.01	A-T-019s

Client Project Name: Bedfield

Lab Sample ID	22/03386/11	22/03386/12	22/03386/13	22/03386/15	22/03386/16	22/03386/17	22/03386/19			
Client Sample No	2	1	2	1	2	1	1			
Client Sample ID	WS01	WS03	WS03	WS05	WS05	WS06	WS02			
Depth to Top	0.90	0.40	1.00	0.10	0.80	0.40	0.40			
Depth To Bottom									ion	
Date Sampled	31-Mar-22		etect	ų						
Sample Type	Soil - ES	Solid		of D	od re					
Sample Matrix Code	4A	6A	3A	6A	3A	6A	7	Units	Limit	Meth
voc										
Dichlorodifluoromethane	-	<1	-	-	-	-	<1	µg/kg	1	A-T-006s
Chloromethane _A	-	<10	-	-	-	-	<10	µg/kg	10	A-T-006s
Vinyl Chloride (Chloroethene) _A #	-	<1	-	-	-	-	<1	µg/kg	1	A-T-006s
Bromomethane _A #	-	<1	-	-	-	-	<1	µg/kg	1	A-T-006s
Chloroethane _A #	-	<1	-	-	-	-	<1	µg/kg	1	A-T-006s
Trichlorofluoromethane _A #	-	<1	-	-	-	-	<1	µg/kg	1	A-T-006s
1,1-Dichloroethene _A #	-	<1	-	-	-	-	<1	µg/kg	1	A-T-006s
Carbon Disulphide _A #	-	<1	-	-	-	-	<1	µg/kg	1	A-T-006s
Dichloromethane _A	-	<5	-	-	-	-	<5	µg/kg	5	A-T-006s
trans 1,2-Dichloroethene _A #	-	<1	-	-	-	-	<1	µg/kg	1	A-T-006s
1,1-Dichloroethane _A #	-	<1	-	-	-	-	<1	µg/kg	1	A-T-006s
cis 1,2-Dichloroethene [#]	-	<1	-	-	-	-	<1	µg/kg	1	A-T-006s
2,2-Dichloropropane [#]	-	<1	-	-	-	-	<1	µg/kg	1	A-T-006s
Bromochloromethane _A #	-	<5	-	-	-	-	<5	µg/kg	5	A-T-006s
Chloroform _A #	-	<1	-	-	-	-	<1	µg/kg	1	A-T-006s
1,1,1-Trichloroethane [#]	-	<1	-	-	-	-	<1	µg/kg	1	A-T-006s
1,1-Dichloropropene ⁴	-	<1	-	-	-	-	<1	µg/kg	1	A-T-006s
Carbon Tetrachloride _A #	-	<1	-	-	-	-	<1	µg/kg	1	A-T-006s
1,2-Dichloroethane _A #	-	<2	-	-	-	-	<2	µg/kg	2	A-T-006s
Benzene _A #	-	<1	-	-	-	-	<1	µg/kg	1	A-T-006s
Trichloroethene _A #	-	<1	-	-	-	-	<1	µg/kg	1	A-T-006s
1,2-Dichloropropane _A #	-	<1	-	-	-	-	<1	µg/kg	1	A-T-006s
Dibromomethane₄ [#]	-	<1	-	-	-	-	<1	µg/kg	1	A-T-006s
Bromodichloromethane _A #	-	<10	-	-	-	-	<10	µg/kg	10	A-T-006s
cis 1,3-Dichloropropene ⁴	-	<1	-	-	-	-	<1	µg/kg	1	A-T-006s
Toluene _A #	-	<1	-	-	-	-	<1	µg/kg	1	A-T-006s
trans 1,3-Dichloropropene ⁴	-	<1	-	-	-	-	<1	µg/kg	1	A-T-006s
1,1,2-Trichloroethane [#]	-	<1	-	-	-	-	<1	µg/kg	1	A-T-006s
1,3-Dichloropropane [#]	-	<1	-	-	-	-	<1	µg/kg	1	A-T-006s
Tetrachloroethene₄ [#]	-	<1	-	-	-	-	<1	µg/kg	1	A-T-006s
Dibromochloromethane _A #	-	<3	-	-	-	-	<3	µg/kg	3	A-T-006s
1,2-Dibromoethane _A #	-	<1	-	-	-	-	<1	µg/kg	1	A-T-006s

Lab Sample ID Client Sample No

Client Project Name: Bedfield

	Client Project Ref: 61647										
22/03386/11	22/03386/12	22/03386/13	22/03386/15	22/03386/16	22/03386/17	22/03386/19					
2	1	2	1	2	1	1					
WS01	WS03	WS03	WS05	WS05	WS06	WS02					
0.90	0.40	1.00	0.10	0.80	0.40	0.40	1				

Client Sample ID	WS01	WS03	WS03	WS05	WS05	WS06	WS02			
Depth to Top	0.90	0.40	1.00	0.10	0.80	0.40	0.40			
Depth To Bottom									ion	
Date Sampled	31-Mar-22		etect	۹,						
Sample Type	Soil - ES	Solid	<i>"</i>	t of D	od re					
Sample Matrix Code	4A	6A	3A	6A	3A	6A	7	Unit	Limi	Meth
Chlorobenzene _A #	-	<1	-	-	-	-	<1	µg/kg	1	A-T-006s
1,1,1,2-Tetrachloroethane _A	-	<1	-	-	-	-	<1	µg/kg	1	A-T-006s
Ethylbenzene _A #	-	<1	-	-	-	-	<1	µg/kg	1	A-T-006s
m & p Xylene _A #	-	<1	-	-	-	-	<1	µg/kg	1	A-T-006s
o-Xylene₄ [#]	-	<1	-	-	-	-	<1	µg/kg	1	A-T-006s
Styrene₄ [#]	-	<1	-	-	-	-	<1	µg/kg	1	A-T-006s
Bromoform _A #	-	<1	-	-	-	-	<1	µg/kg	1	A-T-006s
lsopropylbenzene₄ [#]	-	<1	-	-	-	-	<1	µg/kg	1	A-T-006s
1,1,2,2-Tetrachloroethane _A	-	<1	-	-	-	-	<1	µg/kg	1	A-T-006s
1,2,3-Trichloropropane₄ [#]	-	<1	-	-	-	-	<1	µg/kg	1	A-T-006s
Bromobenzene ^{"#}	-	<1	-	-	-	-	<1	µg/kg	1	A-T-006s
n-Propylbenzene _A #	-	<1	-	-	-	-	<1	µg/kg	1	A-T-006s
2-Chlorotoluene _A #	-	<1	-	-	-	-	<1	µg/kg	1	A-T-006s
1,3,5-Trimethylbenzene _A #	-	<1	-	-	-	-	<1	µg/kg	1	A-T-006s
4-Chlorotoluene _A #	-	<1	-	-	-	-	<1	µg/kg	1	A-T-006s
tert-Butylbenzene [#]	-	<2	-	-	-	-	<2	µg/kg	2	A-T-006s
1,2,4-Trimethylbenzene _A #	-	<1	-	-	-	-	<1	µg/kg	1	A-T-006s
sec-Butylbenzene₄ [#]	-	<1	-	-	-	-	<1	µg/kg	1	A-T-006s
4-Isopropyltoluene _A #	-	<1	-	-	-	-	<1	µg/kg	1	A-T-006s
1,3-Dichlorobenzene _A	-	<1	-	-	-	-	<1	µg/kg	1	A-T-006s
1,4-Dichlorobenzene _A #	-	<1	-	-	-	-	<1	µg/kg	1	A-T-006s
n-Butylbenzene _A #	-	<1	-	-	-	-	<1	µg/kg	1	A-T-006s
1,2-Dichlorobenzene ⁴	-	<1	-	-	-	-	<1	µg/kg	1	A-T-006s
1,2-Dibromo-3-chloropropane (DCBP) _A	-	<2	-	-	-	-	<2	µg/kg	2	A-T-006s
1,2,4-Trichlorobenzene _A	-	<3	-	-	-	-	<3	µg/kg	3	A-T-006s
Hexachlorobutadiene _A #	-	<1	-	-	-	-	<1	µg/kg	1	A-T-006s
1,2,3-Trichlorobenzene _A	-	<3	-	-	-	-	<3	µg/kg	3	A-T-006s

Client Project Name: Bedfield

Lab Sample ID	22/03386/11	22/03386/12	22/03386/13	22/03386/15	22/03386/16	22/03386/17	22/03386/19			
Client Sample No	2	1	2	1	2	1	1			
Client Sample ID	WS01	WS03	WS03	WS05	WS05	WS06	WS02			
Depth to Top	0.90	0.40	1.00	0.10	0.80	0.40	0.40			
Depth To Bottom									io	
Date Sampled	31-Mar-22		etect	J.						
Sample Type	Soil - ES	Solid		of D	od re					
Sample Matrix Code	4A	6A	3A	6A	3A	6A	7	Units	Limit	Meth
TPH UKCWG with Clean Up *C1										
Ali >C5-C6 _A #	<0.01	<0.01	-	<0.01	-	<0.01	<0.01	mg/kg	0.01	A-T-022s
Ali >C6-C8 _A [#]	<0.01	<0.01	-	<0.01	-	<0.01	<0.01	mg/kg	0.01	A-T-022s
Ali >C8-C10 _A	<1	<1	-	<1	-	<1	<1	mg/kg	1	A-T-055s
Ali >C10-C12 _A ^{M#}	<1	<1	-	<1	-	<1	<1	mg/kg	1	A-T-055s
Ali >C12-C16 _A ^{M#}	<1	<1	-	<1	-	<1	<1	mg/kg	1	A-T-055s
Ali >C16-C21 _A ^{M#}	<1	<1	-	<1	-	<1	<1	mg/kg	1	A-T-055s
Ali >C21-C35 _A ^{M#}	<1	3	-	35	-	8	14	mg/kg	1	A-T-055s
Ali >C35-C44 _A	<1	<1	-	11	-	2	4	mg/kg	1	A-T-055s
Total Aliphatics _A	<1	3	-	46	-	11	18	mg/kg	1	A-T-055s
Aro >C5-C7 _A #	<0.01	<0.01	-	<0.01	-	<0.01	<0.01	mg/kg	0.01	A-T-022s
Aro >C7-C8 ₄ #	<0.01	<0.01	-	<0.01	-	<0.01	<0.01	mg/kg	0.01	A-T-022s
Aro >C8-C10₄	<1	<1	-	<1	-	<1	<1	mg/kg	1	A-T-055s
Aro >C10-C12 _A	<1	<1	-	1	-	<1	<1	mg/kg	1	A-T-055s
Aro >C12-C16 _A	<1	<1	-	5	-	<1	1	mg/kg	1	A-T-055s
Aro >C16-C21 _A ^{M#}	<1	<1	-	28	-	<1	8	mg/kg	1	A-T-055s
Aro >C21-C35 _A	<1	4	-	100	-	4	30	mg/kg	1	A-T-055s
Aro >C35-C44 _A	<1	<1	-	7	-	<1	3	mg/kg	1	A-T-055s
Total Aromatics _A	<1	4	-	142	-	4	42	mg/kg	1	A-T-055s
TPH (Ali & Aro >C5-C44)₄	<1	7	-	187	-	14	60	mg/kg	1	A-T-055s
BTEX - Benzene _A #	<0.01	<0.01	-	<0.01	-	<0.01	<0.01	mg/kg	0.01	A-T-022s
BTEX - Toluene _A #	<0.01	<0.01	-	<0.01	-	<0.01	<0.01	mg/kg	0.01	A-T-022s
BTEX - Ethyl Benzene _A #	<0.01	<0.01	-	<0.01	-	<0.01	<0.01	mg/kg	0.01	A-T-022s
BTEX - m & p Xylene _A #	<0.01	<0.01	-	<0.01	-	<0.01	<0.01	mg/kg	0.01	A-T-022s
BTEX - o Xylene _A #	<0.01	<0.01	-	<0.01	-	<0.01	<0.01	mg/kg	0.01	A-T-022s
MTBE _A #	<0.01	<0.01	-	<0.01	-	<0.01	<0.01	mg/kg	0.01	A-T-022s

Client Project Name: Bedfield

Lab Sample ID	22/03386/21						
Client Sample No	1						
Client Sample ID	WS07						
Depth to Top	0.50						
Depth To Bottom						ion	
Date Sampled	31-Mar-22					etect	jf
Sample Type	Soil - ES				ú	t of D	od re
Sample Matrix Code	6A				Units	Limi	Meth
% Stones >10mm _A	<0.1				% w/w	0.1	A-T-044
pH₀ ^{M#}	8.15				рН	0.01	A-T-031s
Sulphate (water sol 2:1) _D ^{M#}	<0.01				g/l	0.01	A-T-026s
Sulphur BRE (total)⊳	0.01				% w/w	0.01	A-T-024s
Cyanide (total)₄ ^{M#}	<1				mg/kg	1	A-T-042sTCN
Phenols - Total by HPLC _A	<0.2				mg/kg	0.2	A-T-050s
Organic matter _D ^{M#}	0.9				% w/w	0.1	A-T-032 OM
Arsenic _D ^{M#}	4				mg/kg	1	A-T-024s
Cadmium _D ^{M#}	1.1				mg/kg	0.5	A-T-024s
Copper _D ^{M#}	12				mg/kg	1	A-T-024s
Chromium _D ^{M#}	20				mg/kg	1	A-T-024s
Lead _D ^{M#}	20				mg/kg	1	A-T-024s
Mercury _D	<0.17				mg/kg	0.17	A-T-024s
Nickel ^{d^{M#}}	15				mg/kg	1	A-T-024s
Selenium _D ^{M#}	<1				mg/kg	1	A-T-024s
Zinc _D ^{M#}	56				mg/kg	5	A-T-024s

Client Project Name: Bedfield

Lab Sample ID	22/03386/21						
Client Sample No	1						
Client Sample ID	WS07						
Depth to Top	0.50						
Depth To Bottom						tion	
Date Sampled	31-Mar-22					Detect	ef
Sample Type	Soil - ES				s	t of D	o por
Sample Matrix Code	6A				Unit	Limi	Meth
Asbestos in Soil (inc. matrix)							
Asbestos in soil _D #	NAD						A-T-045
Asbestos Matrix (visual)₀	-						A-T-045
Asbestos Matrix (microscope)	-						A-T-045
Asbestos ACM - Suitable for Water Absorption Test? _D	N/A						A-T-045

Client Project Name: Bedfield

Lab Sample ID	22/03386/21						
Client Sample No	1						
Client Sample ID	WS07						
Depth to Top	0.50				-		
Depth To Bottom					-	io	
Date Sampled	31-Mar-22				-	etect	7
Sample Type	Soil - ES					t of D	od re
Sample Matrix Code	6A				Units	Limi	Meth
PAH-16MS							
Acenaphthene _A ^{M#}	<0.01				mg/kg	0.01	A-T-019s
Acenaphthylene _A ^{M#}	<0.01				mg/kg	0.01	A-T-019s
Anthracene _A ^{M#}	<0.02				mg/kg	0.02	A-T-019s
Benzo(a)anthracene _A ^{M#}	<0.04				mg/kg	0.04	A-T-019s
Benzo(a)pyrene₄ ^{M#}	<0.04				mg/kg	0.04	A-T-019s
Benzo(b)fluoranthene₄ ^{M#}	<0.05				mg/kg	0.05	A-T-019s
Benzo(ghi)perylene₄ ^{M#}	<0.05				mg/kg	0.05	A-T-019s
Benzo(k)fluoranthene _A ^{M#}	<0.07				mg/kg	0.07	A-T-019s
Chrysene _A ^{M#}	<0.06				mg/kg	0.06	A-T-019s
Dibenzo(ah)anthracene _A ^{M#}	<0.04				mg/kg	0.04	A-T-019s
Fluoranthene ^{AM#}	<0.08				mg/kg	0.08	A-T-019s
Fluorene ^{A^{M#}}	<0.01				mg/kg	0.01	A-T-019s
Indeno(123-cd)pyrene ^{AM#}	<0.03				mg/kg	0.03	A-T-019s
Naphthalene A ^{M#}	<0.03				mg/kg	0.03	A-T-019s
Phenanthrene _A ^{M#}	<0.03				mg/kg	0.03	A-T-019s
Pyrene ^{A^{M#}}	<0.07				mg/kg	0.07	A-T-019s
Total PAH-16MS _A ^{M#}	<0.08				mg/kg	0.01	A-T-019s

Client Project Name: Bedfield

Lab Sample ID	22/03386/21						
Client Sample No	1						
Client Sample ID	WS07						
Depth to Top	0.50						
Depth To Bottom						io	
Date Sampled	31-Mar-22					etect	J.
Sample Type	Soil - ES					of D	od re
Sample Matrix Code	6A				Units	Limit	Meth
TPH UKCWG with Clean Up *C1							
Ali >C5-C6 _A #	<0.01				mg/kg	0.01	A-T-022s
Ali >C6-C8 _A #	<0.01				mg/kg	0.01	A-T-022s
Ali >C8-C10 _A	<1				mg/kg	1	A-T-055s
Ali >C10-C12 _A ^{M#}	<1				mg/kg	1	A-T-055s
Ali >C12-C16 _A ^{M#}	<1				mg/kg	1	A-T-055s
Ali >C16-C21 _A ^{M#}	<1				mg/kg	1	A-T-055s
Ali >C21-C35 ^{AM#}	1				mg/kg	1	A-T-055s
Ali >C35-C44 _A	<1				mg/kg	1	A-T-055s
Total Aliphatics _A	1				mg/kg	1	A-T-055s
Aro >C5-C7 _A #	<0.01				mg/kg	0.01	A-T-022s
Aro >C7-C8 _A #	<0.01				mg/kg	0.01	A-T-022s
Aro >C8-C10 _A	<1				mg/kg	1	A-T-055s
Aro >C10-C12 _A	<1				mg/kg	1	A-T-055s
Aro >C12-C16 _A	<1				mg/kg	1	A-T-055s
Aro >C16-C21 _A ^{M#}	<1				mg/kg	1	A-T-055s
Aro >C21-C35 _A	<1				mg/kg	1	A-T-055s
Aro >C35-C44 _A	<1				mg/kg	1	A-T-055s
Total Aromatics _A	<1				mg/kg	1	A-T-055s
TPH (Ali & Aro >C5-C44)₄	1				mg/kg	1	A-T-055s
BTEX - Benzene _A #	<0.01				mg/kg	0.01	A-T-022s
BTEX - Toluene _A #	<0.01				mg/kg	0.01	A-T-022s
BTEX - Ethyl Benzene _A #	<0.01				mg/kg	0.01	A-T-022s
BTEX - m & p Xylene ₄ #	<0.01				mg/kg	0.01	A-T-022s
BTEX - o Xylene₄ [#]	<0.01				mg/kg	0.01	A-T-022s
MTBE _A #	<0.01				mg/kg	0.01	A-T-022s

REPORT NOTES

General

This report shall not be reproduced, except in full, without written approval from Envirolab.

The results reported herein relate only to the material supplied to the laboratory.

The residue of any samples contained within this report, and any received with the same delivery, will be disposed of six weeks after initial scheduling. For samples tested for Asbestos we will retain a portion of the dried sample for a minimum of six months after the initial Asbestos testing is completed.

Analytical results reflect the quality of the sample at the time of analysis only.

Opinions and interpretations expressed are outside the scope of our accreditation.

If results are in italic font they are associated with an AQC failure, these are not accredited and are unreliable.

A deviating samples report is appended and will indicate if samples or tests have been found to be deviating. Any test results affected may not be an accurate record of the concentration at the time of sampling and, as a result, may be invalid.

The Client Sample No, Client Sample ID, Depth to Top, Depth to Bottom and Date Sampled were all provided by the client.

Soil chemical analysis:

All results are reported as dry weight (<40°C).

For samples with Matrix Codes 1 - 6 natural stones, brick and concrete fragments >10mm and any extraneous material (visible glass, metal or twigs) are removed and excluded from the sample prior to analysis and reported results corrected to a whole sample basis. This is reported as '% stones >10mm'.

For samples with Matrix Code 7 the whole sample is dried and crushed prior to analysis and this supersedes any "A" subscripts All analysis is performed on the sample as received for soil samples which are positive for asbestos or the client has informed asbestos may be present and/or if they are from outside the European Union and this supersedes any "D" subscripts.

TPH analysis of water by method A-T-007:

Free and visible oils are excluded from the sample used for analysis so that the reported result represents the dissolved phase only.

Electrical Conductivity of water by Method A-T-037:

Results greater than 12900µS/cm @ 25°C / 11550µS/cm @ 20°C fall outside the calibration range and as such are unaccredited.

Asbestos:

Asbestos in soil analysis is performed on a dried aliquot of the submitted sample and cannot guarantee to identify asbestos if only present in small numbers as discrete fibres/fragments in the original sample.

Stones etc. are not removed from the sample prior to analysis.

Quantification of asbestos is a 3 stage process including visual identification, hand picking and weighing and fibre counting by sedimentation/phase contrast optical microscopy if required. If asbestos is identified as being present but is not in a form that is suitable for analysis by hand picking and weighing (normally if the asbestos is present as free fibres) quantification by sedimentation is performed. Where ACMs are found a percentage asbestos is assigned to each with reference to 'HSG264, Asbestos: The survey guide' and the calculated asbestos content is expressed as a percentage of the dried soil sample aliquot used.

Predominant Matrix Codes:

1 = SAND, 2 = LOAM, 3 = CLAY, 4 = LOAM/SAND, 5 = SAND/CLAY, 6 = CLAY/LOAM, 7 = OTHER, 8 = Asbestos bulk ID sample, 9 = INCINERATOR ASH.

Samples with Matrix Code 7 & 8 are not predominantly a SAND/LOAM/CLAY mix and are not covered by our BSEN 17025 or MCERTS accreditations, with the exception of bulk asbestos which are BSEN 17025 accredited.

Secondary Matrix Codes:

A = contains stones, B = contains construction rubble, C = contains visible hydrocarbons, D = contains glass/metal, E = contains roots/twigs.

Key:

IS indicates Insufficient Sample for analysis. US indicates Unsuitable Sample for analysis. NDP indicates No Determination Possible. NAD indicates No Asbestos Detected. N/A indicates Not Applicable. Superscript # indicates method accredited to ISO 17025. Superscript "M" indicates method accredited to MCERTS. Subscript "A" indicates analysis performed on the sample as received. Subscript "D" indicates analysis performed on the dried sample, crushed to pass a 2mm sieve EPH CWG results have humics mathematically subtracted through instrument calculation TPH results "with Cleanup" indicates results cleaned up with Silica during extraction

EPH CWG GCxGC ID from TPH CWG

Where we have identified humic substances in any ID's from TPH CWG with Clean Up please note that the concentration of these

humic substances is not included in the quantified results and are included in the ID for information.

Please contact us if you need any further information.

v2

Envirolab Deviating Samples Report

Units 7&8 Sandpits Business Park, Mottram Road, Hyde, SK14 3AR Tel. 0161 368 4921 email. ask@envlab.co.uk

Client:	Richard Jackson Ltd, 847 The Crescent, Colchester Business Park, Colchester,	Project No:	22/03386
	CO4 9YQ	Date Received:	07/04/2022 (am)
Project:	Bedfield	Cool Box Temperatures (°C):	9.8 - 10.1
Clients Project No:	61647		

NO DEVIATIONS IDENTIFIED

If, at any point before reaching the laboratory, the temperature of the samples has breached those set in published standards, e.g. BS-EN 5667-3, ISO 18400-102:2017, then the concentration of any affected analytes may differ from that at the time of sampling.

Envirolab Analysis Dates

Lab Sample ID	22/03386/1	22/03386/3	22/03386/4	22/03386/6	22/03386/8	22/03386/9	22/03386/10	22/03386/11	22/03386/12	22/03386/13	22/03386/15	22/03386/16
Client Sample No	1	1	2	1	1	2	1	2	1	2	1	2
Client Sample ID/Depth	WS10 0.10m	WS08 0.60m	WS08 1.20m	WS09 0.30m	WS04 0.25m	WS04 1.00m	WS01 0.30m	WS01 0.90m	WS03 0.40m	WS03 1.00m	WS05 0.10m	WS05 0.80m
Date Sampled	30/03/22	30/03/22	30/03/22	30/03/22	30/03/22	30/03/22	31/03/22	31/03/22	31/03/22	31/03/22	31/03/22	31/03/22
A-T-006s					12/04/2022	12/04/2022	12/04/2022		12/04/2022			
A-T-019s	14/04/2022	14/04/2022	14/04/2022	14/04/2022	14/04/2022	14/04/2022	14/04/2022	14/04/2022	14/04/2022	14/04/2022	14/04/2022	14/04/2022
A-T-022s		13/04/2022			13/04/2022	13/04/2022	13/04/2022	13/04/2022	13/04/2022		13/04/2022	
A-T-024s	14/04/2022	14/04/2022	14/04/2022	14/04/2022	14/04/2022	14/04/2022	14/04/2022	14/04/2022	14/04/2022	14/04/2022	14/04/2022	14/04/2022
A-T-026s		13/04/2022			13/04/2022	13/04/2022	13/04/2022	13/04/2022	13/04/2022		13/04/2022	
A-T-031s		13/04/2022			13/04/2022	13/04/2022	13/04/2022	13/04/2022	13/04/2022		13/04/2022	
A-T-032 OM		13/04/2022			13/04/2022	13/04/2022	13/04/2022	13/04/2022	13/04/2022		13/04/2022	
A-T-042sTCN		12/04/2022			12/04/2022	12/04/2022	12/04/2022	12/04/2022	12/04/2022		12/04/2022	
A-T-044	13/04/2022	13/04/2022	13/04/2022	13/04/2022	13/04/2022	13/04/2022	13/04/2022	13/04/2022	13/04/2022	13/04/2022	13/04/2022	13/04/2022
A-T-045		08/04/2022			08/04/2022	08/04/2022	08/04/2022		08/04/2022		08/04/2022	
A-T-050s		11/04/2022			11/04/2022	11/04/2022	11/04/2022	11/04/2022	11/04/2022		11/04/2022	
A-T-055s		13/04/2022			13/04/2022	13/04/2022	13/04/2022	13/04/2022	13/04/2022		13/04/2022	

Lab Sample ID	22/03386/17	22/03386/19	22/03386/21
Client Sample No	1	1	1
Client Sample ID/Depth	WS06 0.40m	WS02 0.40m	WS07 0.50m
Date Sampled	31/03/22	31/03/22	31/03/22
A-T-006s		12/04/2022	
A-T-019s	14/04/2022	14/04/2022	14/04/2022
A-T-022s	13/04/2022	13/04/2022	13/04/2022
A-T-024s	14/04/2022	14/04/2022	14/04/2022
A-T-026s	13/04/2022	13/04/2022	13/04/2022
A-T-031s	13/04/2022	13/04/2022	13/04/2022
A-T-032 OM	13/04/2022	13/04/2022	13/04/2022
A-T-042sTCN	12/04/2022	12/04/2022	12/04/2022
A-T-044	13/04/2022	13/04/2022	13/04/2022
A-T-045	08/04/2022	08/04/2022	08/04/2022
A-T-050s	11/04/2022	11/04/2022	11/04/2022
A-T-055s	13/04/2022	13/04/2022	13/04/2022

The above dates are the analysis completion dates, please note that these are not necessarily the date that the analysis was weighed/extracted.

End of Report

61647 – Home Farm, Bedfield, Suffolk, IP13 7EE

<u>Geo-environmental Assessment</u> <u>Reference Criteria</u>

<u>Soils</u>

In 2014 Land Quality Management Ltd (LQM) and the Chartered Institute of Environmental Health (CIEH) published 'Suitable 4 Use Levels' (S4ULs) for human health risk assessment. The S4ULs have been derived in accordance with UK legislation, national and Environment Agency policy using a modified version of the Contaminated Land Exposure Assessment (CLEA) software. The S4ULs are based on minimal or tolerable risk as described in SR2 (Environment Agency, 2009a).

The S4ULs are intended to replace the 2nd edition of the LQM/CIEH Generic Assessment Criteria (GAC).

The S4ULs have also been used to replace the Environment Agency Soil Guideline Values (SGVs), which were defined in 2009 alongside updates to the CLEA methodology and software.

The parameters detailed in the LQM/CIEH S4ULs publication have been adapted using the CLEA software to reflect site specific conditions, including the Soil Organic Matter (SOM), where these are significantly different from the values used to derive the SGV.

It is understood the site is to be developed for residential purposes, therefore S4ULs for residential with home-grown plant have been adopted for this site.

A SOM of 1% has been adopted for organic chemicals for the purposes of the initial assessment on the basis of laboratory analysis. A SOM of 6% has been adopted for inorganic chemical as detailed in 'The LQM / CIEH S4ULS for human health assessment', (2015).

The three most hazardous PAH's, benzo(a)pyrene, dibenz(a,h)anthracene and naphthalene have been considered on this occasion.

In the absence an S4UL for lead the Category 4 Screening Level (C4SL) for lead has been adopted. In March 2014 DEFRA published C4SLs for six contaminants including lead. The C4SLs are based on a unique toxicological benchmark, 'Low Level of Toxicological Concern' rather than the 'minimal or tolerable level of risk' which forms the basis for the S4ULs.

A summary of the tier one screening values for human health is given in the Table, below.

Contaminant	Origin of Screening Value	Screening Value (mg/kg)
Arsenic	S4UL ¹	37
Cadmium	S4UL ¹	11
Chromium	S4UL ¹	910
Copper	S4UL ¹	2,400
Nickel	S4UL ¹	180
Lead	C4SL ²	200
Selenium	S4UL ¹	250
Mercury	S4UL ¹	40
Zinc	S4UL ¹	3,700
Benzo(a)pyrene	S4UL ³	2.2
Dibenz(a,h)anthracene	S4UL ³	0.24
Naphthalene	S4UL ³	2.3
Total Phenols	S4UL ³	280
TPH Aromatic C ₅ -C ₇	S4UL ³	70
TPH Aromatic C ₇ -C ₈	S4UL ³	130
TPH Aromatic C ₈ -C ₁₀	S4UL ³	34
TPH Aromatic C ₁₀ -C ₁₂	S4UL ³	74
TPH Aromatic C ₁₂ -C ₁₆	S4UL ³	140
TPH Aromatic C ₁₆ -C ₂₁	S4UL ³	260
TPH Aromatic C ₂₁ -C ₃₅	S4UL ³	1,100
TPH Aliphatic C ₅ -C ₆	S4UL ³	42
TPH Aliphatic C ₆ -C ₈	S4UL ³	100
TPH Aliphatic C ₈ -C ₁₀	S4UL ³	27
TPH Aliphatic C ₁₀ -C ₁₂	S4UL ³	130
TPH Aliphatic C ₁₂ -C ₁₆	S4UL ³	1,100
TPH Aliphatic C ₁₆ -C ₃₅	S4UL ³	65,000
Benzene	S4UL ³	0.087
Toluene	S4UL ³	130
Ethylbenzene	S4UL ³	47

RichardJackson Engineering Consultants ſ

Contaminant	Origin of Screening Value	Screening Value (mg/kg)	
M & P Xylene	S4UL ³	56	
O Xylene	S4UL ³	60	
Vinyl Chloride	S4UL ³	0.00064	
1,2 – Dichloroethane	S4UL ³	0.0071	
Trichloroethene	S4UL ³	0.016	
1,1,1 – Trichloroethane	S4UL ³	8.8	
Tetrachloroethene	S4UL ³	0.18	
Chlorobenze	S4UL ³	0.46	
Hexachlorobutadine	S4UL ³	0.29	

I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I

saturated at this value and remediation may still be necessary. Results will therefore be reviewed on a case by case basis.

Appendix D

Limitations of use

Limitations of Use

This report is based on the results of the exploratory boreholes, the laboratory testing carried out on samples recovered from those boreholes and on details of the scheme provided by the Client.

This report has been prepared for the benefit of Chapter Build Group Ltd, and its contents should not be relied upon by others without the written authority of Richard Jackson Ltd. If any unauthorised third party makes use of this report, they do so at their own risk and Richard Jackson Ltd owes them no duty of care or skill.

All information provided by others is taken as being in good faith as being accurate, but Richard Jackson Ltd cannot, and does not, accept any liability for the detailed accuracy, errors or omissions in such information.

Subsoils are by their nature hidden from view and no investigation can be exhaustive to the extent that all soil conditions are revealed. Conditions may well be present beneath the site which was not evident from the investigations carried out.

Geological data, with the exception of geological maps held by Richard Jackson Ltd, Ordnance Survey maps and aerial photographs have not been inspected, nor has any other data relating to site conditions past or present, or any information regarding underground services, other than as indicated.

Groundwater levels can be subject to considerable seasonal variations, and the conditions encountered in the exploratory holes may not reflect long-term conditions.

There can be no guarantee that the samples analysed represent the highest concentrations of contamination present beneath the site. The chemical analysis results have been assessed to standards appropriate at the time of investigation.

Unless a greater period of retention of samples is agreed, it is our normal practice to discard all samples one month after submission of our final report.

www.rj.uk.com