

Prepared by: Norfolk Partnership Laboratory, Norse Eastern Ltd, County Hall, Martineau Lane, Norwich, Norfolk, NR1 2SG Telephone (01603) 578389

Site Investigation including Quantitative Risk Assessment, Barns at Buena Vista Foxes Lane Suffolk 102739 March 2022

Client: Ray Chapman Fabrication Ltd The Workshop Rushall Hall Farm Hall Lane Rushall IP21 4QB

> Registered office: 280 Fifers Lane, Norwich, NR6 6EQ Registered in England and Wales No. 07445476 Norfolk Partnership Laboratory is part of Norse Eastern Limited a subsidiary of the Norse Group, a company wholly owned by Norfolk County Council

i)	Contents
'	Contents

iii)	Distribution	5
1.0	Introduction	6
1.1	General	6
1.2	Report objectives	6
1.3	Site location	6
1.4	Site layout	7
1.5	Planning application	8
2.0	Review and Summary of Previous Reports	9
2.1	Contamination Scoping Assessment Barns at Buena Vista Foxes Lane Mendham. report reference 80613 July 2020,	9
2.2	Geology	10
3.0	Identification of Potential Contaminants of Concern and Source Areas.	11
3.1	Consultations with the local authority	11
3.2	Consultations with the Environment Agency	11
3.3	Consultations with other appropriate bodies	11
3.4	Review and summary of previous reports	11
4.0	Risk Assessment	12
4.1	Conceptual Model	12
4.2	Sources of contamination	12
4.3	Pollution Linkages	13
4.4	Receptors	14
4.5	Description of possible pollutant linkages for controlled waters	19
4.6	Identification of potentially unacceptable risks to controlled waters	19
4.7	Discussion of uncertainties and gaps in information	19
5.0	Recommendations for Site Investigation	20

6.0	Site Investigation	21
6.1	Investigation Objectives	21
6.2	Preparatory Enabling Works	21
6.3	Works undertaken	21
6.4	Site Investigation Strategy	21
6.5	Site Sampling Strategy	21
6.6	In-situ and Geotechnical Testing	21
6.7	Pollution prevention measures	21
7.0	Analytical Strategy	22
7.1	Soil	22
8.0	Investigation Results	23
8.1	Ground conditions	23
8.2	Groundwater conditions	25
8.3	Geoenvironmental test results summary	25
8.4	Contamination	25
9.0	Quantitative Risk Assessment	26
9.0 9.1	Quantitative Risk Assessment. Risk Assessment Objectives	26 26
9.0 9.1 9.2	Quantitative Risk Assessment. Risk Assessment Objectives. Proposed Development	26 26 26
9.0 9.1 9.2 9.3	Quantitative Risk Assessment. Risk Assessment Objectives. Proposed Development . Revised Conceptual Model .	26 26 26 26
9.0 9.1 9.2 9.3 9.4	Quantitative Risk Assessment. Risk Assessment Objectives. Proposed Development Revised Conceptual Model Risk assessment rationale	26 26 26 26 26
9.0 9.1 9.2 9.3 9.4 9.5	Quantitative Risk Assessment. Risk Assessment Objectives. Proposed Development . Revised Conceptual Model . Risk assessment rationale . Exposure scenarios .	 26 26 26 26 26 27
9.0 9.1 9.2 9.3 9.4 9.5 9.6	Quantitative Risk Assessment. Risk Assessment Objectives. Proposed Development . Revised Conceptual Model. Risk assessment rationale . Exposure scenarios . Assessment criteria.	26 26 26 26 26 27 31
9.0 9.1 9.2 9.3 9.4 9.5 9.6 9.7	Quantitative Risk Assessment. Risk Assessment Objectives. Proposed Development . Revised Conceptual Model. Risk assessment rationale . Exposure scenarios . Assessment criteria. Constraints and limitations .	26 26 26 26 27 31 31
9.0 9.1 9.2 9.3 9.4 9.5 9.6 9.7 9.8	Quantitative Risk Assessment. Risk Assessment Objectives. Proposed Development . Revised Conceptual Model . Risk assessment rationale . Exposure scenarios . Assessment criteria. Constraints and limitations. Risk to controlled waters.	26 26 26 26 27 31 31 31
9.0 9.1 9.2 9.3 9.4 9.5 9.6 9.7 9.8 9.9	Quantitative Risk Assessment. Risk Assessment Objectives. Proposed Development Revised Conceptual Model Risk assessment rationale Exposure scenarios Assessment criteria Constraints and limitations Risk to controlled waters Effects on Human Health	26 26 26 26 27 31 31 31 31
9.0 9.1 9.2 9.3 9.4 9.5 9.6 9.7 9.8 9.9 9.10	Quantitative Risk Assessment. Risk Assessment Objectives. Proposed Development . Revised Conceptual Model Risk assessment rationale Exposure scenarios Assessment criteria. Constraints and limitations Risk to controlled waters Effects on Human Health Effects on buildings and services.	26 26 26 26 27 31 31 31 31 32
9.0 9.1 9.2 9.3 9.4 9.5 9.6 9.7 9.8 9.9 9.10 9.11	Quantitative Risk Assessment. Risk Assessment Objectives. Proposed Development Revised Conceptual Model. Risk assessment rationale Exposure scenarios Assessment criteria. Constraints and limitations. Risk to controlled waters. Effects on Human Health Effects on buildings and services. Uncertainties.	26 26 26 26 27 31 31 31 31 32 32
 9.0 9.1 9.2 9.3 9.4 9.5 9.6 9.7 9.8 9.9 9.10 9.11 9.12 	Quantitative Risk Assessment. Risk Assessment Objectives. Proposed Development . Revised Conceptual Model . Risk assessment rationale . Exposure scenarios . Assessment criteria. Constraints and limitations . Risk to controlled waters . Effects on Human Health . Effects on buildings and services . Uncertainties . Risk Evaluation .	26 26 26 26 27 31 31 31 31 32 32 32
9.0 9.1 9.2 9.3 9.4 9.5 9.6 9.7 9.8 9.9 9.10 9.11 9.12 10.0	Quantitative Risk Assessment. Risk Assessment Objectives. Proposed Development Revised Conceptual Model Risk assessment rationale Exposure scenarios Assessment criteria. Constraints and limitations Risk to controlled waters Effects on Human Health Effects on buildings and services. Uncertainties Risk Evaluation	26 26 26 26 27 31 31 31 31 32 32 32 32 32 32

ii) Appendices

Appendix A	Site location plan
Appendix B	Window sample and Dynamic Probe location plan
Appendix C	Window sample and Dynamic Probe logs and Equivalent SPT "N" Graphs.
Appendix D	Contamination test reports
Appendix E	Proposed Plan
Appendix F	Area to remediated plan

iii) Distribution

Ray Chapman Fabrication Ltd.	1 сору
Norfolk Partnership Laboratory	1 сору

1.0 Introduction

1.1 General

This investigation was carried out on land at Barns at Buena Vista Foxes Lane Mendham OSGR (628539/281268). The site is located approximately 16 kilometres to the east of Diss and 10 kilometres to the south west of Bungay. The plot in question lies to the south of Foxes lanes. The area under consideration comprises a mixture of former farm barns a grass area and a pond.

Mr J Sisterston instructed Norfolk Partnership Laboratory (NPL), to carry out the work on an email dated 19th January 2022 after acceptance of NPL's quotation. NPL provides a service within Norse Eastern Ltd.

This report should be read in conjunction with the following report:

1) Contamination scoping assessment, redundant barns opposite Buena Vista, Foxes Lane, Mendham, Suffolk report reference 80613, dated July 2020 by Messrs. W.A.S. Ltd.

This investigation and risk assessment has been carried out to the requirements of The Environmental Protection Act Part IIA. This report also considers the health and safety of construction workers and subsequent residents that may be affected due to any soil contamination.

It is proposed a change of use and conversion of barns to form two dwellings.

Opinions and interpretations expressed herein are outside the scope of UKAS accreditation.

Although every effort has been made to give a true assessment of the condition of the site, it is possible that different ground conditions may exist in parts of the site that is neither recorded nor visible.

1.2 Report objectives

The objectives of these works are to assess contamination sources, pathways and receptors, and to determine whether any contamination may be present either within the site boundaries or just outside the site. The report also assesses the extent to which human health, buildings and services and controlled waters may be affected. If contamination is thought likely to be present, recommendations will be made to ascertain the level of contamination and if these levels are within allowable limits.

1.3 Site location

The site is located to the south of Mendham Village on the way towards Metfield on the southern side of Foxes Lane and is approximately 16 kilometres east of Diss town. The site is approximately 0.46 hectares in area and is approximately 46 metres above Ordnance Survey Datum. A site location plan is in Appendix A.

1.4 Site layout

The site is accessed from Foxes Lane. The site is predominantly a mixture of old and new barns with a grass area and pond to the rear. The site is relatively flat land slopes in a southerly direction.

Western barn, Foxes Lane to right

Front of Eastern barn to Foxes Lane

View south from eastern end barn

View west from eastern end barn

Inside western end barn

Location of overground diesel tank

Pond view south

Pond view north

1.5 Planning application

The site is subject to the planning conditions of Mid Suffolk District Council ref: DC/20/02792.

2.0 Review and Summary of Previous Reports

2.1 <u>Contamination Scoping Assessment Barns at Buena Vista Foxes Lane Mendham.</u> report reference 80613 July 2020,

Site Walkover

The site comprises 2 adjoining barns, one of steel frame, concrete block walls with cement bonded asbestos cladding and no hardened floors and a second corrugated steel arch construction with concrete floors. The unbuilt land is set to grass and a large natural pond exists to the south-western corner of the site.

The site borders agricultural land to the east, south and west and the public highway to the norths with residential properties opposite. The site is generally level without fall. Several mature trees and hedgerows exist along the western boundary with an abundance of flora surrounding the pond. None of the above appeared to be suffering from dieback or distortion.

The western barn is open and contains various materials being stored including several cans & drums of oil and tar, suspected cement bonded asbestos roofing sheets and a redundant fuel tank. The ground beneath the fuel tank which also contained most of the oil drums appeared stained and the contamination with suspected diesel and other oils. No other fragments of asbestos materials were observed.

The barn to the east was locked during the inspection but it was possible to gauge the condition of the interior and contents. The floor of this barn appears to be of sound and substantial concrete. Farm machinery and some 25 litre drums of liquids were stored within. This building appears generally in good uncontaminated condition.

The areas laid to grass contained some old agricultural implements but nothing of a contaminative nature. The pond appeared to be a healthy abundance of flora and fauna. No visible concerns were apparent to the unbuilt areas.

No other visible signs of contamination, along with other distinguishing features, depressions or other undulations other than those already mentioned were observed.

Asbestos

The entire rooking of the western barn appears to be of cement bonded asbestos of which any demolition or alterations have the potential to contaminate soils beneath. Such work should be considered and completed and disposed of off-site to licensed facilities in accordance with the relevant regulations.

The executive summary concluded

The report found no past or present potentially contaminative uses that could be identified to affect the future occupancy of the site. The site walkover assessment confirmed the current uses and the findings of the report.

The fact the barns have had a historic agricultural use gives cause for concerns over their potential for storage of potentially polluting substances, materials and equipment.

The western barn in particular, not having been provided with an impermeable floor is susceptible to contamination from many agricultural activities. The eastern barn is less likely to have suffered from contamination due to the concrete floor however the integrity of the floor and closer inspection should be completed before assessing the need and extent of further works here.

The presence of the numerous oil drums, fuel tank and suspected cement asbestos roofing sheets confirm the likelihood of contamination within the western barn. The staining of soils beneath the fuel tank further confirm the existence of contamination.

It is likely that the floors within the barns will require removal to facilitate the installation of services and a new insulated floor. We recommend that the site be cleared of all known contamination and contaminative materials and a further intrusive investigatory works are completed to ascertain the degree and extent of contamination, particularly with reference to the fuel tank locality. The installation of water supply and other services should be borne in mind when considering such investigations.

2.2 Geology

The geology of the region may be summarised as follows:

Pleistocene : Lowestoft Formation

Cretaceous : Upper Chalk

Upper Chalk is a soft white or off white limestone that contains flints. Chalk was deposited in a warm sea close to a low lying landmass that remained free from the deposition of detritus for a long period of time. The chalk dips at a very shallow angle to the east.

The Lowestoft Formation forms an extensive sheet of chalky till, together with outwash sands and gravels, silts and clays. The till is characterised by its chalk and flint content. The Lowestoft Formation is overlain unconformably by deposits of the Britannia Catchments Group and in north eastern East Anglia by the Sheringham Cliffs Formation. Where the uppermost part of the Lowestoft Formation comprises sand and gravel, it is not always easy to determine its upper boundary if overlain by younger sand and gravel, but in general the younger sand and gravel is better sorted and chalk free. The thickness is extremely variable. It is thickest in buried valleys where locally up to 60 metres may be present. Thick accumulations are also more generally present beneath much of northern Essex and south Suffolk.

3.0 Identification of Potential Contaminants of Concern and Source Areas

The Contamination Scoping Report by WAS Ltd. identified on site potentially contaminative sources. No Department of the Environment industry profile was considered directly relevant to this site. After reviewing information from the previous report, the following have been identified as potential pollution sources.

- i) Potential contamination for historical farming use
- ii) Potential contamination from diesel oil tank in western barn.
- iii) Potential asbestos contained within the fabric of the western barn
- iv) Potential contamination from possible Made Ground on site

These have a variety of potential pollution linkages.

3.1 Consultations with the local authority

No consultations have taken place with Mid Suffolk District Council

3.2 Consultations with the Environment Agency

No consultations have taken place between the Environment Agency and NPL.

3.3 Consultations with other appropriate bodies

No consultations have taken place with any other appropriate bodies.

3.4 Review and summary of previous reports

A review of the previously undertaken report below can be found in Section 2.0.

Contamination scoping assessment, redundant barns opposite Buena Vista, Foxes Lane, Mendham, Suffolk report reference 80613, dated July 2020 by Messrs. W.A.S. Ltd.

4.0 Risk Assessment

4.1 <u>Conceptual Model</u>

The known or perceived sources of contamination and pollution linkages are assessed in this section. The conceptual model is realised here in tabulated form.

4.2 Sources of contamination

The Contamination Scoping Report by WAS Ltd. identified on site potentially contaminative sources. No Department of the Environment industry profile was considered directly relevant to this site. After reviewing information from the previous report, the following have been identified as potential pollution sources.

- i) Potential contamination for historical farming use
- ii) Potential contamination from diesel oil tank in western barn.
- iii) Potential asbestos contained within the fabric of the western barn
- iv) Potential contamination from possible Made Ground on site

4.3 Pollution Linkages

Each of the potential contaminants may have a number of pollution linkages. Each of these linkage types has a number of potential pathways.

- i) Surface soil linkages
 - a) Direct contact ingestion or absorption
 - b) Indirect contact ingestion or absorption
 - c) Leaching to groundwater
- ii) Subsurface soil linkages
 - a) Direct contact ingestion or absorption
 - b) Indirect contact ingestion or absorption
 - c) Leaching to groundwater
- iii) Surface water linkages
 - a) Direct contact ingestion or absorption
 - b) Indirect contact ingestion or absorption
 - c) Percolation to groundwater
- iv) Groundwater linkages
 - a) Direct contact ingestion or absorption
 - b) Indirect contact ingestion or absorption
- v) Airborne linkages
 - a) Vapour intrusion into confined / indoor spaces
 - b) Inhalation or absorption of particulates
 - c) Inhalation or absorption of volatile compounds

4.4 Receptors

A number of potential receptors exist. These can be broadly grouped as:

- i) Construction Worker
- ii) Future Resident
- iii) Trespasser
- iv) Local population
- v) Flora and fauna
- vi) Buildings
- vii) Surface Water
- viii) Groundwater

For each source, the linkage type, pathway and potential receptors can be identified. A level of risk if no action is taken can then be assigned to each of these linkages. The level of risk has been divided into six categories as follows

Very Low Risk – Considered very unlikely or impossible Low Risk – Considered conceivable but unlikely Medium Risk – Considered possible but unusual High Risk – Considered probable i.e. about 50% chance Very High Risk – Considered that it is to be expected to happen Certainty – Considered that it will happen

Note: These risks are related to the probability of an event happening. They do not relate to the severity of the effects on human health or flora and fauna nor the financial consequences if the event should happen.

4.4.1 Potential contamination for historical farming use

Surface soil Direct contact ingestion or absorption Construction Worker Medium Inkage respasser Medium Direct contact Surface water Medium Direct contact ingestion or absorption Surface water Medium Subsurface soil Direct contact ingestion or absorption Construction Worker Low Subsurface soil Direct contact ingestion or absorption Construction Worker Low Indirect contact ingestion or absorption Resident Low Low Direct contact ingestion or absorption Resident Low Low Leaching to groundwater Local population Low Construction Worker Low Surface water Direct contact ingestion or absorption Construction Worker Low Construction Worker Low Surface water Direct contact ingestion Construction Worker Low Construction Worker Low Surface water Direct contact Buildings and services Low Construction Worker Low Surface water Direct contact Buildings and services	Linkage type	Pathway	Receptor	Risk
linkage or absorption Resident Medium Indirect contact Flora and fauna Medium Indirect contact ingestion or absorption Resident Medium Subsurface soil Direct contact ingestion or absorption Construction Worker Low Subsurface soil Direct contact ingestion or absorption Construction Worker Low Indirect contact ingestion or absorption Resident Low Indirect contact ingestion or absorption Resident Low Indirect contact ingestion or absorption Resident Low Eaching to groundwater Low Construction Worker Low Surface water Direct contact ingestion or absorption Construction Worker Low Surface water Direct contact ingestion or absorption Construction Worker Low Surface water Direct contact ingestion or absorption Construction Worker Low Surface water Direct contact ingestion or absorption Construction Worker Low Construction Vorker Low Construction Worker Low Groundwater <td< td=""><td>Surface soil</td><td>Direct contact ingestion</td><td>Construction Worker</td><td>Medium</td></td<>	Surface soil	Direct contact ingestion	Construction Worker	Medium
Resident Medium Image: contact ingestion Flora and fauna Medium Direct contact ingestion Resident Medium Indirect contact ingestion Construction Worker Low Subsurface soil Direct contact ingestion Construction Worker Low Indirect contact ingestion Resident Low Indirect contact ingestion Resident Low Indirect contact ingestion Resident Low or absorption Load fauna Low Indirect contact ingestion Resident Low or absorption Construction Worker Low Surface water Direct contact ingestion Construction Worker Low Surface water Direct contact ingestion Construction Worker Low Indirect contact ingestion Construction Worker Low Eow Surface water Direct contact ingestion Construction Worker Low Indirect contact ingestion Construction Worker Low Construction Worker Indirect contact ingestion Constructio	linkage	or absorption		
Trespasser Medium Flora and fauna Medium Indirect contact Surface water Medium Indirect contact ingestion or absorption Resident Medium Subsurface soil Direct contact ingestion or absorption Construction Worker Low Indirect contact ingestion or absorption Resident Low Indirect contact ingestion or absorption Resident Low Leaching to groundwater Local population Low Leaching to groundwater Construction Worker Low Surface water Direct contact ingestion or absorption Construction Worker Low Surface water Direct contact ingestion Construction Worker Low Surface water Direct contact Buildings and services Low Percolation to Local population Low Surface water Low Surface water Low Percolation to Local population Low Groundwater Construction Worker Low Groundwater Low Surface water Low			Resident	Medium
Flora and faunaMediumDirect contactSurface waterMediumIndirect contact ingestion or absorptionConstruction WorkerLowSubsurface soilDirect contact ingestion or absorptionConstruction WorkerLowDirect contact ingestion or absorptionResidentLowLeaching to groundwaterLoad Flora and faunaLowLeaching to groundwaterLoad Flora and faunaLowLeaching to groundwaterConstruction WorkerLowSurface waterDirect contact ingestion or absorptionConstruction WorkerLowSurface waterDirect contact ingestion or absorptionConstruction WorkerLowSurface waterDirect contact ingestion or absorptionConstruction WorkerLowSurface waterDirect contact ingestion or absorptionFlora and fauna Construction WorkerLowSurface waterDirect contact ingestion or absorptionConstruction WorkerLowConductateFlora and fauna Construction WorkerLowConductateBuildings and servicesLowConductaterCoal populationLowCroundwaterConstruction WorkerLowCroundwaterLowConstruction WorkerLowCroundwaterLowConstruction WorkerLowCroundwaterLowConstruction WorkerLowCroundwaterLowConstruction WorkerLowCroundwaterLowConstruction WorkerLowCroundwa			Trespasser	Medium
Direct contactSurface waterMediumIndirect contact ingestion or absorptionConstruction WorkerLowSubsurface soilDirect contact ingestion or absorptionConstruction WorkerLowIndirect contact ingestion or absorptionResidentLowLacching to groundwaterLocal populationLowLeaching to groundwaterLocal populationLowSurface waterDirect contact ingestion or absorptionConstruction WorkerLowLeaching to groundwaterLocal populationLowSurface waterDirect contact ingestion or absorptionConstruction WorkerLowSurface waterDirect contact ingestion or absorptionConstruction WorkerMediumInkageor absorptionConstruction WorkerLowSurface waterDirect contact ingestion or absorptionConstruction WorkerLowInkageor absorptionConstruction WorkerLowUnicet contact ingestion groundwaterFlora and faunaLowDirect contact ingestion groundwaterConstruction WorkerLowConstruction Worker </td <td></td> <td></td> <td>Flora and fauna</td> <td>Medium</td>			Flora and fauna	Medium
Indirect contact ingestion or absorption Resident Medium Subsurface soil Direct contact ingestion or absorption Construction Worker Low Indirect contact ingestion or absorption Resident Low Indirect contact ingestion or absorption Buildings and services Low Indirect contact ingestion or absorption Resident Low Indirect contact ingestion or absorption Construction Worker Low Surface water Direct contact ingestion or absorption Construction Worker Low Surface water Direct contact ingestion or absorption Construction Worker Low Surface water Direct contact Buildings and services Low Inkage Orect contact Buildings and services Low Percolation to groundwater Flora and fauna Low Low Percolation to groundwater Construction Worker Low Low Groundwater Flora and fauna Low Low Inkage a birect contact ingestion or absorption Construction Worker Low Inkage Flora and fauna </td <td></td> <td>Direct contact</td> <td>Surface water</td> <td>Medium</td>		Direct contact	Surface water	Medium
Subsurface soil Direct contact ingestion or absorption Construction Worker Low Indirect contact Buildings and services Low Indirect contact ingestion or absorption Resident Low Leaching to groundwater Local population Low Indirect contact ingestion or absorption Construction Worker Low Leaching to groundwater Local population Low Surface water Direct contact ingestion or absorption Construction Worker Low Surface water Direct contact ingestion or absorption Construction Worker Medium Surface water Direct contact ingestion or absorption Construction Worker Low Surface water Direct contact Buildings and services Low Low Percolation to groundwater Local population Low Low Groundwater Direct contact ingestion or absorption Construction Worker Low Groundwater Direct contact ingestion or absorption Construction Worker Low Indirect contact ingestion or absorption Construction Worker Low Low		Indirect contact ingestion or absorption	Resident	Medium
Resident Low Direct contact Buildings and services Low Indirect contact ingestion or absorption Resident Low Leaching to groundwater Local population Low Construction Worker Low Surface water Direct contact ingestion or absorption Construction Worker Medium Surface water Direct contact ingestion or absorption Construction Worker Medium Surface water Direct contact ingestion or absorption Construction Worker Medium Percolation to Local population Low Direct contact Buildings and services Low Direct contact Buildings and services Low Percolation to Local population Low groundwater Flora and fauna Low Percolation to Local population Low Groundwater Direct contact ingestion or absorption Construction Worker Low Indirect contact ingestion or absorption Construction Worker Low	Subsurface soil linkage	Direct contact ingestion or absorption	Construction Worker	Low
Flora and fauna Low Indirect contact ingestion or absorption Resident Low Leaching to groundwater Local population Low Leaching to groundwater Construction Worker Low Surface water Direct contact ingestion or absorption Construction Worker Low Surface water Direct contact ingestion or absorption Construction Worker Low Surface water Direct contact ingestion or absorption Construction Worker Low Surface water Direct contact Resident Low Direct contact Buildings and services Low Percolation to Local population Low groundwater Flora and fauna Low Groundwater Direct contact ingestion or absorption Construction Worker Low Groundwater Direct contact ingestion or absorption Construction Worker Low Inkage Indirect contact ingestion or absorption Construction Worker Low Inkage Indirect contact ingestion or absorption Low Conundwater Low <			Resident	Low
Direct contact Buildings and services Low Indirect contact ingestion or absorption Resident Low Leaching to groundwater Local population Low Construction Worker Low Surface water Direct contact ingestion Construction Worker Low Inkage Or absorption Resident Low Inkage - Resident Low Inkage - Resident Low Inkage - Resident Low Intext contact Buildings and services Low Intext contact Buildings and services Low Intext contact Buildings and services Low Percolation to groundwater Local population Low Inkage Or absorption Construction Worker Low Groundwater Direct contact ingestion or absorption Construction Worker Low Inkage Direct contact ingestion or absorption Local population Low Indirect contact ingestion or absorption Construction Worker			Flora and fauna	Low
Indirect contact ingestion or absorption Resident Low Leaching to groundwater Local population Low Construction Worker Low Groundwater Low Surface water Direct contact ingestion or absorption Construction Worker Medium Inkage or absorption Construction Worker Medium Direct contact ingestion or absorption Resident Low Direct contact Buildings and services Low Percolation to groundwater Surface water Low Percolation to groundwater Construction Worker Low Direct contact ingestion or absorption Construction Worker Low Groundwater Direct contact ingestion or absorption Construction Worker Low Inkage Direct contact Buildings and services Low Indirect contact Buildings and services Low Indirect contact Buildings and services Low Indirect contact ingestion or absorption Local population Low Indirect contact Buildings and services L		Direct contact	Buildings and services	Low
Leaching to groundwater Local population Low Flora and fauna Low Construction Worker Low Surface water Direct contact ingestion or absorption Construction Worker Medium Inkage Direct contact ingestion or absorption Resident Low Inkage Intert contact Buildings and services Low Direct contact Buildings and services Low Percolation to groundwater Construction Worker Low Groundwater Flora and fauna Low Inkage Flora and fauna Low Groundwater Construction Worker Low Inkage Direct contact ingestion or absorption Construction Worker Low Indirect contact Buildings and services Low Construction Worker Low Indirect contact Buildings and services Low Construction Worker Low Indirect contact Buildings and services Low Construction Worker Low Indirect contact Buildings and services Low Con		Indirect contact ingestion or absorption	Resident	Low
Flora and fauna Low Construction Worker Low Surface water Direct contact ingestion or absorption Construction Worker Medium Inkage or absorption Resident Low Inkage Interfect contact ingestion or absorption Resident Low Direct contact Buildings and services Low Direct contact Buildings and services Low Percolation to groundwater Local population Low Flora and fauna Low Low Groundwater Groundwater Low or absorption Construction Worker Low Groundwater Direct contact ingestion or absorption Construction Worker Low Direct contact Buildings and services Low Low Indirect contact ingestion or absorption Local population Low Low Indirect contact ingestion or absorption Flora and fauna Low Low Indirect contact ingestion or absorption Construction Worker Low Low Inhalation of particulates		Leaching to groundwater	Local population	Low
Construction Worker Low Surface water Direct contact ingestion or absorption Groundwater Low linkage or absorption Resident Low mail Trespasser Low Direct contact Buildings and services Low Direct contact Buildings and services Low Percolation to groundwater Low Low Percolation to groundwater Flora and fauna Low 0 Direct contact ingestion Construction Worker Low 0 Percolation to groundwater Construction Worker Low 0 Direct contact ingestion Construction Worker Low 0 and fauna Low Cow 0 rationand fauna Low Cow 1 Coral population			Flora and fauna	Low
Surface water linkage Direct contact ingestion or absorption Groundwater Construction Worker Low Medium Resident Low Trespasser Low Direct contact Buildings and services Low Percolation to groundwater Surface water Low Percolation to groundwater Local population Low Construction Worker Low Low Bildings and services Low Low Groundwater Low Low or absorption Construction Worker Low Groundwater Direct contact ingestion or absorption Construction Worker Low Direct contact ingestion or absorption Construction Worker Low Low Direct contact Buildings and services Low Medium Airborne linkage Indirect contact ingestion or absorption Local population Low Indirect contact ingestion or absorption Flora and fauna Low Low Indirect contact ingestion or absorption Construction Worker Low Inhalation of particulates			Construction Worker	Low
Surface water linkage Direct contact ingestion or absorption Construction Worker Medium Inhalation of values Resident Low Trespasser Low Direct contact Buildings and services Low Percolation to groundwater Local population Low Groundwater Direct contact ingestion or absorption Construction Worker Low Groundwater Direct contact ingestion or absorption Construction Worker Low Direct contact ingestion or absorption Construction Worker Low Direct contact ingestion or absorption Construction Worker Low Direct contact ingestion or absorption Local population Low Airborne linkage Inhalation of particulates Construction Worker Low Airborne linkage Inhalation of volatile Construction Worker Low Inhalation of volatile Construction Worker			Groundwater	Low
Resident Low Trespasser Low Direct contact Buildings and services Low Percolation to groundwater Local population Low Percolation to groundwater Local population Low Orect contact ingestion inkage Direct contact ingestion or absorption Construction Worker Low Direct contact ingestion or absorption Local population Low Direct contact ingestion or absorption Construction Worker Low Direct contact Buildings and services Low Indirect contact ingestion or absorption Local population Low Indirect contact ingestion or absorption Local population Low Airborne linkage Inhalation of particulates Construction Worker Low Airborne linkage Inhalation of volatile Construction Worker Low Local population Low Local population Low Inhalation of volatile Construction Worker Low Inducting theresing	Surface water linkage	Direct contact ingestion or absorption	Construction Worker	Medium
Image: Section of the section of t	0	•	Resident	Low
Flora and fauna Low Direct contact Buildings and services Low Percolation to groundwater Local population Low Flora and fauna Low Groundwater Construction Worker Low Direct contact ingestion or absorption Construction Worker Low Direct contact ingestion or absorption Local population Low Direct contact ingestion or absorption Construction Worker Low Direct contact Buildings and services Low Direct contact ingestion or absorption Groundwater Low Indirect contact ingestion or absorption Local population Low Airborne linkage Inhalation of particulates Construction Worker Low Airborne linkage Inhalation of volatile compounds Construction Worker Low Construction Worker Low Local population Low Construction Worker Low Construction Worker Low Compounds Trespasser Low Low Plora and fauna Low Low Local population Low Compounds Construction Worker Low Low Local population Low Compounds Resident Low Low			Trespasser	Low
Direct contact Buildings and services Low Percolation to groundwater Local population Low Percolation to groundwater Local population Low Flora and fauna Low Groundwater Direct contact ingestion or absorption Construction Worker Low Direct contact ingestion Local population Low Inkage Local population Low Direct contact Buildings and services Low Direct contact Buildings and services Low Direct contact ingestion or absorption Local population Low Indirect contact ingestion or absorption Local population Low Airborne linkage Inhalation of particulates Construction Worker Low Airborne linkage Inhalation of particulates Construction Worker Low Trespasser Low Low Local population Low Inhalation of volatile compounds Construction Worker Low Low Inhalation of volatile compounds Construction Worker			Flora and fauna	Low
Surface water Low Percolation to groundwater Local population Low Flora and fauna Low Groundwater Low Or absorption Construction Worker Inkage Direct contact ingestion or absorption Construction Worker Direct contact Buildings and services Low Direct contact Buildings and services Low Indirect contact ingestion or absorption Local population Low Inhalation of particulates Construction Worker Low Airborne linkage Inhalation of particulates Construction Worker Low Inhalation of volatile compounds Construction Worker Low Low Inhalation of volatile compounds Construction Worker Low Low Inhalation of volatile compounds Construction Worker Low Low Inhalation of volatile compounds Trespasser Low Low Inhalation of volatile compounds		Direct contact	Buildings and services	Low
Percolation to groundwater Local population Low Flora and fauna Low Groundwater Low Direct contact ingestion inkage Construction Worker Low Or absorption Local population Low Inkage Local population Low Direct contact ingestion or absorption Flora and fauna Low Direct contact Buildings and services Low Indirect contact ingestion or absorption Construction Worker Low Indirect contact ingestion or absorption Local population Low Airborne linkage Inhalation of particulates Construction Worker Low Airborne linkage Inhalation of volatile compounds Construction Worker Low Inhalation of volatile Construction Worker Low Inhalation of volatile compounds Construction Worker Low Inhalation of volatile Construction Worker Low <tr< td=""><td></td><td></td><td>Surface water</td><td>Low</td></tr<>			Surface water	Low
Image: Construction of absorption Flora and fauna Low Groundwater Low Construction Worker Low linkage or absorption Construction Worker Low Image: Construction of absorption Local population Low Image: Construct on the cons		Percolation to groundwater	Local population	Low
GroundwaterLowGroundwaterDirect contact ingestion or absorptionConstruction WorkerLowInkageLocal populationLowDirect contactBuildings and servicesLowDirect contactBuildings and servicesLowIndirect contact ingestion or absorptionLocal populationLowIndirect contact ingestion or absorptionLocal populationLowAirborne linkageInhalation of particulatesConstruction WorkerLowAirborne linkageInhalation of particulatesConstruction WorkerLowConstruction VorkerLowTrespasserLowInhalation of volatile compoundsConstruction WorkerLowInhalation of volatile compoundsConstruction WorkerLowInhalation of volatile compoundsConstruction WorkerLowVapour intrusion into indoor spacesResidentLowVapour intrusion into indoor spacesLocal populationLowLocal populationLowLowVapour intrusion into indoor spacesLocal populationLowLocal populationLowLowLocal populationLowLocal populationLowLocal populationLowLocal populationLowLocal populationLowLocal populationLowLocal populationLowLocal populationLowLocal populationLowLocal populationLowLowLocal populationLowLocal populationL			Flora and fauna	Low
Groundwater linkageDirect contact ingestion or absorptionConstruction WorkerLowImageLocal populationLowDirect contactBuildings and servicesLowDirect contactBuildings and servicesLowIndirect contact ingestion or absorptionLocal populationLowIndirect contact ingestion or absorptionLocal populationLowAirborne linkageInhalation of particulatesConstruction WorkerLowInhalation of particulatesConstruction WorkerLowImplementFlora and faunaLowLowTrespasserLowInhalation of volatile compoundsConstruction WorkerLowInhalation of volatile compoundsConstruction WorkerLowLowFlora and faunaLowLowTrespasserLowLowLocal populationLowLowConstruction WorkerLowLowConstruction WorkerLowLowConstruction WorkerLowLowLocal populationLowLowConstruction WorkerLowLowResidentLowLowTrespasserLowLowLocal populationLowLowLocal populationLowLowLocal populationLowLowLocal populationLowLowLocal populationLowLowLocal populationLowLowLocal populationLowLowLocal			Groundwater	Low
Local populationLowDirect contactBuildings and servicesLowDirect contactBuildings and servicesLowIndirect contact ingestion or absorptionLocal populationLowAirborne linkageInhalation of particulatesConstruction WorkerLowAirborne linkageInhalation of particulatesConstruction WorkerLowInhalation of volatile compoundsFlora and faunaLowLocal populationLowLocal populationLowInhalation of volatile compoundsConstruction WorkerLowInhalation of volatile compoundsResidentLowInhalation of volatile compoundsResidentLowInhalation of volatile compoundsResidentLowInhalation of volatile compoundsTrespasserLowInhalation of volatile compoundsResidentLowInhalation of volatile compoundsConstruction WorkerLowInhalation of volatile compoundsLocal populationLowInhalation of volatile compoundsLocal populationLowInhalation of volatile compoundsLowLowInhalation of volatile compoundsLowLowInhalation of volatile compoundsLowLowInhalation of volatile compoundsLowLowInhalation of volatile compoundsLowLowInhalation of volatile compoundsLowLowInhalation of volatile compoundsLowLowInhalation<	Groundwater linkage	Direct contact ingestion or absorption	Construction Worker	Low
Flora and faunaLowDirect contactBuildings and servicesLowGroundwaterLowLowIndirect contact ingestion or absorptionLocal populationLowAirborne linkageInhalation of particulatesConstruction WorkerLowAirborne linkageInhalation of particulatesConstruction WorkerLowInhalation of particulatesConstruction WorkerLowInhalation of volatile compoundsFlora and faunaLowInhalation of volatile compoundsConstruction WorkerLowInhalation of volatile compoundsLowInterpreteInhalation of volatile compoundsConstruction WorkerLowInhalation of volatile compoundsLowInterpreteInhalation of volatile compoundsLowLowInhalation of volatile compoundsLowLowInhalation of volatile compoundsLowLowInhalation of volatile compoundsLowLowInhalation of volatile compoundsLowLowInhalation of volatile compoundsLow<		·	Local population	Low
Direct contactBuildings and servicesLowGroundwaterLowIndirect contact ingestion or absorptionLocal populationLowAirborne linkageInhalation of particulatesConstruction WorkerLowAirborne linkageInhalation of particulatesConstruction WorkerLowIndirect contact ingestionResidentLowAirborne linkageInhalation of particulatesConstruction WorkerLowInhalation of particulatesConstruction WorkerLowInhalation of volatile compoundsConstruction WorkerLowInhalation of volatile compoundsConstruction WorkerLowInhalation of volatile compoundsResidentLowInhalation of volatile compoundsResidentLowVapour intrusion into indoor spacesFlora and faunaLowVapour intrusion into indoor spacesLocal populationLowLocal populationLowLow			Flora and fauna	Low
Indirect contact ingestion or absorptionLocal populationLowAirborne linkageInhalation of particulatesConstruction WorkerLowAirborne linkageInhalation of particulatesConstruction WorkerLowImage: Struct of WorkerLowResidentLowImage: Struct of WorkerLowTrespasserLowImage: Struct of WorkerLowLowImage: Struct of WorkerLowImage: Struct of WorkerLocal populationLowImage: Struct of WorkerLowInhalation of volatile compoundsConstruction WorkerLowImage: Struct of WorkerLowImage: Struct of WorkerLowTrespasserLowImage: Struct of WorkerLowImage: Struct of WorkerLowLocal populationLowImage: Struct of WorkerLowImage: Struct of WorkerLocal popula		Direct contact	Buildings and services	Low
Indirect contact ingestion or absorptionLocal populationLowAirborne linkageInhalation of particulatesConstruction WorkerLowAirborne linkageInhalation of particulatesConstruction WorkerLowImage: Construction WorkerLowConstruction WorkerLowImage: Construction WorkerLowLowConstruction WorkerImage: Construction WorkerLowLowConstruction WorkerImage: Construction WorkerLocal populationLowImage: Construction WorkerLowConstruction WorkerLowImage: Construction WorkerLowFlora and faunaLowImage: Construction WorkerLowFlora and faunaLowImage: Construction WorkerLocal populationLowImage: Construction WorkerImage: Construction WorkerLowLowImage: Construction WorkerLowImage: Construction WorkerLowLowImage: Construction WorkerLowImage: Construction WorkerLowLowLowImage: Construction WorkerLowImage: Construction WorkerLowLowLowImage: Construction WorkerLow </td <td></td> <td></td> <td>Groundwater</td> <td>Low</td>			Groundwater	Low
Airborne linkageInhalation of particulatesFlora and faunaLowAirborne linkageInhalation of particulatesConstruction WorkerLowResidentLowTrespasserLowInhalation of volatile compoundsLocal populationLowInhalation of volatile compoundsConstruction WorkerLowInhalation of volatile compoundsResidentLowInhalation of volatile compoundsConstruction WorkerLowInhalation of volatile compoundsConstruction WorkerLowInhalation of volatile compoundsResidentLowInhalation of volatile compoundsResidentLowInhalation of volatile compoundsResidentLowInhalation of volatile compoundsResidentLowInhalation of volatile compoundsResidentLowInhalation of volatile compoundsInhalation WorkerLowInhalation of volatile compoundsResidentLowInhalation of volatile compoundsInhalation WorkerLowInhalation of volatile compoundsResidentLowInhalation of volatile compoundsLocal populationLowInhalation of volatile compoundsLocal populationLowInhalationLocal populationLow		Indirect contact ingestion or absorption	Local population	Low
Airborne linkage Inhalation of particulates Construction Worker Low Resident Low Trespasser Low Inhalation of volatile Flora and fauna Low Inhalation of volatile Construction Worker Low Vapour intrusion into Resident Low Vapour intrusion into Resident Low Vapour intrusion into Resident Low Indoor spaces Local population Low			Flora and fauna	Low
Resident Low Trespasser Low Flora and fauna Low Local population Low Inhalation of volatile compounds Construction Worker Low Resident Low Trespasser Low Inhalation of volatile compounds Construction Worker Low Vapour intrusion into indoor spaces Trespasser Low Local population Low Local population Low Local population Low	Airborne linkage	Inhalation of particulates	Construction Worker	Low
Trespasser Low Flora and fauna Low Local population Low Inhalation of volatile compounds Construction Worker Low Resident Low Trespasser Low Flora and fauna Low Low Trespasser Low Local population Low			Resident	Low
Flora and fauna Low Local population Low Inhalation of volatile compounds Construction Worker Low Resident Low Trespasser Low Flora and fauna Low Local population Low			Trespasser	Low
Local population Low Inhalation of volatile compounds Construction Worker Low Resident Low Trespasser Low Flora and fauna Low Low Local population Vapour intrusion into indoor spaces Resident Local population Low Local population Low Local population Low			Flora and fauna	Low
Inhalation of volatile compounds Construction Worker Low Resident Low Trespasser Low Flora and fauna Low Local population Low Vapour intrusion into indoor spaces Resident Low Local population Low Local population Low			Local population	Low
Resident Low Trespasser Low Flora and fauna Low Local population Low Vapour intrusion into indoor spaces Resident Local population Low Local population Low		Inhalation of volatile compounds	Construction Worker	Low
Trespasser Low Flora and fauna Low Local population Low Vapour intrusion into indoor spaces Resident Local population Low			Resident	Low
Flora and fauna Low Local population Low Vapour intrusion into indoor spaces Resident Local population Low Local population Low			Trespasser	Low
Local population Low Vapour intrusion into indoor spaces Resident Low Local population Low			Flora and fauna	Low
Vapour intrusion into indoor spaces Resident Low Local population Low			Local population	Low
Local population Low		Vapour intrusion into indoor spaces	Resident	Low
			Local population	Low

4.4.2 Potential contamination from oil and unspecified on-site tanks

Linkage type	Pathway	Receptor	Risk
Surface soil	Direct contact ingestion	Construction Worker	High
linkage	or absorption		
		Resident	High
		Trespasser	Medium
		Flora and fauna	Medium
	Direct contact	Surface water	High
	Indirect contact ingestion or absorption	Resident	Medium
Subsurface soil linkage	Direct contact ingestion or absorption	Construction Worker	High
		Resident	Medium
		Flora and fauna	High
	Direct contact	Buildings and services	High
	Indirect contact ingestion or absorption	Resident	Medium
	Leaching to groundwater	Local population	Medium
		Flora and fauna	Medium
		Construction Worker	Medium
		Groundwater	Medium
Surface water linkage	Direct contact ingestion or absorption	Construction Worker	Medium
		Resident	Medium
		Trespasser	Medium
		Flora and fauna	Medium
	Direct contact	Buildings and services	Medium
		Surface water	Medium
	Percolation to groundwater	Local population	Low
		Flora and fauna	Low
		Groundwater	Low
Groundwater linkage	Direct contact ingestion or absorption	Construction Worker	Low
	·	Local population	Low
		Flora and fauna	Low
	Direct contact	Buildings and services	Low
		Groundwater	Low
	Indirect contact ingestion or absorption	Local population	Low
		Flora and fauna	Low
Airborne linkage	Inhalation of particulates	Construction Worker	Low
_		Resident	Low
		Trespasser	Low
		Flora and fauna	Low
		Local population	Low
	Inhalation of volatile compounds	Construction Worker	Medium
		Resident	Low
		Trespasser	Low
		Flora and fauna	Low
		Local population	Low
	Vapour intrusion into indoor spaces	Resident	Low
		Local population	Low

4.4.3 Potential asbestos contained within the fabric of the western barn

Linkage type	Pathway	Receptor	Risk
Surface soil	Direct contact ingestion	Construction Worker	High
linkage	or absorption		
		Resident	High
		Trespasser	High
		Flora and fauna	Low
	Direct contact	Surface water	Low
	Indirect contact ingestion or absorption	Resident	High
Subsurface soil linkage	Direct contact ingestion or absorption	Construction Worker	Medium
		Resident	Medium
		Flora and fauna	Medium
	Direct contact	Buildings and services	Medium
	Indirect contact ingestion or absorption	Resident	Medium
	Leaching to groundwater	Local population	Low
		Flora and fauna	Low
		Construction Worker	Low
		Groundwater	Low
Surface water linkage	Direct contact ingestion or absorption	Construction Worker	Low
		Resident	Low
		Trespasser	Low
		Flora and fauna	Low
	Direct contact	Buildings and services	Low
		Surface water	Low
	Percolation to groundwater	Local population	Low
		Flora and fauna	Low
		Groundwater	Low
Groundwater linkage	Direct contact ingestion or absorption	Construction Worker	Low
	·	Local population	Low
		Flora and fauna	Low
	Direct contact	Buildings and services	Low
		Groundwater	Low
	Indirect contact ingestion or absorption	Local population	Low
		Flora and fauna	Low
Airborne linkage	Inhalation of particulates	Construction Worker	High
		Resident	High
		Trespasser	High
		Flora and fauna	Low
		Local population	Low
	Inhalation of volatile compounds	Construction Worker	Low
		Resident	Low
		Trespasser	Low
		Flora and fauna	Low
		Local population	Low
	Vapour intrusion into indoor spaces	Resident	Low
		Local population	Low

Linkage type	Pathway	Receptor	Risk
Surface soil	Direct contact ingestion	Construction Worker	High
linkage	or absorption		
		Resident	High
		Trespasser	High
	Direct content	Flora and fauna	Medium
	Direct contact	Surface water	Medium
	or absorption	Resident	Medium
Subsurface soil linkage	Direct contact ingestion or absorption	Construction Worker	Medium
		Resident	Medium
		Flora and fauna	Medium
	Direct contact	Buildings and services	Medium
	Indirect contact ingestion or absorption	Resident	Medium
	Leaching to groundwater	Local population	Low
		Flora and fauna	Low
		Construction Worker	Low
		Groundwater	Low
Surface water linkage	Direct contact ingestion or absorption	Construction Worker	Medium
		Resident	Medium
		Trespasser	Low
		Flora and fauna	Low
	Direct contact	Buildings and services	Low
		Surface water	Low
	Percolation to groundwater	Local population	Low
		Flora and fauna	Low
		Groundwater	Low
Groundwater linkage	Direct contact ingestion or absorption	Construction Worker	Low
		Local population	Low
		Flora and fauna	Low
	Direct contact	Buildings and services	Low
		Groundwater	Low
	Indirect contact ingestion or absorption	Local population	Low
		Flora and fauna	Low
Airborne linkage	Inhalation of particulates	Construction Worker	Medium
		Resident	Medium
		Trespasser	Low
		Flora and fauna	Low
		Local population	Low
	Inhalation of volatile compounds	Construction Worker	Low
		Resident	Low
		Trespasser	Low
		Flora and fauna	Low
		Local population	Low
	Vapour intrusion into indoor spaces	Resident	Low
		Local population	Low

4.4.4 Potential contamination from possible Made Ground on site

4.5 Description of possible pollutant linkages for controlled waters

According to the Regional Hydrogeology Map of Southern East Anglia, the Chalk is the principal aquifer for the area. The estimated minimum hydrostatic level of the Chalk water table in the vicinity of the site is approximately 10 metres above Ordnance Survey Datum.

The site is approximately 46 metres above Ordnance Survey Datum. The groundwater table is therefore estimated to be approximately 36 metres below the site.

Norfolk Partnership Laboratory identified two BGS borehole records, Park Farm to the east (OSGR 627910/282100) recorded no chalk or water strike at a depth of 19.7 metres and a borehole at Chestnut Lodge Farm (OSGR 627350/281770) recorded water in a gravel deposit at 31 metres below ground level. The surface level of this borehole was recorded as 43 metres AOD. This would appear to confirm the depth of groundwater beneath the site to be in the region of 35 metres below existing ground level.

4.6 Identification of potentially unacceptable risks to controlled waters

A Low risk has been identified to the regional groundwater table with regard to the potential contaminative source within the site.

4.7 Discussion of uncertainties and gaps in information

It may be possible that there are areas of contamination that have not been identified by the previous report.

5.0 Recommendations for Site Investigation

Based upon the information contained herein it is recommended that a site investigation and quantitative risk assessment are carried out.

From this preliminary risk assessment, it is recommended that a site investigation comprising of a number of window sample holes is undertaken. Judgmental sampling in accordance with BS 10175:2011 clause 7.7.2.2 and non-targeted sampling in accordance with BS 10175:2011 clause 7.7.2.3 should be carried out.

NPL recommends eight window sample holes are drilled across the site to a minimum depth of 2.00 metres to obtain samples for the contamination investigation. In addition, two dynamic probes to a depth of 2.90 metres will be undertaken to obtain geotechnical information.

6.0 Site Investigation

6.1 Investigation Objectives

The aim of this investigation is to determine whether any contamination exists on the site. In the event of contamination being found then it should be quantified as far as possible.

6.2 Preparatory Enabling Works

No preparatory enabling works were required on the site.

6.3 Works undertaken

On 28 January 2022, eight window sample holes were drilled to a maximum depth of 3.00 metres.

The locations of these excavations are shown on the plan in Appendix B.

6.4 Site Investigation Strategy

The site investigation was to identify any potential contamination and address the potential source areas identified in the contamination scoping assessment by Messrs. W.A.S. Ltd.

6.5 <u>Site Sampling Strategy</u>

A number of disturbed samples were taken from the window sample holes in accordance with BS 5930:2015. The number and depths of these samples encountered are set out in Appendix C of this report.

6.6 In-situ and Geotechnical Testing

Two dynamic probes were carried out across the site, the logs and equivalent N values graphs can be seen in Appendix C.

6.7 Pollution prevention measures

No particular pollution prevention measures were required on this site. No material was removed with the exception of samples for testing. Due diligence was employed to prevent any possible cross contamination of material. The Window Sample holes were backfilled with inert soils.

7.0 Analytical Strategy

The following samples were tested for the parameters shown. The samples were sent to Envirolab, Cheshire for analysis. Envirolab is a UKAS accredited laboratory, No.1247.

7.1 <u>Soil</u>

Location	Depth (m)	Tests	
WS01	0.15	Suite SB, Speciated TPH to WGC UK, Asbestos Screen	
WS02	0.15	Speciated TPH to WGC UK, VOC, SVOC	
WS03	0.10	Suite SB, Speciated TPH to WGC UK, Asbestos Screen, VOC,	
		SVOC, Pesticides and Herbicides	
WS04	0.05	Speciated TPH to WGC UK, Asbestos Screen	
WS05	0.05	Speciated TPH to WGC UK, Asbestos Screen, VOC, SVOC,	
		Pesticides and Herbicides	
WS06	0.20	Suite SB, Speciated TPH to WGC UK	
WS07	0.05	Suite SB	
WS07	0.10	Suite SB	

Suite SB = General contamination suite including testing for: Total Sulphate, Boron, Water Soluble, Arsenic, Cadmium, Chromium III, Chromium VI, Copper, Lead, Mercury, Nickel, Selenium, Zinc, Acid Soluble Sulphide, Phenols (Monohydric), Total Cyanide, Elemental Sulphur, pH Value, PAH Total, Speciated PAH, Soil Organic Matter (SOM).

8.0 Investigation Results

8.1 Ground conditions

8.1.1 Surface Deposits

Topsoil was recorded as the surface deposit in WS's 04,06, 07 and 08. The topsoil was brown and in colour and silty in texture. The thickness of this deposit ranged from 0.25 metre in WS08 up to 0.35 metre in WS04. Chemical analysis has show that this material is suitable for re use within the development.

Made Ground was recorded as the surface deposit in all remaining window sample holes within and the direct vicinity of the barns.

This material in WS01 comprised a hardcore type material comprising sub-angular to sub-rounded, up to cobble sized concrete, flint and brick gravel in a matrix of dark brown, silty, fine and medium sand. The remainder of the material was found to be sub-angular to sub-rounded, up to cobble sized concrete, brick, mortar and flint gravel in a matrix of greyish brown, silty, fine and medium sand. The thickness of this deposit ranged from 0.15 metre in WS02 up to 0.40 metre in WS01.

More detail can be found on the window sample logs in Appendix C.

8.1.2 Lowestoft Till

The Lowestoft Till deposit was encountered in all the window sample holes beneath the Made Ground or Topsoil material. The strata was encountered at depths ranging from 0.15 in WS02 up to 0.40 metre in WS01.

The deposit comprised mottled light greyish brown and orangey brown, silty, gravelly CLAY. Gravel was recorded as sub-angular to sub-rounded, fine to coarse chalk and flint. The strength of this material ranged from soft to firm through firm and firm to stiff up to stiff. Generally, the strength increased with depth.

The deposits within WS's 02, 03, 05 and 07 included deposits of clayey sand and some deposits of clayey gravel.

The deposit was not proven in all window sample holes at a maximum drill depth of 3.00 metres.

According to NHBC Standards Chapter 4.3, Table 2 the Lowestoft Till deposits can generally be treated as type of ground 3 and 4. Due to the variable nature with occasional type 6 present strip footings would require examination after excavation to ensure an appropriate footing was used.

The minimum width (mm) of the strip footing in relation to total load should be according to the table shown below. Problems could possibly occur with the excavation of pipe runs or manholes in these materials.

NHBC Standards Chapter 4.3 Table 2 Condition of Type of Field test applicable Total load of load-bearing walling ground not more than (kN/linear metre) ground (including 30 40 20 50 60 70 Minimum width of strip foundation (mm) 1 Rock Not inferior to Requires at least a Equal to the width of the wall plus 50mm each side. sandstone, pneumatic or other limestone or firm mechanically operated chalk pick for excavation. 2 Gravel Medium dense Requires pick for 250 300 400 500 600 650 excavation. Sand Wooden peg 50mm square in cross-section is 3 Clay Sandy Stiff Can be indented slightly 250 300 500 600 650 400 clay by thumb. 4 Clay Sandy Firm Thumb makes impression 300 350 600 750 850 450 clay easily. 5 Sand Can be excavated with a 400 600 Does not fall within the Loose Silty sand spade. provisions of this **Clayey sand** Wooden peg 50mm guidance where the total load exceeds 30 square in cross-section 6 Soft Finger can be pushed in 450 650 Silt Clay up to 10mm. Sandy clay Clay or silt 7 Silt Very soft Finger can Refer to specialist advice. Clay be easily Sandy clay pushed in Clay or silt up to

8.1.3 Upper Chalk

No Chalk deposits were positively identified during this investigation.

8.1.4 Dynamic Probes

Two dynamic probes were undertaken across the site to a maximum depth of 2.90 metres.

DP09

The dynamic probes indicates that the equivalent SPT "N" value increased at a depth of 1.10 metres.

<u>DP10</u>

The dynamic probes indicates that the equivalent SPT "N" value increased at a depth of 1.00 metre.

8.2 Groundwater conditions

Location	Depth (bglm)		
	Water strike	Rose to	
WS01	2.00	1.60	
WS02	2.00	1.50	
WS03	2.10	1.30	
WS04	Dry	n/a	
WS05	Dry	n/a	
WS06	Dry	n/a	
WS07	Dry	n/a	
WS08	Dry	n/a	

Groundwater was encountered during the drilling process as seepage.

It is thought that this water is of a perched nature collected within the granular inclusions originating from permeating surface water finding the line of least resistance with regards to migrating through the clay

8.3 <u>Geoenvironmental test results summary</u>

The samples indicated in Section 7.0 were sent to Envirolab, Cheshire for analysis. Envirolab is a UKAS accredited laboratory, No.1247.

These samples were tested for the contaminants of concern noted in sections 7.1 above. The test results are included in Appendix D.

8.4 Contamination

8.4.1 Soil

All the results were found to be below the C4SL's, Atkins ATRISK and LQM/CIEH S4UL's threshold values for residential with the consumption of home grown produce land use, with 1% soil organic matter. The exceptions are tabulated below

Location	Depth (mbgl)	Contaminant	Quantification (% w/w)
WS01	0.15	Amosite Loose insulation	0.710

9.0 Quantitative Risk Assessment

9.1 Risk Assessment Objectives

The objective of the quantitative risk assessment is to revisit the preliminary risk assessment in the light of information obtained during the site investigation and thus reassess the validity of the model.

9.2 Proposed Development

It is proposed a change of use and conversion of barns to form two dwellings.

9.3 Revised Conceptual Model

Referring back to the original conceptual model in Section 4.0 the following potentially contaminative linkages were present.

- i) Potential contamination for historical farming use
- ii) Potential contamination from diesel oil tank in western barn.
- iii) Potential asbestos contained within the fabric of the western barn
- iv) Potential contamination from possible Made Ground on site

Each of these has a variety of potential pollution linkages.

9.4 Risk assessment rationale

Where available levels of potential contaminants were compared to C4SL's, Atkins ATRISK and LQM/CIEH S4UL's threshold values to assess human health risk.

To assess the risk to buildings and services the WRAS documentation and BRE Special Digest 1 were used. These are specialist documents that focus on a particular target.

9.5 Exposure scenarios

orical farming use
orical farming use

Linkage type	Pathway	Receptor	Risk
Surface soil	Direct contact ingestion	Construction Worker	Low
linkage	or absorption		
		Resident	Low
		Trespasser	Low
		Flora and fauna	Low
	Direct contact	Surface water	Low
	Indirect contact ingestion or absorption	Resident	Low
Subsurface soil linkage	Direct contact ingestion or absorption	Construction Worker	Low
		Resident	Low
		Flora and fauna	Low
	Direct contact	Buildings and services	Low
	Indirect contact ingestion or absorption	Resident	Low
	Leaching to groundwater	Local population	Low
		Flora and fauna	Low
		Construction Worker	Low
		Groundwater	Low
Surface water linkage	Direct contact ingestion or absorption	Construction Worker	Low
		Resident	Low
		Trespasser	Low
		Flora and fauna	Low
	Direct contact	Buildings and services	Low
		Surface water	Low
	Percolation to groundwater	Local population	Low
		Flora and fauna	Low
		Groundwater	Low
Groundwater linkage	Direct contact ingestion or absorption	Construction Worker	Low
		Local population	Low
		Flora and fauna	Low
	Direct contact	Buildings and services	Low
		Groundwater	Low
	Indirect contact ingestion or absorption	Local population	Low
		Flora and fauna	Low
Airborne linkage	Inhalation of particulates	Construction Worker	Low
		Resident	Low
		Trespasser	Low
		Flora and fauna	Low
		Local population	Low
	Inhalation of volatile compounds	Construction Worker	Low
		Resident	Low
		Trespasser	Low
		Flora and fauna	Low
		Local population	Low
	Vapour intrusion into indoor spaces	Resident	Low
	•	Local population	Low

Linkage type	Pathway	Receptor	Risk
Surface soil	Direct contact ingestion	Construction Worker	Low
linkage	or absorption		
		Resident	Low
		Trespasser	Low
		Flora and fauna	Low
	Direct contact	Surface water	Low
	Indirect contact ingestion or absorption	Resident	Low
Subsurface soil linkage	Direct contact ingestion or absorption	Construction Worker	Low
		Resident	Low
		Flora and fauna	Low
	Direct contact	Buildings and services	Low
	Indirect contact ingestion or absorption	Resident	Low
	Leaching to groundwater	Local population	Low
		Flora and fauna	Low
		Construction Worker	Low
		Groundwater	Low
Surface water linkage	Direct contact ingestion or absorption	Construction Worker	Low
		Resident	Low
		Trespasser	Low
		Flora and fauna	Low
	Direct contact	Buildings and services	Low
		Surface water	Low
	Percolation to groundwater	Local population	Low
		Flora and fauna	Low
		Groundwater	Low
Groundwater linkage	Direct contact ingestion or absorption	Construction Worker	Low
		Local population	Low
		Flora and fauna	Low
	Direct contact	Buildings and services	Low
		Groundwater	Low
	Indirect contact ingestion or absorption	Local population	Low
		Flora and fauna	Low
Airborne linkage	Inhalation of particulates	Construction Worker	Low
		Resident	Low
		Trespasser	Low
		Flora and fauna	Low
		Local population	Low
	Inhalation of volatile compounds	Construction Worker	Low
		Resident	Low
		Trespasser	Low
		Flora and fauna	Low
		Local population	Low
	Vapour intrusion into indoor spaces	Resident	Low
		Local population	Low

9.5.2 Potential contamination from diesel oil tank in western barn

Linkage type	Pathway	Receptor	Risk
Surface soil	Direct contact ingestion	Construction Worker	High
linkage	or absorption		-
		Resident	Low
		Trespasser	Low
		Flora and fauna	Low
	Direct contact	Surface water	Low
	Indirect contact ingestion or absorption	Resident	Low
Subsurface soil linkage	Direct contact ingestion or absorption	Construction Worker	Low
		Resident	Low
		Flora and fauna	Low
	Direct contact	Buildings and services	Low
	Indirect contact ingestion or absorption	Resident	Low
	Leaching to groundwater	Local population	Low
		Flora and fauna	Low
		Construction Worker	Low
		Groundwater	Low
Surface water linkage	Direct contact ingestion or absorption	Construction Worker	Low
		Resident	Low
		Trespasser	Low
		Flora and fauna	Low
	Direct contact	Buildings and services	Low
		Surface water	Low
	Percolation to groundwater	Local population	Low
		Flora and fauna	Low
		Groundwater	Low
Groundwater linkage	Direct contact ingestion or absorption	Construction Worker	Low
		Local population	Low
		Flora and fauna	Low
	Direct contact	Buildings and services	Low
		Groundwater	Low
	Indirect contact ingestion or absorption	Local population	Low
		Flora and fauna	Low
Airborne linkage	Inhalation of particulates	Construction Worker	High
		Resident	Low
		Trespasser	Low
		Flora and fauna	Low
		Local population	Low
	Inhalation of volatile compounds	Construction Worker	Low
		Resident	Low
		Trespasser	Low
		Flora and fauna	Low
		Local population	Low
	Vapour intrusion into indoor spaces	Resident	Low
		Local population	Low

9.5.3 Potential asbestos contained within the fabric of the western barn

Linkage type	Pathway	Receptor	Risk
Surface soil	Direct contact ingestion	Construction Worker	Low
linkage	or absorption		
		Resident	Low
		Trespasser	Low
		Flora and fauna	Low
	Direct contact	Surface water	Low
	Indirect contact ingestion or absorption	Resident	Low
Subsurface soil linkage	Direct contact ingestion or absorption	Construction Worker	High
		Resident	Low
		Flora and fauna	Low
	Direct contact	Buildings and services	Low
	Indirect contact ingestion or absorption	Resident	Low
	Leaching to groundwater	Local population	Low
		Flora and fauna	Low
		Construction Worker	Low
		Groundwater	Low
Surface water linkage	Direct contact ingestion or absorption	Construction Worker	Low
		Resident	Low
		Trespasser	Low
		Flora and fauna	Low
	Direct contact	Buildings and services	Low
		Surface water	Low
	Percolation to groundwater	Local population	Low
		Flora and fauna	Low
		Groundwater	Low
Groundwater linkage	Direct contact ingestion or absorption	Construction Worker	Low
		Local population	Low
		Flora and fauna	Low
	Direct contact	Buildings and services	Low
		Groundwater	Low
	Indirect contact ingestion or absorption	Local population	Low
		Flora and fauna	Low
Airborne linkage	Inhalation of particulates	Construction Worker	Low
		Resident	Low
		Trespasser	Low
		Flora and fauna	Low
		Local population	Low
	Inhalation of volatile compounds	Construction Worker	Low
		Resident	Low
		Trespasser	Low
		Flora and fauna	Low
		Local population	Low
	Vapour intrusion into indoor spaces	Resident	Low
		Local population	Low

9.5.4 Potential contamination from possible Made Ground on site

9.6 Assessment criteria

The assessment criterion used is for residential with the consumption of home grown produce land use with 1% soil organic matter.

CLEA v1.06, C4SL's, Atkins ATRISK and LQM/CIEH S4ULs models were used to assess human health risk and determine allowable values for any contaminants present.

To assess the risk to buildings and services the WRAS documentation and BRE Special Digest 1 were used. These are specialist documents that focus on a particular target.

9.7 Constraints and limitations

The CLEA model is limited to published data. These assessing criteria only apply to human health and do not assess risk to groundwater.

Atkins AT**RISK**^{soil} SSV data was derived to use where CLEA guidance was not available. AT**RISK**^{soil} SSV was derived using toxicological data inputted into BP RISC 4.0.

The WRAS, CIRIA and BRE documents are specific to the target receptor.

9.8 Risk to controlled waters

According to the Regional Hydrogeology Map of Southern East Anglia, the Chalk is the principal aquifer for the area. The estimated minimum hydrostatic level of the Chalk water table in the vicinity of the site is approximately 10 metres above Ordnance Survey Datum.

The site is approximately 46 metres above Ordnance Survey Datum. The groundwater table is therefore estimated to be approximately 36 metres below the site.

Norfolk Partnership Laboratory identified two BGS borehole records, Park Farm to the east (OSGR 627910/282100) recorded no chalk or water strike at a depth of 19.7 metres and a borehole at Chestnut Lodge Farm (OSGR 627350/281770) recorded water in a gravel deposit at 31 metres below ground level. The surface level of this borehole was recorded as 43 metres AOD. This would appear to confirm the depth of groundwater beneath the site to be in the region of 35 metres below existing ground level.

A low risk to controlled waters has been deemed appropriate for this site. This is due to the low levels of contamination recorded during this investigation.

9.9 Effects on Human Health

The testing undertaken during this investigation has indicated that the strata within the site generally poses a low risk to the human health of the end user with the exception of the contaminants listed in Section 8.4.1. If the works recommended in Section 10.0 are carried out the site will pose an insignificant risk to human health.

G:Highways\Labs\Projects\HLE - Geoenvironmental IB\102739 Mendham Barns at Buena Vista Foxes LaneiReport\Barns at Buena Vista Foxes Lane Mendham Stage II Site investigation.doc

9.10 Effects on buildings and services

The site poses a low risk to buildings and services.

Sulphate (water sol 2:1) levels ranged from <0.01 g/l to 0.07 g/l. These results indicate that the site would be Design Sulphate Class DS-1, AC-1 as defined in BRE Special Digest 1 2005 3rd Edition.

The values of pH recorded ranged from 7.78 in WS06 up to 8.22 in WS01.

9.11 Uncertainties

There is a risk that contamination may exist in areas not investigated.

9.12 Risk Evaluation

With current knowledge this site generally represents a low risk to human health, controlled waters, and to buildings and services when the works recommended in Section 10.0 are carried out.

10.0 Recommendations

Based upon the information contained herein, it is recommended that no further intrusive investigation for contamination purposes is required on this site at the present time.

With respects to the specific risk area as highlighted in Section 8.4.1, WS01 was found to contain Amosite Loose insulation at a depth of 0.15 metre below existing ground level within the Made Ground deposit. This area is proposed to be driveway / parking area for the western barn. It is recommended that an area $3.0 \times 3.0 \times 0.3$ metre is removed from this area and disposed of to a suitably licensed facility. This area will be validated with sampling and analysis undertaken from the sidewalls and base in accordance with BS:10175:2011 to ensure that all contaminated material has been removed. It may be prudent to extend this excavation to 0.40 metre and remove all the Made Ground at this location.

The western barn does include ACM products on the roof. All potential asbestos containing material (ACM) on the structure should be removed by a suitably licensed contractor and disposed of to a suitably licensed facility. Consignment notes for any removed ACM and documentation stating that all ACM has been disposed of from the site should be submitted to Mid Suffolk District Council.

If the above works are undertaken and evidenced the site will pose an in significant risk to the end user.

The Topsoil present within the proposed garden areas has been tested and the results confirm that the material is suitable for re use in the residential garden areas.

It should also be stressed that if any possibly contaminated material should be found during the development of the site then Mid Suffolk District Council and Norfolk Partnership Laboratory should be informed immediately.

11.0 References

DEFRA: Contaminated Land exposure assessment "CLEA Version 1.04:2008"

Environment Agency: R&D Publication 20; Methodology for the derivation of remedial targets for soil and groundwater to protect water resources: 1999.

Environment Agency: Technical advice to third parties on the pollution of controlled waters for part IIA: 2002.

Environment Agency: Guidance on Requirements for Land Contamination Reports; July 2005.

Environment Agency website.

RAIS website.

WRAS Information and Guidance Note No 9-04-03, Issue 1: The Selection of Materials for Water Supply Pipes to be Laid in Contaminated Land: October 2002.

CIRIA Report 149: Protecting Development from Methane: 1995.

CIRIA C665 Assessing risks posed by hazardous ground gases to buildings, 2007.

BRE Special Digest 1: Concrete in aggressive ground, 3rd Edition: 2005.

Atkins ATRISK SSV's derived using CLEA Version 1.06.

NHBC Standards January 2019.

NHBC Technical Extra October 2014, Issue 15.

BS 1377: 1990; Soils for Civil Engineering Purposes.

BS 5930:2015 incorporating amendment A1:2020; Code of practice for Site Investigations.

BS 10175: 2011; Investigation of potentially contaminated sites – Code of practice.

LQM/CIEH S4ULs for Human Health Risk Assessment.

Appendix A

Appendix **B**

Appendix C

Window Sampler Log

Schen	ne		Mendham, Barns Foxes Lane	Job	No.	10273	9	WS N	lo.		01				
Carrie	d out	for	Ray Chapman Fabrication Ltd	Date	e Starte	d 28/0	1/2022	Date	Finish	ned	28/0	1/202	22		
Rema	rks:			Тур	e of Rig	Dan	do Terrier						Logge	d by	DJ
				Dep	oth (m)	3.00		Grou (m A	nd Lev OD)	vel			Drawı	ו by	CRV
				Co-	ords	6285	533 - 2812	216					Checke	ed by	IDB
Backfill	Water	Casing	Description	Legend	Depth (m)	Scale	San	nple	Field Tests	MC%		abora	ory Test	.s	
	▼		MADE GROUND: comprising sub-angular to sub-rounded, up to cobble sized concrete, flint and brick gravel in a matrix of dark brown, silty, fine and medium sand. Soft to firm orangey brown and greyish brown, silty, very sandy CLAY, with some sandy partings. Firm to stiff mottled greyish brown and grey, gravelly, silty CLAY. Gravel is sub-angular to sub-rounded, fine to coarse chalk and flint. Becoming stiff CLAY from 1.60-3.00m.			- - - - - - - - - - - - - - - - - - -	Type	No.		MC%		PL		Org.	CBR
					3.00	- - - - - - - - - - - - - - - - - - -									

Window Sampler Log

										onee		1			
Schem	ne		Mendham, Barns Foxes Lane	Job	No.	10273	9	WS N	lo.		02				
Carrie	d out	for	Ray Chapman Fabrication Ltd	Date	Starte	d 28/0	1/2022	Date	Finish	ed	28/01	1/202	22		
Rema	rks:			Туре	of Rig	Dano	do Terrier	·					Logge	d by	DJ
				Dep	th (m)	3.00		Grour	nd Lev וחר	/el			Drawr	ı by	CRV
				Co-c	ords	6285	528 - 2812	09)0)				Checke	ed by	IDB
Backfill	Water	Casing	Description	Legend	Depth	Scale	Samp	ole	Field		L	abora.	tory Test	s	
Buokin	Water	cuong		Logona	(m)	Could	Туре	No.	Tests	MC%	LL	PL	MPI	Org.	CBR
			MADE GROUND: comprising sub-angular to sub-rounded, up to cobble sized concrete, brick, mortar and flint gravel in a matrix of greyish brown, silty, fine and medium sand. Firm to stift mottled light grey and orangey brown, silty, gravelly CLAY. Gravel is sub-angular to sub-rounded, fine to coarse chalk and flint. Beige sub-angular to sub-rounded, fine to coarse chalk GRAVEL and some silty, fine and medium SAND (wet). Firm and stiff mottled light grey and orangey brown, silty, gravelly CLAY. Gravel is sub-angular to sub-rounded, fine to coarse chalk GRAVEL and some silty, fine and medium SAND (wet). Firm and stiff mottled light grey and orangey brown, silty, gravelly CLAY. Gravel is sub-angular to sub-rounded, fine to coarse chalk, with occasional flint cobbles. Becoming dark grey CLAY from 2.55-3,00m.		0.15			1 2 3							
						- - - -									

Window Sampler Log

Schem	ne		Mendham, Barns Foxes Lane	Job	No.	10273	9	wsi	No.		03				
Carrie	d out	for	Ray Chapman Fabrication Ltd	Date	e Starte	d 28/0	1/2022	Date	Finish	ned	28/0	1/202	22		
Rema	rks:			Туре	e of Rig	Dano	do Terrier						Logge	d by	DJ
				Dep	th (m)	3.00		Grou (m A	nd Le [.] OD)	vel			Drawr	ו by	CRV
				Co-o	ords	6285	531 - 281	204					Checke	ed by	IDB
Backfill	Water	Casing	Description	Leaend	Depth	Scale	San	nple	Field		l	abora	tory Test	is	
				Ū	(m)		Туре	No.	lests	MC%	LL	PL	MPI	Org.	CBR
			MADE GROUND: comprising dark greyish brown, gravelly, fine and medium sand. Gravel is sub-angular to sub-rounded, fine to coarse brick, concrete and flint.			-									
			Firm to stiff mottled light grey and orangey brown, gravelly, silty CLAY. Gravel is sub-angular to sub-rounded, fine to coarse chalk and flint.	× · · · · · ×	0.30	-		1							
			Orangey brown, silty, fine and medium SAND, with rare sub-	××	0.80	-									
			angular to sub-rounded, fine to coarse flint.			- 									
			Firm grey, gravelly, silty CLAY. Gravel is sub-angular to sub- rounded, fine to coarse chalk and flint.	× × × × × × × × × ×	1.30	-									
			Becoming firm to stiff CLAY from 1.60-3,00m.			-		2							
	\searrow				21.1.2.21.1.2	- 2.00									
					27.1.2.21.1.1.2.21.	-									
					1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	-		3							
				× · · · · × × · · · · · × × · · · · · ·	* 3.00	- - 3.00									
						-									
						-									
						-									
						4.00 - -									
						-									
						-									
						-									

Window Sampler Log

												•			
Scher	ne		Mendham, Barns Foxes Lane	Job	No.	10273	9	WSN	No.		04				
Carrie	d out	for	Ray Chapman Fabrication Ltd	Date	e Starte	d 28/0	1/2022	Date	Finish	ned	28/0	1/202	22		
Rema	rks:		Dry	Туре	e of Rig	Dan	do Terrier						Logge	d by	DJ
				Dep	th (m)	3.00		Grou		vel			Draw	n by	CRV
				Co-c	ords	6285	545 - 281 [°]	198	00)				Check	ed by	IDB
Backfill	Water	Casing	Description	Legend	Depth	Scale	San	nple	Field		I	Labora	tory Tes	ts	
					(m)		Туре	No.	lests	MC%	LL	PL	MPI	Org.	CBR
			Brown silty TOPSOIL. Firm nottled greyish brown and orangey brown, sandy, silty CLAY. Firm to stiff greyish brown and light brown, gravelly, silty CLAY. Gravel is sub-angular to sub-rounded, up to cobble sized chalk and flint. Becoming stiff CLAY from 1.20-3.00m. Becoming grey CLAY from 2.10-3.00m.		0.35			1							
						-	-								

Window Sampler Log

Schen	ne		Mendham, Barns Foxes Lane	Job	No.	10273	9	ws	No.		05				
Carrie	d out	for	Ray Chapman Fabrication Ltd	Date	e Starte	d 28/0	1/2022	Date	e Finisł	ned	28/0	1/20	22		
Rema	rks:		Dry	Туре	e of Rig	Dano	do Terrier						Logge	d by	DJ
				Dep	th (m)	3.00		Gro (m A		vel			Drawr	ı by	CRV
				Co-o	ords	6285	568 - 281	199	(02)				Checke	ed by	IDB
Backfill	Water	Casing	Description	Legend	Depth (m)	Scale	Sar	nple	Field			Labora	tory Test	s	
				×7777×7777	(11)		Туре	No.	10313	MC%	LL	PL	MPI	Org.	CBR
			MADE GROUND: comprising dark brown sitty topsoil. MADE GROUND: comprising predominantly dark brown, silty topsoil, with some sub-angular to sub-rounded, up to cobble sized red brick and flint.		0.10	-									
			Brown, slightly clayey, silty, fine SAND.		0.35	-		1							
					1.00	-									
			Firm to stiff mottled light grey and orangey brown, silty, gravelly CLAY. Gravel is sub-angular to sub-rounded, up to cobble sized chalk and flint.		च 1.00 इ. 										
				× · · · · · · · · · · · · · · · · · · ·	च 8 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	-		2							
						- - 2.00 -									
				× · · · · · · · · · · · · · · · · · · ·		-		:	3						
				×	2 2 2 2 2 2 2 3 3.00	- - 									
						-									
						-									
						- - 4.00									
						-									
						_									
						-									

Window Sampler Log

										Onee		1			
Scher	ne		Mendham, Barns Foxes Lane	Job	No.	10273	9	WS N	lo.		06				
Carrie	ed out	for	Ray Chapman Fabrication Ltd	Date	Starte	d 28/0	1/2022	Date	Finish	ned	28/01	1/202	22		
Rema	rks:		Dry	Туре	e of Rig	Dan	do Terrier						Logged	d by	DJ
				Dept	th (m)	2.00		Grou	nd Lev מרכ	vel			Drawn	ı by	CRV
				Co-c	ords	6285	557 - 2811	<u></u> 78	50)				Checke	ed by	IDB
Backfill	Water	Casing	Description	Legend	Depth	Scale	Samp	le	Field		L	aborat	tory Tests	s	
Buotum		g		Logona	(m)	Could	Туре	No.	Tests	MC%	LL	PL	MPI	Org.	CBR
			Brown silty TOPSOIL.			-									
			Firm mottled greyish brown and orangey brown, gravelly, silty CLAY. Gravel is sub-angular to sub-rounded, fine to coarse chalk and flint.	××	0.30	-		1							
			Becoming firm to stiff CLAY from 0.70-2.00m.			-									
				××	3 	- 									
				× · · · ×		-									
				×		-		2							
				×× ××		-									
				×× ××	2.00	- 									
						-									
						_									
						-									
						-3.00									
						-									
						-									
						-									
						-4.00 -									
						-									
						_									
						-									
						<u> </u>	-								

Window Sampler Log

				1						enee		•			
Schen	ne		Mendham, Barns Foxes Lane	Job	No.	10273	9	WSN	lo.		07				
Carrie	ed out	for	Ray Chapman Fabrication Ltd	Date	e Starte	d 28/0	1/2022	Date	Finish	ned	28/0	1/202	22		
Rema	rks:		Dry	Туре	e of Rig	Dano	do Terrier						Logge	d by	DJ
				Dep	th (m)	2.00		Grou	nd Lev מרכ	vel			Drawr	ı by	CRV
				Co-c	ords	6285	562 - 2811	58	00)				Checke	d by	IDB
Backfill	Water	Casing	Description	Legend	Depth	Scale	Sam	ple	Field			Labora	tory Test	s	
					(11)		Туре	No.	lesis	MC%	LL	PL	MPI	Org.	CBR
			Dark brown silty TOPSOIL.			-									
			Orangey brown, silty, very clayey, fine and medium SAND.		0.30	-		1							
						-									
			Firm mottled light greyish brown and orangey brown, silty,	×	0.90	-									
			gravely CLAY. Gravel is sub-angular to sub-rounded, fine to coarse chalk and flint.	××											
			Becoming stiff CLAY from 1.20-2.00m.	× · · · ×	19 19 19	_									
				××	5 	-									
				××	- 12 - 12	-		2							
				× ···· ×	19 19 19	-									
				× · · · · · · · ·	21 21	-									
				<u>^X</u>	2.00	-2.00									
						-									
						-									
						_									
						-									
						-									
						-3.00									
						-									
						-									
						E									
						-									
						-									
						-4.00									
						-									
						_									
						-									
						- -									
						L									

Window Sampler Log

										onee	1 1 01	•			
Scher	ne		Mendham, Barns Foxes Lane	Job	No.	10273	9	WS N	lo.		08				
Carrie	ed out	for	Ray Chapman Fabrication Ltd	Date	e Starteo	d 28/0	1/2022	Date	Finish	ned	28/0	1/202	22		
Rema	rks:		Dry	Туре	e of Rig	Dano	do Terrier						Logge	d by	DJ
				Dep	th (m)	2.00		Grou	nd Lev מרכ	vel			Drawr	ו by	CRV
				Co-d	ords	6285	542 - 2811	160	00)				Checke	ed by	IDB
Backfill	Water	Casing	Description	Legend	Depth	Scale	Sam	ıple	Field		I	_abora	tory Test	ts	
					(m)		Туре	No.	Tests	MC%	LL	PL	MPI	Org.	CBR
			Brown silty TOPSOIL. Firm to stiff mottled greyish brown and orangey brown, silty, gravely CLAY. Gravel is sub-angular to sub-rounded, fine to coarse chalk and flint. Becoming stiff CLAY from 0.50-2.00m.		2.00			1							
						-									

DYNAMIC PROBE LOG

Scheme	e	Mendham, Barns Foxes Lane Ray Chapman Fabrication Ltd										Jol	o No	. 10)273	39			Р	robe	e No).	()9					
Carried	out for	Ray Cl	hapma	an Fab	ricatio	on Lt	d					Date	e Sta	arteo	1 2	8/01	/202	2	D	ate	Fini	shec	1 2	28/0	1/20	22			
Dimens (mm)	ion	50		Pro	be T	уре		DPS	SH-E	3		Тур	e of	Rig	D	and	o Ter	rrier								Log	ged b	/	DJ
Remark	(S:											Dep	oth (r	n)	2	.90			G	irour n A(nd L מכ	evel				Dra	wn by	c	RV
												Co-	ords		6	2856	<u> 59 - 2</u>	2812	200	<u></u>	<u>, , , , , , , , , , , , , , , , , , , </u>					Che	cked b	y I	DB
Depth	Torque	Blov	ws per 1 5	00m Per 10	netratio 1	n 5	20)	25	5	30)	3	5	4	0	45	5	50)	5	5	6	0	6	5	7()	
(m) -	(N m)																												
- 1	0		\mathbf{h}^{\dagger}																										
-			2																										
-	0		2																										
2	0		K																										
_ _ 								>																					
	20																												
— 3 — —																													
_ _ _																													
-																													
4 																													
- -											_							_		_									
5																													
6																													
-																													
7											_									_									
_ _ _																													
- 9			+					-+			-+				_													_	
_					. 1					·	I															-			

102739 Mendham, Barns Foxes Lane Dynamic Probe 09 Equivalent SPT 'N' value

Depth (m)

DYNAMIC PROBE LOG

Scheme	e	Mendham, Barns Foxes Lane							Jo	b Nc	o. 10	0273	39			P	Probe	e No).	1	10									
Carried	out for	Ray (Chapn	nan F	-abri	icatio	on Lt	td					Dat	e Sta	arteo	d 2	8/01	/202	22	C	Date	Fini	shec	1 2	28/0	1/20	22			
Dimens (mm)	ion	50			Pro	be T	уре		DP	SH-I	В		Тур	e of	Rig	D	and	o Te	rrier								Log	ged by	/	DJ
Remark	(S:												Dep	oth (I	m)	2	.90			G	Grou	nd L מכ	evel				Dra	wn by	С	RV
													Co-	ords	;	6	2853	32 - 3	2812	205		<u>, , , , , , , , , , , , , , , , , , , </u>					Che	cked b	y I	DB
Depth	Torque	BI	ows pe	r 100m 1	n Pene 0	etratio 1	n 5	2	0	2	5	3	0	3	5	4	0	4	5	5	0	5	5	6	0	6	5	70)	
- (11)	((N III)																													
-																														
	0	\leq																												
1 																														
_ _ 																														
	0																													
2 																														
_ _				\mathbf{B}																									_	
- - 	10			>																										
- -																					_								_	
4			_																											
_ _ _																														
5 5																													_	
- - -																														
6																													_	
_ _ 																														
7 																														
_ 																														
-																														
- 																													_	
9																														
- -																														

102739 Mendham, Barns Foxes Lane Dynamic Probe 10 Equivalent SPT 'N' value

Depth (m)

Appendix D

FINAL ANALYTICAL TEST REPORT

Envirolab Job Number: Issue Number:

22/00967 1

Date: 25 February, 2022

Client:

Norse Eastern Ltd t/a Norse Highways 280 Fifers Lane Norwich Norfolk NR6 6EQ

Project Manager: Project Name: Project Ref: Order No: Date Samples Received: Date Instructions Received: Date Analysis Completed: Josh Thompson/Sharon Woods; Simon Holden Barns at Buena Vista Foxes Lane Mendham 102739 PN05033172 03/02/22 03/02/22 25/02/22

Approved by:

JPA

Danielle Brierley Deputy Client Services Supervisor

Client Project Name: Barns at Buena Vista Foxes Lane Mendham

Client Project Ref: 102739

Lab Sample ID	22/00967/1	22/00967/2	22/00967/3	22/00967/4	22/00967/5	22/00967/6	22/00967/7			
Client Sample No	20224	20225	20226	20227	20228	20229	20230			
Client Sample ID	WS01	WS02	WS03	WS04	WS05	WS06	WS07			
Depth to Top	0.15	0.15	0.1	0.05	0.05	0.2	0.05			
Depth To Bottom									uo	
Date Sampled	28-Jan-22		etecti	÷						
Sample Type	Soil - D		of D	od re						
Sample Matrix Code	4AB	6A	4ABE	6AE	4AE	6ABE	6AE	Units	Limit	Meth
% Stones >10mm _A	<0.1	4.7	36.7	<0.1	<0.1	13.9	<0.1	% w/w	0.1	A-T-044
pH _D ^{M#}	8.22	-	7.94	-	-	7.78	7.84	рН	0.01	A-T-031s
Sulphate (water sol 2:1) _D ^{M#}	0.03	-	0.07	-	-	<0.01	<0.01	g/I	0.01	A-T-026s
Sulphate (acid soluble) _D ^{M#}	520	-	820	-	-	470	480	mg/kg	200	A-T-028s
Cyanide (total) _A ^{M#}	<1	-	<1	-	-	<1	<1	mg/kg	1	A-T-042sTCN
Phenols - Total by HPLC _A	<0.2	-	<0.2	-	-	<0.2	<0.2	mg/kg	0.2	A-T-050s
Sulphide _A	59	-	73	-	-	28	81	mg/kg	5	A-T-043-s
Sulphur (elemental) _D ^{M#}	<5	-	<5	-	-	<5	<5	mg/kg	5	A-T-029s
Organic matter₀ ^{M#}	NDP	-	2.2	-	-	3.4	2.8	% w/w	0.1	A-T-032 OM
Arsenic ^{D^{M#}}	3	-	6	-	-	6	5	mg/kg	1	A-T-024s
Boron (water soluble)⊳	<1.0	-	<1.0	-	-	<1.0	<1.0	mg/kg	1	A-T-027s
Cadmium _D ^{M#}	<0.5	-	0.6	-	-	<0.5	<0.5	mg/kg	0.5	A-T-024s
Copper _D ^{M#}	9	-	15	-	-	8	9	mg/kg	1	A-T-024s
Chromium _D ^{M#}	11	-	9	-	-	13	13	mg/kg	1	A-T-024s
Chromium (hexavalent) _D	<1	-	<1	-	-	<1	<1	mg/kg	1	A-T-040s
Lead _D ^{M#}	32	-	22	-	-	12	14	mg/kg	1	A-T-024s
Mercury⊳	<0.17	-	0.24	-	-	<0.17	<0.17	mg/kg	0.17	A-T-024s
Nickel _{D^{M#}}	11	-	13	-	-	12	11	mg/kg	1	A-T-024s
Selenium _D ^{M#}	<1	-	<1	-	-	<1	<1	mg/kg	1	A-T-024s
Zinc _D ^{M#}	96	-	189	-	-	41	42	mg/kg	5	A-T-024s

Client Project Name: Barns at Buena Vista Foxes Lane Mendham

Lab Sample ID	22/00967/1	22/00967/2	22/00967/3	22/00967/4	22/00967/5	22/00967/6	22/00967/7			
Client Sample No	20224	20225	20226	20227	20228	20229	20230			
Client Sample ID	WS01	WS02	WS03	WS04	WS05	WS06	WS07			
Depth to Top	0.15	0.15	0.1	0.05	0.05	0.2	0.05			
Depth To Bottom									ion	
Date Sampled	28-Jan-22		etect	f						
Sample Type	Soil - D	s	t of D	od re						
Sample Matrix Code	4AB	6A	4ABE	6AE	4AE	6ABE	6AE	Unit	Limi	Meth
Acid Herbicides (Suite 3+)										
2,3,6-TBA _A	-	-	<0.1	-	<0.1	-	-	mg/kg	0.1	Subcon RPS MH
2,4-D _A	-	-	<0.1	-	<0.1	-	-	mg/kg	0.1	Subcon RPS MH
2,4-DBA	-	-	<0.1	-	<0.1	-	-	mg/kg	0.1	Subcon RPS MH
2,4,5-TA	-	-	<0.1	-	<0.1	-	-	mg/kg	0.1	Subcon RPS MH
2,4,5-TP; (Fenoprop); (Silvex) _A	-	-	<0.1	-	<0.1	-	-	mg/kg	0.1	Subcon RPS MH
4-CPA _A	-	-	<0.1	-	<0.1	-	-	mg/kg	0.1	Subcon RPS MH
Benazolin _a	-	-	<0.1	-	<0.1	-	-	mg/kg	0.1	Subcon RPS MH
Bentazone₄	-	-	<0.1	-	<0.1	-	-	mg/kg	0.1	Subcon RPS MH
Bromacil _A	-	-	<0.1	-	<0.1	-	-	mg/kg	0.1	Subcon RPS MH
Bromoxynil _A	-	-	<0.1	-	<0.1	-	-	mg/kg	0.1	Subcon RPS MH
Clopyralid _A	-	-	<0.1	-	<0.1	-	-	mg/kg	0.1	Subcon RPS MH
Dicamba₄	-	-	<0.1	-	<0.1	-	-	mg/kg	0.1	Subcon RPS MH
2,4-DP; (Dichlorprop) _A	-	-	<0.1	-	<0.1	-	-	mg/kg	0.1	Subcon RPS MH
Diclofop₄	-	-	<0.1	-	<0.1	-	-	mg/kg	0.1	Subcon RPS MH
Flamprop₄	-	-	<0.1	-	<0.1	-	-	mg/kg	0.1	Subcon RPS MH
Flamprop-isopropyl _A	-	-	<0.1	-	<0.1	-	-	mg/kg	0.1	Subcon RPS MH
Fluroxypyr₄	-	-	<0.1	-	<0.1	-	-	mg/kg	0.1	Subcon RPS MH
loxynil _A	-	-	<0.1	-	<0.1	-	-	mg/kg	0.1	Subcon RPS MH
MCPAA	-	-	<0.1	-	<0.1	-	-	mg/kg	0.1	Subcon RPS MH
МСРВА	-	-	<0.1	-	<0.1	-	-	mg/kg	0.1	Subcon RPS MH
MCPP; (Mecoprop)₄	-	-	<0.1	-	<0.1	-	-	mg/kg	0.1	Subcon RPS MH
PCP; (Pentachlorophenol) _A	-	-	<0.1	-	<0.1	-	-	mg/kg	0.1	Subcon RPS MH
Picloram _A	-	-	<0.1	-	<0.1	-	-	mg/kg	0.1	Subcon RPS MH
TriclopyrA	-	-	<0.1	-	<0.1	-	-	mg/kg	0.1	Subcon RPS MH

Client Project Name: Barns at Buena Vista Foxes Lane Mendham

I ab Sample ID	22/00967/1	22/00967/2	22/00967/3	22/00067/4	22/00067/5	22/00067/6	22/00067/7			
			22/00301/3	22/00907/4	22/0090//5	22/0096776	22/0096///			
Client Sample No	20224	20225	20226	20227	20228	20229	20230			
Client Sample ID	WS01	WS02	WS03	WS04	WS05	WS06	WS07			
Depth to Top	0.15	0.15	0.1	0.05	0.05	0.2	0.05			
Depth To Bottom									ч	
Date Sampled	28-Jan-22	28-Jan-22	28-Jan-22	28-Jan-22	28-Jan-22	28-Jan-22	28-Jan-22	-	of Detecti	Method ref
Sample Type	Soil - D	Soil - D	Soil - D	Soil - D	Soil - D	Soil - D	Soil - D	-		
Sample Matrix Code	4AB	6A	4ABE	6AE	4AE	6ABE	6AE	Jnits	lmit	
Asbestos in Soil (inc. matrix)										-
Asbestos in soil _D #	Amosite	-	NAD	NAD	NAD	-	-			A-T-045
Asbestos Matrix (visual) _D	Loose Insulation	-	-	-	-	-	-			A-T-045
Asbestos Matrix (microscope) _D	-	-	-	-	-	-	-			A-T-045
Asbestos ACM - Suitable for Water Absorption Test? _D	N/A	-	N/A	N/A	N/A	-	-			A-T-045
Asbestos in Soil Quantification % (Hand Picking & Weighing)										
Asbestos in soil % composition (hand picking and weighing) _D	0.710	-	-	-	-	-	-	% w/w	0.001	A-T-054
ОРР										
Dichlorvos _A	-	-	<0.01	-	<0.01	-	-	mg/kg	0.01	A-T-056
Mevinphos _A	-	-	<0.01	-	<0.01	-	-	mg/kg	0.01	A-T-056
Demeton-S _A	-	-	<0.50	-	<0.50	-	-	mg/kg	0.5	A-T-056
Phorate _A	-		<0.01	-	<0.01	-	-	mg/kg	0.01	A-T-056
Dimethoate _A	-	-	<0.01	-	<0.01	-	-	mg/kg	0.01	A-T-056
Demeton-O _A	-	-	<0.50	-	<0.50	-	-	mg/kg	0.5	A-T-056
Propetamphos _A	-	-	<0.01	-	<0.01	-	-	mg/kg	0.01	A-T-056
Diazinon (Dimpylate) _A	-	-	<0.01	-	<0.01	-	-	mg/kg	0.01	A-T-056
Disulfoton _A	-	-	<0.10	-	<0.10	-	-	mg/kg	0.1	A-T-056
Chlorpyrifos-methyl _≜	-	-	<0.01	-	<0.01	-	-	mg/kg	0.01	A-T-056
Methyl Parathion _A	-	-	<0.01	-	<0.01	-	-	mg/kg	0.01	A-T-056
Pirimiphos-methyl _A	-	-	<0.01	-	<0.01	-	-	mg/kg	0.01	A-T-056
Fenitrothion _A	-	-	<0.01	-	<0.01	-	-	mg/kg	0.01	A-T-056
Malathion _A	-	-	<0.01	-	<0.01	-	-	mg/kg	0.01	A-T-056
Chlorpyrifos _A	-	-	<0.01	-	<0.01	-	-	mg/kg	0.01	A-T-056
Fenthion _A	-	-	<0.01	-	<0.01	-	-	mg/kg	0.01	A-T-056
Parathion (Ethyl Parathion)	-	-	<0.01	-	<0.01	-	-	mg/kg	0.01	A-T-056
Trichloronate _A	-	-	<0.01	-	<0.01	-	-	mg/kg	0.01	A-T-056
Chlorfenvinphos _A	-	-	<0.01	-	<0.01	-	-	mg/kg	0.01	A-T-056
Fensulphothion _A	-	-	<0.01	-	<0.01	-	-	mg/kg	0.01	A-T-056
EthionA	-	-	<0.01	-	<0.01	-	-	mg/kg	0.01	A-T-056

Client Project Name: Barns at Buena Vista Foxes Lane Mendham

|--|

Lab Sample ID	22/00967/1	22/00967/2	22/00967/3	22/00967/4	22/00967/5	22/00967/6	22/00967/7			
Client Sample No	20224	20225	20226	20227	20228	20229	20230			
Client Sample ID	WS01	WS02	WS03	WS04	WS05	WS06	WS07			
Depth to Top	0.15	0.15	0.1	0.05	0.05	0.2	0.05			
Depth To Bottom									<u>u</u>	
Date Sampled	28-Jan-22		etect	f						
Sample Type	Soil - D		ofD	od re						
Sample Matrix Code	4AB	6A	4ABE	6AE	4AE	6ABE	6AE	Units	Limit	Meth
Triazophos _≜	-	-	<0.01	-	<0.01	-	-	mg/kg	0.01	A-T-056
Carbophenothion _A	-	-	<0.01	-	<0.01	-	-	mg/kg	0.01	A-T-056
Phosalone _A	-	-	<0.01	-	<0.01	-	-	mg/kg	0.01	A-T-056
Azinphos-methyl _A	-	-	<0.01	-	<0.01	-	-	mg/kg	0.01	A-T-056
Azinphos-ethyl _A	-	-	<0.01	-	<0.01	-	-	mg/kg	0.01	A-T-056
Coumaphos _A	-	-	<0.01	-	<0.01	-	-	mg/kg	0.01	A-T-056
Prothiofos (Tokuthion) _A	-	-	<0.01	-	<0.01	-	-	mg/kg	0.01	A-T-056

Client Project Name: Barns at Buena Vista Foxes Lane Mendham

Client Project Ref: 102739

Lab Sample ID	22/00967/1	22/00967/2	22/00967/3	22/00967/4	22/00967/5	22/00967/6	22/00967/7			
Client Sample No	20224	20225	20226	20227	20228	20229	20230			
Client Sample ID	WS01	WS02	WS03	WS04	WS05	WS06	WS07			
Depth to Top	0.15	0.15	0.1	0.05	0.05	0.2	0.05			
Depth To Bottom									ion	
Date Sampled	28-Jan-22		etect	ų.						
Sample Type	Soil - D		: of D	od re						
Sample Matrix Code	4AB	6A	4ABE	6AE	4AE	6ABE	6AE	Units	Limit	Meth
PAH-16MS										
Acenaphthene _A ^{M#}	0.02	-	<0.01	-	-	<0.01	<0.01	mg/kg	0.01	A-T-019s
Acenaphthylene ^{AM#}	0.03	-	<0.01	-	-	<0.01	<0.01	mg/kg	0.01	A-T-019s
Anthracene _A ^{M#}	0.08	-	<0.02	-	-	<0.02	<0.02	mg/kg	0.02	A-T-019s
Benzo(a)anthracene _A ^{M#}	1.07	-	<0.04	-	-	0.08	0.08	mg/kg	0.04	A-T-019s
Benzo(a)pyrene₄ ^{M#}	1.44	-	<0.04	-	-	0.12	0.12	mg/kg	0.04	A-T-019s
Benzo(b)fluoranthene ^{,M#}	1.30	-	<0.05	-	-	0.14	0.12	mg/kg	0.05	A-T-019s
Benzo(ghi)perylene₄ ^{M#}	0.96	-	<0.05	-	-	0.09	0.07	mg/kg	0.05	A-T-019s
Benzo(k)fluoranthene ^{AM#}	0.42	-	<0.07	-	-	<0.07	<0.07	mg/kg	0.07	A-T-019s
Chrysene _A ^{M#}	1.17	-	<0.06	-	-	0.11	0.12	mg/kg	0.06	A-T-019s
Dibenzo(ah)anthracene₄ ^{M#}	0.16	-	<0.04	-	-	<0.04	<0.04	mg/kg	0.04	A-T-019s
Fluoranthene _A ^{M#}	1.88	-	<0.08	-	-	0.15	0.18	mg/kg	0.08	A-T-019s
Fluorene ^{AM#}	0.01	-	<0.01	-	-	<0.01	<0.01	mg/kg	0.01	A-T-019s
Indeno(123-cd)pyrene ^{AM#}	1.14	-	<0.03	-	-	0.11	0.08	mg/kg	0.03	A-T-019s
Naphthalene A ^{M#}	<0.03	-	<0.03	-	-	<0.03	<0.03	mg/kg	0.03	A-T-019s
Phenanthrene _A ^{M#}	0.33	-	<0.03	-	-	0.04	0.05	mg/kg	0.03	A-T-019s
Pyrene _A ^{M#}	1.89	-	<0.07	-	-	0.15	0.17	mg/kg	0.07	A-T-019s
Total PAH-16MS _A ^{M#}	11.9	-	<0.08	-	-	0.99	0.99	mg/kg	0.01	A-T-019s

Client Project Name: Barns at Buena Vista Foxes Lane Mendham

Lab Sample ID	22/00967/1	22/00967/2	22/00967/3	22/00967/4	22/00967/5	22/00967/6	22/00967/7			
Client Sample No	20224	20225	20226	20227	20228	20229	20230			
Client Sample ID	WS01	WS02	WS03	WS04	WS05	WS06	WS07			
Depth to Top	0.15	0.15	0.1	0.05	0.05	0.2	0.05			
Depth To Bottom									ч	
Date Sampled	28-Jan-22		tecti							
Sample Type	Soil - D		of De	od ref						
Sample Matrix Code	4AB	6A	4ABE	6AE	4AE	6ABE	6AE	Jnits	Limit	Metho
svoc										
4-Bromophenyl phenyl ether _A	-	<100	<100	-	<100	-	-	µg/kg	100	A-T-052s
Hexachlorobenzene _A	-	<100	<100	-	<100	-	-	µg/kg	100	A-T-052s
Diethyl phthalate _A	-	<100	<100	-	<100	-	-	µg/kg	100	A-T-052s
Dimethyl phthalate _A	-	<100	<100	-	<100	-	-	µg/kg	100	A-T-052s
Dibenzofuran _A	-	<100	<100	-	<100	-	-	µg/kg	100	A-T-052s
Carbazole₄	-	<100	117	-	<100	-	-	µg/kg	100	A-T-052s
Butylbenzyl phthalate _A	-	<100	<100	-	<100	-	-	µg/kg	100	A-T-052s
Bis(2-ethylhexyl)phthalate₄	-	<500	<500	-	<500	-	-	µg/kg	500	A-T-052s
Bis(2-chloroethoxy)methane _A	-	<100	<100	-	<100	-	-	µg/kg	100	A-T-052s
Bis(2-chloroethyl)ether _A	-	<100	<100	-	<100	-	-	µg/kg	100	A-T-052s
4-Nitrophenol _A	-	<100	<100	-	<100	-	-	µg/kg	100	A-T-052s
3+4-Methylphenol₄	-	<100	<100	-	<100	-	-	µg/kg	100	A-T-052s
4-Chloro-3-methylphenol₄	-	<100	<100	-	<100	-	-	µg/kg	100	A-T-052s
2-Nitrophenol _A	-	<100	<100	-	<100	-	-	µg/kg	100	A-T-052s
2-Methylphenol _A	-	<100	<100	-	<100	-	-	µg/kg	100	A-T-052s
2-Chlorophenol _A	-	<100	<100	-	<100	-	-	µg/kg	100	A-T-052s
2,6-Dinitrotoluene _A	-	<100	<100	-	<100	-	-	µg/kg	100	A-T-052s
2,4-Dinitrotoluene _A	-	<100	<100	-	<100	-	-	µg/kg	100	A-T-052s
2,4-Dimethylphenol _A	-	<100	<100	-	<100	-	-	µg/kg	100	A-T-052s
2,4-Dichlorophenol _A	-	<100	<100	-	<100	-	-	µg/kg	100	A-T-052s
2,4,6-Trichlorophenol _A	-	<100	<100	-	<100	-	-	µg/kg	100	A-T-052s
2,4,5-Trichlorophenol _A	-	<100	<100	-	<100	-	-	µg/kg	100	A-T-052s
2-Chloronaphthalene _A	-	<100	<100	-	<100	-	-	µg/kg	100	A-T-052s
2-Methylnaphthalene _A	-	<100	<100	-	<100	-	-	µg/kg	100	A-T-052s
AcenaphthyleneA	-	<100	-	-	<100	-	-	µg/kg	100	A-T-052s
Acenaphthene _A	-	<100	-	-	<100	-	-	µg/kg	100	A-T-052s
Anthracene _A	-	<100	-	-	<100	-	-	µg/kg	100	A-T-052s
Benzo(a)anthracene _A	-	<100	-	-	416	-	-	µg/kg	100	A-T-052s
Benzo(b)fluoranthene _A	-	<100	-	-	1160	-	-	µg/kg	100	A-T-052s
Benzo(k)fluoranthene₄	-	<100	-	-	310	-	-	µg/kg	100	A-T-052s
Benzo(a)pyrene _≜	-	<100	-	-	644	-	-	µg/kg	100	A-T-052s
Benzo(ghi)perylene₄	-	<100	-	-	556	-	-	µg/kg	100	A-T-052s

Client Project Name: Barns at Buena Vista Foxes Lane Mendham

Client	Proi	iect	Ref:	102739
0				

Lab Sample ID	22/00967/1	22/00967/2	22/00967/3	22/00967/4	22/00967/5	22/00967/6	22/00967/7			
Client Sample No	20224	20225	20226	20227	20228	20229	20230			
Client Sample ID	WS01	WS02	WS03	WS04	WS05	WS06	WS07			
Depth to Top	0.15	0.15	0.1	0.05	0.05	0.2	0.05			
Depth To Bottom									u	
Date Sampled	28-Jan-22		etect	f						
Sample Type	Soil - D		ofD	od re						
Sample Matrix Code	4AB	6A	4ABE	6AE	4AE	6ABE	6AE	Units	Limit	Meth
Chrysene₄	-	<100	-	-	789	-	-	µg/kg	100	A-T-052s
Fluoranthene _A	-	<100	-	-	1580	-	-	µg/kg	100	A-T-052s
Fluorene _A	-	<100	-	-	<100	-	-	µg/kg	100	A-T-052s
Indeno(1,2,3-cd)pyrene _A	-	<100	-	-	588	-	-	µg/kg	100	A-T-052s
Phenanthrene _A	-	<100	-	-	1140	-	-	µg/kg	100	A-T-052s
Pyrene _A	-	<100	-	-	1240	-	-	µg/kg	100	A-T-052s
Naphthalene _A	-	<100	-	-	<100	-	-	µg/kg	100	A-T-052s
Dibenzo(ah)anthracene _A	-	<100	-	-	<100	-	-	µg/kg	100	A-T-052s
Bis(2-chloroisopropyl)ether _A	-	<100	<100	-	<100	-	-	µg/kg	100	A-T-052s
Phenol _A	-	<100	<100	-	<100	-	-	µg/kg	100	A-T-052s
Pentachlorophenol (SVOC) _A	-	<100	<100	-	<100	-	-	µg/kg	100	A-T-052s
n-Nitroso-n-dipropylamine _A	-	<100	<100	-	<100	-	-	µg/kg	100	A-T-052s
n-Dioctylphthalate _A	-	<500	<500	-	<500	-	-	µg/kg	500	A-T-052s
n-Dibutylphthalate _A	-	<100	<100	-	<100	-	-	µg/kg	100	A-T-052s
Nitrobenzene _A	-	<100	<100	-	<100	-	-	µg/kg	100	A-T-052s
Isophorone _A	-	<100	<100	-	<100	-	-	µg/kg	100	A-T-052s
Hexachloroethane _A	-	<100	<100	-	<100	-	-	µg/kg	100	A-T-052s
Hexachlorocyclopentadiene _A	-	<100	<100	-	<100	-	-	µg/kg	100	A-T-052s
Perylene _A	-	<100	327	-	138	-	-	µg/kg	100	A-T-052s

Client Project Name: Barns at Buena Vista Foxes Lane Mendham

Lab Sample ID	22/00967/1	22/00967/2	22/00967/3	22/00967/4	22/00967/5	22/00967/6	22/00967/7			
Client Sample No	20224	20225	20226	20227	20228	20229	20230			
Client Sample ID	WS01	WS02	WS03	WS04	WS05	WS06	WS07			
Depth to Top	0.15	0.15	0.1	0.05	0.05	0.2	0.05			
Depth To Bottom									u	
Date Sampled	28-Jan-22		stecti							
Sample Type	Soil - D		of De	od ret						
Sample Matrix Code	4AB	6A	4ABE	6AE	4AE	6ABE	6AE	Units	Limit	Metho
voc										
Dichlorodifluoromethane	-	<1	<1	-	<1	-	-	µg/kg	1	A-T-006s
Chloromethane _≜		<10	<10	-	<10	-	-	µg/kg	10	A-T-006s
Vinyl Chloride (Chloroethene) _A #	-	<1	<1	-	<1	-	-	µg/kg	1	A-T-006s
Bromomethane _A #	-	<1	<1	-	<1	-	-	µg/kg	1	A-T-006s
Chloroethane _A #	-	<1	<1	-	<1	-	-	µg/kg	1	A-T-006s
Trichlorofluoromethane _A #	-	<1	<1	-	<1	-	-	µg/kg	1	A-T-006s
1,1-Dichloroethene _A #		<1	<1	-	<1	-	-	µg/kg	1	A-T-006s
Carbon Disulphide _A #	-	<1	<1	-	<1	-	-	µg/kg	1	A-T-006s
Dichloromethane _A	-	<5	<5	-	<5	-	-	µg/kg	5	A-T-006s
trans 1,2-Dichloroethene ⁴	-	<1	<1	-	<1	-	-	µg/kg	1	A-T-006s
1,1-Dichloroethane _A #	-	<1	<1	-	<1	-	-	µg/kg	1	A-T-006s
cis 1,2-Dichloroethene _A #	-	<1	<1	-	<1	-	-	µg/kg	1	A-T-006s
2,2-Dichloropropane _A #	-	<1	<1	-	<1	-	-	µg/kg	1	A-T-006s
Bromochloromethane _A #	-	<5	<5	-	<5	-	-	µg/kg	5	A-T-006s
Chloroform _A #	-	<1	<1	-	<1	-	-	µg/kg	1	A-T-006s
1,1,1-Trichloroethane _A #	-	<1	<1	-	<1	-	-	µg/kg	1	A-T-006s
1,1-Dichloropropene ⁴	-	<1	<1	-	<1	-	-	µg/kg	1	A-T-006s
Carbon Tetrachloride _A #	-	<1	<1	-	<1	-	-	µg/kg	1	A-T-006s
1,2-Dichloroethane _A #	-	<2	<2	-	<2	-	-	µg/kg	2	A-T-006s
Benzene₄ [#]	-	<1	<1	-	<1	-	-	µg/kg	1	A-T-006s
Trichloroethene ⁴	-	<1	<1	-	<1	-	-	µg/kg	1	A-T-006s
1,2-Dichloropropane [#]	-	<1	<1	-	<1	-	-	µg/kg	1	A-T-006s
Dibromomethane₄ [#]	-	<1	<1	-	<1	-	-	µg/kg	1	A-T-006s
Bromodichloromethane _A #	-	<10	<10	-	<10	-	-	µg/kg	10	A-T-006s
cis 1,3-Dichloropropene _A #	-	<1	<1	-	<1	-	-	µg/kg	1	A-T-006s
Toluene _A #	-	<1	<1	-	<1	-	-	µg/kg	1	A-T-006s
trans 1,3-Dichloropropene _A #	-	<1	<1	-	<1	-	-	µg/kg	1	A-T-006s
1,1,2-Trichloroethane _A #	-	<1	<1	-	<1	-	-	µg/kg	1	A-T-006s
1,3-Dichloropropane _A #	-	<1	<1	-	<1	-	-	µg/kg	1	A-T-006s
Tetrachloroethene ⁴	-	<1	<1	-	<1	-	-	µg/kg	1	A-T-006s
Dibromochloromethane ⁴	-	<3	<3	-	<3	-	-	µg/kg	3	A-T-006s
1,2-Dibromoethane [#]	-	<1	<1	-	<1	-	-	µg/kg	1	A-T-006s

Client Project Name: Barns at Buena Vista Foxes Lane Mendham

Lab Sample ID	22/00967/1	22/00967/2	22/00967/3	22/00967/4	22/00967/5	22/00967/6	22/00967/7			
Client Sample No	20224	20225	20226	20227	20228	20229	20230			
Client Sample ID	WS01	WS02	WS03	WS04	WS05	WS06	WS07			
Depth to Top	0.15	0.15	0.1	0.05	0.05	0.2	0.05			
Depth To Bottom									ы	
Date Sampled	28-Jan-22		etect	ų.						
Sample Type	Soil - D		of D	od re						
Sample Matrix Code	4AB	6A	4ABE	6AE	4AE	6ABE	6AE	Units	Limit	Meth
Chlorobenzene _A #	-	<1	<1	-	<1	-	-	µg/kg	1	A-T-006s
1,1,1,2-Tetrachloroethane _A	-	<1	<1	-	<1	-	-	µg/kg	1	A-T-006s
Ethylbenzene _A #	-	<1	<1	-	<1	-	-	µg/kg	1	A-T-006s
m & p Xylene ₄ #	-	<1	<1	-	<1	-	-	µg/kg	1	A-T-006s
o-Xylene _A #	-	<1	<1	-	<1	-	-	µg/kg	1	A-T-006s
Styrene _A #	-	<1	<1	-	<1	-	-	µg/kg	1	A-T-006s
Bromoform _A #	-	<1	<1	-	<1	-	-	µg/kg	1	A-T-006s
lsopropylbenzene _A #	-	<1	<1	-	<1	-	-	µg/kg	1	A-T-006s
1,1,2,2-Tetrachloroethane _A	-	<1	<1	-	<1	-	-	µg/kg	1	A-T-006s
1,2,3-Trichloropropane₄ [#]	-	<1	<1	-	<1	-	-	µg/kg	1	A-T-006s
Bromobenzene₄ [#]	-	<1	<1	-	<1	-	-	µg/kg	1	A-T-006s
n-Propylbenzene _A #	-	<1	<1	-	<1	-	-	µg/kg	1	A-T-006s
2-Chlorotoluene₄ [#]	-	<1	<1	-	<1	-	-	µg/kg	1	A-T-006s
1,3,5-Trimethylbenzene _A #	-	<1	<1	-	<1	-	-	µg/kg	1	A-T-006s
4-Chlorotoluene₄ [#]	-	<1	<1	-	<1	-	-	µg/kg	1	A-T-006s
tert-Butylbenzene [#]	-	<2	<2	-	<2	-	-	µg/kg	2	A-T-006s
1,2,4-Trimethylbenzene ⁴	-	<1	<1	-	<1	-	-	µg/kg	1	A-T-006s
sec-Butylbenzene _A #	-	<1	<1	-	<1	-	-	µg/kg	1	A-T-006s
4-IsopropyItoluene _A #	-	<1	<1	-	<1	-	-	µg/kg	1	A-T-006s
1,3-Dichlorobenzene _A	-	<1	<1	-	<1	-	-	µg/kg	1	A-T-006s
1,4-Dichlorobenzene ⁴	-	<1	<1	-	<1	-	-	µg/kg	1	A-T-006s
n-Butylbenzene ^{"#}	-	<1	<1	-	<1	-	-	µg/kg	1	A-T-006s
1,2-Dichlorobenzene ⁴	-	<1	<1	-	<1	-	-	µg/kg	1	A-T-006s
1,2-Dibromo-3-chloropropane (DCBP) _A	-	<2	<2	-	<2	-	-	µg/kg	2	A-T-006s
1,2,4-Trichlorobenzene _A	-	<3	<3	-	<3	-	-	µg/kg	3	A-T-006s
Hexachlorobutadiene _A #	-	<1	<1	-	<1	-	-	µg/kg	1	A-T-006s
1,2,3-Trichlorobenzene _A	-	<3	<3	-	<3	-	-	µg/kg	3	A-T-006s

Client Project Name: Barns at Buena Vista Foxes Lane Mendham

Lab Sample ID	22/00967/1	22/00967/2	22/00967/3	22/00967/4	22/00967/5	22/00967/6	22/00967/7			
Client Sample No	20224	20225	20226	20227	20228	20229	20230			
Client Sample ID	WS01	WS02	WS03	WS04	WS05	WS06	WS07			
Depth to Top	0.15	0.15	0.1	0.05	0.05	0.2	0.05			
Depth To Bottom									uo	
Date Sampled	28-Jan-22		etecti	÷						
Sample Type	Soil - D		of D	od re						
Sample Matrix Code	4AB	6A	4ABE	6AE	4AE	6ABE	6AE	Units	Limit	Meth
TPH UKCWG with Clean Up *C1										
Ali >C5-C6₄ [#]	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	-	mg/kg	0.01	A-T-022s
Ali >C6-C8 _A [#]	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	-	mg/kg	0.01	A-T-022s
Ali >C8-C10 _A	<1	<1	<1	<1	3	<1	-	mg/kg	1	A-T-055s
Ali >C10-C12 _A ^{M#}	<1	<1	1	<1	10	<1	-	mg/kg	1	A-T-055s
Ali >C12-C16 _A ^{M#}	<1	<1	<1	<1	1	<1	-	mg/kg	1	A-T-055s
Ali >C16-C21 _A ^{M#}	1	<1	2	<1	3	<1	-	mg/kg	1	A-T-055s
Ali >C21-C35 ^{AM#}	33	1	61	17	180	12	-	mg/kg	1	A-T-055s
Ali >C35-C44 _A	22	<1	26	7	103	5	-	mg/kg	1	A-T-055s
Total Aliphatics _A	56	1	90	24	301	18	-	mg/kg	1	A-T-055s
Aro >C5-C7 _A #	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	-	mg/kg	0.01	A-T-022s
Aro >C7-C8 _A #	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	-	mg/kg	0.01	A-T-022s
Aro >C8-C10 _A	<1	<1	<1	<1	5	<1	-	mg/kg	1	A-T-055s
Aro >C10-C12 _A	<1	<1	1	<1	20	<1	-	mg/kg	1	A-T-055s
Aro >C12-C16 _A	2	<1	5	<1	23	<1	-	mg/kg	1	A-T-055s
Aro >C16-C21 _A ^{M#}	14	<1	23	1	80	2	-	mg/kg	1	A-T-055s
Aro >C21-C35 _A	98	<1	86	8	174	9	-	mg/kg	1	A-T-055s
Aro >C35-C44 _A	10	<1	8	1	35	1	-	mg/kg	1	A-T-055s
Total Aromatics _A	124	<1	123	10	337	12	-	mg/kg	1	A-T-055s
TPH (Ali & Aro >C5-C44)₄	180	1	213	34	637	30	-	mg/kg	1	A-T-055s
BTEX - Benzene₄ [#]	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	-	mg/kg	0.01	A-T-022s
BTEX - Toluene _A #	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	-	mg/kg	0.01	A-T-022s
BTEX - Ethyl Benzene [#]	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	-	mg/kg	0.01	A-T-022s
BTEX - m & p Xylene _A #	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	-	mg/kg	0.01	A-T-022s
BTEX - o Xylene _A #	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	-	mg/kg	0.01	A-T-022s
MTBE _A #	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	-	mg/kg	0.01	A-T-022s

Client Project Name: Barns at Buena Vista Foxes Lane Mendham

Client Project Ref: 102739

				•			
Lab Sample ID	22/00967/8						
Client Sample No	20231						
Client Sample ID	WS08						
Depth to Top	0.1						
Depth To Bottom						u	
Date Sampled	28-Jan-22					etecti	
Sample Type	Soil - D					of D	od re
Sample Matrix Code	6A				Units	Limit	Meth
% Stones >10mm _A	<0.1				% w/w	0.1	A-T-044
pH _D ^{M#}	8.02				рН	0.01	A-T-031s
Sulphate (water sol 2:1) _D ^{M#}	<0.01				g/l	0.01	A-T-026s
Sulphate (acid soluble) _D ^{M#}	390				mg/kg	200	A-T-028s
Cyanide (total) _A ^{M#}	<1				mg/kg	1	A-T-042sTCN
Phenols - Total by HPLC _A	<0.2				mg/kg	0.2	A-T-050s
Sulphide _A	130				mg/kg	5	A-T-043-s
Sulphur (elemental) _D ^{M#}	<5				mg/kg	5	A-T-029s
Organic matter ^{DM#}	2.2				% w/w	0.1	A-T-032 OM
Arsenic ^{D^{M#}}	8				mg/kg	1	A-T-024s
Boron (water soluble)⊳	<1.0				mg/kg	1	A-T-027s
Cadmium _⊳ ^{M#}	<0.5				mg/kg	0.5	A-T-024s
Copper _D ^{M#}	10				mg/kg	1	A-T-024s
Chromium _D ^{M#}	20				mg/kg	1	A-T-024s
Chromium (hexavalent) _D	<1				mg/kg	1	A-T-040s
Lead _D ^{M#}	13				mg/kg	1	A-T-024s
Mercury⊳	<0.17				mg/kg	0.17	A-T-024s
Nickel _D ^{M#}	19				mg/kg	1	A-T-024s
Selenium _D ^{M#}	<1				mg/kg	1	A-T-024s
Zinc _D ^{M#}	53				mg/kg	5	A-T-024s

Client Project Name: Barns at Buena Vista Foxes Lane Mendham

Client Project Ref: 102739

				-			
Lab Sample ID	22/00967/8						
Client Sample No	20231						
Client Sample ID	WS08						
Depth to Top	0.1						
Depth To Bottom						uo	
Date Sampled	28-Jan-22					etecti	<i>۴</i>
Sample Type	Soil - D					of D	od re
Sample Matrix Code	6A				Units	Limit	Meth
PAH-16MS							
Acenaphthene _A ^{M#}	<0.01				mg/kg	0.01	A-T-019s
Acenaphthylene₄ ^{M#}	<0.01				mg/kg	0.01	A-T-019s
Anthracene _A ^{M#}	<0.02				mg/kg	0.02	A-T-019s
Benzo(a)anthracene _A ^{M#}	<0.04				mg/kg	0.04	A-T-019s
Benzo(a)pyrene _A ^{M#}	0.06				mg/kg	0.04	A-T-019s
Benzo(b)fluoranthene _A ^{M#}	0.07				mg/kg	0.05	A-T-019s
Benzo(ghi)perylene₄ ^{M#}	<0.05				mg/kg	0.05	A-T-019s
Benzo(k)fluoranthene ^{AM#}	<0.07				mg/kg	0.07	A-T-019s
Chrysene _A ^{M#}	<0.06				mg/kg	0.06	A-T-019s
Dibenzo(ah)anthracene ^{AM#}	<0.04				mg/kg	0.04	A-T-019s
Fluoranthene _A ^{M#}	<0.08				mg/kg	0.08	A-T-019s
Fluorene ^{A^{M#}}	<0.01				mg/kg	0.01	A-T-019s
Indeno(123-cd)pyrene _A ^{M#}	0.05				mg/kg	0.03	A-T-019s
Naphthalene A ^{M#}	<0.03				mg/kg	0.03	A-T-019s
Phenanthrene _A ^{M#}	<0.03				mg/kg	0.03	A-T-019s
Pyrene _A ^{M#}	<0.07				mg/kg	0.07	A-T-019s
Total PAH-16MS _A ^{M#}	0.18				mg/kg	0.01	A-T-019s

REPORT NOTES

General

This report shall not be reproduced, except in full, without written approval from Envirolab.

The results reported herein relate only to the material supplied to the laboratory.

The residue of any samples contained within this report, and any received with the same delivery, will be disposed of six weeks after initial scheduling. For samples tested for Asbestos we will retain a portion of the dried sample for a minimum of six months after the initial Asbestos testing is completed.

Analytical results reflect the quality of the sample at the time of analysis only.

Opinions and interpretations expressed are outside the scope of our accreditation.

If results are in italic font they are associated with an AQC failure, these are not accredited and are unreliable.

A deviating samples report is appended and will indicate if samples or tests have been found to be deviating. Any test results affected may not be an accurate record of the concentration at the time of sampling and, as a result, may be invalid.

The Client Sample No, Client Sample ID, Depth to Top, Depth to Bottom and Date Sampled were all provided by the client.

Soil chemical analysis:

All results are reported as dry weight (<40°C).

For samples with Matrix Codes 1 - 6 natural stones, brick and concrete fragments >10mm and any extraneous material (visible glass, metal or twigs) are removed and excluded from the sample prior to analysis and reported results corrected to a whole sample basis. This is reported as '% stones >10mm'.

For samples with Matrix Code 7 the whole sample is dried and crushed prior to analysis and this supersedes any "A" subscripts All analysis is performed on the sample as received for soil samples which are positive for asbestos or the client has informed asbestos may be present and/or if they are from outside the European Union and this supersedes any "D" subscripts.

TPH analysis of water by method A-T-007:

Free and visible oils are excluded from the sample used for analysis so that the reported result represents the dissolved phase only.

Electrical Conductivity of water by Method A-T-037:

Results greater than 12900µS/cm @ 25°C / 11550µS/cm @ 20°C fall outside the calibration range and as such are unaccredited.

Asbestos:

Asbestos in soil analysis is performed on a dried aliquot of the submitted sample and cannot guarantee to identify asbestos if only present in small numbers as discrete fibres/fragments in the original sample.

Stones etc. are not removed from the sample prior to analysis.

Quantification of asbestos is a 3 stage process including visual identification, hand picking and weighing and fibre counting by sedimentation/phase contrast optical microscopy if required. If asbestos is identified as being present but is not in a form that is suitable for analysis by hand picking and weighing (normally if the asbestos is present as free fibres) quantification by sedimentation is performed. Where ACMs are found a percentage asbestos is assigned to each with reference to 'HSG264, Asbestos: The survey guide' and the calculated asbestos content is expressed as a percentage of the dried soil sample aliquot used.

Predominant Matrix Codes:

1 = SAND, 2 = LOAM, 3 = CLAY, 4 = LOAM/SAND, 5 = SAND/CLAY, 6 = CLAY/LOAM, 7 = OTHER, 8 = Asbestos bulk ID sample, 9 = INCINERATOR ASH.

Samples with Matrix Code 7 & 8 are not predominantly a SAND/LOAM/CLAY mix and are not covered by our BSEN 17025 or MCERTS accreditations, with the exception of bulk asbestos which are BSEN 17025 accredited.

Secondary Matrix Codes:

A = contains stones, B = contains construction rubble, C = contains visible hydrocarbons, D = contains glass/metal, E = contains roots/twigs.

Key:

IS indicates Insufficient Sample for analysis. US indicates Unsuitable Sample for analysis. NDP indicates No Determination Possible. NAD indicates No Asbestos Detected. N/A indicates Not Applicable. Superscript # indicates method accredited to ISO 17025. Superscript "M" indicates method accredited to MCERTS. Subscript "A" indicates analysis performed on the sample as received. Subscript "D" indicates analysis performed on the dried sample, crushed to pass a 2mm sieve EPH CWG results have humics mathematically subtracted through instrument calculation TPH results "with Cleanup" indicates results cleaned up with Silica during extraction

EPH CWG GCxGC ID from TPH CWG

Where we have identified humic substances in any ID's from TPH CWG with Clean Up please note that the concentration of these

humic substances is not included in the quantified results and are included in the ID for information.

Please contact us if you need any further information.

Envirolab Analysis Dates

Lab Sample ID	22/00967/1	22/00967/2	22/00967/3	22/00967/4	22/00967/5	22/00967/6	22/00967/7	22/00967/8
Client Sample No	20224	20225	20226	20227	20228	20229	20230	20231
Client Sample ID/Depth	WS01 0.15m	WS02 0.15m	WS03 0.1m	WS04 0.05m	WS05 0.05m	WS06 0.2m	WS07 0.05m	WS08 0.1m
Date Sampled	28/01/22	28/01/22	28/01/22	28/01/22	28/01/22	28/01/22	28/01/22	28/01/22
A-T-006s		09/02/2022	09/02/2022		09/02/2022			
A-T-019s	09/02/2022		09/02/2022			09/02/2022	09/02/2022	09/02/2022
A-T-022s	10/02/2022	10/02/2022	10/02/2022	10/02/2022	10/02/2022	10/02/2022		
A-T-024s	14/02/2022		14/02/2022			14/02/2022	14/02/2022	14/02/2022
A-T-026s	14/02/2022		14/02/2022			14/02/2022	14/02/2022	14/02/2022
A-T-027s	11/02/2022		11/02/2022			11/02/2022	11/02/2022	11/02/2022
A-T-028s	11/02/2022		11/02/2022			11/02/2022	11/02/2022	11/02/2022
A-T-029s	11/02/2022		11/02/2022			11/02/2022	11/02/2022	11/02/2022
A-T-031s	10/02/2022		11/02/2022			11/02/2022	11/02/2022	11/02/2022
A-T-032 OM	11/02/2022		10/02/2022			10/02/2022	10/02/2022	10/02/2022
A-T-040s	14/02/2022		14/02/2022			14/02/2022	14/02/2022	14/02/2022
A-T-042sTCN	08/02/2022		08/02/2022			08/02/2022	08/02/2022	08/02/2022
A-T-043-s	10/02/2022		10/02/2022			10/02/2022	10/02/2022	10/02/2022
A-T-044	11/02/2022	11/02/2022	11/02/2022	11/02/2022	11/02/2022	11/02/2022	11/02/2022	11/02/2022
A-T-045	04/02/2022		04/02/2022	04/02/2022	04/02/2022			
A-T-050s	11/02/2022		11/02/2022			11/02/2022	11/02/2022	11/02/2022
A-T-052s		09/02/2022	09/02/2022		09/02/2022			
A-T-054	18/02/2022							
A-T-055s	10/02/2022	10/02/2022	10/02/2022	10/02/2022	10/02/2022	10/02/2022		
A-T-056			09/02/2022		09/02/2022			

The above dates are the analysis completion dates, please note that these are not necessarily the date that the analysis was weighed/extracted.

End of Report

Appendix E

Existing Floor Plan 1:100

Existing Section A - A 1:100

PLANNING	CONSULTANTS	LTD
3 Monet Squar	e, Lowestoft, Suffolk NR32 4LZ	Z
t e: graham@grah w [.] grahamm	el: 07999 801 702 amnourseplanningconsultants.co.u ourseplanningconsultants co.uk	k
CLIENT	oursepranningeonsultants.co.uk	Г
-		
PROJECT		
Proposed Ba	rn Conversion	

Graham Nourse

Foxes lane, Mendham. DRAWING

Existing Plans & Elevations

DRG. No	REVISION
19/181/01	-
SCALE	DATE
1:100.	October, 2019

Appendix F
