PSC Paul Snape Consulting The Granary, Woodfold Farm Crombleholme Fold, Goosnargh Preston PR3 2ES	Project				Job Ref.	
	Picket Post House, Claughton on Brock, PR3 OPL				PSC-628	
	External Balcony Design				Sheet no./rev	1
Preston PR3 2ES pa.snape@outlook.com	Calc. by PAS	$\begin{aligned} & \hline \text { Date } \\ & 28 / 03 / 2022 \end{aligned}$	Chk'd by PAS	Date 28/03/22	App'd by PAS	$\begin{array}{\|l\|} \hline \text { Date } \\ 28 / 03 / 22 \end{array}$

INTRODUCTION

Contractor requested a design for a 3 m wide and 2.8 m deep external balcony at picket post house. Design set out below for required joists, timber or steel beam to support joists (the joists will be supported on the external wall at one end) and timber or steel columns to support the beam. A baseplate design is provided for the steel column. If timber columns are used then a shoe to houise the timber will need to be welded onto the baseplate. The joists will be supported on the external wall.

Loading is as per domestic floor with dead load of $0.75 \mathrm{kN} / \mathrm{m}^{2}$ and imposed lopad of $1.5 \mathrm{kN} / \mathrm{m}^{2}$.

TIMBER JOISTS TO BALCONY

Joists span 2.8 m
TIMBER JOIST DESIGN (BS5268-2:2002)

Joist details

Joist breadth;
b $=44 \mathrm{~mm}$
Joist depth;
$\mathrm{h}=\mathbf{1 7 5} \mathrm{mm}$
Joist spacing;
$\mathrm{s}=400 \mathrm{~mm}$
Timber strength class;
C16
Service class of timber;
1

Span details

Number of spans;
Length of bearing;
$N_{\text {span }}=1$
$L_{b}=100 \mathrm{~mm}$
Effective length of span;

$\mathrm{L}_{\mathrm{s} 1}=\mathbf{2 8 0 0} \mathrm{mm}$

Section properties

Second moment of area;
$\mathrm{l}=\mathrm{b} \times \mathrm{h}^{3} / 12=19651042 \mathrm{~mm}^{4}$
Section modulus;
$\mathrm{Z}=\mathrm{b} \times \mathrm{h}^{2} / 6 \mathbf{2} \mathbf{2} 4583 \mathrm{~mm}^{3}$

PSC Paul Snape Consulting The Granary, Woodfold Farm Crombleholme Fold, Goosnargh Preston PR3 2ES pa.snape@outlook.com	Project Picket Post House, Claughton on Brock, PR3 OPL				Job Ref.PSC-628	
	External Balcony Design				Sheet no./rev.	2
	Calc. by PAS	$\begin{array}{\|l\|} \hline \text { Date } \\ 28 / 03 / 2022 \end{array}$	Chk'd by PAS	Date 28/03/22	App'd by PAS	$\begin{array}{\|l\|} \hline \text { Date } \\ 28 / 03 / 22 \end{array}$

Loading details

Joist self weight;
Dead load;
Imposed UDL(Long term);
$F_{\text {swt }}=b \times h \times \rho_{c h a r} \times g_{\text {acc }}=0.02 \mathrm{kN} / \mathrm{m}$
$F_{d _ \text {udl }}=1.10 \mathrm{kN} / \mathrm{m}^{2}$
$F_{i} \mathrm{i}_{\text {udl }}=1.50 \mathrm{kN} / \mathrm{m}^{2}$
$\mathrm{Fi}_{\mathrm{i} \text { _pt }}=1.40 \mathrm{kN}$

Imposed point load (Medium term);

Modification factors

Service class for bending parallel to grain
$\mathrm{K}_{2 \mathrm{~m}}=1.00$
Service class for compression
Service class for shear parallel to grain
$K_{2 c}=1.00$
$K_{2 s}=1.00$
Service class for modulus of elasticity
Section depth factor;
Load sharing factor;

Consider long term loads

Load duration factor;
Maximum bending moment;
Maximum shear force;
Maximum support reaction;
Maximum deflection;
$\mathrm{K}_{2 \mathrm{e}}=1.00$
$K_{7}=1.06$
$\mathrm{K}_{8}=1.10$
$\mathrm{K}_{3}=1.00$
$\mathrm{M}=1.042 \mathrm{kNm}$
$\mathrm{V}=1.489 \mathrm{kN}$
$\mathrm{R}=1.489 \mathrm{kN}$
$\delta=5.217 \mathrm{~mm}$

Check bending stress

Bending stress;
Permissible bending stress;
Applied bending stress;
$\sigma_{\mathrm{m}}=5.300 \mathrm{~N} / \mathrm{mm}^{2}$
$\sigma_{\mathrm{m} _ \text {adm }}=\sigma_{\mathrm{m}} \times \mathrm{K}_{2 \mathrm{~m}} \times \mathrm{K}_{3} \times \mathrm{K}_{7} \times \mathrm{K}_{8}=\mathbf{6 . 1 8 6} \mathrm{N} / \mathrm{mm}^{2}$
σ_{m} max $=M / Z=4.640 \mathrm{~N} / \mathrm{mm}^{2}$
PASS - Applied bending stress within permissible limits

Check shear stress

Shear stress;
Permissible shear stress;
Applied shear stress;
$\tau=0.670 \mathrm{~N} / \mathrm{mm}^{2}$
$\tau \mathrm{adm}=\tau \times \mathrm{K}_{2 \mathrm{~s}} \times \mathrm{K}_{3} \times \mathrm{K}_{8}=0.737 \mathrm{~N} / \mathrm{mm}^{2}$
$\tau_{\text {max }}=3 \times \mathrm{V} /(2 \times \mathrm{b} \times \mathrm{h})=\mathbf{0 . 2 9 0} \mathrm{N} / \mathrm{mm}^{2}$
PASS - Applied shear stress within permissible limits

Check bearing stress

Compression perpendicular to grain (no wane);
Permissible bearing stress;
Applied bearing stress;

```
\sigmacp1 = 2.200 N/mm2
```



```
\sigmac_max }=R/(b\timesLb)=0.338 N/mm'm
```

PASS - Applied bearing stress within permissible limits

Check deflection

Permissible deflection;
Bending deflection (based on Emean);
Shear deflection;
Total deflection;

$$
\begin{aligned}
& \delta_{\text {adm }}=\min \left(L_{\text {s } 1} \times 0.003,14 \mathrm{~mm}\right)=8.400 \mathrm{~mm} \\
& \delta_{\text {bending }}=4.922 \mathrm{~mm} \\
& \delta_{\text {shear }}=0.295 \mathrm{~mm} \\
& \delta=\delta_{\text {bending }}+\delta_{\text {shear }}=\mathbf{5 . 2 1 7} \mathrm{mm}
\end{aligned}
$$

PASS - Actual deflection within permissible limits

Consider medium term loads

Load duration factor;
Maximum bending moment;
Maximum shear force;
Maximum support reaction;
Maximum deflection;
$\mathrm{K}_{3}=1.25$
$\mathrm{M}=1.434 \mathrm{kNm}$
$\mathrm{V}=2.049 \mathrm{kN}$
$\mathrm{R}=2.049 \mathrm{kN}$
$\delta=6.254 \mathrm{~mm}$

PSC Paul Snape Consulting The Granary, Woodfold Farm Crombleholme Fold, Goosnargh Preston PR3 2ES pa.snape@outlook.com	Project Picket Post House, Claughton on Brock, PR3 OPL				Job Ref.PSC-628	
	Section External Balcony Design				Sheet no.r	3
	Calc. by PAS	Date 28/03/2022	Chk'd by PAS	$\begin{aligned} & \hline \text { Date } \\ & 28 / 03 / 22 \end{aligned}$	App'd by PAS	$\begin{array}{\|l\|} \hline \text { Date } \\ 28 / 03 / 22 \end{array}$

Check bending stress

Bending stress;
Permissible bending stress;
Applied bending stress;

Check shear stress

Shear stress;
Permissible shear stress;
Applied shear stress;

Check bearing stress

Compression perpendicular to grain (no wane);
Permissible bearing stress;
Applied bearing stress;

Check deflection

Permissible deflection;
Bending deflection (based on Emean);
Shear deflection;
Total deflection;

TIMBER BEAM TO BALCONY

Beam spans 3 m and carries 1.4 m of floor load.

Dead load $=1.4 \times 0.75=1.05 \mathrm{kN} / \mathrm{m}$
Imposed load $=1.4 \times 1.5=2.1 \mathrm{kN} / \mathrm{m}$

$$
\begin{aligned}
& \sigma_{m}=5.300 \mathrm{~N} / \mathrm{mm}^{2} \\
& \sigma_{\mathrm{m} _ \text {adm }}=\sigma_{\mathrm{m}} \times \mathrm{K}_{2 \mathrm{~m}} \times \mathrm{K}_{3} \times \mathrm{K}_{7} \times \mathrm{K}_{8}=7.733 \mathrm{~N} / \mathrm{mm}^{2} \\
& \sigma_{\mathrm{m} _ \text {max }}=\mathrm{M} / \mathrm{Z}=6.386 \mathrm{~N} / \mathrm{mm}^{2}
\end{aligned}
$$

PASS - Applied bending stress within permissible limits
$\tau=0.670 \mathrm{~N} / \mathrm{mm}^{2}$
$\tau_{\mathrm{adm}}=\tau \times \mathrm{K}_{2 \mathrm{~s}} \times \mathrm{K}_{3} \times \mathrm{K}_{8}=0.921 \mathrm{~N} / \mathrm{mm}^{2}$
$\tau_{\text {max }}=3 \times \mathrm{V} /(2 \times \mathrm{b} \times \mathrm{h})=0.399 \mathrm{~N} / \mathrm{mm}^{2}$
PASS - Applied shear stress within permissible limits
$\sigma_{c _ \text {adm }}=\sigma_{c p 1} \times \mathrm{K}_{2 \mathrm{c}} \times \mathrm{K}_{3} \times \mathrm{K}_{8}=3.025 \mathrm{~N} / \mathrm{mm}^{2}$
$\sigma_{c _ \text {max }}=R /\left(b \times L_{b}\right)=0.466 \mathrm{~N} / \mathrm{mm}^{2}$
PASS - Applied bearing stress within permissible limits
$\delta_{\text {adm }}=\min \left(L_{s 1} \times 0.003,14 \mathrm{~mm}\right)=8.400 \mathrm{~mm}$
$\delta_{\text {bending }}=5.847 \mathrm{~mm}$
$\delta_{\text {shear }}=0.406 \mathrm{~mm}$
$\delta=\delta_{\text {bending }}+\delta_{\text {shear }}=6.254 \mathrm{~mm}$
PASS - Actual deflection within permissible limits

TIMBER BEAM ANALYSIS \& DESIGN TO BS5268-2:2002
TEDDS calculation version 1.7.02

Load Envelope - Combination 1

PSC Paul Snape Consulting The Granary, Woodfold Farm Crombleholme Fold, Goosnargh Preston PR3 2ES pa.snape@outlook.com	Project Picket Post House, Claughton on Brock, PR3 OPL				Job Ref.PSC-628	
	Section External Balcony Design				Sheet no./r	4
	Calc. by PAS	$\begin{array}{\|l\|} \hline \text { Date } \\ 28 / 03 / 2022 \end{array}$	Chk'd by PAS	Date 28/03/22	App'd by PAS	$\begin{array}{\|l\|} \hline \text { Date } \\ 28 / 03 / 22 \end{array}$

Applied loading

Beam loads

Dead self weight of beam $\times 1$
Dead full UDL $1.050 \mathrm{kN} / \mathrm{m}$
Imposed full UDL $2.100 \mathrm{kN} / \mathrm{m}$

Load combinations

Load combination 1

Support A	Dead $\times 1.00$
	Imposed $\times 1.00$
Span 1	Dead $\times 1.00$
	Imposed $\times 1.00$
Support B	Dead $\times 1.00$
	Imposed $\times 1.00$

Analysis results
Maximum moment
Design moment;
$\mathrm{M}_{\text {max }}=3.631 \mathrm{kNm}$;
$M_{\text {min }}=0.000 \mathrm{kNm}$

Maximum shear;
Design shear;
$\mathrm{M}=\max \left(\mathrm{abs}\left(\mathrm{M}_{\max }\right), \operatorname{abs}\left(\mathrm{M}_{\text {min }}\right)\right)=3.631 \mathrm{kNm}$
$F_{\text {max }}=4.841 \mathrm{kN}$; $\quad F_{\text {min }}=-4.841 \mathrm{kN}$

Total load on beam;
Reactions at support A;
Unfactored dead load reaction at support A;
Unfactored imposed load reaction at support A;
Reactions at support B;
Unfactored dead load reaction at support B;
Unfactored imposed load reaction at support B;
$\mathrm{F}=\max \left(\operatorname{abs}\left(\mathrm{F}_{\text {max }}\right), \mathrm{abs}\left(\mathrm{F}_{\text {min }}\right)\right)=4.841 \mathrm{kN}$
$W_{\text {tot }}=9.682 \mathrm{kN}$
$R_{\mathrm{A}_{\text {_max }}}=4.841 \mathrm{kN}$;
$R_{A_{_} \min }=4.841 \mathrm{kN}$
$R_{A_{A} \text { Dead }}=1.691 \mathrm{kN}$
$R_{\text {A } _ \text {Imposed }}=3.150 \mathrm{kN}$
$R_{B_{\text {_max }}}=4.841 \mathrm{kN}$;
$R_{B_{\text {_ min }}}=4.841 \mathrm{kN}$
$R_{B_{-} \text {Dead }}=1.691 \mathrm{kN}$
$R_{\text {B_Imposed }}=3.150 \mathrm{kN}$

PSC Paul Snape Consulting The Granary, Woodfold Farm Crombleholme Fold, Goosnargh Preston PR3 2ES	Project Picket Post House, Claughton on Brock, PR3 OPL				Job Ref.PSC-628	
	External Balcony Design				Sheet no./r	5
	Calc. by PAS	$\begin{array}{\|l\|} \hline \text { Date } \\ 28 / 03 / 2022 \end{array}$	Chk'd by PAS	Date 28/03/22	App'd by PAS	$\begin{array}{\|l\|} \hline \text { Date } \\ 28 / 03 / 22 \end{array}$

$|-100 \rightarrow|$

Timber section details

Breadth of sections;
$\mathrm{b}=75 \mathrm{~mm}$
Depth of sections;
Number of sections in member;
$\mathrm{h}=\mathbf{2 5 0} \mathrm{mm}$
$\mathrm{N}=1$
Overall breadth of member;
$\mathrm{b}_{\mathrm{b}}=\mathrm{N} \times \mathrm{b}=75 \mathrm{~mm}$
Timber strength class;
C24
Member details
Service class of timber;
Load duration;
1

Length of span;
Long term

Length of bearing;
$\mathrm{L}_{\mathrm{s} 1}=\mathbf{3 0 0 0} \mathrm{mm}$

Section properties
Cross sectional area of member;
$\mathrm{A}=\mathrm{N} \times \mathrm{b} \times \mathrm{h}=18750 \mathrm{~mm}^{2}$
Section modulus;
$Z_{x}=N \times b \times h^{2} / 6=781250 \mathrm{~mm}^{3}$
$\mathrm{Z}_{\mathrm{y}}=\mathrm{h} \times(\mathrm{N} \times \mathrm{b})^{2} / 6=\mathbf{2 3 4 3 7 5} \mathrm{mm}^{3}$
Second moment of area;
$\mathrm{I}_{\mathrm{x}}=\mathrm{N} \times \mathrm{b} \times \mathrm{h}^{3} / 12=97656250 \mathrm{~mm}^{4}$
$\mathrm{l}_{\mathrm{y}}=\mathrm{h} \times(\mathrm{N} \times \mathrm{b})^{3} / 12=8789062 \mathrm{~mm}^{4}$
Radius of gyration;
$i_{x}=\sqrt{ }\left(I_{x} / A\right)=72.2 \mathrm{~mm}$
$\mathrm{i}_{\mathrm{y}}=\sqrt{ }\left(\mathrm{I}_{\mathrm{y}} / \mathrm{A}\right)=\mathbf{2 1 . 7} \mathrm{mm}$

Modification factors

Duration of loading - Table 17;
$\mathrm{K}_{3}=1.00$
Bearing stress - Table 18;
$\mathrm{K}_{4}=1.00$
Total depth of member - cl.2.10.6;
$\mathrm{K}_{7}=(300 \mathrm{~mm} / \mathrm{h})^{0.11}=1.02$
Load sharing - cl.2.9;
$\mathrm{K}_{8}=1.00$
Lateral support - cl.2.10.8
Ends held in position and members held in line, as by purlins or tie rods at centres not more than 30 times the breadth of the member
Permissible depth-to-breadth ratio - Table 19; 4.00
Actual depth-to-breadth ratio;
$\mathrm{h} /(\mathrm{N} \times \mathrm{b})=3.33$
PASS - Lateral support is adequate

Compression perpendicular to grain

Permissible bearing stress (no wane);
$\sigma_{c_{c} \text { adm }}=\sigma_{c p 1} \times \mathrm{K}_{3} \times \mathrm{K}_{4} \times \mathrm{K}_{8}=\mathbf{2 . 4 0 0} \mathrm{N} / \mathrm{mm}^{2}$
Applied bearing stress;
$\sigma_{c _a}=R_{A_{\mathrm{A}} \max } /\left(\mathrm{N} \times \mathrm{b} \times \mathrm{L}_{\mathrm{b}}\right)=0.645 \mathrm{~N} / \mathrm{mm}^{2}$
$\sigma_{c _a} / \sigma_{c _a d m}=0.269$
PASS - Applied compressive stress is less than permissible compressive stress at bearing
Bending parallel to grain
Permissible bending stress;
$\sigma_{\mathrm{m} _ \text {adm }}=\sigma_{\mathrm{m}} \times \mathrm{K}_{3} \times \mathrm{K}_{7} \times \mathrm{K}_{8}=7.652 \mathrm{~N} / \mathrm{mm}^{2}$

PSC Paul Snape Consulting The Granary, Woodfold Farm Crombleholme Fold, Goosnargh Preston PR3 2ES	Project				Job Ref.	
	Picket Post House, Claughton on Brock, PR3 OPL				PSC-628	
	External Balcony Design				Sheet no./rev.	6
Preston PR3 2ES pa.snape@outlook.com	Calc. by PAS	$\begin{aligned} & \hline \text { Date } \\ & 28 / 03 / 2022 \end{aligned}$	Chk'd by PAS	Date 28/03/22	App'd by PAS	$\begin{array}{\|l\|} \hline \text { Date } \\ 28 / 03 / 22 \end{array}$

Applied bending stress;
$\sigma_{m _a}=M / Z_{x}=4.647 \mathrm{~N} / \mathrm{mm}^{2}$
$\sigma_{\mathrm{m}}{ }^{\mathrm{a}} / \sigma_{\mathrm{m} _ \text {_adm }}=0.607$
PASS - Applied bending stress is less than permissible bending stress

Shear parallel to grain

Permissible shear stress;
$\tau_{\text {adm }}=\tau \times \mathrm{K}_{3} \times \mathrm{K}_{8}=0.710 \mathrm{~N} / \mathrm{mm}^{2}$
$\tau_{\mathrm{a}}=3 \times \mathrm{F} /(2 \times \mathrm{A})=0.387 \mathrm{~N} / \mathrm{mm}^{2}$
$\tau_{\mathrm{a}} / \tau_{\mathrm{adm}}=0.545$
PASS - Applied shear stress is less than permissible shear stress

Deflection

Modulus of elasticity for deflection;
Permissible deflection;
Bending deflection;
Shear deflection;
Total deflection;

$$
\begin{aligned}
& \mathrm{E}=\mathrm{E}_{\text {min }}=\mathbf{7 2 0 0} \mathrm{N} / \mathrm{mm}^{2} \\
& \delta_{\mathrm{adm}}=\min \left(0.551 \mathrm{in}, 0.003 \times \mathrm{L}_{\mathrm{s} 1}\right)=9.000 \mathrm{~mm} \\
& \delta_{\mathrm{b} _ \text {s } 1}=4.841 \mathrm{~mm} \\
& \delta_{\mathrm{v} \text { _s } 1}=\mathbf{0 . 5 1 6 \mathrm { mm }} \\
& \delta_{\mathrm{a}}=\delta_{\mathrm{b} _ \text {s } 1}+\delta_{\mathrm{v} _ \text {s } 1}=5.357 \mathrm{~mm} \\
& \delta_{a} / \delta_{\text {adm }}=0.595
\end{aligned}
$$

PASS - Total deflection is less than permissible deflection

STEEL BEAM TO BALCONY

Loading and span as above for timber.

Design as unrestrained.

STEEL BEAM ANALYSIS \& DESIGN (BS5950)

In accordance with BS5950-1:2000 incorporating Corrigendum No. 1

PSC Paul Snape Consulting The Granary, Woodfold Farm Crombleholme Fold, Goosnargh Preston PR3 2ES pa.snape@outlook.com	Project Picket Post House, Claughton on Brock, PR3 0PL				Job Ref.PSC-628	
	Section	External	Icony Desig		Sheet no./rev.	
	Calc. by PAS	$\begin{aligned} & \hline \text { Date } \\ & 28 / 03 / 2022 \end{aligned}$	Chk'd by PAS	Date 28/03/22	App'd by PAS	$\begin{array}{\|l\|} \hline \text { Date } \\ 28 / 03 / 22 \end{array}$

Support conditions

Support A	Vertically restrained
Support B	Rotationally free
	Vertically restrained
	Rotationally free

Applied loading

Beam loads

Load combinations

Load combination 1

Support A	Dead $\times 1.40$
	Imposed $\times 1.60$
	Dead $\times 1.40$
	Imposed $\times 1.60$
Support B	Dead $\times 1.40$
	Imposed $\times 1.60$
$\mathrm{M}_{\text {max }}=5.7 \mathrm{kNm}$;	$\mathrm{M}_{\text {min }}=0 \mathrm{kNm}$
$V_{\text {max }}=7.5 \mathrm{kN}$;	$V_{\text {min }}=-7.5 \mathrm{kN}$
$\delta_{\text {max }}=3.9 \mathrm{~mm}$;	$\delta_{\text {min }}=0 \mathrm{~mm}$
$\mathrm{R}_{\mathrm{A}_{\text {_max }}}=7.5 \mathrm{kN}$;	$\mathrm{R}_{\mathrm{A}_{-} \text {min }}=7.5 \mathrm{kN}$
$\mathrm{R}_{\mathrm{A}_{-} \text {Dead }}=1.8 \mathrm{kN}$	
$\mathrm{R}_{\mathrm{A} \text { _Imposed }}=3.2 \mathrm{kN}$	
RB _max $^{\text {a }} 7.5 \mathrm{kN}$;	RB _min $=7.5 \mathrm{kN}$
$\mathrm{R}_{\mathrm{B}_{\text {_ Dead }}}=1.8 \mathrm{kN}$	
$\mathrm{R}_{\mathrm{B} _ \text {Imposed }}=3.2 \mathrm{kN}$	

Analysis results

Maximum moment;
Maximum shear;
Deflection;
Maximum reaction at support A;
Unfactored dead load reaction at support A;
Unfactored imposed load reaction at support A;
Maximum reaction at support B;
Unfactored dead load reaction at support B;
Unfactored imposed load reaction at support B;
RB_Imposed $=3.2 \mathrm{kN}$

Section details

Section type;
SHS 100x100x5.0 (Tata Steel Celsius (Gr355 Gr420 Gr460))
Steel grade;
From table 9: Design strength p_{y}
Thickness of element;
Design strength; S275

Modulus of elasticity;
$\mathrm{t}=5.0 \mathrm{~mm}$
$p_{y}=275 \mathrm{~N} / \mathrm{mm}^{2}$
$E=205000 \mathrm{~N} / \mathrm{mm}^{2}$

PSC Paul Snape Consulting The Granary, Woodfold Farm Crombleholme Fold, Goosnargh Preston PR3 2ES pa.snape@outlook.com	Project Picket Post House, Claughton on Brock, PR3 0PL				Job Ref.PSC-628	
	Section External Balcony Des				Sheet no./rev.8	
	Calc. by PAS	$\begin{array}{\|l\|} \hline \text { Date } \\ 28 / 03 / 2022 \end{array}$	Chk'd by PAS	Date 28/03/22	App'd by PAS	$\begin{array}{\|l\|} \hline \text { Date } \\ 28 / 03 / 22 \end{array}$

Lateral restraint

Span 1 has lateral restraint at supports only

Effective length factors

Effective length factor in major axis
$\mathrm{K}_{\mathrm{x}}=1.00$
Effective length factor in minor axis;
$K_{y}=1.00$
Effective length factor for lateral-torsional buckling;
$\mathrm{K}_{\text {LT. } . ~}=1.00$;
$K_{\text {Lt } . B}=1.00$;
Classification of cross sections - Section 3.5
$\varepsilon=\sqrt{ }\left[275 \mathrm{~N} / \mathrm{mm}^{2} / \mathrm{p}_{\mathrm{y}}\right]=1.00$
Web - major axis - Table 12
Depth of section;
$\mathrm{d}=\mathrm{D}-3 \times \mathrm{t}=\mathbf{8 5} \mathrm{mm}$
$\mathrm{d} / \mathrm{t}=17.0 \times \varepsilon<=64 \times \varepsilon ; \quad$ Class 1 plastic

Flange - major axis - Table 12

Width of section;
b $=\mathrm{B}-3 \times \mathrm{t}=\mathbf{8 5} \mathrm{mm}$
$\mathrm{b} / \mathrm{t}=17.0 \times \varepsilon<=\min (28 \times \varepsilon, 80 \times \varepsilon-\mathrm{d} / \mathrm{t})$;
Class 1 plastic
Section is class 1 plastic
Shear capacity - Section 4.2.3
Design shear force;
$\mathrm{F}_{\mathrm{v}}=\max \left(\mathrm{abs}\left(\mathrm{V}_{\text {max }}\right), \operatorname{abs}\left(\mathrm{V}_{\text {min }}\right)\right)=7.5 \mathrm{kN}$
(D $-3 \times \mathrm{t}$) $/ \mathrm{t}<70 \times \varepsilon$
Web does not need to be checked for shear buckling
Shear area;
Design shear resistance;
$A_{v}=A \times D /(D+B)=937 \mathrm{~mm}^{2}$
$P_{v}=0.6 \times p_{y} \times A_{v}=154.5 \mathrm{kN}$
PASS - Design shear resistance exceeds design shear force

Moment capacity - Section 4.2.5

Design bending moment;
Moment capacity low shear - cl.4.2.5.2;
$\mathrm{M}=\max \left(\operatorname{abs}\left(\mathrm{M}_{\mathrm{s} 1 _\max }\right), \operatorname{abs}\left(\mathrm{Ms}_{\mathrm{s} 1} \min \right)\right)=5.7 \mathrm{kNm}$
$M_{c}=\min \left(p_{y} \times S, 1.2 \times p_{y} \times Z\right)=18.2 \mathrm{kNm}$

Effective length for lateral-torsional buckling - Section 4.3.5

Effective length for lateral torsional buckling
Slenderness ratio;
$L_{E}=1.0 \times L_{s 1}=3000 \mathrm{~mm}$
$\lambda=L_{E} / r_{y y}=77.673$

PSC Paul Snape Consulting The Granary, Woodfold Farm Crombleholme Fold, Goosnargh Preston PR3 2ES pa.snape@outlook.com	Project Picket Post House, Claughton on Brock, PR3 OPL				Job Ref.PSC-628	
	External Balcony Design				Sheet no./rev,	9
	Calc. by PAS	Date 28/03/2022	Chk'd by PAS	$\begin{aligned} & \hline \text { Date } \\ & 28 / 03 / 22 \end{aligned}$	App'd by PAS	$\begin{array}{\|l\|} \hline \text { Date } \\ 28 / 03 / 22 \end{array}$

Equivalent slenderness - Annex B.2.6.1

Torsion constant;

Ratio - cl.4.3.6.9;
Equivalent slenderness;
Limiting slenderness - Annex B.2.2;

$$
\begin{aligned}
& J=4394108 \mathrm{~mm}^{4} \\
& \gamma_{\mathrm{b}}=\left(1-\mathrm{I}_{\mathrm{yy}} / \mathrm{I}_{\mathrm{xx}}\right) \times\left(1-\mathrm{J} /\left(2.6 \times \mathrm{I}_{\mathrm{xx}}\right)\right)=0.000 \\
& \phi_{\mathrm{b}}=\left[\mathrm{S}_{\mathrm{xx}}{ }^{2} \times \gamma_{\mathrm{b}} /(\mathrm{A} \times \mathrm{J})\right]^{0.5}=0.000 \\
& \beta_{\mathrm{W}}=1.000 \\
& \left.\lambda_{L T}=2.25 \times V_{[\phi \mathrm{b}} \times \lambda \times \beta \mathrm{W}\right]=0.000 \\
& \lambda_{L O}=0.4 \times\left(\pi^{2} \times \mathrm{E} / \mathrm{p}_{\mathrm{y}}\right)^{0.5}=\mathbf{3 4 . 3 1 0} \\
& \lambda_{L T}<\lambda_{L O}-\text { No allowance need be made for lateral-torsional buckling }
\end{aligned}
$$

Buckling resistance moment - Section 4.3.6.4

Bending strength;
Buckling resistance moment;

Check vertical deflection - Section 2.5.2
Consider deflection due to imposed loads
Limiting deflection;
Maximum deflection span 1;

$$
\begin{aligned}
& p_{b}=p_{y}=275 \mathrm{~N} / \mathrm{mm}^{2} \\
& M_{b}=p_{b} \times S=18.2 \mathrm{kNm}
\end{aligned}
$$

PASS - Moment capacity exceeds design bending moment
$\delta=\max \left(\operatorname{abs}\left(\delta_{\max }\right), \operatorname{abs}\left(\delta_{\text {min }}\right)\right)=3.866 \mathrm{~mm}$
PASS - Maximum deflection does not exceed deflection limit

TIMBER COLUMN

From calculations above axial load is 7.5 kN compression. Allow for 2.6 m length. Nominal moment and shear applied.

TIMBER MEMBER DESIGN TO BS5268-2:2002

Analysis results

Design moment in major axis;
$\mathrm{M}_{\mathrm{x}}=1.000 \mathrm{kNm}$
Design shear;
Design axial compression;

$$
F=1.000 \mathrm{kN}
$$

$\mathrm{P}=7.500 \mathrm{kN}$

Timber section details

Breadth of sections;
Depth of sections;
$\mathrm{b}=100 \mathrm{~mm}$

Number of sections in member;
$\mathrm{h}=\mathbf{1 0 0} \mathrm{mm}$

Overall breadth of member;
$\mathrm{N}=1$

Timber strength class;
$\mathrm{b}_{\mathrm{b}}=\mathrm{N} \times \mathrm{b}=100 \mathrm{~mm}$
C24

Member details

Service class of timber;
1
Load duration;
Long term
Effective length - cl.2.11.3

PSC Paul Snape Consulting The Granary, Woodfold Farm Crombleholme Fold, Goosnargh Preston PR3 2ES pa.snape@outlook.com	Project Picket Post House, Claughton on Brock, PR3 OPL				Job Ref.PSC-628	
	External Balcony Design				10	
	Calc. by PAS	$\begin{aligned} & \text { Date } \\ & 28 / 03 / 2022 \end{aligned}$	Chk'd by PAS	$\begin{array}{\|l\|} \hline \text { Date } \\ 28 / 03 / 22 \end{array}$	App'd by PAS	$\begin{array}{\|l\|} \hline \text { Date } \\ 28 / 03 / 22 \end{array}$

Unbraced length in x-axis;
$\mathrm{L}_{\mathrm{x}}=2600 \mathrm{~mm}$
Effective length factor in x-axis - Table 21;
$K_{x}=1$
Effective length in x-axis;
$\mathrm{L}_{\text {ex }}=\mathrm{L}_{\mathrm{x}} \times \mathrm{K}_{\mathrm{x}}=\mathbf{2 6 0 0} \mathbf{~ m m}$
Unbraced length in y-axis;
$\mathrm{L}_{\mathrm{y}}=2600 \mathrm{~mm}$
Effective length factor in y-axis - Table 21;
$\mathrm{K}_{\mathrm{y}}=1$
Effective length in y-axis;
$L_{\text {ey }}=L_{y} \times K_{y}=\mathbf{2 6 0 0} \mathbf{~ m m}$

Section properties

Cross sectional area of member;
$\mathrm{A}=\mathrm{N} \times \mathrm{b} \times \mathrm{h}=10000 \mathrm{~mm}^{2}$
Section modulus;

Second moment of area;

Radius of gyration;
$Z_{x}=N \times b \times h^{2} / 6=166667 \mathrm{~mm}^{3}$
$Z_{y}=h \times(N \times b)^{2} / 6=166667 \mathrm{~mm}^{3}$
$\mathrm{I}_{\mathrm{x}}=\mathrm{N} \times \mathrm{b} \times \mathrm{h}^{3} / 12=8333333 \mathrm{~mm}^{4}$
$\mathrm{l}_{\mathrm{y}}=\mathrm{h} \times(\mathrm{N} \times \mathrm{b})^{3} / 12=8333333 \mathrm{~mm}^{4}$
$i_{x}=V\left(I_{x} / A\right)=28.9 \mathrm{~mm}$
$\mathrm{i}_{\mathrm{y}}=\sqrt{ }\left(\mathrm{l}_{\mathrm{y}} / \mathrm{A}\right)=\mathbf{2 8 . 9} \mathbf{~ m m}$

Modification factors

Duration of loading - Table 17;
Total depth of member - cl.2.10.6;
$\mathrm{K}_{3}=1.00$

Load sharing - cl.2.9;
$\mathrm{K}_{7}=(300 \mathrm{~mm} / \mathrm{h})^{0.11}=1.13$
$\mathrm{K}_{8}=1.00$
Members subject to axial compression - Table 22; $\mathrm{K}_{12}=\mathbf{0 . 4 6}$
Lateral support - cl.2.10.8
No lateral support
Permissible depth-to-breadth ratio - Table 19; 2.00

Actual depth-to-breadth ratio;
$h /(N \times b)=1.00$
PASS - Lateral support is adequate
Slenderness ratio - cl.2.11.4
Permissible slenderness ratio;

$$
\lambda_{\max }=180
$$

Slenderness ratio;
$\lambda=\max \left(\right.$ Lex $_{\text {ex }} / \mathrm{i}_{\mathrm{x}}$, Ley $\left./ \mathrm{i} \mathrm{y}\right)=\mathbf{9 0 . 0 6 7}$
PASS - Slenderness ratio is less than permissible slenderness ratio

Bending parallel to grain

Permissible bending stress;
Applied bending stress;

$$
\begin{aligned}
& \sigma_{m _a d m}=\sigma_{\mathrm{m}} \times \mathrm{K}_{3} \times \mathrm{K}_{7} \times \mathrm{K}_{8}=8.463 \mathrm{~N} / \mathrm{mm}^{2} \\
& \sigma_{\mathrm{m} _a}=\mathrm{M}_{\mathrm{x}} / \mathrm{Z}_{\mathrm{x}}=6.000 \mathrm{~N} / \mathrm{mm}^{2} \\
& \sigma_{\mathrm{m} _a} / \sigma_{\mathrm{m} _ \text {_adm }}=0.709
\end{aligned}
$$

PASS - Applied bending stress is less than permissible bending stress

Compression parallel to grain

Permissible compressive stress;

$$
\begin{aligned}
& \sigma_{c _a d m}=\sigma_{c} \times \mathrm{K}_{3} \times \mathrm{K}_{8} \times \mathrm{K}_{12}=3.618 \mathrm{~N} / \mathrm{mm}^{2} \\
& \sigma_{c_{_} \mathrm{a}}=\mathrm{P} / \mathrm{A}=0.750 \mathrm{~N} / \mathrm{mm}^{2} \\
& \sigma_{c_{\text {_a }}} / \sigma_{\mathrm{c}_{\mathrm{C}} \text { adm }}=0.207
\end{aligned}
$$

PASS - Applied compressive stress is less than permissible compressive stress
Members subject to axial compression and bending - cl.2.11.6

Euler critical stress;	$\sigma_{\mathrm{e}}=\left(\pi^{2} \times \mathrm{E}_{\text {min }}\right) / \lambda^{2}=8.760 \mathrm{~N} / \mathrm{mm}^{2}$
Euler coefficient;	$\mathrm{K}_{\text {eu }}=1-\left(1.5 \times \sigma_{\text {c_a }} \times \mathrm{K}_{12} / \sigma_{e}\right)=0.941$
Combined axial com	$\sigma_{\mathrm{m} _a} /\left(\sigma_{\text {m_adm }} \times \mathrm{K}_{\text {eu }}\right)+\sigma_{\text {c_a }} / \sigma_{\text {c_adm }}=0.961 ;<1$

PASS - Combined compressive and bending stresses are within permissible limits

PSC Paul Snape Consulting The Granary, Woodfold Farm Crombleholme Fold, Goosnargh Preston PR3 2ES pa.snape@outlook.com	Project Picket Post House, Claughton on Brock, PR3 OPL				Job Ref.PSC-628	
	External Balcony Design				11	
	Calc. by PAS	$\begin{aligned} & \text { Date } \\ & \text { 28/03/2022 } \end{aligned}$	Chk'd by PAS	$\begin{array}{\|l\|} \hline \text { Date } \\ 28 / 03 / 22 \end{array}$	App'd by PAS	Date $28 / 03 / 22$

Shear parallel to grain

Permissible shear stress;
$\tau_{\text {adm }}=\tau \times \mathrm{K}_{3} \times \mathrm{K}_{8}=0.710 \mathrm{~N} / \mathrm{mm}^{2}$
Applied shear stress;
$\tau_{\mathrm{a}}=3 \times \mathrm{F} /(2 \times \mathrm{A})=0.150 \mathrm{~N} / \mathrm{mm}^{2}$
$\tau_{\mathrm{a}} / \tau_{\mathrm{adm}}=0.211$
PASS - Applied shear stress is less than permissible shear stress

STEEL COLUMN

Details as above for timber.

STEEL MEMBER DESIGN (BS5950)

In accordance with BS5950-1:2000 incorporating Corrigendum No. 1

Section details

Section type;
Steel grade;
From table 9: Design strength p_{y}
Thickness of element;
Design strength;
Modulus of elasticity;

SHS 100x100x5.0 (Tata Steel Celsius (Gr355 Gr420 Gr460))
S275
$\mathrm{t}=5.0 \mathrm{~mm}$
$p_{y}=275 \mathrm{~N} / \mathrm{mm}^{2}$
$E=205000 \mathrm{~N} / \mathrm{mm}^{2}$

Lateral restraint

Distance between major axis restraints; $\quad L_{x}=\mathbf{2 6 0 0} \mathrm{mm}$
Distance between minor axis restraints;
$\mathrm{L}_{\mathrm{y}}=\mathbf{0} \mathrm{mm}$
Effective length factors
Effective length factor in major axis; $\quad \mathrm{K}_{\mathrm{x}}=\mathbf{1 . 0 0}$
Effective length factor in minor axis;
$\mathrm{K}_{\mathrm{y}}=1.00$
Effective length factor for lateral-torsional buckling; $K_{L T}=\mathbf{1 . 0 0}$;
Classification of cross sections - Section 3.5

$$
\varepsilon=\sqrt{ }\left[275 \mathrm{~N} / \mathrm{mm}^{2} / \mathrm{p}_{\mathrm{y}}\right]=1.00
$$

PSC Paul Snape Consulting The Granary, Woodfold Farm Crombleholme Fold, Goosnargh Preston PR3 2ES pa.snape@outlook.com	Project Picket Post House, Claughton on Brock, PR3 0PL				Job Ref.PSC-628	
	Section External Balcony Des				Sheet no./rev12	
	Calc. by PAS	$\begin{array}{\|l\|} \hline \text { Date } \\ 28 / 03 / 2022 \end{array}$	Chk'd by PAS	Date 28/03/22	App'd by PAS	$\begin{array}{\|l\|} \hline \text { Date } \\ 28 / 03 / 22 \end{array}$

Web - major axis - Table 12
Depth of section;
$\mathrm{d}=\mathrm{D}-3 \times \mathrm{t}=\mathbf{8 5} \mathrm{mm}$
Stress ratios;
$r 1=\min \left(F_{c} /\left(2 \times d \times t \times p_{y w}\right), 1\right)=0.032$
$r 2=F_{c} /\left(A \times p_{y w}\right)=0.015$
$\mathrm{d} / \mathrm{t}=17.0 \times \varepsilon<=\max (64 \times \varepsilon /(1+\mathrm{r} 1), 40 \times \varepsilon)$; Class 1 plastic
Flange - major axis - Table 12
Width of section;

$$
\mathrm{b}=\mathrm{B}-3 \times \mathrm{t}=\mathbf{8 5} \mathrm{mm}
$$

b/t $=17.0 \times \varepsilon<=40 \times \varepsilon$;
Class 3 semi-compact
Section is class 3 semi-compact
Shear capacity - Section 4.2.3
Design shear force;
$F_{y, v}=1 \mathrm{kN}$
(D $-3 \times \mathrm{t}$) $/ \mathrm{t}<70 \times \varepsilon$
Web does not need to be checked for shear buckling
Shear area;
Design shear resistance;
$A_{v}=A \times D /(D+B)=937 \mathrm{~mm}^{2}$
$P_{y, v}=0.6 \times p_{y} \times A_{v}=154.5 \mathrm{kN}$
PASS - Design shear resistance exceeds design shear force
Shear capacity - Section 4.2.3
Design shear force;
$F_{X, v}=0 \mathrm{kN}$
Moment capacity - Section 4.2.5
Design bending moment;
Effective plastic modulus - Section 3.5.6
Limiting value for class 2 compact flange;
Limiting value for class 3 semi-compact flange;
Limiting value for class 2 compact web;
Limiting value for class 3 semi-compact web;
$\mathrm{M}=1 \mathrm{kNm}$

Effective plastic modulus - cl.3.5.6.3

$$
S_{\text {eff }}=\min \left(Z+(S-Z) \times \min \left(\left[\left(\beta_{3 w} /(d / t)-1\right) /\left(\beta_{3 w} / \beta_{2 w}-1\right)\right],\left[\left(\beta_{3 f} /(b / t)-1\right) /\left(\beta_{3 f} / \beta_{2 f}-1\right)\right]\right), S\right)=\mathbf{6 6 3 5 8} \mathrm{mm}^{3}
$$

Moment capacity low shear - cl.4.2.5.2; $\quad M_{c}=\min \left(p_{y} \times S_{\text {eff }}, 1.2 \times p_{y} \times Z\right)=\mathbf{1 8 . 2} \mathbf{k N m}$
PASS - Moment capacity exceeds design bending moment
Compression members - Section 4.7
Design compression force; $\quad F_{c}=7.5 \mathrm{kN}$
Effective length for major ($\mathbf{x - x}$) axis buckling - Section 4.7.3

Effective length for buckling;
Slenderness ratio - cl.4.7.2;
Compressive strength - Section 4.7.5
Limiting slenderness;
Strut curve - Table 23;
Robertson constant;
Perry factor;
Euler stress;

Compressive strength - Annex C.1;
Compression resistance - Section 4.7.4
Compression resistance - cl.4.7.4;
$\mathrm{P}_{\mathrm{cx}}=\mathrm{A} \times \mathrm{p}_{\mathrm{cx}}=427.4 \mathrm{kN}$

PSC Paul Snape Consulting The Granary, Woodfold Farm Crombleholme Fold, Goosnargh Preston PR3 2ES pa.snape@outlook.com	Project Picket Post House, Claughton on Brock, PR3 0PL				Job Ref.PSC-628	
	External Balcony Design				Sheet no./rev	13
	Calc. by PAS	$\begin{array}{\|l\|} \hline \text { Date } \\ 28 / 03 / 2022 \end{array}$	Chk'd by PAS	$\begin{array}{\|l\|} \hline \text { Date } \\ 28 / 03 / 22 \end{array}$	App'd by PAS	$\begin{array}{\|l\|} \hline \text { Date } \\ 28 / 03 / 22 \end{array}$

PASS - Compression resistance exceeds design compression force
Compression members with moments - Section 4.8.3
Comb.compression \& bending check - cl.4.8.3.2; $\quad \mathrm{F}_{\mathrm{c}} /\left(\mathrm{A} \times \mathrm{p}_{\mathrm{y}}\right)+\mathrm{M} / \mathrm{M}_{\mathrm{c}}=\mathbf{0 . 0 6 9}$
PASS - Combined bending and compression check is satisfied
Member buckling resistance - Section 4.8.3.3
Max major axis moment governing M_{b};
$M_{L T}=M_{x}=1.00 \mathrm{kNm}$
Equiv uniform mnt factor - major axis flex buckling;
Buckling resistance check - cl.4.8.3.3.3;
$m_{x}=1.000$
$\mathrm{F}_{\mathrm{c}} / \mathrm{P}_{\mathrm{cx}}+\mathrm{m}_{\mathrm{x}} \times \mathrm{M} / \mathrm{M}_{\mathrm{c}} \times\left(1+0.5 \times \mathrm{F}_{\mathrm{c}} / \mathrm{P}_{\mathrm{cx}}\right)=\mathbf{0 . 0 7 3}$
PASS - Member buckling resistance checks are satisfied

COLUMN BASE PLATE DESIGN (BS5950)

Load as per column above - 7.5 kN
COLUMN BASE PLATE DESIGN (BS5950-1:2000)
TEDDS calculation version 1.0.09;

6 mm thick base plate

Base plate reference;
Design forces and moments
Axial force;
Bending moment;
Shear force;

Column details

Column section;
Depth;
Breadth;
Flange thickness;
Web thickness;
Design strength;
Column flange to base plate weld;
Column web to base plate weld;

Column;

$\mathrm{F}_{\mathrm{c}}=; 7.5$; kN (Compression)
$\mathrm{M}=1.0 \mathrm{kNm}$; (about major axis)
$F_{v}=1.0 \mathrm{kN}$

SHS 100x100x5.0 (Grade S275)
$D=100.0 \mathrm{~mm}$
$B=100.0 \mathrm{~mm}$
$\mathrm{T}=5.0 \mathrm{~mm}$
$\mathrm{t}=5.0 \mathrm{~mm}$
$p_{y c}=275 \mathrm{~N} / \mathrm{mm}^{2}$
6 mm FW;
8 mm FW;

PSC Paul Snape Consulting The Granary, Woodfold Farm Crombleholme Fold, Goosnargh Preston PR3 2ES pa.snape@outlook.com	Project Picket Post House, Claughton on Brock, PR3 OPL				Job Ref.PSC-628	
	External Balcony Design				Sheet no./rev	14
	Calc. by PAS	$\begin{array}{\|l\|} \hline \text { Date } \\ 28 / 03 / 2022 \end{array}$	Chk'd by PAS	Date 28/03/22	App'd by PAS	$\begin{array}{\|l\|} \hline \text { Date } \\ 28 / 03 / 22 \end{array}$

Baseplate details

Steel grade;
Depth;
Breadth;
Thickness;
Design strength;
Holding down bolt and anchor plate details
Total number of bolts;
Bolt spacing;
Edge distance;
Anchor plate steel grade;
Anchor plate dimension (square);
Anchor plate thickness;
Design strength;
Embeddment to top of anchor plate;
Characteristic strength of concrete;

S275

$\mathrm{D}_{\mathrm{p}}=200 \mathrm{~mm}$
$B_{p}=200 \mathrm{~mm}$
$\mathrm{t}_{\mathrm{p}}=6 \mathrm{~mm}$
$p_{y p}=275 \mathrm{~N} / \mathrm{mm}^{2}$

4 No. M12 Grade 4.6

Sbolt $=$; 145; mm
$\mathrm{e}_{1}=\mathbf{2 5} \mathrm{mm}$
S275
$\mathrm{b}_{\mathrm{ap}}=\mathbf{6 0} \mathrm{mm}$
$\mathrm{t}_{\mathrm{ap}}=5 \mathrm{~mm}$
$p_{\text {yap }}=275 \mathrm{~N} / \mathrm{mm}^{2}$
$\mathrm{E}=\mathbf{1 0 0} \mathrm{mm}$
$\mathrm{f}_{\mathrm{cu}}=\mathbf{2 5} \mathrm{N} / \mathrm{mm}^{2}$

Concrete compression force and bolt tension force

Plate overhang beyond face of flange;
Effective width of plate;
$\left.\mathrm{L}_{1}=\left(\mathrm{D}_{\mathrm{p}}-\mathrm{D}\right) / 2\right)=; \mathbf{5 0 . 0} ; \mathrm{mm}$

Distance from bolts to compression edge;
Assuming a rectangular compression block of width b_{pc}, length x and intensity 0.6 fcu then:-
From static equilibrium;
Rearranging the quadratic equation;
Factor a;
Factor b;
Constant c;
Depth of compression block;
Compression force in concrete;
Tension force in bolts;

$$
\begin{aligned}
& \left.\mathrm{M}=0.6 \mathrm{fcu}_{\mathrm{cu}} \mathrm{Bpcx}^{\mathrm{h}} \mathrm{~h}-\mathrm{x} / 2\right)-\mathrm{F}_{\mathrm{c}}\left(\mathrm{~h}-\mathrm{D}_{\mathrm{p}} / 2\right) \\
& 0.3 \mathrm{f}_{\mathrm{cu}} \mathrm{~B}_{\mathrm{pc}} \mathrm{X}^{2}-0.6 \mathrm{f}_{\mathrm{cu}} \mathrm{~B}_{\mathrm{pc}} \mathrm{Fx}+\mathrm{F}_{\mathrm{c}}\left(\mathrm{~h}-\mathrm{D}_{\mathrm{p}} / 2\right)+\mathrm{M}=0 \\
& \mathrm{a}=0.3 \times \mathrm{f}_{\mathrm{cu}} \times \mathrm{B}_{\mathrm{pc}}=1500.0 \mathrm{~N} / \mathrm{mm} \\
& \mathrm{~b}=-0.6 \times \mathrm{f}_{\mathrm{cu}} \times \mathrm{B}_{\mathrm{pc}} \times \mathrm{h}=\mathbf{- 5 2 5 0 0 0 . 0} \mathrm{N} \\
& c=F_{c} \times\left(h-D_{p} / 2\right)+M=1562500.0 \mathrm{Nmm} \\
& x=\left[-1.0 \times b-\sqrt{ }\left(b^{2}-4 \times a \times c\right)\right] /(2 \times a)=3.0 \mathrm{~mm} \\
& \mathrm{C}_{\mathrm{f}}=0.6 \times \mathrm{f}_{\mathrm{cu}} \times \mathrm{B}_{\mathrm{pc}} \times \mathrm{x}=9.0 \mathrm{kN} \\
& \mathrm{~T}_{\mathrm{f}}=\mathrm{C}_{\mathrm{f}}-\mathrm{F}_{\mathrm{c}}=1.5 \mathrm{kN}
\end{aligned}
$$

Therefore the bolts are in tension

Compression side bending

Moment in plate;
$\mathrm{m}_{\mathrm{c}}=0.6 \times \mathrm{f}_{\mathrm{cu}} \times \mathrm{x} \times\left(\mathrm{L}_{1}-0.8 \times \mathrm{S}_{\mathrm{wf}}-\mathrm{x} / 2\right)=; \mathbf{1 9 6 8} \mathrm{Nmm} / \mathrm{mm}$;
Plate thickness required;
$\mathrm{t}_{\mathrm{pc}}=\sqrt{ }\left(4 \times \mathrm{m} / \mathrm{p}_{\mathrm{yp}}\right)=5.3 \mathrm{~mm}$
$\mathrm{m}=\mathrm{L}_{1}-\mathrm{e}_{1}-0.8 \times \mathrm{S}_{\mathrm{wf}}=20.2 \mathrm{~mm}$
$\mathrm{m}_{\mathrm{t}}=\mathrm{T}_{\mathrm{f}} \times \mathrm{m}=30417 \mathrm{Nmm}$
$L_{f}=L_{1}-\mathrm{e}_{1}=25.0 \mathrm{~mm}$
$B_{\text {pt }}=\min \left(B_{p}, S_{\text {bolt }} \times\left(N_{\text {bott }} / 2-1\right)+2 \times L_{f}\right)=195.0 \mathrm{~mm}$
$t_{p t}=\sqrt{ }\left(4 \times \mathrm{m}_{\mathrm{t}} /\left(\mathrm{p}_{\mathrm{yp}} \times \mathrm{B}_{\mathrm{pt}}\right)\right)=1.5 \mathrm{~mm}$
$t_{\text {p_req }}=\max \left(\mathrm{t}_{\mathrm{pc}}, \mathrm{t}_{\mathrm{pt}}\right)=; 5.3 \mathrm{~mm}$;
$t_{p}=\mathbf{6 m}$
PASS - Plate thickness provided is adequate (0.892)

Flange weld

Tension capacity of flange;
$P_{\mathrm{tf}}=\mathrm{B} \times \mathrm{T} \times \mathrm{p}_{\mathrm{yc}}=; \mathbf{1 3 7 . 5} ; \mathrm{kN}$
Force in tension flange;
$F_{t f}=M /(D-T)-F_{c} \times(B \times T) / A=; 8.5 ; k N$

PSC Paul Snape Consulting The Granary, Woodfold Farm Crombleholme Fold, Goosnargh Preston PR3 2ES pa.snape@outlook.com	Project Picket Post House, Claughton on Brock, PR3 OPL				Job Ref.PSC-628	
	Section External Balcony Design				15	
	Calc. by PAS	$\begin{array}{\|l\|} \hline \text { Date } \\ 28 / 03 / 2022 \end{array}$	Chk'd by PAS	Date 28/03/22	App'd by PAS	$\begin{array}{\|l\|} \hline \text { Date } \\ 28 / 03 / 22 \end{array}$

Flange weld design force;
Weld force per mm;
Transverse capacity of 6 mm fillet weld;

Longitudinal capacity of web weld

Weld force per mm;
Longitudinal capacity of 8 mm fillet weld;

Holding down bolts

Force per bolt;
Tensile area per bolt;
Tensile strength;
Tension capacity (cl. 6.6);
$\mathrm{F}_{\mathrm{f}}=\min \left(\mathrm{P}_{\mathrm{tt}}, \max \left(\mathrm{F}_{\mathrm{tf}}, 0 \mathrm{kN}\right)\right)=8.5 \mathrm{kN}$
$\mathrm{f}_{\mathrm{wf}}=\mathrm{F}_{\mathrm{f}} / \mathrm{B}=; \mathbf{0 . 0 8 5} ; \mathrm{kN} / \mathrm{mm}$
$p_{\mathrm{wf}}=1.155 \mathrm{kN} / \mathrm{mm}$; (Cl. 6.8.7.3)
PASS - Flange weld capacity is adequate (0.074)
$f_{\text {wwl }}=F_{v} /(2 \times(D-2 \times t))=; 0.006 ; k N / m m$
$p_{\text {wwl }}=1.232 \mathrm{kN} / \mathrm{mm}$; (CI. 6.8.7.3)
PASS - Longitudinal capacity of web weld is adequate (0.005)
$\mathrm{F}_{\text {bolt }}=\left(2 \times \mathrm{T}_{\mathrm{f}}\right) / \mathrm{N}_{\text {bolt }}=0.8 \mathrm{kN}$
$A_{t_{-}}=84.3 \mathrm{~mm}^{2}$
$p_{\mathrm{t}} \mathrm{b}=240 \mathrm{~N} / \mathrm{mm}^{2}$
$\mathrm{P}_{\mathrm{t}_{-}}=0.8 \times \mathrm{p}_{\mathrm{t}_{-}} \times \mathrm{A}_{\mathrm{t}_{-} \mathrm{b}}=; \mathbf{1 6 . 2} ; \mathrm{kN}$;
PASS - Bolt capacity is adequate (0.047)

Anchor plates

Force per anchor plate;
Bolt hole diameter in anchor plate;
Anchor plate bearing area;
Bearing capacity;
$\mathrm{F}_{\text {ap }}=\mathrm{F}_{\text {bolt }}=0.8 \mathrm{kN}$
$\mathrm{d}_{\mathrm{h}}=13 \mathrm{~mm}$
$\mathrm{A}_{\mathrm{ap}}=\mathrm{bap}^{2}-\pi \times \mathrm{dh}^{2} / 4=\mathbf{3 4 6 7} \mathrm{mm}^{2}$
$\mathrm{P}_{\mathrm{ap}}=0.6 \times \mathrm{f}_{\mathrm{cu}} \times \mathrm{A}_{\mathrm{ap}}=52.0 \mathrm{kN}$

Bearing pressure on anchor plate;
Width of bolt head (across flats);
Maximum cantilever length;
Bending moment in plate;
Bending capacity;

PASS - Anchor plate bearing capacity is adequate (0.014)
$f_{a p}=F_{\text {ap }} / A_{a p}=0.2 \mathrm{~N} / \mathrm{mm}^{2}$
$d_{b h}=19.0 \mathrm{~mm}$
$l_{\text {ap }}=b_{\text {ap }} / 2 \times \sqrt{ }(2)-d_{\text {bh }} / 2=32.9 \mathrm{~mm}$
$\mathrm{m}_{\mathrm{ap}}=\mathrm{f}_{\mathrm{ap}} \times \mathrm{lap}^{2} / 2=0.1 \mathrm{Nm} / \mathrm{mm}$
$m_{\text {cap }}=p_{\text {yap }} \times$ tap $^{2} / 4=1.7 \mathrm{Nm} / \mathrm{mm}$
PASS - Anchor plate bending capacity is adequate (0.068)

Holding down bolt anchorage

Note - the following calculation to check the holding down bolt anchorage into the foundation assumes that the edges of the foundation are sufficiently far from the anchor plates to not affect the punching shear perimeter.

Tension force to be resisted;
Nominal cover to top reinforcement;
Effective depth of HD bolts;
Shear strength of concrete;
Effective shear perimeter;

Pull-out capacity of tension bolts;

Shear transfer to concrete

Assumed coefficient of friction;
Available shear resistance;

$$
\begin{aligned}
& \mathrm{F}_{\mathrm{t}}=\mathrm{T}_{\mathrm{f}}=1.5 \mathrm{kN} \\
& \mathrm{C}_{\text {nom }}=30 \mathrm{~mm} \\
& \mathrm{~L}_{\mathrm{HD}}=\mathrm{E}-\mathrm{C}_{\text {nom }}=70 \mathrm{~mm} \\
& \mathrm{v}_{\mathrm{C}}=0.34 \mathrm{~N} / \mathrm{mm}^{2} \\
& \mathrm{P}_{\mathrm{HD}}=2 \times\left[\left(\mathrm{b}_{\mathrm{ap}}+2 \times 1.5 \times \mathrm{L}_{\mathrm{HD}}\right)+\left(\mathrm{S}_{\text {bolt }} \times\left(\mathrm{N}_{\text {bolt }} / 2-1\right)+\mathrm{b}_{\text {ap }}+2 \times 1.5 \times \mathrm{L}_{\mathrm{HD}}\right)\right] \\
& \mathrm{P}_{\mathrm{HD}}=1370 \mathrm{~mm} \\
& \mathrm{P}_{\mathrm{t}}=\mathrm{v}_{\mathrm{c}} \times \mathrm{P}_{\mathrm{HD}} \times \mathrm{L}_{\mathrm{HD}}=32.6 \mathrm{kN}
\end{aligned}
$$

PASS - Holding down bolt anchorage is adequate (0.046)
$\mu=0.30$
$\mathrm{P}_{\mathrm{v}}=\mathrm{C}_{\mathrm{f}} \times \mu=; \mathbf{3} ; \mathrm{kN}$
PASS - Frictional shear capacity is adequate (0.370)

