

Surface Water Drainage Statement

Residential Development Land south of Gardenhouse Lane Rickinghall Suffolk IP22 1EA

Report Ref: BLI.2020.62 February 2022 Rev 01

Prepared for

NAP Anglia Ltd

Limitations

This Report has been prepared by BLI Consulting Engineers Ltd for the sole use of NAP Anglia Ltd ("Client") in accordance with the agreement under which our services were performed. No other warranty, expressed or implied, is made as to the professional advice included in this Report or any other services provided by BLI Consulting Engineers Ltd. This Report is confidential and may not be disclosed by the Client nor relied upon by any other party without the prior and express written agreement of BLI Consulting Engineers Ltd.

The conclusions and recommendations contained in this Report are based upon information provided by others and upon the assumption that all relevant information has been provided by those parties from whom it has been requested and that such information is accurate. Information obtained by BLI Consulting Engineers Ltd has not been independently verified by BLI Consulting Engineers Ltd, unless otherwise stated in the Report.

The methodology adopted, and the sources of information used by BLI Consulting Engineers Ltd in providing its services are outlined in this Report. The work described in this Report was undertaken during 2022 and is based on the conditions encountered and the information available during the said period. The scope of this Report and the services are accordingly factually limited by these circumstances.

Where assessments of works or costs identified in this Report are made, such assessments are based upon the information available at the time and where appropriate are subject to further investigations or information which may become available.

BLI Consulting Engineers Ltd disclaim any undertaking or obligation to advise any person of any change in any matter affecting the Report, which may come or be brought to BLI Consulting Engineers Ltd's attention after the date of the Report.

Certain statements made in the Report that are not historical facts may constitute estimates, projections or other forward-looking statements and even though they are based on reasonable assumptions as of the date of the Report, such forward-looking statements by their nature involve risks and uncertainties that could cause actual results to differ materially from the results predicted. BLI Consulting Engineers Ltd specifically does not guarantee or warrant any estimate or projections contained in this Report.

Copyright

© This Report is the copyright of BLI Consulting Engineers Ltd.

Any unauthorised reproduction, adaption, or usage of this report and/or appended documents by any person is strictly prohibited without prior written consent.

Table of Contents

1	Introduction	1
2	Development Details	3
3	Surface Water Drainage Strategy	5
4	Construction Phase	11
5	Drainage Ownership & Maintenance Strategy	12
6	Discussion and Conclusion	15

Appendices

Appendix A Outline Planning Permission Appendix B Existing Site Layout (Topographical Survey) Appendix C Existing Impermeable Area Plan Appendix D Proposed Development Layout Appendix E Proposed Impermeable Area Plan Appendix F Surface Water Calculations – Existing Greenfield Discharge Rates & Volumes Appendix G BRE 365 Percolation Testing (Planning Application) Appendix H BRE 365 Percolation Testing (Additional Investigation) Appendix I Proposed Surface Drainage Layout/Strategy Appendix J Surface Water Design Calculations

1 Introduction

- 1.1 BLI Consulting Engineers Ltd have been commissioned by NAP Anglia Ltd to prepare a Surface Water Drainage Statement in accordance with the:
 - National Planning Policy Framework (NPPF).
 - Flood Risk and Coastal Change Planning Practice Guidance (PPG).
 - Non-Statutory Technical Standards.
 - Suffolk County Council (SCC) Flood Risk Management Strategy.
- 1.2 The purposed of this statement is to allow for no reserve matters conditions to be applied to a possible grant of this planning permission as imposed as part of the Outline Planning Permission (Ref: 2798/16) granted by Mid Suffolk District Council.

<u>Planning Condition 12</u> - ACTION REQUIRED CONCURRENTLY WITH THE SUBMISSION OF RESERVED MATTERS - SURFACE WATER DRAINAGE DETAILS

Concurrent with the submission of the first reserved matters application(s) a surface water drainage scheme shall be submitted to, and approved in writing by, the local planning authority. The scheme shall be in accordance with the approved FRA and include:

a. Dimensioned plans and drawings of the surface water drainage scheme;

b. Further infiltration testing on the site in accordance with BRE 365 and the use of infiltration as the means of drainage if the infiltration rates and groundwater levels show it to be possible;

c. If the use of infiltration is not possible then modelling shall be submitted to demonstrate that the surface water runoff will be restricted to Qbar or 2l/s/ha for all events up to the critical 1 in 100 year rainfall events including climate change as specified in the FRA;

d. Modelling of the surface water drainage scheme to show that the attenuation/infiltration features will contain the 1 in 100 year rainfall event including climate change;

e. Modelling of the surface water conveyance network in the 1 in 30 year rainfall event to show no above ground flooding, and modelling of the volumes of any above ground flooding from the pipe network in a 1 in 100 year climate change rainfall event, along with topographic plans showing where the water will flow and be stored to ensure no flooding of buildings or offsite flows;

f. Topographical plans depicting all exceedance flowpaths and demonstration that the flows would not flood buildings or flow offsite, and if they are to be directed to the surface water drainage system then the potential additional rates and volumes of surface water must be included within the modelling of the surface water system;

The scheme shall be fully implemented as approved.

Reason - To prevent flooding by ensuring the satisfactory storage and disposal of surface water from the site for the lifetime of the development.

<u>Planning Condition 13</u> - ACTION REQUIRED CONCURRENTLY WITH THE SUBMISSION OF RESERVED MATTERS - SURFACE WATER DRAINAGE DETAILS

Concurrent with submission of the first reserved matters application(s) details of the implementation, maintenance and management of the surface water drainage scheme shall be submitted to and approved in writing by the local planning authority. The strategy shall be implemented and thereafter managed and maintained in accordance with the approved details.

Reason - To ensure clear arrangements are in place for ongoing operation and maintenance of the disposal of surface water drainage.

<u>Planning Condition 15</u> - ACTION REQUIRED PRIOR TO COMMENCEMENT OF DEVELOPMENT -CONSTRUCTION SURFACE WATER MANAGEMENT PLAN

No development shall commence until details of a construction surface water management plan detailing how surface water and storm water will be managed on the site during construction is submitted to and agreed in writing by the local planning authority. The construction surface water management plan shall be implemented and thereafter managed and maintained in accordance with the approved plan.

Reason - To ensure the development does not cause increased pollution of the watercourse in line with the River Basin Management Plan.

2 Development Details

Site Location

- 2.1 The application site is located:
 - Site Address: Land south of Gardenhouse Lane, Rickinghall, Suffolk
 - Post Code: IP22 1EA
 - Central Grid Reference: TM 04545 75166
- 2.2 Refer to Figure 2.1 below for site Location Plan.

Figure 2.1 – Site Location Plan

Existing Site Layout

- 2.3 A topographical survey of the existing site layout has been undertaken by Plandescil Ltd and a copy of the survey has been included within Appendix B. The existing site layout intended for development currently comprises of a building yard with several outbuildings and areas of concrete hardstanding.
- 2.4 Vehicular and pedestrian access is currently achieved via a private road which forms a junction onto Gardenhouse Lane (adopted highway) to the north of the site, and also provides access to the existing residential dwelling known as Willowmere.
- 2.5 The site boundary as identified within Figure 2.1 above encloses an area of approximately 1.005 ha and the existing site layout has an impermeable area of approximately 0.182 ha as shown on the Impermeable Area Plan included within Appendix C
- 2.6 The above impermeable area is not served by a positive drainage network and the surface water runoff discharges onto the adjacent grassland which provides an enhancement to the sites natural greenfield runoff rates (urbanization).

Development Proposal

- 2.7 The proposed development as shown within Appendix D comprises of:
 - The removal/demolition of the existing buildings and hardstanding areas.
 - The construction of 10No. residential dwellings with associated garages, driveways, and garden areas.
 - The construction of a private road leading off Gardenhouse Lane (adopted highway) to the northeast of the site via a newly constructed junction to the satisfaction of Suffolk County Council (Highways).
- 2.8 The development layout has an impermeable area of approximately 0.612 ha comprising of roof (0.218 ha) and hardstanding (0.394 ha) areas as detailed above and shown on the Impermeable Area Plan included within Appendix E.
- 2.9 Please note that the impermeable area includes an additional 10% to make allowance for the effects of Urban Creep over the lifetime of the development.

3 Surface Water Drainage Strategy

Existing Surface Water Runoff Rate

- 3.1 The site boundary encloses an area of approximately 1.005 ha and the majority of this area (0.823 ha) comprises of permeable grassland. The remainder of the site comprises of built development with an impermeable area of approximately 0.182 ha. The impermeable area is not served by a positive drainage system and the surface water runoff discharges onto the adjacent grassland providing an enhancement to the sites natural greenfield runoff rate (urbanization).
- 3.2 The existing greenfield runoff rates for the site are shown in Table 3.1 below and calculations included within Appendix F. The calculations have been undertaken using the IH 124 method and take into consideration the existing site conditions and urbanization.

Return Period	Existing Discharge Rate
1-year	3.4 l/s
30-year	8.8 l/s
100-year	12.0 l/s
QBar	4.0 l/s

Table 3.1 - Existing Greenfield Run-off Rates

3.3 The existing greenfield run-off volumes for the site are shown in Table 3.2 below and calculations included within Appendix F. The calculations have been undertaken using the FSSR method during a 360-minute storm duration and take into consideration the existing site conditions and urbanization.

Return Period	Existing Discharge Volume
1-year	65.5 m ³
30-year	153.4 m ³
100-year	210.9 m ³

Table 3.2 - Existing Greenfield Run-off Volumes

3.4 The proposed development will increase the impermeable area of the site when compared to the existing site layout. To ensure the proposed development does not exceed the existing discharge rates and volumes as stated within Table 3.1 and Table 3.2 above, adequate mitigation measures will be required as part of the proposed surface water drainage strategy.

Climate Change

- 3.5 In accordance with the Environment Agency's publication on climate change allowance, Table 1 provides advice in relation to changes to rainfall intensity as a result of future climate change.
- 3.6 For residential development, the potential changes anticipated up to the year 2115 range between:
 - Upper Estimate = 40%
 - Central Estimate = 20%
- 3.7 As a precautionary approach, a 40% (Upper Estimate) increase in peak rainfall intensity has been incorporated into the design of the developments surface water drainage strategy to allow for the effects of climate change over the lifetime of the development.

Surface Water Drainage Strategy

- 3.8 In accordance with the surface water drainage hierarchy, infiltration drainage is the preferred method of surface water disposal.
- 3.9 Infiltration drainage was investigated as part of the original surface water drainage strategy undertaken by Evans Rivers and Coastal Ltd (Ref: 1806/RE/04-17/01). The surface water drainage strategy utilised soakaways and permeable paving construction and was approved by Suffolk County Council LLFA as part of the planning consultation.
- 3.10 Percolation Testing in accordance with BRE 365 was undertaken as part of the original surface water drainage statement and a copy of the test results have been included within Appendix G and a summary of the results provided below.
 - TP1= 1.410 x 10⁻⁴ m/s @ 2.2m below ground level
 - TP2 = 1.920 x 10⁻⁴ m/s @ 2.2m below ground level
- 3.11 To obtain a more accurate understanding of the site geology and its potential for infiltration drainage techniques, additional Percolation Testing in accordance with BRE 365 has been undertaken across site. A copy of the test results have been included within Appendix H and a summary of the results provided below:
 - TH01 = 1.516 x 10⁻⁵ m/s @ 1.50m below ground level

- TH02 = 2.071 x 10⁻⁵ m/s @ 1.50m below ground level
- TH03 = 1.225 x 10⁻⁴ m/s @ 1.50m below ground level
- TH04 = 6.394 x 10⁻⁵ m/s @ 1.50m below ground level
- TH05 = 2.564 x 10⁻⁴ m/s @ 0.65m below ground level
- TH06 = 1.832 x 10⁻⁴ m/s @ 0.65m below ground level
- 3.12 The additional percolation tests included within Appendix H further support the use of infiltration drainage techniques in accordance with the original surface water drainage strategy undertaken by Evans Rivers and Coastal Ltd (Ref: 1806/RE/04-17/01).
- 3.13 In accordance with the approved drainage strategy, a surface water drainage layout and associated design calculations have been included within Appendix I and J, respectively.
- 3.14 The above design has been based on the following design criteria:
 - The infiltration drainage system has been designed to contain the critical 100-year storm event with a 40% increase in rainfall intensity to allow for the effects of future climate change.
 - As a precautionary approach, the lowest soil infiltration rate of 1.516 x 10⁻⁵ m/s has been used to undertake the design of the geo-cellular soakaway intended to serve the residential roof areas.
 - As a precautionary approach, the lowest soil infiltration rate of 1.832 x 10⁻⁵ m/s has been used to undertake the design of the permeable paving construction intended to serve the private access road, driveways, and patio areas.
 - A safety factor of 3.0 has been applied to all surface water design calculations
 - The infiltration drainage system has been designed to have a half drain time of less than 1440 minute (1 day) during the critical 100-year (+40%) plus climate change storm event.
 - The long-term maintenance and ownership of the infiltration drainage system has been established (refer to Section 5 of this report).
- 3.15 By utilising infiltration drainage techniques, the above drainage strategy will remove the urbanization of the existing site layout and reduce the surface water discharge rates and volumes back to the natural greenfield rates as shown in Tables 3.3 3.4 below and calculations included within Appendix K.

Return Period	Existing Discharge Rate
1-year	2.5 l/s
30-year	6.9 l/s
100-year	10.2 l/s
QBar	2.9 l/s

Table 3.3 – Proposed Greenfield Run-off Rates

Return Period	Existing Discharge Volume
1-year	60.5 m ³
30-year	142.7 m ³
100-year	197.8 m ³

Table 3.4 – Proposed Greenfield Run-off Volumes

3.16 Therefore, the proposed development will reduce flood risk to the site and existing downstream development when compared to the existing site layout.

Pollution Control & Water Quality

3.17 As shown in Figure 3.1 below, the entire site is located within Source Protection Zone (SPZ) 3 which is also known as the Total Catchment. SPZ 3 is defined as the area around a source within which all groundwater recharge is presumed to be discharged at the source.

Figure 3.3 - Source Protection Zone

3.18 A water quality assessment in accordance with Section 26 of the CIRIA SuDS Manual has been undertaken for the different land uses across the proposed development as shown within Table 3.5 and Table 3.6 below.

Proposed Land Use & SuDS Mitigation	Total Suspended Solids	Metals	Hydro-carbons
Residential Roof Areas	- 0.20	- 0.20	- 0.05
Soakaway (with 300mm depth of suitable bedding layer)	+ 0.40	+ 0.30	+ 0.30
Total SuDS Mitigation	+ 0.20	+ 0.10	+ 0.25
Summary	ok	ok	ok

Table 3.5 – SuDS Mitigation Assessment of Residential Roof	Areas
--	-------

Proposed Land Use & SuDS Mitigation	Total Suspended Solids	Metals	Hydro-carbons
Residential Driveways & Car Parking Areas	- 0.50	- 0.40	- 0.40
Permeable Paving Construction	+ 0.70	+ 0.60	+ 0.70
Total SuDS Mitigation	+ 0.20	+ 0.20	+ 0.30
Summary	ok	ok	ok

Table 3.6 – SuDS Mitigation Assessment of Residential Driveways & Car Parking Areas

3.19 The above assessment demonstrates that the proposed surface water drainage strategy has incorporated suitable SuDS Mitigation for all proposed land uses.

4 **Construction Phase**

- 4.1 To ensure the risk of surface water flooding is not temporarily increased during the construction phase, the following procedures / order of construction will be put in place.
 - The permeable paving construction for the private road and driveways will include the construction of an impermeable base layer over the self-draining granular sub-base. The impermeable base layer will provide temporary access to the site for construction traffic and will then be cored as a later date prior to the laying of the permeable surface course. As a precautionary approach, the design of the permeable paving construction includes the installation of exceedance gully's which will direct high intensity rainfall events directly into the self-draining granular sub-base. The exceedance gully's will also direct runoff during the construction phase into the self-draining granular sub-base prior to the coring of the impermeable base layer. During construction, the exceedance gully's will include the temporary use of geo-textile filter meshes to prevent the entry of construction debris into the gully's and filtration units.
 - Prior to commencing the construction of each residential dwelling, the geo-cellular soakaway serving that dwelling will be fully installed. As the dwelling is constructed, it will be connected to the soakaway and will include the temporary use of geo-textile filter meshes to prevent construction debris entering the soakaway.
 - The permeable patio construction will not be constructed until the later stages of the development and will be self-draining from the initial construction phase with no additional mitigation required.
- 4.2 Following completion of the site development, a full inspection of the surface water drainage network will be undertaken to ensure all sediment and construction debris is removed.

5 Drainage Ownership & Maintenance Strategy

Ownership & Maintenance Responsibility

- 5.1 The private surface water drainage system will be under the ownership of the future occupants of the residential dwellings, and they will be solely responsible for the drainage systems future maintenance and repair.
- 5.2 The maintenance works associated with the drainage system will be undertaken as below:
 - Where the surface water drainage system serves a single property, the future occupant of that property will be solely responsible for the maintenance of that part of the drainage system.
 - Where the surface water drainage system serves two or more properties then the occupants of those properties will have equal responsibility for the maintenance and the use of a private management company will be used (this mainly applies to the shared access road).
- 5.3 In the event of the property being sold in the future, the maintenance responsibility together with all maintenance documentation will be transferred to any future owners.

Maintenance Regime

5.4 The maintenance regime for the surface water drainage system has been undertaken in accordance with CIRIA 753 The SuDS Manual and is set out within Table 5.1 to Table 5.3 below.

Surface Water Drainage Network			
Required Maintenance	Typical Frequency	Works Undertaken	
Inspection & Monitoring of the surface water drainage network including inspection chamber, pipework, and catchpit gully's.	Monthly for 12 months following installation to understand rate of sediment build-up. Then annually as a minimum or more frequently if the rate of sediment build-up dictates.	Occupants and/or Management Company	
Inspection & clearance of the gutters and filter meshes.	Annually as a minimum or more frequently if the rate of sediment build-up dictates.	Occupants	

Inspection and removal of litter and other debris (leaves) from the drainage catchment, including roads, car parks and soft landscaping areas.	As required (approximately twice a year)	Occupants and/or Management Company
Maintain adjacent vegetation such as pruning of bushes, removal of nuisance plants and grass cutting.	As required (approximately twice a year)	Occupants and/or Management Company
Arrange repair works to any damaged areas of the surface water drainage network.	Depending on observations made during the inspection and monitoring of the drainage network.	Specialist Contractor overseen by Occupants and/or Management Company.

Table 5.1 – Surface Water Drainage System Maintenance Plan

Permeable Paving Construction			
Require Maintenance	Typical Frequency	Works Undertaken	
Inspection & Monitoring	Monthly for 3 months following installation.	Contractor Initially	
	Then two further inspections at 3- month intervals and/or within 48hr after a large storm event. During programmed maintenance works as detailed below.	Occupants and/or Management Company	
Brushing and vacuuming (standard cosmetic sweep over whole surface) of permeable paving construction and adjacent sub-catchment.	As required (approximately once a year) based on site-specific observations of clogging.	Occupants and/or Management Company	
Removal of weeds and management of their return using glyphospate applied directly into the weeds by an applicator rather than spraying.	As required (approximately once a year) based on site-specific observations of weed growth.	Occupants and/or Management Company	
Maintain adjacent vegetation such as pruning of bushes and cutting of grass.	As required (approximately twice a year)	Occupants and/or Management Company	

Undertake remedial works to any depressions and rutting considered detrimental to the structural performance of the permeable paving construction or a hazard to users.	As required	Specialist Contractor overseen by Occupants and/or Management Company
Rehabilitation of surface and upper substructure by remedial sweeping	Every 10 to 15 years or as required (if infiltration performance is reduced due to significant clogging)	Specialist Contractor overseen by Occupants and/or Management Company

Table 5.2 – Permeable Paving Maintenance Plan

Geo-Cellular Soakaway			
Require Maintenance	Typical Frequency	Works Undertaken	
Inspect/check all inlets, outlets, and vents associated with the geo- cellular soakaway to ensure they are in good condition and operating as designed. If required, take remedial action such as sediment removal and repair.	Annually or more frequent if required.	Occupants and/or Management Company	
Survey the inside of the geo-cellular soakaway for sediment build-up and remove if necessary.	Every 5 year or more frequent if required.	Specialist Contractor overseen by Occupants and/or Management Company	
Reconstruct the soakaway if performance deteriorates or the geo-textile layer becomes clogged.	As required	Specialist Contractor overseen by Occupants and/or Management Company	

Table 5.3 – Geo-cellular Soakaway Maintenance Plan

- 5.5 The maintenance regime recommended above is put in place to minimise the risk of blockages occurring and to prevent water surcharging from the inspection chambers and manholes.
- 5.6 The above maintenance plan should be considered as a live document and should be updated over the lifetime of the development and adapted where necessary to ensure a system failure does not occur and the risk of flooding is minimised.

6 Discussion and Conclusion

- 6.1 This Surface Water Drainage Statement has been undertaken in accordance with the:
 - National Planning Policy Framework (NPPF).
 - Flood Risk and Coastal Change Planning Practice Guidance (PPG).
 - Non-Statutory Technical Standards.
 - Suffolk County Council (SCC) Flood Risk Management Strategy.
- 6.2 The report demonstrates that:
 - In accordance with the surface water drainage hierarchy, the proposed development will discharge it surface water runoff via infiltration drainage techniques.
 - The design of surface water drainage system has been undertaken to ensure the risk of flooding and pollution will not be increased and where possible the risk has been reduced.
 - The future ownership of the surface water drainage system has been established and an appropriate site-specific management strategy has been undertaken.

Therefore, the surface water drainage design put forward as part of this statement is considered to satisfy the requirements of Planning Conditions 12, 13 and 15 imposed as part of the Outline Planning Consent (Ref: 2798/16) granted by Mid Suffolk District Council.

Appendices

Existing Site Layout (Topographical Survey)

<u>Sirvey N</u>otes

- Control was established using Ordnance Survey's Active GPS Network OSGB32(36). Translated from ETRS89 using not be shown on this drawing, please contact Plandescil Ltd should you require assistance.
- channel face unless stated otherwise.
- been positioned but should be taken as approximate and used as a guide to their presence. Clarification of all underground routes should be confirmed by the individual service provider and prior to project construction.
- identified in this survey. Fences have been surveyed at post positions and changes of direction. Hedges located at face or

stated. Trunk diameter shown to scale, average canopy

only, or perimeter surveyed where level information is

- This survey has been merged with Ordnance Survey Master Map Data. Boundaries and physical objects have only been AL100005917 All Ordnance Survey mapping is subject to their own accuracy and tolerances.
- was present and accressible at the time of survey. Areas of the site not surveyed are represented by Ordnance Survey

ting Northing		Description
2 725 275245 729	20.27	Suprov Noil
6 4 4 A 275201 100	37.54	Survey Nail
5.444 275291.190 5.439 275241.007	37.34	Survey Nail
5.156 275241.907	39.19	Survey Nall
	ting Northing 3.735 275245.728 6.444 275291.190 5.138 275241.907	ting Northing Level m. AD 3.735 275245.728 39.27 6.444 275291.190 37.54 5.138 275241.907 39.19

38.00

37.77

- All levels and coordinates relate to a GPS derived datum. Control was established using Ordnance Survey's Active GPS not be shown on this drawing, please contact Plandescil Ltd
- channel face unless stated otherwise.
- been positioned but should be taken as approximate and used as a guide to their presence. Clarification of all underground routes should be confirmed by the individual service provider
- positions and changes of direction. Hedges located at face or line of main stem, see drawing note to specify.
- Not all trees have been surveyed, trees shown as below have been fixed by trunk position. Level relates to ground at base of trunk.

Example of surveyed tree, species not recorded unless stated. Trunk diameter shown to scale, average canopy

approximate ground coverage and have no trunk positioning.

only, or perimeter surveyed where level information is

The information presented in this survey is a recording of what was present and accessible at the time of survey. Areas of the site not surveyed are represented by Ordnance Survey

Station Ref:	Easting	Northing	Level m. AD	Description
PDC1	604593.735	275245.728	39.27	Survey Nail
PDC2	604596.444	275291.190	37.54	Survey Nail
PDC3	604615.138	275241.907	39.19	Survey Nail

Existing Impermeable Area Plan

Proposed Development Layout

general noteS - Planting

All plants to conform to BS 3936 and be free from pests, disease, discolouration and deformity. All plants to be supplied by nurseries registered with the HTA Nursery Certification Scheme. All tree & shrub planting, and turfing, to be carried out in accordance with BS 3936 4428.

Trees and shrubs to be planted in the first planting season (October to March) following completion of the development, avoiding frost or water-logged conditions. Existing vegetation to be cleared from planting areas before digging. Planting areas to be topsoiled (300mm min.) over cleared areas. Planting areas to be watered thoroughly after planting and 50mm depth of mulch applied.

Trees and shrub plants to be planted in pits equal in depth and 0% wider than the root system. G lges to be broken up using a fork as necessary. Backfill with friable soil to the height of the root collar in layers, firming gently. Top-soil, if required,

FLINT AND BRICK GARDEN WALLS

to be screened. Hedge plants to be planted using 'T' or 'L' notch, in a double row, staggered, 450mm between rows and at 450mm centres. Exact locations of shrubs and trees are subject to below ground services. Contractor/engineers to ensure species and locations are acceptable in relation to underground services and compliance with NHBC 4.2.

eXiSting treeS & HedgeS

Existing hedges and trees are to be adequately protected during construction - refer to Arboricultural Impact Assessment & Method Statement by Oakfield Arboricultural Services ref. OAS 21-191-AR01 for details of existing trees, tree constraints, and proposed canopy and root protection plan.

graSS to gardenS

Grass to front and rear amenity areas to be "Family Lawn" characteristics with rye grasses and fescues. Apply topsoil to at least 150mm in depth, remove weeds and stones etc. and rake to a rough level. Generally compact, fill low spots. Apply

TIMBER POST AND RAIL FENCING

a general fertilizer to the manufacturer's instructions. Mix thoroughly into top 50mm. Rake over to fine tilth. Lay turf 'brick' pattern tamp or roll lightly on completion. Immediately irrigate and keep turf moist for first two-three weeks. Mow regularly but not for first 4 weeks.

5 year ManageMent Plan

Following the implementation of the above recommendations, the following management is proposed:

YEAR 1 - Shrubs and hedges only to be watered with 10 litres/ m² if especially dry at the time of planting and/or following extended periods without rainfall (4 weeks) to avoid waterlogging. Shrubs to have 500mm mulch circles around each plant. Mulch to be composted organic matter to ensure a weed-free environment and to aid establishment. Mulch to be applied to a depth of 150mm but must be kept clear of stem bases. Mulch levels to be maintained at this depth for 2 years after planting.

PERMEABLE PAVING: GOLDEN FOSSIL SANDSTONE

YEAR 2, YEAR 3, YEAR 4 - Replace any dead plants with the same species and specification, where space allows following development of the surrounding shrubs. Maintain mulch levels as above.

YEAR 5

Remove protective guards from shrub planting. It is anticipated that the planting will be suitably established and that future management will be restricted to routine maintenance. Replace any dead plants with the same species and specification if space allows following development of surrounding shrubs.

YEAR 5 to 10

Consideration for the bird nesting season dictates that any trimming work will need to be restricted to the months of September to February. Continued observations regarding the ment and development of the landscape play establi reviewing management options accordingly will be necessary to benefit the planting scheme.

VERTICAL TIMBER CLOSE BOARDED FENCING

G6 (hedge) to be reduced to site side of existing boundary with Willomere: see Arboriculturalist's report for details

cycle store with living green roof

Parking and Bicycle Storage

Plots 1-8 have garages, bicycles will also be stored in garages. Plots 9 & 10 have dedicated cycle storage – see schedule drawing P303_GA_0.09 for outbuilding specifications and locations marked on plan above.

refuSe

All plots have timber bin stores with living green roofs - see schedule drawing P303_GA_0.09 or specifications and locations marked on plan above.

PERENNIAL PLANTING

KEY	
	Boundary line
XX	Existing post & rail fencing
•	Proposed close boarded timber fencing with min. 150x150mm hedgehog hole to each plot
**	Proposed timber post & rail fencing
	Permeable tarmac access road & private driveways / turning areas
	Permeable paving to paths & patios: 900X600mm golden fossil sandstone paving laid in stack bond
	Planted beds & borders - mixed low maintenance, drought tolerant perennials and grasses
	Gardens (turfed or grass seeded) - 'family lawn' mix (see planting notes in general notes below)
	Planted buffer strips to boundaries - mixed shrubs e.g. viburnum, sarcocca, cornus. etc.
, Martina	Bin store with living green roof (see schedule drawings for details)
	Proposed new planting
	Proposed new native tree - e.g. birch, wild cherry, crabapple, hazel, holly (see planting notes in general notes below)
	Proposed new native hedging - mixed native hedge (hawthorn 30%, blackthorn 25%, holly 25%, viburnum 10%, hazel 10%) to be protected by post & rail fence Existing hedge retained
	Existing tree to be retained (see Arboriculturalist's report & method statement for details)
	Existing hedge to be removed
(\cdot)	Existing tree to be removed (see Arboriculturalist's report for details)

ProPoSed neW flint and Brick garden WallS

DATE ISSUE DESCRIPTION

TAS ARCHITECTS LONDON: 82 Southwark Bridge Road, London, SE SUFFOLK: The Forge, Ipswich, Suffolk, IP 5 T: +44 (0)207 043 0727 W:info@thomasandspi

PROJECT ADDRESS:	GARDEN HOUSE LANE, RICKINGH	ALL	
CLIENT:	NAP ANGLIA LTD		
DRAWING TITLE:	PROPOSED LANDSCAPING PLAN		
PURPOSE:	PLANNING DRAFT		
DRAWING NO:		_	
ISSUE NO:	F303_LA_0.01 -		
SCALE:	1:100 @ A1		

THIS DRAWING IS FOR PLANNING PURPOSES ONLY

Proposed Impermeable Area Plan

Appendix E

Surface Water Calculations – Existing Greenfield Discharge Rates & Volumes

Contents

- Page 1 Greenfield Discharge Rates
- Pages 2 4 Greenfield Discharge Volumes

BLI Consulting			Page 1
Norwich		Residential Development	
Norfolk		Land south of Gardenhouse Lane	No.
		Rickinghall, Suffolk	Mirro
Date 27/02/2022		Designed by RSM	Drainago
File		Checked by RSM	urainaye
Causeway		Source Control 2020.1.3	l
	ICP SU	DS Mean Annual Flood	
		Input	
	Return Period (years) Area (ha) 1.0	1 SAAR (mm) 600 Urban 0.181 05 Soil 0.400 Region Number Region 5	
		Results 1/s	
		QBAR Rural 2.9	
		QBAR Urban 4.0	
		Ql year 3.4	
		Q1 year 3.4	
		Q30 years 8.8	
		Q100 years 12.0	

BLI Consulting		Page 2
Norwich	Residential Development	
Norfolk	Land south of Gardenhouse Lane	Concerned and
	Rickinghall, Suffolk	Mirro
Date 27/02/2022	Designed by RSM	Drainago
File	Checked by RSM	Diamage
Causeway	Source Control 2020.1.3	

Greenfield Runoff Volume

FSR Data

Return Period (years)	1
Storm Duration (mins)	360
Region	England and Wales
M5-60 (mm)	20.000
Ratio R	0.400
Areal Reduction Factor	1.00
Area (ha)	1.005
SAAR (mm)	600
CWI	87.000
Urban	0.181
SPR	37.000

Results

Percentage Runoff (%) 29.81 Greenfield Runoff Volume (m³) 65.535

BLI Consulting		Page 3
Norwich	Residential Development	
Norfolk	Land south of Gardenhouse Lane	Sec. 1
	Rickinghall, Suffolk	Mirro
Date 27/02/2022	Designed by RSM	Desinado
File	Checked by RSM	Diamage
Causeway	Source Control 2020.1.3	

Greenfield Runoff Volume

FSR Data

Return Period (years) Storm Duration (mins)	30 360
Region	England and Wales
M5-60 (mm)	20.000
Ratio R	0.400
Areal Reduction Factor	1.00
Area (ha)	1.005
SAAR (mm)	600
CWI	87.000
Urban	0.181
SPR	37.000

Results

Percentage Runoff (%) 31.66 Greenfield Runoff Volume (m³) 153.408

BLI Consulting		Page 4
Norwich	Residential Development	
Norfolk	Land south of Gardenhouse Lane	No.
	Rickinghall, Suffolk	Mirro
Date 27/02/2022	Designed by RSM	Desinado
File	Checked by RSM	Digitiada
Causeway	Source Control 2020.1.3	

Greenfield Runoff Volume

FSR Data

Return Period (years) Storm Duration (mins)		100 360
Region	England	and Wales
M5-60 (mm)		20.000
Ratio R		0.400
Areal Reduction Factor		1.00
Area (ha)		1.005
SAAR (mm)		600
CWI		87.000
Urban		0.181
SPR		37.000

Results

Percentage Runoff (%) 33.57 Greenfield Runoff Volume (m³) 210.892

Appendix F

BRE 365 Percolation Testing (Planning Application)

APPENDIX A - INFILTRATION TESTING RESULTS

BRE 365 Percolation Testing (Additional Investigation)

Proposed Residential Development Land south of Garden House Lane, Rickinghall, Suffolk

BRE 365 Percolation Tests Job No. BLI.2020.62 Revision 0

Contents

Page 1	Percolation Test Location Plan
Pages 2 - 3	Test Hole (TH) 01 – BRE 365 Percolation Test
Pages 4 – 5	Test Hole (TH) 02 – BRE 365 Percolation Test
Pages 6 – 9	Test Hole (TH) 03 – BRE 365 Percolation Test
Pages 10 – 13	Test Hole (TH) 04 – BRE 365 Percolation Test
Pages 14 – 17	Test Hole (TH) 05 – BRE 365 Percolation Test
Pages 18 – 21	Test Hole (TH) 06 – BRE 365 Percolation Test

$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Job No: BLI 2020 62	Date:	Client:				
Project: RSM RSM RSM Residential Development Sheet No: Revision: Land south of Garden House Lane 2 0 Constrained Rickinghall, Suffolk Percolation Test in Accordance with BRE 365 Test Hole Number: TH01 Corollar Constrained Rickinghall, Suffolk Test Hole Dimensions: 0.30 m wide (W) 1.50 m deep (D) 1.50 m deep (D) 1.50 m deep (D) 1.50 m deep (D) 100 % void Test Hole Fill: None Test 2 Test 3 Time (mins) Water depth (m) 0 0.6000 L 10 0.550 L 10 0.550 L 10 0.550 L 20 0.550 L 20 0.550 L 20 0.450 L 30 0.450 L 52 0.0.500 L 10 0.250 L 10 0.200 L 10	BL1.2020.02	Sep-21					
RSM Residential Development Sheet No: Revision: Land south of Garden House Lane 2 0 Dercolation Test in Accordance with BRE 365 Test Hole Number: TH01 Ground level Test Hole Dimensions: 0.30 m wide (W) 1.50 m long (L) 1.50 m long (L) 1.50 m deep (D) 100 0.550 Time (mins) Water depth (m) 0 0.600 Time (mins) Water depth (m) 0 0.600 Dimensions: Oil Colspan="2">Stop 20 0.500 Time (mins) Water depth (m) 0 0.600 Dimensions: Oil Colspan="2">Stop 100 0.550 Dimensions: Oil Colspan="2">Stop 100 0.550 Dimensions: Oil Colspan="2">Colspan="2">Time (mins) 100 0.530 Dimensions: Oil Colspan="2">Colspan="2"Colspan="2"Colspan="2"Colspan="2"Colspan="2"Colspan="2"Colspan="2"C	Prepared By:	Checked By:	Project:				
Sheet No: Revision: Land south of Garden House Lane 2 0 Rickinghall, Suffolk Percolation Test in Accordance with BRE 365 Tast Hole Number: Tast Hole Dimensions: 0.30 m wide (W) 1.50 m dee(D) Test Hole Dimensions: 0.50 m dee(D) 100 % void Test 1 Test 2 Test 3 Time (mins) Water depth (m) Time (mins) Time (mins) Water depth (m) Time (mins) Time (mins) Time (mins) Time (mins) Time (mins)	RSM	RSM	Residential Devel	opment			
2 0 Rickinghall, Suffolk Percolation Test in Accordance with BRE 365 Test Hole Dimensions: 0.30 n wide (W) 1.50 m long (L) 1.50 m lo	Sheet No:	Revision:	Land south of Gar	den House Lane			
Percolation Test in Accordance with BRE 365 Test Hole Number: Test Hole Dimensions: 0.30 m wide (W) 1.50 m long (L) 1.50 m long (D) 100 % void Test Hole Fill: None Test 1 Test 2 Test 3 Time (mins) Water depth (m) Time (mins) Water depth (m) Time (mins) Water depth (m) Time (mins) Water depth (m) 10 0.550 - <td>2</td> <td>0</td> <td>Rickinghall, Suffo</td> <td>olk</td> <td></td> <td></td> <td></td>	2	0	Rickinghall, Suffo	olk			
Ground level Ground level Test Hole Dimensions: 0.30 m wide (W) 1.50 m long (L) 1.50 m long (L) 1.50 m long (L) 1.50 m long (L) 1.50 m long (L) Test Hole Fill: None Test Hole Fill: None Test 1 Test 2 Test 3 Time (mins) Water depth (m) 0 0.600 0 Mater depth (m) 10 0.550 - - 20 0.500 - - 30 0.450 - - 60 0.400 - - - 70 0.350 - - - 95 0.250 - - - 110 0.200 - - - - 127 0.150 - - - - 127 0.150 - - - - 174 0.000 - - - - 174		Percol	ation Test in Acc	cordance with BR	E 365		
Test Hole Dimensions: 0.30 m wide (W) 1.50 m long (L) 1.50 m long (L) 1.50 m long (D) 100% void Test Hole Fill: None Test 1 Test 2 Test 3 Time (mins) Water depth (m) Time (mins) Water depth (m) 0.0000 Time (mins) Water depth (m) Time (mins) Water depth (m) 0.0500 Time (mins) Water depth (m) Time (mins) Water depth (m) Time (mins) Water depth (m) 10 0.350 </td <td>Test Hole Num TH01</td> <td>ber:</td> <td>Ground level</td> <td></td> <td></td> <td></td> <td></td>	Test Hole Num TH01	ber:	Ground level				
Test Hole Dimensions: 0.30 m wide (W) 1.50 m long (L) 100 % void Test 1 Test 2 Test 3 Time (mins) Water depth (m) Time (mins) Water depth (m) 0 0.600 0.600 0 0 0 0 10 0.550 <							
0.30 m wide (W) 1.50 m long (L) Test Hole Fill: None $\frac{Test 1}{0}$ Time (mins) water depth (m) 0 0.600 0 0.500 20 0.500 30 0.450 60 0.400 70 0.350 82 0.300 95 0.250 110 0.200 127 0.150 138 0.050 174 0.000 174 0.000 174 0.000 174 0.000 174 0.000 174 0.000 174 0.000 174 0.000 <td>Test Hole Dime</td> <td>nsions:</td> <td></td> <td></td> <td><u>ن</u> د</td> <td></td> <td></td>	Test Hole Dime	nsions:			<u>ن</u> د		
1.50 m long (L) 1.50 m deep (D) 100 % void 0 0 Test Hole Fill: None Test 1 Test 2 Test 3 Time (mins) Water depth (m) 0 0.600 1 1 0 0.600 1 1 1 0 0.500 1 1 1 20 0.500 1 1 1 1 30 0.450 1	0.30 m wide	(W)					
1.50 m deep (D) 100 % void Test Hole Fill: None Test 1 Test 2 Test 3 Time (mins) Water depth (m) Time (mins) Water depth (m) Time (mins) Water depth (m) Time (mins) Water depth (m) Time (mins) Water depth (m) Time (mins) Water depth (m) 0.0600 10 0.550	1.50 m long (L)					
100 % void Test Hole Fill: None Test 1 Test 2 Test 3 Time (mins) Water depth (m) Time (mins) Water depth (m) 0 0.600 Time (mins) Water depth (m) 0 0.600 100 0.550 Time (mins) Water depth (m) 0 0.500 30 0.450 0 0.000 0 0.300 0 0.300 82 0.300 Image: colspan="2">Image: colspan="2" 100 Image: colspan="2" Image: colspan="2" Image: colspan="2" Image: colspan="2" Image: colspan="2" Image: colspan="2" Image: colspan= 2"	1.50 m deep	(D)	× (-	D		
Test Hole Fill: None Test 1 Test 2 Test 3 Time (mins) Water depth (m) Time (mins) Water depth (m) 0 0.600 10 0.550 20 0.500 30 0.450 60 0.0450 60 0.450 82 0.300 95 0.250 110 0.200 110 0.200 110 0.200 127 0.150 138 0.050 174 0.000 174 0.000 174 0.000 Image: colspan="2">Image: colspan="2">Image: colspan="2">Image: colspan="2">Image: colspan="2">Image: colspan="2">Image: colspan="2">Image: colspan="2">Image: colspan="2">Test 3 Image: colspan="2">Image: colspan="2">Test 3 Image: colspan="2">Image: colspan="2">Test 3 Image: colspan="2"Test 3	100 % void		$\langle \rangle \rangle$				
Test Hole Fill: None Image: Imag			W		_ ★		
Test 1 Test 2 Test 3 Time (mins) water depth (m) Time (mins) Water depth (m) Time (mins) Water depth (m) 0 0.600 10 0.550 1 1 20 0.500 1 1 1 1 30 0.450 1 1 1 1 60 0.400 1 1 1 1 70 0.350 1 1 1 1 95 0.250 1 1 1 1 1 110 0.200 1	Test Hole Fill:	None	X	L	→		
Time (mins) water depth (m) Time (mins) Water depth (m) Time (mins) Water depth (m) 0 0.600 10 0.550 20 0.500 30 0.450	Te	st 1	Te	est 2		Tes	st 3
0 0.600	Time (mins)	water depth (m)	Time (mins)	Water depth (m)	Time (m	ins)	Water depth (m)
10 0.550 Image: state of the state	0	0.600					
20 0.500 mins = effective 75% full mins = effective 75% full 30 0.450 mins = effective 75% full mins = effective 75% full 30 0.450 mins = effective 75% full mins = effective 75% full	10	0.550					
30 0.450	20	0.500					
60 0.400	30	0.450					
70 0.350 82 0.300 95 0.250 110 0.200 127 0.150 140 0.100 158 0.050 174 0.000 <	60	0.400					
82 0.300 95 0.250 110 0.200 127 0.150 140 0.100 158 0.050 174 0.000 174 0.000 174 0.000 174 0.000 174 0.000 174 0.000 174 0.000 175 174 0.000 174 0.000 175 174 0.000 175 174 174 175	70	0.350					
95 0.250 110 0.200 127 0.150 140 0.100 158 0.050 174 0.000 174 0.000 174 0.000 174 0.000 174 0.000 174 0.000 174 0.000 174 0.000 174 0.000 174 0.000 174 0.000 174 0.000 174 0.000 174 0.000 175 0.000 174 0.000 174 0.000 175 0.000 175 0.000 175 0.000 175 0.000 175 0.000 175 0.000 175 0.000 175 0.000 175 0.000 175 0.000 175	82	0.300					
110 0.200	95	0.250					
127 0.150	110	0.200					
140 0.100 Image: second	127	0.150					
158 0.050	140	0.100					
174 0.000	158	0.050					
30.00 mins = effective 75% full mins = effective 75% full mins = effective 75% full 30.00 mins = effective 75% full mins = effective 75% full mins = effective 75% full	174	0.000					
30.00 mins = effective 75% full mins = effective 75% full 30.00 mins = effective 75% full mins = effective 75% full							
30.00 mins = effective 75% full							
30.00 mins = effective 75% full mins = effective 75% full mins = effective 75% full							
30.00 mins = effective 75% full mins = effective 75% full mins = effective 25% full 127 00 mins = effective 25% full mins = effective 25% full mins = effective 25% full							
30.00 mins = effective 75% full mins = effective 75% full 127 00 mins = effective 25% full mins = effective 25% full							
30.00 mins = effective 75% full mins = effective 75% full mins = effective 75% full $30.00 mins = effective 25\% full mins = effective 25\% full mins = effective 25\% full $							
30.00 mins = effective 75% full mins = effective 75% full mins = effective 25% full mins = effective 25% full							
30.00 mins = effective 75% full mins = effective 75% full mins = effective 25% full mins =							
30.00 mins = effective 75% full mins = effective 75% full $30.00 mins = effective 25\% full mins = effective 25\% full $							
30.00 mins = effective 75% full mins = effective 75% full $30.00 mins = effective 25\% full mins = effective 25\% full $							
30.00 mins = effective 75% full mins = effective 75% full $127 00 mins = effective 25% full$ mins = effective 25% full							
30.00 mins = effective 75% full mins = effective 75% full mins = effective 25% full mins = effective 25% full							
30.00 mins = effective 75% full mins = effective 75% full mins = effective 25% full mins = effective 25% full							
30.00 mins = effective 75% full mins = effective 75% full mins = effective 25% full mins = effective 25% full				1			
30.00 mins = effective 75% full mins = effective 75% full mins = effective 25% full mins = effective 25% full				1			
30.00 mins = effective 75% full mins = effective 75% full 127 00 mins = effective 25% full mins = effective 25% full				1			
30.00 mins = effective 75% full mins = effective 75% full 127 00 mins = effective 25% full mins = effective 25% full		1		1 1			
30.00 mins = effective 75% full mins = effective 75% full 127 00 mins = effective 25% full mins = effective 25% full		1		1			
30.00 mins = effective 75% full mins = effective 75% full mins = effective 75% full 127 00 mins = effective 25% full mins = effective 25% full mins = effective 25% full		1		1			
30.00 mins = effective 75% fullmins = effective 75% fullmins = effective 75% full127 00 mins = effective 25% fullmins = effective 25% fullmins = effective 25% full		1		1			
$\frac{127.00 \text{ mins} - effective 25\% \text{ full}}{127.00 \text{ mins} - effective 25\% \text{ full}}$	30.00 mins = 30.00 mins	ffactive 75% full	mins -	offactive 750/ full		ning – ~	ffactive 750/ f.11
127.000 mma = 0.000 mma = 0.000 mma = 0.000 = 0.000 = 0.000	127.00 mms = e	ffective 25% full	mins –	effective 25% full	n	nins = e	ffective 25% full

V (75-25)	0.135 cu m
T (75-25)	1.617 hrs
Wetted Area (50%)	1.530 sq m
Infiltration rate m/hr	0.054578532 m/hr
Infiltration rate m	1.516E-05 m/s

		í				(
Job No:	Date:	Client:				
BLI.2020.62	Sep-21	NAP Anglia Ltd				
Prepared By:	Checked By:	Project:				
RSM	RSM	Residential Develo	opment			
Sheet No:	Revision:	Land south of Gar	den House Lane			
4	0	Rickinghall, Suffo	olk			
	Percol	ation Test in Acc	cordance with BR	E 365		
Test Hole Num TH02	ber:	Ground level				
Test Hole Dime	nsions.		$\langle \rangle$			
0.30 m wide	(W)		\ <u>'</u>	ר ו		
1.50 m long (T.)					
1.50 m deep	(D)					
100 % void	(-)					
		w		_ ↓		
Test Hole Fill:	None	×	L	→		
Те	est 1	Те	est 2		Ter	st 3
Time (mins)	water depth (m)	Time (mins)	Water depth (m)	Time (m	nins)	Water depth (m)
0	0.600					
18	0.550					
29	0.500					
49	0.450					
62	0.400					
75	0.350					
88	0.300					
97	0.250					
108	0.200		<u> </u>			
120	0.150		<u> </u>			
134	0.100		<u> </u>			
148	0.050	[ļ			[
159	0.000		<u> </u>			
	ļ		<u> </u>			
	<u> </u>					
	<u> </u>					
	<u> </u>		<u> </u>			
	1 1	/ 	1 1			/
	1					
	1		1 1			
	1		i i			
	1		1			
	1		1			
			Ì			
			İ[
$49.00 \ mins = e_{1}$	ffective 75% full	mins = 0	effective 75% full	K	$nins = \epsilon$	effective 75% full
120.00 mins = e	ffective 25% full	mins = b	effective 25% full	ľ	$nins = \epsilon$	effective 25% full

V (75-25)	0.135 cu m
T (75-25)	1.183 hrs
Wetted Area (50%)	1.530 sq m
Infiltration rate m/hr	0.074565037 m/hr
Infiltration rate m	2.071E-05 m/s

Job No:	Date:	Client:					
BL1.2020.62	Sep-21	NAP Anglia Ltd					
Prepared By: RSM	Checked By: RSM	Project: Residential Develo	opment				
Sheet No:	Pavision:	Land south of Gar	dan Housa Lana				
6	0	Dickinghall Suffo					
0	0	Kickinghan, Suno	IK				
	Percolation Test in Accordance with BRE 365						
Test Hole Number: THO2 Ground level							
11103							
Test Hole Dime	nsions:			\			
0.30 m wide ((W)			↑			
1.50 m long (L)						
1.50 m deep	(D)		4	D			
100 % void		$\langle \rangle \rangle$					
		w	<u>ا</u>	_			
Test Hole Fill:	None	•	L	→			
Те	st 1	Те	st 2		Test 3		
Time (mins)	water depth (m)	Time (mins)	Water depth (m)	Time (mins	Water depth (m)		
0	0.600	0	0.600	0	0.600		
3	0.350	4	0.550	8	0.550		
4	0.300	5	0.500	9	0.500		
5	0.250	6	0.450	12	0.450		
8	0.150	8	0.400	14	0.400		
10	0.100	10	0.350	15	0.350		
12	0.030	12	0.300	20	0.300		
14	0.000	14	0.230	20	0.230		
		16	0.200	22	0.200		
		17	0.100	27	0.100		
		19	0.050	30	0.050		
		20	0.000	34	0.000		
	1						
	Ì		Ì				
$1.80 \text{ mins} = e_1$	ffective 75% full	$6.00 \text{ mins} = e_j$	ffective 75% full	12.00 mins	e = effective 75% full		
$8.00 \text{ mins} = e_{i}$	ffective 25% full	$16.00 \text{ mins} = e_{j}$	ffective 25% full	24.00 mins	e = effective 25% full		

v (13-23)	0.155 cu iii
T (75-25)	0.103 hrs
Wetted Area (50%)	1.530 sq m
Infiltration rate m/hr	0.853889943 m/hr
Infiltration rate m	2.372E-04 m/s

Job No: BLI 2020 62	Date: Sep-21	Client: NAP Anglia I td				
Dramanad Dru	Chaolicad Div	Droigati				
Prepared by:	RSM	Project:				
	Darrisian	Land south of Con	Jan Harra Lana			
Sneet No:	Revision:	Land south of Gar	den House Lane			
10	0	Rickinghan, Suno	IK			
Percolation Test in Accordance with BRE 365						
Test Hole Number: TH04 Ground level						
Test Hole Dime	nsions:			ר א ר		
0.30 m wide ((W)					
1.50 m long (1	L) (D)					
1.00 % void	(D)	\checkmark				
100 /0 Volu		w				
Test Hole Fill:	None		L	→		
Te	st 1	Те	st 2	Т	est 3	
Time (mins)	water depth (m)	Time (mins)	Water depth (m)	Time (mins)	Water depth (m)	
0	0.600	0	0.600	0	0.600	
1	0.550	2	0.550	4	0.550	
2	0.500	4	0.500	9	0.500	
3	0.450	6	0.450	13	0.450	
5	0.400	8	0.400	17	0.400	
/	0.350	11	0.350	20	0.350	
10	0.300	13	0.300	23	0.300	
12	0.230	22	0.230	32	0.230	
14	0.200	22	0.200	36	0.200	
18	0.100	29	0.100	43	0.100	
21	0.050	34	0.050	49	0.050	
22	0.000	40 0.000 55 0.000			0.000	
					1	
			ĺ		1	
3.00 mins = eg	ffective 75% full	$6.00 mins = e_{j}$	ffective 75% full	13.00 mins = 0	effective 75% full	
$16.00 \text{ mins} = e_{1}$	ffective 25% full	26.00 mins = eg	ffective 25% full	36.00 mins = 6	effective 25% full	

V (75-25)	0.135 cu m
T (75-25)	0.217 hrs
Wetted Area (50%)	1.530 sq m
Infiltration rate m/hr	0.407239819 m/hr
Infiltration rate m	1.131E-04 m/s

Infiltration rate m/hr	0.264705882 r

m/s

Job No:	Date:	Client:					
BL1.2020.62	Sep-21	NAP Anglia Ltd					
Prepared By: RSM	Checked By: RSM	Project: Residential Develo	opment				
Sheet No:	Revision:	I and south of Gar	den House I ane				
14	0	Rickinghall Suffo					
14	0	Kickinghan, Suno	IK				
	Percolation Test in Accordance with BRE 365						
Test Hole Num	Test Hole Number: THO5 Ground level						
11105							
Test Hole Dime	nsions:			2			
0.30 m wide ((W)			↑			
1.50 m long (L)						
0.65 m deep	(D)		-	D			
100 % void		$\langle \rangle$					
		W		_ ♦			
Test Hole Fill:	None	X	L	→			
Те	st 1	Те	st 2	T	est 3		
Time (mins)	water depth (m)	Time (mins)	Water depth (m)	Time (mins)	Water depth (m)		
0	0.400	0	0.400	0	0.400		
1	0.350	2	0.350	3	0.350		
2	0.300	4	0.300	5	0.300		
3	0.250	5	0.250	7	0.250		
5	0.150	7	0.150	9	0.150		
7	0.100	8	0.100	10	0.100		
9	0.050	10	0.050	12	0.050		
11	0.000	13	0.000	15	0.000		
	ļ						
	ļ						
	l						
	I						
	1						
	1						
	İ		1				
	l						
	l						
	l						
2.00 mins = e	ffective 75% full	4.00 mins = e	ffective 75% full	5.00 mins =	effective 75% full		
7.00 mins – e	ffective 25% full	8.00 mins – ø	ffective 25% full	10.00 mins –	effective 25% full		
, – ej	1	5.50 mms – ej	1. 2011 C 2070 Juli	10.00 mms -	- _{JJ}		

Job No:	Date:	Client:						
BL1.2020.62	Sep-21	NAP Anglia Ltd						
Prepared By: RSM	Checked By: RSM	Project: Residential Develo	Project: Residential Development					
Sheet No:	Revision:	I and south of Gar	and south of Gorden House Lane					
18	O	Dickinghall Suffo						
10	0	Kickinghan, Suno	IK					
Percolation Test in Accordance with BRE 365								
Test Hole Number: THO6 Ground level								
11100								
Test Hole Dimer	nsions:			\				
0.30 m wide ((W)			│ ↑				
1.50 m long (1	L)							
0.65 m deep	(D)		_	D				
100 % void		$\langle \rangle$						
		W	<u>ا</u>	_				
Test Hole Fill:	None	*	L	→				
Te	st 1	Те	st 2		Fest 3			
Time (mins)	water depth (m)	Time (mins)	Water depth (m)	Time (mins)	Water depth (m)			
0	0.400	0	0.400	0	0.400			
1	0.350	1	0.350	3	0.350			
2	0.300	3	0.300	6	0.300			
3	0.250	5	0.250	8	0.250			
6	0.150	7	0.150	11	0.150			
7	0.100	9	0.100	13	0.100			
8	0.050	11	0.050	15	0.050			
10	0.000	13	0.000	18	0.000			
	ĺ							
2.00 mins = et	ffective 75% full	3.00 mins = e	ffective 75% full	6.00 mins =	effective 75% full			
7.00 mins = et	ffective 25% full	9.00 mins = e	ffective 25% full	13.00 mins =	effective 25% full			

Appendix H

Proposed Surface Drainage Layout/Strategy

P1	25/02/22	First Issue	
Rev.	Date D	escription	

RSM

richard.martin@bli-consulting.co.uk

ONSTRUCTION NOTES

- All levels and grid co-ordinates have been established using GPS and relate to the Topographical Survey undertaken by Plandescil Ltd (Ref:20304).
- 2. All dimensions are stated in millimetres unless shown otherwise and all ing/proposed levels are stated in metres Above Ordnance Datum (mAOD).
- Dimensions and co-ordinates should not be scaled from this drawing, if in doubt please contact BLI Consulting Engineers Ltd.
- 4. The contractor is to verify the accuracy of information provided by others prior to construction. Any discrepancies found on this or any other drawing should be reported to and resolved by BLI Consulting Engineers Ltd before the commencement of any work relevant to the discrepancy.
- This drawing should be read in conjunction with BLI Consulting Engineers Ltd engineering related drawings and all relevant drawings and specifications by the Architect and other specialists.
- 6. Existing public utility services and private apparatus are not necessarily all shown and the contractor shall liaise with the appropriate utility provider to determine precisely where on site existing services are located. Services shall be located and marked out on site prior to any excavation work being commenced.
- 7 The contractor shall submit to the street works coordinator and utility companies the appropriate Nr notices under the New Roads and Street Works Act 1991 and the Traffic Management Act. Upon completion of the works the contractor shall submit to the street works coordinator the appropriate 'R' notices.
- 8. Connections to the existing public sewer network shall be subject to the approval of Anglian Water and shall be carried out by a contractor approved by Anglian Water. The contractor shall comply with the requirements of Anglian Water with regards to submitting method statements, risk assessments etc for obtaining a 'permit to work' on the existing sewer
- All private drainage connections into the existing and/or proposed adoptable Anglian Water drainage network to be constructed of clay pipe work only.
- 10. Where possible orientation of manhole access covers to be orthogonal with adjacent kerb line.
- 11. Sulphate resisting cement and concrete products to be used for foul sewerage.
- 12. All pipes entering or leaving manholes shall be laid with their soffits level, unless shown or agreed otherwise
- 13. The private foul and storm water drainage shall be subject to inspections by the local building control officer. The contractor shall liaise with the building inspector with regard to making inspections at the appropriate stages of the work.
- 14. Unless noted otherwise, all private foul water sewers shall be 100/110mm dia PVC-U Pipe (or similar) and shall be laid at a gradient no flatter than:
- 1 in 40 where pipe work is located beneath residential dwellings • 1 in 40 where pipe work does not receive a discharge from at least 1No.WC. • 1 in 80 for all other pipework.
- 15. Unless noted otherwise, all private storm water sewers shall be 100mm dia PVC-U Pipe (or similar) and shall be laid at a gradient no flatter than 1 in 100.
- 16. All proprietary materials shall be installed in accordance with the manufacturer's instructions and recommendations.
- 17. No trees, hedges or shrubs shall be taken up or otherwise damaged unless noted to the contrary on the drawings, or express permission is first obtained from the
- For details of landscaping and planting please refer to the landscaping drawing prepared by others.
- 19. The main contractor is responsible for achieving and maintaining the stability of The main contractor is responsible for achieving and maintaining the stability of earthworks and any existing structures on the site and adjoining sites, taking all necessary precautions to safeguard this stability. Adequate shoring is to be inserted during the works to ensure stability and such shoring is to be adequately founded and braced. Unless indicated on the drawings, the temporary works are not to impose reactions on the permanent structure without prior written consent from BLI Consulting Engineers Ltd.
- ROTECTION TO PRIVATE SEWERS:-20. Type S bedding to be used in non-trafficed areas.
- 21. Type S bedding to be used in trafficked areas where the cover to the crown of the wer is greater than or equal to 1200mm.
- Type Z1 bedding to be used in trafficked areas where the cover to the crown of the sewer is less than 1200mm.

project: LAND SOUTH OF GARDEN HOUSE LANE, RICKINGHALL, SUFFOLK dwg title: CONSTRUCTION DETAILS (SHEET 2 OF 3) drawn chk'd date: scale @ A1 / A3 RSM RSM FEB 2022 AS NOTED

P1

BLI Consulting Engineers Ltd

7 Melton Drive Norwich Norfolk NR8 6TT

T: 07918 725 983 richard.martin@bli-consulting.co.uk

COMMENT & APPROVAL

		PRIVATE ROAD CONSTRUCTION	
	LAYER	COMPACTED THICKNESS (mm)	
рНАГТ	1	SURFACE COURSE POROUS ASPHALT LAID IN ACCORDANCE WITH SUPPLIERS INSTALLATION GUIDANCE & RECOMMENDATION (TWO 40mm LAYERS OF 10mm SUPER-DRAIN ASPHALT PROVIDED BY AGGREGATE INDUSTRIES UK LIMITED OR EQUIVALENT)	80 (2 x 40)
OUS ASI		BASE COURSE ASPHALT CONCRETE (AC 20 DENSE 40/60) TO PD6691:2015 ANNEX B. ⁽²⁾⁽⁰⁾⁽⁷⁾ REFER TO ADJACENT DETAIL FOR CORING PATTERN OF 75MM DIAMETER HOLES.	100
POR	3	SUB-BASE SUB-BASE COMPRISING OF COURSE GRADED AGGREGATE (4/20) TO BS7533-13:2009, LAID AND COMPACTED OVER A NON WOVEN GEO-TEXTILE LAYER (TO BASE AND SIDES). THE FORMATION SHALL BE SHAPED AND PREPARED TO CLAUSE 10.4.2 ⁽⁰⁾ AND TREATED WITH A GRANULAR WEED KILLER OF THE PRE-EMERGENT TYPE.	450 (Subject to onsite CBR testing of >5.0%)
GE	NERAL	EXTEND SUB-BASE CONSTRUCTION	AS REQUIRED

	PRIVATE DRIVEWAY CONSTRUCTION						
	LAYER SPECIFICATION						
PHALT	4	SURFACE COURSE POROUS ASPHALT LAID IN ACCORDANCE WITH SUPPLIERS INSTALLATION GUIDANCE & RECOMMENDATION (A SINGLE 40mm LAYER OF 10mm SUPER-DRAIN ASPHALT PROVIDED BY AGGREGATE INDUSTRIES UK LIMITED OR EQUIVALENT)	40				
sous Asi	5	BASE COURSE ASPHALT CONCRETE (AC 20 DENSE 40/60) TO PD6691:2015 ANNEX B. ⁽²⁾⁽⁵⁽⁷⁾ REFER TO ADJACENT DETAIL FOR CORING PATTERN OF 75MM DIAMETER HOLES.	100				
РОК	6	SUB-BASE SUB-BASE COMPRISING OF COURSE GRADED AGGREGATE (4/20) TO BS7533-13:2009, LAID AND COMPACTED OVER A NON WOVEN GEO-TEXTILE LAYER (TO BASE AND SIDES). THE FORMATION SHALL BE SHAPED AND PREPARED TO CLAUSE 10.4.2 ⁽⁹⁾ AND TREATED WITH A GRANULAR WEED KILLER OF THE PRE-EMERGENT TYPE.	300 (Subject to onsite CBR testing of >5.0%)				
GEI	NERAL	EXTEND SUB-BASE CONSTRUCTION	AS REQUIRED				

	PRIVATE PATIO / FOOTWAY CONSTRUCTION						
	LAYER	SPECIFICATION	COMPACTED THICKNESS (mm)				
FLAGS	7	SURFACE COURSE 900x600mm GOLDEN FOSSIL SANDSTONE PERMEABLE PAVING FLAGS LAID IN STACK BOND (INSTALLED TO MANUFACTURERS GUIDANCE & RECOMENDATIONS.	40				
ILE PAVING	_ 8	LAYING COURSE 2.0-6.3mm NOMINAL SIZE CLEAN CRUSHED STONE TO BS7533-13:2009 LAID OVER A NON WOVEN GEOTEXTILE FILTER MEMBRANE. THE GEOTEXTILE SHALL BE BROUGHT UP THE SIDES OF THE LAYING COURSE AND SURFACE BLOCK AND TRIMMED OFF FLUSH AFTER LAYING	50				
PERMEAB	9	SUB-BASE SUB-BASE COMPRISING OF COURSE GRADED AGGREGATE (4/20) TO BS7533-13:2009, LAID AND COMPACTED OVER A NON WOVEN GEO-TEXTILE LAYER (TO BASE AND SIDES). THE FORMATION SHALL BE SHAPED AND PREPARED TO CLAUSE 10.4.2 ⁽⁰⁾ AND TREATED WITH A GRANULAR WEED KILLER OF THE PRE-EMERGENT TYPE.	150				
GED	VERAL	EXTEND SUB-BASE CONSTRUCTION	AS REQUIRED				

NOTES:

1: HIGHWAYS ENGLAND SPECIFICATION FOR HIGHWAYS WORKS

- HIGHWAYS ENGLAND SPECIFICATION FOR HIGHWAYS WORKS
 REFER TO BS EN 13108-1 FOR MATERIAL SPECIFICATION FOR ASPHALT CONCRETE
 REFER TO BS EN 13108-4 FOR MATERIAL SPECIFICATION FOR HOT ROLLED ASPHALT
 REFER TO BS EN 13108-5 FOR MATERIAL SPECIFICATION FOR STONE MASTIC ASPHALT
 REFER TO BS SEN 13108-5 FOR MATERIAL SPECIFICATION FOR STONE MASTIC ASPHALT
 REFER TO BS SEN 13108-5 FOR MATERIAL SPECIFICATION FOR STONE MASTIC ASPHALT
 REFER TO BS SOAKED FOR TRANSPORT, LAYING AND COMPACTION OF ALL ASPHALT
 THE DESIGN IS BASED ON AN ASSUMED CBR VALUE AND SHALL BE SUBJECT TO AMENDMENT FOLLOWING ONSITE SOAKED CBR TESTING.
 BOND COATS TO BE USED IN ACCORDANCE WITH BS59487 AND TO BE APPLIED ON TALL KERB AND EDGING FACES ALONG WITH GULLY AND COVER FRAMES, BOND COATS TO BE APPLIED ON TOP ON BASE AND BINDER COURSE, AS WELL AS JOINTS IN THE RINDER AND RASE TO RE TO RE TO RE ADDED

AS WELL AS JOINTS IN THE BINDER AND BASE COURSE TO BE OVER BANDED. 8: SUFFOLK COUNTY COUNCIL SPECIFICATION FOR ESTATE ROADS (May 2007).

POROUS ASPHALT - PRIVATE DRIVEWAY CONSTRUCTION SCALE 1:20

PERMEABLE PAVING FLAGS - PRIVATE PATIO & FOOTWAY CONSTRUCTION SCALE 1:2

BECIFICATION FOR PERMEABLE PAVEMENT CONSTRUCTION

BEGRADE/FORMATION PREPARATION:

THE SUBGRADE SHALL BE COMPACTED WITH A VIBRATING PLATE OR ROLLER TO THE REQUIREMENTS OF CLAUSE 613 OF THE SPECIFICATION FOR HIGHWAY WORKS (SHW). PRIOR TO COMPACTION ALL SOFT AREAS SHALL BE REMOVED AND FILLED WITH A GRANULAR REPLACEMENT MATERIAL TO PROVIDE A STABLE SUBGRADE.

BB-BASE GENERALLY:

THE SUB-BASE MATERIAL SHALL BE TO BS7533-13 AND CONSIST OF ROUGH ANGULAR PARTICLES TO GIVE GOOD INTERLOCK. CLEAN CRUSHED ROCK (EG GRANITE THE SUB-BASE MATERIAL SHALL BE TO BS/533-13 AND CONSIST OF ROUGH ANGULAR PARTICLES TO GIVE GOOD INTERLOCK. CLEAN CRUSHED ROCK (EG GRANITE, BASALT, GABBRO ETC) OR CONCRETE WITH GREATER THAN 90% FRACTURE FACES OR BLAST FURNACE SLAG IS REQUIRED TO ACHIEVE THIS. SAND AND GRAVEL WITH ROUNDED PARTICLES SHALL NOT BE USED IN PERMEABLE PAVEMENT SUB-BASE CONSTRUCTION. SUB-BASE MATERIAL MUST BE SOUND, NON-FRIABLE AND FREE FROM CLAY OR OTHER DELETERIOUS MATTER. THERE MUST BE A MINIMUM 10% FINES VALUE OF 150kN WHEN TESTED IN ACCORDANCE WITH BSEN1097-2 DRETAGUAR DELETERIOUS MATTER. THERE MUST BE A MINIMUM 10% FINES VALUE OF 150kN WHEN TESTED IN ACCORDANCE WITH BSEN1097-2 USLY BS812 PART 111). COMPACTED WITH A VIBRATING ROLLER OR HEAVY DUTY VIBRATING PLATE TO THE REQUIREMENTS OF CLAUSE 802 OF 'SHW'. THE FINAL PASS SHOULD BE UNDERTAKEN WITH NO VIBRATION.

BB-BASE:

SUB-BASE SPECIFICATION (4/20) COMPLYING WITH BS 7533-13:2009 AND CONFORMING TO THE FOLLOWING SIEVE ANALYSIS:-

BSEN SIEVE SIZE	% PASSING
40mm	100
31.5mm	98-100
20mm	90-99
10mm	25-70
4mm	0-15
2mm	0-5

© Copyright BLI Consultant Engineers Ltd.

1 25/02/22 First Issue Rev. Date Description

BLI.2020.62 Consultant Engineers

P1 COMMENT & APPROVAL

PL 108

T: 07918 725 983 richard.martin@bli-consulting.co.uk

Appendix I

Surface Water Design Calculations

Contents

Pages 1 – 4	Soakaway (Plot 1A) - 100-Year (+40%) Simulation Results & Model Details
Pages 5 – 8	Soakaway (Plot 1B) - 100-Year (+40%) Simulation Results & Model Details
Pages 9 – 12	Soakaway (Plot 2) - 100-Year (+40%) Simulation Results & Model Details
Pages 13 – 16	Soakaway (Plot 3A) - 100-Year (+40%) Simulation Results & Model Details
Pages 17 – 20	Soakaway (Plot 3B) - 100-Year (+40%) Simulation Results & Model Details
Pages 21 – 24	Soakaway (Plot 4A) - 100-Year (+40%) Simulation Results & Model Details
Pages 25 – 28	Soakaway (Plot 4B) - 100-Year (+40%) Simulation Results & Model Details
Pages 29 – 32	Soakaway (Plot 5A) - 100-Year (+40%) Simulation Results & Model Details
Pages 33 – 36	Soakaway (Plot 5B) - 100-Year (+40%) Simulation Results & Model Details
Pages 37 – 40	Soakaway (Plot 6) - 100-Year (+40%) Simulation Results & Model Details
Pages 41 – 44	Soakaway (Plot 7) - 100-Year (+40%) Simulation Results & Model Details
Pages 45 – 48	Soakaway (Plot 8A) - 100-Year (+40%) Simulation Results & Model Details
Pages 49 – 52	Soakaway (Plot 8B) - 100-Year (+40%) Simulation Results & Model Details
Pages 53 – 56	Soakaway (Plot 9) - 100-Year (+40%) Simulation Results & Model Details
Pages 57 – 60	Soakaway (Plot 10) - 100-Year (+40%) Simulation Results & Model Details
Pages 61 – 64	Permeable Private Road - 100-Year (+40%) Simulation Results & Model Details
Pages 65 – 68	Permeable Driveway - 100-Year (+40%) Simulation Results & Model Details
Pages 69 – 72	Permeable Patio - 100-Year (+40%) Simulation Results & Model Details

BLI Consulting	Page 1					
Norwich	Resid	denti	al Develop	ment		
Norfolk	Garde	Garden House Lane				Sec. 1
•	Ricki	ingha	ll, Suffol	k		Mirro
Date 11/02/2022	Desid	qned	by RSM			
File M100+CC SOAKAWAY PLOT 1A.SRCX	Check	ked b	v RSM			Urainage
Callseway	Sourc		ntrol 2020	1 3		
causeway	DOUL		JICI 01 2020	.1.5		
Summary of Resul	ts for 1	00 ve	ear Return	Period	(+40%)	
	00 101 1	00 10		101100	(*100)	
Hal	f Drain Ti	ime :	709 minutes			
dh ann			N		Chattan	
Storm	Max M	ax nth T	Max	Max	Status	
Event	(m) (т) т	(1/s)	(m ³)		
	() (.	,	(1) 5)	(111)		
15 min Summer	1.318 0.3	318	0.1	4.8	O K	
30 min Summer	1.414 0.4	414	0.1	6.3	O K	
60 min Summer	1.508 0.	508	0.1	7.7	O K	
120 min Summer	1.593 0.	593	0.1	9.0	O K	
180 min Summer	1.632 0.0	632	0.1	9.6	O K	
240 min Summer	1.652 0.	652	0.1	9.9	O K	
360 min Summer	1.667 0.	667	0.1	10.1	O K	
480 min Summer	1.666 0.0	666	0.1	10.1	O K	
600 min Summer	1.659 0.0	659	0.1	10.0	ОК	
720 min Summer	1.652 0.0	652	0.1	9.9	ОК	
960 min Summer	1.636 0.0	636	0.1	9.7	ОК	
1440 min Summer	1.600 0.0	600	0.1	9.1	ОК	
2160 min Summer	1.547 0.	547	0.1	8.3	ΟK	
2880 min Summer	1.500 0.	500	0.1	7.6	ΟK	
4320 min Summer	1.417 0.4	417	0.1	6.3	ΟK	
5760 min Summer	1.348 0.1	348	0.1	5.3	0 K	
7200 min Summer	1.289 0	289	0.1	4.4	0 K	
8640 min Summer	- 1.239 0	239	0 1	3.6	0 K	
10080 min Summer	- 1.196 0	196	0 1	3.0	0 K	
15 min Winter	1.357 0	357	0 1	54	0 K	

Storm			Rain	Flooded	Time-Peak
	Event			Volume	(mins)
				(m³)	
15	min	Summer	138.153	0.0	19
30	min	Summer	90.705	0.0	34
60	min	Summer	56.713	0.0	64
120	min	Summer	34.246	0.0	122
180	min	Summer	25.149	0.0	182
240	min	Summer	20.078	0.0	242
360	min	Summer	14.585	0.0	360
480	min	Summer	11.622	0.0	478
600	min	Summer	9.738	0.0	524
720	min	Summer	8.424	0.0	588
960	min	Summer	6.697	0.0	712
1440	min	Summer	4.839	0.0	982
2160	min	Summer	3.490	0.0	1404
2880	min	Summer	2.766	0.0	1816
4320	min	Summer	1.989	0.0	2596
5760	min	Summer	1.573	0.0	3392
7200	min	Summer	1.311	0.0	4112
8640	min	Summer	1.129	0.0	4848
10080	min	Summer	0.994	0.0	5552
15	min	Winter	138.153	0.0	19
30	min	Winter	90.705	0.0	33

30 min Winter 1.464 0.464 0.1 7.1 O K

BLI Consulting		Page 2
Norwich	Residential Development	
Norfolk	Garden House Lane	No.
	Rickinghall, Suffolk	Mirro
Date 11/02/2022	Designed by RSM	Drainago
File M100+CC_SOAKAWAY_PLOT 1A.SRCX	Checked by RSM	uran raye
Causeway	Source Control 2020.1.3	·

Summary of Results for 100 year Return Period (+40%)

	Stor: Even	m t	Max Level (m)	Max Depth (m)	Max Infiltration (1/s)	Max Volume (m³)	Status
60	min	Winter	1.571	0.571	0.1	8.7	ОК
120	min	Winter	1.669	0.669	0.1	10.2	ОК
180	min	Winter	1.715	0.715	0.2	10.9	ОК
240	min	Winter	1.739	0.739	0.2	11.2	ОК
360	min	Winter	1.762	0.762	0.2	11.6	ОК
480	min	Winter	1.766	0.766	0.2	11.7	ОК
600	min	Winter	1.761	0.761	0.2	11.6	ОК
720	min	Winter	1.751	0.751	0.2	11.4	ОК
960	min	Winter	1.731	0.731	0.2	11.1	ОК
1440	min	Winter	1.684	0.684	0.2	10.4	ОК
2160	min	Winter	1.611	0.611	0.1	9.3	ОК
2880	min	Winter	1.542	0.542	0.1	8.2	ОК
4320	min	Winter	1.423	0.423	0.1	6.4	ОК
5760	min	Winter	1.326	0.326	0.1	5.0	ОК
7200	min	Winter	1.247	0.247	0.1	3.8	ОК
8640	min	Winter	1.182	0.182	0.1	2.8	ОК
10080	min	Winter	1.129	0.129	0.1	2.0	ОК

Storm			Rain	Flooded	Time-Peak
Event			(mm/hr)	Volume	(mins)
				(m³)	
60	min	Winter	56.713	0.0	62
120	min	Winter	34.246	0.0	120
180	min	Winter	25.149	0.0	180
240	min	Winter	20.078	0.0	236
360	min	Winter	14.585	0.0	350
480	min	Winter	11.622	0.0	462
600	min	Winter	9.738	0.0	568
720	min	Winter	8.424	0.0	664
960	min	Winter	6.697	0.0	750
1440	min	Winter	4.839	0.0	1056
2160	min	Winter	3.490	0.0	1512
2880	min	Winter	2.766	0.0	1956
4320	min	Winter	1.989	0.0	2768
5760	min	Winter	1.573	0.0	3576
7200	min	Winter	1.311	0.0	4328
8640	min	Winter	1.129	0.0	5024
10080	min	Winter	0.994	0.0	5744

BLI Consulting	Page 3							
Norwich	Residential Development							
Norfolk	Garden House Lane	and the second second						
	Rickinghall, Suffolk	Mirro						
Date 11/02/2022	Designed by RSM	Drainago						
File M100+CC_SOAKAWAY_PLOT 1A.SRCX	Checked by RSM	uran naye						
Causeway								
Rainfall Model	Rainfall Details FSR Winter Storms Yes							
Region En	gland and Wales Cv (Winter) 0.840							
M5-60 (mm) Ratio R Summer Storms	20.000 Shortest Storm (mins) 15 0.400 Longest Storm (mins)10080 Yes Climate Change % +40							
Time Area Diagram								
Total Area (ha)0.019								
Time (mins) Area From: To: (ha)								

BLI Consulting							Page 4		
Norwich		Res	idential D	evelopment			rage r		
Norfolk		Gar	Garden House Lane				A		
NOTIOIN		Ric	Rickinghall Suffolk				Number of the second		
· Date 11/02/2022		Dec	igned by P	SWITCH			MICLO		
File M100+CC SOAKAWAY DLOT 1A SPCY			Checked by RSM				Drainage		
Caugoway	Source Control 2020 1 3								
Source Control 2020.1.3									
Model Details									
Storage is Online Cover Level (m) 1.800									
Cellular Storage Structure									
Invert Level (m) 1.000 Safety Factor 3.0 Infiltration Coefficient Base (m/hr) 0.05458 Porosity 0.95 Infiltration Coefficient Side (m/hr) 0.05458									
Depth (m) Area (m²)	Inf. Area (m ²) Dept	ch (m) Are	a (m²) Inf.	Area (m ²)	Depth (m) Are	ea (m²) I	nf. Area (m²)		
0.000 16.0	16.0	0.800	16.0	32.0	0.900	0.0	32.0		
BLI Consulting						Page 5			
-------------------------------------	-----------------------	--------	------------------------------	--------	------------	--------------			
Norwich	Re	sident	ial Develop	ment					
Norfolk	Ga	rden H	louse Lane			States and a			
	Ri	ckingł	all, Suffol	k		Mirro			
Date 11/02/2022	De	sioned	by RSM						
File M100+CC SOAKAWAY DLOT 18 SPCY	Ch	ockod	by PSM			Urainage			
FILE MIDUTCE_BOARAWA1_FLOT IB: SKCK	CII	eckeu	Dy KBM			3			
Causeway	So	urce (Control 2020	.1.3					
Summary of Res	ults for alf Drain	100 g	year Return : 444 minutes	Period	. (+40%)				
Storm	Max	Max	Max	Max	Status				
Event	Level	Depth	Infiltration	Volume					
	(m)	(m)	(l/s)	(m³)					
15 min Summ	ner 1.177	0.177	0.1	1.5	OK				
50 min Summ	ner 1.229	0.229	0.1	2.0	OK				
120 min Summ	mer 1 320	0.275	0.1	2.4	O K O K				
180 min Summ	ner 1.335	0.335	0.1	2.9	0 K				
240 min Summ	ner 1.340	0.340	0.1	2.9	0 K				
360 min Summ	ner 1.337	0.337	0.1	2.9	0 K				
480 min Summ	ner 1.332	0.332	0.1	2.8	ОК				
600 min Summ	ner 1.326	0.326	0.1	2.8	ОК				
720 min Summ	ner 1.319	0.319	0.1	2.7	ОК				
960 min Summ	ner 1.304	0.304	0.1	2.6	ОК				
1440 min Summ	mer 1.275	0.275	0.1	2.4	ОК				
2160 min Summ	ner 1.236	0.236	0.1	2.0	ОК				
2880 min Summ	ner 1.201	0.201	0.1	1.7	ОК				
4320 min Summ	ner 1.145	0.145	0.1	1.2	O K				
5760 min Summ	ner 1.103	0.103	0.1	0.9	O K				
7200 min Summ	mer 1.074	0.074	0.1	0.6	ОК				
8640 min Summ	mer 1.056	0.056	0.0	0.5	O K				
10080 min Summ	mer 1.048	0.048	0.0	0.4	O K				
15 min Wint	er 1.198	0.198	0.1	1.7	O K				
30 min Wint	er 1.257	0.257	0.1	2.2	O K				

Storm		Rain	Flooded	Time-Peak	
	Even	t	(mm/hr)	Volume	(mins)
				(m³)	
15	min	Summer	138.153	0.0	19
30	min	Summer	90.705	0.0	33
60	min	Summer	56.713	0.0	62
120	min	Summer	34.246	0.0	122
180	min	Summer	25.149	0.0	182
240	min	Summer	20.078	0.0	240
360	min	Summer	14.585	0.0	324
480	min	Summer	11.622	0.0	382
600	min	Summer	9.738	0.0	446
720	min	Summer	8.424	0.0	512
960	min	Summer	6.697	0.0	648
1440	min	Summer	4.839	0.0	924
2160	min	Summer	3.490	0.0	1320
2880	min	Summer	2.766	0.0	1728
4320	min	Summer	1.989	0.0	2464
5760	min	Summer	1.573	0.0	3168
7200	min	Summer	1.311	0.0	3824
8640	min	Summer	1.129	0.0	4496
10080	min	Summer	0.994	0.0	5144
15	min	Winter	138.153	0.0	18
30	min	Winter	90.705	0.0	33

BLI Consulting		Page 6
Norwich	Residential Development	
Norfolk	Garden House Lane	Constant of the
	Rickinghall, Suffolk	Mirro
Date 11/02/2022	Designed by RSM	Drainage
File M100+CC_SOAKAWAY_PLOT 1B.SRCX	Checked by RSM	ulan laye
Causeway	Source Control 2020.1.3	

	Stori Event	n E	Max Level (m)	Max Depth (m)	Max Infiltration (1/s)	Max Volume (m³)	Status
60	min	Winter	1.314	0.314	0.1	2.7	ОК
120	min	Winter	1.362	0.362	0.1	3.1	ОК
180	min	Winter	1.381	0.381	0.1	3.3	ОК
240	min	Winter	1.389	0.389	0.1	3.3	ОК
360	min	Winter	1.389	0.389	0.1	3.3	ОК
480	min	Winter	1.381	0.381	0.1	3.3	ОК
600	min	Winter	1.373	0.373	0.1	3.2	ОК
720	min	Winter	1.365	0.365	0.1	3.1	ОК
960	min	Winter	1.345	0.345	0.1	2.9	ОК
1440	min	Winter	1.303	0.303	0.1	2.6	ОК
2160	min	Winter	1.244	0.244	0.1	2.1	ОК
2880	min	Winter	1.194	0.194	0.1	1.7	ОК
4320	min	Winter	1.117	0.117	0.1	1.0	ОК
5760	min	Winter	1.065	0.065	0.0	0.6	ОК
7200	min	Winter	1.047	0.047	0.0	0.4	ОК
8640	min	Winter	1.041	0.041	0.0	0.3	ОК
10080	min	Winter	1.036	0.036	0.0	0.3	ОК

Storm		Rain	Flooded	Time-Peak	
	Even	it	(mm/hr)	Volume	(mins)
				(m³)	
60	min	Winter	56.713	0.0	62
120	min	Winter	34.246	0.0	120
180	min	Winter	25.149	0.0	178
240	min	Winter	20.078	0.0	234
360	min	Winter	14.585	0.0	344
480	min	Winter	11.622	0.0	438
600	min	Winter	9.738	0.0	472
720	min	Winter	8.424	0.0	548
960	min	Winter	6.697	0.0	702
1440	min	Winter	4.839	0.0	998
2160	min	Winter	3.490	0.0	1428
2880	min	Winter	2.766	0.0	1820
4320	min	Winter	1.989	0.0	2552
5760	min	Winter	1.573	0.0	3176
7200	min	Winter	1.311	0.0	3744
8640	min	Winter	1.129	0.0	4480
10080	min	Winter	0.994	0.0	5144

BLI Consulting		Page 7
Norwich	Residential Development	
Norfolk	Garden House Lane	and the second second
	Rickinghall, Suffolk	Mirro
Date 11/02/2022	Designed by RSM	Desinage
File M100+CC_SOAKAWAY_PLOT 1B.SRCX	Checked by RSM	Diamaye
Causeway	Source Control 2020.1.3	I.
Rainfall Model	Rainfall Details FSR Winter Storms Yes	
Return Period (years)	100 Cv (Summer) 0.750	
Region En	gland and Wales Cv (Winter) 0.840	
M5-60 (mm)	20.000 Shortest Storm (mins) 15	
Summer Storms	Yes Climate Change % +40	
<u>_</u>	'ime Area Diagram	
Т	otal Area (ha)0.006	
	Time (mins) Area From: To: (ha)	
	0 4 0.006	

BLI Consulting		Page 8
Norwich	Residential Development	
Norfolk	Garden House Lane	States and the
	Rickinghall, Suffolk	News
Date 11/02/2022	Designed by RSM	MILIU
File M100+CC SOAKAWAY PLOT 1B SECX	Checked by RSM	Urainage
	Sourgo Control 2020 1 2	
Causeway	Source control 2020.1.5	
	Model Details	
Storage is	Online Cover Level (m) 1.400	
Cellu	lar Storage Structure	
Th	wort Lowol (m) 1 000 Safety Factor 2 0	
Infiltration Coeffici	ent Base (m/hr) 0.05458 Porosity 0.95	
Infiltration Coefficie	ent Side (m/hr) 0.05458	
Deptn (m) Area (m ²) Inf. Area (m ²) Depth (r	n, Area (m²) INI. Area (m²) Depth (m) Area (m²)	INI. Area (m²)
0.000 9.0 9.0 0.40	00 9.0 14.2 0.500 0.0	14.2

BLI Consulting						Page 9
Norwich	Re	esident	cial Develop	ment		
Norfolk	Ga	arden 1	House Lane			
	Ri	cking	nall, Suffol	k		Missio
Date 11/02/2022	De	signed	d by RSM			
File M100+CC SOAKAWAY PLOT 2 SRCX	Ch	ecked	by RSM			Urainage
	01.	Icencu		1 2		
Causeway	Sc	ource (Control 2020	.1.3		
Summary of Resul Hal:	ts for f Drain	r 100 n Time	year Return : 730 minutes	Period	d (+40%)	
Storm	Max	Max	Max	Max	Status	
Event	Level	Depth	Infiltration	Volume		
	(m)	- (m)	(1/s)	(m³)		
15 min Summer	1.321	0.321	0.1	6.1	ОК	
30 min Summer	1.418	0.418	0.2	7.9	ОК	
60 min Summer	1.514	0.514	0.2	9.8	ОК	
120 min Summer	1.600	0.600	0.2	11.4	ОК	
180 min Summer	1.640	0.640	0.2	12.2	ΟK	
240 min Summer	1.660	0.660	0.2	12.5	ОК	
360 min Summer	1.676	0.676	0.2	12.9	ОК	
480 min Summer	1.677	0.677	0.2	12.9	ОК	
600 min Summer	1.670	0.670	0.2	12.7	ОК	
720 min Summer	1.663	0.663	0.2	12.6	ОК	
960 min Summer	1.646	0.646	0.2	12.3	ОК	
1440 min Summer	1.610	0.610	0.2	11.6	ОК	
2160 min Summer	1.558	0.558	0.2	10.6	ОК	
2880 min Summer	1.511	0.511	0.2	9.7	ОК	
4320 min Summer	1.428	0.428	0.2	8.1	ОК	
5760 min Summer	1.357	0.357	0.1	6.8	ОК	
7200 min Summer	1.297	0.297	0.1	5.6	ОК	
8640 min Summer	1.247	0.247	0.1	4.7	ОК	
10080 min Summer	1.203	0.203	0.1	3.9	ОК	
15 min Winter	1.360	0.360	0.1	6.8	ОК	
30 min Winter	1.470	0.470	0.2	8.9	ОК	

Storm		Rain	Flooded	Time-Peak	
Event		(mm/hr)	Volume	(mins)	
				(m³)	
15	min	Summer	138.153	0.0	19
30	min	Summer	90.705	0.0	34
60	min	Summer	56.713	0.0	64
120	min	Summer	34.246	0.0	122
180	min	Summer	25.149	0.0	182
240	min	Summer	20.078	0.0	242
360	min	Summer	14.585	0.0	360
480	min	Summer	11.622	0.0	480
600	min	Summer	9.738	0.0	536
720	min	Summer	8.424	0.0	594
960	min	Summer	6.697	0.0	720
1440	min	Summer	4.839	0.0	984
2160	min	Summer	3.490	0.0	1404
2880	min	Summer	2.766	0.0	1816
4320	min	Summer	1.989	0.0	2596
5760	min	Summer	1.573	0.0	3400
7200	min	Summer	1.311	0.0	4112
8640	min	Summer	1.129	0.0	4848
10080	min	Summer	0.994	0.0	5552
15	min	Winter	138.153	0.0	19
30	min	Winter	90.705	0.0	33

©1982-2020 Innovyze

BLI Consulting		Page 10
Norwich	Residential Development	
Norfolk	Garden House Lane	and the second second
	Rickinghall, Suffolk	Mirro
Date 11/02/2022	Designed by RSM	Drainago
File M100+CC_SOAKAWAY_PLOT 2.SRCX	Checked by RSM	Ulainaye
Causeway	Source Control 2020.1.3	-

	Stori Event	n =	Max Level (m)	Max Depth (m)	Max Infiltration (l/s)	Max Volume (m³)	Status
60	min	Winter	1.578	0.578	0.2	11.0	ОК
120	min	Winter	1.677	0.677	0.2	12.9	ОК
180	min	Winter	1.724	0.724	0.2	13.8	ОК
240	min	Winter	1.749	0.749	0.2	14.2	ОК
360	min	Winter	1.773	0.773	0.2	14.7	ОК
480	min	Winter	1.778	0.778	0.2	14.8	ОК
600	min	Winter	1.774	0.774	0.2	14.7	ОК
720	min	Winter	1.764	0.764	0.2	14.5	ОК
960	min	Winter	1.743	0.743	0.2	14.1	ОК
1440	min	Winter	1.698	0.698	0.2	13.3	ОК
2160	min	Winter	1.624	0.624	0.2	11.9	ОК
2880	min	Winter	1.555	0.555	0.2	10.5	ОК
4320	min	Winter	1.436	0.436	0.2	8.3	ОК
5760	min	Winter	1.338	0.338	0.1	6.4	ОК
7200	min	Winter	1.257	0.257	0.1	4.9	ОК
8640	min	Winter	1.190	0.190	0.1	3.6	ОК
10080	min	Winter	1.136	0.136	0.1	2.6	ОК

Storm		Rain	Flooded	Time-Peak	
Event			(mm/hr)	Volume	(mins)
				(m³)	
60	min	Winter	56.713	0.0	62
120	min	Winter	34.246	0.0	120
180	min	Winter	25.149	0.0	180
240	min	Winter	20.078	0.0	238
360	min	Winter	14.585	0.0	352
480	min	Winter	11.622	0.0	462
600	min	Winter	9.738	0.0	570
720	min	Winter	8.424	0.0	670
960	min	Winter	6.697	0.0	754
1440	min	Winter	4.839	0.0	1066
2160	min	Winter	3.490	0.0	1516
2880	min	Winter	2.766	0.0	1960
4320	min	Winter	1.989	0.0	2808
5760	min	Winter	1.573	0.0	3576
7200	min	Winter	1.311	0.0	4328
8640	min	Winter	1.129	0.0	5096
10080	min	Winter	0.994	0.0	5752

BLI Consulting		Page 11
Norwich	Residential Development	
Norfolk	Garden House Lane	Sec. 1
	Rickinghall, Suffolk	Mirro
Date 11/02/2022	Designed by RSM	Drainage
File M100+CC_SOAKAWAY_PLOT 2.SRCX	Checked by RSM	uran aye
Causeway	Source Control 2020.1.3	
Rainfall Model Return Period (years) Region Eng M5-60 (mm) Ratio R Summer Storms	Rainfall DetailsFSR Winter Storms Yes100Cv (Summer) 0.750cland and WalesCv (Winter) 0.84020.000 Shortest Storm (mins)150.400Longest Storm (mins) 10080YesClimate Change % +40	
T. To	ime Area Diagram Dtal Area (ha)0.024	
1	Time (mins) Area From: To: (ha) 0 4 0.024	

BLI Consulting				Page 12
Norwich		Residential Devel	opment	
Norfolk		Garden House Lane	2	
		Rickinghall, Suff	olk	Mirro
Date 11/02/2022		Designed by RSM		Drainage
File M100+CC_SOAKA	WAY_PLOT 2.SRCX	Checked by RSM		
Causeway		Source Control 20	020.1.3	
		Madal Data 'la		
		Model Details		
	Storage is	Online Cover Level (m) 1.800	
	Cellu	lar Storage Struct	ure	
	In Infiltration Coeffici Infiltration Coefficie	vert Level (m) 1.000 ent Base (m/hr) 0.0 ent Side (m/hr) 0.054) Safety Factor 15458 Porosity 58	3.0 0.95
Depth (m) Area (m²)	Inf. Area (m ²) Depth (m	n) Area (m²) Inf. Area	a (m ²) Depth (m)	Area (m²) Inf. Area (m²)
0.000 20.0	20.0 0.80	20.0	39.2 0.900	0.0 39.2

BLI Consulting						Page 13
Norwich	Re	sident	cial Develop	ment		
Norfolk	Ga	rden H	House Lane			Contract of the
	Ri	ckinał	hall. Suffol	k		Mirrico
Date 11/02/2022	De	sianea	hy RSM			MILIU
E_{1} M100+CC CONVANAY DIOT 20 CDCV	Ch	oakod	by DCM			Urainage
FILE MIDUTCC_SOARAWA1_PLOT SA.SRCA	CII	eckeu	Dy KSM			
Causeway	So	urce (Control 2020	.1.3		
Summary of Results Half D	<u>for</u> rain	100 :	year Return : 709 minutes	Period	l (+40%)	
Storm N	ſax	Max	Max	Max	Status	
Event Le	evel	Depth	Infiltration	Volume		
	(m)	(m)	(l/s)	(m³)		
15 min Summer 1	315	0 315	0 1	51	O K	
30 min Summer 1.	410	0.410	0.1	6.6	0 K	
60 min Summer 1.	503	0.503	0.1	8.1	0 K	
120 min Summer 1.	587	0.587	0.1	9.5	O K	
180 min Summer 1.	626	0.626	0.2	10.1	O K	
240 min Summer 1.	645	0.645	0.2	10.4	O K	
360 min Summer 1.	660	0.660	0.2	10.7	O K	
480 min Summer 1.	659	0.659	0.2	10.6	ОК	
600 min Summer 1.	653	0.653	0.2	10.5	O K	
720 min Summer 1.	646	0.646	0.2	10.4	O K	
960 min Summer 1.	629	0.629	0.2	10.2	O K	
1440 min Summer 1.	593	0.593	0.1	9.6	O K	
2160 min Summer 1.	541	0.541	0.1	8.7	O K	
2880 min Summer 1.	494	0.494	0.1	8.0	O K	
4320 min Summer 1.	412	0.412	0.1	6.7	O K	
5760 min Summer 1.	343	0.343	0.1	5.5	O K	
7200 min Summer 1.	284	0.284	0.1	4.6	O K	
8640 min Summer 1.	234	0.234	0.1	3.8	O K	
10080 min Summer 1.	192	0.192	0.1	3.1	O K	
15 min Winter 1.	353	0.353	0.1	5.7	O K	
30 min Winter 1.	460	0.460	0.1	7.4	O K	

Storm Event		Rain (mm/hr)	Flooded Volume (m³)	Time-Peak (mins)	
15	min	Summer	138.153	0.0	19
30	min	Summer	90.705	0.0	34
60	min	Summer	56.713	0.0	64
120	min	Summer	34.246	0.0	122
180	min	Summer	25.149	0.0	182
240	min	Summer	20.078	0.0	242
360	min	Summer	14.585	0.0	360
480	min	Summer	11.622	0.0	478
600	min	Summer	9.738	0.0	526
720	min	Summer	8.424	0.0	590
960	min	Summer	6.697	0.0	712
1440	min	Summer	4.839	0.0	982
2160	min	Summer	3.490	0.0	1404
2880	min	Summer	2.766	0.0	1816
4320	min	Summer	1.989	0.0	2596
5760	min	Summer	1.573	0.0	3392
7200	min	Summer	1.311	0.0	4112
8640	min	Summer	1.129	0.0	4848
10080	min	Summer	0.994	0.0	5552
15	min	Winter	138.153	0.0	19
30	min	Winter	90.705	0.0	33

BLI Consulting		Page 14
Norwich	Residential Development	
Norfolk	Garden House Lane	Contraction of the
	Rickinghall, Suffolk	Mirro
Date 11/02/2022	Designed by RSM	Drainage
File M100+CC_SOAKAWAY_PLOT 3A.SRCX	Checked by RSM	Ulainaye
Causeway	Source Control 2020.1.3	-

	Storm Event		Max Level (m)	Max Depth (m)	Max Infiltration (1/s)	Max Volume (m³)	Status
60	min W	Vinter	1.566	0.566	0.1	9.1	ОК
120	min Þ	Vinter	1.663	0.663	0.2	10.7	ОК
180	min W	Vinter	1.708	0.708	0.2	11.4	ОК
240	min M	Vinter	1.732	0.732	0.2	11.8	ОК
360	min V	Vinter	1.754	0.754	0.2	12.2	ОК
480	min W	√inter	1.759	0.759	0.2	12.3	ОК
600	min V	Vinter	1.754	0.754	0.2	12.2	ОК
720	min V	Vinter	1.744	0.744	0.2	12.0	ОК
960	min V	Vinter	1.723	0.723	0.2	11.7	ОК
1440	min V	√inter	1.677	0.677	0.2	10.9	ОК
2160	min V	√inter	1.604	0.604	0.1	9.8	ОК
2880	min V	√inter	1.536	0.536	0.1	8.6	ОК
4320	min V	√inter	1.418	0.418	0.1	6.7	ОК
5760	min V	∛inter	1.321	0.321	0.1	5.2	ОК
7200	min V	√inter	1.242	0.242	0.1	3.9	ОК
8640	min V	√inter	1.177	0.177	0.1	2.9	ОК
10080	min V	Vinter	1.125	0.125	0.1	2.0	ОК

Storm		Rain	Flooded	Time-Peak	
	Even	it	(mm/hr)	Volume	(mins)
				(m³)	
60	min	Winter	56.713	0.0	62
120	min	Winter	34.246	0.0	120
180	min	Winter	25.149	0.0	180
240	min	Winter	20.078	0.0	236
360	min	Winter	14.585	0.0	350
480	min	Winter	11.622	0.0	462
600	min	Winter	9.738	0.0	568
720	min	Winter	8.424	0.0	666
960	min	Winter	6.697	0.0	752
1440	min	Winter	4.839	0.0	1056
2160	min	Winter	3.490	0.0	1512
2880	min	Winter	2.766	0.0	1956
4320	min	Winter	1.989	0.0	2768
5760	min	Winter	1.573	0.0	3576
7200	min	Winter	1.311	0.0	4328
8640	min	Winter	1.129	0.0	5024
10080	min	Winter	0.994	0.0	5744

BLI Consulting		Page 15
Norwich	Residential Development	
Norfolk	Garden House Lane	Sec. 1
	Rickinghall, Suffolk	Mirro
Date 11/02/2022	Designed by RSM	Dcainage
File M100+CC_SOAKAWAY_PLOT 3A.SRCX	Checked by RSM	uran aye
Causeway	Source Control 2020.1.3	I.
1	Rainfall Details	
Rainfall Model	FSR Winter Storms Yes	
Return Period (years)	rland and Wales Cv (Summer) 0.750	
M5-60 (mm)	20.000 Shortest Storm (mins) 15	
Ratio R	0.400 Longest Storm (mins) 10080	
Summer Storms	Yes Climate Change % +40	
T	ime Area Diagram	
Т	otal Area (ha)0.020	
	Time (mins) Area From: To: (ha)	
	0 4 0.020	

BLI Consulting		Page 16							
Norwich	Residential Development								
Norfolk	Garden House Lane	Concerned and							
	Rickinghall, Suffolk	Micro							
Date 11/02/2022	Designed by RSM	Desipado							
File M100+CC_SOAKAWAY_PLOT 3A.SRCX	Checked by RSM	Diamage							
Causeway	Source Control 2020.1.3								
Model Details									
Characteristics in the second s									
Storage 1s	Unline Cover Level (m) 1.800								
Cellu	lar Storage Structure								
Inv	vert Level (m) 1.000 Safety Factor 3.0								
Infiltration Coefficie	ent Base (m/hr) 0.05458 Porosity 0.95 nt Side (m/hr) 0.05458								
Depth (m) Area (m ²) Inf. Area (m ²) Depth (m) Area (m ²) Inf. Area (m ²) Depth (m) Area (m ²)	Inf. Area (m²)							
0.000 17.0 17.0 0.80	0 17.0 33.8 0.900 0.0	33.8							
1									

BLI Consulting						Page 17
Norwich	Re	siden	tial Develop	ment		
Norfolk	Ga	Garden House Lane				
Rickinghall, Suffolk					Mirrico	
Date 11/02/2022	De	siane	d by RSM			
File M100+CC GOARAWAY DLOT 3R GPCY	Ch	ackad	by PGM			Urainage
FILE MIDURCE_BOARAWA1_FILOT SB.SRCK		eckeu		1 0		
Causeway	So	urce	Control 2020	.1.3		
	_					
Summary of Result	ts for	r 100	year Return	Period	. (+40%)	
Half	Drair	n Time	: 444 minutes			
				-		
Storm	Max	Max	Max	Max	Status	
Event	Level	Depth	Infiltration	Volume		
	(m)	(m)	(1/S)	(m ³)		
15 min Summer	1.177	0.177	0.1	1.5	ОК	
30 min Summer	1.229	0.229	0.1	2.0	ΟK	
60 min Summer	1.279	0.279	0.1	2.4	ОК	
120 min Summer	1.320	0.320	0.1	2.7	ΟK	
180 min Summer	1.335	0.335	0.1	2.9	ΟK	
240 min Summer	1.340	0.340	0.1	2.9	ΟK	
360 min Summer	1.337	0.337	0.1	2.9	ΟK	
480 min Summer	1.332	0.332	0.1	2.8	ΟK	
600 min Summer	1.326	0.326	0.1	2.8	ΟK	
720 min Summer	1.319	0.319	0.1	2.7	ΟK	
960 min Summer	1.304	0.304	0.1	2.6	ΟK	
1440 min Summer	1.275	0.275	0.1	2.4	ΟK	
2160 min Summer	1.236	0.236	0.1	2.0	ΟK	
2880 min Summer	1.201	0.201	0.1	1.7	ΟK	
4320 min Summer	1.145	0.145	0.1	1.2	ΟK	
5760 min Summer	1.103	0.103	0.1	0.9	ΟK	
7200 min Summer	1.074	0.074	0.1	0.6	ΟK	
8640 min Summer	1.056	0.056	0.0	0.5	ΟK	
10080 min Summer	1.048	0.048	0.0	0.4	ΟK	
15 min Winter	1.198	0.198	0.1	1.7	ΟK	
30 min Winter	1.257	0.257	0.1	2.2	ΟK	

Storm		Rain	Flooded	Time-Peak	
Event		(mm/hr)	Volume	(mins)	
				(m³)	
15	min	Summer	138.153	0.0	19
30	min	Summer	90.705	0.0	33
60	min	Summer	56.713	0.0	62
120	min	Summer	34.246	0.0	122
180	min	Summer	25.149	0.0	182
240	min	Summer	20.078	0.0	240
360	min	Summer	14.585	0.0	324
480	min	Summer	11.622	0.0	382
600	min	Summer	9.738	0.0	446
720	min	Summer	8.424	0.0	512
960	min	Summer	6.697	0.0	648
1440	min	Summer	4.839	0.0	924
2160	min	Summer	3.490	0.0	1320
2880	min	Summer	2.766	0.0	1728
4320	min	Summer	1.989	0.0	2464
5760	min	Summer	1.573	0.0	3168
7200	min	Summer	1.311	0.0	3824
8640	min	Summer	1.129	0.0	4496
10080	min	Summer	0.994	0.0	5144
15	min	Winter	138.153	0.0	18
30	min	Winter	90.705	0.0	33

BLI Consulting		Page 18
Norwich	Residential Development	
Norfolk	Garden House Lane	Constant of the
	Rickinghall, Suffolk	Mirro
Date 11/02/2022	Designed by RSM	Drainage
File M100+CC_SOAKAWAY_PLOT 3B.SRCX	Checked by RSM	ulan laye
Causeway	Source Control 2020.1.3	

	Stori Even	n t	Max Level (m)	Max Depth (m)	Max Infiltration (1/s)	Max Volume (m³)	Status
60	min	Winter	1.314	0.314	0.1	2.7	ОК
120	min	Winter	1.362	0.362	0.1	3.1	ОК
180	min	Winter	1.381	0.381	0.1	3.3	ОК
240	min	Winter	1.389	0.389	0.1	3.3	ОК
360	min	Winter	1.389	0.389	0.1	3.3	ОК
480	min	Winter	1.381	0.381	0.1	3.3	ОК
600	min	Winter	1.373	0.373	0.1	3.2	ОК
720	min	Winter	1.365	0.365	0.1	3.1	ОК
960	min	Winter	1.345	0.345	0.1	2.9	ОК
1440	min	Winter	1.303	0.303	0.1	2.6	ОК
2160	min	Winter	1.244	0.244	0.1	2.1	ОК
2880	min	Winter	1.194	0.194	0.1	1.7	ОК
4320	min	Winter	1.117	0.117	0.1	1.0	ОК
5760	min	Winter	1.065	0.065	0.0	0.6	ОК
7200	min	Winter	1.047	0.047	0.0	0.4	ОК
8640	min	Winter	1.041	0.041	0.0	0.3	ОК
10080	min	Winter	1.036	0.036	0.0	0.3	ОК

	Stor	m	Rain	Flooded	Time-Peak
	Even	it	(mm/hr)	Volume	(mins)
				(m³)	
60	min	Winter	56.713	0.0	62
120	min	Winter	34.246	0.0	120
180	min	Winter	25.149	0.0	178
240	min	Winter	20.078	0.0	234
360	min	Winter	14.585	0.0	344
480	min	Winter	11.622	0.0	438
600	min	Winter	9.738	0.0	472
720	min	Winter	8.424	0.0	548
960	min	Winter	6.697	0.0	702
1440	min	Winter	4.839	0.0	998
2160	min	Winter	3.490	0.0	1428
2880	min	Winter	2.766	0.0	1820
4320	min	Winter	1.989	0.0	2552
5760	min	Winter	1.573	0.0	3176
7200	min	Winter	1.311	0.0	3744
8640	min	Winter	1.129	0.0	4480
10080	min	Winter	0.994	0.0	5144

BLI Consulting		Page 19
Norwich	Residential Development	
Norfolk	Garden House Lane	and the second second
	Rickinghall, Suffolk	Mirro
Date 11/02/2022	Designed by RSM	Dcainage
File M100+CC_SOAKAWAY_PLOT 3B.SRCX	Checked by RSM	uraniaye
Causeway	Source Control 2020.1.3	
Rainfall Model	Rainfall Details FSR Winter Storms Yes	
Return Period (years) Region Er	100 Cv (Summer) 0.750	
M5-60 (mm)	20.000 Shortest Storm (mins) 15	
Ratio R	0.400 Longest Storm (mins)10080	
Summer Storms	Yes Climate Change % +40	
:	Time Area Diagram	
r	Cotal Area (ha)0.006	
	Time (mins) Area From: To: (ha)	
	0 4 0.006	

BLI Consulting		Page 20
Norwich	Residential Development	
Norfolk	Garden House Lane	Sec. 1
	Rickinghall, Suffolk	Micro
Date 11/02/2022	Designed by RSM	
File M100+CC_SOAKAWAY_PLOT 3B.SRCX	Checked by RSM	uramaye
Causeway	Source Control 2020.1.3	
	Model Details	
Storage i	s Online Cover Level (m) 1.400	
Cell	ular Storage Structure	
In	nvert Level (m) 1.000 Safety Factor 3.0	
Infiltration Coeffici Infiltration Coeffici	lent Base (m/hr) 0.05458 Porosity 0.95 ent Side (m/hr) 0.05458	
Depth (m) Area (m ²) Inf. Area (m ²) Depth (m) Area (m ²) Inf. Area (m ²) Depth (m) Area (m ²)	Inf. Area (m²)
0.000 9.0 9.0 0.4	00 9.0 14.2 0.500 0.0	14.2

BLI Consulting						Page 21
Norwich	Re	sident	ial Develop	ment		
Norfolk	Ga	rden H	ouse Lane			Concerned and
	Ri	ckingh	all, Suffol	k		Mirro
Date 11/02/2022	De	signed	by RSM			
File M100+CC SOAKAWAY DIOT 4A SPC	y Ch	ockod	by PGM			Urainage
FILE MIDUTCE_SOARAWA1_PLOT 4A.SRC.		eckeu	ру към			
Causeway	So	urce C	ontrol 2020	.1.3		
Summary of Re	esults for	: 100 y	ear Return	Period	l (+40%)	
_					<u> </u>	
	Half Drain	Time :	710 minutes	•		
Storm	Max	Max	Max	Max	Status	
Event	Level	Depth	Infiltration	Volume		
	(m)	(m)	(1/s)	(m³)		
15 min Su	ummer 1.321	0.321	0.1	4.6	O K	
30 min Su	ummer 1.418	0.418	0.1	6.0	O K	
60 min Su	ummer 1.513	0.513	0.1	7.3	O K	
120 min Su	ummer 1.599	0.599	0.1	8.5	O K	
180 min Su	ummer 1.639	0.639	0.1	9.1	O K	
240 min Su	ummer 1.659	0.659	0.1	9.4	O K	
360 min Su	ummer 1.674	0.674	0.1	9.6	O K	
480 min Su	ummer 1.673	0.673	0.1	9.6	O K	
600 min Su	ummer 1.667	0.667	0.1	9.5	ОК	
720 min Su	ummer 1.659	0.659	0.1	9.4	ОК	
960 min Su	ummer 1.643	0.643	0.1	9.2	ОК	
1440 min Su	ummer 1.607	0.607	0.1	8.6	ОК	
2160 min Si	ummer 1.554	0.554	0.1	7.9	ОК	
2880 min Si	ummer 1.506	0.506	0.1	7.2	O K	
4320 min Si	ummer 1,423	0.423	0.1	6.0	0 K	
5760 min St	ummer 1.353	0.353	0.1	5.0	0 K	
7200 min St	ummer 1,294	0.294	0 1	4.2	0 K	
8640 min St	immer 1 243	0 243	0 1	35	0 K	
10080 min St	1000000000000000000000000000000000000	0 201	0.1	2.5	O K	
15 min W	inter 1 260	0.201	0.1	2.9 5 1	O K	
	n + or 1 $1 < 0$	0.160	0.1	5.1	O K	
30 min Wi	LIILEI 1.409	0.409	0.1	0./	UK	

	Stor Even	m It	Rain (mm/hr)	Flooded Volume (m³)	Time-Peak (mins)
15	min	Summer	138.153	0.0	19
30	min	Summer	90.705	0.0	34
60	min	Summer	56.713	0.0	64
120	min	Summer	34.246	0.0	122
180	min	Summer	25.149	0.0	182
240	min	Summer	20.078	0.0	242
360	min	Summer	14.585	0.0	360
480	min	Summer	11.622	0.0	478
600	min	Summer	9.738	0.0	524
720	min	Summer	8.424	0.0	588
960	min	Summer	6.697	0.0	712
1440	min	Summer	4.839	0.0	982
2160	min	Summer	3.490	0.0	1404
2880	min	Summer	2.766	0.0	1816
4320	min	Summer	1.989	0.0	2596
5760	min	Summer	1.573	0.0	3400
7200	min	Summer	1.311	0.0	4112
8640	min	Summer	1.129	0.0	4848
10080	min	Summer	0.994	0.0	5552
15	min	Winter	138.153	0.0	19
30	min	Winter	90.705	0.0	33

BLI Consulting		Page 22
Norwich	Residential Development	
Norfolk	Garden House Lane	and the second second
	Rickinghall, Suffolk	Mirro
Date 11/02/2022	Designed by RSM	Drainago
File M100+CC_SOAKAWAY_PLOT 4A.SRCX	Checked by RSM	Ulainaye
Causeway	Source Control 2020.1.3	-

	Stor: Even	m t	Max Level (m)	Max Depth (m)	Max Infiltration (1/s)	Max Volume (m³)	Status
60	min	Winter	1.577	0.577	0.1	8.2	ОК
120	min	Winter	1.676	0.676	0.1	9.6	ОК
180	min	Winter	1.723	0.723	0.1	10.3	ОК
240	min	Winter	1.747	0.747	0.1	10.7	ОК
360	min	Winter	1.770	0.770	0.1	11.0	ОК
480	min	Winter	1.775	0.775	0.2	11.0	ОК
600	min	Winter	1.770	0.770	0.1	11.0	ОК
720	min	Winter	1.759	0.759	0.1	10.8	ОК
960	min	Winter	1.739	0.739	0.1	10.5	ОК
1440	min	Winter	1.692	0.692	0.1	9.9	ОК
2160	min	Winter	1.618	0.618	0.1	8.8	ОК
2880	min	Winter	1.549	0.549	0.1	7.8	ОК
4320	min	Winter	1.430	0.430	0.1	6.1	ОК
5760	min	Winter	1.332	0.332	0.1	4.7	ОК
7200	min	Winter	1.252	0.252	0.1	3.6	ОК
8640	min	Winter	1.187	0.187	0.1	2.7	ОК
10080	min	Winter	1.133	0.133	0.1	1.9	ОК

	Stor	m	Rain	Flooded	Time-Peak
	Even	it	(mm/hr)	Volume	(mins)
				(m³)	
60	min	Winter	56.713	0.0	62
120	min	Winter	34.246	0.0	120
180	min	Winter	25.149	0.0	180
240	min	Winter	20.078	0.0	236
360	min	Winter	14.585	0.0	350
480	min	Winter	11.622	0.0	462
600	min	Winter	9.738	0.0	568
720	min	Winter	8.424	0.0	664
960	min	Winter	6.697	0.0	750
1440	min	Winter	4.839	0.0	1056
2160	min	Winter	3.490	0.0	1512
2880	min	Winter	2.766	0.0	1956
4320	min	Winter	1.989	0.0	2768
5760	min	Winter	1.573	0.0	3576
7200	min	Winter	1.311	0.0	4328
8640	min	Winter	1.129	0.0	5024
10080	min	Winter	0.994	0.0	5752

BLI Consulting		Page 23
Norwich	Residential Development	
Norfolk	Garden House Lane	Sec. 1
	Rickinghall, Suffolk	Mirro
Date 11/02/2022	Designed by RSM	Dcainage
File M100+CC_SOAKAWAY_PLOT 4A.SRCX	Checked by RSM	uran aye
Causeway	Source Control 2020.1.3	-
Rainfall Model	Rainfall Details FSR Winter Storms Yes	
Return Period (years) Region End	aland and Wales Cv (Summer) 0.750	
M5-60 (mm)	20.000 Shortest Storm (mins) 15	
Ratio R	0.400 Longest Storm (mins) 10080	
Summer Storms	Yes Climate Change % +40	
<u><u>T</u></u>	ime Area Diagram	
Тс	otal Area (ha)0.018	
	Time (mins) Area From: To: (ha)	
	0 4 0.018	

BLI Consulting								Page 24	ł
Norwich		R	esidenti	al Devel	opmen	t			
Norfolk		G	arden Ho	use Lane				Sec	
		R	lickingha	ll, Suff	olk			Mired	
Date 11/02/2022		D	esigned	by RSM				MILL	J
File M100+CC SOAKAWA	Y PLOT 4A.SR	CX C	hecked b	y RSM				Urali	nage
Causeway		S	Source Co	ntrol 20	20.1.	3			
		~				-			
		M	Nodel Det	ails					
	Sto	orage is On	line Cove	r Level (m) 1.8	300			
		Cellula	r Storage	e Structi	ıre				
			5						
		Inver	t Level	(m) 1.000	Safe	ty Factor	3.0		
	Infiltration (Coefficient	: Base (n Side (m/h	1/hr) 0.0 (r) 0.0545	5458 8	Porosity	0.95		
		ocriticiene	5100 (11/1	11, 0.0515	.0				
Depth (m) Area (m ²)]	Inf. Area (m²)	Depth (m) A	Area (m²)	Inf. Area	(m²)	Depth (m)	Area (m²)	Inf. Area	1 (m²)
0.000 15.0	15.0	0.800	15.0		30.2	0.900	0.0)	30.2
	I					I			

BLI Consulting						Page 25
Norwich	Re	sident	ial Develop	ment		1
Norfolk	Ga	rden H	louse Lane			A second second
_	Ri	cking	all. Suffol	k		Minto
Date 11/02/2022	De	gione	hy PSM			MILLU
$\mathbf{E}_{1}^{1} = \mathbf{M}_{1}^{1} \mathbf{O}_{1}^{2} \mathbf{O}_{2}^{2} \mathbf$	Ch	adrod				Urainagi
FILE MI00+CC_SOARAWAI_PLOI 4B.SRCA	CII	lecked	Dy RSM			
Causeway	So	urce (Control 2020	.1.3		
Summary of Resu	alts for	c 100 ·	year Return	Period	1 (+40%)	
Ha	lf Drair	n Time	: 444 minutes			
Storm	Max	Max	Max	Max	Status	
Event	Level	Depth	Infiltration	Volume		
	(m)	(m)	(l/s)	(m³)		
15 min Summ	er 1.177	0.177	0.1	1.5	ΟK	
30 min Summ	er 1.229	0.229	0.1	2.0	O K	
60 min Summ	er 1.279	0.279	0.1	2.4	O K	
120 min Summ	er 1.320	0.320	0.1	2.7	O K	
180 min Summ	er 1.335	0.335	0.1	2.9	O K	
240 min Summ	er 1.340	0.340	0.1	2.9	O K	
360 min Summ	er 1.337	0.337	0.1	2.9	O K	
480 min Summ	er 1.332	0.332	0.1	2.8	O K	
600 min Summ	er 1.326	0.326	0.1	2.8	O K	
720 min Summ	er 1.319	0.319	0.1	2.7	ОК	
960 min Summ	er 1.304	0.304	0.1	2.6	ОК	
1440 min Summ	er 1.275	0.275	0.1	2.4	ОК	
2160 min Summ	er 1.236	0.236	0.1	2.0	ОК	
2880 min Summ	er 1.201	0.201	0.1	1.7	ОК	
4320 min Summ	er 1.145	0.145	0.1	1.2	ОК	
5760 min Summ	er 1.103	0.103	0.1	0.9	ОК	
7200 min Summ	er 1.074	0.074	0.1	0.6	0 K	
8640 min Summ	er 1.056	0.056	0.1	0.5	0 K	
10080 min Summ	er 1 048	0 048	0.0	0.5	0 K	
15 min Wint	er 1 198	0 198	0.0	1 7	O K	
20 min Wint	ar 1 257	0 257	0.1	1.1 2.2	O K	
50 mill wille		5.257	0.1	2.2	0 10	

Storm Event		Rain (mm/hr)	Flooded Volume (m³)	Time-Peak (mins)	
15	min	Summer	138.153	0.0	19
30	min	Summer	90.705	0.0	33
60	min	Summer	56.713	0.0	62
120	min	Summer	34.246	0.0	122
180	min	Summer	25.149	0.0	182
240	min	Summer	20.078	0.0	240
360	min	Summer	14.585	0.0	324
480	min	Summer	11.622	0.0	382
600	min	Summer	9.738	0.0	446
720	min	Summer	8.424	0.0	512
960	min	Summer	6.697	0.0	648
1440	min	Summer	4.839	0.0	924
2160	min	Summer	3.490	0.0	1320
2880	min	Summer	2.766	0.0	1728
4320	min	Summer	1.989	0.0	2464
5760	min	Summer	1.573	0.0	3168
7200	min	Summer	1.311	0.0	3824
8640	min	Summer	1.129	0.0	4496
10080	min	Summer	0.994	0.0	5144
15	min	Winter	138.153	0.0	18
30	min	Winter	90.705	0.0	33

©1982-2020 Innovyze

BLI Consulting					
Norwich	Residential Development				
Norfolk	Garden House Lane	and the second second			
	Rickinghall, Suffolk	Mirro			
Date 11/02/2022	Designed by RSM	Drainago			
File M100+CC_SOAKAWAY_PLOT 4B.SRCX	Checked by RSM	Ulainaye			
Causeway	Source Control 2020.1.3	-			

	Stori Event	n E	Max Level (m)	Max Depth (m)	Max Infiltration (1/s)	Max Volume (m³)	Status
60	min	Winter	1.314	0.314	0.1	2.7	ОК
120	min	Winter	1.362	0.362	0.1	3.1	ОК
180	min	Winter	1.381	0.381	0.1	3.3	ОК
240	min	Winter	1.389	0.389	0.1	3.3	ОК
360	min	Winter	1.389	0.389	0.1	3.3	ОК
480	min	Winter	1.381	0.381	0.1	3.3	ОК
600	min	Winter	1.373	0.373	0.1	3.2	ОК
720	min	Winter	1.365	0.365	0.1	3.1	ОК
960	min	Winter	1.345	0.345	0.1	2.9	ОК
1440	min	Winter	1.303	0.303	0.1	2.6	ОК
2160	min	Winter	1.244	0.244	0.1	2.1	ОК
2880	min	Winter	1.194	0.194	0.1	1.7	ОК
4320	min	Winter	1.117	0.117	0.1	1.0	ОК
5760	min	Winter	1.065	0.065	0.0	0.6	ОК
7200	min	Winter	1.047	0.047	0.0	0.4	ОК
8640	min	Winter	1.041	0.041	0.0	0.3	ОК
10080	min	Winter	1.036	0.036	0.0	0.3	ОК

Storm		Rain	Flooded	Time-Peak	
	Even	it	(mm/hr)	Volume	(mins)
				(m³)	
60	min	Winter	56.713	0.0	62
120	min	Winter	34.246	0.0	120
180	min	Winter	25.149	0.0	178
240	min	Winter	20.078	0.0	234
360	min	Winter	14.585	0.0	344
480	min	Winter	11.622	0.0	438
600	min	Winter	9.738	0.0	472
720	min	Winter	8.424	0.0	548
960	min	Winter	6.697	0.0	702
1440	min	Winter	4.839	0.0	998
2160	min	Winter	3.490	0.0	1428
2880	min	Winter	2.766	0.0	1820
4320	min	Winter	1.989	0.0	2552
5760	min	Winter	1.573	0.0	3176
7200	min	Winter	1.311	0.0	3744
8640	min	Winter	1.129	0.0	4480
10080	min	Winter	0.994	0.0	5144

BLI Consulting		Page 27
Norwich	Residential Development	
Norfolk	Garden House Lane	and the second second
	Rickinghall, Suffolk	Mirro
Date 11/02/2022	Designed by RSM	Drainage
File M100+CC_SOAKAWAY_PLOT 4B.SRCX	Checked by RSM	Dialitaye
Causeway	Source Control 2020.1.3	
Rainfall Model	Rainfall Details	
Return Period (years)	100 Cv (Summer) 0.750	
Region En	gland and Wales Cv (Winter) 0.840	
M5-60 (mm)	20.000 Shortest Storm (mins) 15	
Ratio R	0.400 Longest Storm (mins)10080	
	Tes Crimate change & +40	
2	lime Area Diagram	
Т	otal Area (ha)0.006	
	Time (mins) Area From: To: (ha)	
	0 4 0.006	

BLI Consulting		Page 28
Norwich	Residential Development	
Norfolk	Garden House Lane	Sec. 1
	Rickinghall, Suffolk	Mirro
Date 11/02/2022	Designed by RSM	Desinado
File M100+CC_SOAKAWAY_PLOT 4B.SRCX	Checked by RSM	urainaye
Causeway	Source Control 2020.1.3	
	Model Details	
Storago ig	Opling Cours Lougl (m) 1 400	
Storage is	ONTINE COVEL LEVEL (III) 1.400	
Cellu	lar Storage Structure	
In Infiltertier Coefficie	vert Level (m) 1.000 Safety Factor 3.0	
Infiltration Coefficie	ent Base (m/hr) 0.05458 Porosity 0.95 ent Side (m/hr) 0.05458	
Depth (m) Area (m ²) Inf. Area (m ²) Depth (m	n) Area (m ²) Inf. Area (m ²) Depth (m) Area (m ²)	Inf. Area (m²)
0.000 9.0 9.0 0.40	00 9.0 14.2 0.500 0.0	14.2

BLI Consulting						Page 29
Norwich	Re	sident	ial Develop	ment		
Norfolk	Ga	rden H	louse Lane			States and a
	Ri	ckingh	all, Suffoll	k		Micro
Date 11/02/2022	De	signed	by RSM			
File M100+CC SOAKAWAY PLOT 5A SRCX	Ch	ecked	by RSM			urainage
	CII	cencu		1 0		
Causeway	So	urce (control 2020	.1.3		
Summary of Results Half Dr	<u>for</u> rain	<u>100 y</u> Time	year Return : 709 minutes	<u>Period</u>	(+40%)	
Storm M	lax	Max	Max	Max	Status	
Event Le	vel	Depth	Infiltration	Volume		
(m)	(m)	(1/s)	(m³)		
15 min Gumman 1	21 5	0 215	0 1	г 1	0.17	
15 min Summer 1.	315 410	0.315	0.1	5.1	OK	
60 min Summer 1	503	0.410	0.1	8 1	0 K 0 K	
120 min Summer 1.	587	0.587	0.1	9.5	0 K	
180 min Summer 1.	626	0.626	0.2	10.1	O K	
240 min Summer 1.	645	0.645	0.2	10.4	ОК	
360 min Summer 1.	660	0.660	0.2	10.7	ΟK	
480 min Summer 1.	659	0.659	0.2	10.6	ΟK	
600 min Summer 1.	653	0.653	0.2	10.5	O K	
720 min Summer 1.	646	0.646	0.2	10.4	O K	
960 min Summer 1.	629	0.629	0.2	10.2	O K	
1440 min Summer 1.	593	0.593	0.1	9.6	O K	
2160 min Summer 1.	541	0.541	0.1	8.7	ΟK	
2880 min Summer 1.	494	0.494	0.1	8.0	O K	
4320 min Summer 1.	412	0.412	0.1	6.7	O K	
5760 min Summer 1.	343	0.343	0.1	5.5	O K	
7200 min Summer 1.	284	0.284	0.1	4.6	ΟK	
8640 min Summer 1.	234	0.234	0.1	3.8	O K	
10080 min Summer 1.	192	0.192	0.1	3.1	O K	
15 min Winter 1.	353	0.353	0.1	5.7	O K	
30 min Winter 1.	460	0.460	0.1	7.4	O K	

Storm		Rain	Flooded	Time-Peak	
	Even	t	(mm/hr)	Volume	(mins)
				(m³)	
15	min	Summer	138.153	0.0	19
30	min	Summer	90.705	0.0	34
60	min	Summer	56.713	0.0	64
120	min	Summer	34.246	0.0	122
180	min	Summer	25.149	0.0	182
240	min	Summer	20.078	0.0	242
360	min	Summer	14.585	0.0	360
480	min	Summer	11.622	0.0	478
600	min	Summer	9.738	0.0	526
720	min	Summer	8.424	0.0	590
960	min	Summer	6.697	0.0	712
1440	min	Summer	4.839	0.0	982
2160	min	Summer	3.490	0.0	1404
2880	min	Summer	2.766	0.0	1816
4320	min	Summer	1.989	0.0	2596
5760	min	Summer	1.573	0.0	3392
7200	min	Summer	1.311	0.0	4112
8640	min	Summer	1.129	0.0	4848
10080	min	Summer	0.994	0.0	5552
15	min	Winter	138.153	0.0	19
30	min	Winter	90.705	0.0	33

BLI Consulting		Page 30
Norwich	Residential Development	
Norfolk	Garden House Lane	Contraction of the
	Rickinghall, Suffolk	Mirro
Date 11/02/2022	Designed by RSM	Drainago
File M100+CC_SOAKAWAY_PLOT 5A.SRCX	Checked by RSM	Ulainaye
Causeway	Source Control 2020.1.3	

	Stor: Even	m t	Max Level (m)	Max Depth (m)	Max Infiltration (1/s)	Max Volume (m³)	Status
60	min	Winter	1.566	0.566	0.1	9.1	ОК
120	min	Winter	1.663	0.663	0.2	10.7	ОК
180	min	Winter	1.708	0.708	0.2	11.4	ОК
240	min	Winter	1.732	0.732	0.2	11.8	ОК
360	min	Winter	1.754	0.754	0.2	12.2	ОК
480	min	Winter	1.759	0.759	0.2	12.3	ΟK
600	min	Winter	1.754	0.754	0.2	12.2	ΟK
720	min	Winter	1.744	0.744	0.2	12.0	ΟK
960	min	Winter	1.723	0.723	0.2	11.7	ΟK
1440	min	Winter	1.677	0.677	0.2	10.9	ΟK
2160	min	Winter	1.604	0.604	0.1	9.8	ΟK
2880	min	Winter	1.536	0.536	0.1	8.6	ΟK
4320	min	Winter	1.418	0.418	0.1	6.7	ΟK
5760	min	Winter	1.321	0.321	0.1	5.2	ΟK
7200	min	Winter	1.242	0.242	0.1	3.9	ΟK
8640	min	Winter	1.177	0.177	0.1	2.9	ΟK
10080	min	Winter	1.125	0.125	0.1	2.0	ΟK

Storm		Rain	Flooded	Time-Peak	
	Even	it	(mm/hr)	Volume	(mins)
				(m³)	
60	min	Winter	56.713	0.0	62
120	min	Winter	34.246	0.0	120
180	min	Winter	25.149	0.0	180
240	min	Winter	20.078	0.0	236
360	min	Winter	14.585	0.0	350
480	min	Winter	11.622	0.0	462
600	min	Winter	9.738	0.0	568
720	min	Winter	8.424	0.0	666
960	min	Winter	6.697	0.0	752
1440	min	Winter	4.839	0.0	1056
2160	min	Winter	3.490	0.0	1512
2880	min	Winter	2.766	0.0	1956
4320	min	Winter	1.989	0.0	2768
5760	min	Winter	1.573	0.0	3576
7200	min	Winter	1.311	0.0	4328
8640	min	Winter	1.129	0.0	5024
10080	min	Winter	0.994	0.0	5744

BLI Consulting		Page 31
Norwich	Residential Development	
Norfolk	Garden House Lane	and the second s
	Rickinghall, Suffolk	Mirro
Date 11/02/2022	Designed by RSM	Drainago
File M100+CC_SOAKAWAY_PLOT 5A.SRCX	Checked by RSM	uran aye
Causeway	Source Control 2020.1.3	
Rainfall Model Return Period (years)	FSR Winter Storms Yes 100 Cv (Summer) 0.750	
Region Eng	land and Wales Cv (Winter) 0.840	
Ratio R	0.400 Longest Storm (mins) 10080	
Summer Storms	Yes Climate Change % +40	
<u>T</u> :	ime Area Diagram	
То	tal Area (ha)0.020	
E	Time (mins) Area From: To: (ha)	

BLI Consulting		Page 32									
Norwich	Residential Development										
Norfolk	Garden House Lane										
	Micro										
Date 11/02/2022	Desinarro										
File M100+CC_SOAKAWAY_PLOT 5A.SRCX	Checked by RSM	Diamaye									
Causeway	Source Control 2020.1.3										
	Model Details										
Storage is Online Cover Level (m) 1 800											
Cellu	Cellular Storage Structure										
Inv Infiltration Coefficien Infiltration Coefficien	rert Level (m) 1.000 Safety Factor 3.0 ent Base (m/hr) 0.05458 Porosity 0.95 nt Side (m/hr) 0.05458										
Depth (m) Area (m ²) Inf. Area (m ²) Depth (m) Area (m ²) Inf. Area (m ²) Depth (m) Area (m ²)	Inf. Area (m²)									
0.000 17.0 17.0 0.80	0 17.0 33.8 0.900 0.0	33.8									

BLI Consulting	Page 33					
Norwich	Re	sident	ial Develop	ment		
Norfolk	Ga	rden H	louse Lane			Constant of the
	Ri	ckingł	all, Suffol	k		Mirro
Date 11/02/2022	De	signed	by RSM			
$F_{1} = M100+CC$ SOJKAWAY DLOT 58 SPC	y Ch	ockod	by PSM			Urainage
FILE MIDDICE_SOARAWAI_FLOI 5B.SRC		eckeu				
Causeway	So	urce (Control 2020	.1.3		
Summary of R	esults for	<u>100 </u>	year Return	Period	l (+40%)	
	Half Drain	ı Time	: 444 minutes	•		
Storm	Max	Max	Max	Max	Status	
Event	Level	Depth	Infiltration	Volume		
	(m)	(m)	(l/s)	(m³)		
15 min C	ummors 1 177	0 177	0 1	1 5	O K	
15 min S 30 min S	unumer 1.229	0.177	0.1	2.0	0 K 0 K	
60 min S	ummer 1.279	0.229	0.1	2.0	O K	
120 min S	ummer 1.320	0.320	0.1	2.7	O K	
180 min S	ummer 1.335	0.335	0.1	2.9	ОК	
240 min S	ummer 1.340	0.340	0.1	2.9	ОК	
360 min S	ummer 1.337	0.337	0.1	2.9	O K	
480 min S	ummer 1.332	0.332	0.1	2.8	ОК	
600 min S	ummer 1.326	0.326	0.1	2.8	O K	
720 min S	ummer 1.319	0.319	0.1	2.7	O K	
960 min S	ummer 1.304	0.304	0.1	2.6	O K	
1440 min S	ummer 1.275	0.275	0.1	2.4	O K	
2160 min S	ummer 1.236	0.236	0.1	2.0	O K	
2880 min S	ummer 1.201	0.201	0.1	1.7	O K	
4320 min S	ummer 1.145	0.145	0.1	1.2	O K	
5760 min S	ummer 1.103	0.103	0.1	0.9	O K	
7200 min S	ummer 1.074	0.074	0.1	0.6	O K	
8640 min S	ummer 1.056	0.056	0.0	0.5	O K	
10080 min S	ummer 1.048	0.048	0.0	0.4	O K	
15 min W	inter 1.198	0.198	0.1	1.7	O K	
30 min W	inter 1.257	0.257	0.1	2.2	O K	

Storm			Rain	Flooded	. Time-Peak	
	Even	t	(mm/hr)	Volume	(mins)	
				(m³)		
15	min	Summer	138.153	0.0	19	
30	min	Summer	90.705	0.0	33	
60	min	Summer	56.713	0.0	62	
120	min	Summer	34.246	0.0	122	
180	min	Summer	25.149	0.0	182	
240	min	Summer	20.078	0.0	240	
360	min	Summer	14.585	0.0	324	
480	min	Summer	11.622	0.0	382	
600	min	Summer	9.738	0.0	446	
720	min	Summer	8.424	0.0	512	
960	min	Summer	6.697	0.0	648	
1440	min	Summer	4.839	0.0	924	
2160	min	Summer	3.490	0.0	1320	
2880	min	Summer	2.766	0.0	1728	
4320	min	Summer	1.989	0.0	2464	
5760	min	Summer	1.573	0.0	3168	
7200	min	Summer	1.311	0.0	3824	
8640	min	Summer	1.129	0.0	4496	
10080	min	Summer	0.994	0.0	5144	
15	min	Winter	138.153	0.0	18	
30	min	Winter	90.705	0.0	33	

BLI Consulting					
Norwich	Residential Development				
Norfolk	Garden House Lane	Constant of the			
	Rickinghall, Suffolk	Mirro			
Date 11/02/2022	Designed by RSM	Drainago			
File M100+CC_SOAKAWAY_PLOT 5B.SRCX	Checked by RSM	Diamaye			
Causeway	Source Control 2020.1.3	-			

	Stori Event	n E	Max Level (m)	Max Depth (m)	Max Infiltration (1/s)	Max Volume (m³)	Status
60	min	Winter	1.314	0.314	0.1	2.7	ОК
120	min	Winter	1.362	0.362	0.1	3.1	ОК
180	min	Winter	1.381	0.381	0.1	3.3	ОК
240	min	Winter	1.389	0.389	0.1	3.3	ОК
360	min	Winter	1.389	0.389	0.1	3.3	ОК
480	min	Winter	1.381	0.381	0.1	3.3	ОК
600	min	Winter	1.373	0.373	0.1	3.2	ОК
720	min	Winter	1.365	0.365	0.1	3.1	ОК
960	min	Winter	1.345	0.345	0.1	2.9	ОК
1440	min	Winter	1.303	0.303	0.1	2.6	ОК
2160	min	Winter	1.244	0.244	0.1	2.1	ОК
2880	min	Winter	1.194	0.194	0.1	1.7	ОК
4320	min	Winter	1.117	0.117	0.1	1.0	ОК
5760	min	Winter	1.065	0.065	0.0	0.6	ОК
7200	min	Winter	1.047	0.047	0.0	0.4	ОК
8640	min	Winter	1.041	0.041	0.0	0.3	ОК
10080	min	Winter	1.036	0.036	0.0	0.3	ОК

Storm		Rain	Flooded	Time-Peak	
	Even	it	(mm/hr)	Volume	(mins)
				(m³)	
60	min	Winter	56.713	0.0	62
120	min	Winter	34.246	0.0	120
180	min	Winter	25.149	0.0	178
240	min	Winter	20.078	0.0	234
360	min	Winter	14.585	0.0	344
480	min	Winter	11.622	0.0	438
600	min	Winter	9.738	0.0	472
720	min	Winter	8.424	0.0	548
960	min	Winter	6.697	0.0	702
1440	min	Winter	4.839	0.0	998
2160	min	Winter	3.490	0.0	1428
2880	min	Winter	2.766	0.0	1820
4320	min	Winter	1.989	0.0	2552
5760	min	Winter	1.573	0.0	3176
7200	min	Winter	1.311	0.0	3744
8640	min	Winter	1.129	0.0	4480
10080	min	Winter	0.994	0.0	5144

BLI Consulting		Page 35
Norwich	Residential Development	
Norfolk	Garden House Lane	and the second second
	Rickinghall, Suffolk	Mirro
Date 11/02/2022	Designed by RSM	Desinance
File M100+CC_SOAKAWAY_PLOT 5B.SRCX	Checked by RSM	ulainaye
Causeway	Source Control 2020.1.3	-
Rainfall Model Return Period (years) Region Eng M5-60 (mm) Ratio R Summer Storms	Rainfall Details FSR Winter Storms Yes 100 Cv (Summer) 0.750 gland and Wales Cv (Winter) 0.840 20.000 Shortest Storm (mins) 15 0.400 Longest Storm (mins)10080 Yes Climate Change % +40	
<u></u>	ime Area Diagram	
т	otal Area (ha)0.006	
	Time (mins) Area From: To: (ha)	
	0 4 0.006	

BLI Consulting		Page 36									
Norwich		Residential Devel	opment								
Norfolk		Garden House Lane		Street Street							
	Rickinghall, Suff	olk			Mirro						
Date 11/02/2022		Designed by RSM				Drainago					
File M100+CC_SOAKAWAY_PLOT 5B.SRCX		Checked by RSM				Diamage					
Causeway		Source Control 20	20.1.3		ŀ						
		Model Details									
Storage is Online Cover Level (m) 1 400											
Cel	Collular Storage Structure										
<u></u>											
Infiltration Coeffi Infiltration Coeffic	Inve icie: cien	ert Level (m) 1.000 nt Base (m/hr) 0.0 t Side (m/hr) 0.054!) Safety 15458 Por 58	Factor 3.0 cosity 0.95							
Depth (m) Area (m ²) Inf. Area (m ²) Depth	(m)	Area (m²) Inf. Area	a (m²) Dej	pth (m) Area	a (m²) I	nf. Area (m²)					
0.000 9.0 9.0 0.	.400	9.0	14.2	0.500	0.0	14.2					
· ·			I								

BLI Consulting	Page 37								
Norwich	Re	sident	ial Developr	nent					
Norfolk	Ga	rden H	louse Lane	No.					
	Ri	ckingł	all, Suffoll	۲.		Micro			
Date 11/02/2022	De	signed	l by RSM			Designed			
File M100+CC SOAKAWAY PLOT 6.SRCX	Ch	ecked	by RSM			urainage			
	Co		$\frac{1}{2}$	1 2					
Causeway	50	urce (2020	.1.3					
Summary of Results for 100 year Return Period (+40%)									
Half Dr	ain	Time	: 781 minutes	•					
Storm Ma	ax	Max	Max	Max	Status				
Event Le	vel	Depth	Infiltration	Volume					
(1	m)	(m)	(1/s)	(m³)					
15 min Summer 1	200	0 322	0 1	6 1	O K				
30 min Summer 1.4	419	0.419	0.1	8.0	0 K				
60 min Summer 1.5	514	0.514	0.2	9.8	O K				
120 min Summer 1.6	602	0.602	0.2	11.4	ОК				
180 min Summer 1.6	643	0.643	0.2	12.2	O K				
240 min Summer 1.6	664	0.664	0.2	12.6	O K				
360 min Summer 1.6	682	0.682	0.2	13.0	O K				
480 min Summer 1.6	684	0.684	0.2	13.0	O K				
600 min Summer 1.6	678	0.678	0.2	12.9	O K				
720 min Summer 1.6	671	0.671	0.2	12.7	O K				
960 min Summer 1.6	655	0.655	0.2	12.4	O K				
1440 min Summer 1.6	619	0.619	0.2	11.8	O K				
2160 min Summer 1.	568	0.568	0.2	10.8	O K				
2880 min Summer 1.	521	0.521	0.2	9.9	O K				
4320 min Summer 1.4	438	0.438	0.1	8.3	ΟK				
5760 min Summer 1.3	367	0.367	0.1	7.0	ΟK				
7200 min Summer 1.3	306	0.306	0.1	5.8	ОК				
8640 min Summer 1.2	254	0.254	0.1	4.8	ОК				
10080 min Summer 1.2	210	0.210	0.1	4.0	ОК				
15 min Winter 1.3	361	0.361	0.1	6.9	ОК				
30 min Winter 1.4	470	0.470	0.2	8.9	ОК				

Storm		Rain	Flooded	Time-Peak	
	Even	it	(mm/hr)	Volume	(mins)
				(m³)	
15	min	Summer	138.153	0.0	19
30	min	Summer	90.705	0.0	34
60	min	Summer	56.713	0.0	64
120	min	Summer	34.246	0.0	122
180	min	Summer	25.149	0.0	182
240	min	Summer	20.078	0.0	242
360	min	Summer	14.585	0.0	362
480	min	Summer	11.622	0.0	480
600	min	Summer	9.738	0.0	560
720	min	Summer	8.424	0.0	612
960	min	Summer	6.697	0.0	738
1440	min	Summer	4.839	0.0	996
2160	min	Summer	3.490	0.0	1408
2880	min	Summer	2.766	0.0	1820
4320	min	Summer	1.989	0.0	2636
5760	min	Summer	1.573	0.0	3400
7200	min	Summer	1.311	0.0	4176
8640	min	Summer	1.129	0.0	4920
10080	min	Summer	0.994	0.0	5640
15	min	Winter	138.153	0.0	19
30	min	Winter	90.705	0.0	33

BLI Consulting					
Norwich	Residential Development				
Norfolk	Garden House Lane	Constant of the			
	Rickinghall, Suffolk	Mirro			
Date 11/02/2022	Designed by RSM	Drainago			
File M100+CC_SOAKAWAY_PLOT 6.SRCX	Checked by RSM	ulan laye			
Causeway	Source Control 2020.1.3	-			

	Stori Event	n =	Max Level (m)	Max Depth (m)	Max Infiltration (l/s)	Max Volume (m³)	Status
60	min	Winter	1.578	0.578	0.2	11.0	ОК
120	min	Winter	1.679	0.679	0.2	12.9	ОК
180	min	Winter	1.727	0.727	0.2	13.8	ОК
240	min	Winter	1.753	0.753	0.2	14.3	ОК
360	min	Winter	1.779	0.779	0.2	14.8	ОК
480	min	Winter	1.787	0.787	0.2	14.9	ОК
600	min	Winter	1.784	0.784	0.2	14.9	ОК
720	min	Winter	1.776	0.776	0.2	14.7	ОК
960	min	Winter	1.754	0.754	0.2	14.3	ОК
1440	min	Winter	1.710	0.710	0.2	13.5	ОК
2160	min	Winter	1.638	0.638	0.2	12.1	ОК
2880	min	Winter	1.570	0.570	0.2	10.8	ОК
4320	min	Winter	1.450	0.450	0.1	8.6	ОК
5760	min	Winter	1.350	0.350	0.1	6.7	ОК
7200	min	Winter	1.267	0.267	0.1	5.1	ОК
8640	min	Winter	1.198	0.198	0.1	3.8	ОК
10080	min	Winter	1.141	0.141	0.1	2.7	ОК

Storm			Rain	Time-Peak	
Event			(mm/hr)	Volume	(mins)
				(m³)	
60	min	Winter	56.713	0.0	62
120	min	Winter	34.246	0.0	120
180	min	Winter	25.149	0.0	180
240	min	Winter	20.078	0.0	238
360	min	Winter	14.585	0.0	352
480	min	Winter	11.622	0.0	464
600	min	Winter	9.738	0.0	572
720	min	Winter	8.424	0.0	676
960	min	Winter	6.697	0.0	770
1440	min	Winter	4.839	0.0	1070
2160	min	Winter	3.490	0.0	1532
2880	min	Winter	2.766	0.0	1964
4320	min	Winter	1.989	0.0	2812
5760	min	Winter	1.573	0.0	3624
7200	min	Winter	1.311	0.0	4392
8640	min	Winter	1.129	0.0	5104
10080	min	Winter	0.994	0.0	5752

BLI Consulting	Page 39							
Norwich	Residential Development							
Norfolk	Garden House Lane	State of the second						
	Rickinghall, Suffolk	Mirro						
Date 11/02/2022	Designed by RSM	Dcainage						
File M100+CC_SOAKAWAY_PLOT 6.SRCX	Checked by RSM	urainaye						
Causeway	Source Control 2020.1.3	-						
Rainfall Model Return Period (years) Region Eng M5-60 (mm) Ratio R Summer Storms <u>T</u>								
Time (mins) Area From: To: (ha)								
	0 4 0.024							

BLI Consulting								Page 40						
Norwich				Residential Development										
Norfolk				Garden House Lane				Sec. 1						
				Rickinghall, Suffolk				Micro						
Date 11/02/20)22		Des	Designed by RSM				Drainage						
File M100+CC_	_SOAKAWAY_PL	JOT 6.SRCX	Che	Checked by RSM				Diamaye						
Causeway			Sou	Source Control 2020.1.3										
	MODEL DETAILS													
Storage is Online Cover Level (m) 1.800														
	Cellular Storage Structure													
	Invert Level (m) 1.000 Safety Factor 3.0 Infiltration Coefficient Base (m/hr) 0.05458 Porosity 0.95													
THILLFRELIGH COEFFICIENT SIDE $(M/Mr) = 0.05458$ Depth (m) Area (m ²) Thf. Area (m ²) Depth (m) Area (m ²) Thf. Area (m ²) Depth (m) Area (m ²) Thf. Area (m ²)														
0.000	20.0	20.0 0	.800	20.0	36.8	0.900	0.0	36.8						
		I			I									
BLI Consulting	Page 41													
-----------------------------------	---------	--------	---------------	-----------------------	--------	----------								
Norwich														
Norfolk	Ga	rden H	louse Lane	and the second second										
	Ri	ckingł	all, Suffol	k		Micro								
Date 11/02/2022	De	signed	l by RSM			Desinado								
File M100+CC_SOAKAWAY_PLOT 7.SRCX	Ch	ecked	by RSM			uramaye								
Causeway	So	urce (Control 2020	.1.3										
* 														
Summary of Results	for	100	year Return	Period	(+40%)									
Half Dr	rain	Time	: 781 minutes											
	ain	TIME	· /or minuces	•										
Storm M	ax	Max	Max	Max	Status									
Event Le	vel	Depth	Infiltration	Volume										
(:	m)	(m)	(1/s)	(m³)										
15 min Summer 1.	322	0.322	0.1	6.1	ОК									
30 min Summer 1.	419	0.419	0.1	8.0	ОК									
60 min Summer 1.	514	0.514	0.2	9.8	ОК									
120 min Summer 1.	602	0.602	0.2	11.4	ОК									
180 min Summer 1.	643	0.643	0.2	12.2	ОК									
240 min Summer 1.	664	0.664	0.2	12.6	ОК									
360 min Summer 1.	682	0.682	0.2	13.0	ОК									
480 min Summer 1.	684	0.684	0.2	13.0	ОК									
600 min Summer 1.	678	0.678	0.2	12.9	O K									
720 min Summer 1.	671	0.671	0.2	12.7	O K									
960 min Summer 1.	655	0.655	0.2	12.4	ОК									
1440 min Summer 1.	619	0.619	0.2	11.8	ОК									
2160 min Summer 1.	568	0.568	0.2	10.8	ОК									
2880 min Summer 1.	521	0.521	0.2	9.9	ОК									
4320 min Summer 1.	438	0.438	0.1	8.3	ОК									
5760 min Summer 1.	367	0.367	0.1	7.0	ОК									
7200 min Summer 1.	306	0.306	0.1	5.8	O K									
8640 min Summer 1.	254	0.254	0.1	4.8	ОК									
10080 min Summer 1.	210	0.210	0.1	4.0	ОК									
15 min Winter 1.	361	0.361	0.1	6.9	ОК									
30 min Winter 1.	470	0.470	0.2	8.9	ОК									

Storm		Rain	Flooded	Time-Peak	
Event		(mm/hr)	Volume	(mins)	
				(m³)	
15	min	Summer	138.153	0.0	19
30	min	Summer	90.705	0.0	34
60	min	Summer	56.713	0.0	64
120	min	Summer	34.246	0.0	122
180	min	Summer	25.149	0.0	182
240	min	Summer	20.078	0.0	242
360	min	Summer	14.585	0.0	362
480	min	Summer	11.622	0.0	480
600	min	Summer	9.738	0.0	560
720	min	Summer	8.424	0.0	612
960	min	Summer	6.697	0.0	738
1440	min	Summer	4.839	0.0	996
2160	min	Summer	3.490	0.0	1408
2880	min	Summer	2.766	0.0	1820
4320	min	Summer	1.989	0.0	2636
5760	min	Summer	1.573	0.0	3400
7200	min	Summer	1.311	0.0	4176
8640	min	Summer	1.129	0.0	4920
10080	min	Summer	0.994	0.0	5640
15	min	Winter	138.153	0.0	19
30	min	Winter	90.705	0.0	33

BLI Consulting		Page 42
Norwich	Residential Development	
Norfolk	Garden House Lane	Constant of the
	Rickinghall, Suffolk	Mirro
Date 11/02/2022	Designed by RSM	Drainage
File M100+CC_SOAKAWAY_PLOT 7.SRCX	Checked by RSM	ulan laye
Causeway	Source Control 2020.1.3	

	Stori Event	n =	Max Level (m)	Max Depth (m)	Max Infiltration (l/s)	Max Volume (m³)	Status
60	min	Winter	1.578	0.578	0.2	11.0	ОК
120	min	Winter	1.679	0.679	0.2	12.9	ОК
180	min	Winter	1.727	0.727	0.2	13.8	ОК
240	min	Winter	1.753	0.753	0.2	14.3	ОК
360	min	Winter	1.779	0.779	0.2	14.8	ОК
480	min	Winter	1.787	0.787	0.2	14.9	ОК
600	min	Winter	1.784	0.784	0.2	14.9	ОК
720	min	Winter	1.776	0.776	0.2	14.7	ОК
960	min	Winter	1.754	0.754	0.2	14.3	ОК
1440	min	Winter	1.710	0.710	0.2	13.5	ОК
2160	min	Winter	1.638	0.638	0.2	12.1	ОК
2880	min	Winter	1.570	0.570	0.2	10.8	ОК
4320	min	Winter	1.450	0.450	0.1	8.6	ОК
5760	min	Winter	1.350	0.350	0.1	6.7	ОК
7200	min	Winter	1.267	0.267	0.1	5.1	ОК
8640	min	Winter	1.198	0.198	0.1	3.8	ОК
10080	min	Winter	1.141	0.141	0.1	2.7	ОК

Storm		Rain	Flooded	Time-Peak	
	Even	it	(mm/hr)	Volume	(mins)
				(m³)	
60	min	Winter	56.713	0.0	62
120	min	Winter	34.246	0.0	120
180	min	Winter	25.149	0.0	180
240	min	Winter	20.078	0.0	238
360	min	Winter	14.585	0.0	352
480	min	Winter	11.622	0.0	464
600	min	Winter	9.738	0.0	572
720	min	Winter	8.424	0.0	676
960	min	Winter	6.697	0.0	770
1440	min	Winter	4.839	0.0	1070
2160	min	Winter	3.490	0.0	1532
2880	min	Winter	2.766	0.0	1964
4320	min	Winter	1.989	0.0	2812
5760	min	Winter	1.573	0.0	3624
7200	min	Winter	1.311	0.0	4392
8640	min	Winter	1.129	0.0	5104
10080	min	Winter	0.994	0.0	5752

BLI Consulting		Page 43				
Norwich	Residential Development					
Norfolk	Garden House Lane	and the second s				
	Rickinghall, Suffolk	Mirro				
Date 11/02/2022	Designed by RSM	Drainago				
File M100+CC_SOAKAWAY_PLOT 7.SRCX	Checked by RSM	uran naye				
Causeway	Source Control 2020.1.3					
Rainfall Model Return Period (years) Region Eng	Rainfall Details FSR Winter Storms Yes 100 Cv (Summer) 0.750 gland and Wales Cv (Winter) 0.840 20 000 Shewtest Stewn (Fing. 15					
Ratio R	0.400 Longest Storm (mins) 15					
Summer Storms	Yes Climate Change % +40					
<u>Time Area Diagram</u> Total Area (ha)0.024						
	Time (mins) Area					
	From: To: (ha)					
	0 4 0.024					

BLI Consulting		Page 44
Norwich	Residential Development	
Norfolk	Garden House Lane	Constant in
	Rickinghall, Suffolk	Mirro
Date 11/02/2022	Designed by RSM	Drainago
File M100+CC_SOAKAWAY_PLOT 7.SRCX	Checked by RSM	uraniage
Causeway	Source Control 2020.1.3	
	Model Details	
Storage i	s Online Cover Level (m) 1.800	
Cell	ular Storage Structure	
I	nvert Level (m) 1.000 Safety Factor 3.0	
Infiltration Coeffic Infiltration Coeffic	ient Base (m/hr) 0.05458 Porosity 0.95 ient Side (m/hr) 0.05458	
Depth (m) Area (m ²) Inf. Area (m ²) Depth	(m) Area (m ²) Inf. Area (m ²) Depth (m) Area (m ²)	Inf. Area (m²)
0.000 20.0 20.0 0.8	300 20.0 36.8 0.900 0.0	36.8

BLI Consulting						Page 45
Norwich	Re	esident	ial Develop	ment		
Norfolk	Ga	arden H	louse Lane			A Company of the
	Ri	ckingh	all, Suffol	k		Micco
Date 11/02/2022	De	signed	by RSM			
File M100+CC SOAKAWAY PLOT 8A.SRCX	Ch	necked	by RSM			Urainage
	02		$\frac{2}{2}$	1 2		
Causeway	50	Jurce (.0111101 2020	.1.3		
Summary of Regul	te foi	r 100 t	year Return	Deriod	(+40%)	
Summary of Resul	.05 101	100		101100	(1108)	
Hal	f Draim	n Time	: 709 minutes			
Storm	Max	Max	Max	Max	Status	
Event	Level	Depth	Infiltration	Volume		
	(m)	(m)	(1/s)	(m³)		
15 min Summer	r 1.318	0.318	0.1	4.8	ОК	
30 min Summer	r 1.414	0.414	0.1	6.3	0 K	
60 min Summer	r 1.508	0.508	0.1	7.7	ОК	
120 min Summer	r 1.593	0.593	0.1	9.0	O K	
180 min Summer	r 1.632	0.632	0.1	9.6	O K	
240 min Summer	r 1.652	0.652	0.1	9.9	O K	
360 min Summer	r 1.667	0.667	0.1	10.1	O K	
480 min Summer	r 1.666	0.666	0.1	10.1	O K	
600 min Summer	r 1.659	0.659	0.1	10.0	O K	
720 min Summer	r 1.652	0.652	0.1	9.9	O K	
960 min Summer	r 1.636	0.636	0.1	9.7	O K	
1440 min Summer	r 1.600	0.600	0.1	9.1	O K	
2160 min Summer	r 1.547	0.547	0.1	8.3	O K	
2880 min Summer	r 1.500	0.500	0.1	7.6	O K	
4320 min Summer	r 1.417	0.417	0.1	6.3	O K	
5760 min Summer	r 1.348	0.348	0.1	5.3	O K	
7200 min Summer	r 1.289	0.289	0.1	4.4	O K	
8640 min Summer	r 1.239	0.239	0.1	3.6	O K	
10080 min Summer	r 1.196	0.196	0.1	3.0	O K	
15 min Winter	r 1.357	0.357	0.1	5.4	O K	
30 min Winter	r 1.464	0.464	0.1	7.1	O K	

Storm			Rain	Flooded	Time-Peak
	Even	t	(mm/hr)	Volume	(mins)
				(m³)	
15	min	Summer	138.153	0.0	19
30	min	Summer	90.705	0.0	34
60	min	Summer	56.713	0.0	64
120	min	Summer	34.246	0.0	122
180	min	Summer	25.149	0.0	182
240	min	Summer	20.078	0.0	242
360	min	Summer	14.585	0.0	360
480	min	Summer	11.622	0.0	478
600	min	Summer	9.738	0.0	524
720	min	Summer	8.424	0.0	588
960	min	Summer	6.697	0.0	712
1440	min	Summer	4.839	0.0	982
2160	min	Summer	3.490	0.0	1404
2880	min	Summer	2.766	0.0	1816
4320	min	Summer	1.989	0.0	2596
5760	min	Summer	1.573	0.0	3392
7200	min	Summer	1.311	0.0	4112
8640	min	Summer	1.129	0.0	4848
10080	min	Summer	0.994	0.0	5552
15	min	Winter	138.153	0.0	19
30	min	Winter	90.705	0.0	33

©1982-2020 Innovyze

BLI Consulting	Page 46	
Norwich	Residential Development	
Norfolk	Garden House Lane	Sec. 1
	Rickinghall, Suffolk	Mirro
Date 11/02/2022	Designed by RSM	Drainago
File M100+CC_SOAKAWAY_PLOT 8A.SRCX	Checked by RSM	uran raye
Causeway	Source Control 2020.1.3	

	Storm Event		Max Level (m)	Max Depth (m)	Max Infiltration (1/s)	Max Volume (m³)	Status
60	min V	Winter	1.571	0.571	0.1	8.7	ОК
120	min V	Winter	1.669	0.669	0.1	10.2	ОК
180	min V	Winter	1.715	0.715	0.2	10.9	ОК
240	min V	Winter	1.739	0.739	0.2	11.2	ОК
360	min V	Winter	1.762	0.762	0.2	11.6	ОК
480	min V	Winter	1.766	0.766	0.2	11.7	ОК
600	min V	Winter	1.761	0.761	0.2	11.6	ОК
720	min V	Winter	1.751	0.751	0.2	11.4	ОК
960	min V	Winter	1.731	0.731	0.2	11.1	ОК
1440	min V	Winter	1.684	0.684	0.2	10.4	ОК
2160	min V	Winter	1.611	0.611	0.1	9.3	ОК
2880	min V	Winter	1.542	0.542	0.1	8.2	ОК
4320	min V	Winter	1.423	0.423	0.1	6.4	ОК
5760	min V	Winter	1.326	0.326	0.1	5.0	ОК
7200	min V	Winter	1.247	0.247	0.1	3.8	ОК
8640	min V	Winter	1.182	0.182	0.1	2.8	ОК
10080	min V	Winter	1.129	0.129	0.1	2.0	ОК

Storm		Rain	Flooded	Time-Peak	
Event			(mm/hr)	Volume	(mins)
				(m³)	
60	min	Winter	56.713	0.0	62
120	min	Winter	34.246	0.0	120
180	min	Winter	25.149	0.0	180
240	min	Winter	20.078	0.0	236
360	min	Winter	14.585	0.0	350
480	min	Winter	11.622	0.0	462
600	min	Winter	9.738	0.0	568
720	min	Winter	8.424	0.0	664
960	min	Winter	6.697	0.0	750
1440	min	Winter	4.839	0.0	1056
2160	min	Winter	3.490	0.0	1512
2880	min	Winter	2.766	0.0	1956
4320	min	Winter	1.989	0.0	2768
5760	min	Winter	1.573	0.0	3576
7200	min	Winter	1.311	0.0	4328
8640	min	Winter	1.129	0.0	5024
10080	min	Winter	0.994	0.0	5744

BLI Consulting		Page 47
Norwich		
Norfolk	Garden House Lane	Concernant of the second
	Rickinghall, Suffolk	Mirro
Date 11/02/2022	Designed by RSM	Drainago
File M100+CC_SOAKAWAY_PLOT 8A.SRCX	Checked by RSM	urainaye
Causeway	Source Control 2020.1.3	
	Rainfall Details	
Rainfall Model	FSR Winter Storms Yes	
Return Period (years)	100 Cv (Summer) 0.750	
Region Eng	gland and Wales Cv (Winter) 0.840	
M5-60 (mm)	20.000 Shortest Storm (mins) 15	
Ratio R	0.400 Longest Storm (mins) 10080	
Summer Storms	Yes Climate Change % +40	
Ţ	'ime Area Diagram	
T	otal Area (ha)0.019	
	Time (mins) Area From: To: (ha)	
	0 4 0.019	

BLI Congulting							Dage 48
Norwich		D	acidential	Developmen	F		rage 10
Norwich				Deveropmen			
NOFTOIK		G	arden House		and and		
•		R.	ickinghall	, Suffolk			Micro
Date 11/02/2022 Designed by RSM							Drainage
File M100+CC_SOAKA	WAY_PLOT 8A.SRC	X C.	hecked by I		Brain inge		
Causeway		S	ource Cont:	col 2020.1.	3		
		M	odel Detai	ls			
	Stor	rage is On	line Cover I	Level (m) 1.8	00		
		Cellular	Storage S	tructure			
	Infiltration Co Infiltration Co	Invert Defficient efficient	t Level (m) Base (m/h: Side (m/hr)	1.000 Safet r) 0.05458 1 0.05458	ty Factor 3. Porosity 0.9	. 0 95	
Depth (m) Area (m ²) Inf. Area (m²) D	epth (m) A	rea (m²) In:	E. Area (m²)	Depth (m) Ar	ea (m²)]	Inf. Area (m²)
0.000 16.0	16.0	0.800	16.0	32.0	0.900	0.0	32.0

BLI Consulting						Page 49
Norwich	Re	sident	ial Develop	ment		
Norfolk	Ga	rden H	louse Lane			Sec. 1
	Ri	ckingł	all, Suffol	k		Mirro
Date 11/02/2022	De	signed	by RSM			MILIU
File M100+CC SOAKAWAY PLOT 8B SECX	Ch	ecked	by RSM			Urainage
FIIC MIDDICE_DOARAWAI_FEDT OD.DRCK	011	CCACU		1 0		
Causeway	Sc	urce (Control 2020	.1.3		
Summary of Resu	ults for	: 100 ·	year Return	Period	(+40%)	
		-	-		<u>`</u>	
Ha	alf Drain	n Time	: 444 minutes	•		
Storm	Max	Max	Max	Max	Status	
Event	Level	Depth	Infiltration	Volume		
	(m)	(m)	(l/s)	(m³)		
15 min Summ	er 1.177	0.177	0.1	1.5	ОК	
30 min Summ	er 1.229	0.229	0.1	2.0	O K	
60 min Summ	er 1.279	0.279	0.1	2.4	ОК	
120 min Summ	er 1.320	0.320	0.1	2.7	ΟK	
180 min Summ	er 1.335	0.335	0.1	2.9	ΟK	
240 min Summ	er 1.340	0.340	0.1	2.9	ОК	
360 min Summ	er 1.337	0.337	0.1	2.9	ОК	
480 min Summ	er 1.332	0.332	0.1	2.8	ΟK	
600 min Summ	er 1.326	0.326	0.1	2.8	ΟK	
720 min Summ	er 1.319	0.319	0.1	2.7	ОК	
960 min Summ	er 1.304	0.304	0.1	2.6	O K	
1440 min Summ	er 1.275	0.275	0.1	2.4	ОК	
2160 min Summ	er 1.236	0.236	0.1	2.0	ΟK	
2880 min Summ	er 1.201	0.201	0.1	1.7	ОК	
4320 min Summ	er 1.145	0.145	0.1	1.2	ΟK	
5760 min Summ	er 1.103	0.103	0.1	0.9	O K	
7200 min Summ	er 1.074	0.074	0.1	0.6	ОК	
8640 min Summ	er 1.056	0.056	0.0	0.5	ОК	
10080 min Summ	er 1.048	0.048	0.0	0.4	ОК	
15 min Wint	er 1.198	0.198	0.1	1.7	O K	
30 min Wint	er 1.257	0.257	0.1	2.2	ОК	

Storm		Rain	Flooded	Time-Peak	
	Even	t	(mm/hr)	Volume	(mins)
				(m³)	
15	min	Summer	138.153	0.0	19
30	min	Summer	90.705	0.0	33
60	min	Summer	56.713	0.0	62
120	min	Summer	34.246	0.0	122
180	min	Summer	25.149	0.0	182
240	min	Summer	20.078	0.0	240
360	min	Summer	14.585	0.0	324
480	min	Summer	11.622	0.0	382
600	min	Summer	9.738	0.0	446
720	min	Summer	8.424	0.0	512
960	min	Summer	6.697	0.0	648
1440	min	Summer	4.839	0.0	924
2160	min	Summer	3.490	0.0	1320
2880	min	Summer	2.766	0.0	1728
4320	min	Summer	1.989	0.0	2464
5760	min	Summer	1.573	0.0	3168
7200	min	Summer	1.311	0.0	3824
8640	min	Summer	1.129	0.0	4496
10080	min	Summer	0.994	0.0	5144
15	min	Winter	138.153	0.0	18
30	min	Winter	90.705	0.0	33

BLI Consulting					
Norwich	Residential Development				
Norfolk	Garden House Lane	Constant of the			
	Rickinghall, Suffolk	Mirro			
Date 11/02/2022	Designed by RSM	Drainage			
File M100+CC_SOAKAWAY_PLOT 8B.SRCX	Checked by RSM	ulan laye			
Causeway	Source Control 2020.1.3				

	Stor: Even	m t	Max Level (m)	Max Depth (m)	Max Infiltration (l/s)	Max Volume (m³)	Status
60	min	Winter	1.314	0.314	0.1	2.7	ОК
120	min	Winter	1.362	0.362	0.1	3.1	ОК
180	min	Winter	1.381	0.381	0.1	3.3	ОК
240	min	Winter	1.389	0.389	0.1	3.3	ОК
360	min	Winter	1.389	0.389	0.1	3.3	ОК
480	min	Winter	1.381	0.381	0.1	3.3	ОК
600	min	Winter	1.373	0.373	0.1	3.2	ΟK
720	min	Winter	1.365	0.365	0.1	3.1	ΟK
960	min	Winter	1.345	0.345	0.1	2.9	ΟK
1440	min	Winter	1.303	0.303	0.1	2.6	ΟK
2160	min	Winter	1.244	0.244	0.1	2.1	ΟK
2880	min	Winter	1.194	0.194	0.1	1.7	ΟK
4320	min	Winter	1.117	0.117	0.1	1.0	ΟK
5760	min	Winter	1.065	0.065	0.0	0.6	ΟK
7200	min	Winter	1.047	0.047	0.0	0.4	ОК
8640	min	Winter	1.041	0.041	0.0	0.3	ОК
10080	min	Winter	1.036	0.036	0.0	0.3	ΟK

Storm		Rain	Flooded	Time-Peak	
	Even	it	(mm/hr)	Volume	(mins)
				(m³)	
60	min	Winter	56.713	0.0	62
120	min	Winter	34.246	0.0	120
180	min	Winter	25.149	0.0	178
240	min	Winter	20.078	0.0	234
360	min	Winter	14.585	0.0	344
480	min	Winter	11.622	0.0	438
600	min	Winter	9.738	0.0	472
720	min	Winter	8.424	0.0	548
960	min	Winter	6.697	0.0	702
1440	min	Winter	4.839	0.0	998
2160	min	Winter	3.490	0.0	1428
2880	min	Winter	2.766	0.0	1820
4320	min	Winter	1.989	0.0	2552
5760	min	Winter	1.573	0.0	3176
7200	min	Winter	1.311	0.0	3744
8640	min	Winter	1.129	0.0	4480
10080	min	Winter	0.994	0.0	5144

BLI Consulting		Page 51
Norwich	Residential Development	
Norfolk	Garden House Lane	Sec. 1
	Rickinghall, Suffolk	Mirro
Date 11/02/2022	Designed by RSM	Dcainage
File M100+CC_SOAKAWAY_PLOT 8B.SRCX	Checked by RSM	Diamaye
Causeway	Source Control 2020.1.3	I
Rainfall Model Return Period (years) Region End	Rainfall DetailsFSRWinter StormsYes100Cv (Summer) 0.750gland and WalesCv (Winter) 0.840	
M5-60 (mm)	20.000 Shortest Storm (mins) 15	
Ratio R	0.400 Longest Storm (mins) 10080	
	'ime Area Diagram	
	Time (mins) Area From: To: (ha)	
	0 4 0.006	

BLI Consulting		Page 52
Norwich	Residential Development	
Norfolk	Garden House Lane	Sec. 1
	Rickinghall, Suffolk	Micro
Date 11/02/2022	Designed by RSM	
File M100+CC_SOAKAWAY_PLOT 8B.SRCX	Checked by RSM	urainaye
Causeway	Source Control 2020.1.3	
	Model Details	
Storage is	Online Cover Level (m) 1.400	
Cellu	lar Storage Structure	
In	vert Level (m) 1.000 Safety Factor 3.0	
Infiltration Coefficie	ent Base (m/hr) 0.05458 Porosity 0.95	
Inflitration Coefficie	nt Side (m/nr) 0.05458	
Depth (m) Area (m ²) Inf. Area (m ²) Depth (m	h) Area (m ²) Inf. Area (m ²) Depth (m) Area (m ²)	Inf. Area (m²)
0.000 9.0 9.0 0.40	0 9.0 14.2 0.500 0.0	14.2

BLI Consulting						Page 53
Norwich	Re	sident	ial Develop	ment		
Norfolk	Ga	rden H	louse Lane			Sec. 1
	Ri	ckingł	nall, Suffoll	ĸ		Micro
Date 11/02/2022	De	signed	l by RSM			
File M100+CC SOAKAWAY PLOT 9.SRCX	Ch	ecked	by RSM			Urainage
	0			1 2		
Causeway	50	ourde (CONCEON ZUZU	.1.3		
Summary of Results Half D	<u>for</u> rair	<u>2 100 2</u> n Time	year Return : 611 minutes	<u>Period</u>	(+40%)	
Storm N	ſax	Max	Max	Max	Status	
Event Le	evel	Depth	Infiltration	Volume		
	(m)	(m)	(1/s)	(m³)		
15 min Summor 1	206	0 206	0 1	2 0	O K	
30 min Summer 1	300	0.300	0.1	4 0	0 K 0 K	
60 min Summer 1.	486	0.486	0.1	4.9	0 K	
120 min Summer 1.	565	0.565	0.1	5.6	ОК	
180 min Summer 1.	600	0.600	0.1	6.0	O K	
240 min Summer 1.	616	0.616	0.1	6.1	O K	
360 min Summer 1.	625	0.625	0.1	6.2	O K	
480 min Summer 1.	621	0.621	0.1	6.2	O K	
600 min Summer 1.	614	0.614	0.1	6.1	O K	
720 min Summer 1.	607	0.607	0.1	6.1	O K	
960 min Summer 1.	590	0.590	0.1	5.9	O K	
1440 min Summer 1.	553	0.553	0.1	5.5	O K	
2160 min Summer 1.	500	0.500	0.1	5.0	O K	
2880 min Summer 1.	453	0.453	0.1	4.5	O K	
4320 min Summer 1.	372	0.372	0.1	3.7	O K	
5760 min Summer 1.	306	0.306	0.1	3.0	O K	
7200 min Summer 1.	250	0.250	0.1	2.5	O K	
8640 min Summer 1.	204	0.204	0.1	2.0	O K	
10080 min Summer 1.	166	0.166	0.1	1.7	O K	
15 min Winter 1.	343	0.343	0.1	3.4	O K	
30 min Winter 1.	446	0.446	0.1	4.4	O K	

Storm			Rain	Flooded	Time-Peak
	Even	t	(mm/hr)	Volume	(mins)
				(m³)	
15	min	Summer	138.153	0.0	19
30	min	Summer	90.705	0.0	34
60	min	Summer	56.713	0.0	64
120	min	Summer	34.246	0.0	122
180	min	Summer	25.149	0.0	182
240	min	Summer	20.078	0.0	242
360	min	Summer	14.585	0.0	360
480	min	Summer	11.622	0.0	438
600	min	Summer	9.738	0.0	494
720	min	Summer	8.424	0.0	556
960	min	Summer	6.697	0.0	684
1440	min	Summer	4.839	0.0	964
2160	min	Summer	3.490	0.0	1368
2880	min	Summer	2.766	0.0	1784
4320	min	Summer	1.989	0.0	2556
5760	min	Summer	1.573	0.0	3344
7200	min	Summer	1.311	0.0	4104
8640	min	Summer	1.129	0.0	4760
10080	min	Summer	0.994	0.0	5544
15	min	Winter	138.153	0.0	19
30	min	Winter	90.705	0.0	33

BLI Consulting					
Norwich	Residential Development				
Norfolk	Garden House Lane	Constant of the			
	Rickinghall, Suffolk	Mirro			
Date 11/02/2022	Designed by RSM	Drainage			
File M100+CC_SOAKAWAY_PLOT 9.SRCX	Checked by RSM	ulan laye			
Causeway	Source Control 2020.1.3				

	Stori Eveni	n t	Max Level (m)	Max Depth (m)	Max Infiltration (1/s)	Max Volume (m³)	Status
60	min	Winter	1.547	0.547	0.1	5.5	ОК
120	min	Winter	1.638	0.638	0.1	6.4	ОК
180	min	Winter	1.680	0.680	0.1	6.8	ΟK
240	min	Winter	1.700	0.700	0.1	7.0	ΟK
360	min	Winter	1.716	0.716	0.1	7.1	ОК
480	min	Winter	1.715	0.715	0.1	7.1	ОК
600	min	Winter	1.706	0.706	0.1	7.0	ОК
720	min	Winter	1.695	0.695	0.1	6.9	ΟK
960	min	Winter	1.675	0.675	0.1	6.7	ОК
1440	min	Winter	1.625	0.625	0.1	6.2	ΟK
2160	min	Winter	1.549	0.549	0.1	5.5	ΟK
2880	min	Winter	1.481	0.481	0.1	4.8	ΟK
4320	min	Winter	1.367	0.367	0.1	3.7	ΟK
5760	min	Winter	1.277	0.277	0.1	2.8	ΟK
7200	min	Winter	1.205	0.205	0.1	2.0	ОК
8640	min	Winter	1.147	0.147	0.1	1.5	ОК
10080	min	Winter	1.101	0.101	0.1	1.0	ΟK

	Stor	m	Rain	Flooded	Time-Peak
	Even	it	(mm/hr)	Volume	(mins)
				(m³)	
60	min	Winter	56.713	0.0	62
120	min	Winter	34.246	0.0	120
180	min	Winter	25.149	0.0	178
240	min	Winter	20.078	0.0	236
360	min	Winter	14.585	0.0	348
480	min	Winter	11.622	0.0	458
600	min	Winter	9.738	0.0	556
720	min	Winter	8.424	0.0	578
960	min	Winter	6.697	0.0	730
1440	min	Winter	4.839	0.0	1038
2160	min	Winter	3.490	0.0	1488
2880	min	Winter	2.766	0.0	1904
4320	min	Winter	1.989	0.0	2724
5760	min	Winter	1.573	0.0	3512
7200	min	Winter	1.311	0.0	4256
8640	min	Winter	1.129	0.0	4936
10080	min	Winter	0.994	0.0	5648

BLI Consulting		Page 55				
Norwich	Residential Development					
Norfolk	Garden House Lane	Sec. 1				
	Rickinghall, Suffolk	Mirro				
Date 11/02/2022	Designed by RSM	Drainago				
File M100+CC_SOAKAWAY_PLOT 9.SRCX	Checked by RSM	uran naye				
Causeway	Source Control 2020.1.3	I				
Rainfall Model Return Period (years) Region Eng M5-60 (mm)	Rainfall Details FSR Winter Storms Yes 100 Cv (Summer) 0.750 gland and Wales Cv (Winter) 0.840 20.000 Shortest Storm (mins) 15					
Ratio R	0.400 Longest Storm (mins) 10080					
Summer Storms Yes Climate Change % +40 <u>Time Area Diagram</u> Total Area (ha)0.012						
Time (mins) Area From: To: (ha) 0 4 0.012						

BLI Consulting		Page 56							
Norwich	Residential Development								
Norfolk	Garden House Lane	Sec. 1							
	Rickinghall, Suffolk	Micro							
Date 11/02/2022	Designed by RSM	Designation							
File M100+CC_SOAKAWAY_PLOT 9.SRCX	Checked by RSM	Diamaye							
Causeway	Source Control 2020.1.3								
	Model Details								
Storage i	s Online Cover Level (m) 1.800								
Cell	ular Storage Structure								
I Infiltration Coeffic Infiltration Coeffici	nvert Level (m) 1.000 Safety Factor 3.0 ient Base (m/hr) 0.05458 Porosity 0.95 .ent Side (m/hr) 0.05458								
Depth (m) Area (m ²) Inf. Area (m ²) Depth ((m) Area (m ²) Inf. Area (m ²) Depth (m) Area (m ²) I	nf. Area (m²)							
0.000 10.5 10.5 0.8	300 10.5 24.1 0.900 0.0	24.1							

BLI Consulting	Page 57								
Norwich	Res	sident	ial Developr	ment					
Norfolk	Gar	Garden House Lane				and the second second			
	Ric	ckingh	all, Suffoll	c		Micro			
Date 11/02/2022	Des	signed	l by RSM						
File M100+CC SOAKAWAY PLOT 10 SECX	Che	ecked	by RSM			Urainage			
	CIIC	Lenca		1 0					
Causeway	Soi	irce (control 2020	.1.3					
Summary of Results for 100 year Return Period (+40%) Half Drain Time : 671 minutes.									
Storm Ma	ax	Max	Max	Max	Status				
Event Lev	vel	Depth	Infiltration	Volume					
1)	m)	(m)	(1/s)	(m³)					
15 min Orman 1 C	201	0 201	0 1	2 1	0 "				
30 min Summer 1.4	5∠⊥ 418	0.321	0.1	3.1 4 0	OK				
60 min Summer 1.5	513	0.513	0.1	4.9	O K				
120 min Summer 1.5	598	0.598	0.1	5.7	0 K				
180 min Summer 1.6	536	0.636	0.1	6.0	ΟK				
240 min Summer 1.6	655	0.655	0.1	6.2	ΟK				
360 min Summer 1.6	569	0.669	0.1	6.4	ΟK				
480 min Summer 1.6	667	0.667	0.1	6.3	ΟK				
600 min Summer 1.6	560	0.660	0.1	6.3	ОК				
720 min Summer 1.6	653	0.653	0.1	6.2	O K				
960 min Summer 1.6	536	0.636	0.1	6.0	O K				
1440 min Summer 1.5	599	0.599	0.1	5.7	O K				
2160 min Summer 1.5	546	0.546	0.1	5.2	O K				
2880 min Summer 1.4	498	0.498	0.1	4.7	O K				
4320 min Summer 1.4	415	0.415	0.1	3.9	O K				
5760 min Summer 1.3	345	0.345	0.1	3.3	O K				
7200 min Summer 1.2	287	0.287	0.1	2.7	O K				
8640 min Summer 1.2	237	0.237	0.1	2.3	O K				
10080 min Summer 1.1	195	0.195	0.1	1.9	O K				
15 min Winter 1.3	360	0.360	0.1	3.4	O K				
30 min Winter 1.4	469	0.469	0.1	4.5	O K				

	Storm	Rain	Flooded	Time-Peak
	Event	(mm/hr)	Volume	(mins)
			(m³)	
15	min Summer	138.153	0.0	19
30	min Summer	90.705	0.0	34
60	min Summer	56.713	0.0	64
120	min Summer	34.246	0.0	122
180	min Summer	25.149	0.0	182
240	min Summer	20.078	0.0	242
360	min Summer	14.585	0.0	360
480	min Summer	11.622	0.0	468
600	min Summer	9.738	0.0	516
720	min Summer	8.424	0.0	576
960	min Summer	6.697	0.0	702
1440	min Summer	4.839	0.0	980
2160	min Summer	3.490	0.0	1388
2880	min Summer	2.766	0.0	1792
4320	min Summer	1.989	0.0	2596
5760	min Summer	1.573	0.0	3352
7200	min Summer	1.311	0.0	4112
8640	min Summer	1.129	0.0	4840
10080	min Summer	0.994	0.0	5552
15	min Winter	138.153	0.0	19
30	min Winter	90.705	0.0	33

BLI Consulting		Page 58
Norwich	Residential Development	
Norfolk	Garden House Lane	No.
	Rickinghall, Suffolk	Mirro
Date 11/02/2022	Designed by RSM	Drainago
File M100+CC_SOAKAWAY_PLOT 10.SRCX	Checked by RSM	uran raye
Causeway	Source Control 2020.1.3	·

	Stor: Even	m t	Max Level (m)	Max Depth (m)	Max Infiltration (l/s)	Max Volume (m³)	Status
60	min	Winter	1.577	0.577	0.1	5.5	ОК
120	min	Winter	1.674	0.674	0.1	6.4	ОК
180	min	Winter	1.720	0.720	0.1	6.8	ОК
240	min	Winter	1.744	0.744	0.1	7.1	ОК
360	min	Winter	1.764	0.764	0.1	7.3	ОК
480	min	Winter	1.768	0.768	0.1	7.3	ОК
600	min	Winter	1.761	0.761	0.1	7.2	ОК
720	min	Winter	1.750	0.750	0.1	7.1	ОК
960	min	Winter	1.730	0.730	0.1	6.9	ОК
1440	min	Winter	1.682	0.682	0.1	6.5	ОК
2160	min	Winter	1.606	0.606	0.1	5.8	ОК
2880	min	Winter	1.537	0.537	0.1	5.1	ΟK
4320	min	Winter	1.418	0.418	0.1	4.0	ΟK
5760	min	Winter	1.322	0.322	0.1	3.1	ОК
7200	min	Winter	1.244	0.244	0.1	2.3	ОК
8640	min	Winter	1.180	0.180	0.1	1.7	ОК
10080	min	Winter	1.128	0.128	0.1	1.2	ОК

	Stor	m	Rain	Flooded	Time-Peak
	Even	it	(mm/hr)	Volume	(mins)
				(m³)	
60	min	Winter	56.713	0.0	62
120	min	Winter	34.246	0.0	120
180	min	Winter	25.149	0.0	178
240	min	Winter	20.078	0.0	236
360	min	Winter	14.585	0.0	350
480	min	Winter	11.622	0.0	460
600	min	Winter	9.738	0.0	566
720	min	Winter	8.424	0.0	652
960	min	Winter	6.697	0.0	742
1440	min	Winter	4.839	0.0	1052
2160	min	Winter	3.490	0.0	1496
2880	min	Winter	2.766	0.0	1932
4320	min	Winter	1.989	0.0	2768
5760	min	Winter	1.573	0.0	3568
7200	min	Winter	1.311	0.0	4320
8640	min	Winter	1.129	0.0	5016
10080	min	Winter	0.994	0.0	5744

BLI Consulting		Page 59						
Norwich	Residential Development							
Norfolk	Garden House Lane	Sec. 1						
	Rickinghall, Suffolk	Mirro						
Date 11/02/2022	Designed by RSM	Dcainage						
File M100+CC_SOAKAWAY_PLOT 10.SRCX	Checked by RSM	uran naye						
Causeway	Source Control 2020.1.3	-						
Rainfall Model	Rainfall Details FSR Winter Storms Yes							
Return Period (years)	100 Cv (Summer) 0.750							
Region En	gland and Wales Cv (Winter) 0.840							
M5-60 (mm)	20.000 Shortest Storm (mins) 15							
Summer Storms	Yes Climate Change % +40							
-	Lime Area Diagram							
Total Area (ha) 0.012								
Time (mins) Area								
	From: To: (ha)							

BLI Consulting					Page 6	0			
Norwich		Residential Dev	velopment						
Norfolk		Garden House La	ine		100				
		Rickinghall, Su	ıffolk		Mic	0			
Date 11/02/2022		Designed by RSM	1		Dcai				
File M100+CC_SOAKAWAY_PLOT 10.SR	СХ	Checked by RSM			Digi	lage			
Causeway	1	Source Control	2020.1.3						
		_							
	Model Details								
Ste	orage is (Online Cover Level	l (m) 1.800						
	Cellul	ar Storage Stru	cture						
		ar beorage bera							
Tufiltustion	Inve	ert Level (m) 1.(000 Safety	Factor 3.0) -				
Infiltration C	oefficien	t Base (m/hr) (t Side (m/hr) 0.0	5458 PO	rosity 0.9	>				
Depth (m) here (m2) Tef here (m2)	Denth (m)					- (2)			
Deptn (m) Area (m ²) Inf. Area (m ²)	Depth (m)	Area (m²) Inr. A	rea (m²) De	ptn (m) Are	a (m²) inr. Are	a (m²)			
0.000 10.0 10.0	0.800	10.0	21.2	0.900	0.0	21.2			

BLI Consulting						Page 61
Norwich	Re	Residential Development				
Norfolk	Ga	rden H	louse Lane			Concerned and
	Ri	ckingł	all, Suffol	k		Mirco
Date 23/02/2022	De	signed	by RSM			MILIU
File M100+CC PRIVATE ROAD SRCX	Ch	ecked	by RSM			Urainage
	011	ceneu		1 0		
Causeway	So	urce (control 2020	.1.3		
Summary of Results	for	· 100 :	year Return	Period	(+40%)	
Half Dr	ain	Time	: 132 minutes	•		
Storm M	ax	Max	Max	Max	Status	
Event Le	vel	Depth	Infiltration	Volume		
(1	m)	(m)	(1/s)	(m³)		
15 min Summer 1	282	0 382	04	36	ОК	
30 min Summer 1.4	441	0.441	0.4	4.8	ОК	
60 min Summer 1.4	484	0.484	0.5	5.8	ОК	
120 min Summer 1.	506	0.506	0.5	6.3	ОК	
180 min Summer 1.	510	0.510	0.5	6.4	ОК	
240 min Summer 1.	508	0.508	0.5	6.4	O K	
360 min Summer 1.4	499	0.499	0.5	6.1	ОК	
480 min Summer 1.4	486	0.486	0.5	5.9	ОК	
600 min Summer 1.4	473	0.473	0.5	5.5	ОК	
720 min Summer 1.4	460	0.460	0.5	5.2	ОК	
960 min Summer 1.4	435	0.435	0.4	4.7	ОК	
1440 min Summer 1.	390	0.390	0.4	3.8	ОК	
2160 min Summer 1.	338	0.338	0.3	2.8	ОК	
2880 min Summer 1.	298	0.298	0.3	2.2	ОК	
4320 min Summer 1.3	241	0.241	0.2	1.4	ОК	
5760 min Summer 1.3	202	0.202	0.2	1.0	ОК	
7200 min Summer 1.	174	0.174	0.2	0.8	ОК	
8640 min Summer 1.	153	0.153	0.2	0.6	ОК	
10080 min Summer 1.	136	0.136	0.1	0.5	ОК	
15 min Winter 1.4	410	0.410	0.4	4.2	ОК	
30 min Winter 1.	472	0.472	0.5	5.5	O K	

Storm		Rain	Flooded	Time-Peak	
	Even	t	(mm/hr)	Volume	(mins)
				(m³)	
15	min	Summer	138.153	0.0	18
30	min	Summer	90.705	0.0	32
60	min	Summer	56.713	0.0	62
120	min	Summer	34.246	0.0	104
180	min	Summer	25.149	0.0	136
240	min	Summer	20.078	0.0	168
360	min	Summer	14.585	0.0	236
480	min	Summer	11.622	0.0	306
600	min	Summer	9.738	0.0	374
720	min	Summer	8.424	0.0	440
960	min	Summer	6.697	0.0	568
1440	min	Summer	4.839	0.0	822
2160	min	Summer	3.490	0.0	1188
2880	min	Summer	2.766	0.0	1556
4320	min	Summer	1.989	0.0	2252
5760	min	Summer	1.573	0.0	2992
7200	min	Summer	1.311	0.0	3680
8640	min	Summer	1.129	0.0	4408
10080	min	Summer	0.994	0.0	5144
15	min	Winter	138.153	0.0	18
30	min	Winter	90.705	0.0	32

©1982-2020 Innovyze

BLI Consulting		Page 62
Norwich	Residential Development	
Norfolk	Garden House Lane	Sec. 1
	Rickinghall, Suffolk	Mirro
Date 23/02/2022	Designed by RSM	Drainago
File M100+CC_PRIVATE ROAD.SRCX	Checked by RSM	urainaye
Causeway	Source Control 2020.1.3	-

	Stor: Even	m t	Max Level (m)	Max Depth (m)	Max Infiltration (1/s)	Max Volume (m³)	Status
60	min	Winter	1.521	0.521	0.5	6.7	ОК
120	min	Winter	1.547	0.547	0.6	7.3	ОК
180	min	Winter	1.548	0.548	0.6	7.3	ОК
240	min	Winter	1.544	0.544	0.5	7.2	ОК
360	min	Winter	1.527	0.527	0.5	6.8	ОК
480	min	Winter	1.508	0.508	0.5	6.4	ОК
600	min	Winter	1.488	0.488	0.5	5.9	ОК
720	min	Winter	1.469	0.469	0.5	5.5	ОК
960	min	Winter	1.434	0.434	0.4	4.7	ОК
1440	min	Winter	1.374	0.374	0.4	3.5	ОК
2160	min	Winter	1.307	0.307	0.3	2.3	ОК
2880	min	Winter	1.259	0.259	0.3	1.7	ОК
4320	min	Winter	1.196	0.196	0.2	0.9	ОК
5760	min	Winter	1.157	0.157	0.2	0.6	ОК
7200	min	Winter	1.131	0.131	0.1	0.4	ОК
8640	min	Winter	1.113	0.113	0.1	0.3	ОК
10080	min	Winter	1.099	0.099	0.1	0.2	ОК

Storm		Rain	Flooded	Time-Peak	
	Even	it	(mm/hr)	Volume	(mins)
				(m³)	
60	min	Winter	56.713	0.0	60
120	min	Winter	34.246	0.0	114
180	min	Winter	25.149	0.0	142
240	min	Winter	20.078	0.0	180
360	min	Winter	14.585	0.0	256
480	min	Winter	11.622	0.0	330
600	min	Winter	9.738	0.0	400
720	min	Winter	8.424	0.0	470
960	min	Winter	6.697	0.0	604
1440	min	Winter	4.839	0.0	854
2160	min	Winter	3.490	0.0	1228
2880	min	Winter	2.766	0.0	1584
4320	min	Winter	1.989	0.0	2292
5760	min	Winter	1.573	0.0	2992
7200	min	Winter	1.311	0.0	3680
8640	min	Winter	1.129	0.0	4408
10080	min	Winter	0.994	0.0	5144

BLI Consulting		Page 63
Norwich	Residential Development	
Norfolk	Garden House Lane	Concernant of the second
	Rickinghall, Suffolk	Mirro
Date 23/02/2022	Designed by RSM	Drainago
File M100+CC_PRIVATE ROAD.SRCX	Checked by RSM	urainaye
Causeway	Source Control 2020.1.3	I
Rainfall Model Return Period (years)	Rainfall DetailsFSRWinter Storms100Cv (Summer) 0.750	
Region En	gland and Wales Cv (Winter) 0.840	
M5-60 (mm) Ratio R Summer Storms	20.000 Shortest Storm (mins) 15 0.400 Longest Storm (mins)10080 Yes Climate Change % +40	
2	Time Area Diagram	
Т	otal Area (ha)0.018	
	Time (mins) Area	
	From: To: (ha)	

0 4 0.018

BLI Consulting					Page 64
Norwich	Resider	itial De	velopment		
Norfolk	Garden	House L	ane		and the second second
	Ricking	nhall, S	uffolk		Mirro
Date 23/02/2022	Designe	ed by RS	М		Dcainago
File M100+CC_PRIVATE ROAD.SRCX	Checked	l by RSM			ulainage
Causeway	Source	Control	2020.1.3		
	Model I	Details			
Storage is	Online Co	over Leve	el (m) 1.630		
Porou	ıs Car Pa	ark Stru	cture		
Infiltration Coefficient Bas	e (m/hr) (0.06595	Width (m)	5.5	
Membrane Percolation	(mm/hr)	1000	Length (m)	30.0	
Max Percolati	on (1/s)	45.8	Slope (1:X)	30.0	
Salet	y Factor	3.0	Depression Storage (mm)	5	
Invert L	evel (m)	1.000	Cap Volume Depth (m)	0.450	

BLI Consulting						Page 65
Norwich	Resi	ident	ial Develop	ment		
Norfolk	Gard	len H	ouse Lane			Sec. Sec.
	Rick	kingh	all, Suffol	k		Micro
Date 23/02/2022	Desi	aned	by RSM			IVILIU
File M100+CC Private Drive SRCX	Chec	rked	by RSM			Urainage
	Chee	- Aller		1 0		
Causeway	Sour	cce C	ontrol 2020	.1.3		
Summary of Resul	ts for 1	100 y Time :	ear Return 101 minutes	Period	. (+40%)	
Storm	Max	Max	Max	Max	Status	
Event	Level D	epth	Infiltration	Volume		
	(m)	(m)	(l/s)	(m³)		
	1 000 0	0.0.0	0.5	4 5	o	
15 min Summe:	r 1.277 0	.277	0.7	4.5	OK	
30 min Summe	r 1.318 0 r 1 347 0	.318 347	0.8	0.U 7 0	OK	
120 min Summe	r 1 359 0	359	0.8	7.0	0 K	
180 min Summe	r 1.360 0	.360	0.9	7.5	0 K	
240 min Summe:	r 1.356 0	.356	0.9	7.3	O K	
360 min Summe:	r 1.343 0	.343	0.8	6.9	ОК	
480 min Summe:	r 1.329 0	.329	0.8	6.4	ОК	
600 min Summe:	r 1.316 0	.316	0.8	5.9	ОК	
720 min Summe:	r 1.304 0	.304	0.7	5.4	ОК	
960 min Summe:	r 1.282 0	.282	0.7	4.7	ОК	
1440 min Summe:	r 1.246 0	.246	0.6	3.6	ОК	
2160 min Summe:	r 1.207 0	.207	0.5	2.5	ОК	
2880 min Summe:	r 1.178 0	.178	0.4	1.9	ОК	
4320 min Summe:	r 1.139 0	.139	0.3	1.1	ОК	
5760 min Summe	r 1.115 0	.115	0.3	0.8	ОК	
7200 min Summe:	r 1.098 0	.098	0.2	0.6	ОК	
8640 min Summe:	r 1.084 0	.084	0.2	0.4	ΟK	
10080 min Summe	r 1.074 0	.074	0.2	0.3	O K	
15 min Winte:	r 1.297 O	.297	0.7	5.2	O K	
30 min Winte:	r 1.342 0	.342	0.8	6.8	O K	

Storm		Rain	Flooded	Time-Peak	
	Even	t	(mm/hr)	Volume	(mins)
				(m³)	
15	min	Summer	138.153	0.0	18
30	min	Summer	90.705	0.0	32
60	min	Summer	56.713	0.0	60
120	min	Summer	34.246	0.0	92
180	min	Summer	25.149	0.0	126
240	min	Summer	20.078	0.0	160
360	min	Summer	14.585	0.0	228
480	min	Summer	11.622	0.0	296
600	min	Summer	9.738	0.0	362
720	min	Summer	8.424	0.0	426
960	min	Summer	6.697	0.0	550
1440	min	Summer	4.839	0.0	794
2160	min	Summer	3.490	0.0	1152
2880	min	Summer	2.766	0.0	1524
4320	min	Summer	1.989	0.0	2208
5760	min	Summer	1.573	0.0	2944
7200	min	Summer	1.311	0.0	3672
8640	min	Summer	1.129	0.0	4408
10080	min	Summer	0.994	0.0	5136
15	min	Winter	138.153	0.0	18
30	min	Winter	90.705	0.0	32

BLI Consulting		Page 66
Norwich	Residential Development	
Norfolk	Garden House Lane	Sec. 1
	Rickinghall, Suffolk	Mirro
Date 23/02/2022	Designed by RSM	Drainago
File M100+CC_Private Drive.SRCX	Checked by RSM	urainaye
Causeway	Source Control 2020.1.3	

	Stori Event	n t	Max Level (m)	Max Depth (m)	Max Infiltration (1/s)	Max Volume (m³)	Status
60	min	Winter	1.376	0.376	0.9	8.1	ОК
120	min	Winter	1.388	0.388	0.9	8.5	ОК
180	min	Winter	1.386	0.386	0.9	8.4	ОК
240	min	Winter	1.378	0.378	0.9	8.1	ОК
360	min	Winter	1.358	0.358	0.9	7.4	ОК
480	min	Winter	1.337	0.337	0.8	6.7	ΟK
600	min	Winter	1.319	0.319	0.8	6.0	ΟK
720	min	Winter	1.302	0.302	0.7	5.4	ΟK
960	min	Winter	1.272	0.272	0.7	4.4	ΟK
1440	min	Winter	1.226	0.226	0.5	3.0	ΟK
2160	min	Winter	1.178	0.178	0.4	1.9	ΟK
2880	min	Winter	1.146	0.146	0.4	1.3	ΟK
4320	min	Winter	1.108	0.108	0.3	0.7	ΟK
5760	min	Winter	1.085	0.085	0.2	0.4	ΟK
7200	min	Winter	1.071	0.071	0.2	0.3	ΟK
8640	min	Winter	1.061	0.061	0.1	0.2	ΟK
10080	min	Winter	1.053	0.053	0.1	0.2	ΟK

Storm		Rain	Flooded	Time-Peak	
	Even	it	(mm/hr)	Volume	(mins)
				(m³)	
60	min	Winter	56.713	0.0	60
120	min	Winter	34.246	0.0	96
180	min	Winter	25.149	0.0	134
240	min	Winter	20.078	0.0	172
360	min	Winter	14.585	0.0	246
480	min	Winter	11.622	0.0	316
600	min	Winter	9.738	0.0	384
720	min	Winter	8.424	0.0	448
960	min	Winter	6.697	0.0	578
1440	min	Winter	4.839	0.0	822
2160	min	Winter	3.490	0.0	1188
2880	min	Winter	2.766	0.0	1528
4320	min	Winter	1.989	0.0	2244
5760	min	Winter	1.573	0.0	2944
7200	min	Winter	1.311	0.0	3672
8640	min	Winter	1.129	0.0	4400
10080	min	Winter	0.994	0.0	5128

BLI Consulting		Page 67
Norwich	Residential Development	
Norfolk	Garden House Lane	and the second second
	Rickinghall, Suffolk	Mirro
Date 23/02/2022	Designed by RSM	Drainago
File M100+CC_Private Drive.SRCX	Checked by RSM	urainaye
Causeway	Source Control 2020.1.3	
Rainfall Model	Rainfall Details FSR Winter Storms Yes	
Return Period (years) Region En	gland and Wales Cv (Summer) 0.750	
M5-60 (mm) Ratio R Summer Storms	20.000 Shortest Storm (mins) 15 0.400 Longest Storm (mins)10080 Yes Climate Change % +40	
	Fime Area Diagram	
г	Cotal Area (ha)0.023	
	Time (mins) Area From: To: (ha)	

0 4 0.023

BLI Consulting					Page 68
Norwich	Resider	ntial D	evelopment		
Norfolk	Garden	House	Lane		Sec. 1
	Ricking	ghall,	Suffolk		Micro
Date 23/02/2022	Designe	ed by R	SM		Desipado
File M100+CC_Private Drive.SRCX	Checked	by RS	M		urainaye
Causeway	Source	Contro	1 2020.1.3		
Storage is	<u>Model I</u> Online Co	Details over Lev	rel (m) 1.440		
Porou	ıs Car Pa	ark Str	ucture		
Infiltration Coefficient Bas	e (m/hr) (0.06595	Width (m)	13.1	
Membrane Percolation	(mm/hr)	1000	Length (m)	16.1	
Max Percolati	on (l/s)	58.6	Slope (1:X)	30.0	
Safet	y Factor	3.0	Depression Storage (mm)	5	
Invert I	Porosity	0.30	Evaporation (mm/day)	3	
	ever (m)	1.000		0.500	

BLI Consulting	Page 69					
Norwich	Res	sident	ial Developr	ment		
Norfolk Ga:			louse Lane	Sec. 1		
	Ric	ckingh	all, Suffoll	ς		Micro
Date 23/02/2022	Des	signed	by RSM			IVILLU
File M100+CC Private Patio SRCX	Che	ecked	by RSM			Urainage
	~	cencu		1 0		
Causeway	Soi	urce (Control 2020	.1.3		
Summary of Results Half D	for rain	100 y	year Return : 60 minutes.	Period	(+40%)	
Storm M	ax	Max	Max	Max	Status	
Event Le	vel	Depth	Infiltration	Volume		
(1	m)	(m)	(1/s)	(m³)		
15 min Summer 1.	125	0.125	0.6	2.2	ОК	
30 min Summer 1	146 150	0.146	0.6	2.9	OK	
60 min Summer 1.	159 161	0.159	0.6	3.3	OK	
120 min Summer 1.	1 E A	0.161	0.6	3.3	OK	
240 min Summer 1.	116	0.134	0.6	3.1 2 0	OK	
240 min Summer 1.	1 2 0	0.140	0.0	2.9	OK	
480 min Summer 1	114	0.129	0.0	1 9	OK	
600 min Summer 1	103	0.113	0.0	1.5	OK	
720 min Summer 1	096	0.105	0.0	1 4	0 K 0 K	
960 min Summer 1.	084	0.084	0.5	1.1	0 K	
1440 min Summer 1.	068	0.068	0.4	0.7	0 K	
2160 min Summer 1.	053	0.053	0.3	0.4	0 K	
2880 min Summer 1.	047	0.047	0.3	0.3	0 K	
4320 min Summer 1.	040	0.040	0.2	0.2	ΟK	
5760 min Summer 1.	035	0.035	0.2	0.2	ΟK	
7200 min Summer 1.	032	0.032	0.1	0.2	ОК	
8640 min Summer 1.	030	0.030	0.1	0.1	ОК	
10080 min Summer 1.	028	0.028	0.1	0.1	ОК	
15 min Winter 1.	137	0.137	0.6	2.6	ОК	
30 min Winter 1.3	162	0.162	0.6	3.4	ΟK	

	Storm	Rain	Flooded	Time-Peak
	Event	(mm/hr)	Volume	(mins)
			(m³)	
15	min Summer	138.153	0.0	17
30	min Summer	90.705	0.0	31
60	min Summer	56.713	0.0	52
120	min Summer	34.246	0.0	84
180	min Summer	25.149	0.0	118
240	min Summer	20.078	0.0	152
360	min Summer	14.585	0.0	216
480	min Summer	11.622	0.0	278
600	min Summer	9.738	0.0	334
720	min Summer	8.424	0.0	392
960	min Summer	6.697	0.0	512
1440	min Summer	4.839	0.0	750
2160	min Summer	3.490	0.0	1104
2880	min Summer	2.766	0.0	1468
4320	min Summer	1.989	0.0	2196
5760	min Summer	1.573	0.0	2928
7200	min Summer	1.311	0.0	3656
8640	min Summer	1.129	0.0	4352
10080	min Summer	0.994	0.0	5064
15	min Winter	138.153	0.0	17
30	min Winter	90.705	0.0	31

BLI Consulting		Page 70
Norwich	Residential Development	
Norfolk	Garden House Lane	and the second second
	Rickinghall, Suffolk	Mirro
Date 23/02/2022	Designed by RSM	Drainage
File M100+CC_Private Patio.SRCX	Checked by RSM	ulainaye
Causeway	Source Control 2020.1.3	·

	Storm Event	L	Max Level (m)	Max Depth (m)	Max Infiltration (l/s)	Max Volume (m³)	Status
60	min V	Winter	1.180	0.180	0.6	3.8	ОК
120	min V	Winter	1.179	0.179	0.6	3.8	ОК
180	min V	Winter	1.166	0.166	0.6	3.5	ОК
240	min V	Winter	1.152	0.152	0.6	3.1	ОК
360	min V	Winter	1.126	0.126	0.6	2.3	ОК
480	min V	Winter	1.106	0.106	0.6	1.7	ОК
600	min V	Winter	1.094	0.094	0.6	1.3	ОК
720	min V	Winter	1.085	0.085	0.5	1.1	ОК
960	min V	Winter	1.072	0.072	0.4	0.8	ОК
1440	min V	Winter	1.054	0.054	0.3	0.4	ОК
2160	min V	Winter	1.045	0.045	0.2	0.3	ОК
2880	min V	Winter	1.040	0.040	0.2	0.2	ОК
4320	min V	Winter	1.034	0.034	0.1	0.2	ОК
5760	min V	Winter	1.030	0.030	0.1	0.1	ОК
7200	min V	Winter	1.027	0.027	0.1	0.1	ОК
8640	min V	Winter	1.025	0.025	0.1	0.1	ОК
10080	min V	Winter	1.024	0.024	0.1	0.1	ОК

	Stor	m	Rain	Flooded	Time-Peak
	Event		(mm/hr)	Volume	(mins)
				(m³)	
60	min	Winter	56.713	0.0	58
120	min	Winter	34.246	0.0	92
180	min	Winter	25.149	0.0	130
240	min	Winter	20.078	0.0	164
360	min	Winter	14.585	0.0	230
480	min	Winter	11.622	0.0	288
600	min	Winter	9.738	0.0	344
720	min	Winter	8.424	0.0	404
960	min	Winter	6.697	0.0	520
1440	min	Winter	4.839	0.0	750
2160	min	Winter	3.490	0.0	1092
2880	min	Winter	2.766	0.0	1444
4320	min	Winter	1.989	0.0	2188
5760	min	Winter	1.573	0.0	2872
7200	min	Winter	1.311	0.0	3544
8640	min	Winter	1.129	0.0	4328
10080	min	Winter	0.994	0.0	5056

BLI Consulting		Page 71
Norwich	Residential Development	
Norfolk	Garden House Lane	and the second second
	Rickinghall, Suffolk	Mirro
Date 23/02/2022	Designed by RSM	Drainago
File M100+CC_Private Patio.SRCX	Checked by RSM	Diamaye
Causeway	Source Control 2020.1.3	
Rainfall Model Return Period (years) Region Eng M5-60 (mm) Ratio R	Rainfall DetailsFSR Winter Storms Yes100Cv (Summer) 0.750gland and WalesCv (Winter) 0.84020.000 Shortest Storm (mins)150.400Longest Storm (mins) 10080	
Summer Storms	Yes Climate Change % +40 ime Area Diagram Dtal Area (ha)0.012 Time (mins) Area From: To: (ha)	

0 4 0.012

BLI Consulting					Page 72
Norwich	Resider	itial De	velopment		
Norfolk	Garden	House L	ane		Street and
	Ricking	hall, S	uffolk		Mirro
Date 23/02/2022	Designe	d by RS	М		Drainago
File M100+CC_Private Patio.SRCX	Checked	l by RSM	[Dialiacje
Causeway	Source	Control	2020.1.3		l
	Model I	Details			
Storage	is Online Co	over Leve	el (m) 1.240		
<u>P</u> (orous Car Pa	ark Stru	acture		
Infiltration Coefficient	Base (m/hr) (0.06595	Width (m)	10.0	
Membrane Percola	tion (mm/hr)	1000	Length (m)	10.0	
Max Perco	lation (l/s)	27.8	Slope (1:X)	100.0	
S	afety Factor	3.0 1	Depression Storage (mm)	5	
Thve	Porosity rt Level (m)	1.000	Evaporation (mm/day) Cap Volume Depth (m)	3 0.150	
	20 20002 (,	1.000	cap vorane peper (m)	0.100	

Appendix J

Surface Water Calculations – Proposed Greenfield Discharge Rates & Volumes

Contents

- Page 1 Greenfield Discharge Rates
- Pages 2 4 Greenfield Discharge Volumes

BLI Consulting			Page 1
Norwich	Resider	tial Development	-
Norfolk	Land so	uth of Gardenhouse Lane	
	Ricking	hall, Suffolk	Micco
Date 21/02/2022	Designe	d by RSM	Desinado
File	Checked	by RSM	uramaye
Causeway	Source	Control 2020.1.3	I
	ICP SUDS Mean	Annual Flood	
	Inp	ut	
Retur	n Period (years) 1 SAAR Area (ha) 1.005 S	mm) 600 Urban 0.000 Soil 0.400 Region Number Region 5	
	Results	1/s	
	QBAR Rur	al 2.9	
	QBAR Urb	an 2.9	
	Q1 ye	ar 2.5	
	Q1 ye	ar 2.5	
	Q30 yea	rs 6.9	
	Q100 yea	rs 10.2	

BLI Consulting		Page 2
Norwich	Residential Development	
Norfolk	Land south of Gardenhouse Lane	
	Rickinghall, Suffolk	Micro
Date 21/02/2022	Designed by RSM	Desinado
File	Checked by RSM	urainaye
Causeway	Source Control 2020.1.3	

Greenfield Runoff Volume

FSR Data

Retur Storn	n Period (year Duration (min	s) s)	1 360
	Regi	on England	and Wales
	M5-60 (m	nm)	20.000
	Ratic	R	0.400
Areal	Reduction Fact	or	1.00
	Area (h	ıa)	1.005
	SAAR (m	um)	600
	C	CWI	87.000
	Urk	ban	0.000
	5	SPR	37.000

Results

Percentage Runoff (%) 27.50 Greenfield Runoff Volume (m³) 60.461

BLI Consulting		Page 3
Norwich	Residential Development	-
Norfolk	Land south of Gardenhouse Lane	
	Rickinghall, Suffolk	Micro
Date 21/02/2022	Designed by RSM	Drainago
File	Checked by RSM	urainaye
Causeway	Source Control 2020.1.3	

Greenfield Runoff Volume

FSR Data

Retur	30			
Storn	Duration (mins)			360
	Region	England	and	Wales
	M5-60 (mm)			20.000
	Ratio R			0.400
Areal	Reduction Factor			1.00
	Area (ha)			1.005
	SAAR (mm)			600
	CWI			87.000
	Urban			0.000
	SPR			37.000

Results

Pe	rcentage	Runoff	(%)	29.46
Greenfield	Runoff	Volume	(m³)	142.744
BLI Consulting	Page 4			
-----------------	--------------------------------	----------		
Norwich	Residential Development	-		
Norfolk	Land south of Gardenhouse Lane	100 C		
	Rickinghall, Suffolk	Micro		
Date 21/02/2022	Designed by RSM	Drainago		
File	Checked by RSM	urainaye		
Causeway	Source Control 2020.1.3			

Greenfield Runoff Volume

FSR Data

Retur	100 360			
DCOIN	Region	England	and	Wales
	ME CO (mm)	Bilgrana	ana	20 000
	M5-60 (IIIII)			20.000
	Ratio R			0.400
Areal	Reduction Factor			1.00
	Area (ha)			1.005
	SAAR (mm)			600
	CWI			87.000
	Urban			0.000
	SPR			37.000

Results

Percentage Runoff (%) 31.48 Greenfield Runoff Volume (m³) 197.752