# Dexter Building Design

## Energy and Sustainability Statement

The Shingles, Chelvey Batch, Backwell Bristol, BS48 3BZ

20 January 2023

Watt Energy & Consulting Engineers Ltd 40 King Street, Manchester, M2 6BA

t. 0161 43 43 103w. www.wece.co.uke. office@wece.co.uk



#### Issue Control

Director

Daniel Watt

1 St.

| First Issue Date | Revision Issue Date | Issue Revision | Issued By |
|------------------|---------------------|----------------|-----------|
| 20 Jan. 23       | _                   | -              | DW        |
|                  |                     |                |           |

#### Document Disclaimer

© Watt Energy & Consulting Engineers Ltd (WE&CE) own the copyright in this report and it has been written for the sole and confidential use of the client showing reasonable skill and care, for the intended purposes as stated in the agreement under which this work was completed. It is not intended for and should not be relied upon by any third party. Any such party relies on this report at their own risk. No part of this report may be copied or duplicated without the express permission of WE&CE and the party for whom it was prepared.

## Index

| 1 | E   | xecuti | ve Sum                | nmary                                                   | 4  |  |  |
|---|-----|--------|-----------------------|---------------------------------------------------------|----|--|--|
| 2 | Ρ   | lannin | ig State              | ement                                                   | 6  |  |  |
|   | 2.1 | The S  | Site and              | d Proposed Development                                  | 6  |  |  |
|   | 2.2 | Relev  | vant Pc               | licies and Guidance                                     | 7  |  |  |
|   | 2   | .2.1   | Local                 | Planning Policy                                         | 7  |  |  |
|   |     | 2.2.1  | L.1 M                 | North Somerset Core Strategy                            | 7  |  |  |
|   | 2   | .2.2   | Natio                 | nal Planning Policy                                     | 9  |  |  |
|   | 2.3 | Susta  | ainable               | Design Strategy                                         | 10 |  |  |
|   | 2   | .3.1   | Energy                | y and Carbon Emissions                                  | 10 |  |  |
|   | 2   | .3.2   | Choice                | e and Impact of Renewable Technology                    | 13 |  |  |
|   | 2   | .3.3   | Energy                | y and CO <sub>2</sub> Reduction Summary                 | 14 |  |  |
|   | 2.4 | Adap   | otation               | to Climate Change                                       | 18 |  |  |
|   | 2   | .4.1   | Flood                 | Risk Zone                                               | 19 |  |  |
|   | 2   | .4.2   | Green                 | Blue Infrastructure                                     | 19 |  |  |
|   |     | 2.4.2  | 2.1 9                 | Sustainable Drainage Systems (SUDs)                     | 19 |  |  |
|   |     | 2.4.2  | 2.2 E                 | Biodiversity                                            | 20 |  |  |
|   | 2   | .4.3   | Intern                | al Water Efficiency                                     | 20 |  |  |
|   | 2   | .4.4   | Waste                 | Management                                              | 21 |  |  |
|   |     | 2.4.4  | l.1 (                 | Occupational Waste                                      | 21 |  |  |
|   |     | 2.4.4  | l.2 (                 | Construction Waste                                      | 21 |  |  |
|   | 2   | .4.5   | 4.5 Materials         |                                                         |    |  |  |
|   | 2   | .4.6   | I.6 Pollution Control |                                                         |    |  |  |
|   | 2   | .4.7   | Health                | n and Wellbeing                                         | 22 |  |  |
| 3 | F   | easibi | lity Ass              | essment of Renewable Energy and Low Carbon Technologies | 23 |  |  |
| 4 | С   | onclus | sion                  |                                                         | 26 |  |  |



## 1 Executive Summary

This Energy and Sustainability Statement has been prepared by Watt Energy on behalf of Dexter Building Design to support a planning application for the development of The Shingles. The statement specifically addresses the following North Somerset Council planning policies, as stipulated in the North Somerset Council's Core Strategy 2017:

- CS1 Addressing Climate Change and Carbon Reduction
- CS2 Delivering Sustainable Design and Construction

The statement details how the development will incorporate sustainable design and resource efficiency in line with the Energy Hierarchy, so to meet the policy requirements and council targets whilst reducing its overall environmental impact.

In relation to the planning documents and policies outlined above, the development is required to achieve a **10%** reduction in primary energy demand over the Part L 2013 Building Regulations baseline, solely through the implementation of renewable and low/zero carbon technologies.

To achieve this compliance, the development has been designed with a holistic low energy design concept involving a fabric first approach. The U-values, design air permeability and ventilation targets all aspire to achieve and exceed Part L 2013 standards along with the consideration and application of low zero carbon renewable technologies.

Following the LZC feasibility assessment, it is proposed that the development will benefit from a **NIBE F2040 ASHP** to satisfy the space heating and hot water demand.

As a result of the above the predicted site wide reduction in primary energy over Part L 2013 of the Building Regulations can be summarised as:

• 60.6%

This statement also examines how the design, specification and characteristics of the proposal will contribute to sustainability and meet the relevant objectives outlined within the National Planning Policy Framework (NPPF) 2019, in addition to the North Somerset Council approved climate change action plans and core strategy planning policies outlined above. The sustainability measures assessed included:

- Flood Risk Zone
- Green and Blue Infrastructure
- Sustainable Drainage Systems (SUDs)
- Biodiversity / Ecology
- Internal Water Efficiency
- Waste Management
- Materials



- Pollution Control
- Health and Wellbeing

The development therefore complies with all North Somerset Council's current and future policy requirements relating to creating a sustainable development.

In relation to the planning target centred around carbon emission reduction, the proposed development is achieving a **60.6%** reduction over the baseline energy demand. This surpasses North Somerset Council's planning targets and therefore allows compliance to be reached.



## 2 Planning Statement

The following statement relates to the proposed development at The Shingles Chelvey Batch, Backwell Bristol, BS48 3BZ.

## 2.1 The Site and Proposed Development

The site is located south of Nailsea and southwest of Bristol. The site occupies approximately 250 metres of land. A plan, with the site's extents denoted by the red outline seen in Figure 1 (shown later in this subsection).

The site is bounded to the north by a single lane from Chelvey Drive. The site is currently occupied by an existing dwelling which is to be demolished.

The proposal is for a residential-led mixed use development consisting of a new two storey house. The dwelling will be a four bedroom four bathroom house. (use class C3). Also provided will be associated ancillary facilities including a refuse/recycling store and bike store.

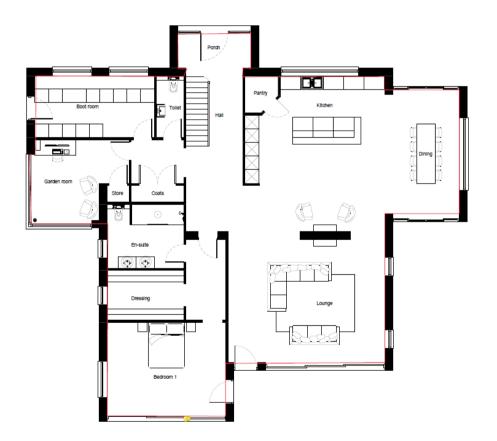



Figure 1: Ground Floor Plan





- 2.2 Relevant Policies and Guidance
- 2.2.1 Local Planning Policy
- 2.2.1.1 North Somerset Core Strategy

This report is a resultant production in response to North Somerset Council's Core Strategy 2017, and specifically deals with planning policies CS1 and CS2, covering Climate Change and Sustainability.

## CS1

## Living within environmental limits

#### CS1: Addressing climate change and carbon reduction

North Somerset Council is committed to reducing carbon emissions and tackling climate change, mitigating further impacts and supporting adaptation to its effects, and to support this, the following principles will guide development:

- development should demonstrate a commitment to reducing carbon emissions, including reducing energy demand through good design, and utilising renewable energy where feasible and viable in line with standards set out in Policy CS2; and by focusing development in accordance with the settlement strategy set out in the Area Policies;
- developers are encouraged to incorporate site-wide renewable energy solutions to be delivered in a phased and co-ordinated way with the proposed development;
- maximise the opportunities for all new homes to contribute to tackling climate change through adherence to emerging national standards such as the Code for Sustainable Homes to ensure they perform well against evolving energy standards, and have a reduced carbon footprint;
- 4) developments of 10 or more dwellings should demonstrate a commitment to maximising the use of sustainable transport solutions, particularly at Weston-super-Mare. Opportunities for walking, cycling and use of public transport should be maximised through new development and in existing areas emphasising the aim to provide opportunities that encourage and facilitate modal shift towards more sustainable transport modes;
- 5) a network of multifunctional green infrastructure will be planned for and delivered through new development. They should be located throughout and in adjacent developments and demonstrate a functional relationship to the proposed development and existing area including the potential to relate to the Area of Outstanding Natural Beauty. This would include not only green spaces but also the creation and enhancement of woodland areas;
- 6) protecting and enhancing biodiversity across North Somerset including species and habitats that are characteristic of the area, in order to support adaptation to climate change. This should be achieved through on and off-site measures to conserve and enhance species and habitats as well as the reduction or preferably elimination of any adverse impacts through sensitive design and layout and construction of developments;
- 7) the reduction, re-use and recycling of waste with particular emphasis on waste minimisation on development sites and the creation of waste to energy facilities in the Weston villages;
- 8) the re-use of previously developed land and existing buildings in preference to the loss of green field sites;



- opportunities for local food production and farming will be encouraged to reduce the district's contribution to food miles,
- 10) areas will be enhanced to be resilient to the impacts of climate change including flood defence and public realm enhancements including the integration of effective shading through, for example, tree planting; and,
- developments should demonstrate water efficiency measures to reduce demand on water resources, including through the use of efficient appliances and exploration of the potential for rainwater recycling.

## CS2

## Living within environmental limits

#### CS2: Delivering sustainable design and construction

New development both residential (including conversions) and non-residential should demonstrate a commitment to sustainable design and construction, increasing energy efficiency through design, and prioritising the use of sustainable low or zero carbon forms of renewable energy generation in order to increase the sustainability of the building stock across North Somerset.

The greatest potential for energy saving opportunities is likely to be at larger scale developments particularly at the Weston Villages and Weston town centre. In addition these areas are expected to demonstrate exemplar environmental standards contributing to the objectives of Policy CS1, and adding value to the local economy.

When considering proposals for development the council will:

- require designs that are energy efficient and designed to reduce their energy demands;
- 2) require the use of on-site renewable energy sources or by linking with/contributing to available local off-site renewable energy sources to meet a minimum of 10% of predicted energy use for residential development proposals involving one to nine dwellings, and 15% for 10 or more dwellings; and 10% for non-residential developments over 500m<sup>2</sup> and 15% for 1000m<sup>2</sup> and above;
- 3) require as a minimum Code for Sustainable Homes Level 3 for all new dwellings from October 2010, Level 4 from 2013, rising to Level 6 by 2016. Higher standards will be encouraged ahead of this trajectory where scheme viability specifically supports this. BREEAM 'Very Good' will be required on all nonresidential developments over 500m<sup>2</sup> and 'Excellent' over 1000m<sup>2</sup>;
- 4) require all developments of 10 or more new homes to incorporate 50% constructed to the Lifetime Homes standard up to 2013 and 100% from 2013 onwards.
- 5) require the application of best practice in Sustainable Drainage Systems to reduce the impact of additional surface water run-off from new development. Such environmental infrastructure should be integrated into the design of the scheme and into landscaping features, and be easily maintained.

In moving towards zero carbon development, applicants will ensure that sustainable principles are established in the new proposals from the outset.



## 2.2.2 National Planning Policy

The NPPF (February 2019) sets out the Government's planning policies for England and how these are expected to be applied. The overall emphasis of the NPPF is to reiterate the Government's key objectives, including securing sustainable development.

The NPPF defines the purpose of the planning system as being to contribute to the achievement of sustainable development. It explains at Paragraph 8 that there are three dimensions to sustainable development. These are economic, social and environmental and should be pursued simultaneously through the planning system.

Paragraph 10 states that at the heart of the Framework is a presumption in favour of sustainable development.



- 2.3 Sustainable Design Strategy
- 2.3.1 Energy and Carbon Emissions

#### Building Services Strategy

In response to the policy requirements and climate change plan targets set out in section 2.2, developments should aim to assist and achieve the following carbon reduction targets:

1. Achieve a minimum of 10% energy demand reduction over the Part L 2013 baseline, solely through renewable/ LZC technologies

To achieve the most accurate calculations and estimates, the proposed units have been modelled using *SAP 2012* the governments Standard Assessment Procedure for residential dwellings.

The proposed strategy for minimising energy use and carbon emissions is based on the energy hierarchy described in CIBSE Guide F 2012 (Energy efficiency in buildings). The energy hierarchy has been adopted for the development to ensure that the correct approach to design is taken to promote an energy-efficient low carbon solution (see figure 2). This has ensured that the benefits of effective methods of energy use reduction have been maximised first. The approach adopted is as follows:



Fig 2: Energy Hierarchy

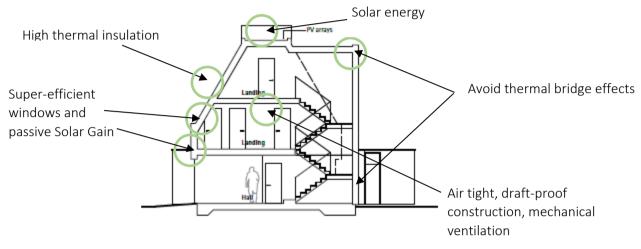


**Minimise energy demand** – Implement passive design measures and optimise the building envelope in terms of orientation, air tightness, and insulation. For example, the proposal is targeting a low carbon classification through a holistic low energy design concept as it will be designed with a fabric first approach whereby Passive House design standards are aspired to for all fabric U-values and air permeability targets.

**Meet demands efficiently** – Specification of energy efficient decentralised plant, heating, ventilation, lighting, and system controls to facilitate efficient operation.

Particular attention is being paid to the wellbeing of occupants. The ventilation strategy has been developed to minimise noise ingress from the proposed location as far as possible while minimising the risk of overheating.

## Additional Renewable Energy Measures


Opportunities for incorporating low and zero carbon technologies (LZCT) have been considered for this development. The viability of several separate technologies was examined in a LZCT study (see section 3) which helped to identify potential opportunities for the inclusion of an ASHP system.



## Efficient and Sustainable Design Measures

In line with the above Sustainable Design Strategy, the following Energy Efficient design measures are specified.

- High levels of insulation throughout with minimal thermal bridges
- Passive solar gains and internal heat sources
- Excellent level of airtightness
- Good indoor air quality by openable windows



#### Fig 3. Efficient Design Measure examples

The Proposed specifications and key energy efficient design measures are as follows:

#### **Residential Units:**

- Ground floor U-values of 0.15 W/m<sup>2</sup>K
- External Wall U-values of 0.22 W/m<sup>2</sup>K
- Flat Ceiling U-values of 0.12 W/m<sup>2</sup>K
- Pitched Roof U-values of 0.12 W/m<sup>2</sup>K
- Low Double Glazed Window U-values of 1.3 W/m<sup>2</sup>K
- 100% low energy lighting throughout
- 400L cylinder
- MVHR Pichler LG450
- Air Permeability Rate of 3m<sup>3</sup>/hm<sup>2</sup>



## 2.3.2 Choice and Impact of Renewable Technology

All reasonable technologies were investigated for their suitability to the site and development; please refer to section 3 for details.

In addition to energy efficiency measures, it is proposed that the development will feature the following Low/Zero carbon Technologies:

## • NIBE F2040 16 kW Heat Pump

The above LZC contribution has provided an **56.6%** reduction in energy demand following Energy Efficiency Measures.

| • | Energy Saving from onsite LZC Technologies | = | 10039.5 kWh/Yr |
|---|--------------------------------------------|---|----------------|
|---|--------------------------------------------|---|----------------|

• CO2 Saving from onsite LZC Technologies = 2191.3 kgCO2/Yr



## 2.3.3 Energy and CO<sub>2</sub> Reduction Summary

A summary of all stages of the energy demand assessment from baseline figures to final carbon reduction are shown in Figures 1 & 2 below:

| Summary of Energy Reductions                                                                         | Total energy demand<br>(kgCO2/year) |
|------------------------------------------------------------------------------------------------------|-------------------------------------|
| Baseline Energy Demand                                                                               | 19557.4                             |
| Improved energy demand (after application of energy efficiency measures)                             | 17746.9                             |
| Improved energy demand (after incorporation of renewable energy technology) % CO2 displaced in total | 7707.4                              |
| % Energy displaced in total                                                                          | 60.6%                               |
| % Energy displaced by energy efficiency measures                                                     | 9.3%                                |
| % Energy displaced by renewable energy                                                               | 56.6%                               |

Table 1: Summary of Energy Demand Reductions



|                                                                                                  | Energy demand (kWh pa) | Energy saving achieved (%) | Regulated CO <sub>2</sub> emissions (<br>kg pa) | Saving achieved on resi<br>dual energy (%) |
|--------------------------------------------------------------------------------------------------|------------------------|----------------------------|-------------------------------------------------|--------------------------------------------|
| Building Regulations Part L compliance<br>("Baseline" energy demand & emissions)                 | 19557.4                |                            | 4466.2                                          |                                            |
| Proposed scheme after energy efficiency measures a nd CHP ("Residual" energy demand & emissions) | 17746.9                | 9.3%                       | 4448.5                                          | 9.3%                                       |
| Proposed scheme after on-site renewables                                                         | 7707.4                 | 60.6%                      | 2257.2                                          | 56.6%                                      |
| Proposed scheme offset for financial contribution or other "allowable solution"                  |                        |                            | 0                                               | 0                                          |
| Total savings on residual energy demand                                                          |                        |                            |                                                 | 56.6%                                      |

Table 2. Total Energy and Carbon Emissions Savings Based on SAP 9.0 Carbon Factors



For a full Breakdown of the figures and calculations please see Appendix A – Energy Demand Assessment Spreadsheet.

#### Baseline energy demand

'Standard Assessment Procedure - SAP 2012' was used to produce example SAP reports to generate the figures used within the calculations.

| Baseline energy demand (kWh pa) | 19557.4 |
|---------------------------------|---------|
| Regulated emissions (kg pa)     | 4466.2  |

#### Be Lean stage

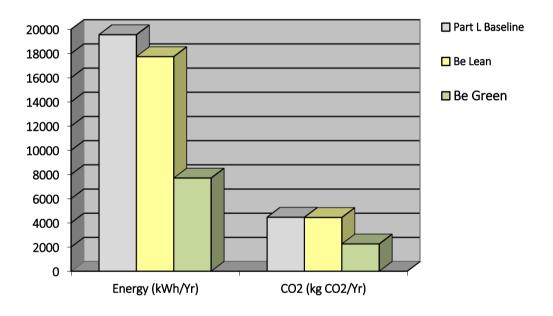
The following table demonstrates how the development achieves the reduction in energy demand and carbon dioxide emissions from energy efficiency measures.

| Energy savings from energy efficiency measures (kWh pa)                                           | 1810.5  |
|---------------------------------------------------------------------------------------------------|---------|
| Emission savings from energy efficiency measures (kg pa)                                          | 17.7    |
| Total regulated energy demand<br>energy efficiency measures (kg pa) ("residual energy<br>demand") | 17746.9 |

#### Be Clean stage

The following table demonstrates how the development achieves the reduction in energy demand and carbon dioxide emissions through the implementation of any clean energy systems; such as heat pumps or communal heating.

| Energy savings from the use of clean<br>energy systems (kWh pa)     | -       |
|---------------------------------------------------------------------|---------|
| Emission savings from the use of clean<br>energy systems (kg pa)    | -       |
| Total regulated energy demand after clean<br>energy savings (kg pa) | 17746.9 |




#### On-site renewables

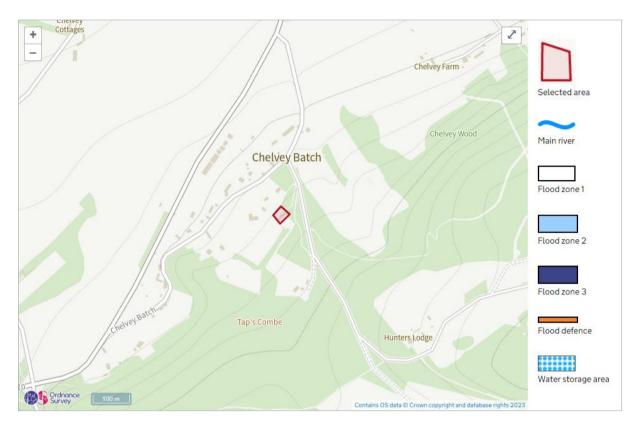
The following table demonstrates how the development achieves the reduction in carbon dioxide emissions from LZC technologies.

| Energy saving from the use of renewables (kWh)         | 10039.5 |
|--------------------------------------------------------|---------|
| Saving on emissions from the use of renewables (kg)    | 2191.3  |
| Saving on energy demand from the use of renewables (%) | 56.6%   |

The chart below illustrates the improvements over the Part L Compliant Baseline:






## 2.4 Adaptation to Climate Change

In addition to the primary building design and fabric, many other issues that will influence creating a Sustainable Development, including flood prevention, material use, waste minimisation and transport.

All the sections of creating a sustainable development should be taken into consideration from the start of the development and promoted throughout the building construction on site in order to maximise their benefits. Additionally, features which enable more efficient usage should also be specified to encourage the building users to maintain efficient use once construction has been completed.



### 2.4.1 Flood Risk Zone



### Fig 4: Flood Risk Map

The above map and snippet have been taken from a Government licences flood risk map for Bristol. It can be seen that the site is just located within flood risk zone 1 and therefore has minimal to no risk of flooding.

#### 2.4.2 Green Blue Infrastructure

## 2.4.2.1 Sustainable Drainage Systems (SUDs)

Even though it has been shown that the proposed scheme is located on a site with a low to zero flood risk, a drainage strategy assessment should be undertaken, by a suitably qualified professional, to assess the feasibility of introducing on-site SUDs measures, that will reduce surface water run-off and any flood risks associated.



## 2.4.2.2 Biodiversity

Similarly, to the previous section on SUDs, the nature of the proposal: including the demolishing of an existing building and potential change in area of impermeable surface, there could be adverse impacts on the surrounding ecology as well potential for the enhancement. Therefore, an ecology report should be produced, by a suitably qualified professional, in order to ensure that any existing ecology on or near the site is adequately protected and to determine the possibility of new habitat creation, planting schemes, green wall areas.

## 2.4.3 Internal Water Efficiency

Part G of the Building Regulations requires all new dwellings to have an internal water consumption of no greater than 110 litres / person / day, unless specified to be less. Therefore, fittings proposed should have low flow rates, capacities, effective flush volumes etc. Example targets for these to achieve the required internal consumption are as follows:

| Appliance                | Unit of measure        | Amount (litres) |
|--------------------------|------------------------|-----------------|
| WC (Dual flush)          | Full flush volume      | 4               |
| WC (Dual flush)          | Part flush volume      | 2.6             |
| Taps (excluding kitchen) | Flow rate I/min        | 5               |
| Kitchen taps             | Flow rate I/min        | 6               |
| Bath                     | Capacity to Overflow   | 170             |
| Shower                   | Flow rate I/min        | 8               |
| Washing Machine          | Litres / kg dry load   | 8.17            |
| Dishwasher               | Litres / place setting | 1.25            |

#### Table 4. Internal Water Efficiency Flow Rates

The above rates will achieve a total internal water consumption of 106.31 with a bath present and 98.25 with only a shower present.

The specifying of 'A' rated appliances should be prioritised where possible.



#### 2.4.4 Waste Management

#### 2.4.4.1 Occupational Waste

North Somerset Council encourages all new developments to incorporate a waste management strategy into the build at the earliest stage possible.

#### 2.4.4.2 Construction Waste

A target of at least 90% of waste generated on site, throughout the construction stage of the development, to be diverted from landfill' will be included as part of a Construction Environmental Management Plan (CEMP) to be agreed with MCC.

The proposal will also endeavour to maximise the use of recycled materials on site, whereby further promoting the minimising of waste production.

#### 2.4.5 Materials

The construction of new buildings and building elements has a large environmental impact in terms of both, energy, and embodied carbon of new materials. Therefore, North Somerset Council promotes the prioritising of environmentally friendly materials, where possible, and encourages the use of recycled building materials. This information should also be incorporated into the SWMP mentioned in the previous subsection (Waste Management) as a means of promoting the re-using and recycling of materials.

Where new materials are to be used, careful consideration of their environmental impact should be taken. This can be achieved by ensuring that only materials that score well under The Green Guide to Specification. This useful online tool can be used as a reference that provides guidance on the relative environmental impacts for a wide range of different building specifications. The BRE's Environmental Profile Methodology determines the Life Cycle Assessment (LCA) of materials, which is what the Guide's specifications are based on.

In order to take full advantage of low impact materials, elements key to the scheme should be specified to achieve ratings of between A+ and C under The Green Guide's ratings. Insulation materials that are specified will also have a global warming potential (GWP) of 5 or less, with an ODP of 0. Additionally, 100% of all timber used as part of the scheme will be responsibly sourced from suppliers that are either Forest Stewardship Council (FSC) accredited, Programme for the Endorsement of Forestry Certification accredited, or a similar recognised accreditation body.

To further promote embodied energy and carbon savings, the scheme will first prioritise the reusing of any demolished materials within the site, however if this is not possible secondary priority must be given to the redirecting from landfill, in line with the waste hierarchy.

Finally, in addition to the above policy points, the development is also recommended to register with the Considerate Constructors Scheme, or a similar approved scheme.



## 2.4.6 Pollution Control

To reduce emissions of gases with high global warming potential (GWP) and nitrogen oxide (NOx) into the atmosphere, new buildings will be specified with insulating materials that have a GWP of less than 5. This will follow throughout the development to reduce the impact that the construction phase has upon climate change.

Additionally, the following measures will be implemented:

- Pollution Prevention Guidance will be adhered to in respects of air (dust) and water (ground and surface) pollution during the demolition and construction phase.
- External light fittings will be controlled through a time switch, or daylight sensor, to prevent operation during daylight hours to limit the impact of artificial lighting for the development's residents and surrounding environment.

Sound insulation will be specified to achieve Building Regulation Part E compliance standard (this will be verified by pre-completion testing) in addition to meeting the requirements of the council. This will reduce the impact of sound pollution for the occupants within adjoining dwellings.

## 2.4.7 Health and Wellbeing

In addition to having this assessment completed, the following measures will also be incorporated:

- Efficient MVHR Units are to be specified to each individual dwelling which will provide a continuous source of fresh, filtered air to maintain a healthy indoor environment.
- Enhancing the green infrastructure of the site by introducing planting wherever possible, therefore improving the physical and mental wellbeing of residents, visitors, and workers.
- Secure by Design accreditation will be sought which will incorporate the adoption of crime prevention measures to further prevent crime and promote a safe environment.

The above findings and technology will all help to promote healthy housing for residents which has been identified by the World Health Organisation (WHO) as an increasingly important factor in increasing quality of life, preventing disease and illness, and mitigating climate change.



### 3 Feasibility Assessment of Renewable Energy and Low Carbon Technologies

### Solar Hot Water (Thermal)

Solar water heating systems are one of the more familiar renewable technologies used at the moment. They use the energy from the sun to heat water, most commonly for hot water needs. Solar heating systems use a heat collector that is usually mounted on a roof in which the sun heats a fluid. This fluid is used to heat water that is stored in either a separate hot water cylinder or in a twin-coil hot water cylinder (the second coil is used to provide additional heating from a boiler or other heat source).

Solar hot water panels could be used however, PV will provide slightly better savings and avoid the need for water storage cylinders when compared.

#### Renewable Technology Not Chosen.

#### Photovoltaic Panels (PV)

Photovoltaic modules convert sunlight directly to DC electricity. The solar cells consist of a thin piece of semiconductor material, in most cases of silicon. Through a process called doping, very small amounts of impurities are added to the semiconductor, which creates two different layers called n-type and p-type layers.

Certain wavelengths of light are able to ionize the silicon atoms, which separates some of the positive charges (holes) from the negative charges (electrons). The holes move into the positive or p-layer and the electrons into the negative or n-layer. These opposite charges are attracted to each other, but most of them can only re-combine by the electrons passing through an external circuit, due to an internal potential energy barrier. This flow of electrons produces a DC current.

A PV array can be mounted on the suitable roof space, however the North Somerset planning target of reducing energy demand from the use of renewables is already being satisfied through the use of the NIBE ASHP.

#### Renewable Technology Not Chosen.



#### Ground Source Heat pumps

A heat pump is a device that takes up heat at a certain temperature and releases it at a higher temperature. The essential components of a heat pump are heat exchangers (through which energy is extracted and emitted) and a means of pumping heat between the exchangers. The effectiveness of the heat pump is measured by the ratio of the heating capacity to the effective power input, usually known as the coefficient of performance (COP). Ground-source heat pumps (GSHP) extract heat from the ground. They are classified as either water-to-air or water-to-water units depending on whether the heat distribution system in the building uses air or water. Ground source heat pumps either use long shallow trenches or deep vertical boreholes to take low grade heat from the ground and then compress it to create higher temperatures.

Ground source heat pumps would not be suitable due to the lack of land space around the properties and the associated costs.

#### Renewable Technology Not Viable

#### Air Source Heat pumps

Air source heat pumps absorb heat from the outside air. This is usually used to heat radiators, underfloor heating systems, or warm air convectors and hot water in your home. An air source heat pump extracts heat from the outside air in the same way that a fridge extracts heat from its inside.

The system performs down to air temperatures of -20°c which means that they are more than suitable for installations within the UK. Hot water and Heating can be provided 365 days a year. The hot water is produced without the aid of electrical immersions and at 55°c is more than hot enough for baths and showers.

There are two main types of air source heat pump system:

- An air-to-water system distributes heat via your wet central heating system. Heat pumps work much more efficiently at a lower temperature than a standard boiler system would. So they are more suitable for under-floor heating systems or larger radiators, which give out heat at lower temperatures over longer periods of time.
- An air-to-air system produces warm air which is circulated by fans to heat your home. They are unlikely to provide you with hot water as well.

Air Source heat pumps are a good option to provide heating and cooling. A NIBE ASHP is to be proposed at this stage.

#### Chosen Renewable Technology



#### **Biomass Heating**

Biomass is any plant-derived organic material that renews itself over a short period.

Biomass energy systems are based on either the direct or indirect combustion of fuels derived from those plant sources. The most common form of biomass is the direct combustion of wood in treated or untreated forms. The use of biomass is becoming increasingly common in some European countries.

The environmental benefits relate to the significantly lower amounts of energy used in biomass production and processing compared to the energy released when they are burnt. This can range from a four-fold return for biodiesel to an approximate 20-fold energy return for woody biomass. Biomass-fuels can be used to produce energy on a continuous basis (unlike renewables such as wind or solar energy) and it can be an economic alternative to fossil fuels as it is a potential source of both heat and electricity.

However, Biomass systems have particular design management and maintenance requirements associated with sourcing, transportation and storage and are therefore more commonly used in commercial developments rather than domestic installations. It can be less convenient to operate than mains-supplied fuels such as natural gas and are more management intensive and require expertise in facilities management. Sources of biomass can also fluctuate, so boilers should be specified to operate on a variety of fuels without risk of overheating or tripping out.

A communal biomass system would not be feasible for this development due to the expense associated with the necessary output to heat all dwellings on the site.

#### Renewable Technology Not Chosen

#### Wind

Wind turbines convert the kinetic energy in wind into mechanical energy that is then converted to electricity. Turbines are available in a range of sizes and designs and can either be free-standing, mounted on a building or integrated into a building structure.

The wind speed in the area is under the advised minimum and the built-up area means that a wind turbine wouldn't be feasible.

#### Renewable Technology Not Viable



#### 4 Conclusion

This statement has assessed the proposed development at The Shingles site against the relevant climate change and sustainability policies and targets, as outlined within: the North Somerset Council Core Strategy (2017), through the following of the energy hierarchy, the modelling of apartments in the FSAP 2012 software and addressing all aspects of a sustainable development. In addition, the proposal has been assessed against national sustainable design definitions to determine how it can be classified.

As part of this process, the development was designed with a fabric first approach; with U-values, design air permeability and ventilation targets all aspiring to exceeding Building Regulations Part L 2013 standards. Following on from this, efficient MVHR systems were proposed to further reduce the total energy demands whilst simultaneously providing each dwelling with healthy internal environments. This approach demonstrates a holistic low energy design concept, involving very low limiting values and thus led to high-energy performance targets.

Furthermore, an LZC feasibility assessment was carried out, with all suitable technologies investigated for their suitability to the site and development. The assessment determined that a NIBE ASHP system can be proposed at this stage and would provide an additional 56.6% reduction in energy demand over the baseline: bringing the total energy demand reduction to **60.6%**.

The development will also be adapting to climate change by incorporating sustainable drainage measures into the design, protecting existing ecology, enhancing biodiversity where possible and providing cycle storage provision to residents.

In addition to the following of the energy hierarchy through the efficient design and renewable technology measures mentioned and meeting all relevant North Somerset Council primary energy targets the proposal will include a large number of sustainability measures throughout construction and once completed, which will contribute heavily to the development's sustainability performance and accord with the requirements of the NPPF. The key measures to be included and therefore can be taken from this report include:

- The proposal sits within Flood Risk Zone 1 and therefore has minimal to no risk of flooding.
- A SUDs strategy will be produced to outline all measures to be incorporated that will ensure any additional surface water is collected, treated and removed.
- The development will incorporate green infrastructure in the form of extensive planting involving hedges, trees, sedum/green roofs and ornamental planting that will instil a sense of wellbeing whilst also assisting with offsetting carbon dioxide and balancing local temperatures through evapotranspiration.
- Internal water efficiency will be prioritised by ensuring that efficient water fixtures are proposed so that each dwelling achieves less than 110L per person per day and 'A' rated appliances will be specified where possible.
- Waste minimisation will be targeted from throughout construction and occupational phase. It is targeted that at least 90% of construction waste will be diverted from landfill. Whilst triseparator refuse shoots will be installed on each floor to promote recycling.



- In addition to targeting Secure by Design accreditation through adoption crime prevention measures, the site layout promotes busy spaces and routes and facilitates natural surveillance. These will therefore reduce the fear of crime and subsequently improving mental health of residents, visitors and workers.
- Prioritising reusing existing materials and locally sourced materials for construction to reduce waste and transportation to landfill in addition and promote a low embodied carbon development.
- When new materials are specified that are not locally attainable then only those that score well on the BRE: The Green Guide to Specification are to be used; to further encourage the use of sustainable materials and reductions in embodied carbon.
- The buildings will have a daylight and sunlight analysis carried out and will aim to achieve high pass rates. Additionally, highly efficient MVHR systems are being proposed to provide a continuous source of fresh air and maintain healthy indoor environments. These will promote healthy housing and subsequently boost physical and mental wellbeing of residents.
- The development will also include significant cycle storage provision.

As a result of all the above, the proposed sustainable design and energy strategy allows the development to comply with North Somerset Council's planning policy requirement and is in line with all targets put forward in their planning documents.



| House Type                                                   | Flat 1                          | Flat 2                          | Flat 3                          | Flat 4                          | TOTAL (kWh/yr)                  |                        | TOTAL (kgCO2/yr)                   |
|--------------------------------------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|------------------------|------------------------------------|
| BASELINE Dwelling Emission Rate (DER)                        | Total Energy Demand<br>(kWh/yr) | Carbon Emission Factor | Associated Total CO2<br>(kgCO2/yr) |
| Main Heating Fuel Requirement (DER)                          | 15876.9                         |                                 |                                 |                                 | 15876.9                         | 0.216                  | 3429.4                             |
| Secondary Main Heating Fuel Requirement (DER)                | 0                               |                                 |                                 |                                 | 0.0                             | 0.519                  | 0.0                                |
| Secondary Heating Fuel Requirement (DER)                     | 0                               |                                 |                                 |                                 | 0.0                             | 0.216                  | 0.0                                |
| Water Fuel Requirement (DER)                                 | 2882.38                         |                                 |                                 |                                 | 2882.4                          | 0.216                  | 622.6                              |
| Electricity Pumps Fans Requirement (DER)                     | 75                              |                                 |                                 |                                 | 75.0                            | 0.519                  | 38.9                               |
| Electricity Lighting Requirement (DER)                       | 723.12                          |                                 |                                 |                                 | 723.1                           | 0.519                  | 375.3                              |
| TOTAL PER DEVELOPMENT                                        |                                 |                                 |                                 |                                 | 19557.4                         |                        | 4466.2                             |
|                                                              |                                 |                                 |                                 |                                 |                                 |                        |                                    |
| AFTER ENERGY SAVING MEASURES Dwelling<br>Emission Rate (DER) | Total Energy Demand<br>(kWh/yr) | Carbon Emission Factor | Associated Total CO2<br>(kgCO2/yr) |
| Main Heating Fuel Requirement (DER)                          | 11062.19                        |                                 |                                 |                                 | 11062.2                         | 0.216                  | 2389.4                             |
| Secondary Main Heating Fuel Requirement (DER)                | 0                               |                                 |                                 |                                 | 0.0                             | 0.519                  | 0.0                                |
| Secondary Heating Fuel Requirement (DER)                     | 1718.89                         |                                 |                                 |                                 | 1718.9                          | 0.216                  | 371.3                              |
| Water Fuel Requirement (DER)                                 | 2935.66                         |                                 |                                 |                                 | 2935.7                          | 0.216                  | 634.1                              |
| Electricity Pumps Fans Requirement (DER)                     | 1307.06                         |                                 |                                 |                                 | 1307.1                          | 0.519                  | 678.4                              |
| Electricity Lighting Requirement (DER)                       | 723.12                          |                                 |                                 |                                 | 723.1                           | 0.519                  | 375.3                              |
| TOTAL PER DEVELOPMENT                                        |                                 |                                 |                                 |                                 | 17746.9                         |                        | 4448.5                             |
|                                                              |                                 |                                 | •<br>•                          |                                 |                                 |                        |                                    |
| FINAL Dwelling Emission Rate (DER)                           | Total Energy Demand<br>(kWh/yr) | Carbon Emission Factor | Associated Total CO2<br>(kgCO2/yr) |
| Main Heating Fuel Requirement (DER)                          | 3400.3                          |                                 |                                 |                                 | 3400.3                          | 0.216                  | 734.5                              |
| Secondary Main Heating Fuel Requirement (DER)                | 0                               |                                 |                                 |                                 | 0.0                             | 0.519                  | 0.0                                |
| Secondary Heating Fuel Requirement (DER)                     | 0                               |                                 |                                 |                                 | 0.0                             | 0.216                  | 0.0                                |
| Water Fuel Requirement (DER)                                 | 2351.92                         |                                 |                                 |                                 | 2351.9                          | 0.216                  | 508.0                              |
| Electricity Pumps Fans Requirement (DER)                     | 1232.06                         |                                 |                                 |                                 | 1232.1                          | 0.519                  | 639.4                              |
| Electricity Lighting Requirement (DER)                       | 723.12                          |                                 |                                 |                                 | 723.1                           | 0.519                  | 375.3                              |
| PV Energy Produced (DER)                                     |                                 |                                 |                                 |                                 | 0.0                             | 0.519                  | 0.0                                |
| TOTAL PER DEVELOPMENT                                        |                                 |                                 |                                 |                                 | 7707.4                          |                        | 2257.2                             |





# **Regulations Compliance Report**

| ••                   | ent L1A, 2013 Edition<br>Jary 2023 at 15:19:10 | , England assessed by Stroma FS<br>າ                                                                         | SAP 2012 program, Ve                 | rsion: 1.0.5.59      |          |
|----------------------|------------------------------------------------|--------------------------------------------------------------------------------------------------------------|--------------------------------------|----------------------|----------|
| Project Information  | •                                              | 5                                                                                                            |                                      |                      |          |
| Assessed By:         | Daniel Watt (STRO                              | 0026464)                                                                                                     | Building Type:                       | Detached House       |          |
| Dwelling Details:    | (                                              |                                                                                                              |                                      |                      |          |
| NEW DWELLING         | DESIGN STAGE                                   |                                                                                                              | Total Floor Area: 3                  | 301.27m <sup>2</sup> |          |
| Site Reference :     | Ridgeway Road                                  |                                                                                                              | Plot Reference:                      | The Shingles         |          |
| Address :            |                                                | lvey Batch, Backwell, BRISTOL, E                                                                             | 3S48 3BZ                             | 0                    |          |
| Client Details:      |                                                | ·                                                                                                            |                                      |                      |          |
| Name:                |                                                |                                                                                                              |                                      |                      |          |
| Address :            |                                                |                                                                                                              |                                      |                      |          |
| This report cover    | s items included wi                            | thin the SAP calculations.                                                                                   |                                      |                      |          |
| It is not a comple   | te report of regulat                           | ons compliance.                                                                                              |                                      |                      |          |
| 1a TER and DER       |                                                |                                                                                                              |                                      |                      |          |
|                      | ing system: Mains ga                           | as                                                                                                           |                                      |                      |          |
| Fuel factor: 1.00 (r | nains gas)<br>oxide Emission Rate              |                                                                                                              | 14.82 kg/m²                          |                      |          |
| -                    | Dioxide Emission Rate                          | . ,                                                                                                          | 13.64 kg/m <sup>2</sup>              |                      | ок       |
| 1b TFEE and DF       |                                                |                                                                                                              | roto r kg/m                          |                      |          |
| Target Fabric Ener   | rgy Efficiency (TFEE                           | )                                                                                                            | 63.1 kWh/m²                          |                      |          |
| Dwelling Fabric Er   | nergy Efficiency (DFE                          | E)                                                                                                           | 53.3 kWh/m <sup>2</sup>              |                      |          |
|                      |                                                |                                                                                                              |                                      |                      | ОК       |
| 2 Fabric U-value     | S                                              |                                                                                                              |                                      |                      |          |
| Element              |                                                | Average                                                                                                      | Highest                              |                      | 01/      |
| External v<br>Floor  | wall                                           | 0.22 (max. 0.30)<br>0.15 (max. 0.25)                                                                         | 0.22 (max. 0.70)                     |                      | OK<br>OK |
| Roof                 |                                                | 0.13 (max. 0.23)<br>0.14 (max. 0.20)                                                                         | 0.15 (max. 0.70)<br>0.14 (max. 0.35) |                      | OK       |
| Openings             | 5                                              | 1.30 (max. 2.00)                                                                                             | 1.30 (max. 3.30)                     |                      | OK       |
| 2a Thermal brid      |                                                | , , , , , , , , , , , , , , , , , , ,                                                                        |                                      |                      |          |
|                      |                                                | om linear thermal transmittances f                                                                           | for each junction                    |                      |          |
| 3 Air permeabili     | ty                                             |                                                                                                              |                                      |                      |          |
|                      | pility at 50 pascals                           |                                                                                                              | 3.00 (design val                     | lue)                 |          |
| Maximum              |                                                |                                                                                                              | 10.0                                 |                      | ОК       |
| 4 Heating efficie    | ncy                                            |                                                                                                              |                                      |                      |          |
| Main Heatir          | ng system:                                     | Boiler systems with radiators or<br>Data from manufacturer<br>Efficiency 90.0 % SEDBUK2009<br>Minimum 88.0 % | -                                    | ains gas             | ок       |
|                      |                                                |                                                                                                              |                                      |                      |          |
| Secondary            | heating system:                                | Room heaters - wood                                                                                          |                                      |                      |          |
|                      |                                                | Closed room heater                                                                                           |                                      |                      |          |
|                      |                                                | Efficiency 65.0 %                                                                                            |                                      |                      | OK       |
| 5 Cylinder insula    | ation                                          | Minimum 65.0 %                                                                                               |                                      |                      | ОК       |
| Hot water S          |                                                | Measured cylinder loss: 2.75 kW                                                                              | Vh/dav                               |                      |          |
|                      |                                                | Permitted by DBSCG: 3.41 kWh                                                                                 | •                                    |                      | ОК       |

## **Regulations Compliance Report**

| Primary pipework insulated   | Yes                      |                                 | OK    |
|------------------------------|--------------------------|---------------------------------|-------|
| Controls                     |                          |                                 |       |
|                              |                          |                                 |       |
| Space heating controls       | TTZC by plumbing and el  | ectrical services               | OK    |
| Hot water controls:          | Cylinderstat             |                                 | OK    |
|                              | Independent timer for DH | W                               | OK    |
| Boiler interlock:            | Yes                      |                                 | OK    |
| ' Low energy lights          |                          |                                 |       |
| Percentage of fixed lights w | ith low-energy fittings  | 100.0%                          |       |
| Minimum                      |                          | 75.0%                           | OK    |
| B Mechanical ventilation     |                          |                                 |       |
| Continuous supply and extr   | act system               |                                 |       |
| Specific fan power:          |                          | 0.89                            |       |
| Maximum                      |                          | 1.5                             | OK    |
| MVHR efficiency:             |                          | 89%                             |       |
| Minimum                      |                          | 70%                             | OK    |
| Summertime temperature       |                          |                                 |       |
| Overheating risk (South We   | st England):             | Not significant                 | OK    |
| ased on:                     |                          |                                 |       |
| Overshading:                 |                          | Average or unknown              |       |
| Windows facing: North Wes    | t                        | 22.67m <sup>2</sup>             |       |
| Windows facing: South Eas    | t                        | 35.5m <sup>2</sup>              |       |
| Windows facing: North East   | :                        | 11.67m <sup>2</sup>             |       |
| Windows facing: South Wes    | st                       | 15.45m <sup>2</sup>             |       |
| Ventilation rate:            |                          | 8.00                            |       |
| Blinds/curtains:             |                          | Dark-coloured curtain or roller | blind |
|                              |                          | Closed 100% of daylight hours   | 6     |

#### 10 Key features

Air permeablility Secondary heating (wood logs) Secondary heating fuel wood logs 3.0 m³/m²h

## **SAP Input**

| Property Details:                 | The Shingles        |                                                  |                    |                  |           |                      |
|-----------------------------------|---------------------|--------------------------------------------------|--------------------|------------------|-----------|----------------------|
| Address:                          |                     | The Shingles, Chelvey Ba                         | itch, Backwell, BR | ISTOL, BS48 3B   | Z         |                      |
| Located in:                       |                     | England                                          |                    |                  |           |                      |
| Region:                           |                     | South West England                               |                    |                  |           |                      |
| UPRN:                             |                     | UPRN-000024066096                                |                    |                  |           |                      |
| Date of assess                    | ment:               | 20 January 2023                                  |                    |                  |           |                      |
| Date of certific                  | ate:                | 20 January 2023                                  |                    |                  |           |                      |
| Assessment ty                     | pe:                 | New dwelling design stag                         | je                 |                  |           |                      |
| Transaction ty                    | pe:                 | New dwelling                                     |                    |                  |           |                      |
| Tenure type:                      |                     | Owner-occupied                                   |                    |                  |           |                      |
| Related party of                  |                     | Employed by the professi                         | ional dealing with | the property tra | Insaction |                      |
| Thermal Mass                      |                     | Indicative Value Medium                          |                    |                  |           |                      |
|                                   | 125 litres/person/d |                                                  |                    |                  |           |                      |
| PCDF Version:                     |                     | 510                                              |                    |                  |           |                      |
| Property descript                 | ion:                |                                                  |                    |                  |           |                      |
| Dwelling type:                    |                     | House                                            |                    |                  |           |                      |
| Detachment:                       |                     | Detached                                         |                    |                  |           |                      |
| Year Completed:                   |                     | 2023                                             |                    |                  |           |                      |
| Floor Location:                   |                     | Floor area:                                      |                    |                  |           |                      |
|                                   |                     |                                                  | c                  | Storey height    |           |                      |
|                                   |                     | $111 \ 10 \ m^2$                                 |                    | 2.75 m           | •         |                      |
| Floor 0                           |                     | 211.32 m²<br>89.95 m²                            |                    | 2.75 m<br>2.55 m |           |                      |
| Floor 1                           |                     |                                                  |                    | 2.55 111         |           |                      |
| Living area:<br>Front of dwelling | faces:              | 32 m <sup>2</sup> (fraction 0.127)<br>North West |                    |                  |           |                      |
| Opening types:                    |                     |                                                  |                    |                  |           |                      |
| Name:                             | Source:             | Type:                                            | Glazing:           |                  | Argon:    | Frame:               |
| Front Door                        | Manufacturer        | Solid                                            |                    |                  |           | Wood                 |
| Front                             | Manufacturer        | Windows                                          | low-E, En =        | 0.05, soft coat  | Yes       | Metal, thermal break |
| Rear                              | SAP 2012            | Windows                                          | low-E, En =        | 0.05, soft coat  | Yes       | Metal, thermal break |
| Right                             | SAP 2012            | Windows                                          | low-E, En =        | 0.05, soft coat  | Yes       | Metal, thermal break |
| Left                              | SAP 2012            | Windows                                          | low-E, En =        | 0.05, soft coat  | Yes       | Metal, thermal break |
| Name:                             | Gap:                | Frame Facto                                      | r: g-value:        | U-value:         | Area:     | No. of Openings:     |
| Front Door                        | mm                  | 0.7                                              | 0                  | 1.3              | 2.64      | 1                    |
| Front                             | 16mm or more        | 0.8                                              | 0.72               | 1.3              | 22.67     | 1                    |
| Rear                              | 16mm or more        | 0.8                                              | 0.72               | 1.3              | 35.5      | 1                    |
| Right                             | 16mm or more        | 0.8                                              | 0.72               | 1.3              | 11.67     | 1                    |
| Left                              | 16mm or more        | 0.8                                              | 0.72               | 1.3              | 15.45     | 1                    |
| Name:                             | Type-Name:          | Location:                                        | Orient:            |                  | Width:    | Height:              |
| Front Door                        | J                   | External Walls                                   | North West         |                  | 0         | 0                    |
| Front                             |                     | External Walls                                   | North West         |                  | 0         | 0                    |
| Rear                              |                     | External Walls                                   | South East         |                  | 0         | 0                    |
| Right                             |                     | External Walls                                   | North East         |                  | 0         | 0                    |
| Left                              |                     | External Walls                                   | South West         |                  | 0         | 0                    |
| Overshading:                      |                     | Average or unknown                               |                    |                  |           |                      |
| Opaque Elements                   | 5:                  | -                                                |                    |                  |           |                      |
| Туре:                             | Gross area: Ope     | nings: Net area:                                 | U-value:           | Ru value:        | Curtain   | wall: Kappa:         |
| External Element                  | ts                  | C C                                              | 0.22               | 0                | Falco     |                      |
| External Walls                    |                     |                                                  | 0.22               | 0                | False     | N/A                  |
| FLat ceiling                      | 83.52 0             | 83.52                                            | 0.14               | 0                |           | N/A                  |
| Sloped roof                       | 154 0               | 154                                              | 0.14               | 0                |           | N/A                  |

## **SAP Input**

| Ground<br><u>Internal Elements</u><br>Party Elements | 211.32                 |                                                                 |                                 | 0.15       |                                                           | N/A                 |  |  |  |  |
|------------------------------------------------------|------------------------|-----------------------------------------------------------------|---------------------------------|------------|-----------------------------------------------------------|---------------------|--|--|--|--|
| Thermal bridges:                                     |                        |                                                                 |                                 |            |                                                           |                     |  |  |  |  |
| Thermal bridges:                                     |                        | User-defined<br><b>Length</b>                                   | (individual PSI-<br>Psi-value   | values)    | Y-Value = 0.0896                                          |                     |  |  |  |  |
|                                                      | pproved]               | 31                                                              | 0.3                             | E2         | Other lintels (including other steel linter               | els)                |  |  |  |  |
|                                                      | pproved]               | 22                                                              | 0.04                            | E3         | Sill                                                      |                     |  |  |  |  |
|                                                      | .pproved]<br>.pproved] | 75<br>17                                                        | 0.05<br>0.16                    | E4<br>E5   | Jamb<br>Ground floor (normal)                             |                     |  |  |  |  |
| L/ V                                                 | pproved]               | 7                                                               | 0.07                            | E19        | Ground floor (inverted)                                   |                     |  |  |  |  |
|                                                      |                        | 15                                                              | 0.07                            | E22        | Basement floor                                            |                     |  |  |  |  |
| [A                                                   | pproved]               | 53                                                              | 0.07                            | E6         | Intermediate floor within a dwelling                      |                     |  |  |  |  |
|                                                      |                        | 66                                                              | 0.56                            | E15        | Flat roof with parapet                                    |                     |  |  |  |  |
|                                                      | pproved]               | 65<br>32                                                        | 0.09<br>-0.09                   | E16<br>E17 | Corner (normal)<br>Corner (inverted internal area greater | than external area) |  |  |  |  |
| ĮA                                                   | pproved]               | 32                                                              | -0.09                           | EI/        | Corner (inverted internal area greater                    | (nan external area) |  |  |  |  |
| Ventilation:                                         |                        |                                                                 |                                 |            |                                                           |                     |  |  |  |  |
| Pressure test:                                       |                        | Yes (As desig                                                   |                                 |            |                                                           |                     |  |  |  |  |
| Ventilation:                                         |                        |                                                                 | heat recovery                   |            |                                                           |                     |  |  |  |  |
|                                                      |                        | Number of wet rooms: Kitchen + 4<br>Ductwork: Insulation, rigid |                                 |            |                                                           |                     |  |  |  |  |
|                                                      |                        |                                                                 | tallation Schem                 | e: False   |                                                           |                     |  |  |  |  |
| Number of chimneys                                   | 5:                     |                                                                 | econdary: 1, oth                |            |                                                           |                     |  |  |  |  |
| Number of open flue                                  | es:                    | 0                                                               |                                 |            |                                                           |                     |  |  |  |  |
| Number of fans:                                      |                        | 0                                                               |                                 |            |                                                           |                     |  |  |  |  |
| Number of passive s                                  |                        | 0 2                                                             |                                 |            |                                                           |                     |  |  |  |  |
| Number of sides she<br>Pressure test:                | eitereu:               | 2                                                               |                                 |            |                                                           |                     |  |  |  |  |
| Main heating system:                                 |                        |                                                                 |                                 |            |                                                           |                     |  |  |  |  |
| Main heating system                                  |                        | Boiler system                                                   | s with radiators                | or und     | erfloor heating                                           |                     |  |  |  |  |
| Main neuting system                                  |                        | Gas boilers ar                                                  |                                 |            | g                                                         |                     |  |  |  |  |
|                                                      |                        | Fuel: mains g                                                   | as                              |            |                                                           |                     |  |  |  |  |
|                                                      |                        |                                                                 | Manufacturer D                  | eclarati   | on                                                        |                     |  |  |  |  |
|                                                      |                        | Manufacturer                                                    |                                 | 000)       |                                                           |                     |  |  |  |  |
|                                                      |                        | -                                                               | .0% (SEDBUK2<br>ensing with aut |            | ignition                                                  |                     |  |  |  |  |
|                                                      |                        | Fuel Burning                                                    | -                               | omatio     | .g                                                        |                     |  |  |  |  |
|                                                      |                        | Systems with                                                    | • •                             |            |                                                           |                     |  |  |  |  |
|                                                      |                        |                                                                 | ng pump:2013                    |            |                                                           |                     |  |  |  |  |
|                                                      |                        | 0                                                               | emperature: De                  | esign flo  | w temperature >45°C                                       |                     |  |  |  |  |
|                                                      |                        | Room-sealed                                                     |                                 |            |                                                           |                     |  |  |  |  |
| Main heating Control:                                |                        | Boiler interloc                                                 | K: Yes                          |            |                                                           |                     |  |  |  |  |
|                                                      |                        | Time and tem                                                    | noraturo zono                   | control    | by suitable arrangement of plumbin                        | a and electrical    |  |  |  |  |
| Main heating Contro                                  | 11.                    | services                                                        | iperature zone                  | CONTRION   | by suitable arrangement of plumbin                        | y and electrical    |  |  |  |  |
|                                                      |                        | Control code:                                                   | 2110                            |            |                                                           |                     |  |  |  |  |
| Secondary heating sy                                 | vstem:                 |                                                                 |                                 |            |                                                           |                     |  |  |  |  |
| Secondary heating s                                  | system:                | Room heaters                                                    | 5                               |            |                                                           |                     |  |  |  |  |
|                                                      |                        | Solid fuel room                                                 |                                 |            |                                                           |                     |  |  |  |  |
|                                                      |                        | Fuel :wood lo                                                   |                                 |            |                                                           |                     |  |  |  |  |
|                                                      |                        | Info Source: S<br>Closed room                                   |                                 |            |                                                           |                     |  |  |  |  |
|                                                      |                        | HETAS Appro                                                     |                                 |            |                                                           |                     |  |  |  |  |
|                                                      |                        |                                                                 |                                 |            |                                                           |                     |  |  |  |  |

## **SAP Input**

| Wat | tor | hoa | tino |
|-----|-----|-----|------|
| vva |     | пеа | ung  |

#### Water heating:

From main heating system Water code: 901 Fuel :mains gas Hot water cylinder Cylinder volume: 400 litres Cylinder insulation: Factory 100 mm Primary pipework insulation: True Cylinderstat: True Cylinder in heated space: True Solar panel: False

#### Others:

Electricity tariff: In Smoke Control Area: Conservatory: Low energy lights: Terrain type: EPC language: Wind turbine: Photovoltaics: Assess Zero Carbon Home: Standard Tariff No No conservatory 100% Low rise urban / suburban English No None No

## SAP WorkSheet: New dwelling design stage

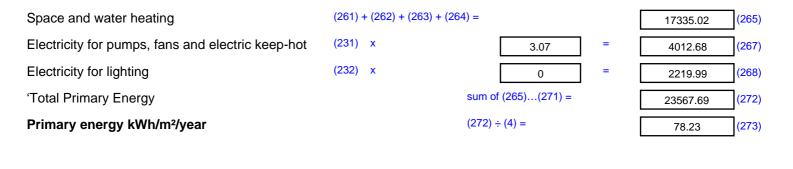
|                                                               |                 |             |                    | User [       | Details:     |             |             |               |           |                         |             |
|---------------------------------------------------------------|-----------------|-------------|--------------------|--------------|--------------|-------------|-------------|---------------|-----------|-------------------------|-------------|
| Assessor Name:                                                | Daniel Wa       | tt          |                    |              | Strom        | a Num       | ber:        |               | STRO      | 026464                  |             |
| Software Name:                                                | Stroma FS       | AP 201      | 2                  |              | Softwa       | are Vei     | Versio      | ion: 1.0.5.59 |           |                         |             |
|                                                               |                 |             | P                  | roperty      | Address      | : The Sh    | ingles      |               |           |                         |             |
| Address :                                                     | The Shingle     | es, Chelv   | vey Batch          | n, Back      | well, BRI    | STOL, E     | 3S48 3B2    | Z             |           |                         |             |
| 1. Overall dwelling dimer                                     | isions:         |             |                    |              |              |             |             |               |           |                         |             |
|                                                               |                 |             |                    | Are          | a(m²)        |             | Av. Hei     | ght(m)        | -         | Volume(m <sup>3</sup> ) | _           |
| Ground floor                                                  |                 |             |                    | 2            | 211.32       | (1a) x      | 2.          | 75            | (2a) =    | 581.13                  | (3a)        |
| First floor                                                   |                 |             |                    |              | 89.95        | (1b) x      | 2.          | 55            | (2b) =    | 229.37                  | (3b)        |
| Total floor area TFA = (1a                                    | )+(1b)+(1c)+    | (1d)+(1e    | e)+(1n             | ) 3          | 801.27       | (4)         |             |               |           |                         |             |
| Dwelling volume                                               |                 |             |                    |              |              | (3a)+(3b)   | )+(3c)+(3d  | )+(3e)+       | .(3n) =   | 810.5                   | (5)         |
| 2. Ventilation rate:                                          |                 |             |                    |              |              |             |             |               |           |                         |             |
|                                                               | main<br>heating |             | econdar<br>leating | у            | other        |             | total       |               |           | m <sup>3</sup> per hou  | r           |
| Number of chimneys                                            | 0               | +           | 1                  | +            | 0            | =           | 1           | X 4           | 40 =      | 40                      | (6a)        |
| Number of open flues                                          | 0               | _ + _       | 0                  | <u> </u> + [ | 0            |             | 0           | x 2           | 20 =      | 0                       | (6b)        |
| Number of intermittent far                                    | s               |             |                    |              |              | Γ           | 0           | x ′           | 10 =      | 0                       | (7a)        |
| Number of passive vents                                       |                 |             |                    |              |              | Γ           | 0           | x             | 10 =      | 0                       | (7b)        |
| Number of flueless gas fir                                    | es              |             |                    |              |              | Г           | 0           | x 4           | 40 =      | 0                       | (7c)        |
|                                                               |                 |             |                    |              |              |             |             |               |           |                         |             |
|                                                               |                 |             |                    |              |              |             |             |               | Air ch    | anges per ho            | ur          |
| Infiltration due to chimney                                   |                 |             |                    |              |              |             | 40          |               | ÷ (5) =   | 0.05                    | (8)         |
| If a pressurisation test has be                               |                 |             | ed, proceed        | d to (17),   | otherwise of | continue fr | om (9) to ( | 16)           |           |                         |             |
| Number of storeys in the<br>Additional infiltration           | e uwennig (na   | >)          |                    |              |              |             |             | [(0).         | -1]x0.1 = | 0                       | (9)<br>(10) |
| Structural infiltration: 0.2                                  | 25 for steel o  | r timber t  | frame or           | 0 35 fc      | r masoni     | v constr    | uction      | [(3)          | 110.1 -   | 0                       | (10)        |
| if both types of wall are pre                                 |                 |             |                    |              |              | •           | dottori     |               |           | 0                       |             |
| deducting areas of opening                                    |                 |             |                    |              |              |             |             |               |           |                         | _           |
| If suspended wooden flo                                       |                 |             | ed) or 0.          | 1 (seal      | ed), else    | enter 0     |             |               |           | 0                       | (12)        |
| If no draught lobby, ente                                     |                 |             |                    |              |              |             |             |               |           | 0                       | (13)        |
| Percentage of windows                                         | and doors dr    | aught st    | ripped             |              | 0.05 10.0    |             | 0.01        |               |           | 0                       | (14)        |
| Window infiltration                                           |                 |             |                    |              | 0.25 - [0.2  |             |             | (45)          |           | 0                       | (15)        |
| Infiltration rate                                             | 50              |             |                    |              |              |             | 2) + (13) + |               |           | 0                       | (16)        |
| Air permeability value, o                                     |                 |             |                    |              |              | •           | etre of e   | nvelope       | area      | 3                       | (17)        |
| If based on air permeabilit<br>Air permeability value applies |                 |             |                    |              |              |             | is being us | od            |           | 0.2                     | (18)        |
| Number of sides sheltered                                     |                 | on test nas | s been don         |              | gree an pe   | ineability  | is being us | seu           |           | 2                       | (19)        |
| Shelter factor                                                | •               |             |                    |              | (20) = 1 -   | [0.075 x (1 | 9)] =       |               |           | 0.85                    | (20)        |
| Infiltration rate incorporation                               | ng shelter fac  | tor         |                    |              | (21) = (18   | ) x (20) =  |             |               |           | 0.17                    | (21)        |
| Infiltration rate modified for                                | r monthly wir   | nd speed    | ł                  |              |              |             |             |               |           |                         |             |
| Jan Feb I                                                     | Mar Apr         | May         | Jun                | Jul          | Aug          | Sep         | Oct         | Nov           | Dec       |                         |             |
| Monthly average wind spe                                      | ed from Tabl    | e 7         |                    |              |              |             |             |               |           |                         |             |
| (22)m= 5.1 5                                                  | 4.9 4.4         | 4.3         | 3.8                | 3.8          | 3.7          | 4           | 4.3         | 4.5           | 4.7       |                         |             |

## SAP WorkSheet: New dwelling design stage

| Wind F                                                                                                                                | -actor (2                                                                                                         | 2a)m =                                                                                                          | (22)m ÷                                                                                                                                                                                                                                                                                                                                                                                                                                             | 4                             |                         |                                                                                                               |                                                                                                           |                                                                                                                                             |                                                                                                                                              |                                                                                                     |                  |                   |                    |                                                                                              |
|---------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------|-------------------------|---------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------|------------------|-------------------|--------------------|----------------------------------------------------------------------------------------------|
| (22a)m=                                                                                                                               | 1.27                                                                                                              | 1.25                                                                                                            | 1.23                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1.1                           | 1.08                    | 0.95                                                                                                          | 0.95                                                                                                      | 0.92                                                                                                                                        | 1                                                                                                                                            | 1.08                                                                                                | 1.12             | 1.18              |                    |                                                                                              |
| Adjuste                                                                                                                               | ed infiltra                                                                                                       | ation rate                                                                                                      | e (allowi                                                                                                                                                                                                                                                                                                                                                                                                                                           | ng for sł                     | nelter an               | d wind s                                                                                                      | peed) =                                                                                                   | (21a) x                                                                                                                                     | (22a)m                                                                                                                                       |                                                                                                     |                  |                   |                    |                                                                                              |
|                                                                                                                                       | 0.22                                                                                                              | 0.21                                                                                                            | 0.21                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.19                          | 0.18                    | 0.16                                                                                                          | 0.16                                                                                                      | 0.16                                                                                                                                        | 0.17                                                                                                                                         | 0.18                                                                                                | 0.19             | 0.2               |                    |                                                                                              |
|                                                                                                                                       | ate effec                                                                                                         |                                                                                                                 | -                                                                                                                                                                                                                                                                                                                                                                                                                                                   | rate for t                    | he appli                | cable ca                                                                                                      | se                                                                                                        |                                                                                                                                             | -                                                                                                                                            |                                                                                                     |                  |                   |                    |                                                                                              |
|                                                                                                                                       | echanica<br>aust air he                                                                                           |                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                     | andix NL (2                   | 2h) _ (22               | $\rightarrow$ $\sim$ $Emy(c$                                                                                  | auction (N                                                                                                |                                                                                                                                             | nuico (22h                                                                                                                                   | ) - (220)                                                                                           |                  |                   | 0.5                | (23a)                                                                                        |
|                                                                                                                                       | anced with                                                                                                        | • •                                                                                                             | 0 11                                                                                                                                                                                                                                                                                                                                                                                                                                                |                               | , (                     | , (                                                                                                           |                                                                                                           | <i>,, ,</i>                                                                                                                                 | <b>`</b>                                                                                                                                     | ) = (23a)                                                                                           |                  |                   | 0.5                | (23b)                                                                                        |
|                                                                                                                                       |                                                                                                                   |                                                                                                                 | -                                                                                                                                                                                                                                                                                                                                                                                                                                                   | -                             | -                       |                                                                                                               |                                                                                                           |                                                                                                                                             |                                                                                                                                              |                                                                                                     | 001-)            | 1 (00 c)          | 75.65              | (23c)                                                                                        |
| ,                                                                                                                                     | i                                                                                                                 | 0.33                                                                                                            | 0.33                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.31                          | 0.3                     | at recove                                                                                                     |                                                                                                           | HR) (24a                                                                                                                                    | a)m = (22)                                                                                                                                   | 2D)m + (.<br>0.3                                                                                    | 23D) × [<br>0.31 | 1 – (23c)<br>0.32 | ÷100]              | (24a)                                                                                        |
| (24a)m=                                                                                                                               |                                                                                                                   |                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                               |                         |                                                                                                               |                                                                                                           |                                                                                                                                             |                                                                                                                                              |                                                                                                     |                  | 0.32              |                    | (24a)                                                                                        |
| ,                                                                                                                                     | balance                                                                                                           |                                                                                                                 | anical ve                                                                                                                                                                                                                                                                                                                                                                                                                                           |                               |                         | neat rec                                                                                                      |                                                                                                           |                                                                                                                                             | m = (22)                                                                                                                                     | $\frac{1}{0} + m(a)$                                                                                | <i>,</i>         |                   | l                  | (24b)                                                                                        |
| (24b)m=                                                                                                                               |                                                                                                                   | Ţ                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -                             | -                       |                                                                                                               | -                                                                                                         | _                                                                                                                                           |                                                                                                                                              | 0                                                                                                   | 0                | 0                 |                    | (240)                                                                                        |
| ,                                                                                                                                     | whole ho<br>if (22b)m                                                                                             |                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                               | •                       |                                                                                                               |                                                                                                           |                                                                                                                                             |                                                                                                                                              | 5 v (23h                                                                                            |                  |                   |                    |                                                                                              |
| (24c)m=                                                                                                                               | r í í                                                                                                             | 0                                                                                                               | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                               | 0 = (201)               |                                                                                                               | 0                                                                                                         | $\frac{0}{0} = \frac{221}{2}$                                                                                                               | 0                                                                                                                                            | 0                                                                                                   | 0                | 0                 |                    | (24c)                                                                                        |
|                                                                                                                                       | natural \                                                                                                         | Ţ                                                                                                               | Ţ                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Ŧ                             | -                       | -                                                                                                             | -                                                                                                         |                                                                                                                                             | -                                                                                                                                            | •                                                                                                   |                  |                   |                    | ~ /                                                                                          |
| ,                                                                                                                                     | if (22b)m                                                                                                         |                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                               | •                       |                                                                                                               |                                                                                                           |                                                                                                                                             |                                                                                                                                              | 0.5]                                                                                                |                  |                   |                    |                                                                                              |
| (24d)m=                                                                                                                               | 0                                                                                                                 | 0                                                                                                               | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0                             | 0                       | 0                                                                                                             | 0                                                                                                         | 0                                                                                                                                           | 0                                                                                                                                            | 0                                                                                                   | 0                | 0                 |                    | (24d)                                                                                        |
| Effe                                                                                                                                  | ctive air                                                                                                         | change                                                                                                          | rate - en                                                                                                                                                                                                                                                                                                                                                                                                                                           | iter (24a                     | ) or (24                | o) or (24                                                                                                     | c) or (24                                                                                                 | d) in boy                                                                                                                                   | (25)                                                                                                                                         |                                                                                                     |                  |                   |                    |                                                                                              |
| (25)m=                                                                                                                                | 0.34                                                                                                              | 0.33                                                                                                            | 0.33                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.31                          | 0.3                     | 0.28                                                                                                          | 0.28                                                                                                      | 0.28                                                                                                                                        | 0.29                                                                                                                                         | 0.3                                                                                                 | 0.31             | 0.32              |                    | (25)                                                                                         |
| 2 40                                                                                                                                  | at losses                                                                                                         | and be                                                                                                          | at loce r                                                                                                                                                                                                                                                                                                                                                                                                                                           | aramat                        | or:                     |                                                                                                               |                                                                                                           | •                                                                                                                                           |                                                                                                                                              |                                                                                                     |                  |                   |                    |                                                                                              |
| ELEN                                                                                                                                  |                                                                                                                   | Gros                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Openin                        |                         | Net Ar                                                                                                        | ea                                                                                                        | U-valı                                                                                                                                      | IP                                                                                                                                           | AXU                                                                                                 |                  | k-value           | Δ Δ                | Xk                                                                                           |
|                                                                                                                                       |                                                                                                                   | area                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                     | m                             | -                       | A ,r                                                                                                          |                                                                                                           | W/m2                                                                                                                                        |                                                                                                                                              | (W/I                                                                                                | ≺)               | kJ/m²·ł           |                    | /K                                                                                           |
| Doors                                                                                                                                 |                                                                                                                   |                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                               |                         | 2.64                                                                                                          | x                                                                                                         | 10                                                                                                                                          |                                                                                                                                              | 3.432                                                                                               |                  |                   |                    | (26)                                                                                         |
| Window                                                                                                                                |                                                                                                                   |                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                               |                         |                                                                                                               | ^                                                                                                         | 1.3                                                                                                                                         |                                                                                                                                              |                                                                                                     |                  |                   |                    |                                                                                              |
|                                                                                                                                       | ws Type                                                                                                           | 1                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                               |                         | 22.67                                                                                                         | <b>-</b>                                                                                                  | 1.3<br>/[1/( 1.3 )+                                                                                                                         | !                                                                                                                                            | 28.01                                                                                               |                  |                   |                    | (27)                                                                                         |
| Window                                                                                                                                | ws Type<br>ws Type                                                                                                |                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                               |                         |                                                                                                               | ×1,                                                                                                       |                                                                                                                                             | 0.04] =                                                                                                                                      |                                                                                                     |                  |                   |                    | (27)<br>(27)                                                                                 |
|                                                                                                                                       |                                                                                                                   | 2                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                               |                         | 22.67                                                                                                         | x1,                                                                                                       | /[1/( 1.3 )+                                                                                                                                | 0.04] = [<br>0.04] = [                                                                                                                       | 28.01                                                                                               |                  |                   |                    |                                                                                              |
| Windov                                                                                                                                | ws Type                                                                                                           | 2<br>3                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                               |                         | 22.67<br>35.5                                                                                                 | x1,<br>x1,<br>x1,<br>x1,                                                                                  | /[1/( 1.3 )+<br>/[1/( 1.3 )+                                                                                                                | 0.04] = [<br>0.04] = [<br>0.04] = [                                                                                                          | 28.01<br>43.87                                                                                      |                  |                   |                    | (27)                                                                                         |
| Windov                                                                                                                                | ws Type<br>ws Type                                                                                                | 2<br>3                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                               |                         | 22.67<br>35.5<br>11.67<br>15.45                                                                               | x1)<br>x1)<br>x1)<br>x1)<br>x1)                                                                           | /[1/( 1.3 )+<br>/[1/( 1.3 )+<br>/[1/( 1.3 )+<br>/[1/( 1.3 )+                                                                                | 0.04] = [<br>0.04] = [<br>0.04] = [                                                                                                          | 28.01<br>43.87<br>14.42<br>19.09                                                                    |                  |                   | -, [               | (27)<br>(27)<br>(27)                                                                         |
| Windov<br>Windov<br>Floor                                                                                                             | ws Type<br>ws Type                                                                                                | 2<br>3<br>4                                                                                                     | 92                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 87.9                          | 3                       | 22.67<br>35.5<br>11.67<br>15.45<br>211.3                                                                      | x 1,<br>x 1,<br>x 1,<br>x 1,<br>x 1,<br>x 1,<br>x 2, x                                                    | /[1/( 1.3 )+<br>/[1/( 1.3 )+<br>/[1/( 1.3 )+<br>/[1/( 1.3 )+<br>                                                                            | 0.04] = [<br>0.04] = [<br>0.04] = [<br>0.04] = [<br>0.04] = [                                                                                | 28.01<br>43.87<br>14.42<br>19.09<br>31.698                                                          |                  |                   | ]                  | (27)<br>(27)<br>(27)<br>(28)                                                                 |
| Windov<br>Windov<br>Floor<br>Walls                                                                                                    | ws Type<br>ws Type<br>ws Type                                                                                     | 2<br>3<br>4<br>                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 87.9                          | 3                       | 22.67<br>35.5<br>11.67<br>15.45<br>211.3<br>152.9                                                             | x 1/<br>x 1/<br>x 1/<br>x 1/<br>x 1/<br>x 1/<br>x 2<br>x 2<br>y x                                         | /[1/( 1.3 )+<br>/[1/( 1.3 )+<br>/[1/( 1.3 )+<br>/[1/( 1.3 )+<br>/[1/( 1.3 )+<br>0.15<br>0.22                                                | $\begin{array}{c} 0.04] = \\ 0.04] = \\ 0.04] = \\ 0.04] = \\ 0.04] = \\ \\ \end{array}$                                                     | 28.01<br>43.87<br>14.42<br>19.09<br>31.698<br>33.66                                                 |                  |                   |                    | (27)<br>(27)<br>(27)<br>(28)<br>(29)                                                         |
| Windov<br>Windov<br>Floor<br>Walls<br>Roof 1                                                                                          | ws Type<br>ws Type<br>ws Type<br>Type1                                                                            | 2<br>3<br>4<br>240.9<br>83.5                                                                                    | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0                             | 3                       | 22.67<br>35.5<br>11.67<br>15.45<br>211.3<br>152.9<br>83.52                                                    | x 11,<br>x 11,<br>x 11,<br>x 11,<br>x 11,<br>x 11,<br>x 11,<br>2 x<br>x 2 x<br>2 x                        | /[1/( 1.3 )+<br>/[1/( 1.3 )+<br>/[1/( 1.3 )+<br>/[1/( 1.3 )+<br>/[1/( 1.3 )+<br>0.15<br>0.22<br>0.14                                        | $\begin{array}{c} 0.04] = \\ 0.04] = \\ \\ 0.04] = \\ \\ 0.04] = \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ $                     | 28.01<br>43.87<br>14.42<br>19.09<br>31.698<br>33.66<br>11.69                                        |                  |                   |                    | (27)<br>(27)<br>(27)<br>(28)<br>(28)<br>(29)<br>(30)                                         |
| Windov<br>Windov<br>Floor<br>Walls<br>Roof 1<br>Roof 1                                                                                | ws Type<br>ws Type<br>ws Type<br>Type1<br>Type2                                                                   | 2<br>3<br>4<br>240.1<br>83.5<br>154                                                                             | 2<br>                                                                                                                                                                                                                                                                                                                                                                                                                                               | -                             | 3                       | 22.67<br>35.5<br>11.67<br>15.45<br>211.3<br>152.9<br>83.52<br>154                                             | x 1/<br>x 1/<br>x 1/<br>x 1/<br>x 1/<br>z x 1/<br>z x 1/<br>z x<br>9 x<br>2 x<br>2 x<br>2 x<br>x x<br>2 x | /[1/( 1.3 )+<br>/[1/( 1.3 )+<br>/[1/( 1.3 )+<br>/[1/( 1.3 )+<br>/[1/( 1.3 )+<br>0.15<br>0.22                                                | $\begin{array}{c} 0.04] = \\ 0.04] = \\ 0.04] = \\ 0.04] = \\ 0.04] = \\ \\ \end{array}$                                                     | 28.01<br>43.87<br>14.42<br>19.09<br>31.698<br>33.66                                                 |                  |                   |                    | (27)<br>(27)<br>(27)<br>(28)<br>(28)<br>(29)<br>(30)<br>(30)                                 |
| Windov<br>Windov<br>Floor<br>Walls<br>Roof 1<br>Roof 1<br>Total a                                                                     | ws Type<br>ws Type<br>ws Type<br>Type1<br>Type2<br>area of el                                                     | 2<br>3<br>4<br>240.3<br>83.5<br>154                                                                             | 2<br>1<br>, m²                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0                             |                         | 22.67<br>35.5<br>11.67<br>15.45<br>211.3<br>152.9<br>83.52<br>154<br>689.7                                    | x 1/<br>x 1/<br>x 1/<br>x 1/<br>x 1/<br>2 x<br>9 x<br>2 x<br>9 x<br>2 x<br>6                              | /[1/( 1.3 )+<br>/[1/( 1.3 )+<br>/[1/( 1.3 )+<br>/[1/( 1.3 )+<br>/[1/( 1.3 )+<br>0.15<br>0.22<br>0.14<br>0.14                                | $\begin{array}{c} 0.04] = \\ 0.04] = \\ \\ 0.04] = \\ \\ 0.04] = \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ $                     | 28.01<br>43.87<br>14.42<br>19.09<br>31.698<br>33.66<br>11.69<br>21.56                               |                  | paragraph         |                    | (27)<br>(27)<br>(27)<br>(28)<br>(28)<br>(29)<br>(30)                                         |
| Windov<br>Windov<br>Floor<br>Walls<br>Roof 1<br>Roof 1<br>Total a                                                                     | ws Type<br>ws Type<br>ws Type<br>Type1<br>Type2<br>area of el                                                     | 2<br>3<br>4<br>240.3<br>83.5<br>154<br>lements<br>roof winder                                                   | , m <sup>2</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0<br>0                        | ndow U-va               | 22.67<br>35.5<br>11.67<br>15.45<br>211.3<br>152.9<br>83.52<br>154<br>689.7<br>alue calcul                     | x 1/<br>x 1/<br>x 1/<br>x 1/<br>x 1/<br>2 x<br>9 x<br>2 x<br>9 x<br>2 x<br>6                              | /[1/( 1.3 )+<br>/[1/( 1.3 )+<br>/[1/( 1.3 )+<br>/[1/( 1.3 )+<br>/[1/( 1.3 )+<br>0.15<br>0.22<br>0.14<br>0.14                                | $\begin{array}{c} 0.04] = \\ 0.04] = \\ \\ 0.04] = \\ \\ 0.04] = \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ $                     | 28.01<br>43.87<br>14.42<br>19.09<br>31.698<br>33.66<br>11.69<br>21.56                               |                  | paragraph         |                    | (27)<br>(27)<br>(27)<br>(28)<br>(28)<br>(29)<br>(30)<br>(30)                                 |
| Windov<br>Floor<br>Walls<br>Roof 1<br>Roof 1<br>Total a<br>* for win<br>** includ                                                     | ws Type<br>ws Type<br>ws Type<br>Type1<br>Type2<br>area of el<br>dows and                                         | 2<br>3<br>4<br>240.9<br>83.5<br>154<br>lements<br>roof winde<br>s on both                                       | , m <sup>2</sup><br>, m <sup>2</sup><br>sides of in                                                                                                                                                                                                                                                                                                                                                                                                 | 0<br>0<br>ffective wi         | ndow U-va               | 22.67<br>35.5<br>11.67<br>15.45<br>211.3<br>152.9<br>83.52<br>154<br>689.7<br>alue calcul                     | x 1/<br>x 1/<br>x 1/<br>x 1/<br>x 1/<br>2 x<br>9 x<br>2 x<br>2 x<br>2 x<br>4<br>6 ated using              | /[1/( 1.3 )+<br>/[1/( 1.3 )+<br>/[1/( 1.3 )+<br>/[1/( 1.3 )+<br>/[1/( 1.3 )+<br>0.15<br>0.22<br>0.14<br>0.14                                | $\begin{array}{c} 0.04] = \\ 0.04] = \\ \\ 0.04] = \\ \\ 0.04] = \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ $                     | 28.01<br>43.87<br>14.42<br>19.09<br>31.698<br>33.66<br>11.69<br>21.56                               |                  | paragraph         | 3.2                | (27)<br>(27)<br>(27)<br>(28)<br>(28)<br>(29)<br>(30)<br>(30)                                 |
| Windov<br>Floor<br>Floor<br>Walls<br>Roof 1<br>Roof 1<br>Total a<br>* for win<br>** includ<br>Fabric                                  | ws Type<br>ws Type<br>ws Type<br>Type1<br>Type2<br>area of el<br>dows and<br>le the area                          | 2<br>3<br>4<br>240.1<br>83.5<br>154<br>lements<br>roof winde<br>s on both<br>s, W/K =                           | , m <sup>2</sup><br>, m <sup>2</sup><br>ows, use e<br>sides of in<br>= S (A x                                                                                                                                                                                                                                                                                                                                                                       | 0<br>0<br>ffective wi         | ndow U-va               | 22.67<br>35.5<br>11.67<br>15.45<br>211.3<br>152.9<br>83.52<br>154<br>689.7<br>alue calcul                     | x 1/<br>x 1/<br>x 1/<br>x 1/<br>x 1/<br>2 x<br>9 x<br>2 x<br>2 x<br>2 x<br>4<br>6 ated using              | $ \frac{[1/(1.3)+}{[1/(1.3)+} \frac{[1/(1.3)+}{[1/(1.3)+} \frac{[1/(1.3)+}{[1/(1.3)+} \frac{[0.15]{0.22}}{0.12} \frac{[0.14]{0.14}}{0.14} $ | $\begin{array}{c} 0.04] = \\ 0.04] = \\ \\ 0.04] = \\ \\ 0.04] = \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ $                     | 28.01<br>43.87<br>14.42<br>19.09<br>31.698<br>33.66<br>11.69<br>21.56                               | s given in       |                   |                    | (27)<br>(27)<br>(27)<br>(28)<br>(29)<br>(30)<br>(30)<br>(31)                                 |
| Windov<br>Floor<br>Floor<br>Walls<br>Roof T<br>Roof T<br>Total a<br>* for win<br>** includ<br>Fabric<br>Heat ca                       | ws Type<br>ws Type<br>ws Type<br>Type1<br>Type2<br>area of el<br>dows and<br>le the area<br>heat los              | 2<br>3<br>4<br>240.3<br>83.5<br>154<br>lements<br>roof winde<br>s on both<br>s, W/K =<br>Cm = S(                | , m <sup>2</sup><br>, sides of in<br>= S (A x<br>A x k) | ffective winternal wall       | ndow U-va               | 22.67<br>35.5<br>11.67<br>15.45<br>211.3<br>152.9<br>83.52<br>154<br>689.7<br>alue calculations               | x 1/<br>x 1/<br>x 1/<br>x 1/<br>x 1/<br>2 x 1/<br>2 x<br>9 x<br>2 x<br>9 x<br>2 x<br>2 x<br>6 ated using  | $ \frac{[1/(1.3)+}{[1/(1.3)+} \frac{[1/(1.3)+}{[1/(1.3)+} \frac{[1/(1.3)+}{[1/(1.3)+} \frac{[0.15]{0.22}}{0.12} \frac{[0.14]{0.14}}{0.14} $ | $\begin{array}{c} 0.04] = \\ 0.04] = \\ \\ 0.04] = \\ \\ 0.04] = \\ \\ \\ 0.04] = \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ $    | 28.01<br>43.87<br>14.42<br>19.09<br>31.698<br>33.66<br>11.69<br>21.56<br>re)+0.04] a                | s given in       |                   | 207.44             | (27)<br>(27)<br>(27)<br>(28)<br>(29)<br>(30)<br>(30)<br>(31)<br>(33)                         |
| Windov<br>Floor<br>Floor<br>Walls<br>Roof T<br>Roof T<br>Total a<br>* for win<br>** includ<br>Fabric<br>Heat c<br>Therma<br>For desig | ws Type<br>ws Type<br>ws Type<br>Type1<br>Type2<br>area of el<br>dows and<br>le the area<br>heat los<br>apacity ( | 2<br>3<br>4<br>240.9<br>83.5<br>154<br>lements<br>roof winde<br>s on both<br>s, W/K =<br>Cm = S(parame ments wh | , m <sup>2</sup><br>, m <sup>2</sup><br>sides of in<br>= S (A x<br>A x k )<br>ter (TMF<br>ere the det                                                                                                                                                                                                                                                                                                                                               | ffective winternal wall<br>U) | ndow U-va<br>Is and par | 22.67<br>35.5<br>11.67<br>15.45<br>211.3<br>152.9<br>83.52<br>83.52<br>154<br>689.7<br>alue calcul<br>titions | x 1/<br>x 1/<br>x 1/<br>x 1/<br>x 1/<br>2 x<br>9 x<br>2 x<br>9 x<br>2 x<br>6 ated using                   | /[1/(1.3)+]/[1/(1.3)+]/[1/(1.3)+]/[1/(1.3)+]/[1/(1.3)+]0.15]0.2200.140000000000000000000000000000000                                        | $\begin{array}{c} 0.04] = \\ 0.04] = \\ \\ 0.04] = \\ \\ 0.04] = \\ \\ \\ \\ 0.04] = \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ $ | 28.01<br>43.87<br>14.42<br>19.09<br>31.698<br>33.66<br>11.69<br>21.56<br>re)+0.04] a<br>.(30) + (32 | 2) + (32a).      | (32e) =           | 207.44<br>34562.28 | (27)<br>(27)<br>(27)<br>(28)<br>(29)<br>(30)<br>(30)<br>(31)<br>(31)<br>(33)<br>(33)<br>(34) |

|                 |                       |                       | are not kn  | own (36) =                            | = 0.05 x (3    | 1)          |            |                        |                       |                           |                                       |            |         | _            |
|-----------------|-----------------------|-----------------------|-------------|---------------------------------------|----------------|-------------|------------|------------------------|-----------------------|---------------------------|---------------------------------------|------------|---------|--------------|
| Total fa        | abric he              | at loss               |             |                                       |                |             |            |                        | (33) +                | (36) =                    |                                       |            | 269.27  | (37)         |
| Ventila         | tion hea              | at loss ca            | alculated   | monthly                               | Y              |             | r          |                        | (38)m                 | = 0.33 × (                | 25)m x (5)                            |            | I       |              |
|                 | Jan                   | Feb                   | Mar         | Apr                                   | May            | Jun         | Jul        | Aug                    | Sep                   | Oct                       | Nov                                   | Dec        |         |              |
| (38)m=          | 90.35                 | 89.22                 | 88.08       | 82.42                                 | 81.28          | 75.62       | 75.62      | 74.49                  | 77.89                 | 81.28                     | 83.55                                 | 85.82      |         | (38)         |
| Heat tr         | ansfer o              | coefficier            | nt, W/K     |                                       |                |             |            |                        | (39)m                 | = (37) + (3               | 38)m                                  |            |         |              |
| (39)m=          | 359.62                | 358.48                | 357.35      | 351.69                                | 350.55         | 344.89      | 344.89     | 343.75                 | 347.15                | 350.55                    | 352.82                                | 355.08     |         |              |
| Heat lo         | ss para               | ımeter (H             | HLP), W     | /m²K                                  |                |             |            |                        |                       | Average =<br>= (39)m ÷    | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 12 /12=    | 351.4   | (39)         |
| (40)m=          | 1.19                  | 1.19                  | 1.19        | 1.17                                  | 1.16           | 1.14        | 1.14       | 1.14                   | 1.15                  | 1.16                      | 1.17                                  | 1.18       |         |              |
| Numbe           | er of day             | /s in moi             | nth (Tab    | le 1a)                                |                |             | -          |                        | ,                     | Average =                 | Sum(40) <sub>1.</sub>                 | 12 /12=    | 1.17    | (40)         |
|                 | Jan                   | Feb                   | Mar         | Apr                                   | May            | Jun         | Jul        | Aug                    | Sep                   | Oct                       | Nov                                   | Dec        |         |              |
| (41)m=          | 31                    | 28                    | 31          | 30                                    | 31             | 30          | 31         | 31                     | 30                    | 31                        | 30                                    | 31         |         | (41)         |
|                 |                       |                       |             |                                       |                |             |            | •                      |                       |                           |                                       |            |         |              |
| 4. Wa           | ter heat              | ting enei             | rav reau    | irement:                              |                |             |            |                        |                       |                           |                                       | kWh/ye     | ear:    |              |
| Assum<br>if TF. | ed occu               | ipancy, l<br>9, N = 1 | N           |                                       | (-0.0003       | 49 x (TF    | FA -13.9   | )2)] + 0.(             | )013 x ( <sup>-</sup> | ΓFA -13.                  |                                       | 13         |         | (42)         |
| Reduce          | the annua             | al average            | hot water   | usage by a                            | 5% if the a    | welling is  | designed t | (25 x N)<br>to achieve |                       | se target o               |                                       | 3.62       |         | (43)         |
| not more        | e that 125            | litres per j          | person pei  | r day (all w                          | ater use, I    | not and co  | ld)        |                        |                       |                           |                                       |            | 1       |              |
|                 | Jan                   | Feb                   | Mar         | Apr                                   | May            | Jun         | Jul        | Aug                    | Sep                   | Oct                       | Nov                                   | Dec        |         |              |
| Hot wate        | er usage i            | n litres per          | day for ea  | ach month                             | Vd,m = fa      | ctor from T | Table 1c x | (43)                   |                       |                           |                                       |            | I       |              |
| (44)m=          | 119.48                | 115.14                | 110.79      | 106.45                                | 102.11         | 97.76       | 97.76      | 102.11                 | 106.45                | 110.79                    | 115.14                                | 119.48     |         | <b>-</b>     |
| Energy o        | content of            | hot water             | used - cal  | culated mo                            | onthly $= 4$ . | 190 x Vd,r  | m x nm x D | )Tm / 3600             |                       | Total = Su<br>hth (see Ta | · · ·                                 |            | 1303.47 | (44)         |
| (45)m=          | 177.19                | 154.97                | 159.92      | 139.42                                | 133.78         | 115.44      | 106.97     | 122.75                 | 124.22                | 144.76                    | 158.02                                | 171.6      |         |              |
| lf instant      | aneous w              | vater heatii          | ng at point | t of use (no                          | hot water      | storage),   | enter 0 in | boxes (46,             |                       | Total = Su                | m(45) <sub>112</sub> =                | -          | 1709.06 | (45)         |
| (46)m=          | 26.58                 | 23.25                 | 23.99       | 20.91                                 | 20.07          | 17.32       | 16.05      | 18.41                  | 18.63                 | 21.71                     | 23.7                                  | 25.74      |         | (46)         |
|                 | storage               |                       |             |                                       |                |             |            |                        |                       |                           |                                       | -          |         |              |
| -               |                       | . ,                   |             | • •                                   |                |             | -          | within sa              | ime ves               | sel                       |                                       | 400        |         | (47)         |
| Otherw<br>Water | vise if no<br>storage | o stored<br>loss:     | hot wate    | ink in dw<br>er (this in<br>oss facto | icludes i      | nstantar    | neous co   | (47)<br>ombi boil      | ers) ente             | er '0' in (               |                                       | 0          | l       | (48)         |
|                 |                       |                       |             |                                       |                | vvii (r.vvi | i/uay).    |                        |                       |                           |                                       | 0          |         | (48)         |
|                 |                       | actor fro             |             |                                       |                |             |            | (40) (40)              |                       |                           |                                       | 0          |         | (49)         |
| b) If m         | anufact               | urer's de             | eclared of  | , kWh/ye<br>cylinder l<br>om Tabl     | oss fact       |             | known:     | (48) x (49)            | =                     |                           |                                       | 00         |         | (50)<br>(51) |
|                 |                       | leating s             |             |                                       |                |             | .,         |                        |                       |                           | 0.                                    | <b>U</b> 1 | l       | ()           |
|                 |                       | from Ta               |             |                                       |                |             |            |                        |                       |                           | 0.                                    | 67         |         | (52)         |
| Tempe           | rature f              | actor fro             | m Table     | 2b                                    |                |             |            |                        |                       |                           | 0.                                    | 54         |         | (53)         |
| •••             |                       | m water<br>(54) in (5 | -           | e, kWh/y€                             | ear            |             |            | (47) x (51)            | x (52) x (            | 53) =                     |                                       | 49<br>49   |         | (54)<br>(55) |

| Water     | storage    | loss cal   | culated     | for each    | month      |             |             | ((56)m = (   | 55) × (41)   | m           |             |             |               |      |
|-----------|------------|------------|-------------|-------------|------------|-------------|-------------|--------------|--------------|-------------|-------------|-------------|---------------|------|
| (56)m=    | 46.12      | 41.66      | 46.12       | 44.63       | 46.12      | 44.63       | 46.12       | 46.12        | 44.63        | 46.12       | 44.63       | 46.12       |               | (56) |
| If cylind | er contain | s dedicate | d solar sto | orage, (57) | m = (56)m  | x [(50) – ( | H11)] ÷ (5  | 0), else (5  | 7)m = (56)   | m where (   | H11) is fro | m Append    | lix H         |      |
| (57)m=    | 46.12      | 41.66      | 46.12       | 44.63       | 46.12      | 44.63       | 46.12       | 46.12        | 44.63        | 46.12       | 44.63       | 46.12       |               | (57) |
| Prima     | ry circuit | loss (ar   | nual) fr    | om Table    | e 3        |             |             |              | •            | •           |             | 0           |               | (58) |
|           | •          | •          | ,           |             |            | 59)m = (    | (58) ÷ 36   | 65 × (41)    | m            |             |             |             | I             |      |
| (mo       | dified by  | factor f   | rom Tab     | le H5 if t  | here is s  | solar wat   | er heati    | ng and a     | cylinde      | r thermo    | ostat)      |             |               |      |
| (59)m=    | 23.26      | 21.01      | 23.26       | 22.51       | 23.26      | 22.51       | 23.26       | 23.26        | 22.51        | 23.26       | 22.51       | 23.26       |               | (59) |
| Comb      | i loss ca  | lculated   | for each    | month       | (61)m =    | (60) ÷ 36   | 65 × (41    | )m           |              |             |             |             |               |      |
| (61)m=    | 0          | 0          | 0           | 0           | 0          | 0           | 0           | 0            | 0            | 0           | 0           | 0           |               | (61) |
| Total h   | neat req   | uired for  | water h     | eating ca   | alculated  | for eacl    | h month     | (62)m =      | 0.85 ×       | (45)m +     | (46)m +     | (57)m +     | (59)m + (61)m |      |
| (62)m=    | 246.57     | 217.64     | 229.3       | 206.56      | 203.16     | 182.58      | 176.35      | 192.13       | 191.36       | 214.15      | 225.16      | 240.98      |               | (62) |
| Solar D   | HW input   | calculated | using App   | endix G o   | r Appendix | H (negativ  | ve quantity | /) (enter '0 | ' if no sola | r contribut | ion to wate | er heating) | •             |      |
| (add a    | dditiona   | l lines if | FGHRS       | and/or \    | NWHRS      | applies     | , see Ap    | pendix (     | G)           |             | -           | -           |               |      |
| (63)m=    | 0          | 0          | 0           | 0           | 0          | 0           | 0           | 0            | 0            | 0           | 0           | 0           |               | (63) |
| Outpu     | t from w   | ater hea   | ter         |             |            |             |             |              |              |             |             |             | _             |      |
| (64)m=    | 246.57     | 217.64     | 229.3       | 206.56      | 203.16     | 182.58      | 176.35      | 192.13       | 191.36       | 214.15      | 225.16      | 240.98      |               | _    |
|           |            |            |             |             |            |             |             | Outp         | out from w   | ater heate  | r (annual)₁ | 12          | 2525.96       | (64) |
| Heat g    | gains fro  | m water    | heating     | , kWh/m     | onth 0.2   | 5 ´ [0.85   | × (45)m     | + (61)m      | n] + 0.8 x   | x [(46)m    | + (57)m     | + (59)m     | ]             |      |
| (65)m=    | 114.42     | 101.66     | 108.68      | 100.07      | 99.99      | 92.1        | 91.07       | 96.32        | 95.02        | 103.64      | 106.26      | 112.56      |               | (65) |
| inclu     | ude (57)   | m in calo  | culation    | of (65)m    | only if c  | ylinder i   | s in the o  | dwelling     | or hot w     | vater is f  | rom com     | munity h    | leating       |      |
| 5. In     | ternal ga  | ains (see  | e Table S   | 5 and 5a    | ):         |             |             |              |              |             |             |             |               |      |
| Metab     | olic gair  | is (Table  | e 5), Wat   | tts         | _          |             |             |              |              |             |             |             | _             |      |
|           | Jan        | Feb        | Mar         | Apr         | May        | Jun         | Jul         | Aug          | Sep          | Oct         | Nov         | Dec         |               |      |
| (66)m=    | 188.01     | 188.01     | 188.01      | 188.01      | 188.01     | 188.01      | 188.01      | 188.01       | 188.01       | 188.01      | 188.01      | 188.01      |               | (66) |
| Lightir   | ng gains   | (calcula   | ted in A    | ppendix     | L, equat   | ion L9 oi   | r L9a), a   | lso see      | Table 5      |             |             |             | _             |      |
| (67)m=    | 102.37     | 90.92      | 73.94       | 55.98       | 41.84      | 35.33       | 38.17       | 49.62        | 66.6         | 84.56       | 98.69       | 105.21      |               | (67) |
| Applia    | nces ga    | ins (calc  | ulated ir   | n Appeno    | dix L, eq  | uation L    | 13 or L1    | 3a), also    | see Ta       | ble 5       | -           |             |               |      |
| (68)m=    | 685.51     | 692.62     | 674.7       | 636.54      | 588.36     | 543.09      | 512.84      | 505.73       | 523.66       | 561.82      | 609.99      | 655.26      |               | (68) |
| Cookii    | ng gains   | (calcula   | ated in A   | ppendix     | L, equat   | tion L15    | or L15a)    | ), also se   | e Table      | 5           |             |             |               |      |
| (69)m=    | 56.94      | 56.94      | 56.94       | 56.94       | 56.94      | 56.94       | 56.94       | 56.94        | 56.94        | 56.94       | 56.94       | 56.94       |               | (69) |
| Pump      | s and fa   | ns gains   | (Table      | 5a)         |            |             |             | -            | -            | -           | -           |             | •             |      |
| (70)m=    | 3          | 3          | 3           | 3           | 3          | 3           | 3           | 3            | 3            | 3           | 3           | 3           |               | (70) |
| Losse     | s e.g. ev  | vaporatio  | n (nega     | tive valu   | es) (Tab   | le 5)       |             |              |              |             |             |             | •             |      |
| (71)m=    | -125.34    | -125.34    | -125.34     | -125.34     | -125.34    | -125.34     | -125.34     | -125.34      | -125.34      | -125.34     | -125.34     | -125.34     |               | (71) |
| Water     | heating    | gains (1   | able 5)     |             | •          |             |             | •            | •            | •           |             |             | 1             |      |
| (72)m=    | 153.79     | 151.28     | 146.07      | 138.99      | 134.39     | 127.91      | 122.41      | 129.46       | 131.97       | 139.3       | 147.58      | 151.29      |               | (72) |
| Total     | internal   | gains =    | :           |             |            | (66)        | m + (67)m   | 1 + (68)m -  | + (69)m +    | (70)m + (7  | (1)m + (72) | m           | 1             |      |
| (73)m=    | 1064.27    | 1057.43    | 1017.32     | 954.11      | 887.21     | 828.94      | 796.03      | 807.42       | 844.83       | 908.28      | 978.87      | 1034.37     | 1             | (73) |
|           | lar gains  | •          | •           | •           | •          | •           |             |              |              | •           | •           | •           |               |      |


Solar gains are calculated using solar flux from Table 6a and associated equations to convert to the applicable orientation.

| Orientation:              | Access Facto<br>Table 6d | r | Area<br>m² |   | Flux<br>Table 6a |   | g_<br>Table 6b |   | FF<br>Table 6c |   | Gains<br>(W) |      |
|---------------------------|--------------------------|---|------------|---|------------------|---|----------------|---|----------------|---|--------------|------|
| Northeast 0.9x            | 0.77                     | x | 11.67      | x | 11.28            | × | 0.72           | x | 0.8            | = | 52.56        | (75) |
| Northeast 0.9x            | 0.77                     | x | 11.67      | x | 22.97            | × | 0.72           | x | 0.8            | = | 106.99       | (75) |
| Northeast 0.9x            | 0.77                     | x | 11.67      | x | 41.38            | x | 0.72           | x | 0.8            | = | 192.75       | (75) |
| Northeast 0.9x            | 0.77                     | x | 11.67      | x | 67.96            | × | 0.72           | x | 0.8            | = | 316.56       | (75) |
| Northeast 0.9x            | 0.77                     | x | 11.67      | x | 91.35            | x | 0.72           | x | 0.8            | = | 425.52       | (75) |
| Northeast 0.9x            | 0.77                     | x | 11.67      | x | 97.38            | x | 0.72           | x | 0.8            | = | 453.65       | (75) |
| Northeast 0.9x            | 0.77                     | x | 11.67      | x | 91.1             | x | 0.72           | x | 0.8            | = | 424.38       | (75) |
| Northeast 0.9x            | 0.77                     | x | 11.67      | x | 72.63            | × | 0.72           | x | 0.8            | = | 338.32       | (75) |
| Northeast 0.9x            | 0.77                     | x | 11.67      | x | 50.42            | × | 0.72           | x | 0.8            | = | 234.87       | (75) |
| Northeast 0.9x            | 0.77                     | x | 11.67      | × | 28.07            | × | 0.72           | x | 0.8            | = | 130.75       | (75) |
| Northeast 0.9x            | 0.77                     | x | 11.67      | x | 14.2             | x | 0.72           | x | 0.8            | = | 66.13        | (75) |
| Northeast 0.9x            | 0.77                     | x | 11.67      | x | 9.21             | x | 0.72           | x | 0.8            | = | 42.92        | (75) |
| Southeast 0.9x            | 0.77                     | x | 35.5       | x | 36.79            | x | 0.72           | x | 0.8            | = | 521.39       | (77) |
| Southeast 0.9x            | 0.77                     | x | 35.5       | x | 62.67            | x | 0.72           | x | 0.8            | = | 888.11       | (77) |
| Southeast 0.9x            | 0.77                     | x | 35.5       | × | 85.75            | × | 0.72           | x | 0.8            | = | 1215.15      | (77) |
| Southeast 0.9x            | 0.77                     | x | 35.5       | x | 106.25           | x | 0.72           | x | 0.8            | = | 1505.63      | (77) |
| Southeast 0.9x            | 0.77                     | x | 35.5       | x | 119.01           | × | 0.72           | x | 0.8            | = | 1686.44      | (77) |
| Southeast 0.9x            | 0.77                     | x | 35.5       | × | 118.15           | × | 0.72           | x | 0.8            | = | 1674.24      | (77) |
| Southeast 0.9x            | 0.77                     | x | 35.5       | × | 113.91           | × | 0.72           | x | 0.8            | = | 1614.15      | (77) |
| Southeast 0.9x            | 0.77                     | x | 35.5       | × | 104.39           | × | 0.72           | x | 0.8            | = | 1479.26      | (77) |
| Southeast 0.9x            | 0.77                     | x | 35.5       | x | 92.85            | × | 0.72           | x | 0.8            | = | 1315.75      | (77) |
| Southeast 0.9x            | 0.77                     | x | 35.5       | × | 69.27            | × | 0.72           | x | 0.8            | = | 981.55       | (77) |
| Southeast 0.9x            | 0.77                     | x | 35.5       | x | 44.07            | x | 0.72           | x | 0.8            | = | 624.5        | (77) |
| Southeast 0.9x            |                          | x | 35.5       | x | 31.49            | x | 0.72           | x | 0.8            | = | 446.2        | (77) |
| Southwest <sub>0.9x</sub> |                          | x | 15.45      | x | 36.79            |   | 0.72           | x | 0.8            | = | 226.91       | (79) |
| Southwest0.9x             |                          | x | 15.45      | x | 62.67            |   | 0.72           | x | 0.8            | = | 386.52       | (79) |
| Southwest <sub>0.9x</sub> | 0.77                     | x | 15.45      | x | 85.75            |   | 0.72           | x | 0.8            | = | 528.85       | (79) |
| Southwest0.9x             | 0.77                     | x | 15.45      | x | 106.25           |   | 0.72           | x | 0.8            | = | 655.27       | (79) |
| Southwest0.9x             |                          | x | 15.45      | x | 119.01           |   | 0.72           | x | 0.8            | = | 733.96       | (79) |
| Southwest0.9x             |                          | x | 15.45      | × | 118.15           |   | 0.72           | x | 0.8            | = | 728.65       | (79) |
| Southwest0.9x             |                          | x | 15.45      | x | 113.91           |   | 0.72           | x | 0.8            | = | 702.49       | (79) |
| Southwest0.9x             |                          | x | 15.45      | x | 104.39           |   | 0.72           | x | 0.8            | = | 643.79       | (79) |
| Southwest0.9x             | -                        | x | 15.45      | x | 92.85            |   | 0.72           | x | 0.8            | = | 572.63       | (79) |
| Southwest0.9x             | 0.77                     | x | 15.45      | x | 69.27            |   | 0.72           | x | 0.8            | = | 427.18       | (79) |
| Southwest0.9x             |                          | x | 15.45      | × | 44.07            |   | 0.72           | x | 0.8            | = | 271.79       | (79) |
| Southwest <sub>0.9x</sub> |                          | x | 15.45      | × | 31.49            |   | 0.72           | x | 0.8            | = | 194.19       | (79) |
| Northwest 0.9x            | _                        | x | 22.67      | × | 11.28            | × | 0.72           | x | 0.8            | = | 102.1        | (81) |
| Northwest 0.9x            | _                        | x | 22.67      | × | 22.97            | × | 0.72           | x | 0.8            | = | 207.83       | (81) |
| Northwest 0.9x            | 0.77                     | x | 22.67      | x | 41.38            | x | 0.72           | x | 0.8            | = | 374.44       | (81) |

|                                                                                                                                                  |              |           |            |           | r        |                |                  |              |       |                    | r          |              |          |          | _    |
|--------------------------------------------------------------------------------------------------------------------------------------------------|--------------|-----------|------------|-----------|----------|----------------|------------------|--------------|-------|--------------------|------------|--------------|----------|----------|------|
| Northwest 0.9x                                                                                                                                   | •            | ×         | 22.        | 67        | ×        | 6              | 7.96             | ×            |       | 0.72               |            | 0.8          | =        | 614.94   | (81) |
| Northwest 0.9x                                                                                                                                   |              | x         | 22.        | 67        | ×        | 9              | 1.35             | ×            |       | 0.72               | x          | 0.8          | =        | 826.6    | (81) |
| Northwest 0.9x                                                                                                                                   | 0.77         | x         | 22.        | 67        | ×        | 9              | 7.38             | x            |       | 0.72               | x          | 0.8          | =        | 881.25   | (81) |
| Northwest 0.9x                                                                                                                                   | 0.77         | x         | 22.        | 67        | ×        | ç              | 91.1             | ×            |       | 0.72               | x          | 0.8          | =        | 824.39   | (81) |
| Northwest 0.9x                                                                                                                                   | 0.77         | x         | 22.        | 67        | x [      | 7              | 2.63             | x            |       | 0.72               | ×          | 0.8          | =        | 657.21   | (81) |
| Northwest 0.9x                                                                                                                                   | 0.77         | x         | 22.        | 67        | x [      | 5              | 0.42             | x            |       | 0.72               | ×          | 0.8          | =        | 456.26   | (81) |
| Northwest 0.9x                                                                                                                                   | 0.77         | x         | 22.        | 67        | x [      | 2              | 8.07             | x            |       | 0.72               | _ x [      | 0.8          | =        | 253.98   | (81) |
| Northwest 0.9x                                                                                                                                   | 0.77         | x         | 22.        | 67        | x [      | 1              | 4.2              | x            |       | 0.72               | ×          | 0.8          | =        | 128.47   | (81) |
| Northwest 0.9x                                                                                                                                   | 0.77         | x         | 22.        | 67        | x [      | ç              | 9.21             | x            |       | 0.72               | x          | 0.8          | =        | 83.38    | (81) |
|                                                                                                                                                  |              |           |            |           |          |                |                  | _            |       |                    |            |              |          |          |      |
| Solar gains ir                                                                                                                                   | n watts, cal | culated   | for eac    | h month   | l        |                |                  | (83)m        | = Su  | ım(74)m .          | (82)m      |              |          |          |      |
|                                                                                                                                                  |              |           |            |           |          |                |                  |              |       |                    |            |              |          |          | (83) |
| Total gains – internal and solar (84)m = (73)m + (83)m , watts                                                                                   |              |           |            |           |          |                |                  |              |       |                    |            |              |          |          |      |
| (84)m= 1967.23 2646.88 3328.52 4046.51 4559.72 4566.72 4361.44 3926 3424.35 2701.75 2069.76 1801.07 (84)                                         |              |           |            |           |          |                |                  |              |       |                    |            |              |          |          | (84) |
| 7. Mean internal temperature (heating season)                                                                                                    |              |           |            |           |          |                |                  |              |       |                    |            |              |          |          |      |
| 7. Mean internal temperature (heating season)         Temperature during heating periods in the living area from Table 9, Th1 (°C)       21 (85) |              |           |            |           |          |                |                  |              |       |                    |            |              |          |          |      |
| Temperature during heating periods in the living area from Table 9, Th1 (°C)21Utilisation factor for gains for living area, h1,m (see Table 9a)  |              |           |            |           |          |                |                  |              |       |                    |            |              |          |          |      |
| Jan                                                                                                                                              |              |           |            |           | T`       |                |                  | Αι           | Ja    | Sep                | Oct        | Nov          | Dec      | 1        |      |
|                                                                                                                                                  |              |           |            |           |          |                |                  |              |       |                    |            |              |          | (86)     |      |
| Moon intorn                                                                                                                                      |              | turo in l | iving or   | 00 T1 /f  |          |                |                  | L<br>7 in Tr |       |                    |            | 1            |          |          |      |
| Mean intern<br>(87)m= 19.75                                                                                                                      | <u> </u>     | 20.38     | 20.75      | 20.94     | -        | w Sie<br>0.99  | 21               | 21           | -     | 20.96              | 20.65      | 20.11        | 19.71    | 1        | (87) |
|                                                                                                                                                  |              |           |            |           | 1        |                |                  |              |       |                    | 20.00      | 20.11        | 10.71    |          | (01) |
| Temperature                                                                                                                                      | <u> </u>     | i         |            |           | -        |                |                  |              | -     | . ,                |            |              |          | 7        | (00) |
| (88)m= 19.93                                                                                                                                     | 19.93        | 19.93     | 19.95      | 19.95     | 19       | 9.96           | 19.96            | 19.9         | 97    | 19.96              | 19.95      | 19.94        | 19.94    |          | (88) |
| Utilisation fa                                                                                                                                   | ctor for ga  | ins for r | est of d   | welling,  | h2,      | m (se          | e Table          | 9a)          |       |                    | -          |              |          | _        |      |
| (89)m= 1                                                                                                                                         | 0.98         | 0.94      | 0.81       | 0.61      | (        | 0.4            | 0.27             | 0.3          | 1     | 0.58               | 0.9        | 0.99         | 1        |          | (89) |
| Mean intern                                                                                                                                      | al tempera   | ture in t | he rest    | of dwell  | ing      | T2 (fc         | ollow ste        | ps 3         | to 7  | in Tabl            | e 9c)      |              |          |          |      |
| (90)m= 18.27                                                                                                                                     | 18.67        | 19.18     | 19.68      | 19.9      |          | 9.96           | 19.96            | 19.9         |       | 19.93              | ,<br>19.57 | 18.81        | 18.21    | 7        | (90) |
|                                                                                                                                                  | -11          |           |            |           |          |                |                  |              |       | f                  | iLA = Livi | ng area ÷ (4 | 4) =     | 0.11     | (91) |
| Mean intern                                                                                                                                      | al tompora   | turo (fo  | r tho wh   | olo dwo   | lling    |                | Λ 🗸 Τ1           | . (1         | fl /  | Λ) <del>ν</del> Τ2 |            |              |          |          |      |
| (92)m= 18.42                                                                                                                                     | <u> </u>     | 19.3      | 19.79      | 20.01     | <b>—</b> | ) = IL<br>0.07 | 20.07            | 20.0         | - T   | 20.04              | 19.68      | 18.95        | 18.37    | 7        | (92) |
| Apply adjust                                                                                                                                     |              |           |            |           |          |                |                  |              |       |                    |            | 10.00        | 10.07    |          | (/   |
| (93)m= 18.42                                                                                                                                     |              | 19.3      | 19.79      | 20.01     | -        | 0.07           | 20.07            | 20.0         |       | 20.04              | 19.68      | 18.95        | 18.37    | 1        | (93) |
| 8. Space he                                                                                                                                      |              | I         |            |           | <u> </u> | <u> </u>       |                  |              |       |                    |            |              | I        |          |      |
| Set Ti to the                                                                                                                                    |              |           | nperatu    | re obtair | ned      | at ste         | ep 11 of         | Table        | e 9b  | . so tha           | t Ti.m=    | (76)m an     | d re-cal | culate   |      |
| the utilisatio                                                                                                                                   |              |           |            |           | .00      | aron           | ур 11 <b>0</b> 1 | rabit        | 0 0 0 | ,                  |            | (10)111 a11  |          | ounate   |      |
| Jan                                                                                                                                              | Feb          | Mar       | Apr        | May       | ,        | Jun            | Jul              | Αι           | Jg    | Sep                | Oct        | Nov          | Dec      |          |      |
| Utilisation fa                                                                                                                                   | ctor for ga  | ins, hm   |            |           |          |                |                  |              |       |                    |            |              |          | -        |      |
| (94)m= 0.99                                                                                                                                      | 0.98         | 0.93      | 0.81       | 0.61      | 0        | ).41           | 0.27             | 0.3          | 2     | 0.58               | 0.89       | 0.98         | 1        |          | (94) |
| Useful gains                                                                                                                                     |              | <u> </u>  | <i>,</i> . | <u> </u>  |          |                |                  |              |       |                    |            |              |          | -        |      |
| <mark>(95)m=</mark> 1955.4                                                                                                                       |              |           |            |           |          | 73.23          | 1196.79          | 1260         | .82   | 1994.14            | 2412.77    | 2037.16      | 1793.74  | Ļ        | (95) |
| Monthly ave                                                                                                                                      | rage exter   | nal tem   | perature   | e from T  | able     | e 8            |                  |              |       |                    |            | 1            |          | -        |      |
| (96)m= 4.3                                                                                                                                       | 4.9          | 6.5       | 8.9        | 11.7      | 1        | 4.6            | 16.6             | 16.4         | 4     | 14.1               | 10.6       | 7.1          | 4.2      |          | (96) |
| Heat loss ra                                                                                                                                     |              |           |            |           | -        |                | - ,              | - `          | ŕ     | . ,                | Ē          |              |          | -        |      |
| <mark>(97)m=</mark> 5079.5                                                                                                                       | 2 4986.78    | 4575.78   | 3830.82    | 2911.84   | 18       | 86.09          | 1198.08          | 1263         | 5.59  | 2061.64            | 3183.46    | 6 4181.32    | 5032.79  | <u>'</u> | (97) |
|                                                                                                                                                  |              |           |            |           |          |                |                  |              |       |                    |            |              |          |          |      |

| Spac    | e heatin              | g require            | ement fo           | r each n           | honth, k         | Wh/mon    | th = 0.02 | 24 x [(97)  | )m – (95   | )m] x (4   | 1)m                             |            |                            |         |
|---------|-----------------------|----------------------|--------------------|--------------------|------------------|-----------|-----------|-------------|------------|------------|---------------------------------|------------|----------------------------|---------|
| (98)m=  | 2324.34               | 1611.02              | 1095.33            | 401.79             | 90.12            | 0         | 0         | 0           | 0          | 573.39     | 1543.79                         | 2409.85    |                            | _       |
|         |                       |                      |                    |                    |                  |           |           | Tota        | l per year | (kWh/year  | <sup>.</sup> ) = Sum(9          | 8)15,912 = | 10049.63                   | (98)    |
| Spac    | e heatin              | g require            | ement in           | kWh/m²             | /year            |           |           |             |            |            |                                 | [          | 33.36                      | (99)    |
| 9a. En  | ergy rec              | luiremer             | nts – Ind          | ividual h          | eating s         | ystems i  | ncluding  | ı micro-C   | CHP)       |            |                                 |            |                            |         |
| •       | e heatir              | •                    | _                  | _                  |                  |           |           |             |            |            |                                 | r          |                            | ٦       |
|         |                       |                      |                    | econdar            |                  | mentary   | •         |             |            |            |                                 |            | 0.1                        | (201)   |
|         | -                     |                      |                    | nain syst          |                  |           |           | (202) = 1 - |            | (222)]     |                                 |            | 0.9                        | (202)   |
|         |                       |                      | -                  | main sys           |                  |           |           | (204) = (2  | 02) × [1 – | (203)] =   |                                 |            | 0.9                        | (204)   |
|         | -                     |                      |                    | ing syste          |                  |           |           |             |            |            |                                 |            | 90.9                       | (206)   |
| Efficie | ency of s             | seconda              | ry/suppl           | ementar            | y heatin         | g systen  | n, %      |             |            |            |                                 |            | 65                         | (208)   |
| -       | Jan                   | Feb                  | Mar                | Apr                | May              | Jun       | Jul       | Aug         | Sep        | Oct        | Nov                             | Dec        | kWh/yea                    | ar      |
| Spac    | r                     | g require<br>1611.02 | · · ·              | alculate           | d above<br>90.12 | )         | 0         | 0           | 0          | 573.39     | 1543.79                         | 2409.85    |                            |         |
| (0.4.4) |                       |                      |                    |                    |                  | 0         | 0         | 0           | 0          | 573.39     | 1543.79                         | 2409.85    |                            | (5.1.1) |
| (211)n  |                       | )m x (20<br>1595.07  |                    | 00 ÷ (20<br>397.81 | 89.23            | 0         | 0         | 0           | 0          | 567.72     | 1528.51                         | 2385.99    |                            | (211)   |
|         | 2001.00               | 1000.07              | 1004.40            | 007.01             | 00.20            | 0         | 0         | _           | l (kWh/yea |            |                                 |            | 9950.13                    | (211)   |
| Spac    | e heatin              | a fuel (s            | econdar            | y), kWh/           | month            |           |           |             |            |            | · 1                             |            |                            | ], ,    |
| •       |                       | )1)]}x1              |                    | • •                |                  |           |           |             |            |            |                                 |            |                            |         |
| (215)m= | 357.59                | 247.85               | 168.51             | 61.81              | 13.86            | 0         | 0         | 0           | 0          | 88.21      | 237.51                          | 370.75     |                            |         |
|         |                       |                      |                    |                    |                  |           |           | Tota        | l (kWh/yea | ar) =Sum(2 | 2 <b>15)</b> <sub>15,1012</sub> | =          | 1546.1                     | (215)   |
|         | heating               | •                    |                    |                    |                  |           |           |             |            |            |                                 |            |                            |         |
| Output  | t from w<br>246.57    | ater hea<br>217.64   | ter (calc<br>229.3 | ulated a           | 203.16           | 182.58    | 176.35    | 192.13      | 191.36     | 214.15     | 225.16                          | 240.98     |                            |         |
| Efficie |                       | ater hea             |                    | 200.00             | 200.10           | 102.00    | 110.00    | 102.10      | 101.00     | 211.10     | 220.10                          | 2 10.00    | 80.8                       | (216)   |
| (217)m= | <u> </u>              | 89.44                | 88.81              | 86.95              | 83.45            | 80.8      | 80.8      | 80.8        | 80.8       | 87.69      | 89.34                           | 89.78      |                            | (217)   |
|         |                       | heating,             | kWh/m              | onth               |                  |           |           |             |            |            |                                 |            |                            |         |
| (219)n  | <u>1 = (64)</u>       | <u>m x 100</u>       | ) ÷ (217)          | m                  |                  |           |           |             |            |            |                                 |            |                            |         |
| (219)m= | 274.83                | 243.33               | 258.21             | 237.57             | 243.46           | 225.97    | 218.26    | 237.79      | 236.83     | 244.22     | 252.02                          | 268.42     |                            | ٦       |
| A       | al totals             |                      |                    |                    |                  |           |           | TULA        | I = Sum(2  |            | Mbhioon                         |            | 2940.92                    | (219)   |
|         |                       | fuel use             | ed, main           | system             | 1                |           |           |             |            | ĸ          | Wh/year                         | ]          | <b>kWh/year</b><br>9950.13 | 1       |
| •       | -                     | fuel use             |                    | •                  |                  |           |           |             |            |            |                                 | L<br>[     | 1546.1                     | 1       |
| -       | -                     | fuel use             |                    | lidary             |                  |           |           |             |            |            |                                 | l<br>ſ     |                            | J       |
|         | -                     |                      |                    |                    |                  |           |           |             |            |            |                                 | l          | 2940.92                    |         |
|         |                       | •                    |                    | electric           | •                |           |           |             |            |            |                                 |            |                            |         |
| mech    | anical v              | entilatio            | n - balar          | iced, ext          | ract or p        | ositive i | nput fror | n outside   | Ð          |            |                                 | 1232.06    |                            | (230a)  |
| centra  | al heatir             | ig pump              |                    |                    |                  |           |           |             |            |            |                                 | 30         |                            | (230c)  |
| boiler  | <sup>r</sup> with a f | an-assis             | ted flue           |                    |                  |           |           |             |            |            |                                 | 45         |                            | (230e)  |
| Total e | electricity           | / for the            | above, l           | kWh/yea            | r                |           |           | sum         | of (230a). | (230g) =   |                                 | [          | 1307.06                    | (231)   |
| Electri | city for li           | ghting               |                    |                    |                  |           |           |             |            |            |                                 | Ī          | 723.12                     | (232)   |
|         |                       |                      |                    |                    |                  |           |           |             |            |            |                                 | L          |                            | _       |

| Total delivered energy for all uses (211)                                                                                                                                                                                                                                                                  | (221) + (231) + (232)(237b) =                                                                                                        | =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 16467.33 (338)                                                                                                                                                                   |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 10a. Fuel costs - individual heating syste                                                                                                                                                                                                                                                                 | ms:                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                  |
|                                                                                                                                                                                                                                                                                                            | <b>Fuel</b><br>kWh/year                                                                                                              | Fuel Price<br>(Table 12)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | <b>Fuel Cost</b><br>£/year                                                                                                                                                       |
| Space heating - main system 1                                                                                                                                                                                                                                                                              | (211) x                                                                                                                              | 3.48 × 0.01 =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 346.26 (240)                                                                                                                                                                     |
| Space heating - main system 2                                                                                                                                                                                                                                                                              | (213) x                                                                                                                              | 0 × 0.01 =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0 (241)                                                                                                                                                                          |
| Space heating - secondary                                                                                                                                                                                                                                                                                  | (215) x                                                                                                                              | 4.23 × 0.01 =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 65.4 (242)                                                                                                                                                                       |
| Water heating cost (other fuel)                                                                                                                                                                                                                                                                            | (219)                                                                                                                                | 3.48 × 0.01 =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 102.34 (247)                                                                                                                                                                     |
| Pumps, fans and electric keep-hot                                                                                                                                                                                                                                                                          | (231)                                                                                                                                | 13.19 × 0.01 =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 172.4 (249)                                                                                                                                                                      |
| (if off-peak tariff, list each of (230a) to (230<br>Energy for lighting                                                                                                                                                                                                                                    | )g) separately as applicable ar<br>(232)                                                                                             | ad apply fuel price according to $13.19 	 x 	 0.01 =$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                  |
| Additional standing charges (Table 12)                                                                                                                                                                                                                                                                     |                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 120 (251)                                                                                                                                                                        |
| Appendix Q items: repeat lines (253) and (253) <b>Total energy cost</b> (2                                                                                                                                                                                                                                 | (254) as needed<br>245)(247) + (250)(254) =                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 901.79 (255)                                                                                                                                                                     |
| 11a. SAP rating - individual heating syste                                                                                                                                                                                                                                                                 | ems                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                  |
| Energy cost deflator (Table 12)                                                                                                                                                                                                                                                                            |                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.42 (256)                                                                                                                                                                       |
| Energy cost factor (ECF)                                                                                                                                                                                                                                                                                   | 255) x (256)] ÷ [(4) + 45.0] =                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1.09 (257)                                                                                                                                                                       |
| SAP rating (Section 12)                                                                                                                                                                                                                                                                                    |                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 84.74 (258)                                                                                                                                                                      |
| 40- 000 emissions light table the effect                                                                                                                                                                                                                                                                   |                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                  |
| 12a. CO2 emissions – Individual heating                                                                                                                                                                                                                                                                    | systems including micro-CHP                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                  |
| 12a. CO2 emissions – Individual neating                                                                                                                                                                                                                                                                    | Energy<br>kWh/year                                                                                                                   | <b>Emission factor</b><br>kg CO2/kWh                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | <b>Emissions</b><br>kg CO2/year                                                                                                                                                  |
| Space heating (main system 1)                                                                                                                                                                                                                                                                              | Energy                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                  |
|                                                                                                                                                                                                                                                                                                            | <b>Energy</b><br>kWh/year                                                                                                            | kg CO2/kWh                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | kg CO2/year                                                                                                                                                                      |
| Space heating (main system 1)                                                                                                                                                                                                                                                                              | Energy<br>kWh/year<br>(211) x                                                                                                        | kg CO2/kWh                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | kg CO2/year                                                                                                                                                                      |
| Space heating (main system 1)<br>Space heating (secondary)                                                                                                                                                                                                                                                 | Energy<br>kWh/year<br>(211) x<br>(215) x                                                                                             | kg CO2/kWh<br>0.216 =<br>0.019 =<br>0.216 =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | kg CO2/year<br>2149.23 (261)<br>29.38 (263)                                                                                                                                      |
| Space heating (main system 1)<br>Space heating (secondary)<br>Water heating                                                                                                                                                                                                                                | Energy<br>kWh/year<br>(211) x<br>(215) x<br>(219) x<br>(261) + (262) + (263) + (2                                                    | kg CO2/kWh<br>0.216 =<br>0.019 =<br>0.216 =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | kg CO2/year<br>2149.23 (261)<br>29.38 (263)<br>635.24 (264)                                                                                                                      |
| Space heating (main system 1)<br>Space heating (secondary)<br>Water heating<br>Space and water heating                                                                                                                                                                                                     | Energy<br>kWh/year<br>(211) x<br>(215) x<br>(219) x<br>(261) + (262) + (263) + (2                                                    | kg CO2/kWh<br>0.216 =<br>0.019 =<br>0.216 =<br>64) =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | kg CO2/year<br>2149.23 (261)<br>29.38 (263)<br>635.24 (264)<br>2813.84 (265)                                                                                                     |
| Space heating (main system 1)<br>Space heating (secondary)<br>Water heating<br>Space and water heating<br>Electricity for pumps, fans and electric kee                                                                                                                                                     | Energy<br>kWh/year<br>(211) x<br>(215) x<br>(215) x<br>(219) x<br>(261) + (262) + (263) + (2<br>ep-hot (231) x                       | kg CO2/kWh<br>0.216 =<br>0.019 =<br>0.216 =<br>64) =<br>0.519 =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | kg CO2/year<br>2149.23 (261)<br>29.38 (263)<br>635.24 (264)<br>2813.84 (265)<br>678.36 (267)                                                                                     |
| Space heating (main system 1)<br>Space heating (secondary)<br>Water heating<br>Space and water heating<br>Electricity for pumps, fans and electric kee<br>Electricity for lighting                                                                                                                         | Energy<br>kWh/year<br>(211) x<br>(215) x<br>(215) x<br>(219) x<br>(261) + (262) + (263) + (2<br>ep-hot (231) x                       | kg CO2/kWh = 0.216 = 0.019 = 0.216 = 0.216 = 0.216 = 0.216 = 0.216 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = | kg CO2/year<br>2149.23 (261)<br>29.38 (263)<br>635.24 (264)<br>2813.84 (265)<br>678.36 (267)<br>375.3 (268)                                                                      |
| Space heating (main system 1)<br>Space heating (secondary)<br>Water heating<br>Space and water heating<br>Electricity for pumps, fans and electric kee<br>Electricity for lighting<br>Total CO2, kg/year                                                                                                   | Energy<br>kWh/year<br>(211) x<br>(215) x<br>(215) x<br>(219) x<br>(261) + (262) + (263) + (2<br>ep-hot (231) x                       | kg CO2/kWh<br>0.216 =<br>0.019 =<br>0.216 =<br>0.216 =<br>0.216 =<br>0.519 =<br>0.519 =<br>Sum of (265)(271) =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | kg CO2/year<br>2149.23 (261)<br>29.38 (263)<br>635.24 (264)<br>2813.84 (265)<br>678.36 (267)<br>375.3 (268)<br>3867.51 (272)                                                     |
| Space heating (main system 1)<br>Space heating (secondary)<br>Water heating<br>Space and water heating<br>Electricity for pumps, fans and electric kee<br>Electricity for lighting<br>Total CO2, kg/year<br><b>CO2 emissions per m<sup>2</sup></b>                                                         | Energy<br>kWh/year<br>(211) x<br>(215) x<br>(215) x<br>(219) x<br>(261) + (262) + (263) + (2<br>ep-hot (231) x                       | kg CO2/kWh<br>0.216 =<br>0.019 =<br>0.216 =<br>0.216 =<br>0.216 =<br>0.519 =<br>0.519 =<br>Sum of (265)(271) =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | kg CO2/year<br>2149.23 (261)<br>29.38 (263)<br>635.24 (264)<br>2813.84 (265)<br>678.36 (267)<br>375.3 (268)<br>3867.51 (272)<br>12.84 (273)                                      |
| Space heating (main system 1)<br>Space heating (secondary)<br>Water heating<br>Space and water heating<br>Electricity for pumps, fans and electric kee<br>Electricity for lighting<br>Total CO2, kg/year<br><b>CO2 emissions per m<sup>2</sup></b><br>El rating (section 14)                               | Energy<br>kWh/year<br>(211) x<br>(215) x<br>(215) x<br>(219) x<br>(261) + (262) + (263) + (2<br>ep-hot (231) x                       | kg CO2/kWh<br>0.216 =<br>0.019 =<br>0.216 =<br>0.216 =<br>0.216 =<br>0.519 =<br>0.519 =<br>Sum of (265)(271) =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | kg CO2/year<br>2149.23 (261)<br>29.38 (263)<br>635.24 (264)<br>2813.84 (265)<br>678.36 (267)<br>375.3 (268)<br>3867.51 (272)<br>12.84 (273)                                      |
| Space heating (main system 1)<br>Space heating (secondary)<br>Water heating<br>Space and water heating<br>Electricity for pumps, fans and electric kee<br>Electricity for lighting<br>Total CO2, kg/year<br><b>CO2 emissions per m<sup>2</sup></b><br>El rating (section 14)                               | Energy<br>kWh/year<br>(211) x<br>(215) x<br>(219) x<br>(261) + (262) + (263) + (2<br>(231) x<br>(232) x<br>Energy                    | kg CO2/kWh<br>0.216 =<br>0.019 =<br>0.216 =<br>64) =<br>0.519 =<br>sum of (265)(271) =<br>$(272) \div (4) =$<br>Primary                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | kg CO2/year<br>2149.23 (261)<br>29.38 (263)<br>635.24 (264)<br>2813.84 (265)<br>678.36 (267)<br>375.3 (268)<br>3867.51 (272)<br>12.84 (273)<br>85 (274)<br>P. Energy             |
| Space heating (main system 1)<br>Space heating (secondary)<br>Water heating<br>Space and water heating<br>Electricity for pumps, fans and electric kee<br>Electricity for lighting<br>Total CO2, kg/year<br><b>CO2 emissions per m<sup>2</sup></b><br>El rating (section 14)<br><b>13a. Primary Energy</b> | Energy<br>kWh/year<br>(211) x<br>(215) x<br>(219) x<br>(261) + (262) + (263) + (2<br>ep-hot (231) x<br>(232) x<br>Energy<br>kWh/year | kg CO2/kWh<br>0.216 =<br>0.019 =<br>0.216 =<br>0.216 =<br>0.519 =<br>sum of (265)(271) =<br>$(272) \div (4) =$<br>Primary<br>factor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | kg CO2/year<br>2149.23 (261)<br>29.38 (263)<br>635.24 (264)<br>2813.84 (265)<br>678.36 (267)<br>375.3 (268)<br>3867.51 (272)<br>12.84 (273)<br>85 (274)<br>P. Energy<br>kWh/year |



|                                                           |                 |            |                    | User D     | Details:    |              |                   |          |           |                         |              |
|-----------------------------------------------------------|-----------------|------------|--------------------|------------|-------------|--------------|-------------------|----------|-----------|-------------------------|--------------|
| Assessor Name:                                            | Daniel Wa       | tt         |                    |            | Strom       | a Num        | ber:              |          | STRO      | 026464                  |              |
| Software Name:                                            | Stroma FS       | SAP 201    | 2                  |            | Softwa      | are Vei      | rsion:            |          | Versio    | n: 1.0.5.59             |              |
|                                                           |                 |            | P                  | roperty    | Address     | : The Sh     | ingles            |          |           |                         |              |
| Address :                                                 | The Shingle     | es, Chelv  | vey Batch          | n, Back    | well, BRI   | STOL, E      | 3S48 3B           | Z        |           |                         |              |
| 1. Overall dwelling dime                                  | ensions:        |            |                    |            |             |              |                   |          |           |                         |              |
|                                                           |                 |            |                    | Are        | a(m²)       |              | Av. Hei           | ight(m)  |           | Volume(m <sup>3</sup> ) | -            |
| Ground floor                                              |                 |            |                    | 2          | 11.32       | (1a) x       | 2.                | .75      | (2a) =    | 581.13                  | (3a)         |
| First floor                                               |                 |            |                    | 8          | 39.95       | (1b) x       | 2.                | .55      | (2b) =    | 229.37                  | (3b)         |
| Total floor area TFA = (1                                 | a)+(1b)+(1c)+   | (1d)+(1e   | e)+(1n             | ) 3        | 01.27       | (4)          |                   |          |           |                         |              |
| Dwelling volume                                           |                 |            |                    |            |             | (3a)+(3b)    | )+(3c)+(3d        | )+(3e)+  | .(3n) =   | 810.5                   | (5)          |
| 2. Ventilation rate:                                      | -               |            |                    |            | -           |              | _                 |          |           |                         |              |
|                                                           | main<br>heating |            | econdar<br>neating | у          | other       |              | total             |          |           | m <sup>3</sup> per hour |              |
| Number of chimneys                                        | 0               | +          | 1                  | ] + [      | 0           | =            | 1                 | X 4      | 40 =      | 40                      | (6a)         |
| Number of open flues                                      | 0               | +          | 0                  | ] + [      | 0           | ] = [        | 0                 | × 2      | 20 =      | 0                       | (6b)         |
| Number of intermittent fa                                 | ns              |            |                    |            |             |              | 0                 | x ^      | 10 =      | 0                       | (7a)         |
| Number of passive vents                                   |                 |            |                    |            |             | Ē            | 0                 | x ^      | 10 =      | 0                       | (7b)         |
| Number of flueless gas fi                                 | res             |            |                    |            |             | Γ            | 0                 | x 4      | 40 =      | 0                       | (7c)         |
|                                                           |                 |            |                    |            |             |              |                   |          |           |                         | -            |
|                                                           |                 |            |                    |            |             |              |                   |          | Air ch    | anges per ho            | ur<br>—      |
| Infiltration due to chimne                                |                 |            |                    |            |             |              | 40                |          | ÷ (5) =   | 0.05                    | (8)          |
| If a pressurisation test has b<br>Number of storeys in th |                 |            | ea, proceed        | 1 to (17), | otherwise   | continue in  | om (9) to (       | 16)      |           | 0                       | (9)          |
| Additional infiltration                                   | ie awening (ii  | 5)         |                    |            |             |              |                   | [(9)-    | -1]x0.1 = | 0                       | (0)          |
| Structural infiltration: 0                                | .25 for steel o | r timber i | frame or           | 0.35 fo    | r masoni    | ry constr    | uction            | 1(-)     |           | 0                       | (11)         |
| if both types of wall are p                               |                 |            |                    |            |             |              |                   |          |           | -                       |              |
| deducting areas of openir<br>If suspended wooden f        | • ·             |            | ad) or 0           | 1 (200)    | ad) alca    | optor 0      |                   |          |           |                         |              |
| If no draught lobby, en                                   |                 |            | eu) or 0.          | i (Seale   | eu), eise   |              |                   |          |           | 0                       | (12)<br>(13) |
| Percentage of windows                                     |                 |            | rinned             |            |             |              |                   |          |           | 0                       | (13)         |
| Window infiltration                                       |                 | augin of   | nppeu              |            | 0.25 - [0.2 | 2 x (14) ÷ 1 | 00] =             |          |           | 0                       | (15)         |
| Infiltration rate                                         |                 |            |                    |            | (8) + (10)  | + (11) + (1  | -<br> 2) + (13) + | + (15) = |           | 0                       | (16)         |
| Air permeability value,                                   | a50. expresse   | ed in cub  | oic metre          | s per ho   | our per s   | auare m      | etre of e         | nvelope  | area      | 3                       | (17)         |
| If based on air permeabil                                 |                 |            |                    | •          | •           | •            |                   | •        |           | 0.2                     | (18)         |
| Air permeability value applie                             | -               |            |                    |            |             |              | is being us       | sed      | I         | _                       |              |
| Number of sides sheltere                                  | d               |            |                    |            |             |              |                   |          |           | 2                       | (19)         |
| Shelter factor                                            |                 |            |                    |            | (20) = 1 -  | [0.075 x (1  | 9)] =             |          |           | 0.85                    | (20)         |
| Infiltration rate incorporat                              | ing shelter fac | ctor       |                    |            | (21) = (18  | ) x (20) =   |                   |          |           | 0.17                    | (21)         |
| Infiltration rate modified f                              | or monthly wir  | nd speed   | k                  |            |             |              | · · · · ·         |          |           | I                       |              |
| Jan Feb                                                   | Mar Apr         | May        | Jun                | Jul        | Aug         | Sep          | Oct               | Nov      | Dec       |                         |              |
| Monthly average wind sp                                   | eed from Tab    | le 7       |                    |            |             |              |                   |          |           |                         |              |
| (22)m= 5.1 5                                              | 4.9 4.4         | 4.3        | 3.8                | 3.8        | 3.7         | 4            | 4.3               | 4.5      | 4.7       |                         |              |

|                                                                                                                                                      | actor (22                                                                                                                          | 2a)m =                                                                                                             | (22)m ÷                                                                                                   | 4                                               |                                                |                                                                                                                  |                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                             |                                                                                                                                                                                                   |                      |                    |                                                                                                              |
|------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------|-------------------------------------------------|------------------------------------------------|------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|--------------------|--------------------------------------------------------------------------------------------------------------|
| (22a)m=                                                                                                                                              | 1.27                                                                                                                               | 1.25                                                                                                               | 1.23                                                                                                      | 1.1                                             | 1.08                                           | 0.95                                                                                                             | 0.95                                                                                                                                    | 0.92                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1.08                                                                                                                        | 1.12                                                                                                                                                                                              | 1.18                 |                    |                                                                                                              |
| Adjuste                                                                                                                                              | ed infiltra                                                                                                                        | ition rate                                                                                                         | e (allowi                                                                                                 | ng for sh                                       | nelter an                                      | d wind s                                                                                                         | peed) =                                                                                                                                 | (21a) x                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | (22a)m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                             |                                                                                                                                                                                                   |                      |                    |                                                                                                              |
|                                                                                                                                                      | 0.22                                                                                                                               | 0.21                                                                                                               | 0.21                                                                                                      | 0.19                                            | 0.18                                           | 0.16                                                                                                             | 0.16                                                                                                                                    | 0.16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.18                                                                                                                        | 0.19                                                                                                                                                                                              | 0.2                  |                    |                                                                                                              |
|                                                                                                                                                      | ate effec                                                                                                                          |                                                                                                                    | -                                                                                                         | rate for t                                      | he appli                                       | cable ca                                                                                                         | se                                                                                                                                      | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                             |                                                                                                                                                                                                   |                      |                    |                                                                                                              |
|                                                                                                                                                      | echanical<br>aust air he                                                                                                           |                                                                                                                    |                                                                                                           | ondix N (2                                      | 2h) - (22                                      | $\rightarrow$ Emy (c                                                                                             | austion (                                                                                                                               | (5)) otho                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | nuico (22h                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ) = (220)                                                                                                                   |                                                                                                                                                                                                   |                      | 0.5                | (23a)                                                                                                        |
|                                                                                                                                                      |                                                                                                                                    |                                                                                                                    |                                                                                                           |                                                 |                                                |                                                                                                                  |                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ) = (23a)                                                                                                                   |                                                                                                                                                                                                   |                      | 0.5                | (23b)                                                                                                        |
|                                                                                                                                                      | anced with                                                                                                                         |                                                                                                                    | -                                                                                                         | -                                               | -                                              |                                                                                                                  |                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                             |                                                                                                                                                                                                   | (00 s)               | 75.65              | (23c)                                                                                                        |
| -                                                                                                                                                    | balance                                                                                                                            |                                                                                                                    |                                                                                                           | 1                                               |                                                | i                                                                                                                |                                                                                                                                         | <u> </u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | <u> </u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | · · ·                                                                                                                       |                                                                                                                                                                                                   | 1                    | ÷100]              | (24a)                                                                                                        |
| (24a)m=                                                                                                                                              |                                                                                                                                    | 0.33                                                                                                               | 0.33                                                                                                      | 0.31                                            | 0.3                                            | 0.28                                                                                                             | 0.28                                                                                                                                    | 0.28                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.29                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.3                                                                                                                         | 0.31                                                                                                                                                                                              | 0.32                 |                    | (24a)                                                                                                        |
| ,                                                                                                                                                    | balanced                                                                                                                           |                                                                                                                    |                                                                                                           | 1                                               |                                                |                                                                                                                  | r                                                                                                                                       | r , ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ŕ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                             | ,<br>                                                                                                                                                                                             |                      | l                  | (24b)                                                                                                        |
| (24b)m=                                                                                                                                              |                                                                                                                                    | 0                                                                                                                  | 0                                                                                                         | 0                                               | 0                                              | 0                                                                                                                | 0                                                                                                                                       | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0                                                                                                                           | 0                                                                                                                                                                                                 | 0                    |                    | (24b)                                                                                                        |
| ,                                                                                                                                                    | whole ho<br>if (22b)m                                                                                                              |                                                                                                                    |                                                                                                           |                                                 | •                                              |                                                                                                                  |                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 5 × (23b                                                                                                                    | )                                                                                                                                                                                                 |                      |                    |                                                                                                              |
| (24c)m=                                                                                                                                              | 0                                                                                                                                  | 0                                                                                                                  | 0                                                                                                         | 0                                               | 0                                              | 0                                                                                                                | 0                                                                                                                                       | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0                                                                                                                           | 0                                                                                                                                                                                                 | 0                    |                    | (24c)                                                                                                        |
| ,                                                                                                                                                    | natural v<br>if (22b)m                                                                                                             |                                                                                                                    |                                                                                                           |                                                 | •                                              | •                                                                                                                |                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.5]                                                                                                                        |                                                                                                                                                                                                   | •                    |                    |                                                                                                              |
| (24d)m=                                                                                                                                              | 0                                                                                                                                  | 0                                                                                                                  | 0                                                                                                         | 0                                               | 0                                              | 0                                                                                                                | 0                                                                                                                                       | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0                                                                                                                           | 0                                                                                                                                                                                                 | 0                    |                    | (24d)                                                                                                        |
| Effec                                                                                                                                                | ctive air o                                                                                                                        | change                                                                                                             | rate - er                                                                                                 | nter (24a                                       | ) or (24t                                      | o) or (24                                                                                                        | c) or (24                                                                                                                               | d) in boy                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | (25)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                             |                                                                                                                                                                                                   | •                    |                    |                                                                                                              |
| (25)m=                                                                                                                                               | 0.34                                                                                                                               | 0.33                                                                                                               | 0.33                                                                                                      | 0.31                                            | 0.3                                            | 0.28                                                                                                             | 0.28                                                                                                                                    | 0.28                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.29                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.3                                                                                                                         | 0.31                                                                                                                                                                                              | 0.32                 |                    | (25)                                                                                                         |
| 3. He                                                                                                                                                | at losses                                                                                                                          | and he                                                                                                             | at loss p                                                                                                 | paramete                                        | er:                                            |                                                                                                                  |                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                             |                                                                                                                                                                                                   |                      |                    |                                                                                                              |
| ELEN                                                                                                                                                 |                                                                                                                                    | Gros                                                                                                               |                                                                                                           | Openin                                          |                                                | Net Ar                                                                                                           | ea                                                                                                                                      | U-valı                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | he                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | AXU                                                                                                                         |                                                                                                                                                                                                   | k-value              | e A                | Xk                                                                                                           |
|                                                                                                                                                      |                                                                                                                                    |                                                                                                                    |                                                                                                           |                                                 | 2                                              |                                                                                                                  |                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                             |                                                                                                                                                                                                   |                      |                    | 11 /                                                                                                         |
|                                                                                                                                                      |                                                                                                                                    | area                                                                                                               | (m²)                                                                                                      | m                                               | 2                                              | A ,r                                                                                                             | n²                                                                                                                                      | W/m2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | K.,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | (W/I                                                                                                                        | <)                                                                                                                                                                                                | kJ/m²∙ł              | K kJ               | /K                                                                                                           |
| Doors                                                                                                                                                |                                                                                                                                    | area                                                                                                               | (m²)                                                                                                      | m                                               | IZ                                             | A ,r<br>2.64                                                                                                     | ×                                                                                                                                       | 1.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | = [                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | (W/I<br>3.432                                                                                                               | <)                                                                                                                                                                                                | kJ/m²∙ł              | K kJ               | /K<br>(26)                                                                                                   |
|                                                                                                                                                      | ws Type                                                                                                                            |                                                                                                                    | (m²)                                                                                                      | rr                                              | 2                                              |                                                                                                                  | ×                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | = [                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                             |                                                                                                                                                                                                   | kJ/m²-ł              | κ kJ               |                                                                                                              |
| Window                                                                                                                                               |                                                                                                                                    | 1                                                                                                                  | (m²)                                                                                                      | ſſ                                              | 12                                             | 2.64                                                                                                             | x<br>x                                                                                                                                  | 1.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.04] =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 3.432                                                                                                                       |                                                                                                                                                                                                   | KJ/M²+ł              | K kJ               | (26)                                                                                                         |
| Windov<br>Windov                                                                                                                                     | ws Type                                                                                                                            | 1<br>2                                                                                                             | (m²)                                                                                                      | m                                               | 2                                              | 2.64<br>22.67                                                                                                    | x<br>x1,<br>x1,                                                                                                                         | 1.3<br>/[1/( 1.3 )+                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.04] = [<br>0.04] = [                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 3.432<br>28.01                                                                                                              |                                                                                                                                                                                                   | KJ/M²+ł              | κ kJ               | (26)<br>(27)                                                                                                 |
| Windov<br>Windov<br>Windov                                                                                                                           | ws Type<br>ws Type                                                                                                                 | 1<br>2<br>3                                                                                                        | (m²)                                                                                                      | m                                               | 2                                              | 2.64<br>22.67<br>35.5                                                                                            | x x1.<br>x1.<br>x1.<br>x1.<br>x1.                                                                                                       | 1.3<br>/[1/( 1.3 )+<br>/[1/( 1.3 )+                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $ \begin{array}{c} 0.04] = \\ 0.04] = \\ 0.04] = \\ \end{array} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 3.432<br>28.01<br>43.87                                                                                                     |                                                                                                                                                                                                   | KJ/m²+ł              | κ kJ               | (26)<br>(27)<br>(27)                                                                                         |
| Windov<br>Windov<br>Windov                                                                                                                           | ws Type<br>ws Type<br>ws Type                                                                                                      | 1<br>2<br>3                                                                                                        | (m²)                                                                                                      | m                                               | 2                                              | 2.64<br>22.67<br>35.5<br>11.67                                                                                   | x x1.<br>x1.<br>x1.<br>x1.<br>x1.<br>x1.<br>x1.                                                                                         | 1.3<br>/[1/( 1.3 )+<br>/[1/( 1.3 )+<br>/[1/( 1.3 )+                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $ \begin{array}{c} 0.04] = \\ 0.04] = \\ 0.04] = \\ \end{array} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 3.432<br>28.01<br>43.87<br>14.42                                                                                            |                                                                                                                                                                                                   | kJ/m²+ł              | < kJ               | (26)<br>(27)<br>(27)<br>(27)                                                                                 |
| Windov<br>Windov<br>Windov<br>Windov                                                                                                                 | ws Type<br>ws Type<br>ws Type                                                                                                      | 1<br>2<br>3                                                                                                        |                                                                                                           | m<br>87.93                                      |                                                | 2.64<br>22.67<br>35.5<br>11.67<br>15.45                                                                          | x x1.<br>x1.<br>x1.<br>x1.<br>x1.<br>x1.<br>x1.<br>x2. x                                                                                | 1.3<br>/[1/( 1.3 )+<br>/[1/( 1.3 )+<br>/[1/( 1.3 )+<br>/[1/( 1.3 )+                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $ \begin{bmatrix} 0.04 \\ 0.04 \end{bmatrix} = \begin{bmatrix} 0.04 \\ $ | 3.432<br>28.01<br>43.87<br>14.42<br>19.09                                                                                   |                                                                                                                                                                                                   | KJ/m²+ŀ              | < kJ               | (26)<br>(27)<br>(27)<br>(27)<br>(27)                                                                         |
| Windov<br>Windov<br>Windov<br>Windov<br>Floor                                                                                                        | ws Type<br>ws Type<br>ws Type<br>ws Type                                                                                           | 1<br>2<br>3<br>4                                                                                                   | 92                                                                                                        |                                                 |                                                | 2.64<br>22.67<br>35.5<br>11.67<br>15.45<br>211.3                                                                 | x x1.<br>x1.<br>x1.<br>x1.<br>x1.<br>x1.<br>x1.<br>x2.<br>x<br>9.<br>x                                                                  | 1.3<br>/[1/( 1.3 )+<br>/[1/( 1.3 )+<br>/[1/( 1.3 )+<br>/[1/( 1.3 )+<br>0.15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $\begin{bmatrix} 0.04 \\ 0.04 \end{bmatrix} = \begin{bmatrix} 0.04 \\ 0.04 \\ 0.04 \end{bmatrix} = \begin{bmatrix} 0.04 \\ 0.04 \\ 0.04 \end{bmatrix} = \begin{bmatrix} 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \end{bmatrix} = \begin{bmatrix} 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \end{bmatrix} = \begin{bmatrix} 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 3.432<br>28.01<br>43.87<br>14.42<br>19.09<br>31.698                                                                         |                                                                                                                                                                                                   | kJ/m²+ł              |                    | (26)<br>(27)<br>(27)<br>(27)<br>(27)<br>(27)<br>(28)                                                         |
| Windov<br>Windov<br>Windov<br>Windov<br>Floor<br>Walls                                                                                               | ws Type<br>ws Type<br>ws Type<br>ws Type<br>Type1                                                                                  | 1<br>2<br>3<br>4<br>                                                                                               | 92                                                                                                        | 87.9                                            |                                                | 2.64<br>22.67<br>35.5<br>11.67<br>15.45<br>211.3<br>152.9                                                        | x x1.<br>x1.<br>x1.<br>x1.<br>x1.<br>x1.<br>x1.<br>x2.<br>x<br>9.<br>x                                                                  | 1.3<br>/[1/( 1.3 )+<br>/[1/( 1.3 )+<br>/[1/( 1.3 )+<br>/[1/( 1.3 )+<br>0.15<br>0.22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $\begin{bmatrix} 0.04 \\ 0.04 \end{bmatrix} = \begin{bmatrix} 0.04 \\ 0.04 \\ 0.04 \end{bmatrix} = \begin{bmatrix} 0.04 \\ 0.04 \\ 0.04 \end{bmatrix} = \begin{bmatrix} 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \end{bmatrix} = \begin{bmatrix} 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \end{bmatrix} = \begin{bmatrix} 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 3.432<br>28.01<br>43.87<br>14.42<br>19.09<br>31.698<br>33.66                                                                |                                                                                                                                                                                                   | KJ/m²+ł              |                    | (26)<br>(27)<br>(27)<br>(27)<br>(27)<br>(27)<br>(28)<br>(29)                                                 |
| Windov<br>Windov<br>Windov<br>Floor<br>Walls<br>Roof 1<br>Roof 1                                                                                     | ws Type<br>ws Type<br>ws Type<br>ws Type<br>Type1                                                                                  | 1<br>2<br>3<br>4<br>240.3<br>83.5<br>154                                                                           | 92                                                                                                        | 87.93                                           |                                                | 2.64<br>22.67<br>35.5<br>11.67<br>15.45<br>211.3<br>152.9<br>83.52                                               | x x1.<br>x1.<br>x1.<br>x1.<br>x1.<br>x1.<br>x1.<br>x1.<br>x2.<br>x<br>9.<br>x<br>x<br>2.<br>x<br>x<br>2.<br>x<br>x<br>x<br>x<br>2.<br>x | 1.3<br>/[1/( 1.3 )+<br>/[1/( 1.3 )+<br>/[1/( 1.3 )+<br>/[1/( 1.3 )+<br>0.15<br>0.22<br>0.14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $\begin{bmatrix} 0.04 \\ 0.04 \end{bmatrix} = \begin{bmatrix} 0 \\ 0.04 \\ 0.04 \end{bmatrix} = \begin{bmatrix} 0 \\ 0.04 \\ 0 \end{bmatrix}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 3.432<br>28.01<br>43.87<br>14.42<br>19.09<br>31.698<br>33.66<br>11.69                                                       |                                                                                                                                                                                                   | KJ/m²+ł              |                    | (26)<br>(27)<br>(27)<br>(27)<br>(27)<br>(28)<br>(29)<br>(30)                                                 |
| Windov<br>Windov<br>Windov<br>Floor<br>Walls<br>Roof 1<br>Roof 1<br>Total a<br>*for window                                                           | ws Type<br>ws Type<br>ws Type<br>ws Type<br>Type1<br>Type2                                                                         | 1<br>2<br>3<br>4<br>240.3<br>83.5<br>154<br>ements                                                                 | 92<br>2<br>, m²<br>pws, use e                                                                             | 87.9<br>0<br>0                                  | 3<br><br><br>ndow U-va                         | 2.64<br>22.67<br>35.5<br>11.67<br>15.45<br>211.3<br>152.9<br>83.52<br>83.52<br>154<br>689.7<br>alue calcul       | x x1.<br>x1.<br>x1.<br>x1.<br>x1.<br>x1.<br>x1.<br>x2.<br>x<br>y9.<br>x<br>x<br>x<br>x<br>6.                                            | $ \begin{array}{c} 1.3 \\ /[1/(1.3)+ \\ /[1/(1.3)+ \\ /[1/(1.3)+ \\ /[1/(1.3)+ \\ 0.15 \\ 0.22 \\ 0.14 \\ 0.14 \\ 0.14 \end{array} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $\begin{bmatrix} 0.04 \\ 0.04 \end{bmatrix} = \begin{bmatrix} 0 \\ 0.04 \\ 0.04 \end{bmatrix} = \begin{bmatrix} 0 \\ 0.04 \\ 0.04 \end{bmatrix} = \begin{bmatrix} 0 \\ 0.04 \\ 0.04 \end{bmatrix}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 3.432<br>28.01<br>43.87<br>14.42<br>19.09<br>31.698<br>33.66<br>11.69<br>21.56                                              |                                                                                                                                                                                                   |                      |                    | (26)<br>(27)<br>(27)<br>(27)<br>(27)<br>(28)<br>(29)<br>(30)<br>(30)                                         |
| Window<br>Window<br>Window<br>Floor<br>Walls<br>Roof T<br>Roof T<br>Total a<br>* for window                                                          | ws Type<br>ws Type<br>ws Type<br>ws Type<br>Type1<br>Type2<br>urea of el-<br>dows and i                                            | 1<br>2<br>3<br>4<br>240.1<br>83.5<br>154<br>ements<br>roof windo                                                   | 92<br>2<br>, m <sup>2</sup><br>ows, use e<br>sides of ir                                                  | 87.93<br>0<br>0<br>effective wi                 | 3<br><br><br>ndow U-va                         | 2.64<br>22.67<br>35.5<br>11.67<br>15.45<br>211.3<br>152.9<br>83.52<br>83.52<br>154<br>689.7<br>alue calcul       | x x1<br>x1<br>x1<br>x1<br>x1<br>x1<br>x1<br>x1<br>x1<br>x1<br>x2<br>x2<br>x<br>y9<br>x<br>x2<br>x<br>x<br>x<br>6<br>ated using          | $ \begin{array}{c} 1.3 \\ /[1/(1.3)+ \\ /[1/(1.3)+ \\ /[1/(1.3)+ \\ /[1/(1.3)+ \\ 0.15 \\ 0.22 \\ 0.14 \\ 0.14 \\ 0.14 \end{array} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $\begin{bmatrix} \\ 0.04 \\ \\ \\ 0.04 \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 3.432<br>28.01<br>43.87<br>14.42<br>19.09<br>31.698<br>33.66<br>11.69<br>21.56                                              |                                                                                                                                                                                                   |                      |                    | (26)<br>(27)<br>(27)<br>(27)<br>(27)<br>(28)<br>(29)<br>(30)<br>(30)                                         |
| Windov<br>Windov<br>Windov<br>Floor<br>Walls<br>Roof 1<br>Roof 1<br>Total a<br>* for winu<br>** includ<br>Fabric                                     | ws Type<br>ws Type<br>ws Type<br>ws Type<br>fype1<br>fype2<br>urea of el-<br>dows and i<br>le the areas                            | 1<br>2<br>3<br>4<br>240.3<br>83.5<br>154<br>ements<br>roof winde<br>s on both<br>s, W/K =                          | 92<br>2<br>, m <sup>2</sup><br>ows, use e<br>sides of ir<br>= S (A x                                      | 87.93<br>0<br>0<br>effective wi                 | 3<br><br><br>ndow U-va                         | 2.64<br>22.67<br>35.5<br>11.67<br>15.45<br>211.3<br>152.9<br>83.52<br>83.52<br>154<br>689.7<br>alue calcul       | x x1<br>x1<br>x1<br>x1<br>x1<br>x1<br>x1<br>x1<br>x1<br>x1<br>x2<br>x2<br>x<br>y9<br>x<br>x2<br>x<br>x<br>x<br>6<br>ated using          | $ \begin{array}{c} 1.3 \\ /[1/(1.3)+ \\ /[1/(1.3)+ \\ /[1/(1.3)+ \\ /[1/(1.3)+ \\ 0.15 \\ 0.22 \\ 0.14 \\ 0.14 \\ 0.14 \\ 1 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.$ | $\begin{bmatrix} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 3.432<br>28.01<br>43.87<br>14.42<br>19.09<br>31.698<br>33.66<br>11.69<br>21.56                                              | s given in                                                                                                                                                                                        | paragraph            |                    | (26)<br>(27)<br>(27)<br>(27)<br>(28)<br>(29)<br>(30)<br>(30)<br>(31)                                         |
| Windov<br>Windov<br>Windov<br>Floor<br>Walls<br>Roof 1<br>Roof 1<br>Total a<br>* for winu<br>** includ<br>Fabric<br>Heat ca                          | ws Type<br>ws Type<br>ws Type<br>ws Type<br>rype1<br>rype2<br>area of el-<br>dows and r<br>dows and r<br>le the areas<br>heat loss | 1<br>2<br>3<br>4<br>240.9<br>83.5<br>154<br>ements<br>roof winde<br>s on both<br>s, W/K =<br>Cm = S(               | 92<br>2<br>, m <sup>2</sup><br>ows, use e<br>sides of ir<br>= S (A x<br>A x k )                           | 87.93<br>0<br>0<br>offective wi<br>aternal walk | 3<br><br>ndow U-va<br>ds and par               | 2.64<br>22.67<br>35.5<br>11.67<br>15.45<br>211.3<br>152.9<br>83.52<br>83.52<br>154<br>689.7<br>alue calculations | x x1<br>x1<br>x1<br>x1<br>x1<br>x1<br>x1<br>x1<br>x1<br>x2<br>x<br>y9<br>x<br>x<br>y9<br>x<br>x<br>x<br>6<br>ated using                 | $ \begin{array}{c} 1.3 \\ /[1/(1.3)+ \\ /[1/(1.3)+ \\ /[1/(1.3)+ \\ /[1/(1.3)+ \\ 0.15 \\ 0.22 \\ 0.14 \\ 0.14 \\ 0.14 \\ 1 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.$ | $\begin{bmatrix} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 3.432<br>28.01<br>43.87<br>14.42<br>19.09<br>31.698<br>33.66<br>11.69<br>21.56                                              | [<br>[<br>[<br>[<br>[<br>[<br>[<br>[<br>[<br>[<br>[<br>[<br>[<br>[<br>[<br>[<br>[<br>[<br>[<br>[<br>[<br>[<br>[<br>[<br>[<br>[<br>[<br>[<br>[<br>[<br>[<br>[<br>[<br>[<br>[<br>[<br>[<br>[<br>] ] | paragraph            | 3.2<br>207.44      | (26)<br>(27)<br>(27)<br>(27)<br>(27)<br>(28)<br>(29)<br>(30)<br>(30)<br>(31)                                 |
| Windov<br>Windov<br>Windov<br>Floor<br>Walls<br>Roof 1<br>Roof 1<br>Total a<br>*for wind<br>*for wind<br>*for call<br>Heat ca<br>Therma<br>For desig | ws Type<br>ws Type<br>ws Type<br>ws Type<br>rype1<br>Type2<br>urea of el-<br>dows and r<br>de the areas<br>heat loss<br>apacity C  | 1<br>2<br>3<br>4<br>240.9<br>83.5<br>154<br>ements<br>roof winde<br>s on both<br>s, W/K =<br>cm = S(paramements wh | 92<br>2<br>, m <sup>2</sup><br>bws, use e<br>sides of ir<br>= S (A x<br>A x k )<br>ter (TMF<br>ere the de | $\begin{bmatrix} 87.93\\ 0 \end{bmatrix}$       | 3<br><br>Indow U-va<br>Is and par<br>- TFA) ir | 2.64<br>22.67<br>35.5<br>11.67<br>15.45<br>211.3<br>152.9<br>83.52<br>154<br>689.7<br>alue calculations          | x x1.<br>x1.<br>x1.<br>x1.<br>x1.<br>x1.<br>x1.<br>x2<br>x<br>y2<br>x<br>y2<br>x<br>x<br>x<br>6<br>ated using                           | $ \begin{array}{c} 1.3 \\ /[1/(1.3)+ \\ /[1/(1.3)+ \\ /[1/(1.3)+ \\ /[1/(1.3)+ \\ 0.15 \\ 0.22 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ (26)(30) \end{array} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $\begin{bmatrix} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 3.432<br>28.01<br>43.87<br>14.42<br>19.09<br>31.698<br>33.66<br>11.69<br>21.56<br>re)+0.04] a<br>.(30) + (32<br>tive Value: | )<br> <br>                                                                                                   | paragraph<br>(32e) = | 207.44<br>34562.28 | (26)<br>(27)<br>(27)<br>(27)<br>(27)<br>(28)<br>(29)<br>(30)<br>(30)<br>(30)<br>(31)<br>(33)<br>(33)<br>(34) |

|                |                       | 00                    | are not kr             | 10wn (36) =                | = 0.05 x (3    | 1)         |                      |                   |                       | (2.2)                  |                        |         | r       | <b>-</b> |
|----------------|-----------------------|-----------------------|------------------------|----------------------------|----------------|------------|----------------------|-------------------|-----------------------|------------------------|------------------------|---------|---------|----------|
|                | abric he              |                       |                        |                            |                |            |                      |                   |                       | (36) =                 |                        |         | 269.27  | (37)     |
| Ventila        | ation hea             | r                     | alculated              | d monthly                  | Í              |            |                      |                   |                       | = 0.33 × (             | 25)m x (5)<br>I        |         | 1       |          |
|                | Jan                   | Feb                   | Mar                    | Apr                        | May            | Jun        | Jul                  | Aug               | Sep                   | Oct                    | Nov                    | Dec     |         | (00)     |
| (38)m=         | 90.35                 | 89.22                 | 88.08                  | 82.42                      | 81.28          | 75.62      | 75.62                | 74.49             | 77.89                 | 81.28                  | 83.55                  | 85.82   |         | (38)     |
| Heat t         | ransfer (             | coefficie             | nt, W/K                |                            | i              |            | i                    |                   | (39)m                 | = (37) + (3            | 38)m                   | i       | 1       |          |
| (39)m=         | 359.62                | 358.48                | 357.35                 | 351.69                     | 350.55         | 344.89     | 344.89               | 343.75            | 347.15                | 350.55                 | 352.82                 | 355.08  |         | _        |
| Heat le        | oss para              | ameter (I             | HLP), W                | /m²K                       |                |            |                      | -                 |                       | Average =<br>= (39)m ÷ |                        | 12 /12= | 351.4   | (39)     |
| (40)m=         | 1.19                  | 1.19                  | 1.19                   | 1.17                       | 1.16           | 1.14       | 1.14                 | 1.14              | 1.15                  | 1.16                   | 1.17                   | 1.18    |         | _        |
| Numb           | er of day             | ys in mo              | nth (Tab               | le 1a)                     |                |            | -                    | -                 | ,                     | Average =              | Sum(40)1.              | 12 /12= | 1.17    | (40)     |
|                | Jan                   | Feb                   | Mar                    | Apr                        | May            | Jun        | Jul                  | Aug               | Sep                   | Oct                    | Nov                    | Dec     |         |          |
| (41)m=         | 31                    | 28                    | 31                     | 30                         | 31             | 30         | 31                   | 31                | 30                    | 31                     | 30                     | 31      |         | (41)     |
|                |                       |                       |                        |                            |                |            |                      |                   |                       |                        |                        |         | -       |          |
| 4. Wa          | ater hea              | ting ene              | rgy requ               | irement:                   |                |            |                      |                   |                       |                        |                        | kWh/ye  | ear:    |          |
| if TF          |                       | -                     |                        | : [1 - exp                 | (-0.0003       | 849 x (TF  | <sup>-</sup> A -13.9 | )2)] + 0.(        | 0013 x ( <sup>-</sup> | TFA -13.               |                        | 13      | ]       | (42)     |
|                |                       |                       |                        |                            |                |            |                      | (25 x N)          |                       |                        |                        | 8.62    |         | (43)     |
|                |                       | -                     |                        | usage by :<br>r day (all w |                | -          | -                    | to achieve        | a water us            | se target o            | t                      |         |         |          |
| normor         |                       |                       |                        | 1                          |                |            |                      |                   | 0                     |                        | NL.                    | Du      | 1       |          |
| Hot wat        | Jan<br>er usage i     | Feb                   | Mar                    | Apr<br>ach month           | May            | Jun        | Jul<br>Table 1c x    | Aug               | Sep                   | Oct                    | Nov                    | Dec     |         |          |
|                | 119.48                | 115.14                | 110.79                 | 106.45                     | 102.11         | 97.76      | 97.76                | 102.11            | 106.45                | 110.79                 | 115.14                 | 119.48  | 1       |          |
| (44)m=         | 119.40                | 115.14                | 110.79                 | 106.45                     | 102.11         | 97.70      | 97.70                | 102.11            |                       | Total = Su             |                        |         | 1303.47 | (44)     |
| Energy         | content of            | f hot water           | used - cai             | culated mo                 | onthly $= 4$ . | 190 x Vd,r | m x nm x D           | 0Tm / 3600        |                       |                        |                        |         | 1303.47 |          |
| (45)m=         | 177.19                | 154.97                | 159.92                 | 139.42                     | 133.78         | 115.44     | 106.97               | 122.75            | 124.22                | 144.76                 | 158.02                 | 171.6   |         | _        |
| lf instan      | taneous v             | vater heati           | ing at point           | t of use (no               | hot water      | storage),  | enter 0 in           | boxes (46         |                       | Total = Su             | m(45) <sub>112</sub> = | =       | 1709.06 | (45)     |
| (46)m=         | 26.58                 | 23.25                 | 23.99                  | 20.91                      | 20.07          | 17.32      | 16.05                | 18.41             | 18.63                 | 21.71                  | 23.7                   | 25.74   |         | (46)     |
|                | storage               |                       |                        |                            |                |            |                      |                   |                       |                        |                        |         | 1       |          |
| -              |                       | . ,                   |                        |                            |                |            | -                    | within sa         | ame ves               | sel                    |                        | 400     |         | (47)     |
| Other<br>Water | vise if ne<br>storage | o stored<br>loss:     | hot wate               | ·                          | icludes i      | nstantar   | neous co             | (47)<br>ombi boil | ers) ente             | er '0' in (            | 47)                    |         |         |          |
|                |                       |                       |                        | oss facto                  | or is kno      | wn (kWł    | n/day):              |                   |                       |                        |                        | 0       |         | (48)     |
| Tempe          | erature f             | actor fro             | m Table                | 2b                         |                |            |                      |                   |                       |                        |                        | 0       |         | (49)     |
| b) If n        | nanufac               | turer's d             | eclared o              | e, kWh/ye<br>cylinder l    | oss fact       |            | known:               | (48) x (49)       | ) =                   |                        | 4                      | 00      | ]       | (50)     |
|                |                       | -                     | factor fi<br>see secti | rom Tabl<br>on 4.3         | e 2 (kW        | h/litre/da | iy)                  |                   |                       |                        | 0.                     | .01     |         | (51)     |
|                |                       | from Ta               |                        |                            |                |            |                      |                   |                       |                        | 0.                     | 67      |         | (52)     |
| Tempe          | erature f             | actor fro             | m Table                | 2b                         |                |            |                      |                   |                       |                        | 0.                     | 54      |         | (53)     |
| -              |                       |                       | -                      | e, kWh/ye                  | ear            |            |                      | (47) x (51)       | x (52) x (            | 53) =                  | 1.                     | 49      |         | (54)     |
| Enter          | (50) or               | (54) in ( <del></del> | 55)                    |                            |                |            |                      |                   |                       |                        | 1.                     | 49      |         | (55)     |

| Water                                                                      | storage                                                                                    | loss cal                                                                                   | culated                                                                                            | for each                                                                   | month                                                                        |                                                                                    |                                                                 | ((56)m = (                                                                   | 55) × (41)                                                                | m                                                      |                                           |                                           |                 |                                      |
|----------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------|------------------------------------------------------------------------------|------------------------------------------------------------------------------------|-----------------------------------------------------------------|------------------------------------------------------------------------------|---------------------------------------------------------------------------|--------------------------------------------------------|-------------------------------------------|-------------------------------------------|-----------------|--------------------------------------|
| (56)m=                                                                     | 46.12                                                                                      | 41.66                                                                                      | 46.12                                                                                              | 44.63                                                                      | 46.12                                                                        | 44.63                                                                              | 46.12                                                           | 46.12                                                                        | 44.63                                                                     | 46.12                                                  | 44.63                                     | 46.12                                     |                 | (56)                                 |
| If cylind                                                                  | er contain                                                                                 | s dedicate                                                                                 | d solar sto                                                                                        | orage, (57)                                                                | m = (56)m                                                                    | x [(50) – (                                                                        | H11)] ÷ (5                                                      | 0), else (5                                                                  | 7)m = (56)                                                                | m where (                                              | H11) is fro                               | m Append                                  | ix H            |                                      |
| (57)m=                                                                     | 46.12                                                                                      | 41.66                                                                                      | 46.12                                                                                              | 44.63                                                                      | 46.12                                                                        | 44.63                                                                              | 46.12                                                           | 46.12                                                                        | 44.63                                                                     | 46.12                                                  | 44.63                                     | 46.12                                     |                 | (57)                                 |
| Primar                                                                     | y circuit                                                                                  | loss (ar                                                                                   | nual) fro                                                                                          | om Table                                                                   | e 3                                                                          |                                                                                    |                                                                 |                                                                              |                                                                           |                                                        |                                           | 0                                         |                 | (58)                                 |
|                                                                            | •                                                                                          | •                                                                                          |                                                                                                    | for each                                                                   |                                                                              | 59)m = (                                                                           | 58) ÷ 36                                                        | 5 × (41)                                                                     | m                                                                         |                                                        |                                           |                                           | I               |                                      |
| (mo                                                                        | dified by                                                                                  | factor f                                                                                   | rom Tab                                                                                            | le H5 if t                                                                 | here is s                                                                    | olar wat                                                                           | er heatir                                                       | ng and a                                                                     | cylinde                                                                   | r thermo                                               | stat)                                     |                                           |                 |                                      |
| (59)m=                                                                     | 23.26                                                                                      | 21.01                                                                                      | 23.26                                                                                              | 22.51                                                                      | 23.26                                                                        | 22.51                                                                              | 23.26                                                           | 23.26                                                                        | 22.51                                                                     | 23.26                                                  | 22.51                                     | 23.26                                     |                 | (59)                                 |
| Combi                                                                      | i loss ca                                                                                  | lculated                                                                                   | for each                                                                                           | month                                                                      | (61)m =                                                                      | (60) ÷ 36                                                                          | 65 × (41)                                                       | m                                                                            |                                                                           |                                                        |                                           |                                           |                 |                                      |
| (61)m=                                                                     | 0                                                                                          | 0                                                                                          | 0                                                                                                  | 0                                                                          | 0                                                                            | 0                                                                                  | 0                                                               | 0                                                                            | 0                                                                         | 0                                                      | 0                                         | 0                                         |                 | (61)                                 |
| Total h                                                                    | neat req                                                                                   | uired for                                                                                  | water h                                                                                            | eating ca                                                                  | alculated                                                                    | for eacl                                                                           | n month                                                         | (62)m =                                                                      | 0.85 × (                                                                  | (45)m +                                                | (46)m +                                   | (57)m +                                   | (59)m + (61)m   |                                      |
| (62)m=                                                                     | 246.57                                                                                     | 217.64                                                                                     | 229.3                                                                                              | 206.56                                                                     | 203.16                                                                       | 182.58                                                                             | 176.35                                                          | 192.13                                                                       | 191.36                                                                    | 214.15                                                 | 225.16                                    | 240.98                                    |                 | (62)                                 |
| Solar DI                                                                   | HW input                                                                                   | calculated                                                                                 | using App                                                                                          | endix G o                                                                  | Appendix                                                                     | H (negativ                                                                         | ve quantity                                                     | v) (enter '0'                                                                | ' if no sola                                                              | r contribut                                            | ion to wate                               | er heating)                               | '               |                                      |
| (add a                                                                     | dditiona                                                                                   | l lines if                                                                                 | FGHRS                                                                                              | and/or \                                                                   | WWHRS                                                                        | applies                                                                            | see Ap                                                          | pendix G                                                                     | G)                                                                        |                                                        | -                                         |                                           |                 |                                      |
| (63)m=                                                                     | 0                                                                                          | 0                                                                                          | 0                                                                                                  | 0                                                                          | 0                                                                            | 0                                                                                  | 0                                                               | 0                                                                            | 0                                                                         | 0                                                      | 0                                         | 0                                         |                 | (63)                                 |
| Output                                                                     | t from w                                                                                   | ater hea                                                                                   | ter                                                                                                |                                                                            |                                                                              |                                                                                    |                                                                 |                                                                              |                                                                           |                                                        |                                           |                                           |                 |                                      |
| (64)m=                                                                     | 246.57                                                                                     | 217.64                                                                                     | 229.3                                                                                              | 206.56                                                                     | 203.16                                                                       | 182.58                                                                             | 176.35                                                          | 192.13                                                                       | 191.36                                                                    | 214.15                                                 | 225.16                                    | 240.98                                    |                 | _                                    |
|                                                                            |                                                                                            |                                                                                            |                                                                                                    |                                                                            |                                                                              |                                                                                    |                                                                 | Outp                                                                         | out from w                                                                | ater heate                                             | r (annual)₁                               | 12                                        | 2525.96         | (64)                                 |
| Heat g                                                                     | ains fro                                                                                   | m water                                                                                    | heating                                                                                            | , kWh/m                                                                    | onth 0.2                                                                     | 5 ´ [0.85                                                                          | × (45)m                                                         | + (61)m                                                                      | n] + 0.8 x                                                                | (46)m                                                  | + (57)m                                   | + (59)m                                   | ]               |                                      |
| (65)m=                                                                     | 114.42                                                                                     | 101.66                                                                                     | 108.68                                                                                             | 100.07                                                                     | 99.99                                                                        | 92.1                                                                               | 91.07                                                           | 96.32                                                                        | 95.02                                                                     | 103.64                                                 | 106.26                                    | 112.56                                    |                 | (65)                                 |
| inclu                                                                      | ude (57)                                                                                   | m in calo                                                                                  | culation                                                                                           | of (65)m                                                                   | only if c                                                                    | ylinder is                                                                         | s in the c                                                      | dwelling                                                                     | or hot w                                                                  | ater is fr                                             | om com                                    | munity h                                  | eating          |                                      |
| 5. In                                                                      | ternal ga                                                                                  | ains (see                                                                                  | e Table 5                                                                                          | 5 and 5a                                                                   | ):                                                                           |                                                                                    |                                                                 |                                                                              |                                                                           |                                                        |                                           |                                           |                 |                                      |
| Metab                                                                      | olic gain                                                                                  | s (Table                                                                                   | 5), Wat                                                                                            | tts                                                                        | -                                                                            |                                                                                    |                                                                 |                                                                              |                                                                           | -                                                      | -                                         |                                           |                 |                                      |
|                                                                            | Jan                                                                                        | Feb                                                                                        | Mar                                                                                                | Apr                                                                        | May                                                                          | Jun                                                                                | Jul                                                             | Aug                                                                          | Sep                                                                       | Oct                                                    | Nov                                       | Dec                                       |                 |                                      |
| (66)m=                                                                     | 156.68                                                                                     | 156.68                                                                                     | 156.68                                                                                             | 156.68                                                                     | 156.68                                                                       | 156.68                                                                             | 156.68                                                          | 156.68                                                                       | 156.68                                                                    | 156.68                                                 | 156.68                                    | 156.68                                    |                 | (66)                                 |
| Lightin                                                                    | ng gains                                                                                   | (calcula                                                                                   | ted in Ap                                                                                          | opendix                                                                    | L, equat                                                                     | ion L9 oi                                                                          |                                                                 |                                                                              | 130.00                                                                    |                                                        |                                           |                                           |                 | (00)                                 |
| (67)m=                                                                     | 40.95                                                                                      | 36.37                                                                                      | 29.58                                                                                              |                                                                            |                                                                              |                                                                                    | <sup>-</sup> L9a), a                                            | lso see                                                                      |                                                                           |                                                        |                                           |                                           |                 | (00)                                 |
| Applia                                                                     |                                                                                            |                                                                                            | 29.00                                                                                              | 22.39                                                                      | 16.74                                                                        | 14.13                                                                              | ,                                                               | lso see<br>19.85                                                             |                                                                           | 33.82                                                  | 39.48                                     | 42.08                                     |                 | (67)                                 |
| (68)m=                                                                     | nces ga                                                                                    | ins (calc                                                                                  |                                                                                                    | 22.39<br>Append                                                            | 16.74                                                                        | 14.13                                                                              | 15.27                                                           | 19.85                                                                        | Table 5<br>26.64                                                          |                                                        | 39.48                                     | 42.08                                     |                 |                                      |
|                                                                            | nces ga<br>459.29                                                                          | ins (calc<br>464.06                                                                        |                                                                                                    | 1                                                                          | 16.74                                                                        | 14.13                                                                              | 15.27                                                           | 19.85                                                                        | Table 5<br>26.64                                                          |                                                        | 39.48<br>408.69                           | 42.08<br>439.03                           |                 |                                      |
|                                                                            | 459.29                                                                                     | 464.06                                                                                     | ulated ir<br>452.05                                                                                | n Append                                                                   | 16.74<br>dix L, eq<br>394.2                                                  | 14.13<br>uation L <sup>-</sup><br>363.87                                           | 15.27<br>13 or L1<br>343.6                                      | 19.85<br>3a), also<br>338.84                                                 | Table 5<br>26.64<br>see Ta<br>350.85                                      | ble 5<br>376.42                                        | I                                         |                                           |                 | (67)                                 |
|                                                                            | 459.29                                                                                     | 464.06                                                                                     | ulated ir<br>452.05                                                                                | Append<br>426.48                                                           | 16.74<br>dix L, eq<br>394.2                                                  | 14.13<br>uation L <sup>-</sup><br>363.87                                           | 15.27<br>13 or L1<br>343.6                                      | 19.85<br>3a), also<br>338.84                                                 | Table 5<br>26.64<br>see Ta<br>350.85                                      | ble 5<br>376.42                                        | I                                         |                                           |                 | (67)                                 |
| Cookir<br>(69)m=                                                           | 459.29<br>ng gains<br>38.67                                                                | 464.06<br>(calcula                                                                         | ulated ir<br>452.05<br>ted in A<br>38.67                                                           | Append<br>426.48<br>ppendix<br>38.67                                       | 16.74<br>dix L, eq<br>394.2<br>L, equat                                      | 14.13<br>uation L <sup>-</sup><br>363.87<br>ion L15                                | 15.27<br>13 or L1<br>343.6<br>or L15a)                          | 19.85<br>3a), also<br>338.84<br>, also se                                    | Table 5<br>26.64<br>see Ta<br>350.85<br>ee Table                          | ble 5<br>376.42<br>5                                   | 408.69                                    | 439.03                                    |                 | (67)                                 |
| Cookir<br>(69)m=                                                           | 459.29<br>ng gains<br>38.67                                                                | 464.06<br>(calcula<br>38.67                                                                | ulated ir<br>452.05<br>ted in A<br>38.67                                                           | Append<br>426.48<br>ppendix<br>38.67                                       | 16.74<br>dix L, eq<br>394.2<br>L, equat                                      | 14.13<br>uation L <sup>-</sup><br>363.87<br>ion L15                                | 15.27<br>13 or L1<br>343.6<br>or L15a)                          | 19.85<br>3a), also<br>338.84<br>, also se                                    | Table 5<br>26.64<br>see Ta<br>350.85<br>ee Table                          | ble 5<br>376.42<br>5                                   | 408.69                                    | 439.03                                    | <br> <br>       | (67)                                 |
| Cookir<br>(69)m=<br>Pumps<br>(70)m=                                        | 459.29<br>ng gains<br>38.67<br>s and fai<br>3                                              | 464.06<br>(calcula<br>38.67<br>ns gains<br>3                                               | ulated ir<br>452.05<br>ted in A<br>38.67<br>(Table s<br>3                                          | Append<br>426.48<br>ppendix<br>38.67<br>5a)                                | 16.74<br>dix L, eq<br>394.2<br>L, equat<br>38.67                             | 14.13<br>uation L<br>363.87<br>ion L15<br>38.67<br>3                               | 15.27<br>13 or L1<br>343.6<br>or L15a)<br>38.67                 | 19.85<br>3a), also<br>338.84<br>, also se<br>38.67                           | Table 5<br>26.64<br>see Ta<br>350.85<br>ee Table<br>38.67                 | ble 5<br>376.42<br>5<br>38.67                          | 408.69<br>38.67                           | 439.03<br>38.67                           |                 | (67)<br>(68)<br>(69)                 |
| Cookir<br>(69)m=<br>Pumps<br>(70)m=                                        | 459.29<br>ng gains<br>38.67<br>s and fai<br>3<br>s e.g. ev                                 | 464.06<br>(calcula<br>38.67<br>ns gains<br>3<br>vaporatic                                  | ulated ir<br>452.05<br>ted in A<br>38.67<br>(Table s<br>3                                          | Appendix<br>426.48<br>ppendix<br>38.67<br>5a)<br>3                         | 16.74<br>dix L, eq<br>394.2<br>L, equat<br>38.67<br>3<br>es) (Tab            | 14.13<br>uation L<br>363.87<br>ion L15<br>38.67<br>3                               | 15.27<br>13 or L1<br>343.6<br>or L15a)<br>38.67                 | 19.85<br>3a), also<br>338.84<br>, also se<br>38.67                           | Table 5<br>26.64<br>see Ta<br>350.85<br>ee Table<br>38.67                 | ble 5<br>376.42<br>5<br>38.67                          | 408.69<br>38.67                           | 439.03<br>38.67                           | <br> <br>       | (67)<br>(68)<br>(69)                 |
| Cookir<br>(69)m=<br>Pumps<br>(70)m=<br>Losses<br>(71)m=                    | 459.29<br>ng gains<br>38.67<br>s and fai<br>3<br>s e.g. ev<br>-125.34                      | 464.06<br>(calcula<br>38.67<br>ns gains<br>3<br>vaporatic                                  | ulated ir<br>452.05<br>ited in A<br>38.67<br>(Table 9<br>3<br>on (nega<br>-125.34                  | Appendix<br>426.48<br>ppendix<br>38.67<br>5a)<br>3<br>tive valu            | 16.74<br>dix L, eq<br>394.2<br>L, equat<br>38.67<br>3<br>es) (Tab            | 14.13<br>uation L<br>363.87<br>ion L15<br>38.67<br>3<br>le 5)                      | 15.27<br>13 or L1<br>343.6<br>or L15a)<br>38.67<br>3            | 19.85<br>3a), also<br>338.84<br>, also se<br>38.67<br>3                      | Table 5<br>26.64<br>see Ta<br>350.85<br>ee Table<br>38.67<br>3            | ble 5<br>376.42<br>5<br>38.67<br>3                     | 408.69<br>38.67<br>3                      | 439.03<br>38.67<br>3                      |                 | (67)<br>(68)<br>(69)<br>(70)         |
| Cookir<br>(69)m=<br>Pumps<br>(70)m=<br>Losses<br>(71)m=                    | 459.29<br>ng gains<br>38.67<br>s and fai<br>3<br>s e.g. ev<br>-125.34                      | 464.06<br>(calcula<br>38.67<br>ns gains<br>3<br>vaporatic<br>-125.34                       | ulated ir<br>452.05<br>ited in A<br>38.67<br>(Table 9<br>3<br>on (nega<br>-125.34                  | Appendix<br>426.48<br>ppendix<br>38.67<br>5a)<br>3<br>tive valu            | 16.74<br>dix L, eq<br>394.2<br>L, equat<br>38.67<br>3<br>es) (Tab            | 14.13<br>uation L<br>363.87<br>ion L15<br>38.67<br>3<br>le 5)                      | 15.27<br>13 or L1<br>343.6<br>or L15a)<br>38.67<br>3            | 19.85<br>3a), also<br>338.84<br>, also se<br>38.67<br>3                      | Table 5<br>26.64<br>see Ta<br>350.85<br>ee Table<br>38.67<br>3            | ble 5<br>376.42<br>5<br>38.67<br>3                     | 408.69<br>38.67<br>3                      | 439.03<br>38.67<br>3                      | ]<br> <br> <br> | (67)<br>(68)<br>(69)<br>(70)         |
| Cookir<br>(69)m=<br>Pumps<br>(70)m=<br>Losses<br>(71)m=<br>Water<br>(72)m= | 459.29<br>ng gains<br>38.67<br>s and fai<br>3<br>s e.g. ev<br>-125.34<br>heating<br>153.79 | 464.06<br>(calcula<br>38.67<br>ns gains<br>3<br>vaporatic<br>-125.34<br>gains (T           | ulated ir<br>452.05<br>ited in A<br>38.67<br>(Table 5<br>an (nega<br>-125.34<br>Table 5)<br>146.07 | Appendix<br>426.48<br>ppendix<br>38.67<br>5a)<br>3<br>tive valu<br>-125.34 | 16.74<br>dix L, eq<br>394.2<br>L, equat<br>38.67<br>3<br>es) (Tab<br>-125.34 | 14.13<br>uation L<br>363.87<br>ion L15<br>38.67<br>3<br>le 5)<br>-125.34<br>127.91 | 15.27<br>13 or L1<br>343.6<br>or L15a)<br>38.67<br>3<br>-125.34 | 19.85<br>3a), also<br>338.84<br>, also se<br>38.67<br>3<br>-125.34<br>129.46 | Table 5<br>26.64<br>see Ta<br>350.85<br>ee Table<br>38.67<br>3<br>-125.34 | ble 5<br>376.42<br>5<br>38.67<br>3<br>-125.34<br>139.3 | 408.69<br>38.67<br>3<br>-125.34           | 439.03<br>38.67<br>3<br>-125.34<br>151.29 |                 | (67)<br>(68)<br>(69)<br>(70)<br>(71) |
| Cookir<br>(69)m=<br>Pumps<br>(70)m=<br>Losses<br>(71)m=<br>Water<br>(72)m= | 459.29<br>ng gains<br>38.67<br>s and fai<br>3<br>s e.g. ev<br>-125.34<br>heating<br>153.79 | 464.06<br>(calcula<br>38.67<br>ns gains<br>3<br>/aporatic<br>-125.34<br>gains (T<br>151.28 | ulated ir<br>452.05<br>ited in A<br>38.67<br>(Table 5<br>an (nega<br>-125.34<br>Table 5)<br>146.07 | Appendix<br>426.48<br>ppendix<br>38.67<br>5a)<br>3<br>tive valu<br>-125.34 | 16.74<br>dix L, eq<br>394.2<br>L, equat<br>38.67<br>3<br>es) (Tab<br>-125.34 | 14.13<br>uation L<br>363.87<br>ion L15<br>38.67<br>3<br>le 5)<br>-125.34<br>127.91 | 15.27<br>13 or L1<br>343.6<br>or L15a)<br>38.67<br>3<br>-125.34 | 19.85<br>3a), also<br>338.84<br>, also se<br>38.67<br>3<br>-125.34<br>129.46 | Table 5<br>26.64<br>see Ta<br>350.85<br>ee Table<br>38.67<br>3<br>-125.34 | ble 5<br>376.42<br>5<br>38.67<br>3<br>-125.34<br>139.3 | 408.69<br>38.67<br>3<br>-125.34<br>147.58 | 439.03<br>38.67<br>3<br>-125.34<br>151.29 |                 | (67)<br>(68)<br>(69)<br>(70)<br>(71) |

Solar gains are calculated using solar flux from Table 6a and associated equations to convert to the applicable orientation.

| Orientation:   | Access Factor<br>Table 6d | - | Area<br>m² |   | Flux<br>Table 6a |   | g_<br>Table 6b |   | FF<br>Table 6c |     | Gains<br>(W) |      |
|----------------|---------------------------|---|------------|---|------------------|---|----------------|---|----------------|-----|--------------|------|
| Northeast 0.9x | 0.77                      | x | 11.67      | x | 11.28            | × | 0.72           | × | 0.8            | ] = | 52.56        | (75) |
| Northeast 0.9x | 0.77                      | x | 11.67      | x | 22.97            | x | 0.72           | x | 0.8            | =   | 106.99       | (75) |
| Northeast 0.9x | 0.77                      | x | 11.67      | x | 41.38            | x | 0.72           | x | 0.8            | ] = | 192.75       | (75) |
| Northeast 0.9x | 0.77                      | x | 11.67      | x | 67.96            | x | 0.72           | x | 0.8            | =   | 316.56       | (75) |
| Northeast 0.9x | 0.77                      | x | 11.67      | x | 91.35            | x | 0.72           | x | 0.8            | =   | 425.52       | (75) |
| Northeast 0.9x | 0.77                      | x | 11.67      | x | 97.38            | x | 0.72           | x | 0.8            | =   | 453.65       | (75) |
| Northeast 0.9x | 0.77                      | x | 11.67      | x | 91.1             | x | 0.72           | x | 0.8            | =   | 424.38       | (75) |
| Northeast 0.9x | 0.77                      | x | 11.67      | x | 72.63            | x | 0.72           | x | 0.8            | =   | 338.32       | (75) |
| Northeast 0.9x | 0.77                      | x | 11.67      | x | 50.42            | x | 0.72           | x | 0.8            | =   | 234.87       | (75) |
| Northeast 0.9x | 0.77                      | x | 11.67      | x | 28.07            | x | 0.72           | x | 0.8            | =   | 130.75       | (75) |
| Northeast 0.9x | 0.77                      | x | 11.67      | x | 14.2             | x | 0.72           | x | 0.8            | =   | 66.13        | (75) |
| Northeast 0.9x | 0.77                      | x | 11.67      | x | 9.21             | x | 0.72           | x | 0.8            | =   | 42.92        | (75) |
| Southeast 0.9x | 0.77                      | x | 35.5       | x | 36.79            | x | 0.72           | x | 0.8            | =   | 521.39       | (77) |
| Southeast 0.9x | 0.77                      | x | 35.5       | x | 62.67            | x | 0.72           | x | 0.8            | =   | 888.11       | (77) |
| Southeast 0.9x | 0.77                      | x | 35.5       | x | 85.75            | x | 0.72           | x | 0.8            | ] = | 1215.15      | (77) |
| Southeast 0.9x | 0.77                      | x | 35.5       | x | 106.25           | x | 0.72           | x | 0.8            | =   | 1505.63      | (77) |
| Southeast 0.9x | 0.77                      | x | 35.5       | x | 119.01           | x | 0.72           | x | 0.8            | =   | 1686.44      | (77) |
| Southeast 0.9x | 0.77                      | x | 35.5       | x | 118.15           | x | 0.72           | x | 0.8            | =   | 1674.24      | (77) |
| Southeast 0.9x | 0.77                      | x | 35.5       | x | 113.91           | x | 0.72           | x | 0.8            | =   | 1614.15      | (77) |
| Southeast 0.9x | 0.77                      | x | 35.5       | x | 104.39           | x | 0.72           | x | 0.8            | =   | 1479.26      | (77) |
| Southeast 0.9x | 0.77                      | x | 35.5       | x | 92.85            | x | 0.72           | x | 0.8            | =   | 1315.75      | (77) |
| Southeast 0.9x | 0.77                      | x | 35.5       | x | 69.27            | x | 0.72           | x | 0.8            | =   | 981.55       | (77) |
| Southeast 0.9x | 0.77                      | x | 35.5       | x | 44.07            | x | 0.72           | x | 0.8            | =   | 624.5        | (77) |
| Southeast 0.9x | 0.77                      | x | 35.5       | x | 31.49            | x | 0.72           | x | 0.8            | =   | 446.2        | (77) |
| Southwest0.9x  | 0.77                      | x | 15.45      | x | 36.79            | ] | 0.72           | x | 0.8            | ] = | 226.91       | (79) |
| Southwest0.9x  | 0.77                      | x | 15.45      | x | 62.67            | ] | 0.72           | x | 0.8            | =   | 386.52       | (79) |
| Southwest0.9x  | 0.77                      | x | 15.45      | x | 85.75            | ] | 0.72           | x | 0.8            | ] = | 528.85       | (79) |
| Southwest0.9x  | 0.77                      | x | 15.45      | x | 106.25           | ] | 0.72           | x | 0.8            | =   | 655.27       | (79) |
| Southwest0.9x  | 0.77                      | x | 15.45      | x | 119.01           | ] | 0.72           | x | 0.8            | =   | 733.96       | (79) |
| Southwest0.9x  | 0.77                      | x | 15.45      | x | 118.15           | ] | 0.72           | x | 0.8            | =   | 728.65       | (79) |
| Southwest0.9x  | 0.77                      | x | 15.45      | x | 113.91           | ] | 0.72           | x | 0.8            | =   | 702.49       | (79) |
| Southwest0.9x  | 0.77                      | x | 15.45      | x | 104.39           | ] | 0.72           | x | 0.8            | =   | 643.79       | (79) |
| Southwest0.9x  | 0.77                      | x | 15.45      | x | 92.85            | ] | 0.72           | x | 0.8            | =   | 572.63       | (79) |
| Southwest0.9x  | 0.77                      | x | 15.45      | x | 69.27            | ] | 0.72           | x | 0.8            | =   | 427.18       | (79) |
| Southwest0.9x  | 0.77                      | x | 15.45      | x | 44.07            | ] | 0.72           | x | 0.8            | ] = | 271.79       | (79) |
| Southwest0.9x  | 0.77                      | x | 15.45      | × | 31.49            | ] | 0.72           | × | 0.8            | ] = | 194.19       | (79) |
| Northwest 0.9x | 0.77                      | x | 22.67      | × | 11.28            | × | 0.72           | x | 0.8            | ] = | 102.1        | (81) |
| Northwest 0.9x | 0.77                      | x | 22.67      | × | 22.97            | × | 0.72           | × | 0.8            | ] = | 207.83       | (81) |
| Northwest 0.9x | 0.77                      | x | 22.67      | x | 41.38            | x | 0.72           | x | 0.8            | =   | 374.44       | (81) |

|                                                                                                                                                                            |            |               |                |           | _       |              | -          |              |            |              |           |        | _    |  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|---------------|----------------|-----------|---------|--------------|------------|--------------|------------|--------------|-----------|--------|------|--|
| Northwest 0.9x                                                                                                                                                             | 0.77       | ×             | 22.            | 67        | ×       | 67.96        | ×          | 0.72         | ×          | 0.8          | =         | 614.94 | (81) |  |
| Northwest 0.9x                                                                                                                                                             | 0.77       | ×             | 22.            | 67        | ×       | 91.35        | ×          | 0.72         | ×          | 0.8          | =         | 826.6  | (81) |  |
| Northwest 0.9x                                                                                                                                                             | 0.77       | x             | 22.            | 67        | x       | 97.38        | ×          | 0.72         | ×          | 0.8          | =         | 881.25 | (81) |  |
| Northwest 0.9x                                                                                                                                                             | 0.77       | ×             | 22.            | 67        | x       | 91.1         | ×          | 0.72         | ×          | 0.8          | =         | 824.39 | (81) |  |
| Northwest 0.9x                                                                                                                                                             | 0.77       | X             | 22.            | 67        | x [     | 72.63        | x          | 0.72         | x          | 0.8          | =         | 657.21 | (81) |  |
| Northwest 0.9x                                                                                                                                                             | 0.77       | x             | 22.            | 67        | x       | 50.42        | ×          | 0.72         | x          | 0.8          | =         | 456.26 | (81) |  |
| Northwest 0.9x                                                                                                                                                             | 0.77       | x             | 22.            | 67        | x       | 28.07        | ×          | 0.72         | x          | 0.8          | =         | 253.98 | (81) |  |
| Northwest 0.9x                                                                                                                                                             | 0.77       | x             | 22.            | 67        | x       | 14.2         | x          | 0.72         | x          | 0.8          | =         | 128.47 | (81) |  |
| Northwest 0.9x                                                                                                                                                             | 0.77       | X             | 22.            | 67        | x       | 9.21         | x          | 0.72         | x          | 0.8          | =         | 83.38  | (81) |  |
|                                                                                                                                                                            |            |               |                |           |         |              | _          |              |            |              |           |        |      |  |
| Solar gains in                                                                                                                                                             | watts, ca  | alculated     | for eac        | h month   |         |              | (83)m      | n = Sum(74)m | (82)m      |              |           |        |      |  |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                     |            |               |                |           |         |              |            |              |            |              |           |        |      |  |
| Total gains – internal and solar (84)m = (73)m + (83)m , watts<br>(84)m= 1629.99 2314.16 3011.9 3753.27 4290.85 4316.7 4119.69 3679.73 3161.98 2416.01 1759.64 1472.1 (84) |            |               |                |           |         |              |            |              |            |              |           |        |      |  |
|                                                                                                                                                                            |            |               |                |           |         |              |            |              |            |              |           |        |      |  |
| 7. Mean internal temperature (heating season)                                                                                                                              |            |               |                |           |         |              |            |              |            |              |           |        |      |  |
| 7. Mean internal temperature (heating season)         Temperature during heating periods in the living area from Table 9, Th1 (°C)         21         (85)                 |            |               |                |           |         |              |            |              |            |              |           |        |      |  |
| Temperature during heating periods in the living area from Table 9, Th1 (°C) 21 (85)<br>Utilisation factor for gains for living area, h1,m (see Table 9a)                  |            |               |                |           |         |              |            |              |            |              |           |        |      |  |
| Jan                                                                                                                                                                        | Feb        | Mar           | Apr            | May       | r`      | in Jul       | A          | ug Sep       | Oct        | Nov          | Dec       |        |      |  |
| (86)m= 1                                                                                                                                                                   | 0.99       | 0.97          | 0.88           | 0.7       | 0.      | _            | 0.4        |              | 0.95       | 1            | 1         |        | (86) |  |
| Moon intern                                                                                                                                                                |            | l<br>oturo in | l<br>living or | I         |         |              | <br>7 in T |              |            | 1            |           |        |      |  |
| Mean interna<br>(87)m= 19.65                                                                                                                                               | · · ·      | 20.3          | 20.7           | 20.92     | 20.     |              | 2          |              | 20.58      | 20.02        | 19.61     |        | (87) |  |
|                                                                                                                                                                            |            |               |                |           |         |              |            |              | 20.00      | 20.02        | 13.01     |        | (01) |  |
| Temperature                                                                                                                                                                | 1          | i <u> </u>    | i              | î         | 1       | <u> </u>     | -          |              |            |              | 1         | I      | (22) |  |
| (88)m= 19.93                                                                                                                                                               | 19.93      | 19.93         | 19.95          | 19.95     | 19.     | 96 19.96     | 19.        | 97 19.96     | 19.95      | 19.94        | 19.94     |        | (88) |  |
| Utilisation fa                                                                                                                                                             | ctor for g | ains for      | rest of d      | welling,  | h2,m    | (see Table   | e 9a)      |              | -          |              | -         |        |      |  |
| (89)m= 1                                                                                                                                                                   | 0.99       | 0.96          | 0.85           | 0.64      | 0.4     | 3 0.28       | 0.3        | 33 0.62      | 0.93       | 0.99         | 1         |        | (89) |  |
| Mean interna                                                                                                                                                               | al temper  | ature in      | the rest       | of dwell  | ina T   | 2 (follow st | eps 3      | to 7 in Tab  | ole 9c)    |              |           |        |      |  |
| (90)m= 18.12                                                                                                                                                               |            | 19.06         | 19.62          | 19.88     | 19.     | <u> </u>     | 19.        |              | 19.48      | 18.68        | 18.07     |        | (90) |  |
|                                                                                                                                                                            | 1          |               | 1              |           |         | I            | 1          | I            | fLA = Livi | ng area ÷ (4 | 4) =      | 0.11   | (91) |  |
|                                                                                                                                                                            |            | atura /fa     |                | مام ماریم | 11:m m) | 41 A T4      | . /4       | 4L A \ TO    | ,<br>,     |              |           |        |      |  |
| Mean interna<br>(92)m= 18.28                                                                                                                                               | 18.67      | 19.2          | 19.74          | 19.99     | 20.     | - T          | + (1       | <u>_</u>     | 19.6       | 18.82        | 18.23     |        | (92) |  |
| . ,                                                                                                                                                                        |            |               |                |           |         |              |            |              |            | 10.02        | 10.23     |        | (32) |  |
| Apply adjust                                                                                                                                                               | 18.67      | 19.2          | 19.74          | 19.99     | 20.     |              | 20.        |              | 19.6       | 18.82        | 18.23     | l      | (93) |  |
| 8. Space he                                                                                                                                                                |            |               |                | 19.99     | 20.     | 20.07        | 20.        | 20.03        | 19.0       | 10.02        | 10.23     |        | (00) |  |
| Set Ti to the                                                                                                                                                              |            |               |                | ro obtair | od a    | t stop 11 of | f Tabl     | o Ob so th   | at Ti m-   | (76)m an     | d re-calc | sulato |      |  |
| the utilisation                                                                                                                                                            |            |               |                |           | ieu a   |              |            | e 90, 30 in  | at 11,111– | (70)11 an    | u ie-caic | Julate |      |  |
| Jan                                                                                                                                                                        | Feb        | Mar           | Apr            | May       | Ju      | ın Jul       | A          | ug Sep       | Oct        | Nov          | Dec       |        |      |  |
| Utilisation fa                                                                                                                                                             | ctor for g | u<br>ains, hm | · · ·          |           | !       |              |            | •            |            |              |           |        |      |  |
| (94)m= 1                                                                                                                                                                   | 0.99       | 0.95          | 0.84           | 0.64      | 0.4     | 3 0.29       | 0.3        | .62          | 0.92       | 0.99         | 1         |        | (94) |  |
| Useful gains                                                                                                                                                               | , hmGm     | , W = (94     | 4)m x (8-      | 4)m       |         | I            |            |              | <u> </u>   | <b>I</b>     |           |        |      |  |
| (95)m= 1625.46                                                                                                                                                             | 6 2283.6   | 2862.79       | 3148.07        | 2757.67   | 1869    | 9.16 1196.34 | 1259       | 9.72 1967.95 | 2227.9     | 1744.87      | 1469.55   |        | (95) |  |
| Monthly ave                                                                                                                                                                | rage exte  | ernal terr    | iperature      | e from Ta | able    | 8            | •          | •            |            |              |           | •      |      |  |
| (96)m= 4.3                                                                                                                                                                 | 4.9        | 6.5           | 8.9            | 11.7      | 14      | .6 16.6      | 16         | .4 14.1      | 10.6       | 7.1          | 4.2       |        | (96) |  |
| Heat loss rat                                                                                                                                                              | te for mea | an interr     | al temp        | erature,  | Lm ,    | W =[(39)m    | x [(9      | 3)m– (96)m   | ]          |              |           |        |      |  |
| (97)m= 5027.19                                                                                                                                                             | 9 4937.77  | 4536.92       | 3811.79        | 2907.22   | 1885    | 5.54 1198.02 | 1263       | 3.45 2058.04 | 3154.35    | 4135.27      | 4981.99   |        | (97) |  |
|                                                                                                                                                                            |            | -             |                |           |         | -            | -          |              |            |              |           | •      |      |  |

| Spac     | e heatin           | g require      | ement fo            | r each n           | nonth, k       | Nh/mon   | th = 0.02 | 24 x [(97)                  | )m – (95   | )m] x (4   | 1)m                     |            |          |                  |
|----------|--------------------|----------------|---------------------|--------------------|----------------|----------|-----------|-----------------------------|------------|------------|-------------------------|------------|----------|------------------|
| (98)m=   | 2530.88            | 1783.6         | 1245.56             | 477.88             | 111.27         | 0        | 0         | 0                           | 0          | 689.28     | 1721.09                 | 2613.26    |          | _                |
|          |                    |                |                     |                    |                |          |           | Tota                        | l per year | (kWh/yeai  | r) = Sum(9              | 8)15,912 = | 11172.81 | (98)             |
| Spac     | e heatin           | g require      | ement in            | kWh/m²             | ²/year         |          |           |                             |            |            |                         | [          | 37.09    | (99)             |
| 9a. En   | ergy rec           | luiremer       | nts – Ind           | ividual h          | eating s       | ystems i | ncluding  | micro-C                     | CHP)       |            |                         |            |          |                  |
| •        | e heatir           | -              |                     |                    | la ser la      |          |           |                             |            |            |                         | г          |          |                  |
|          |                    |                |                     | econdar            |                | mentary  |           |                             | (201) -    |            |                         |            | 0.1      | (201)            |
|          |                    |                |                     | nain syst          | . ,            |          |           | (202) = 1 -<br>(204) = (20) |            | (203)1 -   |                         | ľ          | 0.9      | (202)            |
|          |                    |                | -                   | main sys           |                |          |           | (204) - (2                  | 02) ~ [1   | (200)] –   |                         | l          | 0.9      | (204)            |
|          | -                  |                |                     | ing syste          |                | a cyctor | 0/        |                             |            |            |                         | l          | 90.9     | (206)            |
| EIIICI   |                    |                | · · ·               | ementar            | -<br>          |          | i         |                             |            |            |                         |            | 65       | (208)            |
| Snac     | Jan<br>o boatin    | Feb            | Mar                 | Apr<br>alculate    | May<br>d above | Jun      | Jul       | Aug                         | Sep        | Oct        | Nov                     | Dec        | kWh/ye   | ar               |
| Spac     | 2530.88            |                | 1245.56             | 477.88             | 111.27         | 0        | 0         | 0                           | 0          | 689.28     | 1721.09                 | 2613.26    |          |                  |
| (211)n   | L                  | )m x (20       | L<br> 4)] } x 1     | 00 ÷ (20           | L<br>)6)       |          |           |                             |            |            |                         |            |          | (211)            |
| (211)    |                    | 1765.94        |                     | 473.15             | 110.16         | 0        | 0         | 0                           | 0          | 682.46     | 1704.05                 | 2587.38    |          | ()               |
|          |                    |                |                     |                    |                |          |           | Tota                        | l (kWh/yea | ar) =Sum(2 | 211) <sub>15,1012</sub> | =          | 11062.19 | (211)            |
| Spac     | e heatin           | g fuel (s      | econdar             | y), kWh/           | month          |          |           |                             |            |            |                         | L          |          |                  |
| = {[(98  | )m x (20           | )1)]}x1        | 00 ÷ (20            | 8)                 |                |          |           |                             |            |            |                         |            |          |                  |
| (215)m=  | 389.37             | 274.4          | 191.62              | 73.52              | 17.12          | 0        | 0         | 0                           | 0          | 106.04     | 264.78                  | 402.04     |          | _                |
|          |                    |                |                     |                    |                |          |           | Tota                        | l (kWh/yea | ar) =Sum(2 | 215) <sub>15,1012</sub> | =          | 1718.89  | (215)            |
|          | heating            |                | tor (aala           | ulated a           | hava)          |          |           |                             |            |            |                         |            |          |                  |
| Output   | 246.57             | 217.64         | 229.3               | ulated a<br>206.56 | 203.16         | 182.58   | 176.35    | 192.13                      | 191.36     | 214.15     | 225.16                  | 240.98     |          |                  |
| Efficie  | ncy of w           | ater hea       | iter                |                    |                |          |           |                             |            |            |                         |            | 80.8     | (216)            |
| (217)m=  | 89.8               | 89.56          | 89.01               | 87.36              | 83.88          | 80.8     | 80.8      | 80.8                        | 80.8       | 88.07      | 89.48                   | 89.86      |          | (217)            |
|          | or water           |                |                     |                    |                |          |           |                             |            |            |                         |            |          |                  |
|          | n = (64)<br>274.57 | m x 100<br>243 | ) ÷ (217)<br>257.61 | m<br>236.46        | 242.21         | 225.97   | 218.26    | 237.79                      | 236.83     | 243.14     | 251.64                  | 268.19     |          |                  |
| (213)11- | 214.51             | 243            | 257.01              | 230.40             | 242.21         | 225.51   | 210.20    |                             | l = Sum(2  |            | 231.04                  | 200.13     | 2935.66  | (219)            |
| Δnnua    | al totals          |                |                     |                    |                |          |           |                             | ,          |            | Wh/year                 | . L        | kWh/year |                  |
|          |                    | fuel use       | ed, main            | system             | 1              |          |           |                             |            | K          | , year                  | [          | 11062.19 | 7                |
| Space    | heating            | fuel use       | ed, seco            | ndary              |                |          |           |                             |            |            |                         | [          | 1718.89  | i                |
| Water    | heating            | fuel use       | d                   | -                  |                |          |           |                             |            |            |                         | L<br>[     | 2935.66  | 1                |
|          | -                  |                |                     | electric           | keep-ho        | t        |           |                             |            |            |                         | L          |          |                  |
|          |                    | •              |                     |                    | •              |          | nout fror | n outside                   | ż          |            |                         | 1232.06    |          | (230a)           |
|          | al heatin          |                |                     |                    |                |          | ip at nor |                             | -          |            |                         | 30         |          | (230c)           |
|          | with a f           | ••••           |                     |                    |                |          |           |                             |            |            |                         | 45         |          | (230c)<br>(230e) |
|          |                    |                |                     | kWh/yea            | r              |          |           | sum                         | of (230a)  | (230g) =   |                         | L 40       | 1207.06  | (2306)           |
|          | -                  |                | abuve, I            | хүүн/уеа           | I              |          |           | Sull                        | Si (2000). | (2009) –   |                         | L<br>r     | 1307.06  | 4                |
| ⊏iectri  | city for li        | gnting         |                     |                    |                |          |           |                             |            |            |                         | l          | 723.12   | (232)            |

| Total delivered energy for all uses (211)(221) + (2 | 231) + (232)(237b) =            |                               | 17746.93 (338)                  |
|-----------------------------------------------------|---------------------------------|-------------------------------|---------------------------------|
| 12a. CO2 emissions – Individual heating systems     | including micro-CHP             |                               |                                 |
|                                                     | <b>Energy</b><br>kWh/year       | Emission factor<br>kg CO2/kWh | <b>Emissions</b><br>kg CO2/year |
| Space heating (main system 1)                       | (211) x                         | 0.216 =                       | 2389.43 (261)                   |
| Space heating (secondary)                           | (215) x                         | 0.019 =                       | 32.66 (263)                     |
| Water heating                                       | (219) x                         | 0.216 =                       | 634.1 (264)                     |
| Space and water heating                             | (261) + (262) + (263) + (264) = | :                             | 3056.19 (265)                   |
| Electricity for pumps, fans and electric keep-hot   | (231) x                         | 0.519 =                       | 678.36 (267)                    |
| Electricity for lighting                            | (232) x                         | 0.519 =                       | 375.3 (268)                     |
| Total CO2, kg/year                                  | su                              | m of (265)(271) =             | 4109.86 (272)                   |
| Dwelling CO2 Emission Rate                          | (2                              | 72) ÷ (4) =                   | 13.64 (273)                     |
| El rating (section 14)                              |                                 |                               | 84 (274)                        |

|                                            |                  |                         |                    | User I       | Details:         |              |              |          |           |                         |              |
|--------------------------------------------|------------------|-------------------------|--------------------|--------------|------------------|--------------|--------------|----------|-----------|-------------------------|--------------|
| Assessor Name:                             | Daniel Wa        | att                     |                    |              | Strom            | a Num        | ber:         |          | STRO      | 026464                  |              |
| Software Name:                             | Stroma FS        | SAP 201                 | 2                  |              | Softwa           | are Vei      | rsion:       |          | Versic    | on: 1.0.5.59            |              |
|                                            |                  |                         | P                  | roperty      | Address          | : The Sh     | ingles       |          |           |                         |              |
| Address :                                  | The Shingl       | es, Chelv               | vey Batcl          | n, Back      | well, BRI        | STOL, E      | 3S48 3B      | Z        |           |                         |              |
| 1. Overall dwelling dime                   | ensions:         |                         |                    |              |                  |              |              |          |           |                         |              |
|                                            |                  |                         |                    | Are          | ea(m²)           |              | Av. Hei      | ight(m)  | -         | Volume(m <sup>3</sup> ) | _            |
| Ground floor                               |                  |                         |                    | 2            | 211.32           | (1a) x       | 2.           | .75      | (2a) =    | 581.13                  | (3a)         |
| First floor                                |                  |                         |                    |              | 89.95            | (1b) x       | 2.           | .55      | (2b) =    | 229.37                  | (3b)         |
| Total floor area TFA = (1                  | a)+(1b)+(1c)+    | -(1d)+(1e               | e)+(1n             | )            | 301.27           | (4)          |              |          |           |                         |              |
| Dwelling volume                            |                  |                         |                    |              |                  | (3a)+(3b     | )+(3c)+(3d   | )+(3e)+  | .(3n) =   | 810.5                   | (5)          |
| 2. Ventilation rate:                       |                  |                         |                    |              |                  |              |              |          |           |                         |              |
|                                            | main<br>heating  |                         | econdar<br>neating | у            | other            |              | total        |          |           | m <sup>3</sup> per hou  | •            |
| Number of chimneys                         | 0                | +                       | 1                  | +            | 0                | ] = [        | 0            | X 4      | 40 =      | 0                       | (6a)         |
| Number of open flues                       | 0                | _ + [                   | 0                  | <u> </u> + [ | 0                |              | 0            | x 2      | 20 =      | 0                       | (6b)         |
| Number of intermittent fa                  | ans              |                         |                    |              |                  | Ī            | 4            | x ′      | 10 =      | 40                      | (7a)         |
| Number of passive vents                    | 6                |                         |                    |              |                  | Γ            | 0            | x ^      | 10 =      | 0                       | (7b)         |
| Number of flueless gas f                   | ires             |                         |                    |              |                  | Г            | 0            | x 4      | 40 =      | 0                       | (7c)         |
|                                            |                  |                         |                    |              |                  | L            |              |          |           |                         |              |
|                                            |                  |                         |                    |              |                  |              |              |          | Air ch    | anges per ho            | ur           |
| Infiltration due to chimne                 | ys, flues and    | fans = ( <mark>6</mark> | a)+(6b)+(7         | a)+(7b)+     | (7c) =           | Г            | 40           | ·        | ÷ (5) =   | 0.05                    | (8)          |
| If a pressurisation test has l             |                  |                         | ed, proceed        | d to (17),   | otherwise        | continue fr  | rom (9) to ( | (16)     |           |                         | _            |
| Number of storeys in t                     | he dwelling (n   | s)                      |                    |              |                  |              |              |          |           | 0                       | (9)          |
| Additional infiltration                    |                  |                         |                    | 0.05 (       |                  |              |              | [(9)-    | -1]x0.1 = | 0                       | (10)         |
| Structural infiltration: C                 |                  |                         |                    |              |                  |              | UCTION       |          |           | 0                       | (11)         |
| deducting areas of openi                   |                  |                         | sponding to        | uie grea     | iter wan are     | a (allel     |              |          |           |                         |              |
| If suspended wooden                        | floor, enter 0.2 | 2 (unseal               | led) or 0.         | 1 (seal      | ed), else        | enter 0      |              |          |           | 0                       | (12)         |
| If no draught lobby, er                    | ter 0.05, else   | enter 0                 |                    |              |                  |              |              |          |           | 0                       | (13)         |
| Percentage of window                       | s and doors d    | raught st               | tripped            |              |                  |              |              |          |           | 0                       | (14)         |
| Window infiltration                        |                  |                         |                    |              | 0.25 - [0.2      | 2 x (14) ÷ 1 | = [00        |          |           | 0                       | (15)         |
| Infiltration rate                          |                  |                         |                    |              | (8) + (10)       | + (11) + (1  | 12) + (13) + | + (15) = |           | 0                       | (16)         |
| Air permeability value,                    |                  |                         |                    | •            |                  | •            | etre of e    | nvelope  | area      | 5                       | (17)         |
| If based on air permeabi                   |                  |                         |                    |              |                  |              |              |          |           | 0.3                     | (18)         |
| Air permeability value applie              |                  | ion test has            | s been don         | e or a de    | egree air pe     | rmeability   | is being us  | sed      |           |                         |              |
| Number of sides sheltere<br>Shelter factor | ea               |                         |                    |              | (20) = 1 -       | [0.075 x (1  | 9)] =        |          |           | 2                       | (19)<br>(20) |
| Infiltration rate incorpora                | ting shelter fa  | ctor                    |                    |              | (21) = (18       | · ·          | - / 1        |          |           | 0.85                    |              |
| Infiltration rate modified                 | -                |                         | 4                  |              | ( ) (.0          | ,/           |              |          |           | 0.25                    | (21)         |
| Jan Feb                                    | Mar Apr          | May                     | Jun                | Jul          | Aug              | Sep          | Oct          | Nov      | Dec       |                         |              |
| Monthly average wind sp                    |                  | 1 -                     |                    |              | 19               |              |              |          |           | l                       |              |
| (22)m= 5.1 5                               | 4.9 4.4          | 4.3                     | 3.8                | 3.8          | 3.7              | 4            | 4.3          | 4.5      | 4.7       | ]                       |              |
|                                            |                  | 1 7.0                   | 0.0                | 0.0          | J <sup>3.7</sup> |              |              | 4.0      | 7.1       | l                       |              |

| Wind F                                                                                                                                                          | actor (2                                                                                                                                              | 2a)m =                                                                                                                                        | (22)m ÷                                                                                                                                                                                                                                                                                                                                                              | - 4                                                                 |                                                      |                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                     |                                                         |                    |             |             |                                                                                                                                                                                    |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------|------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------|--------------------|-------------|-------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| (22a)m=                                                                                                                                                         | 1.27                                                                                                                                                  | 1.25                                                                                                                                          | 1.23                                                                                                                                                                                                                                                                                                                                                                 | 1.1                                                                 | 1.08                                                 | 0.95                                                                                                                 | 0.95                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.92                                                                                                                          | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1.08                                                                                                                | 1.12                                                    | 1.18               |             |             |                                                                                                                                                                                    |
| Adjuste                                                                                                                                                         | ed infiltra                                                                                                                                           | ation rat                                                                                                                                     | e (allow                                                                                                                                                                                                                                                                                                                                                             | ing for sl                                                          | nelter an                                            | id wind s                                                                                                            | peed) =                                                                                                                                                                                                                                                                                                                                                                                                                                           | (21a) x                                                                                                                       | (22a)m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                     |                                                         |                    |             |             |                                                                                                                                                                                    |
| <b>.</b>                                                                                                                                                        | 0.32                                                                                                                                                  | 0.32                                                                                                                                          | 0.31                                                                                                                                                                                                                                                                                                                                                                 | 0.28                                                                | 0.27                                                 | 0.24                                                                                                                 | 0.24                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.24                                                                                                                          | 0.25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.27                                                                                                                | 0.29                                                    | 0.3                |             |             |                                                                                                                                                                                    |
|                                                                                                                                                                 | ate effec<br>echanica                                                                                                                                 |                                                                                                                                               | -                                                                                                                                                                                                                                                                                                                                                                    | rate for t                                                          | he appli                                             | cable ca                                                                                                             | se                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                     |                                                         |                    |             |             |                                                                                                                                                                                    |
|                                                                                                                                                                 |                                                                                                                                                       |                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                      | endix N, (2                                                         | 3h) - (23g                                           |                                                                                                                      | auation (N                                                                                                                                                                                                                                                                                                                                                                                                                                        | N5)) other                                                                                                                    | nwieg (23h                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ) - (23a)                                                                                                           |                                                         |                    | (           |             | (23a)                                                                                                                                                                              |
|                                                                                                                                                                 |                                                                                                                                                       |                                                                                                                                               | • • • •                                                                                                                                                                                                                                                                                                                                                              | ciency in %                                                         | , ,                                                  | , ,                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ) – (200)                                                                                                           |                                                         |                    | (           |             | (23b)                                                                                                                                                                              |
|                                                                                                                                                                 |                                                                                                                                                       |                                                                                                                                               | •                                                                                                                                                                                                                                                                                                                                                                    |                                                                     | •                                                    |                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                               | ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ⊃h.\                                                                                                                | 00k) [                                                  | 4 (00 a)           | (           | )           | (23c)                                                                                                                                                                              |
| ,                                                                                                                                                               | i                                                                                                                                                     |                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                      |                                                                     |                                                      |                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                   | HR) (248                                                                                                                      | $\frac{a}{b} = \frac{2}{c}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 20)m + (<br>0                                                                                                       | $230) \times [$                                         | 1 – (23c)<br>0     | ÷ 100]<br>] |             | (24a)                                                                                                                                                                              |
| (24a)m=                                                                                                                                                         | _                                                                                                                                                     |                                                                                                                                               | -                                                                                                                                                                                                                                                                                                                                                                    |                                                                     |                                                      |                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                               | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                     | -                                                       | 0                  |             |             | (244)                                                                                                                                                                              |
|                                                                                                                                                                 |                                                                                                                                                       |                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                      | entilation                                                          |                                                      | 1                                                                                                                    | <u> </u>                                                                                                                                                                                                                                                                                                                                                                                                                                          | r Ó                                                                                                                           | ŕ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | r í                                                                                                                 | <u>,                                     </u>           |                    | 1           |             | (24b)                                                                                                                                                                              |
| (24b)m=                                                                                                                                                         |                                                                                                                                                       | 0                                                                                                                                             | 0                                                                                                                                                                                                                                                                                                                                                                    | 0                                                                   | 0                                                    | 0                                                                                                                    | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0                                                                                                                             | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0                                                                                                                   | 0                                                       | 0                  |             |             | (24b)                                                                                                                                                                              |
| ,                                                                                                                                                               |                                                                                                                                                       |                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                      | ntilation of the                | •                                                    | •                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | E (22h                                                                                                              |                                                         |                    |             |             |                                                                                                                                                                                    |
| ا<br>=(24c)m                                                                                                                                                    | r`´                                                                                                                                                   | 0 0.5 ×                                                                                                                                       | 0                                                                                                                                                                                                                                                                                                                                                                    |                                                                     | (231) = (231)                                        |                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $\frac{c}{c} = (22t)$                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0                                                                                                                   | 0                                                       | 0                  | 1           |             | (24c)                                                                                                                                                                              |
|                                                                                                                                                                 | ÷                                                                                                                                                     | -                                                                                                                                             | -                                                                                                                                                                                                                                                                                                                                                                    | Ţ                                                                   | -                                                    |                                                                                                                      | -                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                               | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0                                                                                                                   | 0                                                       | 0                  |             |             | (240)                                                                                                                                                                              |
| ,                                                                                                                                                               |                                                                                                                                                       |                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                      | ole hous<br>)m = (221                                               |                                                      |                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.51                                                                                                                |                                                         |                    |             |             |                                                                                                                                                                                    |
| (24d)m=                                                                                                                                                         |                                                                                                                                                       | 0.55                                                                                                                                          | 0.55                                                                                                                                                                                                                                                                                                                                                                 | 0.54                                                                | 0.54                                                 | 0.53                                                                                                                 | 0.53                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.53                                                                                                                          | 0.53                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.54                                                                                                                | 0.54                                                    | 0.54               |             |             | (24d)                                                                                                                                                                              |
|                                                                                                                                                                 |                                                                                                                                                       | change                                                                                                                                        | rate - er                                                                                                                                                                                                                                                                                                                                                            | nter (24a                                                           | ) or (24t                                            | ) or (24                                                                                                             | L<br>c) or (24                                                                                                                                                                                                                                                                                                                                                                                                                                    | d) in boy                                                                                                                     | (25)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                     |                                                         |                    | I           |             |                                                                                                                                                                                    |
| (25)m=                                                                                                                                                          | 0.55                                                                                                                                                  | 0.55                                                                                                                                          | 0.55                                                                                                                                                                                                                                                                                                                                                                 | 0.54                                                                | 0.54                                                 | 0.53                                                                                                                 | 0.53                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.53                                                                                                                          | 0.53                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.54                                                                                                                | 0.54                                                    | 0.54               | 1           |             | (25)                                                                                                                                                                               |
|                                                                                                                                                                 |                                                                                                                                                       |                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                      |                                                                     |                                                      | 1                                                                                                                    | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                 | I                                                                                                                             | I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                     |                                                         |                    | 1           |             |                                                                                                                                                                                    |
|                                                                                                                                                                 |                                                                                                                                                       |                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                      |                                                                     |                                                      |                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                     |                                                         |                    |             |             |                                                                                                                                                                                    |
|                                                                                                                                                                 |                                                                                                                                                       | s and he                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                      |                                                                     |                                                      |                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                     |                                                         |                    | _           | A \/        |                                                                                                                                                                                    |
| 3. He<br>ELEN                                                                                                                                                   |                                                                                                                                                       | Gros                                                                                                                                          | s                                                                                                                                                                                                                                                                                                                                                                    | Openin<br>Openin<br>rr                                              | gs                                                   | Net Ar<br>A ,r                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                   | U-valı<br>W/m2                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | A X U<br>(W/I                                                                                                       |                                                         | k-value<br>kJ/m²·I |             | A X<br>kJ/k |                                                                                                                                                                                    |
|                                                                                                                                                                 |                                                                                                                                                       |                                                                                                                                               | s                                                                                                                                                                                                                                                                                                                                                                    | Openin                                                              | gs                                                   | Net Ar<br>A ,r<br>2.64                                                                                               | m²                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | A X U<br>(W/                                                                                                        |                                                         |                    |             |             |                                                                                                                                                                                    |
| ELEN<br>Doors                                                                                                                                                   |                                                                                                                                                       | Gros<br>area                                                                                                                                  | s                                                                                                                                                                                                                                                                                                                                                                    | Openin                                                              | gs                                                   | A ,r                                                                                                                 | m <sup>2</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                    | W/m2                                                                                                                          | :K                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | (W/                                                                                                                 |                                                         |                    |             |             | K                                                                                                                                                                                  |
| ELEN<br>Doors<br>Windo                                                                                                                                          | IENT                                                                                                                                                  | Gros<br>area                                                                                                                                  | s                                                                                                                                                                                                                                                                                                                                                                    | Openin                                                              | gs                                                   | A ,r<br>2.64                                                                                                         | m <sup>2</sup> x<br>2 x <sup>1</sup>                                                                                                                                                                                                                                                                                                                                                                                                              | W/m2                                                                                                                          | K<br>0.04] =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | (W/<br>2.64                                                                                                         |                                                         |                    |             |             | (26)                                                                                                                                                                               |
| ELEN<br>Doors<br>Windo<br>Windo                                                                                                                                 | <b>IENT</b><br>ws Type                                                                                                                                | Gros<br>area                                                                                                                                  | s                                                                                                                                                                                                                                                                                                                                                                    | Openin                                                              | gs                                                   | A ,r<br>2.64<br>19.32                                                                                                | m <sup>2</sup> x<br>2 x <sup>1</sup> / <sub>5</sub> x <sup>1</sup> / <sub>7</sub>                                                                                                                                                                                                                                                                                                                                                                 | W/m2<br>1<br>/[1/( 1.4 )+                                                                                                     | K<br>0.04] =<br>0.04] =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | (W/<br>2.64<br>25.61                                                                                                |                                                         |                    |             |             | (26)<br>(27)                                                                                                                                                                       |
| ELEN<br>Doors<br>Windov<br>Windov<br>Windov                                                                                                                     | <b>IENT</b><br>ws Type<br>ws Type                                                                                                                     | Gros<br>area<br>1<br>2<br>3                                                                                                                   | s                                                                                                                                                                                                                                                                                                                                                                    | Openin                                                              | gs                                                   | A ,r<br>2.64<br>19.32<br>30.25                                                                                       | n <sup>2</sup> x<br>2 x <sup>1</sup><br>5 x <sup>1</sup><br>x <sup>1</sup>                                                                                                                                                                                                                                                                                                                                                                        | W/m2<br>1<br>/[1/( 1.4 )+<br>/[1/( 1.4 )+                                                                                     | K<br>0.04] =<br>0.04] =<br>0.04] =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | (W/<br>2.64<br>25.61<br>40.1                                                                                        | к)                                                      |                    |             |             | <(26)<br>(27)<br>(27)                                                                                                                                                              |
| ELEN<br>Doors<br>Windov<br>Windov<br>Windov                                                                                                                     | <b>IENT</b><br>ws Type<br>ws Type<br>ws Type                                                                                                          | Gros<br>area<br>1<br>2<br>3                                                                                                                   | s                                                                                                                                                                                                                                                                                                                                                                    | Openin                                                              | gs                                                   | A ,r<br>2.64<br>19.32<br>30.25<br>9.94                                                                               | n <sup>2</sup> x<br>2 x <sup>1</sup> .<br>5 x <sup>1</sup> .<br>7 x <sup>1</sup> .                                                                                                                                                                                                                                                                                                                                                                | W/m2<br>1<br>/[1/( 1.4 )+<br>/[1/( 1.4 )+<br>/[1/( 1.4 )+                                                                     | K<br>0.04] =<br>0.04] =<br>0.04] =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | (W/)<br>2.64<br>25.61<br>40.1<br>13.18                                                                              | к)                                                      |                    |             |             | <ul> <li>(26)</li> <li>(27)</li> <li>(27)</li> <li>(27)</li> <li>(27)</li> </ul>                                                                                                   |
| ELEN<br>Doors<br>Windo<br>Windo<br>Windo<br>Floor                                                                                                               | <b>IENT</b><br>ws Type<br>ws Type<br>ws Type                                                                                                          | Gros<br>area<br>1<br>2<br>3                                                                                                                   | ss<br>(m²)                                                                                                                                                                                                                                                                                                                                                           | Openin                                                              | gs<br>2                                              | A ,r<br>2.64<br>19.32<br>30.25<br>9.94<br>13.17                                                                      | n <sup>2</sup> x<br>2 x <sup>1</sup> / <sub>5</sub> x <sup>1</sup> / <sub>7</sub><br>x <sup>1</sup> / <sub>7</sub> x <sup>1</sup> / <sub>7</sub><br>2 x                                                                                                                                                                                                                                                                                           | W/m2<br>1<br>/[1/( 1.4 )+<br>/[1/( 1.4 )+<br>/[1/( 1.4 )+<br>/[1/( 1.4 )+                                                     | K<br>0.04] =<br>0.04] =<br>0.04] =<br>0.04] =<br>0.04] =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | (W//<br>2.64<br>25.61<br>40.1<br>13.18<br>17.46                                                                     | к)                                                      |                    |             |             | <ul> <li>(26)</li> <li>(27)</li> <li>(27)</li> <li>(27)</li> <li>(27)</li> </ul>                                                                                                   |
| ELEN<br>Doors<br>Windo<br>Windo<br>Windo<br>Floor<br>Walls                                                                                                      | <b>IENT</b><br>ws Type<br>ws Type<br>ws Type<br>ws Type                                                                                               | Gros<br>area<br>1<br>2<br>3<br>4                                                                                                              | 92                                                                                                                                                                                                                                                                                                                                                                   | Openin<br>m                                                         | gs<br>2                                              | A ,r<br>2.64<br>19.32<br>30.25<br>9.94<br>13.17<br>211.3                                                             | n <sup>2</sup> x x <sup>1</sup> .<br>5 x <sup>1</sup> .<br>5 x <sup>1</sup> .<br>7 x <sup>1</sup> .<br>2 x<br>5 x                                                                                                                                                                                                                                                                                                                                 | W/m2<br>1<br>/[1/( 1.4 )+<br>/[1/( 1.4 )+<br>/[1/( 1.4 )+<br>/[1/( 1.4 )+<br>0.13                                             | K<br>0.04] =<br>0.04] =<br>0.04] =<br>0.04] =<br>0.04] =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | (W//<br>2.64<br>25.61<br>40.1<br>13.18<br>17.46<br>27.4710                                                          | к)                                                      |                    |             |             | <ul> <li>(26)</li> <li>(27)</li> <li>(27)</li> <li>(27)</li> <li>(27)</li> <li>(27)</li> <li>(27)</li> <li>(28)</li> </ul>                                                         |
| ELEN<br>Doors<br>Windov<br>Windov<br>Windov                                                                                                                     | MENT<br>ws Type<br>ws Type<br>ws Type<br>ws Type<br>Type1                                                                                             | Gros<br>area<br>1<br>2<br>3<br>4<br>240.9                                                                                                     | 92<br>92                                                                                                                                                                                                                                                                                                                                                             | Openin<br>m                                                         | gs<br>2                                              | A ,r<br>2.64<br>19.32<br>30.25<br>9.94<br>13.17<br>211.3<br>165.6                                                    | n <sup>2</sup> x x <sup>1</sup> .<br>5 x <sup>1</sup> .<br>5 x <sup>1</sup> .<br>7 x <sup>1</sup> .<br>2 x<br>5 x                                                                                                                                                                                                                                                                                                                                 | W/m2<br>1<br>/[1/( 1.4 )+<br>/[1/( 1.4 )+<br>/[1/( 1.4 )+<br>/[1/( 1.4 )+<br>0.13<br>0.18                                     | K<br>0.04] =  <br>0.04] =  <br>0.04] =  <br>0.04] =  <br>0.04] =  <br>=                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | (W//<br>2.64<br>25.61<br>40.1<br>13.18<br>17.46<br>27.4710<br>29.81                                                 | к)                                                      |                    |             |             | <ul> <li>(26)</li> <li>(27)</li> <li>(27)</li> <li>(27)</li> <li>(27)</li> <li>(27)</li> <li>(28)</li> <li>(29)</li> </ul>                                                         |
| ELEN<br>Doors<br>Windov<br>Windov<br>Floor<br>Walls<br>Roof                                                                                                     | MENT<br>ws Type<br>ws Type<br>ws Type<br>ws Type<br>Type1                                                                                             | Gros<br>area<br>1<br>2<br>3<br>4<br>240.1<br>83.5<br>154                                                                                      | 92<br>12                                                                                                                                                                                                                                                                                                                                                             | Openin<br>m<br>75.3                                                 | gs<br>2                                              | A ,r<br>2.64<br>19.32<br>30.25<br>9.94<br>13.17<br>211.3<br>165.6<br>83.52                                           | n <sup>2</sup> x x <sup>1</sup> .<br>2 x <sup>1</sup> .<br>5 x <sup>1</sup> .<br>7 x <sup>1</sup> .<br>2 x<br>3 x<br>2 x<br>2 x<br>2 x<br>2 x                                                                                                                                                                                                                                                                                                     | W/m2<br>1<br>/[1/( 1.4 )+<br>/[1/( 1.4 )+<br>/[1/( 1.4 )+<br>/[1/( 1.4 )+<br>0.13<br>0.18<br>0.13                             | K<br>0.04] =  <br>0.04] =  <br>0.04] =  <br>0.04] =  <br>=  <br>=  <br>=                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | (W//<br>2.64<br>25.61<br>40.1<br>13.18<br>17.46<br>27.4710<br>29.81<br>10.86                                        | к)                                                      |                    |             |             | <ul> <li>(26)</li> <li>(27)</li> <li>(27)</li> <li>(27)</li> <li>(27)</li> <li>(28)</li> <li>(29)</li> <li>(30)</li> </ul>                                                         |
| ELEN<br>Doors<br>Windo<br>Windo<br>Windo<br>Windo<br>Rindo<br>Floor<br>Walls<br>Roof<br>Roof<br>Total a<br>* for win                                            | MENT<br>ws Type<br>ws Type<br>ws Type<br>ws Type<br>fype1<br>fype2<br>area of e<br>dows and                                                           | Gros<br>area<br>1<br>2<br>3<br>4<br>240.1<br>83.5<br>154<br>Iements<br>roof winder                                                            | 92<br>92<br>12<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1                                                                                                                                                                                                                                                                                      | Openin<br>m<br>75.3<br>0<br>0                                       | gs<br><sup>2</sup><br><br>ndow U-va                  | A ,r<br>2.64<br>19.32<br>30.25<br>9.94<br>13.17<br>211.3<br>165.6<br>83.52<br>154<br>689.7<br>alue calcul            | n <sup>2</sup> x x <sup>1</sup> .<br>2 x <sup>1</sup> .<br>5 x <sup>1</sup> .<br>7 x <sup>1</sup> .<br>2 x<br>5 x<br>2 x<br>6 x                                                                                                                                                                                                                                                                                                                   | W/m2<br>1<br>/[1/( 1.4 )+<br>/[1/( 1.4 )+<br>/[1/( 1.4 )+<br>/[1/( 1.4 )+<br>0.13<br>0.13<br>0.13                             | K<br>0.04] =<br>0.04] =<br>0.04] =<br>0.04] =<br>=<br>=<br>=<br>=<br>=                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | (W//<br>2.64<br>25.61<br>40.1<br>13.18<br>17.46<br>27.4710<br>29.81<br>10.86<br>20.02                               | K)                                                      |                    |             |             | <ul> <li>(26)</li> <li>(27)</li> <li>(27)</li> <li>(27)</li> <li>(27)</li> <li>(27)</li> <li>(28)</li> <li>(29)</li> <li>(30)</li> <li>(30)</li> </ul>                             |
| ELEN<br>Doors<br>Windov<br>Windov<br>Windov<br>Floor<br>Walls<br>Roof T<br>Roof T<br>Total a<br>* for win<br>** includ                                          | MENT<br>ws Type<br>ws Type<br>ws Type<br>ws Type<br>fype1<br>fype2<br>area of e<br>dows and                                                           | Gros<br>area<br>1<br>2<br>3<br>4<br>240.9<br>83.5<br>154<br>lements<br>roof windo<br>is on both                                               | 92<br>92<br>12<br>14<br>15<br>15<br>15<br>15<br>15<br>15<br>15<br>15<br>15<br>15                                                                                                                                                                                                                                                                                     | Openin<br>m<br>75.3<br>0<br>0<br>effective wi<br>internal wal       | gs<br><sup>2</sup><br><br>ndow U-va                  | A ,r<br>2.64<br>19.32<br>30.25<br>9.94<br>13.17<br>211.3<br>165.6<br>83.52<br>154<br>689.7<br>alue calcul            | m <sup>2</sup> x x1<br>2 x1<br>5 x1<br>7 x1<br>2 x<br>2 x<br>2 x<br>2 x<br>4 x<br>2 x<br>2 x<br>2 x<br>4 x<br>2 x<br>2 x<br>2 x<br>4 x<br>2 x<br>2 x<br>2 x<br>4 x<br>4 x<br>4 x<br>4 x<br>4 x<br>4 x<br>4 x<br>4 | W/m2<br>1<br>/[1/( 1.4 )+<br>/[1/( 1.4 )+<br>/[1/( 1.4 )+<br>/[1/( 1.4 )+<br>0.13<br>0.13<br>0.13                             | K<br>0.04] =  <br>0.04] =  <br>0.04] =  <br>0.04] =  <br>1 =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | (W//<br>2.64<br>25.61<br>40.1<br>13.18<br>17.46<br>27.4710<br>29.81<br>10.86<br>20.02                               | K)                                                      | kJ/m²-I            | K           | kJ/ł        | <ul> <li>(26)</li> <li>(27)</li> <li>(27)</li> <li>(27)</li> <li>(27)</li> <li>(28)</li> <li>(29)</li> <li>(30)</li> <li>(30)</li> <li>(31)</li> </ul>                             |
| ELEN<br>Doors<br>Windov<br>Windov<br>Windov<br>Floor<br>Walls<br>Roof<br>Roof<br>Total a<br>* for win<br>** includ<br>Fabric                                    | MENT<br>ws Type<br>ws Type<br>ws Type<br>ws Type<br>ws Type<br>fype1<br>fype2<br>urea of e<br>dows and<br>le the area<br>heat los                     | Gros<br>area<br>1<br>2<br>3<br>4<br>240.1<br>83.5<br>154<br>lements<br>roof winde<br>s on both<br>s, W/K =                                    | 92<br>92<br>92<br>92<br>92<br>92<br>92<br>92<br>92<br>93<br>92<br>93<br>92<br>93<br>92<br>93<br>92<br>93<br>92<br>94<br>93<br>92<br>94<br>93<br>92<br>94<br>94<br>95<br>92<br>95<br>92<br>95<br>92<br>95<br>92<br>95<br>92<br>95<br>92<br>95<br>92<br>95<br>92<br>95<br>92<br>95<br>92<br>95<br>95<br>95<br>95<br>95<br>95<br>95<br>95<br>95<br>95<br>95<br>95<br>95 | Openin<br>m<br>75.3<br>0<br>0<br>effective wi<br>internal wal       | gs<br><sup>2</sup><br><br>ndow U-va                  | A ,r<br>2.64<br>19.32<br>30.25<br>9.94<br>13.17<br>211.3<br>165.6<br>83.52<br>154<br>689.7<br>alue calcul            | m <sup>2</sup> x x1<br>2 x1<br>5 x1<br>7 x1<br>2 x<br>2 x<br>2 x<br>2 x<br>4 x<br>2 x<br>2 x<br>2 x<br>4 x<br>2 x<br>2 x<br>2 x<br>4 x<br>2 x<br>2 x<br>2 x<br>4 x<br>4 x<br>4 x<br>4 x<br>4 x<br>4 x<br>4 x<br>4               | W/m2<br>1<br>/[1/( 1.4 )+<br>/[1/( 1.4 )+<br>/[1/( 1.4 )+<br>/[1/( 1.4 )+<br>[ 0.13<br>0.13<br>0.13<br>0.13<br>1<br>formula 1 | $\begin{array}{c} K \\ \hline \\ 0.04 \end{bmatrix} = \\ 0.04 \end{bmatrix} = \\ 0.04 \end{bmatrix} = \\ 0.04 \end{bmatrix} = \\ \hline \\ 0.04 \end{bmatrix} = \\ = \\ \hline \\ = \\ \\ (1/U-value) + (32) = \\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | (W//<br>2.64<br>25.61<br>40.1<br>13.18<br>17.46<br>27.4710<br>29.81<br>10.86<br>20.02                               | K)                                                      | kJ/m²-I            | K           | kJ/ł        | <ul> <li>(26)</li> <li>(27)</li> <li>(27)</li> <li>(27)</li> <li>(27)</li> <li>(27)</li> <li>(28)</li> <li>(29)</li> <li>(30)</li> <li>(30)</li> <li>(31)</li> </ul>               |
| ELEN<br>Doors<br>Windov<br>Windov<br>Windov<br>Floor<br>Floor<br>Walls<br>Roof<br>Roof<br>Total a<br>* for win<br>** includ<br>Fabric<br>Heat c                 | MENT<br>ws Type<br>ws Type<br>ws Type<br>ws Type<br>ws Type<br>fype1<br>fype2<br>urea of e<br>dows and<br>le the area<br>heat los<br>apacity (        | Gross<br>area<br>1<br>2<br>3<br>4<br>240.9<br>83.5<br>154<br>lements<br>roof winders<br>on both<br>s, W/K =<br>Cm = S(                        | 92<br>92<br>92<br>, m <sup>2</sup><br>ows, use e<br>sides of in<br>= S (A x<br>A x k )                                                                                                                                                                                                                                                                               | Openin<br>m<br>75.3<br>0<br>0<br>effective wi<br>internal wal<br>U) | gs<br><sup>2</sup><br>ndow U-va<br>Is and par        | A ,r<br>2.64<br>19.32<br>30.25<br>9.94<br>13.17<br>211.3<br>165.6<br>83.52<br>154<br>689.7<br>alue calcul<br>titions | m <sup>2</sup> x x1<br>2 x1<br>5 x1<br>7 x1<br>2 x<br>2 x<br>5 x<br>2 x<br>6 s<br>ated using                                                                                                                                                                                                                                                                                                                                                      | W/m2<br>1<br>/[1/( 1.4 )+<br>/[1/( 1.4 )+<br>/[1/( 1.4 )+<br>/[1/( 1.4 )+<br>[ 0.13<br>0.13<br>0.13<br>0.13<br>1<br>formula 1 | $\begin{array}{c} K \\ \hline \\ 0.04 \end{bmatrix} = \\ 0.04 \end{bmatrix} = \\ 0.04 \end{bmatrix} = \\ 0.04 \end{bmatrix} = \\ = \\ \hline \\ = \\ \\ (1/U-value) + (32) = \\ ((28). \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | (W//<br>2.64<br>25.61<br>40.1<br>13.18<br>17.46<br>27.4710<br>29.81<br>10.86<br>20.02<br>re)+0.04] a                | K)                                                      | kJ/m²-I            | K           | kJ/ł        | <ul> <li>(26)</li> <li>(27)</li> <li>(27)</li> <li>(27)</li> <li>(27)</li> <li>(28)</li> <li>(29)</li> <li>(30)</li> <li>(30)</li> <li>(31)</li> <li>(33)</li> <li>(34)</li> </ul> |
| ELEN<br>Doors<br>Windov<br>Windov<br>Windov<br>Floor<br>Walls<br>Roof T<br>Roof T<br>Total a<br>* for win<br>** includ<br>Fabric<br>Heat c<br>Therm<br>For desi | MENT<br>ws Type<br>ws Type<br>ws Type<br>ws Type<br>ws Type<br>Type<br>Type<br>urea of e<br>dows and<br>le the area<br>heat los<br>apacity<br>al mass | Gross<br>area<br>1<br>2<br>3<br>4<br>240.9<br>83.5<br>154<br>lements<br>roof winde<br>is on both<br>s, W/K =<br>Cm = S(<br>parame<br>ments wh | 92<br>92<br>92<br>92<br>92<br>92<br>92<br>92<br>92<br>92                                                                                                                                                                                                                                                                                                             | Openin<br>T<br>T<br>T<br>T<br>T<br>T<br>T<br>T                      | gs<br>2<br>2<br>ndow U-va<br>Is and par<br>- TFA) ir | A ,r<br>2.64<br>19.32<br>30.25<br>9.94<br>13.17<br>211.3<br>165.6<br>83.52<br>154<br>689.7<br>alue calcul<br>titions | n <sup>2</sup> x x x x x x x x x x 6 x x x x x x x x                                                                                                                                                                                                                                                                                                                                                                                              | W/m2<br>1<br>/[1/( 1.4 )+<br>/[1/( 1.4 )+<br>/[1/( 1.4 )+<br>/[1/( 1.4 )+<br>[ 0.13<br>0.13<br>0.13<br>0.13<br>1, (26)(30)    | K = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = | (W//<br>2.64<br>25.61<br>40.1<br>13.18<br>17.46<br>27.4710<br>29.81<br>10.86<br>20.02<br>re)+0.04] a<br>re)+0.04] a | K)<br>6<br>()<br>as given in<br>2) + (32a).<br>: Medium | kJ/m²-I            | K           | kJ/ł        | <ul> <li>(26)</li> <li>(27)</li> <li>(27)</li> <li>(27)</li> <li>(27)</li> <li>(27)</li> <li>(28)</li> <li>(29)</li> <li>(30)</li> <li>(30)</li> <li>(31)</li> </ul>               |

|           |                   |                       | are not kn              | own (36) =       | = 0.05 x (3      | 1)         |                   |                                                                                             |                       |             |                        |         |         |              |
|-----------|-------------------|-----------------------|-------------------------|------------------|------------------|------------|-------------------|---------------------------------------------------------------------------------------------|-----------------------|-------------|------------------------|---------|---------|--------------|
| Total f   | abric he          | at loss               |                         |                  |                  |            |                   |                                                                                             | (33) +                | (36) =      |                        |         | 237.74  | (37)         |
| Ventila   | ation hea         | at loss ca            | alculated               | monthl           | y                |            |                   |                                                                                             | (38)m                 | = 0.33 × (  | 25)m x (5)             |         | L       |              |
|           | Jan               | Feb                   | Mar                     | Apr              | May              | Jun        | Jul               | Aug                                                                                         | Sep                   | Oct         | Nov                    | Dec     |         |              |
| (38)m=    | 147.81            | 147.26                | 146.73                  | 144.21           | 143.74           | 141.55     | 141.55            | 141.14                                                                                      | 142.39                | 143.74      | 144.69                 | 145.69  |         | (38)         |
| Heat t    | ransfer o         | coefficier            | nt, W/K                 |                  |                  |            |                   |                                                                                             | (39)m                 | = (37) + (3 | 38)m                   |         |         |              |
| (39)m=    | 385.55            | 385.01                | 384.47                  | 381.95           | 381.48           | 379.29     | 379.29            | 378.88                                                                                      | 380.13                | 381.48      | 382.43                 | 383.43  |         |              |
|           |                   |                       |                         |                  |                  | _          |                   |                                                                                             |                       | Average =   |                        | 12 /12= | 381.95  | (39)         |
|           | <u> </u>          | `````                 | HLP), W/                | i                |                  |            |                   |                                                                                             |                       | = (39)m ÷   |                        |         | I       |              |
| (40)m=    | 1.28              | 1.28                  | 1.28                    | 1.27             | 1.27             | 1.26       | 1.26              | 1.26                                                                                        | 1.26                  | 1.27        | 1.27                   | 1.27    | 4.07    |              |
| Numb      | er of day         | vs in moi             | nth (Tab                | le 1a)           |                  |            |                   |                                                                                             | ,                     | Average =   | Sum(40)₁.              | 12 /12= | 1.27    | (40)         |
|           | Jan               | Feb                   | Mar                     | Apr              | May              | Jun        | Jul               | Aug                                                                                         | Sep                   | Oct         | Nov                    | Dec     |         |              |
| (41)m=    | 31                | 28                    | 31                      | 30               | 31               | 30         | 31                | 31                                                                                          | 30                    | 31          | 30                     | 31      |         | (41)         |
|           |                   |                       |                         |                  |                  |            |                   |                                                                                             |                       |             |                        |         |         |              |
| 4. Wa     | ater heat         | ting enei             | rgy requi               | irement:         |                  |            |                   |                                                                                             |                       |             |                        | kWh/ye  | ear:    |              |
| A         |                   |                       |                         |                  |                  |            |                   |                                                                                             |                       |             |                        |         | I       |              |
|           |                   | ıpancy, l<br>9. N = 1 | N<br>+ 1.76 x           | [1 - exp         | (-0.0003         | 49 x (TF   |                   | )2)] + 0.(                                                                                  | )013 x ( <sup>-</sup> | ΓFA -13.    |                        | 13      |         | (42)         |
|           | A £ 13.9          | -                     |                         | i onp            | ( 0.0000         |            |                   | /_/] · on                                                                                   |                       |             | 0)                     |         |         |              |
|           |                   |                       | ater usag               |                  |                  |            |                   |                                                                                             |                       |             |                        | 3.62    |         | (43)         |
|           |                   | -                     | hot water<br>person per |                  |                  | -          | -                 | to achieve                                                                                  | a water us            | se target o | t                      |         |         |              |
|           |                   |                       |                         |                  |                  |            | ·                 | <u> </u>                                                                                    | San                   | Oct         | Nov                    | Dee     |         |              |
| Hot wat   | Jan<br>er usage i | Feb<br>n litres per   | Mar<br>day for ea       | Apr<br>ach month | May<br>Vd.m = fa | Jun        | Jul<br>Table 1c x | Aug (43)                                                                                    | Sep                   | Oct         | Nov                    | Dec     |         |              |
| (44)m=    | 119.48            | 115.14                | 110.79                  | 106.45           | 102.11           | 97.76      | 97.76             | 102.11                                                                                      | 106.45                | 110.79      | 115.14                 | 119.48  |         |              |
| (44)///-  | 119.40            | 115.14                | 110.79                  | 100.43           | 102.11           | 97.70      | 57.70             | 102.11                                                                                      |                       | Fotal = Su  |                        |         | 1303.47 | (44)         |
| Energy    | content of        | hot water             | used - cal              | culated mo       | onthly $= 4$ .   | 190 x Vd,r | m x nm x D        | )<br>)<br>)<br>)<br>)<br>)<br>)<br>)<br>)<br>)<br>)<br>)<br>)<br>)<br>)<br>)<br>)<br>)<br>) |                       |             | · · ·                  |         | 1000.47 |              |
| (45)m=    | 177.19            | 154.97                | 159.92                  | 139.42           | 133.78           | 115.44     | 106.97            | 122.75                                                                                      | 124.22                | 144.76      | 158.02                 | 171.6   |         |              |
|           |                   |                       |                         |                  |                  |            |                   |                                                                                             |                       | Total = Su  | m(45) <sub>112</sub> = |         | 1709.06 | (45)         |
| lf instan | taneous w         | ater heatii           | ng at point             | of use (no       | hot water        | storage),  | enter 0 in        | boxes (46                                                                                   | ) to (61)             |             |                        |         |         |              |
| (46)m=    | 26.58             | 23.25                 | 23.99                   | 20.91            | 20.07            | 17.32      | 16.05             | 18.41                                                                                       | 18.63                 | 21.71       | 23.7                   | 25.74   |         | (46)         |
|           | storage           |                       | includin                |                  | alar ar M        |            | ctorago           | within or                                                                                   |                       |             |                        | 150     |         | (47)         |
| -         |                   | . ,                   | includin                |                  |                  |            | -                 |                                                                                             |                       | 561         |                        | 150     |         | (47)         |
|           | •                 | •                     | ind no ta<br>hot wate   |                  | •                |            |                   | · · ·                                                                                       | ers) ente             | er 'O' in ( | 47)                    |         |         |              |
|           | storage           |                       | not wate                | / (uno n         |                  | instantai  | 10003 00          |                                                                                             |                       |             |                        |         |         |              |
|           | -                 |                       | eclared l               | oss facto        | or is kno        | wn (kWł    | n/day):           |                                                                                             |                       |             | 2.                     | 52      |         | (48)         |
| Tempe     | erature f         | actor fro             | m Table                 | 2b               |                  |            |                   |                                                                                             |                       |             | 0.                     | 54      |         | (49)         |
| Energ     | y lost fro        | m water               | · storage               | , kWh/ye         | ear              |            |                   | (48) x (49)                                                                                 | ) =                   |             | 1.                     | 36      |         | (50)         |
|           |                   |                       | eclared o               | •                |                  |            |                   |                                                                                             |                       |             |                        |         |         |              |
|           |                   | -                     | factor fr               |                  | e 2 (kW          | h/litre/da | ay)               |                                                                                             |                       |             |                        | 0       |         | (51)         |
|           | •                 | eating s<br>from Ta   | ee sectio               | on 4.3           |                  |            |                   |                                                                                             |                       |             |                        |         | l       | (50)         |
|           |                   |                       | bie ∠a<br>m Table       | 2b               |                  |            |                   |                                                                                             |                       |             |                        | 0       |         | (52)<br>(53) |
|           |                   |                       | storage                 |                  | aar              |            |                   | (47) x (51)                                                                                 | V (50) v (            | 53) -       |                        |         |         |              |
| -         |                   | (54) in (5            | -                       | , ixvii/yt       | Jui              |            |                   | ( TF ) X (OT                                                                                | , , (02) ^ (          |             |                        | 0<br>36 |         | (54)<br>(55) |
|           | . ,               | . , (-                | ,                       |                  |                  |            |                   |                                                                                             |                       |             | ·                      | -       |         | · · · · ·    |

| Water                                                                                                               | storage                                                                                                                                                                           | loss cal                                                                                                                                      | culated                                                                                                                 | for each                                                                                                               | month                                                                                                     |                                                                                                           |                                                                                                | ((56)m = (                                                                               | 55) × (41)                                                                          | m                                                                          |                                                              |                                                              |                                                |
|---------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|----------------------------------------------------------------------------|--------------------------------------------------------------|--------------------------------------------------------------|------------------------------------------------|
| (56)m=                                                                                                              | 42.24                                                                                                                                                                             | 38.15                                                                                                                                         | 42.24                                                                                                                   | 40.88                                                                                                                  | 42.24                                                                                                     | 40.88                                                                                                     | 42.24                                                                                          | 42.24                                                                                    | 40.88                                                                               | 42.24                                                                      | 40.88                                                        | 42.24                                                        | (56)                                           |
| If cylinde                                                                                                          | er contains                                                                                                                                                                       | s dedicate                                                                                                                                    | d solar sto                                                                                                             | orage, (57)                                                                                                            | m = (56)m                                                                                                 | x [(50) – (                                                                                               | H11)] ÷ (5                                                                                     | 0), else (5                                                                              | 7)m = (56)                                                                          | m where (                                                                  | H11) is fro                                                  | m Append                                                     | lix H                                          |
| (57)m=                                                                                                              | 42.24                                                                                                                                                                             | 38.15                                                                                                                                         | 42.24                                                                                                                   | 40.88                                                                                                                  | 42.24                                                                                                     | 40.88                                                                                                     | 42.24                                                                                          | 42.24                                                                                    | 40.88                                                                               | 42.24                                                                      | 40.88                                                        | 42.24                                                        | (57)                                           |
| Primar                                                                                                              | y circuit                                                                                                                                                                         | loss (ar                                                                                                                                      | nual) fro                                                                                                               | om Table                                                                                                               | 93                                                                                                        |                                                                                                           |                                                                                                | -                                                                                        |                                                                                     | -                                                                          |                                                              | 0                                                            | (58)                                           |
|                                                                                                                     | •                                                                                                                                                                                 | •                                                                                                                                             | ,                                                                                                                       | for each                                                                                                               |                                                                                                           | 59)m = (                                                                                                  | (58) ÷ 36                                                                                      | 65 × (41)                                                                                | m                                                                                   |                                                                            |                                                              |                                                              | •                                              |
| (mo                                                                                                                 | dified by                                                                                                                                                                         | factor f                                                                                                                                      | rom Tab                                                                                                                 | le H5 if t                                                                                                             | here is s                                                                                                 | solar wat                                                                                                 | er heati                                                                                       | ng and a                                                                                 | cylinde                                                                             | r thermo                                                                   | ostat)                                                       |                                                              | _                                              |
| (59)m=                                                                                                              | 23.26                                                                                                                                                                             | 21.01                                                                                                                                         | 23.26                                                                                                                   | 22.51                                                                                                                  | 23.26                                                                                                     | 22.51                                                                                                     | 23.26                                                                                          | 23.26                                                                                    | 22.51                                                                               | 23.26                                                                      | 22.51                                                        | 23.26                                                        | (59)                                           |
| Combi                                                                                                               | loss ca                                                                                                                                                                           | lculated                                                                                                                                      | for each                                                                                                                | n month (                                                                                                              | (61)m =                                                                                                   | (60) ÷ 36                                                                                                 | 65 × (41                                                                                       | )m                                                                                       |                                                                                     |                                                                            |                                                              |                                                              |                                                |
| (61)m=                                                                                                              | 0                                                                                                                                                                                 | 0                                                                                                                                             | 0                                                                                                                       | 0                                                                                                                      | 0                                                                                                         | 0                                                                                                         | 0                                                                                              | 0                                                                                        | 0                                                                                   | 0                                                                          | 0                                                            | 0                                                            | (61)                                           |
| Total h                                                                                                             | neat requ                                                                                                                                                                         | uired for                                                                                                                                     | water h                                                                                                                 | eating ca                                                                                                              | alculated                                                                                                 | l for eacl                                                                                                | h month                                                                                        | (62)m =                                                                                  | 0.85 ×                                                                              | (45)m +                                                                    | (46)m +                                                      | (57)m +                                                      | (59)m + (61)m                                  |
| (62)m=                                                                                                              | 242.7                                                                                                                                                                             | 214.14                                                                                                                                        | 225.42                                                                                                                  | 202.81                                                                                                                 | 199.28                                                                                                    | 178.83                                                                                                    | 172.48                                                                                         | 188.26                                                                                   | 187.61                                                                              | 210.27                                                                     | 221.41                                                       | 237.11                                                       | (62)                                           |
| Solar DI                                                                                                            | HW input of                                                                                                                                                                       | calculated                                                                                                                                    | using App                                                                                                               | endix G o                                                                                                              | Appendix                                                                                                  | H (negati                                                                                                 | ve quantity                                                                                    | /) (enter '0                                                                             | ' if no sola                                                                        | r contribut                                                                | ion to wate                                                  | er heating)                                                  |                                                |
| (add a                                                                                                              | dditiona                                                                                                                                                                          | l lines if                                                                                                                                    | FGHRS                                                                                                                   | and/or \                                                                                                               | WWHRS                                                                                                     | applies                                                                                                   | , see Ap                                                                                       | pendix (                                                                                 | G)                                                                                  |                                                                            |                                                              |                                                              |                                                |
| (63)m=                                                                                                              | 0                                                                                                                                                                                 | 0                                                                                                                                             | 0                                                                                                                       | 0                                                                                                                      | 0                                                                                                         | 0                                                                                                         | 0                                                                                              | 0                                                                                        | 0                                                                                   | 0                                                                          | 0                                                            | 0                                                            | (63)                                           |
| Output                                                                                                              | t from w                                                                                                                                                                          | ater hea                                                                                                                                      | ter                                                                                                                     |                                                                                                                        |                                                                                                           |                                                                                                           |                                                                                                |                                                                                          |                                                                                     |                                                                            |                                                              |                                                              | _                                              |
| (64)m=                                                                                                              | 242.7                                                                                                                                                                             | 214.14                                                                                                                                        | 225.42                                                                                                                  | 202.81                                                                                                                 | 199.28                                                                                                    | 178.83                                                                                                    | 172.48                                                                                         | 188.26                                                                                   | 187.61                                                                              | 210.27                                                                     | 221.41                                                       | 237.11                                                       |                                                |
|                                                                                                                     |                                                                                                                                                                                   |                                                                                                                                               |                                                                                                                         |                                                                                                                        |                                                                                                           |                                                                                                           |                                                                                                | Outp                                                                                     | out from w                                                                          | ater heate                                                                 | r (annual)₁                                                  | 12                                                           | 2480.31 (64)                                   |
| Heat g                                                                                                              | ains fro                                                                                                                                                                          | m water                                                                                                                                       | heating                                                                                                                 | , kWh/m                                                                                                                | onth 0.2                                                                                                  | 5 ´ [0.85                                                                                                 | × (45)m                                                                                        | ı + (61)m                                                                                | n] + 0.8 x                                                                          | x [(46)m                                                                   | + (57)m                                                      | + (59)m                                                      | ·]                                             |
| (65)m=                                                                                                              | 111.32                                                                                                                                                                            | 98.86                                                                                                                                         | 105.58                                                                                                                  | 97.07                                                                                                                  | 96.88                                                                                                     | 89.1                                                                                                      | 87.97                                                                                          | 93.22                                                                                    | 92.02                                                                               | 100.54                                                                     | 103.26                                                       | 109.46                                                       | (65)                                           |
| inclu                                                                                                               | ude (57)                                                                                                                                                                          | m in calo                                                                                                                                     | culation                                                                                                                | of (65)m                                                                                                               | only if c                                                                                                 | ylinder is                                                                                                | s in the o                                                                                     | dwelling                                                                                 | or hot w                                                                            | ater is fi                                                                 | rom com                                                      | munity h                                                     | leating                                        |
| 5. Int                                                                                                              | ternal ga                                                                                                                                                                         | ains (see                                                                                                                                     | e Table 5                                                                                                               | 5 and 5a                                                                                                               | ):                                                                                                        |                                                                                                           |                                                                                                |                                                                                          |                                                                                     |                                                                            |                                                              |                                                              |                                                |
| Metab                                                                                                               |                                                                                                                                                                                   |                                                                                                                                               |                                                                                                                         |                                                                                                                        | /                                                                                                         |                                                                                                           |                                                                                                |                                                                                          |                                                                                     |                                                                            |                                                              |                                                              |                                                |
|                                                                                                                     | olic gain                                                                                                                                                                         | s (Table                                                                                                                                      | e 5), Wat                                                                                                               |                                                                                                                        |                                                                                                           | _                                                                                                         |                                                                                                |                                                                                          | _                                                                                   |                                                                            |                                                              |                                                              |                                                |
|                                                                                                                     | olic gain<br>Jan                                                                                                                                                                  | s (Table<br>Feb                                                                                                                               | 5), Wat<br>Mar                                                                                                          |                                                                                                                        | Мау                                                                                                       | Jun                                                                                                       | Jul                                                                                            | Aug                                                                                      | Sep                                                                                 | Oct                                                                        | Nov                                                          | Dec                                                          | ]                                              |
| (66)m=                                                                                                              |                                                                                                                                                                                   |                                                                                                                                               |                                                                                                                         | tts                                                                                                                    |                                                                                                           | Jun<br>156.68                                                                                             | Jul<br>156.68                                                                                  | Aug<br>156.68                                                                            | Sep<br>156.68                                                                       | Oct<br>156.68                                                              | Nov<br>156.68                                                | Dec<br>156.68                                                | (66)                                           |
|                                                                                                                     | Jan<br>156.68                                                                                                                                                                     | Feb<br>156.68                                                                                                                                 | Mar<br>156.68                                                                                                           | tts<br>Apr                                                                                                             | May<br>156.68                                                                                             | 156.68                                                                                                    | 156.68                                                                                         | 156.68                                                                                   | 156.68                                                                              |                                                                            |                                                              |                                                              | (66)                                           |
| Lightin                                                                                                             | Jan<br>156.68                                                                                                                                                                     | Feb<br><sup>156.68</sup><br>(calcula                                                                                                          | Mar<br>156.68<br>ted in Aj                                                                                              | Apr<br>156.68<br>Dpendix                                                                                               | May<br>156.68                                                                                             | 156.68                                                                                                    | 156.68<br>r L9a), a                                                                            | 156.68                                                                                   | 156.68                                                                              |                                                                            |                                                              |                                                              | (66)                                           |
| Lightin<br>(67)m=                                                                                                   | Jan<br>156.68<br>g gains<br>40.95                                                                                                                                                 | Feb<br>156.68<br>(calcula<br>36.37                                                                                                            | Mar<br>156.68<br>ted in Aj<br>29.58                                                                                     | Apr<br>156.68<br>Dpendix                                                                                               | May<br>156.68<br>L, equat<br>16.74                                                                        | 156.68<br>ion L9 oi<br>14.13                                                                              | 156.68<br>r L9a), a<br>15.27                                                                   | 156.68<br>Iso see<br>19.85                                                               | 156.68<br>Table 5<br>26.64                                                          | 156.68<br>33.82                                                            | 156.68                                                       | 156.68                                                       | ]                                              |
| Lightin<br>(67)m=                                                                                                   | Jan<br>156.68<br>g gains<br>40.95                                                                                                                                                 | Feb<br>156.68<br>(calcula<br>36.37                                                                                                            | Mar<br>156.68<br>ted in Aj<br>29.58                                                                                     | tts<br>Apr<br>156.68<br>opendix<br>22.39                                                                               | May<br>156.68<br>L, equat<br>16.74                                                                        | 156.68<br>ion L9 oi<br>14.13                                                                              | 156.68<br>r L9a), a<br>15.27                                                                   | 156.68<br>Iso see<br>19.85                                                               | 156.68<br>Table 5<br>26.64                                                          | 156.68<br>33.82                                                            | 156.68                                                       | 156.68                                                       | ]                                              |
| Lightin<br>(67)m=<br>Applia<br>(68)m=                                                                               | Jan<br>156.68<br>g gains<br>40.95<br>nces ga<br>459.29                                                                                                                            | Feb<br>156.68<br>(calcula<br>36.37<br>ins (calc<br>464.06                                                                                     | Mar<br>156.68<br>ted in Ap<br>29.58<br>ulated ir<br>452.05                                                              | tts<br>Apr<br>156.68<br>opendix<br>22.39<br>Append                                                                     | May<br>156.68<br>L, equat<br>16.74<br>dix L, eq<br>394.2                                                  | 156.68<br>ion L9 of<br>14.13<br>uation L<br>363.87                                                        | 156.68<br>r L9a), a<br>15.27<br>13 or L1<br>343.6                                              | 156.68<br>Iso see<br>19.85<br>3a), also<br>338.84                                        | 156.68<br>Table 5<br>26.64<br>see Ta<br>350.85                                      | 156.68<br>33.82<br>ble 5<br>376.42                                         | 156.68<br>39.48                                              | 156.68<br>42.08                                              | (67)                                           |
| Lightin<br>(67)m=<br>Applia<br>(68)m=                                                                               | Jan<br>156.68<br>g gains<br>40.95<br>nces ga<br>459.29                                                                                                                            | Feb<br>156.68<br>(calcula<br>36.37<br>ins (calc<br>464.06                                                                                     | Mar<br>156.68<br>ted in Ap<br>29.58<br>ulated ir<br>452.05                                                              | tts<br>Apr<br>156.68<br>opendix<br>22.39<br>Append<br>426.48                                                           | May<br>156.68<br>L, equat<br>16.74<br>dix L, eq<br>394.2                                                  | 156.68<br>ion L9 of<br>14.13<br>uation L<br>363.87                                                        | 156.68<br>r L9a), a<br>15.27<br>13 or L1<br>343.6                                              | 156.68<br>Iso see<br>19.85<br>3a), also<br>338.84                                        | 156.68<br>Table 5<br>26.64<br>see Ta<br>350.85                                      | 156.68<br>33.82<br>ble 5<br>376.42                                         | 156.68<br>39.48                                              | 156.68<br>42.08                                              | (67)                                           |
| Lightin<br>(67)m=<br>Applia<br>(68)m=<br>Cookir<br>(69)m=                                                           | Jan<br>156.68<br>g gains<br>40.95<br>nces ga<br>459.29<br>ng gains<br>38.67                                                                                                       | Feb<br>156.68<br>(calcula<br>36.37<br>ins (calc<br>464.06<br>(calcula                                                                         | Mar<br>156.68<br>ted in A<br>29.58<br>ulated ir<br>452.05<br>ted in A<br>38.67                                          | tts<br>Apr<br>156.68<br>opendix<br>22.39<br>Appendix<br>426.48<br>ppendix<br>38.67                                     | May<br>156.68<br>L, equat<br>16.74<br>dix L, eq<br>394.2<br>L, equat                                      | 156.68<br>ion L9 of<br>14.13<br>uation L<br>363.87<br>ion L15                                             | 156.68<br>r L9a), a<br>15.27<br>13 or L1<br>343.6<br>or L15a)                                  | 156.68<br>Iso see<br>19.85<br>3a), also<br>338.84<br>), also se                          | 156.68<br>Table 5<br>26.64<br>9 see Ta<br>350.85<br>ee Table                        | 156.68<br>33.82<br>ble 5<br>376.42<br>5                                    | 156.68<br>39.48<br>408.69                                    | 156.68<br>42.08<br>439.03                                    | ] (67)<br>] (68)                               |
| Lightin<br>(67)m=<br>Applia<br>(68)m=<br>Cookir<br>(69)m=                                                           | Jan<br>156.68<br>g gains<br>40.95<br>nces ga<br>459.29<br>ng gains<br>38.67                                                                                                       | Feb<br>156.68<br>(calcula<br>36.37<br>ins (calc<br>464.06<br>(calcula<br>38.67                                                                | Mar<br>156.68<br>ted in A<br>29.58<br>ulated ir<br>452.05<br>ted in A<br>38.67                                          | tts<br>Apr<br>156.68<br>opendix<br>22.39<br>Appendix<br>426.48<br>ppendix<br>38.67                                     | May<br>156.68<br>L, equat<br>16.74<br>dix L, eq<br>394.2<br>L, equat                                      | 156.68<br>ion L9 of<br>14.13<br>uation L<br>363.87<br>ion L15                                             | 156.68<br>r L9a), a<br>15.27<br>13 or L1<br>343.6<br>or L15a)                                  | 156.68<br>Iso see<br>19.85<br>3a), also<br>338.84<br>), also se                          | 156.68<br>Table 5<br>26.64<br>9 see Ta<br>350.85<br>ee Table                        | 156.68<br>33.82<br>ble 5<br>376.42<br>5                                    | 156.68<br>39.48<br>408.69                                    | 156.68<br>42.08<br>439.03                                    | ] (67)<br>] (68)                               |
| Lightin<br>(67)m=<br>Applia<br>(68)m=<br>Cookir<br>(69)m=<br>Pumps<br>(70)m=                                        | Jan           156.68           og gains           40.95           nces ga           459.29           ng gains           38.67           s and fair           3                    | Feb<br>156.68<br>(calcula<br>36.37<br>ins (calc<br>464.06<br>(calcula<br>38.67<br>ns gains<br>3                                               | Mar<br>156.68<br>ted in A<br>29.58<br>ulated ir<br>452.05<br>ted in A<br>38.67<br>(Table 3<br>3                         | tts<br>Apr<br>156.68<br>opendix<br>22.39<br>Appendix<br>426.48<br>ppendix<br>38.67<br>5a)                              | May<br>156.68<br>L, equat<br>16.74<br>dix L, eq<br>394.2<br>L, equat<br>38.67                             | 156.68<br>ion L9 of<br>14.13<br>uation L<br>363.87<br>ion L15<br>38.67                                    | 156.68<br>r L9a), a<br>15.27<br>13 or L1<br>343.6<br>or L15a)<br>38.67                         | 156.68<br>Iso see<br>19.85<br>3a), also<br>338.84<br>), also se<br>38.67                 | 156.68<br>Table 5<br>26.64<br>see Ta<br>350.85<br>ee Table<br>38.67                 | 156.68<br>33.82<br>ble 5<br>376.42<br>5<br>38.67                           | 156.68<br>39.48<br>408.69<br>38.67                           | 156.68<br>42.08<br>439.03<br>38.67                           | ] (67)<br>] (68)<br>] (69)                     |
| Lightin<br>(67)m=<br>Applia<br>(68)m=<br>Cookir<br>(69)m=<br>Pumps<br>(70)m=                                        | Jan           156.68           og gains           40.95           nces ga           459.29           ng gains           38.67           s and fai           3           s e.g. ev | Feb<br>156.68<br>(calcula<br>36.37<br>ins (calc<br>464.06<br>(calcula<br>38.67<br>ns gains<br>3<br>raporatic                                  | Mar<br>156.68<br>ted in A<br>29.58<br>ulated ir<br>452.05<br>ted in A<br>38.67<br>(Table 3<br>3                         | tts<br>Apr<br>156.68<br>opendix<br>22.39<br>Appendix<br>426.48<br>ppendix<br>38.67<br>5a)<br>3                         | May<br>156.68<br>L, equat<br>16.74<br>dix L, eq<br>394.2<br>L, equat<br>38.67                             | 156.68<br>ion L9 of<br>14.13<br>uation L<br>363.87<br>ion L15<br>38.67                                    | 156.68<br>r L9a), a<br>15.27<br>13 or L1<br>343.6<br>or L15a)<br>38.67                         | 156.68<br>Iso see<br>19.85<br>3a), also<br>338.84<br>), also se<br>38.67                 | 156.68<br>Table 5<br>26.64<br>see Ta<br>350.85<br>ee Table<br>38.67                 | 156.68<br>33.82<br>ble 5<br>376.42<br>5<br>38.67                           | 156.68<br>39.48<br>408.69<br>38.67                           | 156.68<br>42.08<br>439.03<br>38.67                           | ] (67)<br>] (68)<br>] (69)                     |
| Lightin<br>(67)m=<br>Applia<br>(68)m=<br>Cookir<br>(69)m=<br>Pumps<br>(70)m=<br>Losses<br>(71)m=                    | Jan<br>156.68<br>19 gains<br>40.95<br>nces ga<br>459.29<br>ng gains<br>38.67<br>s and fai<br>3<br>s e.g. ev<br>-125.34                                                            | Feb<br>156.68<br>(calcula<br>36.37<br>ins (calc<br>464.06<br>(calcula<br>38.67<br>ns gains<br>3<br>raporatic                                  | Mar<br>156.68<br>ted in A<br>29.58<br>ulated in<br>452.05<br>ited in A<br>38.67<br>(Table 9<br>3<br>on (nega<br>-125.34 | tts<br>Apr<br>156.68<br>opendix<br>22.39<br>Appendix<br>426.48<br>ppendix<br>38.67<br>5a)<br>3<br>tive valu            | May<br>156.68<br>L, equat<br>16.74<br>dix L, eq<br>394.2<br>L, equat<br>38.67<br>3<br>es) (Tab            | 156.68<br>ion L9 of<br>14.13<br>uation L<br>363.87<br>ion L15<br>38.67<br>3<br>le 5)                      | 156.68<br>r L9a), a<br>15.27<br>13 or L1<br>343.6<br>or L15a<br>38.67<br>3                     | 156.68<br>Iso see<br>19.85<br>3a), also<br>338.84<br>), also se<br>38.67<br>3            | 156.68<br>Table 5<br>26.64<br>see Ta<br>350.85<br>ee Table<br>38.67<br>3            | 156.68<br>33.82<br>ble 5<br>376.42<br>5<br>38.67<br>3                      | 156.68<br>39.48<br>408.69<br>38.67<br>3                      | 156.68<br>42.08<br>439.03<br>38.67<br>3                      | ] (67)<br>] (68)<br>] (69)<br>] (70)           |
| Lightin<br>(67)m=<br>Applia<br>(68)m=<br>Cookir<br>(69)m=<br>Pumps<br>(70)m=<br>Losses<br>(71)m=                    | Jan<br>156.68<br>19 gains<br>40.95<br>nces ga<br>459.29<br>ng gains<br>38.67<br>s and fai<br>3<br>s e.g. ev<br>-125.34                                                            | Feb<br>156.68<br>(calcula<br>36.37<br>ins (calc<br>464.06<br>(calcula<br>38.67<br>ns gains<br>3<br>aporatic<br>-125.34                        | Mar<br>156.68<br>ted in A<br>29.58<br>ulated in<br>452.05<br>ited in A<br>38.67<br>(Table 9<br>3<br>on (nega<br>-125.34 | tts<br>Apr<br>156.68<br>opendix<br>22.39<br>Appendix<br>426.48<br>ppendix<br>38.67<br>5a)<br>3<br>tive valu            | May<br>156.68<br>L, equat<br>16.74<br>dix L, eq<br>394.2<br>L, equat<br>38.67<br>3<br>es) (Tab            | 156.68<br>ion L9 of<br>14.13<br>uation L<br>363.87<br>ion L15<br>38.67<br>3<br>le 5)                      | 156.68<br>r L9a), a<br>15.27<br>13 or L1<br>343.6<br>or L15a<br>38.67<br>3                     | 156.68<br>Iso see<br>19.85<br>3a), also<br>338.84<br>), also se<br>38.67<br>3            | 156.68<br>Table 5<br>26.64<br>see Ta<br>350.85<br>ee Table<br>38.67<br>3            | 156.68<br>33.82<br>ble 5<br>376.42<br>5<br>38.67<br>3                      | 156.68<br>39.48<br>408.69<br>38.67<br>3                      | 156.68<br>42.08<br>439.03<br>38.67<br>3                      | ] (67)<br>] (68)<br>] (69)<br>] (70)           |
| Lightin<br>(67)m=<br>Applia<br>(68)m=<br>Cookir<br>(69)m=<br>Pumps<br>(70)m=<br>Losses<br>(71)m=<br>Water<br>(72)m= | Jan<br>156.68<br>19 gains<br>40.95<br>nces ga<br>459.29<br>19 gains<br>38.67<br>5 and fai<br>3<br>s e.g. ev<br>-125.34<br>heating<br>149.62                                       | Feb<br>156.68<br>(calcula<br>36.37<br>ins (calc<br>464.06<br>(calcula<br>38.67<br>ns gains<br>3<br>raporatic<br>-125.34<br>gains (T           | Mar<br>156.68<br>ted in A<br>29.58<br>ulated in<br>452.05<br>ted in A<br>38.67<br>(Table 5<br>able 5)<br>141.9          | tts<br>Apr<br>156.68<br>opendix<br>22.39<br>Appendix<br>426.48<br>ppendix<br>38.67<br>5a)<br>3<br>tive valu<br>-125.34 | May<br>156.68<br>L, equat<br>16.74<br>dix L, eq<br>394.2<br>L, equat<br>38.67<br>3<br>es) (Tab<br>-125.34 | 156.68<br>ion L9 of<br>14.13<br>uation L<br>363.87<br>ion L15<br>38.67<br>3<br>le 5)<br>-125.34<br>123.75 | 156.68<br>r L9a), a<br>15.27<br>13 or L1<br>343.6<br>or L15a<br>38.67<br>38.67<br>3<br>-125.34 | 156.68<br>Iso see<br>19.85<br>3a), also<br>338.84<br>), also se<br>38.67<br>3<br>-125.34 | 156.68<br>Table 5<br>26.64<br>See Ta<br>350.85<br>De Table<br>38.67<br>3<br>-125.34 | 156.68<br>33.82<br>ble 5<br>376.42<br>5<br>38.67<br>3<br>-125.34<br>135.13 | 156.68<br>39.48<br>408.69<br>38.67<br>3<br>-125.34           | 156.68<br>42.08<br>439.03<br>38.67<br>3<br>-125.34<br>147.12 | ] (67)<br>] (68)<br>] (69)<br>] (70)<br>] (71) |
| Lightin<br>(67)m=<br>Applia<br>(68)m=<br>Cookir<br>(69)m=<br>Pumps<br>(70)m=<br>Losses<br>(71)m=<br>Water<br>(72)m= | Jan<br>156.68<br>19 gains<br>40.95<br>nces ga<br>459.29<br>19 gains<br>38.67<br>5 and fai<br>3<br>s e.g. ev<br>-125.34<br>heating<br>149.62                                       | Feb<br>156.68<br>(calcula<br>36.37<br>ins (calc<br>464.06<br>(calcula<br>38.67<br>ns gains<br>3<br>raporatic<br>-125.34<br>gains (T<br>147.11 | Mar<br>156.68<br>ted in A<br>29.58<br>ulated in<br>452.05<br>ted in A<br>38.67<br>(Table 5<br>able 5)<br>141.9          | tts<br>Apr<br>156.68<br>opendix<br>22.39<br>Appendix<br>426.48<br>ppendix<br>38.67<br>5a)<br>3<br>tive valu<br>-125.34 | May<br>156.68<br>L, equat<br>16.74<br>dix L, eq<br>394.2<br>L, equat<br>38.67<br>3<br>es) (Tab<br>-125.34 | 156.68<br>ion L9 of<br>14.13<br>uation L<br>363.87<br>ion L15<br>38.67<br>3<br>le 5)<br>-125.34<br>123.75 | 156.68<br>r L9a), a<br>15.27<br>13 or L1<br>343.6<br>or L15a<br>38.67<br>38.67<br>3<br>-125.34 | 156.68<br>Iso see<br>19.85<br>3a), also<br>338.84<br>), also se<br>38.67<br>3<br>-125.34 | 156.68<br>Table 5<br>26.64<br>See Ta<br>350.85<br>De Table<br>38.67<br>3<br>-125.34 | 156.68<br>33.82<br>ble 5<br>376.42<br>5<br>38.67<br>3<br>-125.34<br>135.13 | 156.68<br>39.48<br>408.69<br>38.67<br>3<br>-125.34<br>143.41 | 156.68<br>42.08<br>439.03<br>38.67<br>3<br>-125.34<br>147.12 | ] (67)<br>] (68)<br>] (69)<br>] (70)<br>] (71) |

Solar gains are calculated using solar flux from Table 6a and associated equations to convert to the applicable orientation.

| Orientation:   | Access Factor<br>Table 6d | r | Area<br>m² |   | Flux<br>Table 6a |   | g_<br>Table 6b |   | FF<br>Table 6c |   | Gains<br>(W) |      |
|----------------|---------------------------|---|------------|---|------------------|---|----------------|---|----------------|---|--------------|------|
| Northeast 0.9x | 0.77                      | x | 9.94       | × | 11.28            | × | 0.63           | x | 0.7            | = | 34.28        | (75) |
| Northeast 0.9x | 0.77                      | x | 9.94       | x | 22.97            | x | 0.63           | x | 0.7            | = | 69.77        | (75) |
| Northeast 0.9x | 0.77                      | x | 9.94       | × | 41.38            | × | 0.63           | x | 0.7            | = | 125.7        | (75) |
| Northeast 0.9x | 0.77                      | x | 9.94       | x | 67.96            | × | 0.63           | x | 0.7            | = | 206.44       | (75) |
| Northeast 0.9x | 0.77                      | x | 9.94       | x | 91.35            | x | 0.63           | x | 0.7            | = | 277.49       | (75) |
| Northeast 0.9x | 0.77                      | x | 9.94       | × | 97.38            | × | 0.63           | x | 0.7            | = | 295.83       | (75) |
| Northeast 0.9x | 0.77                      | x | 9.94       | × | 91.1             | × | 0.63           | x | 0.7            | = | 276.75       | (75) |
| Northeast 0.9x | 0.77                      | x | 9.94       | × | 72.63            | × | 0.63           | x | 0.7            | = | 220.63       | (75) |
| Northeast 0.9x | 0.77                      | x | 9.94       | x | 50.42            | x | 0.63           | x | 0.7            | = | 153.17       | (75) |
| Northeast 0.9x | 0.77                      | x | 9.94       | × | 28.07            | x | 0.63           | x | 0.7            | = | 85.26        | (75) |
| Northeast 0.9x | 0.77                      | x | 9.94       | x | 14.2             | x | 0.63           | x | 0.7            | = | 43.13        | (75) |
| Northeast 0.9x | 0.77                      | x | 9.94       | × | 9.21             | × | 0.63           | x | 0.7            | = | 27.99        | (75) |
| Southeast 0.9x | 0.77                      | x | 30.25      | × | 36.79            | x | 0.63           | x | 0.7            | = | 340.15       | (77) |
| Southeast 0.9x | 0.77                      | x | 30.25      | x | 62.67            | × | 0.63           | x | 0.7            | = | 579.4        | (77) |
| Southeast 0.9x | 0.77                      | x | 30.25      | x | 85.75            | x | 0.63           | x | 0.7            | = | 792.77       | (77) |
| Southeast 0.9x | 0.77                      | x | 30.25      | x | 106.25           | x | 0.63           | x | 0.7            | = | 982.27       | (77) |
| Southeast 0.9x | 0.77                      | x | 30.25      | x | 119.01           | × | 0.63           | x | 0.7            | = | 1100.23      | (77) |
| Southeast 0.9x | 0.77                      | x | 30.25      | × | 118.15           | × | 0.63           | x | 0.7            | = | 1092.27      | (77) |
| Southeast 0.9x | 0.77                      | x | 30.25      | × | 113.91           | x | 0.63           | x | 0.7            | = | 1053.07      | (77) |
| Southeast 0.9x | 0.77                      | x | 30.25      | × | 104.39           | × | 0.63           | x | 0.7            | = | 965.07       | (77) |
| Southeast 0.9x | 0.77                      | x | 30.25      | x | 92.85            | x | 0.63           | x | 0.7            | = | 858.4        | (77) |
| Southeast 0.9x | 0.77                      | x | 30.25      | x | 69.27            | x | 0.63           | x | 0.7            | = | 640.36       | (77) |
| Southeast 0.9x | 0.77                      | x | 30.25      | x | 44.07            | × | 0.63           | x | 0.7            | = | 407.42       | (77) |
| Southeast 0.9x | 0.77                      | x | 30.25      | × | 31.49            | × | 0.63           | x | 0.7            | = | 291.1        | (77) |
| Southwest0.9x  |                           | x | 13.17      | x | 36.79            |   | 0.63           | x | 0.7            | = | 148.09       | (79) |
| Southwest0.9x  | 0.77                      | x | 13.17      | x | 62.67            |   | 0.63           | x | 0.7            | = | 252.26       | (79) |
| Southwest0.9x  | 0.77                      | x | 13.17      | x | 85.75            | ] | 0.63           | x | 0.7            | = | 345.15       | (79) |
| Southwest0.9x  | 0.77                      | x | 13.17      | × | 106.25           |   | 0.63           | x | 0.7            | = | 427.65       | (79) |
| Southwest0.9x  | 0.77                      | x | 13.17      | × | 119.01           |   | 0.63           | x | 0.7            | = | 479.01       | (79) |
| Southwest0.9x  | 0.77                      | x | 13.17      | x | 118.15           |   | 0.63           | x | 0.7            | = | 475.54       | (79) |
| Southwest0.9x  |                           | x | 13.17      | x | 113.91           |   | 0.63           | x | 0.7            | = | 458.48       | (79) |
| Southwest0.9x  |                           | x | 13.17      | x | 104.39           |   | 0.63           | x | 0.7            | = | 420.16       | (79) |
| Southwest0.9x  | -                         | x | 13.17      | x | 92.85            |   | 0.63           | x | 0.7            | = | 373.72       | (79) |
| Southwest0.9x  |                           | x | 13.17      | x | 69.27            |   | 0.63           | x | 0.7            | = | 278.8        | (79) |
| Southwest0.9x  | 0.77                      | x | 13.17      | x | 44.07            |   | 0.63           | x | 0.7            | = | 177.38       | (79) |
| Southwest0.9x  | 0                         | x | 13.17      | x | 31.49            |   | 0.63           | x | 0.7            | = | 126.74       | (79) |
| Northwest 0.9x |                           | x | 19.32      | × | 11.28            | × | 0.63           | x | 0.7            | = | 66.62        | (81) |
| Northwest 0.9x |                           | x | 19.32      | × | 22.97            | × | 0.63           | × | 0.7            | = | 135.61       | (81) |
| Northwest 0.9x | 0.77                      | x | 19.32      | x | 41.38            | x | 0.63           | x | 0.7            | = | 244.32       | (81) |

| Northwoot              | <b>.</b> |           |            |                      |             |          |         |           | 1          | <b></b>  |           |           |              |           |        |      |
|------------------------|----------|-----------|------------|----------------------|-------------|----------|---------|-----------|------------|----------|-----------|-----------|--------------|-----------|--------|------|
| Northwest              |          | 0.77      | x          | 19.                  | 32          | x        | 6       | 57.96     | X          |          | 0.63      |           | 0.7          | =         | 401.24 | (81) |
| Northwest              |          | 0.77      | ×          | 19.                  | 32          | x        | 9       | 1.35      | X          |          | 0.63      | ×         | 0.7          | =         | 539.35 | (81) |
| Northwest              | 0.9x     | 0.77      | x          | 19.                  | 32          | x        | 9       | 7.38      | X          |          | 0.63      | ×         | 0.7          | =         | 575    | (81) |
| Northwest              | 0.9x     | 0.77      | ×          | 19.                  | 32          | x        | ę       | 91.1      | x          |          | 0.63      | x         | 0.7          | =         | 537.9  | (81) |
| Northwest              | 0.9x     | 0.77      | x          | 19.                  | 32          | x        | 7       | 2.63      | x          |          | 0.63      | x         | 0.7          | =         | 428.82 | (81) |
| Northwest              | 0.9x     | 0.77      | x          | 19.                  | 32          | x        | 5       | 60.42     | ×          |          | 0.63      | ×         | 0.7          | =         | 297.71 | (81) |
| Northwest              | 0.9x     | 0.77      | x          | 19.                  | 32          | x        | 2       | 8.07      | ×          |          | 0.63      | x         | 0.7          | =         | 165.72 | (81) |
| Northwest              | 0.9x     | 0.77      | x          | 19.                  | 32          | x        |         | 14.2      | x          |          | 0.63      | x         | 0.7          | =         | 83.82  | (81) |
| Northwest              | 0.9x     | 0.77      | x          | 19.                  | 32          | x        | 9       | 9.21      | x          |          | 0.63      | x         | 0.7          | =         | 54.4   | (81) |
|                        |          |           |            |                      |             |          |         |           |            |          |           |           |              |           |        |      |
| Solar <u>gair</u>      | ns in v  | vatts, ca | alculated  | for eac              | h month     |          |         |           | (83)m      | n = Su   | ım(74)m . | (82)m     |              |           |        |      |
| (83)m= 58              | 39.14    | 1037.03   | 1507.93    | 2017.61              | 2396.07     | 24       | 38.65   | 2326.19   | 2034       | 4.68     | 1682.99   | 1170.14   | 711.75       | 500.23    |        | (83) |
| Total gair             | ns – in  | ternal a  | ind solar  | <sup>-</sup> (84)m = | = (73)m     | + (8     | 83)m    | , watts   |            |          |           |           |              |           |        |      |
| (84)m= 1               | 312      | 1757.58   | 2204.46    | 2674.3               | 3010.24     | 30       | 013.4   | 2876.31   | 2591       | 1.66     | 2261.28   | 1788.52   | 1376.34      | 1201.47   |        | (84) |
| 7. Mean                | interr   | al temp   | erature    | (heating             | season      | )        |         |           |            |          |           |           |              |           |        |      |
| Tempera                | ature o  | during h  | leating p  | eriods i             | n the livi  | ng       | area l  | from Tab  | ole 9      | , Th1    | l (°C)    |           |              |           | 21     | (85) |
| Utilisatio             | on fact  | or for g  | ains for l | living are           | ea, h1,m    | n (se    | ee Ta   | ble 9a)   |            |          |           |           |              |           |        |      |
|                        | Jan      | Feb       | Mar        | Apr                  | May         |          | Jun     | Jul       | A          | ug       | Sep       | Oct       | Nov          | Dec       | ]      |      |
| (86)m=                 | 1        | 1         | 0.99       | 0.97                 | 0.88        | (        | 0.72    | 0.56      | 0.6        | 63       | 0.88      | 0.99      | 1            | 1         |        | (86) |
| Mean int               | ternal   | temper    | ature in   | living ar            | ea T1 (fe   | ollo     | w ste   | ps 3 to 7 | ' in T     | able     | e 9c)     |           |              |           | -      |      |
|                        | 9.44     | 19.65     | 19.97      | 20.38                | 20.73       | -        | 0.93    | 20.98     | 20.        |          | 20.81     | 20.33     | 19.8         | 19.4      | ]      | (87) |
| Tempera                |          | durina h  |            | oriode i             | roct of     |          | olling  | from To   |            | <br>) Th | 2 (°C)    |           |              |           | 1      |      |
| · ·                    | 9.86     | 19.86     | 19.86      | 19.87                | 19.87       | -        | 9.87    | 19.87     | 19.        |          | 19.87     | 19.87     | 19.86        | 19.86     | 1      | (88) |
|                        |          |           |            |                      | 1           | I        |         |           |            | -        |           |           |              |           | J      | ~ /  |
| Utilisatio             |          |           |            |                      | <u> </u>    | 1        |         | i         | <u> </u>   | _        | 0.04      | 0.00      |              |           | 1      | (90) |
| (89)m=                 | 1        | 1         | 0.99       | 0.95                 | 0.84        |          | 0.63    | 0.43      | 0.         | S        | 0.81      | 0.98      | 1            | 1         | J      | (89) |
| Mean int               |          | temper    |            |                      | · · · · · · | <u> </u> |         |           | r <u> </u> |          | in Tabl   | e 9c)     |              | r         | 1      |      |
| (90)m= 1               | 7.77     | 18.07     | 18.54      | 19.13                | 19.6        | 1        | 9.82    | 19.87     | 19.        | 86       | 19.71     | 19.07     | 18.3         | 17.72     |        | (90) |
|                        |          |           |            |                      |             |          |         |           |            |          | f         | LA = Livi | ng area ÷ (4 | 4) =      | 0.11   | (91) |
| Mean int               | ternal   | temper    | ature (fo  | r the wh             | ole dwe     | llin     | g) = fl | LA × T1   | + (1       | – fL     | A) × T2   |           |              |           | _      |      |
| (92)m= 1               | 7.94     | 18.24     | 18.69      | 19.26                | 19.72       | 1        | 9.94    | 19.99     | 19.        | 98       | 19.83     | 19.2      | 18.46        | 17.9      |        | (92) |
| Apply ac               | djustm   | ent to tl | he mear    | interna              | l temper    | atu      | ire fro | m Table   | 4e,        | whe      | re appro  | opriate   |              |           | 1      |      |
| (93)m= 1               | 7.94     | 18.24     | 18.69      | 19.26                | 19.72       | 1        | 9.94    | 19.99     | 19.        | 98       | 19.83     | 19.2      | 18.46        | 17.9      |        | (93) |
| 8. Space               | e heat   | ing requ  | uirement   |                      |             |          |         |           |            |          |           |           |              |           |        |      |
|                        |          |           |            |                      |             | ned      | at ste  | ep 11 of  | Tabl       | le 9b    | , so tha  | t Ti,m=   | (76)m an     | d re-calo | culate |      |
| the utilis             | Jan      | Feb       | Mar        |                      | May         | Г        | Jun     | Jul       |            | ug       | Sep       | Oct       | Nov          | Dec       | 1      |      |
| <u>`</u><br>Utilisatio |          |           |            | Apr                  | Iviay       |          | Jun     | Jui       | A          | ug       | Sep       | 001       |              | Dec       | J      |      |
| (94)m=                 | 1        | 1         | 0.98       | 0.94                 | 0.83        |          | 0.63    | 0.44      | 0.5        | 51       | 0.81      | 0.97      | 1            | 1         | ]      | (94) |
| Useful g               | ains. I  | hmGm .    |            |                      |             |          |         | -         |            |          |           |           |              |           | ]      |      |
|                        |          |           | 2168.37    |                      | <u> </u>    | 19       | 10.04   | 1267.51   | 1324       | 4.19     | 1826.11   | 1738.72   | 1371.82      | 1200.48   | ]      | (95) |
| Monthly                | avera    | ge exte   | rnal tem   | perature             | e from T    | abl      | e 8     |           |            | 1        |           |           | 1            |           | 1      |      |
|                        | 4.3      | 4.9       | 6.5        | 8.9                  | 11.7        | 1        | 14.6    | 16.6      | 16         | .4       | 14.1      | 10.6      | 7.1          | 4.2       |        | (96) |
| Heat los               | s rate   | for mea   | an intern  | al temp              | erature,    | Lm       | i , W = | =[(39)m : | x [(9:     | 3)m-     | - (96)m   | ]         |              |           |        |      |
| (97)m= 52              | 60.41    | 5135.15   | 4687.19    | 3958.35              | 3059.77     | 20       | 25.82   | 1284.03   | 1356       | 5.19     | 2176.72   | 3281.91   | 4343.15      | 5251.32   |        | (97) |
|                        |          |           |            |                      |             |          |         |           |            |          |           |           |              |           |        |      |

| Space         | heatin           | g require          | ement fo                                      | r each n           | honth, k                | Wh/mont   | th = 0.02 | 24 x [(97  | )m – (95           | )m] x (4   | 1)m                     |            |                     |         |
|---------------|------------------|--------------------|-----------------------------------------------|--------------------|-------------------------|-----------|-----------|------------|--------------------|------------|-------------------------|------------|---------------------|---------|
| (98)m=        | 2938.81          | 2275.21            | 1874.01                                       | 1037.64            | 417.91                  | 0         | 0         | 0          | 0                  | 1148.14    | 2139.35                 | 3013.82    |                     | _       |
|               |                  |                    |                                               |                    |                         |           |           | Tota       | l per year         | (kWh/year  | <sup>.</sup> ) = Sum(9  | 8)15,912 = | 14844.9             | (98)    |
| Space         | heatin           | g require          | ement in                                      | kWh/m²             | /year                   |           |           |            |                    |            |                         | [          | 49.27               | (99)    |
| 9a. Ene       | ergy rec         | luiremer           | nts – Ind                                     | ividual h          | eating s                | ystems i  | ncluding  | micro-C    | CHP)               |            |                         |            |                     |         |
| -             | heatir           | •                  |                                               |                    |                         |           |           |            |                    |            |                         | г          |                     | ٦       |
|               |                  |                    |                                               | econdar            |                         | mentary   |           |            | (004)              |            |                         |            | 0                   | (201)   |
|               |                  |                    |                                               | nain syst          | . ,                     |           |           | (202) = 1  |                    | (000)]     |                         | ļ          | 1                   | (202)   |
|               |                  |                    | 0                                             | main sys           |                         |           |           | (204) = (2 | 02) × [1 –         | (203)] =   |                         |            | 1                   | (204)   |
|               | •                |                    |                                               | ing syste          |                         |           |           |            |                    |            |                         | ļ          | 93.5                | (206)   |
| Efficie       | ncy of s         | seconda            | ry/suppl                                      | ementar            | y heating               | g system  | ז, %<br>ו |            | · · · · · ·        |            | · · · · · ·             |            | 0                   | (208)   |
|               | Jan              | Feb                | Mar                                           | Apr                | May                     | Jun       | Jul       | Aug        | Sep                | Oct        | Nov                     | Dec        | kWh/yea             | ar      |
| · · ·         |                  | ř                  | ement (c                                      | alculate $1037.64$ | d above,<br>417.91      | )         | 0         | 0          | 0                  | 1148.14    | 2130 35                 | 3013.82    |                     |         |
| L             |                  |                    |                                               | 00 ÷ (20           |                         | 0         | 0         | 0          | 0                  | 1140.14    | 2100.00                 | 0010.02    |                     | (211)   |
| `́г           |                  | 2433.38            | <u>, , , , , , , , , , , , , , , , , , , </u> | 1109.77            | 446.97                  | 0         | 0         | 0          | 0                  | 1227.95    | 2288.08                 | 3223.34    |                     | (211)   |
| L             |                  |                    |                                               |                    |                         |           |           | -          | -                  | ar) =Sum(2 |                         |            | 15876.9             | (211)   |
| Space         | heatin           | g fuel (s          | econdar                                       | y), kWh/           | month                   |           |           |            |                    |            |                         | L          |                     | J       |
| = {[(98)      | m x (20          | 01)]}x1            | 00 ÷ (20                                      | )8)                |                         |           |           |            |                    |            |                         |            |                     |         |
| (215)m=       | 0                | 0                  | 0                                             | 0                  | 0                       | 0         | 0         | 0          | 0                  | 0          | 0                       | 0          |                     | _       |
|               |                  |                    |                                               |                    |                         |           |           | Tota       | l (kWh/yea         | ar) =Sum(2 | 215) <sub>15,1012</sub> | F          | 0                   | (215)   |
| Water I       | -                | •                  |                                               |                    |                         |           |           |            |                    |            |                         |            |                     |         |
| Output        | trom wa<br>242.7 | ater hea<br>214.14 | ter (calc<br>225.42                           | ulated a           | 0 <b>0VE)</b><br>199.28 | 178.83    | 172.48    | 188.26     | 187.61             | 210.27     | 221.41                  | 237.11     |                     |         |
| L<br>Efficien |                  | ater hea           | 1                                             |                    |                         |           |           |            |                    |            |                         |            | 79.8                | (216)   |
| (217)m=       | 9.58             | 89.47              | 89.22                                         | 88.56              | 86.74                   | 79.8      | 79.8      | 79.8       | 79.8               | 88.66      | 89.38                   | 89.62      |                     | (217)   |
| Fuel for      | water            | heating,           | kWh/m                                         | onth               |                         |           |           |            |                    |            |                         |            |                     |         |
|               |                  |                    | $\frac{1}{2} \div (217)$                      |                    | 000 70                  | 0044      | 040.44    | 005.04     | 005.4              | 007.40     | 0.47 70                 | 004.50     |                     |         |
| (219)m=       | 270.92           | 239.35             | 252.67                                        | 229.01             | 229.73                  | 224.1     | 216.14    | 235.91     | 235.1<br>I = Sum(2 | 237.16     | 247.73                  | 264.56     | 0000.00             |         |
| Annual        | totale           |                    |                                               |                    |                         |           |           | 1010       | ii – Curri(2       |            | Wh/yeaı                 |            | 2882.38<br>kWh/year | (219)   |
|               |                  |                    | ed, main                                      | system             | 1                       |           |           |            |                    | N          | wii/yeai                | [          | 15876.9             | 1       |
| -             | -                | fuel use           |                                               | -                  |                         |           |           |            |                    |            |                         | Ĺ          | 2882.38             | 1       |
|               | -                |                    |                                               | electric           | kaan-ha                 | t         |           |            |                    |            |                         | L          |                     | J       |
|               |                  |                    |                                               | cicotric           |                         | ſ         |           |            |                    |            |                         |            |                     | (000 -) |
|               |                  | ig pump            |                                               |                    |                         |           |           |            |                    |            |                         | 30         |                     | (230c)  |
| boiler        | with a f         | an-assis           | sted flue                                     |                    |                         |           |           |            |                    |            |                         | 45         |                     | (230e)  |
| Total el      | ectricity        | / for the          | above, l                                      | kWh/yea            | r                       |           |           | sum        | of (230a).         | (230g) =   |                         |            | 75                  | (231)   |
| Electric      | ity for li       | ghting             |                                               |                    |                         |           |           |            |                    |            |                         | [          | 723.12              | (232)   |
| Total de      | elivered         | l energy           | for all u                                     | ses (211           | )(221)                  | + (231)   | + (232).  | (237b)     | =                  |            |                         | [          | 19557.4             | (338)   |
| 12a. C        | O2 em            | issions ·          | – Individ                                     | ual heati          | ing syste               | ems inclu | uding mi  | cro-CHF    | )                  |            |                         | L          |                     | -       |

|                                                   | <b>Energy</b><br>kWh/year       | Emission factor<br>kg CO2/kWh | <b>Emissions</b><br>kg CO2/year |
|---------------------------------------------------|---------------------------------|-------------------------------|---------------------------------|
| Space heating (main system 1)                     | (211) x                         | 0.216 =                       | 3429.41 (261)                   |
| Space heating (secondary)                         | (215) x                         | 0.519 =                       | 0 (263)                         |
| Water heating                                     | (219) x                         | 0.216 =                       | 622.59 (264)                    |
| Space and water heating                           | (261) + (262) + (263) + (264) = |                               | 4052 (265)                      |
| Electricity for pumps, fans and electric keep-hot | (231) x                         | 0.519 =                       | 38.93 (267)                     |
| Electricity for lighting                          | (232) x                         | 0.519 =                       | 375.3 (268)                     |
| Total CO2, kg/year                                | sum                             | of (265)(271) =               | 4466.23 (272)                   |
|                                                   |                                 |                               |                                 |

TER =

14.82 (273)

# **Regulations Compliance Report**

| Project Informati              | ion:                   |                                           |                               |                        |
|--------------------------------|------------------------|-------------------------------------------|-------------------------------|------------------------|
| ssessed By:                    | Daniel Watt (STR       | RO026464)                                 | Building Type:                | Detached House         |
| Dwelling Details               | :                      |                                           |                               |                        |
| EW DWELLING                    | DESIGN STAGE           |                                           | Total Floor Area: 3           | 801.27m²               |
| ite Reference :                | Ridgeway Road          |                                           | Plot Reference:               | The Shingles- Be Green |
| ddress :                       | The Shingles, Ch       | elvey Batch, Backwell, BRISTO             | DL, BS48 3BZ                  |                        |
| Client Details:                | -                      |                                           |                               |                        |
| ame:                           |                        |                                           |                               |                        |
| ddress :                       |                        |                                           |                               |                        |
| his report cove                | ers items included v   | within the SAP calculations.              |                               |                        |
| -                              | ete report of regula   |                                           |                               |                        |
| 1a TER and DE                  | R                      |                                           |                               |                        |
| uel for main hea               | ting system: Electric  | city                                      |                               |                        |
| uel factor: 1.55 (             |                        |                                           |                               |                        |
| -                              | oxide Emission Rate    | . ,                                       | 22.22 kg/m <sup>2</sup>       | 01/                    |
| b TFEE and D                   | Dioxide Emission Ra    | ate (DER)                                 | 13.28 kg/m <sup>2</sup>       | OK                     |
|                                | ergy Efficiency (TFE   | E)                                        | 63.1 kWh/m²                   |                        |
| -                              | Energy Efficiency (DF  |                                           | 53.3 kWh/m <sup>2</sup>       |                        |
|                                |                        | /                                         |                               | OK                     |
| 2 Fabric U-valu                | es                     |                                           |                               |                        |
| Element                        | t                      | Average                                   | Highest                       |                        |
| External                       | wall                   | 0.22 (max. 0.30)                          | 0.22 (max. 0.70)              | OK                     |
| Floor                          |                        | 0.15 (max. 0.25)                          | 0.15 (max. 0.70)              | OK                     |
| Roof                           | 10                     | 0.14 (max. 0.20)<br>1.30 (max. 2.00)      | 0.14 (max. 0.35)              | OK<br>OK               |
| Opening<br>2a Thermal bric     |                        | 1.50 (IIIax. 2.00)                        | 1.30 (max. 3.30)              | UK                     |
|                                |                        | from linear thermal transmittan           | ces for each junction         |                        |
| 3 Air permeabil                |                        |                                           |                               |                        |
| -                              | ability at 50 pascals  |                                           | 3.00 (design val              | ue)                    |
| Maximum                        |                        |                                           | 10.0                          | OK                     |
| 4 Heating effici               | encv                   |                                           |                               |                        |
|                                | ing system:            |                                           |                               |                        |
| maintroat                      | ng oyotonn             | Heat pumps with radiators of              | or underfloor heating - elect | ric                    |
|                                |                        | NIBE F2040-16                             | Ū                             |                        |
|                                |                        |                                           |                               |                        |
| Conservation of the second     | h a a tha a successory |                                           |                               |                        |
| Secondary                      | heating system:        | Room heaters - wood<br>Closed room heater |                               |                        |
|                                |                        | Efficiency 65.0 %                         |                               |                        |
|                                |                        | Minimum 65.0 %                            |                               | ОК                     |
|                                |                        |                                           |                               |                        |
| 5 Cylinder insu                | lation                 |                                           |                               |                        |
| 5 Cylinder insu<br>Hot water 3 |                        | Measured cylinder loss: 2.7               | 5 kWh/day                     |                        |

# **Regulations Compliance Report**

| Primary pipework insulated   | Yes                      |                                 | OK    |
|------------------------------|--------------------------|---------------------------------|-------|
| Controls                     |                          |                                 |       |
|                              |                          |                                 |       |
| Space heating controls       | TTZC by plumbing and el  | ectrical services               | OK    |
| Hot water controls:          | Cylinderstat             |                                 | OK    |
|                              | Independent timer for DH | W                               | OK    |
| Boiler interlock:            | Yes                      |                                 | OK    |
| ' Low energy lights          |                          |                                 |       |
| Percentage of fixed lights w | ith low-energy fittings  | 100.0%                          |       |
| Minimum                      |                          | 75.0%                           | OK    |
| B Mechanical ventilation     |                          |                                 |       |
| Continuous supply and extr   | act system               |                                 |       |
| Specific fan power:          |                          | 0.89                            |       |
| Maximum                      |                          | 1.5                             | OK    |
| MVHR efficiency:             |                          | 89%                             |       |
| Minimum                      |                          | 70%                             | OK    |
| Summertime temperature       |                          |                                 |       |
| Overheating risk (South We   | st England):             | Not significant                 | OK    |
| ased on:                     |                          |                                 |       |
| Overshading:                 |                          | Average or unknown              |       |
| Windows facing: North Wes    | t                        | 22.67m <sup>2</sup>             |       |
| Windows facing: South Eas    | t                        | 35.5m <sup>2</sup>              |       |
| Windows facing: North East   | :                        | 11.67m <sup>2</sup>             |       |
| Windows facing: South Wes    | st                       | 15.45m <sup>2</sup>             |       |
| Ventilation rate:            |                          | 8.00                            |       |
| Blinds/curtains:             |                          | Dark-coloured curtain or roller | blind |
|                              |                          | Closed 100% of daylight hours   | 6     |

#### 10 Key features

Air permeablility Secondary heating (wood logs) Secondary heating fuel wood logs 3.0 m³/m²h

# **SAP Input**

| Property Details:                  | The Shingles- Be Green       |                                                  |                   |                  |               |                      |
|------------------------------------|------------------------------|--------------------------------------------------|-------------------|------------------|---------------|----------------------|
| Address:                           |                              | The Shingles, Chelvey Ba                         | tch, Backwell, BR | ISTOL, BS48 3B   | Z             |                      |
| Located in:                        |                              | England                                          |                   |                  |               |                      |
| Region:                            |                              | South West England                               |                   |                  |               |                      |
| UPRN:                              |                              | UPRN-000024066096                                |                   |                  |               |                      |
| Date of assess                     |                              | 20 January 2023                                  |                   |                  |               |                      |
| Date of certific                   |                              | 20 January 2023                                  |                   |                  |               |                      |
| Assessment ty                      | •                            | New dwelling design stag                         | le                |                  |               |                      |
| Transaction ty                     | pe:                          | New dwelling                                     |                   |                  |               |                      |
| Tenure type:<br>Related party of   | dicelocure                   | Owner-occupied<br>Employed by the professi       | onal dealing with | the property tra | nsaction      |                      |
| Thermal Mass                       |                              | Indicative Value Medium                          | onal dealing with | the property the | Insaction     |                      |
|                                    | 125 litres/person/d          |                                                  |                   |                  |               |                      |
| PCDF Version:                      |                              | 510                                              |                   |                  |               |                      |
| Property descript                  | ion:                         |                                                  |                   |                  |               |                      |
| Dwelling type:                     |                              | House                                            |                   |                  |               |                      |
| Detachment:                        |                              | Detached                                         |                   |                  |               |                      |
| Year Completed:                    |                              | 2023                                             |                   |                  |               |                      |
| Floor Location                     |                              | Floor area:                                      |                   |                  |               |                      |
|                                    | •                            |                                                  | (                 | Storey height    | :             |                      |
| Floor 0                            |                              | 211.32 m <sup>2</sup>                            |                   | 2.75 m           | -             |                      |
| Floor 1                            |                              | 89.95 m <sup>2</sup>                             |                   | 2.55 m           |               |                      |
|                                    |                              |                                                  |                   | 2.00 11          |               |                      |
| Living area:<br>Front of dwelling  | faces:                       | 32 m <sup>2</sup> (fraction 0.127)<br>North West |                   |                  |               |                      |
| Opening types:                     |                              |                                                  |                   |                  |               |                      |
| Name:                              | Source:                      | Type:                                            | Glazing:          |                  | Argon:        | Frame:               |
| Front Door                         | Manufacturer                 | Solid                                            |                   |                  |               | Wood                 |
| Front                              | Manufacturer                 | Windows                                          |                   | 0.05, soft coat  | Yes           | Metal, thermal break |
| Rear                               | SAP 2012                     | Windows                                          |                   | 0.05, soft coat  | Yes           | Metal, thermal break |
| Right                              | SAP 2012                     | Windows                                          |                   | 0.05, soft coat  | Yes           | Metal, thermal break |
| Left                               | SAP 2012                     | Windows                                          | IOW-E, EN =       | 0.05, soft coat  | Yes           | Metal, thermal break |
| Name:                              | Gap:                         | Frame Facto                                      |                   | U-value:         | Area:         | No. of Openings:     |
| Front Door                         | mm                           | 0.7                                              | 0                 | 1.3              | 2.64          | 1                    |
| Front                              | 16mm or more                 | 0.8                                              | 0.72<br>0.72      | 1.3<br>1.3       | 22.67<br>35.5 | 1                    |
| Rear<br>Right                      | 16mm or more<br>16mm or more | 0.8<br>0.8                                       | 0.72              | 1.3              | 35.5<br>11.67 | 1                    |
| Left                               | 16mm or more                 | 0.8                                              | 0.72              | 1.3              | 15.45         | 1                    |
| Len                                |                              | 0.0                                              | 0.72              | 1.5              | 15.45         | I                    |
| Name:                              | Type-Name:                   | Location:                                        | Orient:           |                  | Width:        | Height:              |
| Front Door                         |                              | External Walls                                   | North West        |                  | 0             | 0                    |
| Front                              |                              | External Walls                                   | North West        |                  | 0             | 0                    |
| Rear                               |                              | External Walls                                   | South East        |                  | 0             | 0                    |
| Right                              |                              | External Walls                                   | North East        |                  | 0             | 0                    |
| Left                               |                              | External Walls                                   | South West        |                  | 0             | 0                    |
| Overshading:                       |                              | Average or unknown                               |                   |                  |               |                      |
| Opaque Elements                    | 5:                           |                                                  |                   |                  |               |                      |
| Type:                              |                              | nings: Net area:                                 | U-value:          | Ru value:        | Curtain       | wall: Kappa:         |
| External Element<br>External Walls | <u>ts</u><br>240.92 87.      | .93 152.99                                       | 0.22              | 0                | False         | N/A                  |
| FLat ceiling                       | 83.52 0                      | 83.52                                            | 0.22              | 0                | ו מואכ        | N/A                  |
| Sloped roof                        | 154 0                        | 154                                              | 0.14              | 0                |               | N/A                  |
|                                    | 101 0                        | 101                                              | 0.11              | 5                |               | i v/ / V             |

# **SAP Input**

| Ground<br><u>Internal Elem</u><br>Party Elemer |                                  |                                                                                                                                                                                                     |                                                                                                                                                         | 0.15                                                                 |                                          | N/A                     |
|------------------------------------------------|----------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------|------------------------------------------|-------------------------|
| Thermal brid                                   | ges:                             |                                                                                                                                                                                                     |                                                                                                                                                         |                                                                      |                                          |                         |
| Thermal brid                                   |                                  |                                                                                                                                                                                                     |                                                                                                                                                         |                                                                      | Y-Value = 0.0896                         |                         |
|                                                | [Approved]                       | Length<br>31                                                                                                                                                                                        | Psi-value                                                                                                                                               | e<br>E2                                                              | Other lintels (including other steel I   | lintals)                |
|                                                | [Approved]                       | 22                                                                                                                                                                                                  | 0.3                                                                                                                                                     | E3                                                                   | Sill                                     | linteis)                |
|                                                | [Approved]                       | 75                                                                                                                                                                                                  | 0.05                                                                                                                                                    | E4                                                                   | Jamb                                     |                         |
|                                                | [Approved]                       | 17                                                                                                                                                                                                  | 0.16                                                                                                                                                    | E5                                                                   | Ground floor (normal)                    |                         |
|                                                |                                  | 7                                                                                                                                                                                                   | 0.07                                                                                                                                                    | E19                                                                  | Ground floor (inverted)                  |                         |
|                                                |                                  | 15                                                                                                                                                                                                  | 0.07                                                                                                                                                    | E22                                                                  | Basement floor                           |                         |
|                                                | [Approved]                       | 53                                                                                                                                                                                                  | 0.07                                                                                                                                                    | E6                                                                   | Intermediate floor within a dwelling     | ]                       |
|                                                |                                  | 66                                                                                                                                                                                                  | 0.56                                                                                                                                                    | E15                                                                  | Flat roof with parapet                   |                         |
|                                                | [Approved]                       | 65                                                                                                                                                                                                  | 0.09                                                                                                                                                    | E16                                                                  | Corner (normal)                          |                         |
|                                                | [Approved]                       | 32                                                                                                                                                                                                  | -0.09                                                                                                                                                   | E17                                                                  | Corner (inverted internal area great     | ter than external area) |
| Ventilation:                                   |                                  |                                                                                                                                                                                                     |                                                                                                                                                         |                                                                      |                                          |                         |
| Pressure test<br>Ventilation:                  |                                  | Number of<br>Ductwork: I<br>Approved Ir                                                                                                                                                             | ith heat recov<br>wet rooms: Ki<br>nsulation, rigi<br>nstallation Sch                                                                                   | tchen + 4<br>d<br>neme: False                                        | 9                                        |                         |
| Number of cl                                   | 5                                |                                                                                                                                                                                                     | secondary: 1,                                                                                                                                           | other: 0)                                                            |                                          |                         |
| Number of o                                    |                                  | 0                                                                                                                                                                                                   |                                                                                                                                                         |                                                                      |                                          |                         |
| Number of fa                                   |                                  | 0<br>0                                                                                                                                                                                              |                                                                                                                                                         |                                                                      |                                          |                         |
|                                                | assive stacks:<br>des sheltered: | 2                                                                                                                                                                                                   |                                                                                                                                                         |                                                                      |                                          |                         |
| Pressure test                                  |                                  | 3                                                                                                                                                                                                   |                                                                                                                                                         |                                                                      |                                          |                         |
| Main heating                                   |                                  |                                                                                                                                                                                                     |                                                                                                                                                         |                                                                      |                                          |                         |
| Main heating                                   |                                  | Electric hea<br>Fuel: Electri<br>Info Source<br>Database: (<br>Brand name<br>Model: F204<br>Model quali<br>(provides D<br>Underfloor I<br>Central hea<br>Design flow<br>Room-seale<br>Boiler interl | icity<br>: Boiler Datab<br>rev 510, prod<br>e: NIBE<br>40-16<br>fier: Underfloo<br>HW all year)<br>heating, pipes<br>ting pump : 2<br>temperature:<br>d | ase<br>uct index 1<br>or<br>in screed a<br>013 or late<br>Design flo | 02043, SEDBUK 386%):<br>above insulation |                         |
| Main heating                                   |                                  |                                                                                                                                                                                                     |                                                                                                                                                         |                                                                      |                                          |                         |
| Main heating                                   |                                  | Time and te<br>services<br>Control cod                                                                                                                                                              |                                                                                                                                                         | ne control                                                           | by suitable arrangement of pluml         | bing and electrical     |
| Secondary he                                   | eating system:                   |                                                                                                                                                                                                     |                                                                                                                                                         |                                                                      |                                          |                         |
| Secondary he                                   | eating system:                   | Fuel :wood                                                                                                                                                                                          | oom heaters<br>logs<br>: SAP Tables<br>n heater                                                                                                         |                                                                      |                                          |                         |

## **SAP Input**

| Wat  | hoa | tino |
|------|-----|------|
| vvai | пеа | ung  |

#### Water heating:

From main heating system Water code: 901 Fuel :Electricity Hot water cylinder Cylinder volume: 400 litres Cylinder insulation: Factory 100 mm Primary pipework insulation: True Cylinderstat: True Cylinder in heated space: True Solar panel: False

#### Others:

Electricity tariff: In Smoke Control Area: Conservatory: Low energy lights: Terrain type: EPC language: Wind turbine: Photovoltaics: Assess Zero Carbon Home: Standard Tariff No No conservatory 100% Low rise urban / suburban English No None No

| Assessor Name: Daniel Watt Stroma Number: STRO026464                                                                                         | RO026464     |  |  |
|----------------------------------------------------------------------------------------------------------------------------------------------|--------------|--|--|
| Software Name:Stroma FSAP 2012Software Version:Version: 1.0.5.59                                                                             |              |  |  |
| Property Address: The Shingles- Be Green                                                                                                     |              |  |  |
| Address : The Shingles, Chelvey Batch, Backwell, BRISTOL, BS48 3BZ                                                                           |              |  |  |
| 1. Overall dwelling dimensions:                                                                                                              |              |  |  |
| Area(m <sup>2</sup> ) Av. Height(m) Volume(m <sup>3</sup> )                                                                                  |              |  |  |
| Ground floor 211.32 (1a) x 2.75 (2a) = 581.13                                                                                                | (3a)         |  |  |
| First floor 89.95 (1b) x 2.55 (2b) = 229.37                                                                                                  | (3b)         |  |  |
| Total floor area TFA = $(1a)+(1b)+(1c)+(1d)+(1e)+(1n)$ 301.27 (4)                                                                            |              |  |  |
| Dwelling volume $(3a)+(3b)+(3c)+(3d)+(3e)+(3n) = 810.5$                                                                                      | (5)          |  |  |
| 2. Ventilation rate:                                                                                                                         |              |  |  |
| main secondary other total m <sup>3</sup> per hour heating heating                                                                           |              |  |  |
| Number of chimneys $0 + 1 + 0 = 1 \times 40 = 40$                                                                                            | (6a)         |  |  |
| Number of open flues $0 + 0 + 0 = 0 \times 20 = 0$                                                                                           | (6b)         |  |  |
| Number of intermittent fans $0 \times 10 = 0$                                                                                                | (7a)         |  |  |
| Number of passive vents $0 \times 10 = 0$                                                                                                    | (7b)         |  |  |
| Number of flueless gas fires $0 \times 40 = 0$                                                                                               | (7c)         |  |  |
|                                                                                                                                              |              |  |  |
| Air changes per hou                                                                                                                          | r            |  |  |
| Infiltration due to chimneys, flues and fans = $(6a)+(6b)+(7a)+(7c) = 40$ $\div$ (5) = 0.05                                                  | (8)          |  |  |
| If a pressurisation test has been carried out or is intended, proceed to (17), otherwise continue from (9) to (16)                           |              |  |  |
| Number of storeys in the dwelling (ns)0Additional infiltration[(9)-1]x0.1 =0                                                                 | (9)          |  |  |
|                                                                                                                                              | (10)<br>(11) |  |  |
| Structural infiltration: 0.25 for steel or timber frame or 0.35 for masonry construction                                                     | (11)         |  |  |
| deducting areas of openings); if equal user 0.35                                                                                             |              |  |  |
| If suspended wooden floor, enter 0.2 (unsealed) or 0.1 (sealed), else enter 0                                                                | (12)         |  |  |
| If no draught lobby, enter 0.05, else enter 0                                                                                                | (13)         |  |  |
| Percentage of windows and doors draught stripped0                                                                                            | (14)         |  |  |
| Window infiltration $0.25 - [0.2 \times (14) \div 100] =$ 0                                                                                  | (15)         |  |  |
| Infiltration rate $(8) + (10) + (11) + (12) + (13) + (15) = 0$                                                                               | (16)         |  |  |
| Air permeability value, q50, expressed in cubic metres per hour per square metre of envelope area 3                                          | (17)         |  |  |
| If based on air permeability value, then $(18) = [(17) \div 20] + (8)$ , otherwise $(18) = (16)$ 0.2                                         | (18)         |  |  |
| Air permeability value applies if a pressurisation test has been done or a degree air permeability is being used Number of sides sheltered 2 | (10)         |  |  |
| Number of sides sheltered         2           Shelter factor $(20) = 1 - [0.075 \times (19)] =$ $0.85$                                       | (19)<br>(20) |  |  |
| Infiltration rate incorporating shelter factor $(21) = (18) \times (20) =$ $0.17$                                                            | (21)         |  |  |
| Infiltration rate modified for monthly wind speed                                                                                            | L` '         |  |  |
| Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec                                                                                              |              |  |  |
| Monthly average wind speed from Table 7                                                                                                      |              |  |  |
| (22)m= 5.1 5 4.9 4.4 4.3 3.8 3.8 3.7 4 4.3 4.5 4.7                                                                                           |              |  |  |

| Wind F                                                                                                                                | actor (2                                                                                                          | 2a)m =                                                                                                          | (22)m ÷                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 4                             |                         |                                                                                                                   |                                                                                                              |                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                          |                            |                   | _                  |                                                                                                      |
|---------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------|-------------------------|-------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|----------------------------|-------------------|--------------------|------------------------------------------------------------------------------------------------------|
| (22a)m=                                                                                                                               | 1.27                                                                                                              | 1.25                                                                                                            | 1.23                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1.1                           | 1.08                    | 0.95                                                                                                              | 0.95                                                                                                         | 0.92                                                                                                                                        | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1.08                                                                                                     | 1.12                       | 1.18              |                    |                                                                                                      |
| Adjuste                                                                                                                               | ed infiltra                                                                                                       | ation rate                                                                                                      | e (allowi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ng for sł                     | nelter an               | d wind s                                                                                                          | peed) =                                                                                                      | (21a) x                                                                                                                                     | (22a)m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                          |                            |                   |                    |                                                                                                      |
|                                                                                                                                       | 0.22                                                                                                              | 0.21                                                                                                            | 0.21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.19                          | 0.18                    | 0.16                                                                                                              | 0.16                                                                                                         | 0.16                                                                                                                                        | 0.17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.18                                                                                                     | 0.19                       | 0.2               |                    |                                                                                                      |
|                                                                                                                                       | ate effec                                                                                                         |                                                                                                                 | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | rate for t                    | he appli                | cable ca                                                                                                          | se                                                                                                           |                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                          |                            |                   |                    |                                                                                                      |
|                                                                                                                                       | echanica<br>aust air he                                                                                           |                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | andix NL (2                   | 2h) _ (22               | $\sim$                                                                                                            | auction (N                                                                                                   |                                                                                                                                             | nuico (22h                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ) - (220)                                                                                                |                            |                   | 0.5                | (23a)                                                                                                |
|                                                                                                                                       | anced with                                                                                                        | • •                                                                                                             | 0 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                               | , (                     | , (                                                                                                               |                                                                                                              | <i>,, ,</i>                                                                                                                                 | <b>`</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ) = (23a)                                                                                                |                            |                   | 0.5                | (23b)                                                                                                |
|                                                                                                                                       |                                                                                                                   |                                                                                                                 | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -                             | -                       |                                                                                                                   |                                                                                                              |                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | <b>)</b>                                                                                                 | 006)                       | 1 (00 c)          | 75.65              | (23c)                                                                                                |
| ,                                                                                                                                     | i                                                                                                                 | 0.33                                                                                                            | 0.33                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.31                          | 0.3                     | at recove                                                                                                         | 0.28                                                                                                         | HR) (24a                                                                                                                                    | 0.29                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 2D)m + (.<br>0.3                                                                                         | 23D) × [<br>0.31           | 1 – (23c)<br>0.32 | ÷100]              | (24a)                                                                                                |
| (24a)m=                                                                                                                               |                                                                                                                   |                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                               |                         |                                                                                                                   |                                                                                                              |                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                          |                            | 0.32              | I                  | (24a)                                                                                                |
| ,                                                                                                                                     | balance                                                                                                           |                                                                                                                 | anical ve                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                               |                         | neat rec                                                                                                          |                                                                                                              |                                                                                                                                             | m = (22)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2) + m(a<br>0                                                                                            | ,<br>I                     |                   | l                  | (24b)                                                                                                |
| (24b)m=                                                                                                                               |                                                                                                                   | Ţ                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | -                             | -                       | -                                                                                                                 | -                                                                                                            | _                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0                                                                                                        | 0                          | 0                 |                    | (240)                                                                                                |
| ,                                                                                                                                     | whole ho<br>if (22b)m                                                                                             |                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                               | •                       | •                                                                                                                 |                                                                                                              |                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 5 v (23h                                                                                                 |                            |                   |                    |                                                                                                      |
| (24c)m=                                                                                                                               | r í í                                                                                                             | 0                                                                                                               | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                               | 0 = (201)               |                                                                                                                   | 0                                                                                                            | $\frac{0}{0} = \frac{221}{2}$                                                                                                               | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                          | ,,<br>0                    | 0                 | 1                  | (24c)                                                                                                |
|                                                                                                                                       | natural \                                                                                                         | Ţ                                                                                                               | Ţ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Ŧ                             | -                       | -                                                                                                                 | -                                                                                                            |                                                                                                                                             | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Ů                                                                                                        | ů                          | ů                 | ľ                  | ( - <b>/</b>                                                                                         |
| ,                                                                                                                                     | if (22b)m                                                                                                         |                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                               | •                       | •                                                                                                                 |                                                                                                              |                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.5]                                                                                                     |                            |                   |                    |                                                                                                      |
| (24d)m=                                                                                                                               | 0                                                                                                                 | 0                                                                                                               | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0                             | 0                       | 0                                                                                                                 | 0                                                                                                            | 0                                                                                                                                           | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0                                                                                                        | 0                          | 0                 |                    | (24d)                                                                                                |
| Effe                                                                                                                                  | ctive air                                                                                                         | change                                                                                                          | rate - en                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | iter (24a                     | ) or (24                | b) or (24                                                                                                         | c) or (24                                                                                                    | d) in boy                                                                                                                                   | (25)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                          |                            |                   | J                  |                                                                                                      |
| (25)m=                                                                                                                                | 0.34                                                                                                              | 0.33                                                                                                            | 0.33                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.31                          | 0.3                     | 0.28                                                                                                              | 0.28                                                                                                         | 0.28                                                                                                                                        | 0.29                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.3                                                                                                      | 0.31                       | 0.32              |                    | (25)                                                                                                 |
| 2 40                                                                                                                                  | at losses                                                                                                         | and be                                                                                                          | at loce r                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | aramat                        | or:                     |                                                                                                                   |                                                                                                              | •                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                          |                            |                   |                    |                                                                                                      |
| ELEN                                                                                                                                  |                                                                                                                   | Gros                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Openin                        |                         | Net Ar                                                                                                            | ea                                                                                                           | U-valı                                                                                                                                      | IP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | AXU                                                                                                      |                            | k-value           | Δ Δ                | Xk                                                                                                   |
|                                                                                                                                       |                                                                                                                   | area                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | m                             | -                       | A ,r                                                                                                              |                                                                                                              | W/m2                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | (W/I                                                                                                     | <b>&lt;</b> )              | kJ/m²·ł           |                    |                                                                                                      |
| Doors                                                                                                                                 |                                                                                                                   |                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                               |                         | 2.64                                                                                                              | x                                                                                                            | r                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 3.432                                                                                                    |                            |                   |                    | (26)                                                                                                 |
| Window                                                                                                                                |                                                                                                                   |                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                               |                         | 2.01                                                                                                              | ^                                                                                                            | 1.3                                                                                                                                         | =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 28.01                                                                                                    |                            |                   |                    | ( -/                                                                                                 |
|                                                                                                                                       | ws Type                                                                                                           | 1                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                               |                         | 22.67                                                                                                             | <b>-</b>                                                                                                     | 1.3<br>/[1/( 1.3 )+                                                                                                                         | !                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 20.01                                                                                                    |                            |                   |                    | (27)                                                                                                 |
| Window                                                                                                                                | ws Type<br>ws Type                                                                                                |                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                               |                         |                                                                                                                   | ×1,                                                                                                          |                                                                                                                                             | 0.04] =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 43.87                                                                                                    |                            |                   |                    |                                                                                                      |
|                                                                                                                                       |                                                                                                                   | 2                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                               |                         | 22.67                                                                                                             | x1,                                                                                                          | /[1/( 1.3 )+                                                                                                                                | 0.04] =<br>0.04] =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                          |                            |                   |                    | (27)                                                                                                 |
| Windov                                                                                                                                | ws Type                                                                                                           | 2<br>3                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                               |                         | 22.67<br>35.5                                                                                                     | x1,<br>x1,<br>x1,<br>x1,                                                                                     | /[1/( 1.3 )+<br>/[1/( 1.3 )+                                                                                                                | 0.04] =<br>0.04] =<br>0.04] =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 43.87                                                                                                    |                            |                   |                    | (27)<br>(27)                                                                                         |
| Windov                                                                                                                                | ws Type<br>ws Type                                                                                                | 2<br>3                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                               |                         | 22.67<br>35.5<br>11.67<br>15.45                                                                                   | x1)<br>x1)<br>x1)<br>x1)<br>x1)                                                                              | /[1/( 1.3 )+<br>/[1/( 1.3 )+<br>/[1/( 1.3 )+<br>/[1/( 1.3 )+                                                                                | 0.04] =<br>0.04] =<br>0.04] =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 43.87<br>14.42<br>19.09                                                                                  |                            |                   | -,                 | (27)<br>(27)<br>(27)<br>(27)                                                                         |
| Windov<br>Windov<br>Floor                                                                                                             | ws Type<br>ws Type                                                                                                | 2<br>3<br>4                                                                                                     | 92                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 87.9                          | 3                       | 22.67<br>35.5<br>11.67<br>15.45<br>211.3                                                                          | x 1,<br>x 1,<br>x 1,<br>x 1,<br>x 1,<br>x 1,<br>x 1,<br>x 2, x                                               | /[1/( 1.3 )+<br>/[1/( 1.3 )+<br>/[1/( 1.3 )+<br>/[1/( 1.3 )+<br>                                                                            | 0.04] = [ 0.04] = [ 0.04] = [ 0.04] = [                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 43.87<br>14.42<br>19.09<br>31.698                                                                        |                            |                   | ]                  | (27)<br>(27)<br>(27)<br>(27)<br>(27)<br>(28)                                                         |
| Windov<br>Windov<br>Floor<br>Walls                                                                                                    | ws Type<br>ws Type<br>ws Type                                                                                     | 2<br>3<br>4<br>                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 87.9                          | 3                       | 22.67<br>35.5<br>11.67<br>15.45<br>211.3<br>152.9                                                                 | x 1/<br>x 1/<br>x 1/<br>x 1/<br>x 1/<br>x 1/<br>x 2<br>x 2<br>y x                                            | /[1/( 1.3 )+<br>/[1/( 1.3 )+<br>/[1/( 1.3 )+<br>/[1/( 1.3 )+<br>/[1/( 1.3 )+<br>0.15<br>0.22                                                | $\begin{array}{c} 0.04] = \\ 0.04] = \\ 0.04] = \\ 0.04] = \\ 0.04] = \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \end{array} = \\ \\ \\ \\$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 43.87<br>14.42<br>19.09<br>31.698<br>33.66                                                               |                            |                   |                    | (27)<br>(27)<br>(27)<br>(27)<br>(27)<br>(28)<br>(28)<br>(29)                                         |
| Windov<br>Windov<br>Floor<br>Walls<br>Roof 1                                                                                          | ws Type<br>ws Type<br>ws Type<br>Type1                                                                            | 2<br>3<br>4<br>240.9<br>83.5                                                                                    | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0                             | 3                       | 22.67<br>35.5<br>11.67<br>15.45<br>211.3<br>152.9<br>83.52                                                        | x 11,<br>x 11,<br>x 11,<br>x 11,<br>x 11,<br>x 11,<br>x 11,<br>2 x<br>x 2 x<br>2 x                           | /[1/( 1.3 )+<br>/[1/( 1.3 )+<br>/[1/( 1.3 )+<br>/[1/( 1.3 )+<br>/[1/( 1.3 )+<br>0.15<br>0.22<br>0.14                                        | $\begin{array}{c} 0.04] = \\ 0.04] = \\ 0.04] = \\ 0.04] = \\ 0.04] = \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 43.87<br>14.42<br>19.09<br>31.698<br>33.66<br>11.69                                                      |                            |                   |                    | (27)<br>(27)<br>(27)<br>(27)<br>(28)<br>(28)<br>(29)<br>(30)                                         |
| Windov<br>Windov<br>Floor<br>Walls<br>Roof 1<br>Roof 1                                                                                | ws Type<br>ws Type<br>ws Type<br>Type1<br>Type2                                                                   | 2<br>3<br>4<br>240.1<br>83.5<br>154                                                                             | 2<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                               | 3                       | 22.67<br>35.5<br>11.67<br>15.45<br>211.3<br>152.9<br>83.52<br>154                                                 | x 1/<br>x 1/<br>x 1/<br>x 1/<br>x 1/<br>z x 1/<br>z x 1/<br>z x<br>9 x<br>2 x<br>2 x<br>2 x<br>x x           | /[1/( 1.3 )+<br>/[1/( 1.3 )+<br>/[1/( 1.3 )+<br>/[1/( 1.3 )+<br>/[1/( 1.3 )+<br>0.15<br>0.22                                                | $\begin{array}{c} 0.04] = \\ 0.04] = \\ 0.04] = \\ 0.04] = \\ 0.04] = \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \end{array} = \\ \\ \\ \\$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 43.87<br>14.42<br>19.09<br>31.698<br>33.66                                                               |                            |                   |                    | (27)<br>(27)<br>(27)<br>(27)<br>(28)<br>(29)<br>(30)<br>(30)                                         |
| Windov<br>Windov<br>Floor<br>Walls<br>Roof 1<br>Roof 1<br>Total a                                                                     | ws Type<br>ws Type<br>ws Type<br>Type1<br>Type2<br>area of el                                                     | 2<br>3<br>4<br>240.3<br>83.5<br>154                                                                             | 2<br>1<br>, m²                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0                             |                         | 22.67<br>35.5<br>11.67<br>15.45<br>211.3<br>152.9<br>83.52<br>154<br>689.7                                        | x 1/<br>x 1/<br>x 1/<br>x 1/<br>x 1/<br>2 x<br>9 x<br>2 x<br>9 x<br>2 x<br>6                                 | /[1/( 1.3 )+<br>/[1/( 1.3 )+<br>/[1/( 1.3 )+<br>/[1/( 1.3 )+<br>/[1/( 1.3 )+<br>0.15<br>0.22<br>0.14<br>0.14                                | $\begin{array}{c} 0.04] = \\ 0.04] = \\ 0.04] = \\ 0.04] = \\ \\ 0.04] = \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 43.87<br>14.42<br>19.09<br>31.698<br>33.66<br>11.69<br>21.56                                             |                            | paragraph         |                    | (27)<br>(27)<br>(27)<br>(27)<br>(28)<br>(28)<br>(29)<br>(30)                                         |
| Windov<br>Windov<br>Floor<br>Walls<br>Roof 1<br>Roof 1<br>Total a                                                                     | ws Type<br>ws Type<br>ws Type<br>Type1<br>Type2<br>area of el                                                     | 2<br>3<br>4<br>240.1<br>83.5<br>154<br>lements<br>roof winder                                                   | , m <sup>2</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0<br>0                        | ndow U-va               | 22.67<br>35.5<br>11.67<br>15.45<br>211.3<br>152.9<br>83.52<br>154<br>689.7<br>alue calcul                         | x 1/<br>x 1/<br>x 1/<br>x 1/<br>x 1/<br>2 x<br>9 x<br>2 x<br>9 x<br>2 x<br>6                                 | /[1/( 1.3 )+<br>/[1/( 1.3 )+<br>/[1/( 1.3 )+<br>/[1/( 1.3 )+<br>/[1/( 1.3 )+<br>0.15<br>0.22<br>0.14<br>0.14                                | 0.04] = [<br>0.04] = [<br>0.04] = [<br>0.04] = [<br>0.04] = [<br>0.04] = [                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 43.87<br>14.42<br>19.09<br>31.698<br>33.66<br>11.69<br>21.56                                             |                            | paragraph         | 3.2                | (27)<br>(27)<br>(27)<br>(27)<br>(28)<br>(29)<br>(30)<br>(30)                                         |
| Windov<br>Floor<br>Walls<br>Roof 1<br>Roof 1<br>Total a<br>* for win<br>** includ                                                     | ws Type<br>ws Type<br>ws Type<br>Type1<br>Type2<br>area of el<br>dows and                                         | 2<br>3<br>4<br>240.9<br>83.5<br>154<br>lements<br>roof winde<br>s on both                                       | , m <sup>2</sup><br>, m <sup>2</sup><br>sides of in                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0<br>0<br>ffective wi         | ndow U-va               | 22.67<br>35.5<br>11.67<br>15.45<br>211.3<br>152.9<br>83.52<br>154<br>689.7<br>alue calcul                         | x 1/<br>x 1/<br>x 1/<br>x 1/<br>x 1/<br>2 x<br>9 x<br>2 x<br>2 x<br>2 x<br>4<br>6 ated using                 | /[1/( 1.3 )+<br>/[1/( 1.3 )+<br>/[1/( 1.3 )+<br>/[1/( 1.3 )+<br>/[1/( 1.3 )+<br>0.15<br>0.22<br>0.14<br>0.14                                | $\begin{array}{c} 0.04] = \\ 0.04] = \\ 0.04] = \\ 0.04] = \\ \\ 0.04] = \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 43.87<br>14.42<br>19.09<br>31.698<br>33.66<br>11.69<br>21.56                                             |                            | paragraph         | D 3.2              | (27)<br>(27)<br>(27)<br>(27)<br>(28)<br>(29)<br>(30)<br>(30)                                         |
| Windov<br>Floor<br>Floor<br>Walls<br>Roof 1<br>Roof 1<br>Total a<br>* for win<br>** includ<br>Fabric                                  | ws Type<br>ws Type<br>ws Type<br>Type1<br>Type2<br>area of el<br>dows and<br>le the area                          | 2<br>3<br>4<br>240.1<br>83.5<br>154<br>lements<br>roof winde<br>s on both<br>s, W/K =                           | , m <sup>2</sup><br>, m <sup>2</sup><br>ows, use e<br>sides of in<br>= S (A x                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0<br>0<br>ffective wi         | ndow U-va               | 22.67<br>35.5<br>11.67<br>15.45<br>211.3<br>152.9<br>83.52<br>154<br>689.7<br>alue calcul                         | x 1/<br>x 1/<br>x 1/<br>x 1/<br>x 1/<br>2 x<br>9 x<br>2 x<br>2 x<br>2 x<br>4<br>6 ated using                 | $ \frac{[1/(1.3)+}{[1/(1.3)+} \frac{[1/(1.3)+}{[1/(1.3)+} \frac{[1/(1.3)+}{[1/(1.3)+} \frac{[0.15]{0.22}}{0.12} \frac{[0.14]{0.14}}{0.14} $ | $\begin{array}{c} 0.04] = \\ 0.04] = \\ 0.04] = \\ 0.04] = \\ 0.04] = \\ 0.04] = \\ 0.04] = \\ 0.04] = \\ 0.04] = \\ 0.04] = \\ 0.04] = \\ 0.04] = \\ 0.04] = \\ 0.04] = \\ 0.04] = \\ 0.04] = \\ 0.04] = \\ 0.04] = \\ 0.04] = \\ 0.04] = \\ 0.04] = \\ 0.04] = \\ 0.04] = \\ 0.04] = \\ 0.04] = \\ 0.04] = \\ 0.04] = \\ 0.04] = \\ 0.04] = \\ 0.04] = \\ 0.04] = \\ 0.04] = \\ 0.04] = \\ 0.04] = \\ 0.04] = \\ 0.04] = \\ 0.04] = \\ 0.04] = \\ 0.04] = \\ 0.04] = \\ 0.04] = \\ 0.04] = \\ 0.04] = \\ 0.04] = \\ 0.04] = \\ 0.04] = \\ 0.04] = \\ 0.04] = \\ 0.04] = \\ 0.04] = \\ 0.04] = \\ 0.04] = \\ 0.04] = \\ 0.04] = \\ 0.04] = \\ 0.04] = \\ 0.04] = \\ 0.04] = \\ 0.04] = \\ 0.04] = \\ 0.04] = \\ 0.04] = \\ 0.04] = \\ 0.04] = \\ 0.04] = \\ 0.04] = \\ 0.04] = \\ 0.04] = \\ 0.04] = \\ 0.04] = \\ 0.04] = \\ 0.04] = \\ 0.04] = \\ 0.04] = \\ 0.04] = \\ 0.04] = \\ 0.04] = \\ 0.04] = \\ 0.04] = \\ 0.04] = \\ 0.04] = \\ 0.04] = \\ 0.04] = \\ 0.04] = \\ 0.04] = \\ 0.04] = \\ 0.04] = \\ 0.04] = \\ 0.04] = \\ 0.04] = \\ 0.04] = \\ 0.04] = \\ 0.04] = \\ 0.04] = \\ 0.04] = \\ 0.04] = \\ 0.04] = \\ 0.04] = \\ 0.04] = \\ 0.04] = \\ 0.04] = \\ 0.04] = \\ 0.04] = \\ 0.04] = \\ 0.04] = \\ 0.04] = \\ 0.04] = \\ 0.04] = \\ 0.04] = \\ 0.04] = \\ 0.04] = \\ 0.04] = \\ 0.04] = \\ 0.04] = \\ 0.04] = \\ 0.04] = \\ 0.04] = \\ 0.04] = \\ 0.04] = \\ 0.04] = \\ 0.04] = \\ 0.04] = \\ 0.04] = \\ 0.04] = \\ 0.04] = \\ 0.04] = \\ 0.04] = \\ 0.04] = \\ 0.04] = \\ 0.04] = \\ 0.04] = \\ 0.04] = \\ 0.04] = \\ 0.04] = \\ 0.04] = \\ 0.04] = \\ 0.04] = \\ 0.04] = \\ 0.04] = \\ 0.04] = \\ 0.04] = \\ 0.04] = \\ 0.04] = \\ 0.04] = \\ 0.04] = \\ 0.04] = \\ 0.04] = \\ 0.04] = \\ 0.04] = \\ 0.04] = \\ 0.04] = \\ 0.04] = \\ 0.04] = \\ 0.04] = \\ 0.04] = \\ 0.04] = \\ 0.04] = \\ 0.04] = \\ 0.04] = \\ 0.04] = \\ 0.04] = \\ 0.04] = \\ 0.04] = \\ 0.04] = \\ 0.04] = \\ 0.04] = \\ 0.04] = \\ 0.04] = \\ 0.04] = \\ 0.04] = \\ 0.04] = \\ 0.04] = \\ 0.04] = \\ 0.04] = \\ 0.04] = \\ 0.04] = \\ 0.04] = \\ 0.04] = \\ 0.04] = \\ 0.04] = \\ 0.04] = \\ 0.04] = \\ 0.04] = \\ 0.04] = \\ 0.04] = \\ 0.04] = \\ 0.04] = \\ 0.04] = \\ 0.04] = \\ 0.04] = \\ 0.04] = \\ 0.04] = \\ 0.04] = \\ 0.04] = \\ 0.04] = \\ 0.04] = \\ 0.04] = \\ 0.04] = \\ 0.04] = \\ 0.04] = \\ 0.04] = \\ 0.04] = \\ 0.04] = \\ 0.04] = \\$ | 43.87<br>14.42<br>19.09<br>31.698<br>33.66<br>11.69<br>21.56                                             | as given in                |                   |                    | (27)<br>(27)<br>(27)<br>(27)<br>(28)<br>(29)<br>(30)<br>(30)<br>(31)                                 |
| Windov<br>Floor<br>Floor<br>Walls<br>Roof T<br>Roof T<br>Total a<br>* for win<br>** includ<br>Fabric<br>Heat ca                       | ws Type<br>ws Type<br>ws Type<br>Type1<br>Type2<br>area of el<br>dows and<br>le the area<br>heat los              | 2<br>3<br>4<br>240.3<br>83.5<br>154<br>lements<br>roof winde<br>s on both<br>s, W/K =<br>Cm = S(                | , m <sup>2</sup><br>, | ffective winternal wall       | ndow U-va               | 22.67<br>35.5<br>11.67<br>15.45<br>211.3<br>152.9<br>83.52<br>154<br>689.7<br>alue calculations                   | x 1/<br>x 1/<br>x 1/<br>x 1/<br>x 1/<br>2 x<br>9 x<br>2 x<br>9 x<br>2 x<br>9 x<br>2 x<br>6 x<br>6 ated using | $ \frac{[1/(1.3)+}{[1/(1.3)+} \frac{[1/(1.3)+}{[1/(1.3)+} \frac{[1/(1.3)+}{[1/(1.3)+} \frac{[0.15]{0.22}}{0.12} \frac{[0.14]{0.14}}{0.14} $ | $\begin{array}{c} 0.04] = \\ 0.04] = \\ \\ 0.04] = \\ \\ 0.04] = \\ \\ \\ 0.04] = \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 43.87<br>14.42<br>19.09<br>31.698<br>33.66<br>11.69<br>21.56<br>re)+0.04] a                              | as given in<br>2) + (32a). |                   | 207.44             | (27)<br>(27)<br>(27)<br>(27)<br>(28)<br>(29)<br>(30)<br>(30)<br>(31)<br>(33)                         |
| Windov<br>Floor<br>Floor<br>Walls<br>Roof T<br>Roof T<br>Total a<br>* for win<br>** includ<br>Fabric<br>Heat c<br>Therma<br>For desig | ws Type<br>ws Type<br>ws Type<br>Type1<br>Type2<br>area of el<br>dows and<br>le the area<br>heat los<br>apacity ( | 2<br>3<br>4<br>240.9<br>83.5<br>154<br>lements<br>roof winde<br>s on both<br>s, W/K =<br>Cm = S(parame ments wh | , m <sup>2</sup><br>, m <sup>2</sup><br>sides of in<br>= S (A x<br>A x k )<br>ter (TMF<br>ere the det                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ffective winternal wall<br>U) | ndow U-va<br>Is and par | 22.67<br>35.5<br>11.67<br>15.45<br>211.3<br>152.9<br>83.52<br>83.52<br>154<br>689.7<br>689.7<br>alue calculations | x 1/<br>x 1/<br>x 1/<br>x 1/<br>x 1/<br>2 x<br>9 x<br>2 x<br>9 x<br>2 x<br>6 ated using                      | $ \frac{[1/(1.3)+}{[1/(1.3)+} \frac{[1/(1.3)+}{[1/(1.3)+} \frac{[1/(1.3)+}{[1/(1.3)+} \frac{0.15}{0.22} \frac{0.14}{0.14} $                 | $\begin{array}{c} 0.04] = \\ 0.04] = \\ \\ 0.04] = \\ \\ 0.04] = \\ \\ \\ \\ 0.04] = \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 43.87<br>14.42<br>19.09<br>31.698<br>33.66<br>11.69<br>21.56<br>(a)+0.04] a<br>.(30) + (32<br>tive Value | 2) + (32a).                | (32e) =           | 207.44<br>34562.28 | (27)<br>(27)<br>(27)<br>(27)<br>(28)<br>(29)<br>(30)<br>(30)<br>(31)<br>(31)<br>(33)<br>(33)<br>(34) |

|                                                                                                            |            |                       | are not kr  | own (36) =   | = 0.05 x (3    | 1)          |            |                                          |                       |                           |                        |              |         | _    |
|------------------------------------------------------------------------------------------------------------|------------|-----------------------|-------------|--------------|----------------|-------------|------------|------------------------------------------|-----------------------|---------------------------|------------------------|--------------|---------|------|
| Total fa                                                                                                   | abric he   | at loss               |             |              |                |             |            |                                          | (33) +                | (36) =                    |                        |              | 269.27  | (37) |
| Ventila                                                                                                    | tion hea   | at loss ca            | alculated   | monthly      | y              |             | r          |                                          | (38)m                 | = 0.33 × (                | 25)m x (5)             |              |         |      |
|                                                                                                            | Jan        | Feb                   | Mar         | Apr          | May            | Jun         | Jul        | Aug                                      | Sep                   | Oct                       | Nov                    | Dec          |         |      |
| (38)m=                                                                                                     | 90.35      | 89.22                 | 88.08       | 82.42        | 81.28          | 75.62       | 75.62      | 74.49                                    | 77.89                 | 81.28                     | 83.55                  | 85.82        |         | (38) |
| Heat tr                                                                                                    | ansfer o   | coefficier            | nt, W/K     |              |                |             |            |                                          | (39)m                 | = (37) + (3               | 38)m                   |              |         |      |
| (39)m=                                                                                                     | 359.62     | 358.48                | 357.35      | 351.69       | 350.55         | 344.89      | 344.89     | 343.75                                   | 347.15                | 350.55                    | 352.82                 | 355.08       |         |      |
| Heat lo                                                                                                    | ss para    | ımeter (H             | HLP), W     | /m²K         |                |             |            |                                          |                       | Average =<br>= (39)m ÷    |                        | 12 /12=      | 351.4   | (39) |
| (40)m=                                                                                                     | 1.19       | 1.19                  | 1.19        | 1.17         | 1.16           | 1.14        | 1.14       | 1.14                                     | 1.15                  | 1.16                      | 1.17                   | 1.18         |         |      |
| Numbe                                                                                                      | er of day  | /s in moi             | nth (Tab    | le 1a)       |                |             | -          |                                          | ,                     | Average =                 | Sum(40)1.              | 12 /12=      | 1.17    | (40) |
|                                                                                                            | Jan        | Feb                   | Mar         | Apr          | May            | Jun         | Jul        | Aug                                      | Sep                   | Oct                       | Nov                    | Dec          |         |      |
| (41)m=                                                                                                     | 31         | 28                    | 31          | 30           | 31             | 30          | 31         | 31                                       | 30                    | 31                        | 30                     | 31           |         | (41) |
|                                                                                                            |            |                       | •           |              |                |             |            | •                                        |                       |                           |                        |              |         |      |
| 4. Wa                                                                                                      | ter heat   | ting enei             | rgy requ    | irement:     |                |             |            |                                          |                       |                           |                        | kWh/ye       | ear:    |      |
| Assum<br>if TF.                                                                                            | ed occu    | ipancy, l<br>9, N = 1 | N           |              | (-0.0003       | 949 x (TF   | FA -13.9   | )2)] + 0.(                               | )013 x ( <sup>-</sup> | TFA -13.                  |                        | 13           |         | (42) |
| Reduce                                                                                                     | the annua  | al average            | hot water   | usage by a   | 5% if the a    | lwelling is | designed t | (25 x N)<br>to achieve                   |                       | se target o               |                        | 8.62         |         | (43) |
| not more                                                                                                   | e that 125 | litres per j          | person pei  | r day (all w | ater use, l    | not and co  | ld)        |                                          |                       |                           |                        |              |         |      |
|                                                                                                            | Jan        | Feb                   | Mar         | Apr          | May            | Jun         | Jul        | Aug                                      | Sep                   | Oct                       | Nov                    | Dec          |         |      |
| Hot wate                                                                                                   | er usage i | n litres per          | day for ea  | ach month    | Vd,m = fa      | ctor from T | Table 1c x | (43)                                     |                       |                           |                        |              |         |      |
| (44)m=                                                                                                     | 119.48     | 115.14                | 110.79      | 106.45       | 102.11         | 97.76       | 97.76      | 102.11                                   | 106.45                | 110.79                    | 115.14                 | 119.48       |         | _    |
| Energy c                                                                                                   | content of | hot water             | used - cal  | culated mo   | onthly $= 4$ . | 190 x Vd,r  | m x nm x D | 0Tm / 3600                               |                       | Total = Su<br>oth (see Ta | × /                    |              | 1303.47 | (44) |
| (45)m=                                                                                                     | 177.19     | 154.97                | 159.92      | 139.42       | 133.78         | 115.44      | 106.97     | 122.75                                   | 124.22                | 144.76                    | 158.02                 | 171.6        |         |      |
| lf instant                                                                                                 | aneous w   | vater heatii          | ng at point | t of use (no | o hot water    | • storage), | enter 0 in | boxes (46,                               |                       | Total = Su                | m(45) <sub>112</sub> = | -            | 1709.06 | (45) |
| (46)m=                                                                                                     | 26.58      | 23.25                 | 23.99       | 20.91        | 20.07          | 17.32       | 16.05      | 18.41                                    | 18.63                 | 21.71                     | 23.7                   | 25.74        |         | (46) |
|                                                                                                            | storage    |                       | includir    | na anv so    | alar or M      |             | storada    | within sa                                | mavas                 | مما                       |                        | 400          |         | (47) |
| -                                                                                                          |            | . ,                   |             | ink in dw    |                |             | -          |                                          |                       | 301                       |                        | 400          |         | (47) |
| Otherw                                                                                                     | •          | o stored              |             |              | -              |             |            | ombi boil                                | ers) ente             | er '0' in (               | 47)                    |              |         |      |
| a) If m                                                                                                    | anufact    | urer's de             | eclared I   | oss facto    | or is kno      | wn (kWł     | n/day):    |                                          |                       |                           |                        | 0            |         | (48) |
| Tempe                                                                                                      | rature f   | actor fro             | m Table     | 2b           |                |             |            |                                          |                       |                           |                        | 0            |         | (49) |
| Energy lost from water storage, kWh/year<br>b) If manufacturer's declared cylinder loss factor is not know |            |                       |             |              |                |             |            | (48) x (49) = 400<br>n:                  |                       |                           |                        |              |         | (50) |
| Hot water storage loss factor from Table 2 (kWh/litre/day)<br>If community heating see section 4.3         |            |                       |             |              |                |             |            |                                          |                       |                           | 0.                     | .01          |         | (51) |
|                                                                                                            |            | from Ta               |             | 0            |                |             |            |                                          |                       |                           | 0.                     | .67          |         | (52) |
| Temperature factor from Table 2b                                                                           |            |                       |             |              |                |             |            |                                          |                       |                           | 0.                     | 54           |         | (53) |
| •••                                                                                                        |            | m water<br>(54) in (5 | -           | e, kWh/y€    | ear            |             |            | (47) x (51) x (52) x (53) = 1.49<br>1.49 |                       |                           |                        | (54)<br>(55) |         |      |

| Water           | storage    | loss cal               | culated     | for each   | month     |                |                     | ((56)m = (            | 55) × (41)          | m                    |                       |              |               |      |
|-----------------|------------|------------------------|-------------|------------|-----------|----------------|---------------------|-----------------------|---------------------|----------------------|-----------------------|--------------|---------------|------|
| (56)m=          | 46.12      | 41.66                  | 46.12       | 44.63      | 46.12     | 44.63          | 46.12               | 46.12                 | 44.63               | 46.12                | 44.63                 | 46.12        |               | (56) |
| If cylind       | er contain | s dedicate             | d solar sto | rage, (57) | m = (56)m | x [(50) – (    | H11)] ÷ (5          | 0), else (5           | 7)m = (56)          | m where (            | H11) is fro           | m Append     | lix H         |      |
| (57)m=          | 46.12      | 41.66                  | 46.12       | 44.63      | 46.12     | 44.63          | 46.12               | 46.12                 | 44.63               | 46.12                | 44.63                 | 46.12        |               | (57) |
| Prima           | y circuit  | loss (ar               | nual) fro   | om Table   | e 3       |                |                     |                       |                     |                      |                       | 0            |               | (58) |
|                 | •          |                        | ,           |            |           | 59)m = (       | (58) ÷ 36           | 65 × (41)             | m                   |                      |                       |              | 1             |      |
| (mo             | dified by  | factor f               | rom Tab     | le H5 if t | here is s | solar wat      | er heatii           | ng and a              | cylinde             | r thermo             | ostat)                |              |               |      |
| (59)m=          | 23.26      | 21.01                  | 23.26       | 22.51      | 23.26     | 22.51          | 23.26               | 23.26                 | 22.51               | 23.26                | 22.51                 | 23.26        |               | (59) |
| Comb            | i loss ca  | lculated               | for each    | month      | (61)m =   | (60) ÷ 36      | 65 × (41)           | )m                    |                     |                      |                       |              |               |      |
| (61)m=          | 0          | 0                      | 0           | 0          | 0         | 0              | 0                   | 0                     | 0                   | 0                    | 0                     | 0            |               | (61) |
| Total h         | neat req   | uired for              | water h     | eating ca  | alculated | l for eacl     | n month             | (62)m =               | 0.85 × (            | (45)m +              | (46)m +               | (57)m +      | (59)m + (61)m |      |
| (62)m=          | 246.57     | 217.64                 | 229.3       | 206.56     | 203.16    | 182.58         | 176.35              | 192.13                | 191.36              | 214.15               | 225.16                | 240.98       |               | (62) |
| Solar D         | HW input   | calculated             | using App   | endix G o  | Appendix  | H (negativ     | ve quantity         | /) (enter '0          | if no sola          | r contribut          | ion to wate           | er heating)  |               |      |
| (add a          | dditiona   | l lines if             | FGHRS       | and/or \   | WWHRS     | applies        | , see Ap            | pendix (              | G)                  |                      | -                     |              |               |      |
| (63)m=          | 0          | 0                      | 0           | 0          | 0         | 0              | 0                   | 0                     | 0                   | 0                    | 0                     | 0            |               | (63) |
| Outpu           | t from w   | ater hea               | ter         | -          | -         |                |                     | -                     |                     | _                    |                       | -            |               |      |
| (64)m=          | 246.57     | 217.64                 | 229.3       | 206.56     | 203.16    | 182.58         | 176.35              | 192.13                | 191.36              | 214.15               | 225.16                | 240.98       |               | -    |
|                 |            |                        |             |            |           |                |                     | Outp                  | out from w          | ater heate           | r (annual)₁           | 12           | 2525.96       | (64) |
| Heat g          | ains fro   | m water                | heating,    | kWh/m      | onth 0.2  | 5 ´ [0.85      | × (45)m             | + (61)m               | ) + 0.8 x           | k [(46)m             | + (57)m               | + (59)m      | ]             |      |
| (65)m=          | 114.42     | 101.66                 | 108.68      | 100.07     | 99.99     | 92.1           | 91.07               | 96.32                 | 95.02               | 103.64               | 106.26                | 112.56       |               | (65) |
| inclu           | ude (57)   | m in calo              | culation    | of (65)m   | only if c | ylinder is     | s in the o          | dwelling              | or hot w            | ater is f            | rom com               | munity h     | eating        |      |
| 5. In           | ternal ga  | ains (see              | e Table 5   | 5 and 5a   | ):        |                |                     |                       |                     |                      |                       |              |               |      |
| Metab           | olic gain  | is (Table              | e 5), Wat   | ts         | -         |                |                     | -                     |                     |                      |                       | -            |               |      |
|                 | Jan        | Feb                    | Mar         | Apr        | May       | Jun            | Jul                 | Aug                   | Sep                 | Oct                  | Nov                   | Dec          |               |      |
| (66)m=          | 188.01     | 188.01                 | 188.01      | 188.01     | 188.01    | 188.01         | 188.01              | 188.01                | 188.01              | 188.01               | 188.01                | 188.01       |               | (66) |
| Lightir         | ng gains   | (calcula               | ted in Ap   | opendix    | L, equat  | ion L9 oi      | r L9a), a           | lso see               | Table 5             | -                    |                       |              | _             |      |
| (67)m=          | 102.37     | 90.92                  | 73.94       | 55.98      | 41.84     | 35.33          | 38.17               | 49.62                 | 66.6                | 84.56                | 98.69                 | 105.21       |               | (67) |
| Applia          | nces ga    | ins (calc              | ulated in   | Append     | dix L, eq | uation L       | 13 or L1            | 3a), also             | see Ta              | ble 5                |                       |              | _             |      |
| (68)m=          | 685.51     | 692.62                 | 674.7       | 636.54     | 588.36    | 543.09         | 512.84              | 505.73                | 523.66              | 561.82               | 609.99                | 655.26       |               | (68) |
| Cookii          | ng gains   | (calcula               | ated in A   | ppendix    | L, equat  | ion L15        | or L15a)            | ), also se            | e Table             | 5                    |                       |              | -             |      |
| (69)m=          | 56.94      | 56.94                  | 56.94       | 56.94      | 56.94     | 56.94          | 56.94               | 56.94                 | 56.94               | 56.94                | 56.94                 | 56.94        |               | (69) |
| Pump            | s and fa   | ns gains               | (Table s    | 5a)        |           |                |                     | -                     |                     | -                    | -                     | -            |               |      |
| (70)m=          | 0          | 0                      | 0           | 0          | 0         | 0              | 0                   | 0                     | 0                   | 0                    | 0                     | 0            |               | (70) |
| Losse           | s e.g. ev  | vaporatic              | n (nega     | tive valu  | es) (Tab  | le 5)          |                     |                       |                     |                      |                       |              |               |      |
| (71)m=          | -125.34    | -125.34                | -125.34     | -125.34    | -125.34   | -125.34        | -125.34             | -125.34               | -125.34             | -125.34              | -125.34               | -125.34      |               | (71) |
| Water           | heating    | gains (T               | able 5)     | -          | -         |                | -                   | -                     | -                   | *                    | -                     | -            | •             |      |
| (72)m=          | 153.79     | 151.28                 | 146.07      | 138.99     | 134.39    | 127.91         | 122.41              | 129.46                | 131.97              | 139.3                | 147.58                | 151.29       |               | (72) |
| <b>T</b>        | -          |                        | •           | -          | -         | -              |                     |                       |                     |                      |                       |              | •             |      |
| l otal          | internal   | gains =                | :           |            |           | (66)           | m + (67)m           | n + (68)m +           | - (69)m +           | (70)m + (7           | '1)m + (72)           | m            |               |      |
| 10tal<br>(73)m= | <b></b>    | <b>gains =</b> 1054.43 | r           | 951.11     | 884.21    | (66)<br>825.94 | m + (67)m<br>793.03 | n + (68)m +<br>804.42 | - (69)m +<br>841.83 | (70)m + (7<br>905.28 | (1)m + (72)<br>975.87 | m<br>1031.37 |               | (73) |

Solar gains are calculated using solar flux from Table 6a and associated equations to convert to the applicable orientation.

| Orientation:              | Access Facto<br>Table 6d | r | Area<br>m² |   | Flux<br>Table 6a |   | g_<br>Table 6b |   | FF<br>Table 6c |   | Gains<br>(W) |      |
|---------------------------|--------------------------|---|------------|---|------------------|---|----------------|---|----------------|---|--------------|------|
| Northeast 0.9x            | 0.77                     | x | 11.67      | x | 11.28            | x | 0.72           | x | 0.8            | = | 52.56        | (75) |
| Northeast 0.9x            | 0.77                     | x | 11.67      | x | 22.97            | x | 0.72           | x | 0.8            | = | 106.99       | (75) |
| Northeast 0.9x            | 0.77                     | x | 11.67      | x | 41.38            | x | 0.72           | x | 0.8            | = | 192.75       | (75) |
| Northeast 0.9x            | 0.77                     | x | 11.67      | x | 67.96            | x | 0.72           | x | 0.8            | = | 316.56       | (75) |
| Northeast 0.9x            | 0.77                     | x | 11.67      | x | 91.35            | x | 0.72           | x | 0.8            | = | 425.52       | (75) |
| Northeast 0.9x            | 0.77                     | x | 11.67      | x | 97.38            | x | 0.72           | x | 0.8            | = | 453.65       | (75) |
| Northeast 0.9x            | 0.77                     | x | 11.67      | x | 91.1             | x | 0.72           | x | 0.8            | = | 424.38       | (75) |
| Northeast 0.9x            | 0.77                     | x | 11.67      | x | 72.63            | x | 0.72           | x | 0.8            | = | 338.32       | (75) |
| Northeast 0.9x            | 0.77                     | x | 11.67      | x | 50.42            | x | 0.72           | x | 0.8            | = | 234.87       | (75) |
| Northeast 0.9x            | 0.77                     | x | 11.67      | × | 28.07            | x | 0.72           | x | 0.8            | = | 130.75       | (75) |
| Northeast 0.9x            | 0.77                     | x | 11.67      | x | 14.2             | x | 0.72           | x | 0.8            | = | 66.13        | (75) |
| Northeast 0.9x            | 0.77                     | x | 11.67      | x | 9.21             | x | 0.72           | x | 0.8            | = | 42.92        | (75) |
| Southeast 0.9x            | 0.77                     | x | 35.5       | x | 36.79            | x | 0.72           | x | 0.8            | = | 521.39       | (77) |
| Southeast 0.9x            | 0.77                     | x | 35.5       | x | 62.67            | x | 0.72           | x | 0.8            | = | 888.11       | (77) |
| Southeast 0.9x            | 0.77                     | x | 35.5       | × | 85.75            | x | 0.72           | x | 0.8            | = | 1215.15      | (77) |
| Southeast 0.9x            | 0.77                     | x | 35.5       | x | 106.25           | x | 0.72           | x | 0.8            | = | 1505.63      | (77) |
| Southeast 0.9x            | 0.77                     | x | 35.5       | x | 119.01           | x | 0.72           | x | 0.8            | = | 1686.44      | (77) |
| Southeast 0.9x            | 0.77                     | x | 35.5       | × | 118.15           | x | 0.72           | x | 0.8            | = | 1674.24      | (77) |
| Southeast 0.9x            | 0.77                     | x | 35.5       | × | 113.91           | x | 0.72           | x | 0.8            | = | 1614.15      | (77) |
| Southeast 0.9x            | 0.77                     | x | 35.5       | × | 104.39           | x | 0.72           | x | 0.8            | = | 1479.26      | (77) |
| Southeast 0.9x            | 0.77                     | x | 35.5       | x | 92.85            | x | 0.72           | x | 0.8            | = | 1315.75      | (77) |
| Southeast 0.9x            | 0.77                     | x | 35.5       | × | 69.27            | x | 0.72           | x | 0.8            | = | 981.55       | (77) |
| Southeast 0.9x            | 0.77                     | x | 35.5       | x | 44.07            | x | 0.72           | x | 0.8            | = | 624.5        | (77) |
| Southeast 0.9x            |                          | x | 35.5       | x | 31.49            | x | 0.72           | x | 0.8            | = | 446.2        | (77) |
| Southwest <sub>0.9x</sub> |                          | x | 15.45      | x | 36.79            |   | 0.72           | x | 0.8            | = | 226.91       | (79) |
| Southwest <sub>0.9x</sub> |                          | x | 15.45      | x | 62.67            |   | 0.72           | x | 0.8            | = | 386.52       | (79) |
| Southwest <sub>0.9x</sub> | 0.77                     | x | 15.45      | x | 85.75            |   | 0.72           | x | 0.8            | = | 528.85       | (79) |
| Southwest <sub>0.9x</sub> | 0.77                     | x | 15.45      | x | 106.25           |   | 0.72           | x | 0.8            | = | 655.27       | (79) |
| Southwest0.9x             |                          | x | 15.45      | x | 119.01           |   | 0.72           | x | 0.8            | = | 733.96       | (79) |
| Southwest0.9x             | _                        | x | 15.45      | × | 118.15           |   | 0.72           | x | 0.8            | = | 728.65       | (79) |
| Southwest0.9x             |                          | x | 15.45      | x | 113.91           |   | 0.72           | x | 0.8            | = | 702.49       | (79) |
| Southwest0.9x             |                          | x | 15.45      | x | 104.39           |   | 0.72           | x | 0.8            | = | 643.79       | (79) |
| Southwest0.9x             |                          | x | 15.45      | x | 92.85            |   | 0.72           | x | 0.8            | = | 572.63       | (79) |
| Southwest0.9x             | 0.77                     | x | 15.45      | x | 69.27            |   | 0.72           | x | 0.8            | = | 427.18       | (79) |
| Southwest0.9x             |                          | x | 15.45      | × | 44.07            |   | 0.72           | x | 0.8            | = | 271.79       | (79) |
| Southwest <sub>0.9x</sub> |                          | x | 15.45      | × | 31.49            |   | 0.72           | x | 0.8            | = | 194.19       | (79) |
| Northwest 0.9x            | _                        | x | 22.67      | × | 11.28            | x | 0.72           | x | 0.8            | = | 102.1        | (81) |
| Northwest 0.9x            | -                        | x | 22.67      | × | 22.97            | x | 0.72           | x | 0.8            | = | 207.83       | (81) |
| Northwest 0.9x            | 0.77                     | x | 22.67      | x | 41.38            | x | 0.72           | x | 0.8            | = | 374.44       | (81) |

|                            |              |            |           |            | -        |         |           |        |          |               |           |                    |          |          | _    |
|----------------------------|--------------|------------|-----------|------------|----------|---------|-----------|--------|----------|---------------|-----------|--------------------|----------|----------|------|
| Northwest 0.9x             | 0.77         | x          | 22.       | 67         | ×        | 6       | 7.96      | ×      |          | 0.72          | ×         | 0.8                | =        | 614.94   | (81) |
| Northwest 0.9x             | 0.77         | ×          | 22.       | 67         | ×        | 9       | 1.35      | ×      |          | 0.72          | ×         | 0.8                | =        | 826.6    | (81) |
| Northwest 0.9x             | 0.77         | x          | 22.       | 67         | × [      | 9       | 7.38      | ×      |          | 0.72          | x         | 0.8                | =        | 881.25   | (81) |
| Northwest 0.9x             | 0.77         | x          | 22.       | 67         | ×        | ç       | 91.1      | x      |          | 0.72          | ×         | 0.8                | =        | 824.39   | (81) |
| Northwest 0.9x             | 0.77         | x          | 22.       | 67         | ×        | 7       | 2.63      | x      |          | 0.72          |           | 0.8                | =        | 657.21   | (81) |
| Northwest 0.9x             | 0.77         | x          | 22.       | 67         | x [      | 5       | 0.42      | x      |          | 0.72          | ×         | 0.8                | =        | 456.26   | (81) |
| Northwest 0.9x             | 0.77         | x          | 22.       | 67         | x [      | 2       | 8.07      | x      |          | 0.72          | ×         | 0.8                | =        | 253.98   | (81) |
| Northwest 0.9x             | 0.77         | x          | 22.       | 67         | x [      | 1       | 4.2       | x      |          | 0.72          | _ × [     | 0.8                | =        | 128.47   | (81) |
| Northwest 0.9x             | 0.77         | x          | 22.       | 67         | x [      | ç       | 9.21      | x      |          | 0.72          | ×         | 0.8                | =        | 83.38    | (81) |
|                            |              |            |           |            |          |         |           | _      |          |               |           |                    |          |          |      |
| Solar gains ir             | n watts, ca  | lculated   | for eac   | h month    | l        |         |           | (83)m  | = Su     | m(74)m .      | (82)m     |                    | -        | _        |      |
| (83)m= 902.96              | 6 1589.44    | 2311.2     | 3092.4    | 3672.51    | 37       | 37.78   | 3565.4    | 3118.  | .58      | 2579.52       | 1793.47   | 1090.89            | 766.69   |          | (83) |
| Total gains –              | internal ar  | nd solar   | (84)m =   | = (73)m    | + (8     | 33)m ,  | , watts   |        |          |               |           |                    |          | _        |      |
| <mark>(84)m=</mark> 1964.2 | 3 2643.88    | 3325.52    | 4043.51   | 4556.72    | 45       | 63.72   | 4358.44   | 392    | 23 3     | 3421.35       | 2698.75   | 2066.76            | 1798.07  |          | (84) |
| 7. Mean inte               | ernal tempe  | erature (  | (heating  | seasor     | ı)       |         |           |        |          |               |           |                    |          |          |      |
| Temperatur                 | e during he  | eating p   | eriods ir | n the livi | ng a     | area f  | rom Tab   | ole 9, | Th1      | (°C)          |           |                    |          | 21       | (85) |
| Utilisation fa             | •            | • •        |           |            | -        |         |           |        |          | ( )           |           |                    |          |          |      |
| Jan                        | Feb          | Mar        | Apr       | May        | T`       | Jun     | Jul       | Au     | Ja       | Sep           | Oct       | Nov                | Dec      | 1        |      |
| (86)m= 1                   | 0.99         | 0.96       | 0.85      | 0.67       | -        | ).48    | 0.35      | 0.4    | <u> </u> | 0.66          | 0.93      | 0.99               | 1        | 1        | (86) |
| Mean intern                | al tempera   | ture in l  | ivina ar  |            |          | w ster  | ns 3 to 7 | in T   | ahle     | 9c)           |           |                    |          | 1        |      |
| (87)m= 21                  | 21           | 21         | 21        | 21         | -        | 21      | 21        | 21     |          | 21            | 21        | 21                 | 21       | 1        | (87) |
|                            |              | I          |           |            | 1        |         |           |        |          |               |           |                    |          | J        |      |
|                            | <u> </u>     | eating po  |           |            | -        |         | 19.96     |        |          | . ,           | 19.95     | 19.94              | 19.94    | 1        | (88) |
| (88)m= 19.93               | 19.93        | 19.93      | 19.95     | 19.95      |          | 9.96    | 19.96     | 19.9   | 97       | 19.96         | 19.95     | 19.94              | 19.94    | ]        | (00) |
| Utilisation fa             | actor for ga | ins for r  | est of d  | welling,   | h2,      | m (se   | e Table   | 9a)    |          |               |           |                    |          | -        |      |
| (89)m= 1                   | 0.98         | 0.94       | 0.82      | 0.61       | (        | 0.4     | 0.27      | 0.3    | 1        | 0.58          | 0.9       | 0.99               | 1        |          | (89) |
| Mean intern                | al tempera   | ature in t | he rest   | of dwell   | ing      | T2 (fo  | ollow ste | ps 3   | to 7     | in Tabl       | e 9c)     |                    |          |          |      |
| (90)m= 19.93               |              | 19.93      | 19.95     | 19.95      | -        | 9.96    | 19.96     | 19.9   |          | 19.96         | 19.95     | 19.94              | 19.94    | ]        | (90) |
|                            |              | I          |           |            |          |         |           |        |          | f             | LA = Livi | ng area ÷ (4       | 4) =     | 0.11     | (91) |
| Mean intern                | al tempera   | atura (fo  | r tha wh  | olo dwe    | lling    | ר) – fl | Δ 🗸 Τ1 .  | т (1 _ | _ fl /   | ) <b>v</b> T2 |           |                    |          |          |      |
| (92)m= 20.04               | <u> </u>     | 20.04      | 20.06     | 20.06      | <u> </u> | 0.07    | 20.07     | 20.0   |          | 20.07         | 20.06     | 20.06              | 20.05    | 1        | (92) |
| Apply adjust               |              |            |           |            |          |         |           |        |          |               |           |                    | 20100    | ]        |      |
| (93)m= 20.04               |              | 20.04      | 20.06     | 20.06      | -        | 0.07    | 20.07     | 20.0   |          | 20.07         | 20.06     | 20.06              | 20.05    | 1        | (93) |
| 8. Space he                | ating regu   | irement    |           |            | 1        |         |           |        |          |               |           |                    |          | <u> </u> |      |
| Set Ti to the              |              |            | nperatu   | re obtair  | ned      | at ste  | ep 11 of  | Table  | e 9b.    | . so tha      | t Ti.m=   | (76)m an           | d re-cal | culate   |      |
| the utilisatio             |              |            |           |            |          |         |           |        | ,        | ,             |           | (* • • • • • • • • |          | _        |      |
| Jan                        | Feb          | Mar        | Apr       | May        | 、        | Jun     | Jul       | Au     | лg       | Sep           | Oct       | Nov                | Dec      |          |      |
| Utilisation fa             | actor for ga | ins, hm    | :         |            |          |         |           |        |          |               |           |                    |          | -        |      |
| (94)m= 1                   | 0.98         | 0.94       | 0.82      | 0.62       | 0        | ).41    | 0.27      | 0.32   | 2        | 0.59          | 0.91      | 0.99               | 1        |          | (94) |
| Useful gains               | s, hmGm ,    | W = (94    | )m x (84  | 4)m        |          |         |           |        |          |               |           |                    |          | -        |      |
| <mark>(95)m=</mark> 1956.8 | 8 2603.07    | 3140.05    | 3314.35   | 2805.76    | 18       | 75.09   | 1196.99   | 1261.  | .24      | 2002.76       | 2444.46   | 2044.35            | 1793.64  |          | (95) |
| Monthly ave                | erage exter  | nal tem    | perature  | e from T   | able     | e 8     |           |        |          |               |           | -                  |          | -        |      |
| (96)m= 4.3                 | 4.9          | 6.5        | 8.9       | 11.7       | 1        | 4.6     | 16.6      | 16.4   | 4        | 14.1          | 10.6      | 7.1                | 4.2      | ]        | (96) |
| Heat loss ra               |              |            |           |            | 1        |         | - ,       |        | <u> </u> | . ,           |           | · · · · ·          | r        | 7        |      |
| <mark>(97)m=</mark> 5660.0 | 9 5428.13    | 4840.18    | 3924.15   | 2930.91    | 18       | 88.06   | 1198.28   | 1264.  | .03      | 2072.15       | 3316.52   | 4570.91            | 5628.1   |          | (97) |
|                            |              |            |           |            |          |         |           |        |          |               |           |                    |          |          |      |

|                          |                                                         |                            |                  |                       |           | Fu<br>kW   | <b>el</b><br>/h/year |               |                      | <b>Fuel P</b><br>(Table |                                  |          | <b>Fuel Cost</b><br>£/year |              |
|--------------------------|---------------------------------------------------------|----------------------------|------------------|-----------------------|-----------|------------|----------------------|---------------|----------------------|-------------------------|----------------------------------|----------|----------------------------|--------------|
| 10a. F                   | uel cos                                                 | ts - indiv                 | idual he         | eating sy             | stems:    |            |                      |               |                      |                         |                                  |          |                            |              |
| Total de                 | eliverec                                                | lenergy                    | for all us       | ses (211              | )(221)    | + (231)    | + (232).             | (237b)        | =                    |                         |                                  | [        | 7356.98                    | (338)        |
| Electric                 | ity for li                                              | ghting                     |                  |                       |           |            |                      |               |                      |                         |                                  | [        | 723.12                     | (232)        |
| Total el                 | ectricity                                               | for the                    | above, ł         | kWh/yea               | ır        |            |                      | sum           | of (230a).           | (230g) =                |                                  | [        | 1232.06                    | (231)        |
| mecha                    | anical v                                                | entilatior                 | ו - balan        | nced, ext             | ract or p | ositive ii | nput fron            | n outside     | Э                    |                         |                                  | 1232.06  |                            | (230a)       |
| Electric                 | ity for p                                               | umps, fa                   | ans and          | electric l            | keep-ho   | t          |                      |               |                      |                         |                                  | Ľ        |                            | -            |
| Water h                  | neating                                                 | fuel use                   | d                |                       |           |            |                      |               |                      |                         |                                  |          | 2351.92                    | Ī            |
|                          |                                                         | fuel use                   | d, main          | system                | 1         |            |                      |               |                      |                         | , cui                            | [        | 3049.88                    | ]            |
| Annual                   | l totals                                                |                            |                  |                       |           |            |                      | TOLA          | ii = 3um(2           |                         | Wh/year                          | . l      | 2351.92<br>kWh/year        | (219)        |
| (219)m=                  | 229.58                                                  | 202.64                     | 213.5            | 192.33                | 189.16    | 170        | 164.2                | 178.89        | 178.18<br>Il = Sum(2 | 199.39                  | 209.65                           | 224.38   |                            | ٦            |
|                          |                                                         | heating,<br><u>m x 100</u> |                  |                       |           |            |                      |               |                      |                         |                                  |          |                            |              |
| (217)m=                  | 107.4                                                   | 107.4                      | 107.4            | 107.4                 | 107.4     | 107.4      | 107.4                | 107.4         | 107.4                | 107.4                   | 107.4                            | 107.4    |                            | (217)        |
| г                        | -                                                       | ater hea                   |                  |                       |           |            |                      |               |                      |                         |                                  |          | 107.4                      | (216)        |
| L                        | 246.57                                                  | 217.64                     | 229.3            | 206.56                | 203.16    | 182.58     | 176.35               | 192.13        | 191.36               | 214.15                  | 225.16                           | 240.98   |                            | -            |
| <b>Water I</b><br>Output | -                                                       |                            | <u>ter (calc</u> | ulated al             | bove)     |            |                      | Tota          | il (kWh/yea          | ar) =Sum(2              | 2 <b>15)</b> <sub>15,1012</sub>  | <i>.</i> | 0                          | (215)        |
| (215)m=                  | 0                                                       | 0                          | 0                | 0                     | 0         | 0          | 0                    | 0             | 0                    | 0                       | 0                                | 0        |                            | -            |
| = {[(98)                 |                                                         | g fuel (se<br>1)] } x 1    |                  | y), kWh/<br>8)        | month     |            |                      | Tota          | ll (kWh/yea          | ar) =Sum(2              | 2 <b>11)</b> <sub>15,10</sub> 12 | <u>-</u> | 3049.88                    | (211)        |
|                          | 713.84                                                  | 491.87                     | 327.72           | 113.76                | 24.13     | 0          | 0                    | 0             | 0                    | 168.1                   | 471.32                           | 739.14   |                            | ٦            |
| (211)m                   | = {[(98                                                 |                            | 4)]              | 00 ÷ (20              | )6)       |            |                      |               |                      |                         |                                  |          |                            | (211)        |
|                          | 2755.19                                                 | 1898.44                    | 1264.89          | 439.06                | 93.12     | 0          | 0                    | 0             | 0                    | 648.81                  | 1819.12                          | 2852.84  |                            |              |
| Space                    |                                                         |                            |                  | alculated             | · ·       |            | •••                  |               | 000                  | •••                     |                                  |          |                            |              |
| Γ                        | Jan                                                     | Feb                        | Mar              | Apr                   | May       | Jun        | Jul                  | Aug           | Sep                  | Oct                     | Nov                              | Dec      | 65<br>kWh/yea              | ](208)<br>ar |
|                          | Efficiency of secondary/supplementary heating system, % |                            |                  |                       |           |            |                      |               |                      |                         |                                  |          |                            |              |
|                          |                                                         |                            | -                | ing syste             |           |            |                      |               | <i>,</i> .           | · / /                   |                                  | l        | 385.96                     | (206)        |
|                          |                                                         |                            |                  | main syst             | . ,       |            |                      | (204) = (204) |                      | (203)] =                |                                  | l        | 1                          | (204)        |
|                          |                                                         |                            |                  | econdary<br>nain syst |           | mentary    |                      | (202) = 1 -   | - (201) =            |                         |                                  |          | 0                          | (201)        |
|                          | e heatir                                                |                            |                  |                       |           | ,          | 9                    |               |                      |                         |                                  |          |                            | _            |
| •                        |                                                         | • •                        |                  | ividual h             |           | vstems i   | ncludina             | micro-C       | HP)                  |                         |                                  | l        |                            | <u> </u>     |
| Space                    | heatin                                                  | a reauire                  | ement in         | ⊨kWh/m²               | ²/vear    |            |                      |               |                      | (,                      | ,(-                              | - ,      | 39.07                      | ](99)        |
| (98)m=                   | 2755.19                                                 | 1898.44                    | 1264.89          | 439.06                | 93.12     | 0          | 0                    | 0<br>Tota     | 0                    | 648.81<br>(kWh/year     | 1819.12                          | <u> </u> | 11771.47                   | (98)         |
| · -                      |                                                         | <u> </u>                   | -                |                       | <u> </u>  |            | r                    |               | ŕ                    | í - `                   | <i>,</i>                         | 2052.04  |                            |              |

| Space heating - main system 1                                          | (211)                                 | ) x                    | 13.19                           | x 0.01 =                                            | 402.28                       | (240) |
|------------------------------------------------------------------------|---------------------------------------|------------------------|---------------------------------|-----------------------------------------------------|------------------------------|-------|
| Space heating - main system 2                                          | (213)                                 | ) x                    | 0                               | x 0.01 =                                            | 0                            | (241) |
| Space heating - secondary                                              | (215)                                 | ) x                    | 4.23                            | x 0.01 =                                            | 0                            | (242) |
| Water heating cost (other fuel)                                        | (219)                                 | )                      | 13.19                           | x 0.01 =                                            | 310.22                       | (247) |
| Pumps, fans and electric keep-hot                                      | (231)                                 | )                      | 13.19                           | x 0.01 =                                            | 162.51                       | (249) |
| (if off-peak tariff, list each of (230a) to (23<br>Energy for lighting | 30g) separately<br>(232)              |                        | d apply fuel price acc<br>13.19 | cording to $\begin{bmatrix} x & 0.01 \end{bmatrix}$ | Table 12a<br>95.38           | (250) |
| Additional standing charges (Table 12)                                 |                                       |                        |                                 |                                                     | 0                            | (251) |
| Appendix Q items: repeat lines (253) and <b>Total energy cost</b>      | d (254) as neede<br>(245)(247) + (250 |                        |                                 |                                                     | 970.39                       | (255) |
| 11a. SAP rating - individual heating sys                               | tems                                  |                        |                                 |                                                     |                              | 4     |
|                                                                        | [(255) x (256)] ÷ [(4                 | ł) + 45.0] =           |                                 |                                                     | 0.42                         | (256) |
| SAP rating (Section 12)<br>12a. CO2 emissions – Individual heatin      | a systems inclu                       | ding micro-CHP         |                                 |                                                     | 83.58                        | (258) |
|                                                                        |                                       |                        | Enviroine (                     |                                                     | Enviroiment                  |       |
|                                                                        |                                       | <b>ergy</b><br>h/year  | Emission fa<br>kg CO2/kWl       |                                                     | Emissions<br>kg CO2/yea      | r     |
| Space heating (main system 1)                                          | (211)                                 | ) x                    | 0.519                           | =                                                   | 1582.89                      | (261) |
| Space heating (secondary)                                              | (215)                                 | ) x                    | 0.019                           | =                                                   | 0                            | (263) |
| Water heating                                                          | (219)                                 | ) x                    | 0.519                           | =                                                   | 1220.64                      | (264) |
| Space and water heating                                                | (261)                                 | ) + (262) + (263) + (2 | 64) =                           |                                                     | 2803.53                      | (265) |
| Electricity for pumps, fans and electric ke                            | eep-hot (231)                         | ) X                    | 0.519                           | =                                                   | 639.44                       | (267) |
| Electricity for lighting                                               | (232)                                 | ) X                    | 0.519                           | =                                                   | 375.3                        | (268) |
| Total CO2, kg/year                                                     |                                       |                        | sum of (265)(271) =             |                                                     | 3818.27                      | (272) |
| CO2 emissions per m <sup>2</sup>                                       |                                       |                        | (272) ÷ (4) =                   |                                                     | 12.67                        | (273) |
| El rating (section 14)                                                 |                                       |                        |                                 |                                                     | 85                           | (274) |
| 13a. Primary Energy                                                    |                                       |                        |                                 |                                                     |                              |       |
|                                                                        |                                       | <b>ergy</b><br>h/year  | Primary<br>factor               |                                                     | <b>P. Energy</b><br>kWh/year |       |
| Space heating (main system 1)                                          | (211)                                 | ) X                    | 3.07                            | =                                                   | 9363.14                      | (261) |
| Space heating (secondary)                                              | (215)                                 | ) X                    | 1.04                            | =                                                   | 0                            | (263) |
| Energy for water heating                                               | (219)                                 | ) X                    | 3.07                            | =                                                   | 7220.38                      | (264) |
| Space and water heating                                                | (261)                                 | ) + (262) + (263) + (2 | 64) =                           |                                                     | 16583.52                     | (265) |
| Electricity for pumps, fans and electric keep                          | ep-hot (231)                          | ) X                    | 3.07                            | =                                                   | 3782.43                      | (267) |
| Electricity for lighting                                               | (232)                                 | ) X                    | 0                               | =                                                   | 2219.99                      | (268) |
| 'Total Primary Energy                                                  |                                       |                        | sum of (265)(271) =             |                                                     | 22585.93                     | (272) |

#### Primary energy kWh/m²/year

(272) ÷ (4) =

74.97 (273)

| Assessor Name:Daniel WattStroma Number:STRO026464Software Name:Stroma FSAP 2012Software Version:Version: 1.0.5.59                                                                                                          |          |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|
|                                                                                                                                                                                                                            |          |
| Property Address: The Shingles- Be Green                                                                                                                                                                                   |          |
| Address : The Shingles, Chelvey Batch, Backwell, BRISTOL, BS48 3BZ                                                                                                                                                         |          |
| 1. Overall dwelling dimensions:                                                                                                                                                                                            |          |
| Area(m <sup>2</sup> ) Av. Height(m) Volume(m <sup>3</sup> )                                                                                                                                                                |          |
| Ground floor 211.32 (1a) x 2.75 (2a) = 581.13 (3a)                                                                                                                                                                         | a)       |
| First floor 89.95 (1b) x 2.55 (2b) = 229.37 (3b)                                                                                                                                                                           | b)       |
| Total floor area TFA = $(1a)+(1b)+(1c)+(1d)+(1e)+(1n)$ (4)                                                                                                                                                                 |          |
| Dwelling volume $(3a)+(3b)+(3c)+(3d)+(3e)+(3n) = 810.5$ (5)                                                                                                                                                                | )        |
| 2. Ventilation rate:                                                                                                                                                                                                       |          |
| main secondary other total m <sup>3</sup> per hour<br>heating heating                                                                                                                                                      |          |
| Number of chimneys $0 + 1 + 0 = 1 \times 40 = 40$ (6a)                                                                                                                                                                     | a)       |
| Number of open flues $0 + 0 + 0 = 0 \times 20 = 0$ (6)                                                                                                                                                                     | b)       |
| Number of intermittent fans                                                                                                                                                                                                | a)       |
| Number of passive vents $0 \times 10 = 0$ (7)                                                                                                                                                                              | b)       |
| Number of flueless gas fires                                                                                                                                                                                               | c)       |
| Air changes per hour                                                                                                                                                                                                       |          |
|                                                                                                                                                                                                                            | <b>`</b> |
| Infiltration due to chimneys, flues and fans = $(6a)+(6b)+(7a)+(7b)+(7c) = 40$<br>If a pressurisation test has been carried out or is intended, proceed to (17), otherwise continue from (9) to (16) $\div$ (5) = 0.05 (8) | )        |
| Number of storeys in the dwelling (ns)                                                                                                                                                                                     | )        |
| Additional infiltration [(9)-1]x0.1 = 0 (10                                                                                                                                                                                | 0)       |
| Structural infiltration: 0.25 for steel or timber frame or 0.35 for masonry construction                                                                                                                                   | 1)       |
| if both types of wall are present, use the value corresponding to the greater wall area (after deducting areas of openings); if equal user 0.35                                                                            |          |
| If suspended wooden floor, enter 0.2 (unsealed) or 0.1 (sealed), else enter 0 0 (12                                                                                                                                        | 2)       |
| If no draught lobby, enter 0.05, else enter 0                                                                                                                                                                              | 3)       |
| Percentage of windows and doors draught stripped 0 (14                                                                                                                                                                     | 4)       |
| Window infiltration $0.25 - [0.2 \times (14) \div 100] =$ 0       (15)                                                                                                                                                     | 5)       |
| Infiltration rate $(8) + (10) + (11) + (12) + (13) + (15) = 0$ (16)                                                                                                                                                        | 6)       |
| Air permeability value, q50, expressed in cubic metres per hour per square metre of envelope area                                                                                                                          | 7)       |
| If based on air permeability value, then $(18) = [(17) \div 20]+(8)$ , otherwise $(18) = (16)$ 0.2 (18)                                                                                                                    | 8)       |
| Air permeability value applies if a pressurisation test has been done or a degree air permeability is being used                                                                                                           |          |
| Number of sides sheltered         2         (19)           Shelter factor $(20) = 1 - [0.075 \times (19)] =$ $0.85$ (20)                                                                                                   |          |
| $\frac{1}{2}$                                                                                                                                                                                                              | ÷        |
| Infiltration rate modified for monthly wind speed $(21) = (10) \times (20) = 0.17$ (22)                                                                                                                                    | •)       |
| Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec                                                                                                                                                                            |          |
| Monthly average wind speed from Table 7                                                                                                                                                                                    |          |
| (22)m = 5.1  5  4.9  4.4  4.3  3.8  3.8  3.7  4  4.3  4.5  4.7                                                                                                                                                             |          |

|                                                                                                                                                      | actor (22                                                                                                                          | 2a)m =                                                                                                                     | (22)m ÷                                                                                                   | 4                                               |                                                |                                                                                                                  |                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                             |                                                                                                                                                                                                        |                      |                    |                                                                                                              |
|------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------|-------------------------------------------------|------------------------------------------------|------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|--------------------|--------------------------------------------------------------------------------------------------------------|
| (22a)m=                                                                                                                                              | 1.27                                                                                                                               | 1.25                                                                                                                       | 1.23                                                                                                      | 1.1                                             | 1.08                                           | 0.95                                                                                                             | 0.95                                                                                                                                                                                                          | 0.92                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1.08                                                                                                                        | 1.12                                                                                                                                                                                                   | 1.18                 |                    |                                                                                                              |
| Adjuste                                                                                                                                              | ed infiltra                                                                                                                        | ition rate                                                                                                                 | e (allowi                                                                                                 | ng for sh                                       | nelter an                                      | d wind s                                                                                                         | peed) =                                                                                                                                                                                                       | (21a) x                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | (22a)m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                             |                                                                                                                                                                                                        |                      |                    |                                                                                                              |
|                                                                                                                                                      | 0.22                                                                                                                               | 0.21                                                                                                                       | 0.21                                                                                                      | 0.19                                            | 0.18                                           | 0.16                                                                                                             | 0.16                                                                                                                                                                                                          | 0.16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.18                                                                                                                        | 0.19                                                                                                                                                                                                   | 0.2                  |                    |                                                                                                              |
|                                                                                                                                                      | ate effec                                                                                                                          |                                                                                                                            | -                                                                                                         | rate for t                                      | he appli                                       | cable ca                                                                                                         | se                                                                                                                                                                                                            | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                             |                                                                                                                                                                                                        |                      |                    |                                                                                                              |
|                                                                                                                                                      | echanical<br>aust air he                                                                                                           |                                                                                                                            |                                                                                                           | ondix N (2                                      | 2h) - (22                                      | $\rightarrow$ Emy (c                                                                                             | austion (                                                                                                                                                                                                     | (5)) otho                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | nuico (22h                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ) - (220)                                                                                                                   |                                                                                                                                                                                                        |                      | 0.5                | (23a)                                                                                                        |
|                                                                                                                                                      |                                                                                                                                    |                                                                                                                            |                                                                                                           |                                                 |                                                |                                                                                                                  |                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ) = (23a)                                                                                                                   |                                                                                                                                                                                                        |                      | 0.5                | (23b)                                                                                                        |
|                                                                                                                                                      | anced with                                                                                                                         |                                                                                                                            | -                                                                                                         | -                                               | -                                              |                                                                                                                  |                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                             |                                                                                                                                                                                                        | (00 s)               | 75.65              | (23c)                                                                                                        |
| -                                                                                                                                                    | balance                                                                                                                            |                                                                                                                            |                                                                                                           | 1                                               |                                                | i                                                                                                                |                                                                                                                                                                                                               | <u> </u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | <u> </u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | · · ·                                                                                                                       |                                                                                                                                                                                                        | 1                    | ÷100]              | (24a)                                                                                                        |
| (24a)m=                                                                                                                                              |                                                                                                                                    | 0.33                                                                                                                       | 0.33                                                                                                      | 0.31                                            | 0.3                                            | 0.28                                                                                                             | 0.28                                                                                                                                                                                                          | 0.28                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.29                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.3                                                                                                                         | 0.31                                                                                                                                                                                                   | 0.32                 |                    | (24a)                                                                                                        |
| ,                                                                                                                                                    | balanced                                                                                                                           |                                                                                                                            |                                                                                                           | 1                                               |                                                |                                                                                                                  | r                                                                                                                                                                                                             | r , ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ŕ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                             | ,<br>                                                                                                                                                                                                  |                      | l                  | (24b)                                                                                                        |
| (24b)m=                                                                                                                                              |                                                                                                                                    | 0                                                                                                                          | 0                                                                                                         | 0                                               | 0                                              | 0                                                                                                                | 0                                                                                                                                                                                                             | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0                                                                                                                           | 0                                                                                                                                                                                                      | 0                    |                    | (24b)                                                                                                        |
| ,                                                                                                                                                    | whole ho<br>if (22b)m                                                                                                              |                                                                                                                            |                                                                                                           |                                                 | •                                              |                                                                                                                  |                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 5 × (23b                                                                                                                    | )                                                                                                                                                                                                      |                      |                    |                                                                                                              |
| (24c)m=                                                                                                                                              | 0                                                                                                                                  | 0                                                                                                                          | 0                                                                                                         | 0                                               | 0                                              | 0                                                                                                                | 0                                                                                                                                                                                                             | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0                                                                                                                           | 0                                                                                                                                                                                                      | 0                    |                    | (24c)                                                                                                        |
| ,                                                                                                                                                    | natural v<br>if (22b)m                                                                                                             |                                                                                                                            |                                                                                                           |                                                 | •                                              | •                                                                                                                |                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.5]                                                                                                                        |                                                                                                                                                                                                        | •                    |                    |                                                                                                              |
| (24d)m=                                                                                                                                              | 0                                                                                                                                  | 0                                                                                                                          | 0                                                                                                         | 0                                               | 0                                              | 0                                                                                                                | 0                                                                                                                                                                                                             | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0                                                                                                                           | 0                                                                                                                                                                                                      | 0                    |                    | (24d)                                                                                                        |
| Effec                                                                                                                                                | ctive air o                                                                                                                        | change                                                                                                                     | rate - er                                                                                                 | nter (24a                                       | ) or (24t                                      | o) or (24                                                                                                        | c) or (24                                                                                                                                                                                                     | d) in boy                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | (25)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                             |                                                                                                                                                                                                        | •                    |                    |                                                                                                              |
| (25)m=                                                                                                                                               | 0.34                                                                                                                               | 0.33                                                                                                                       | 0.33                                                                                                      | 0.31                                            | 0.3                                            | 0.28                                                                                                             | 0.28                                                                                                                                                                                                          | 0.28                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.29                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.3                                                                                                                         | 0.31                                                                                                                                                                                                   | 0.32                 |                    | (25)                                                                                                         |
| 3. He                                                                                                                                                | at losses                                                                                                                          | and he                                                                                                                     | at loss p                                                                                                 | paramete                                        | er:                                            |                                                                                                                  |                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                             |                                                                                                                                                                                                        |                      |                    |                                                                                                              |
| ELEN                                                                                                                                                 |                                                                                                                                    | Gros                                                                                                                       |                                                                                                           | Openin                                          |                                                | Net Ar                                                                                                           | ea                                                                                                                                                                                                            | U-valı                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | he                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | AXU                                                                                                                         |                                                                                                                                                                                                        | k-value              | e A                | Xk                                                                                                           |
|                                                                                                                                                      |                                                                                                                                    |                                                                                                                            |                                                                                                           |                                                 | 2                                              |                                                                                                                  |                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                             |                                                                                                                                                                                                        |                      |                    | 11 /                                                                                                         |
|                                                                                                                                                      |                                                                                                                                    | area                                                                                                                       | (m²)                                                                                                      | r                                               | 2                                              | A ,r                                                                                                             | n²                                                                                                                                                                                                            | W/m2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | K.,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | (W/I                                                                                                                        | <)                                                                                                                                                                                                     | kJ/m²∙ł              | K kJ               | /K                                                                                                           |
| Doors                                                                                                                                                |                                                                                                                                    | area                                                                                                                       | (m²)                                                                                                      | m                                               | IZ                                             | A ,r<br>2.64                                                                                                     | ×                                                                                                                                                                                                             | 1.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | = [                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | (W/I<br>3.432                                                                                                               | <)                                                                                                                                                                                                     | kJ/m²∙ł              | K kJ               | /K<br>(26)                                                                                                   |
|                                                                                                                                                      | ws Type                                                                                                                            |                                                                                                                            | (m²)                                                                                                      | rr                                              | 2                                              |                                                                                                                  | ×                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | = [                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                             |                                                                                                                                                                                                        | kJ/m²-ł              | K kJ               |                                                                                                              |
| Window                                                                                                                                               |                                                                                                                                    | 1                                                                                                                          | (m²)                                                                                                      | ſſ                                              | 12                                             | 2.64                                                                                                             | x<br>x                                                                                                                                                                                                        | 1.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.04] =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 3.432                                                                                                                       |                                                                                                                                                                                                        | KJ/M²+ł              | K kJ               | (26)                                                                                                         |
| Windov<br>Windov                                                                                                                                     | ws Type                                                                                                                            | 1<br>2                                                                                                                     | (m²)                                                                                                      | m                                               | 2                                              | 2.64<br>22.67                                                                                                    | x<br>x<br>x <sup>1</sup><br>x <sup>1</sup>                                                                                                                                                                    | 1.3<br>/[1/( 1.3 )+                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.04] = [<br>0.04] = [                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 3.432<br>28.01                                                                                                              |                                                                                                                                                                                                        | KJ/M²+ł              | κ kJ               | (26)<br>(27)                                                                                                 |
| Windov<br>Windov<br>Windov                                                                                                                           | ws Type<br>ws Type                                                                                                                 | 1<br>2<br>3                                                                                                                | (m²)                                                                                                      | m                                               | 2                                              | 2.64<br>22.67<br>35.5                                                                                            | x x1.<br>x1.<br>x1.<br>x1.                                                                                                                                                                                    | 1.3<br>/[1/( 1.3 )+<br>/[1/( 1.3 )+                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.04] =<br>0.04] =<br>0.04] =<br>0.04] =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 3.432<br>28.01<br>43.87                                                                                                     |                                                                                                                                                                                                        | KJ/m²+ł              | κ kJ               | (26)<br>(27)<br>(27)                                                                                         |
| Windov<br>Windov<br>Windov                                                                                                                           | ws Type<br>ws Type<br>ws Type                                                                                                      | 1<br>2<br>3                                                                                                                | (m²)                                                                                                      | m                                               | 2                                              | 2.64<br>22.67<br>35.5<br>11.67                                                                                   | x x1.<br>x1.<br>x1.<br>x1.<br>x1.<br>x1.<br>x1.                                                                                                                                                               | 1.3<br>/[1/( 1.3 )+<br>/[1/( 1.3 )+<br>/[1/( 1.3 )+                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.04] =<br>0.04] =<br>0.04] =<br>0.04] =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 3.432<br>28.01<br>43.87<br>14.42                                                                                            |                                                                                                                                                                                                        | kJ/m²-ŀ              | < kJ               | (26)<br>(27)<br>(27)<br>(27)                                                                                 |
| Windov<br>Windov<br>Windov<br>Windov                                                                                                                 | ws Type<br>ws Type<br>ws Type                                                                                                      | 1<br>2<br>3                                                                                                                |                                                                                                           | m<br>87.93                                      |                                                | 2.64<br>22.67<br>35.5<br>11.67<br>15.45                                                                          | x x1.<br>x1.<br>x1.<br>x1.<br>x1.<br>x1.<br>x1.<br>x2. x                                                                                                                                                      | 1.3<br>/[1/( 1.3 )+<br>/[1/( 1.3 )+<br>/[1/( 1.3 )+<br>/[1/( 1.3 )+                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $ \begin{bmatrix} 0.04 \\ 0.04 \end{bmatrix} = \begin{bmatrix} 0.04 \\ $ | 3.432<br>28.01<br>43.87<br>14.42<br>19.09                                                                                   |                                                                                                                                                                                                        | KJ/m²+ŀ              | < kJ               | (26)<br>(27)<br>(27)<br>(27)<br>(27)                                                                         |
| Windov<br>Windov<br>Windov<br>Windov<br>Floor                                                                                                        | ws Type<br>ws Type<br>ws Type<br>ws Type                                                                                           | 1<br>2<br>3<br>4                                                                                                           | 92                                                                                                        |                                                 |                                                | 2.64<br>22.67<br>35.5<br>11.67<br>15.45<br>211.3                                                                 | x x1.<br>x1.<br>x1.<br>x1.<br>x1.<br>x1.<br>x1.<br>x2.<br>x<br>9.<br>x                                                                                                                                        | 1.3<br>/[1/( 1.3 )+<br>/[1/( 1.3 )+<br>/[1/( 1.3 )+<br>/[1/( 1.3 )+<br>0.15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $\begin{bmatrix} 0.04 \\ 0.04 \end{bmatrix} = \begin{bmatrix} 0.04 \\ 0.04 \\ 0.04 \end{bmatrix} = \begin{bmatrix} 0.04 \\ 0.04 \\ 0.04 \end{bmatrix} = \begin{bmatrix} 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \end{bmatrix} = \begin{bmatrix} 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \end{bmatrix} = \begin{bmatrix} 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 3.432<br>28.01<br>43.87<br>14.42<br>19.09<br>31.698                                                                         |                                                                                                                                                                                                        | kJ/m²+ł              |                    | (26)<br>(27)<br>(27)<br>(27)<br>(27)<br>(28)                                                                 |
| Windov<br>Windov<br>Windov<br>Windov<br>Floor<br>Walls                                                                                               | ws Type<br>ws Type<br>ws Type<br>ws Type<br>Type1                                                                                  | 1<br>2<br>3<br>4<br>                                                                                                       | 92                                                                                                        | 87.9                                            |                                                | 2.64<br>22.67<br>35.5<br>11.67<br>15.45<br>211.3<br>152.9                                                        | x x1.<br>x1.<br>x1.<br>x1.<br>x1.<br>x1.<br>x1.<br>x2.<br>x<br>9.<br>x                                                                                                                                        | 1.3<br>/[1/( 1.3 )+<br>/[1/( 1.3 )+<br>/[1/( 1.3 )+<br>/[1/( 1.3 )+<br>0.15<br>0.22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $\begin{bmatrix} 0.04 \\ 0.04 \end{bmatrix} = \begin{bmatrix} 0.04 \\ 0.04 \\ 0.04 \end{bmatrix} = \begin{bmatrix} 0.04 \\ 0.04 \\ 0.04 \end{bmatrix} = \begin{bmatrix} 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \end{bmatrix} = \begin{bmatrix} 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \end{bmatrix} = \begin{bmatrix} 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 3.432<br>28.01<br>43.87<br>14.42<br>19.09<br>31.698<br>33.66                                                                |                                                                                                                                                                                                        | KJ/m²+ł              |                    | (26)<br>(27)<br>(27)<br>(27)<br>(27)<br>(27)<br>(28)<br>(29)                                                 |
| Windov<br>Windov<br>Windov<br>Floor<br>Walls<br>Roof 1<br>Roof 1                                                                                     | ws Type<br>ws Type<br>ws Type<br>ws Type<br>Type1                                                                                  | 1<br>2<br>3<br>4<br>240.3<br>83.5<br>154                                                                                   | 92                                                                                                        | 87.93                                           |                                                | 2.64<br>22.67<br>35.5<br>11.67<br>15.45<br>211.3<br>152.9<br>83.52                                               | x x1.<br>x1.<br>x1.<br>x1.<br>x1.<br>x1.<br>x1.<br>x1.<br>x2.<br>x<br>9.<br>x<br>x<br>2.<br>x<br>x<br>2.<br>x<br>x<br>x<br>x<br>2.<br>x<br>x<br>x<br>1.<br>x1.<br>x1.<br>x1.<br>x1.<br>x1.<br>x1.<br>x1.<br>x | 1.3<br>/[1/( 1.3 )+<br>/[1/( 1.3 )+<br>/[1/( 1.3 )+<br>/[1/( 1.3 )+<br>0.15<br>0.22<br>0.14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $\begin{bmatrix} 0.04 \\ 0.04 \end{bmatrix} = \begin{bmatrix} 0 \\ 0.04 \\ 0.04 \end{bmatrix} = \begin{bmatrix} 0 \\ 0.04 \\ 0 \end{bmatrix}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 3.432<br>28.01<br>43.87<br>14.42<br>19.09<br>31.698<br>33.66<br>11.69                                                       |                                                                                                                                                                                                        | KJ/m²+ł              |                    | (26)<br>(27)<br>(27)<br>(27)<br>(27)<br>(28)<br>(29)<br>(30)                                                 |
| Windov<br>Windov<br>Windov<br>Floor<br>Walls<br>Roof 1<br>Roof 1<br>Total a<br>*for window                                                           | ws Type<br>ws Type<br>ws Type<br>ws Type<br>Type1<br>Type2                                                                         | 1<br>2<br>3<br>4<br>240.3<br>83.5<br>154<br>ements                                                                         | 92<br>2<br>, m²<br>pws, use e                                                                             | 87.9<br>0<br>0                                  | 3<br><br><br>ndow U-va                         | 2.64<br>22.67<br>35.5<br>11.67<br>15.45<br>211.3<br>152.9<br>83.52<br>83.52<br>154<br>689.7<br>alue calcul       | x x1.<br>x1.<br>x1.<br>x1.<br>x1.<br>x1.<br>x1.<br>x2.<br>x<br>y9.<br>x<br>x<br>x<br>x<br>6.                                                                                                                  | $ \begin{array}{c} 1.3 \\ /[1/(1.3)+ \\ /[1/(1.3)+ \\ /[1/(1.3)+ \\ /[1/(1.3)+ \\ 0.15 \\ 0.22 \\ 0.14 \\ 0.14 \\ 0.14 \\ \end{array} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $\begin{bmatrix} 0.04 \\ 0.04 \end{bmatrix} = \begin{bmatrix} 0 \\ 0.04 \\ 0.04 \end{bmatrix} = \begin{bmatrix} 0 \\ 0.04 \\ 0.04 \end{bmatrix} = \begin{bmatrix} 0 \\ 0.04 \\ 0.04 \end{bmatrix}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 3.432<br>28.01<br>43.87<br>14.42<br>19.09<br>31.698<br>33.66<br>11.69<br>21.56                                              |                                                                                                                                                                                                        |                      |                    | (26)<br>(27)<br>(27)<br>(27)<br>(27)<br>(28)<br>(29)<br>(30)<br>(30)                                         |
| Window<br>Window<br>Window<br>Floor<br>Walls<br>Roof T<br>Roof T<br>Total a<br>* for window                                                          | ws Type<br>ws Type<br>ws Type<br>ws Type<br>Type1<br>Type2<br>urea of el-<br>dows and i                                            | 1<br>2<br>3<br>4<br>240.1<br>83.5<br>154<br>ements<br>roof windo                                                           | 92<br>2<br>, m <sup>2</sup><br>ows, use e<br>sides of ir                                                  | 87.93<br>0<br>0<br>effective wi                 | 3<br><br><br>ndow U-va                         | 2.64<br>22.67<br>35.5<br>11.67<br>15.45<br>211.3<br>152.9<br>83.52<br>83.52<br>154<br>689.7<br>alue calcul       | x x1<br>x1<br>x1<br>x1<br>x1<br>x1<br>x1<br>x1<br>x1<br>x1<br>x2<br>x2<br>x<br>y9<br>x<br>x2<br>x<br>x<br>x<br>6<br>ated using                                                                                | $ \begin{array}{c} 1.3 \\ /[1/(1.3)+ \\ /[1/(1.3)+ \\ /[1/(1.3)+ \\ /[1/(1.3)+ \\ 0.15 \\ 0.22 \\ 0.14 \\ 0.14 \\ 0.14 \\ \end{array} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $\begin{bmatrix} \\ 0.04 \\ \\ \\ 0.04 \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 3.432<br>28.01<br>43.87<br>14.42<br>19.09<br>31.698<br>33.66<br>11.69<br>21.56                                              |                                                                                                                                                                                                        |                      |                    | (26)<br>(27)<br>(27)<br>(27)<br>(27)<br>(28)<br>(29)<br>(30)<br>(30)                                         |
| Windov<br>Windov<br>Windov<br>Floor<br>Walls<br>Roof 1<br>Roof 1<br>Total a<br>* for winu<br>** includ<br>Fabric                                     | ws Type<br>ws Type<br>ws Type<br>ws Type<br>fype1<br>fype2<br>urea of el-<br>dows and i<br>le the areas                            | 1<br>2<br>3<br>4<br>240.3<br>83.5<br>154<br>ements<br>roof winde<br>s on both<br>s, W/K =                                  | 92<br>2<br>, m <sup>2</sup><br>ows, use e<br>sides of ir<br>= S (A x                                      | 87.93<br>0<br>0<br>effective wi                 | 3<br><br><br>ndow U-va                         | 2.64<br>22.67<br>35.5<br>11.67<br>15.45<br>211.3<br>152.9<br>83.52<br>83.52<br>154<br>689.7<br>alue calcul       | x x1<br>x1<br>x1<br>x1<br>x1<br>x1<br>x1<br>x1<br>x1<br>x1<br>x2<br>x2<br>x<br>y9<br>x<br>x2<br>x<br>x<br>x<br>6<br>ated using                                                                                | $ \begin{array}{c} 1.3 \\ /[1/(1.3)+ \\ /[1/(1.3)+ \\ /[1/(1.3)+ \\ /[1/(1.3)+ \\ 0.15 \\ 0.22 \\ 0.14 \\ 0.14 \\ 0.14 \\ 1 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.$ | $\begin{bmatrix} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 3.432<br>28.01<br>43.87<br>14.42<br>19.09<br>31.698<br>33.66<br>11.69<br>21.56                                              | s given in                                                                                                                                                                                             | paragraph            |                    | (26)<br>(27)<br>(27)<br>(27)<br>(28)<br>(29)<br>(30)<br>(30)<br>(31)                                         |
| Windov<br>Windov<br>Windov<br>Floor<br>Walls<br>Roof 1<br>Roof 1<br>Total a<br>* for winu<br>** includ<br>Fabric<br>Heat ca                          | ws Type<br>ws Type<br>ws Type<br>ws Type<br>Type1<br>Type2<br>area of el-<br>dows and r<br>dows and r<br>te the areas<br>heat loss | 1<br>2<br>3<br>4<br>240.9<br>83.5<br>154<br>ements<br>roof winde<br>s on both<br>s, W/K =<br>Cm = S(                       | 92<br>2<br>, m <sup>2</sup><br>ows, use e<br>sides of ir<br>= S (A x<br>A x k )                           | 87.93<br>0<br>0<br>offective wi<br>aternal walk | 3<br><br>ndow U-va<br>ds and par               | 2.64<br>22.67<br>35.5<br>11.67<br>15.45<br>211.3<br>152.9<br>83.52<br>83.52<br>154<br>689.7<br>alue calculations | x x1.<br>x1.<br>x1.<br>x1.<br>x1.<br>x1.<br>x1.<br>x2.<br>x<br>y9.<br>x<br>y9.<br>x<br>x<br>x<br>6.<br>x                                                                                                      | $ \begin{array}{c} 1.3 \\ /[1/(1.3)+ \\ /[1/(1.3)+ \\ /[1/(1.3)+ \\ /[1/(1.3)+ \\ 0.15 \\ 0.22 \\ 0.14 \\ 0.14 \\ 0.14 \\ 1 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.$ | $\begin{bmatrix} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 3.432<br>28.01<br>43.87<br>14.42<br>19.09<br>31.698<br>33.66<br>11.69<br>21.56                                              | [<br>[<br>[<br>[<br>[<br>[<br>[<br>[<br>[<br>[<br>[<br>[<br>[<br>[<br>[<br>[<br>[<br>[<br>[<br>[<br>[<br>[<br>[<br>[<br>[<br>[<br>[<br>[<br>[<br>[<br>[<br>[<br>[<br>[<br>[<br>[<br>[<br>[<br>[<br>] ] | paragraph            | 3.2<br>207.44      | (26)<br>(27)<br>(27)<br>(27)<br>(27)<br>(28)<br>(29)<br>(30)<br>(30)<br>(31)                                 |
| Windov<br>Windov<br>Windov<br>Floor<br>Walls<br>Roof 1<br>Roof 1<br>Total a<br>*for wind<br>*for wind<br>*for call<br>Heat ca<br>Therma<br>For desig | ws Type<br>ws Type<br>ws Type<br>ws Type<br>rype1<br>Type2<br>urea of el-<br>dows and r<br>de the areas<br>heat loss<br>apacity C  | 1<br>2<br>3<br>4<br>240.9<br>83.5<br>154<br>ements<br>roof winde<br>s on both<br>s, W/K =<br>cm = S(<br>parame<br>ments wh | 92<br>2<br>, m <sup>2</sup><br>bws, use e<br>sides of ir<br>= S (A x<br>A x k )<br>ter (TMF<br>ere the de | $\begin{bmatrix} 87.93\\ 0 \end{bmatrix}$       | 3<br><br>Indow U-va<br>Is and par<br>- TFA) ir | 2.64<br>22.67<br>35.5<br>11.67<br>15.45<br>211.3<br>152.9<br>83.52<br>154<br>689.7<br>alue calculations          | x x1.<br>x1.<br>x1.<br>x1.<br>x1.<br>x1.<br>x1.<br>x2<br>x<br>y2<br>x<br>y2<br>x<br>x<br>x<br>6<br>ated using                                                                                                 | $ \begin{array}{c} 1.3 \\ /[1/(1.3)+ \\ /[1/(1.3)+ \\ /[1/(1.3)+ \\ /[1/(1.3)+ \\ 0.15 \\ 0.22 \\ 0.14 \\ 0.14 \\ 0.14 \\ 0.14 \\ (26)(30) \end{array} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $\begin{bmatrix} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 3.432<br>28.01<br>43.87<br>14.42<br>19.09<br>31.698<br>33.66<br>11.69<br>21.56<br>re)+0.04] a<br>.(30) + (32<br>tive Value: | )<br> <br>                                                                                                        | paragraph<br>(32e) = | 207.44<br>34562.28 | (26)<br>(27)<br>(27)<br>(27)<br>(27)<br>(28)<br>(29)<br>(30)<br>(30)<br>(30)<br>(31)<br>(33)<br>(33)<br>(34) |

|                |                       | 00                    | are not kr             | nown (36) =                | = 0.05 x (3    | 1)         |                      |                   |                       | (2.2)                  |                        |         | r       | <b>-</b> |
|----------------|-----------------------|-----------------------|------------------------|----------------------------|----------------|------------|----------------------|-------------------|-----------------------|------------------------|------------------------|---------|---------|----------|
|                | abric he              |                       |                        |                            |                |            |                      |                   |                       | (36) =                 |                        |         | 269.27  | (37)     |
| Ventila        | ation hea             | r                     | alculated              | d monthly                  | Í              |            |                      |                   |                       | = 0.33 × (             | 25)m x (5)<br>I        |         | 1       |          |
|                | Jan                   | Feb                   | Mar                    | Apr                        | May            | Jun        | Jul                  | Aug               | Sep                   | Oct                    | Nov                    | Dec     |         | (00)     |
| (38)m=         | 90.35                 | 89.22                 | 88.08                  | 82.42                      | 81.28          | 75.62      | 75.62                | 74.49             | 77.89                 | 81.28                  | 83.55                  | 85.82   |         | (38)     |
| Heat t         | ransfer (             | coefficie             | nt, W/K                |                            | i              |            | i                    |                   | (39)m                 | = (37) + (3            | 38)m                   | i       | 1       |          |
| (39)m=         | 359.62                | 358.48                | 357.35                 | 351.69                     | 350.55         | 344.89     | 344.89               | 343.75            | 347.15                | 350.55                 | 352.82                 | 355.08  |         | _        |
| Heat le        | oss para              | ameter (I             | HLP), W                | /m²K                       |                |            |                      | -                 |                       | Average =<br>= (39)m ÷ |                        | 12 /12= | 351.4   | (39)     |
| (40)m=         | 1.19                  | 1.19                  | 1.19                   | 1.17                       | 1.16           | 1.14       | 1.14                 | 1.14              | 1.15                  | 1.16                   | 1.17                   | 1.18    |         | _        |
| Numb           | er of day             | ys in mo              | nth (Tab               | le 1a)                     |                |            | -                    | -                 | ,                     | Average =              | Sum(40)1.              | 12 /12= | 1.17    | (40)     |
|                | Jan                   | Feb                   | Mar                    | Apr                        | May            | Jun        | Jul                  | Aug               | Sep                   | Oct                    | Nov                    | Dec     |         |          |
| (41)m=         | 31                    | 28                    | 31                     | 30                         | 31             | 30         | 31                   | 31                | 30                    | 31                     | 30                     | 31      |         | (41)     |
|                |                       |                       |                        |                            |                |            |                      |                   |                       |                        |                        |         | -       |          |
| 4. Wa          | ater hea              | ting ene              | rgy requ               | irement:                   |                |            |                      |                   |                       |                        |                        | kWh/ye  | ear:    |          |
| if TF          |                       | -                     |                        | : [1 - exp                 | (-0.0003       | 849 x (TF  | <sup>-</sup> A -13.9 | )2)] + 0.(        | 0013 x ( <sup>-</sup> | TFA -13.               |                        | 13      | ]       | (42)     |
|                |                       |                       |                        |                            |                |            |                      | (25 x N)          |                       |                        |                        | 8.62    |         | (43)     |
|                |                       | -                     |                        | usage by :<br>r day (all w |                | -          | -                    | to achieve        | a water us            | se target o            | t                      |         |         |          |
| normor         |                       |                       |                        | 1                          |                |            |                      |                   | 0                     |                        | NL.                    | Du      | 1       |          |
| Hot wat        | Jan<br>er usage i     | Feb                   | Mar                    | Apr<br>ach month           | May            | Jun        | Jul<br>Table 1c x    | Aug (43)          | Sep                   | Oct                    | Nov                    | Dec     |         |          |
|                | 119.48                | 115.14                | 110.79                 | 106.45                     | 102.11         | 97.76      | 97.76                | 102.11            | 106.45                | 110.79                 | 115.14                 | 119.48  | 1       |          |
| (44)m=         | 119.40                | 115.14                | 110.79                 | 106.45                     | 102.11         | 97.70      | 97.70                | 102.11            |                       | Total = Su             |                        |         | 1303.47 | (44)     |
| Energy         | content of            | f hot water           | used - cai             | culated mo                 | onthly $= 4$ . | 190 x Vd,r | m x nm x D           | 0Tm / 3600        |                       |                        |                        |         | 1303.47 |          |
| (45)m=         | 177.19                | 154.97                | 159.92                 | 139.42                     | 133.78         | 115.44     | 106.97               | 122.75            | 124.22                | 144.76                 | 158.02                 | 171.6   |         | _        |
| lf instan      | taneous v             | vater heati           | ing at point           | t of use (no               | hot water      | storage),  | enter 0 in           | boxes (46         |                       | Total = Su             | m(45) <sub>112</sub> = | =       | 1709.06 | (45)     |
| (46)m=         | 26.58                 | 23.25                 | 23.99                  | 20.91                      | 20.07          | 17.32      | 16.05                | 18.41             | 18.63                 | 21.71                  | 23.7                   | 25.74   |         | (46)     |
|                | storage               |                       |                        |                            |                |            |                      |                   |                       |                        |                        |         | 1       |          |
| -              |                       | . ,                   |                        |                            |                |            | -                    | within sa         | ame ves               | sel                    |                        | 400     |         | (47)     |
| Other<br>Water | vise if ne<br>storage | o stored<br>loss:     | hot wate               | ·                          | icludes i      | nstantar   | neous co             | (47)<br>ombi boil | ers) ente             | er '0' in (            | 47)                    |         |         |          |
|                |                       |                       |                        | oss facto                  | or is kno      | wn (kWł    | n/day):              |                   |                       |                        |                        | 0       |         | (48)     |
| Tempe          | erature f             | actor fro             | m Table                | 2b                         |                |            |                      |                   |                       |                        |                        | 0       |         | (49)     |
| b) If n        | nanufac               | turer's d             | eclared o              | e, kWh/ye<br>cylinder l    | oss fact       |            | known:               | (48) x (49)       | ) =                   |                        | 4                      | 00      | ]       | (50)     |
|                |                       | -                     | factor fi<br>see secti | rom Tabl<br>on 4.3         | e 2 (kW        | h/litre/da | iy)                  |                   |                       |                        | 0.                     | .01     |         | (51)     |
|                |                       | from Ta               |                        |                            |                |            |                      |                   |                       |                        | 0.                     | 67      |         | (52)     |
| Tempe          | erature f             | actor fro             | m Table                | 2b                         |                |            |                      |                   |                       |                        | 0.                     | 54      |         | (53)     |
| -              |                       |                       | -                      | e, kWh/ye                  | ear            |            |                      | (47) x (51)       | x (52) x (            | 53) =                  | 1.                     | 49      |         | (54)     |
| Enter          | (50) or               | (54) in ( <del></del> | 55)                    |                            |                |            |                      |                   |                       |                        | 1.                     | 49      |         | (55)     |

| Water     | storage     | loss cal          | culated     | for each         | month            |             |             | ((56)m = (   | 55) × (41)   | m           |                       |             |               |      |
|-----------|-------------|-------------------|-------------|------------------|------------------|-------------|-------------|--------------|--------------|-------------|-----------------------|-------------|---------------|------|
| (56)m=    | 46.12       | 41.66             | 46.12       | 44.63            | 46.12            | 44.63       | 46.12       | 46.12        | 44.63        | 46.12       | 44.63                 | 46.12       |               | (56) |
| If cylind | er contains | s dedicate        | d solar sto | orage, (57)      | m = (56)m        | x [(50) – ( | H11)] ÷ (5  | 0), else (5  | 7)m = (56)   | m where (   | H11) is fro           | m Append    | ix H          |      |
| (57)m=    | 46.12       | 41.66             | 46.12       | 44.63            | 46.12            | 44.63       | 46.12       | 46.12        | 44.63        | 46.12       | 44.63                 | 46.12       |               | (57) |
| Primar    | v circuit   | loss (ar          | Inual) fro  | om Table         | 9 3              | •           |             |              |              | •           |                       | 0           |               | (58) |
|           | •           | •                 | ,           | for each         |                  | 59)m = (    | (58) ÷ 36   | 65 × (41)    | m            |             |                       |             | I             |      |
| (mo       | dified by   | factor f          | rom Tab     | le H5 if t       | here is s        | solar wat   | er heatii   | ng and a     | cylinde      | r thermo    | ostat)                |             |               |      |
| (59)m=    | 23.26       | 21.01             | 23.26       | 22.51            | 23.26            | 22.51       | 23.26       | 23.26        | 22.51        | 23.26       | 22.51                 | 23.26       |               | (59) |
| Combi     | loss ca     | lculated          | for each    | n month (        | (61)m =          | (60) ÷ 36   | 65 × (41)   | )m           |              |             |                       |             |               |      |
| (61)m=    | 0           | 0                 | 0           | 0                | 0                | 0           | 0           | 0            | 0            | 0           | 0                     | 0           |               | (61) |
| Total h   | neat requ   | uired for         | water h     | eating ca        | alculated        | for eac     | h month     | (62)m =      | 0.85 × (     | (45)m +     | (46)m +               | (57)m +     | (59)m + (61)m |      |
| (62)m=    | 246.57      | 217.64            | 229.3       | 206.56           | 203.16           | 182.58      | 176.35      | 192.13       | 191.36       | 214.15      | 225.16                | 240.98      |               | (62) |
| Solar DI  | -IW input o | calculated        | using App   | endix G o        | Appendix         | KH (negati  | ve quantity | /) (enter '0 | ' if no sola | r contribut | ion to wate           | er heating) | '             |      |
| (add a    | dditiona    | l lines if        | FGHRS       | and/or \         | WWHRS            | applies     | , see Ap    | pendix (     | G)           |             |                       |             |               |      |
| (63)m=    | 0           | 0                 | 0           | 0                | 0                | 0           | 0           | 0            | 0            | 0           | 0                     | 0           |               | (63) |
| Output    | t from w    | ater hea          | ter         |                  |                  |             |             |              |              | -           |                       |             |               |      |
| (64)m=    | 246.57      | 217.64            | 229.3       | 206.56           | 203.16           | 182.58      | 176.35      | 192.13       | 191.36       | 214.15      | 225.16                | 240.98      |               | -    |
|           |             |                   |             |                  |                  |             |             | Outp         | out from w   | ater heate  | r (annual)₁           | 12          | 2525.96       | (64) |
| Heat g    | ains fro    | m water           | heating     | , kWh/m          | onth 0.2         | 5 ´ [0.85   | × (45)m     | + (61)m      | n] + 0.8 x   | k [(46)m    | + (57)m               | + (59)m     | ]             |      |
| (65)m=    | 114.42      | 101.66            | 108.68      | 100.07           | 99.99            | 92.1        | 91.07       | 96.32        | 95.02        | 103.64      | 106.26                | 112.56      |               | (65) |
| inclu     | ıde (57)    | m in calo         | culation    | of (65)m         | only if c        | ylinder i   | s in the o  | dwelling     | or hot w     | ater is fi  | rom com               | munity h    | eating        |      |
| 5. In     | ternal ga   | ains (see         | e Table S   | 5 and 5a         | ):               |             |             |              |              |             |                       |             |               |      |
| Metab     | olic gain   | s (Table          | 5), Wat     | ts               |                  |             |             |              |              | -           |                       |             |               |      |
|           | Jan         | Feb               | Mar         | Apr              | May              | Jun         | Jul         | Aug          | Sep          | Oct         | Nov                   | Dec         |               |      |
| (66)m=    | 156.68      | 156.68            | 156.68      | 156.68           | 156.68           | 156.68      | 156.68      | 156.68       | 156.68       | 156.68      | 156.68                | 156.68      |               | (66) |
| Lightin   | g gains     | (calcula          | ted in A    | opendix          | L, equat         | ion L9 o    | r L9a), a   | lso see      | Table 5      |             |                       |             |               |      |
| (67)m=    | 40.95       | 36.37             | 29.58       | 22.39            | 16.74            | 14.13       | 15.27       | 19.85        | 26.64        | 33.82       | 39.48                 | 42.08       |               | (67) |
| Applia    | nces ga     | ins (calc         | ulated ir   | n Append         | dix L, eq        | uation L    | 13 or L1    | 3a), also    | see Ta       | ble 5       | _                     | -           |               |      |
| (68)m=    | 459.29      | 464.06            | 452.05      | 426.48           | 394.2            | 363.87      | 343.6       | 338.84       | 350.85       | 376.42      | 408.69                | 439.03      |               | (68) |
| Cookir    | ng gains    | (calcula          | ited in A   | ppendix          | L, equat         | tion L15    | or L15a)    | ), also se   | e Table      | 5           |                       |             |               |      |
| (69)m=    | 38.67       | 38.67             | 38.67       | 38.67            | 38.67            | 38.67       | 38.67       | 38.67        | 38.67        | 38.67       | 38.67                 | 38.67       |               | (69) |
| Pumps     | s and fai   | ns gains          | (Table :    | 5a)              |                  |             |             |              |              |             |                       |             |               |      |
| (70)m=    | 0           | 0                 | 0           | 0                | 0                | 0           | 0           | 0            | 0            | 0           | 0                     | 0           |               | (70) |
| Losse     | s e.g. ev   | aporatio          | n (nega     | tive valu        | es) (Tab         | ole 5)      |             |              |              |             |                       |             |               |      |
| (71)m=    | -125.34     | -125.34           | -125.34     | -125.34          | -125.34          | -125.34     | -125.34     | -125.34      | -125.34      | -125.34     | -125.34               | -125.34     |               | (71) |
| Water     | heating     | gains (T          | able 5)     |                  | -                |             | -           | -            | -            | -           |                       | -           |               |      |
| (72)m=    | r           |                   | 1           | 1                | 1                |             | 400.44      |              | 1            |             | 1                     | 454.00      | 1             | (72) |
|           | 153.79      | 151.28            | 146.07      | 138.99           | 134.39           | 127.91      | 122.41      | 129.46       | 131.97       | 139.3       | 147.58                | 151.29      |               | (/   |
|           |             | 151.28<br>gains = |             | 138.99           | 134.39           |             |             |              |              |             | 147.58<br>(1)m + (72) |             |               | (/   |
|           |             |                   |             | 138.99<br>657.86 | 134.39<br>615.34 |             |             |              |              |             | Į                     |             |               | (73) |

Solar gains are calculated using solar flux from Table 6a and associated equations to convert to the applicable orientation.

| Orientation:   | Access Factor<br>Table 6d | - | Area<br>m² |   | Flux<br>Table 6a |   | g_<br>Table 6b |   | FF<br>Table 6c |     | Gains<br>(W) |      |
|----------------|---------------------------|---|------------|---|------------------|---|----------------|---|----------------|-----|--------------|------|
| Northeast 0.9x | 0.77                      | x | 11.67      | x | 11.28            | × | 0.72           | × | 0.8            | ] = | 52.56        | (75) |
| Northeast 0.9x | 0.77                      | x | 11.67      | x | 22.97            | x | 0.72           | x | 0.8            | =   | 106.99       | (75) |
| Northeast 0.9x | 0.77                      | x | 11.67      | x | 41.38            | x | 0.72           | x | 0.8            | ] = | 192.75       | (75) |
| Northeast 0.9x | 0.77                      | x | 11.67      | x | 67.96            | x | 0.72           | x | 0.8            | =   | 316.56       | (75) |
| Northeast 0.9x | 0.77                      | x | 11.67      | x | 91.35            | x | 0.72           | x | 0.8            | =   | 425.52       | (75) |
| Northeast 0.9x | 0.77                      | x | 11.67      | x | 97.38            | x | 0.72           | x | 0.8            | =   | 453.65       | (75) |
| Northeast 0.9x | 0.77                      | x | 11.67      | x | 91.1             | x | 0.72           | x | 0.8            | =   | 424.38       | (75) |
| Northeast 0.9x | 0.77                      | x | 11.67      | x | 72.63            | x | 0.72           | x | 0.8            | =   | 338.32       | (75) |
| Northeast 0.9x | 0.77                      | x | 11.67      | x | 50.42            | x | 0.72           | x | 0.8            | =   | 234.87       | (75) |
| Northeast 0.9x | 0.77                      | x | 11.67      | x | 28.07            | x | 0.72           | x | 0.8            | =   | 130.75       | (75) |
| Northeast 0.9x | 0.77                      | x | 11.67      | x | 14.2             | x | 0.72           | x | 0.8            | =   | 66.13        | (75) |
| Northeast 0.9x | 0.77                      | x | 11.67      | x | 9.21             | x | 0.72           | x | 0.8            | =   | 42.92        | (75) |
| Southeast 0.9x | 0.77                      | x | 35.5       | x | 36.79            | x | 0.72           | x | 0.8            | =   | 521.39       | (77) |
| Southeast 0.9x | 0.77                      | x | 35.5       | x | 62.67            | x | 0.72           | x | 0.8            | =   | 888.11       | (77) |
| Southeast 0.9x | 0.77                      | x | 35.5       | x | 85.75            | x | 0.72           | x | 0.8            | ] = | 1215.15      | (77) |
| Southeast 0.9x | 0.77                      | x | 35.5       | x | 106.25           | x | 0.72           | x | 0.8            | =   | 1505.63      | (77) |
| Southeast 0.9x | 0.77                      | x | 35.5       | x | 119.01           | x | 0.72           | x | 0.8            | =   | 1686.44      | (77) |
| Southeast 0.9x | 0.77                      | x | 35.5       | x | 118.15           | x | 0.72           | x | 0.8            | =   | 1674.24      | (77) |
| Southeast 0.9x | 0.77                      | x | 35.5       | x | 113.91           | x | 0.72           | x | 0.8            | =   | 1614.15      | (77) |
| Southeast 0.9x | 0.77                      | x | 35.5       | x | 104.39           | x | 0.72           | x | 0.8            | =   | 1479.26      | (77) |
| Southeast 0.9x | 0.77                      | x | 35.5       | x | 92.85            | x | 0.72           | x | 0.8            | =   | 1315.75      | (77) |
| Southeast 0.9x | 0.77                      | x | 35.5       | x | 69.27            | x | 0.72           | x | 0.8            | =   | 981.55       | (77) |
| Southeast 0.9x | 0.77                      | x | 35.5       | x | 44.07            | x | 0.72           | x | 0.8            | =   | 624.5        | (77) |
| Southeast 0.9x | 0.77                      | x | 35.5       | x | 31.49            | x | 0.72           | x | 0.8            | =   | 446.2        | (77) |
| Southwest0.9x  | 0.77                      | x | 15.45      | x | 36.79            | ] | 0.72           | x | 0.8            | ] = | 226.91       | (79) |
| Southwest0.9x  | 0.77                      | x | 15.45      | x | 62.67            | ] | 0.72           | x | 0.8            | =   | 386.52       | (79) |
| Southwest0.9x  | 0.77                      | x | 15.45      | x | 85.75            | ] | 0.72           | x | 0.8            | ] = | 528.85       | (79) |
| Southwest0.9x  | 0.77                      | x | 15.45      | x | 106.25           | ] | 0.72           | x | 0.8            | =   | 655.27       | (79) |
| Southwest0.9x  | 0.77                      | x | 15.45      | x | 119.01           | ] | 0.72           | x | 0.8            | =   | 733.96       | (79) |
| Southwest0.9x  | 0.77                      | x | 15.45      | x | 118.15           | ] | 0.72           | x | 0.8            | =   | 728.65       | (79) |
| Southwest0.9x  | 0.77                      | x | 15.45      | x | 113.91           | ] | 0.72           | x | 0.8            | =   | 702.49       | (79) |
| Southwest0.9x  | 0.77                      | x | 15.45      | x | 104.39           | ] | 0.72           | x | 0.8            | =   | 643.79       | (79) |
| Southwest0.9x  | 0.77                      | x | 15.45      | x | 92.85            | ] | 0.72           | x | 0.8            | =   | 572.63       | (79) |
| Southwest0.9x  | 0.77                      | x | 15.45      | x | 69.27            | ] | 0.72           | x | 0.8            | =   | 427.18       | (79) |
| Southwest0.9x  | 0.77                      | x | 15.45      | x | 44.07            | ] | 0.72           | x | 0.8            | ] = | 271.79       | (79) |
| Southwest0.9x  | 0.77                      | x | 15.45      | × | 31.49            | ] | 0.72           | × | 0.8            | ] = | 194.19       | (79) |
| Northwest 0.9x | 0.77                      | x | 22.67      | × | 11.28            | × | 0.72           | x | 0.8            | ] = | 102.1        | (81) |
| Northwest 0.9x | 0.77                      | x | 22.67      | × | 22.97            | × | 0.72           | × | 0.8            | ] = | 207.83       | (81) |
| Northwest 0.9x | 0.77                      | x | 22.67      | x | 41.38            | x | 0.72           | x | 0.8            | =   | 374.44       | (81) |

| Northwest                                                                                                            | -        |                   |       |                      |          |          |                      |             |              |           |        |      |
|----------------------------------------------------------------------------------------------------------------------|----------|-------------------|-------|----------------------|----------|----------|----------------------|-------------|--------------|-----------|--------|------|
| Northwest 0.9x 0.77                                                                                                  | ×        | 22.67             | x     | 67.9                 |          | ×        | 0.72                 |             | 0.8          | =         | 614.94 | (81) |
| Northwest 0.9x 0.77                                                                                                  | ×        | 22.67             | x     | 91.3                 | 35       | x        | 0.72                 | ×           | 0.8          | =         | 826.6  | (81) |
| Northwest 0.9x 0.77                                                                                                  | x        | 22.67             | x     | 97.3                 | 38       | x        | 0.72                 | ×           | 0.8          | =         | 881.25 | (81) |
| Northwest 0.9x 0.77                                                                                                  | x        | 22.67             | x     | 91.                  | 1        | x        | 0.72                 | x           | 0.8          | =         | 824.39 | (81) |
| Northwest 0.9x 0.77                                                                                                  | x        | 22.67             | x     | 72.6                 | 63       | x        | 0.72                 | x           | 0.8          | =         | 657.21 | (81) |
| Northwest 0.9x 0.77                                                                                                  | x        | 22.67             | x     | 50.4                 | 42       | x        | 0.72                 | x           | 0.8          | =         | 456.26 | (81) |
| Northwest 0.9x 0.77                                                                                                  | x        | 22.67             | x     | 28.0                 | 07       | x        | 0.72                 | x           | 0.8          | =         | 253.98 | (81) |
| Northwest 0.9x 0.77                                                                                                  | x        | 22.67             | x     | 14.                  | 2        | x        | 0.72                 | x           | 0.8          | =         | 128.47 | (81) |
| Northwest 0.9x 0.77                                                                                                  | ×        | 22.67             | x     | 9.2                  | 1        | x        | 0.72                 | x           | 0.8          | =         | 83.38  | (81) |
|                                                                                                                      |          |                   |       |                      |          |          |                      |             |              |           |        |      |
| Solar gains in watts, calcu                                                                                          | lated    | for each mont     | h     |                      |          | (83)m =  | Sum(74)m .           | (82)m       |              |           |        |      |
| (83)m= 902.96 1589.44 23                                                                                             | 11.2     | 3092.4 3672.5     | 1 37  | 737.78 3             | 3565.4   | 3118.5   | 8 2579.52            | 1793.47     | 1090.89      | 766.69    |        | (83) |
| Total gains – internal and                                                                                           | solar    | (84)m = (73)m     | 1 + ( | 83)m , w             | vatts    |          | -                    |             |              |           |        |      |
| (84)m= 1626.99 2311.16 30                                                                                            | 08.9     | 3750.27 4287.8    | 5 4   | 313.7 4 <sup>-</sup> | 116.69   | 3676.7   | 3 3158.98            | 2413.01     | 1756.64      | 1469.1    |        | (84) |
| 7. Mean internal tempera                                                                                             | ature (  | heating seaso     | n)    |                      |          |          |                      |             |              |           |        |      |
| Temperature during heat                                                                                              | ting pe  | eriods in the liv | ving  | area fro             | m Tab    | ole 9, T | <sup>-</sup> h1 (°C) |             |              |           | 21     | (85) |
| Utilisation factor for gains                                                                                         | s for li | ving area, h1,ı   | n (s  | ee Table             | e 9a)    |          |                      |             |              |           |        |      |
| Jan Feb I                                                                                                            | Mar      | Apr May           | '     | Jun                  | Jul      | Aug      | J Sep                | Oct         | Nov          | Dec       |        |      |
| (86)m= 1 0.99 0                                                                                                      | .97      | 0.88 0.7          |       | 0.5                  | 0.37     | 0.43     | 0.7                  | 0.95        | 1            | 1         |        | (86) |
| Mean internal temperatu                                                                                              | re in li | iving area T1 (   | follo | w steps              | 3 to 7   | in Tal   | ole 9c)              |             |              |           |        |      |
|                                                                                                                      | 21       | 21 21             | T     | 21                   | 21       | 21       | 21                   | 21          | 21           | 21        |        | (87) |
| Temperature during heat                                                                                              |          | ariode in rest o  | f du  | elling fr            | om Ta    | hla Q    | <br>Th2 (የር)         |             |              |           |        |      |
|                                                                                                                      | 9.93     | 19.95 19.95       | -     | <u> </u>             | 19.96    | 19.97    | - <u>,</u> ,         | 19.95       | 19.94        | 19.94     |        | (88) |
|                                                                                                                      |          |                   |       | I                    |          |          |                      |             |              |           |        | ( )  |
| Utilisation factor for gains                                                                                         |          | i                 | -     | <u> </u>             |          | ,        | 0.00                 | 0.00        | 0.00         |           |        | (80) |
| (89)m= 1 0.99 0                                                                                                      | .96      | 0.85 0.64         |       | 0.43                 | 0.28     | 0.33     | 0.62                 | 0.93        | 0.99         | 1         |        | (89) |
| Mean internal temperatu                                                                                              | re in t  | he rest of dwe    | lling | T2 (follo            | ow ste   | ps 3 to  | o 7 in Tabl          | e 9c)       |              |           | I      |      |
| (90)m= 19.93 19.93 19                                                                                                | 9.93     | 19.95 19.95       | 1     | 9.96                 | 19.96    | 19.97    |                      | 19.95       | 19.94        | 19.94     |        | (90) |
|                                                                                                                      |          |                   |       |                      |          |          | f                    | iLA = Livir | ig area ÷ (4 | 1) =      | 0.11   | (91) |
| Mean internal temperatu                                                                                              | re (foi  | the whole dw      | ellin | g) = fLA             | × T1 ·   | + (1 –   | fLA) × T2            |             |              |           |        |      |
| (92)m= 20.04 20.04 20                                                                                                | 0.04     | 20.06 20.06       | 2     | 20.07                | 20.07    | 20.08    | 20.07                | 20.06       | 20.06        | 20.05     |        | (92) |
| Apply adjustment to the                                                                                              | mean     | internal tempe    | eratu | ire from             | Table    | 4e, wl   | nere appro           | opriate     | •            |           |        |      |
| (93)m= 20.04 20.04 20                                                                                                | 0.04     | 20.06 20.06       | 2     | 20.07 2              | 20.07    | 20.08    | 20.07                | 20.06       | 20.06        | 20.05     |        | (93) |
| 8. Space heating require                                                                                             | ment     |                   |       |                      |          |          |                      |             |              |           |        |      |
| Set Ti to the mean intern                                                                                            |          |                   |       | l at step            | 11 of    | Table    | 9b, so tha           | t Ti,m=(    | 76)m an      | d re-calc | ulate  |      |
| the utilisation factor for g                                                                                         | - 1      |                   |       | .                    |          | <u> </u> |                      |             |              | _         |        |      |
|                                                                                                                      | Mar      | Apr May           | ′     | Jun                  | Jul      | Aug      | Sep                  | Oct         | Nov          | Dec       |        |      |
| Utilisation factor for gains<br>(94)m= $\begin{bmatrix} 1 & 0.99 \end{bmatrix} \begin{bmatrix} 0 \\ 0 \end{bmatrix}$ | 1        | I                 |       | 0.42                 | 0.20     | 0.24     | 0.62                 | 0.02        | 0.00         | 1         |        | (94) |
| (94)m= <u>1</u> 0.99 0<br>Useful gains, hmGm , W                                                                     | .96      |                   |       | 0.43                 | 0.29     | 0.34     | 0.63                 | 0.93        | 0.99         | 1         |        | (94) |
| (95)m= 1624.34 2290.64 28                                                                                            | <u> </u> | <u> </u>          | 1     | 871.5 1              | 196.6    | 1260.2   | 8 1978.84            | 2254 30     | 1747 13      | 1467 65   |        | (95) |
| Monthly average externa                                                                                              |          |                   |       |                      | 100.0    | 1200.2   | ~   '0'0.04          | 2207.09     | ''''''''     | 1-01.00   |        |      |
|                                                                                                                      | 6.5      | 8.9 11.7          |       |                      | 16.6     | 16.4     | 14.1                 | 10.6        | 7.1          | 4.2       |        | (96) |
| Heat loss rate for mean i                                                                                            |          |                   |       |                      |          |          |                      |             |              |           |        |      |
|                                                                                                                      |          | 3924.15 2930.9    | -     | 388.06 1             | <u> </u> | 1264.0   |                      | 3316.52     | 4570.91      | 5628.1    |        | (97) |
| , ,                                                                                                                  | -        |                   |       |                      |          |          |                      |             |              |           |        |      |

|                   |                             |                               |                     |                       |                 |           | <b>ergy</b><br>/h/year |             |            | Emiss<br>kg CO2 | <b>ion fac</b><br>2/kWh | tor        | Emissions<br>kg CO2/yea |        |
|-------------------|-----------------------------|-------------------------------|---------------------|-----------------------|-----------------|-----------|------------------------|-------------|------------|-----------------|-------------------------|------------|-------------------------|--------|
| 12a. (            | CO2 em                      | issions -                     | – Individ           | lual heati            | ing syste       | ems inclu | uding mi               | cro-CHP     |            |                 |                         |            |                         |        |
| Total d           | elivered                    | l energy                      | for all u           | ses (211              | )(221)          | + (231)   | + (232).               | (237b)      | =          |                 |                         |            | 7707.4                  | (338)  |
| Electric          | city for li                 | ighting                       |                     |                       |                 |           |                        |             |            |                 |                         |            | 723.12                  | (232)  |
|                   | -                           |                               | above, I            | kWh/yea               | r               |           |                        | sum         | of (230a). | (230g) =        |                         |            | 1232.06                 | (231)  |
|                   |                             |                               |                     | nced, ext             | -               | ositive i | nput fron              |             |            |                 |                         | 1232.06    |                         | (230a) |
| Electric          | city for p                  | oumps, fa                     | ans and             | electric              | keep-ho         | t         |                        |             |            |                 |                         |            |                         |        |
| Water             | heating                     | fuel use                      | d                   |                       |                 |           |                        |             |            |                 |                         |            | 2351.92                 | ]      |
| Space             | heating                     | fuel use                      | ed, main            | system                | 1               |           |                        |             |            |                 |                         |            | 3400.3                  |        |
| Annua             | l totals                    |                               |                     |                       |                 |           |                        |             |            | k               | Wh/year                 |            | kWh/year                |        |
| (213)11-          | 220.00                      | 202.04                        | 210.0               | 102.00                | 100.10          | 170       | 104.2                  |             | I = Sum(2) |                 | 200.00                  | 224.00     | 2351.92                 | (219)  |
| (219)m<br>(219)m= |                             | m x 100<br>202.64             | ) ÷ (217)<br>213.5  | )m<br>192.33          | 189.16          | 170       | 164.2                  | 178.89      | 178.18     | 199.39          | 209.65                  | 224.38     |                         |        |
|                   |                             | heating,                      | kWh/m               | I<br>onth             |                 |           |                        |             |            |                 |                         |            |                         |        |
| (217)m=           | -                           | 107.4                         | 107.4               | 107.4                 | 107.4           | 107.4     | 107.4                  | 107.4       | 107.4      | 107.4           | 107.4                   | 107.4      | 107.4                   | (217)  |
| <br>Efficier      |                             | ater hea                      |                     | 200.50                | 203.10          | 102.30    | 170.35                 | 192.13      | 191.30     | 214.15          | 225.10                  | 240.90     | 107.4                   | (216)  |
|                   | heating<br>from w           |                               | ter (calc<br>229.3  | ulated al             | bove)<br>203.16 | 182.58    | 176.35                 | 192.13      | 191.36     | 214.15          | 225.16                  | 240.98     |                         | J      |
| ·····             |                             |                               |                     | Ľ                     |                 |           | Ľ                      |             | -          | ar) =Sum(2      | -                       |            | 0                       | (215)  |
| •                 |                             | g fuel (se<br>01)] } x 1<br>0 |                     | ry), kWh/<br>)8)<br>0 | month<br>0      | 0         | 0                      | 0           | 0          | 0               | 0                       | 0          |                         |        |
| I                 |                             | 010.21                        | 010.11              | 100.01                | 20.00           | Ů         | Ů                      | -           | -          | ar) =Sum(2      |                         |            | 3400.3                  | (211)  |
| (211)m            | = {[(98<br>777.95           | )m x (20<br>546.27            | 4)] } x 1<br>375.71 | 00 ÷ (20<br>136.91    | 29.98           | 0         | 0                      | 0           | 0          | 204.74          | 526.76                  | 801.98     |                         | (211)  |
|                   | 3002.6                      | 2108.4                        | 1450.11             | 528.43                | 115.7           | 0         | 0                      | 0           | 0          | 790.23          | 2033.12                 | 3095.37    |                         | (244)  |
| Space             |                             | <u> </u>                      |                     |                       | ,               |           |                        |             | 0          | 700.00          | 0000 40                 | 2005 27    |                         |        |
|                   | Jan                         | Feb                           | Mar                 | Apr                   | Мау             | Jun       | Jul                    | Aug         | Sep        | Oct             | Nov                     | Dec        | kWh/yea                 | ar     |
| Efficie           | ency of s                   | seconda                       | ry/suppl            | ementar               | y heating       | g systen  | n, %                   |             |            | -               |                         |            | 65                      | (208)  |
| Efficie           | ency of I                   | main spa                      | ace heat            | ing syste             | em 1            |           |                        |             |            |                 |                         |            | 385.96                  | (206)  |
| Fracti            | on of to                    | tal heatir                    | ng from             | main sys              | stem 1          |           |                        | (204) = (20 | 02) × [1 – | (203)] =        |                         |            | 1                       | (204)  |
| Fracti            | on of sp                    | ace hea                       | it from m           | nain syst             | em(s)           |           |                        | (202) = 1 - | - (201) =  |                 |                         | ĺ          | 1                       | (202)  |
| •                 | <b>e heatir</b><br>on of sp | -                             | it from s           | econdar               | y/supple        | mentary   | v system               |             |            |                 |                         | [          | 0                       | (201)  |
| 9a. Ene           | ergy rec                    | quiremen                      | nts – Ind           | ividual h             | eating sy       | ystems i  | ncluding               | micro-C     | HP)        |                 |                         |            |                         | _      |
| Space             | e heatin                    | g require                     | ement in            | ı kWh/m²              | /year           |           |                        |             |            |                 |                         | ĺ          | 43.56                   | (99)   |
|                   |                             |                               |                     |                       |                 |           |                        | Tota        | l per year | (kWh/year       | ) = Sum(9               | 8)15,912 = | 13123.96                | (98)   |
| 98)m=             | 3002.6                      | 2108.4                        | 1450.11             | 528.43                | 115.7           | 0         | 0 = 0.02               | 0           | 0          | 790.23          | 2033.12                 | 3095.37    |                         |        |
| Space             | heatin                      | a require                     | ement fo            | or each m             | nonth k         | Nh/mon    | th = 0.02              | 24 x [(97)  | )m – (95   | m x (4)         | 1)m                     |            |                         |        |

| Space heating (secondary) $(215) \times$ $0.019 =$ $0$ (263)         Water heating $(219) \times$ $0.519 =$ $1220.64$ (264)         Space and water heating $(261) + (262) + (263) + (264) =$ $2985.4$ (265)         Electricity for pumps, fans and electric keep-hot $(231) \times$ $0.519 =$ $639.44$ (267)         Electricity for lighting $(232) \times$ $0.519 =$ $375.3$ (268)         Total CO2, kg/year       sum of (265)(271) = $4000.14$ (272)         Dwelling CO2 Emission Rate $(272) \div (4) =$ $13.28$ (273) |                                                   |                         |                     |   |         |       |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------|-------------------------|---------------------|---|---------|-------|
| Water heating $(219) \times$ $0.519$ $=$ $1220.64$ $(264)$ Space and water heating $(261) + (262) + (263) + (264) =$ $2985.4$ $(265)$ Electricity for pumps, fans and electric keep-hot $(231) \times$ $0.519$ $=$ $639.44$ $(267)$ Electricity for lighting $(232) \times$ $0.519$ $=$ $375.3$ $(268)$ Total CO2, kg/yearsum of $(265)(271) =$ $4000.14$ $(272)$ Dwelling CO2 Emission Rate $(272) \div (4) =$ $13.28$ $(273)$                                                                                                 | Space heating (main system 1)                     | (211) x                 | 0.519               | = | 1764.75 | (261) |
| Notest notating $(201) + (202) + (263) + (264) =$ $(201) + (262) + (263) + (264) =$ $(2985.4) (265)$ Electricity for pumps, fans and electric keep-hot $(231) \times$ $0.519$ $=$ $639.44$ $(267)$ Electricity for lighting $(232) \times$ $0.519$ $=$ $375.3$ $(268)$ Total CO2, kg/yearsum of $(265)(271) =$ $4000.14$ $(272)$ Dwelling CO2 Emission Rate $(272) \div (4) =$ $13.28$ $(273)$                                                                                                                                  | Space heating (secondary)                         | (215) x                 | 0.019               | = | 0       | (263) |
| Electricity for pumps, fans and electric keep-hot $(231) \times$ $0.519 =$ $639.44$ $(267)$ Electricity for lighting $(232) \times$ $0.519 =$ $375.3$ $(268)$ Total CO2, kg/yearsum of $(265)(271) =$ $4000.14$ $(272)$ Dwelling CO2 Emission Rate $(272) \div (4) =$ $13.28$ $(273)$                                                                                                                                                                                                                                           | Water heating                                     | (219) x                 | 0.519               | = | 1220.64 | (264) |
| Electricity for lighting       (232) x $0.519$ = $375.3$ (268)         Total CO2, kg/year       sum of (265)(271) = $4000.14$ (272)         Dwelling CO2 Emission Rate       (272) ÷ (4) =       13.28       (273)                                                                                                                                                                                                                                                                                                              | Space and water heating                           | (261) + (262) + (263) + | (264) =             |   | 2985.4  | (265) |
| Total CO2, kg/year       sum of (265)(271) = $4000.14$ (272)         Dwelling CO2 Emission Rate       (272) ÷ (4) =       13.28 (273)                                                                                                                                                                                                                                                                                                                                                                                           | Electricity for pumps, fans and electric keep-hot | (231) x                 | 0.519               | = | 639.44  | (267) |
| Dwelling CO2 Emission Rate $(272) \div (4) =$ $(272) \div (4) =$ $(273)$                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Electricity for lighting                          | (232) x                 | 0.519               | = | 375.3   | (268) |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Total CO2, kg/year                                |                         | sum of (265)(271) = |   | 4000.14 | (272) |
| El rating (section 14) 85 (274)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Dwelling CO2 Emission Rate                        |                         | (272) ÷ (4) =       |   | 13.28   | (273) |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | EI rating (section 14)                            |                         |                     |   | 85      | (274) |

|                                                           |                 |                       |                    | User I       | Details:      |              |              |          |           |                         |      |
|-----------------------------------------------------------|-----------------|-----------------------|--------------------|--------------|---------------|--------------|--------------|----------|-----------|-------------------------|------|
| Assessor Name:                                            | Daniel Wa       | tt                    |                    |              | Strom         | a Num        | ber:         |          | STRO      | 026464                  |      |
| Software Name:                                            | Stroma FS       | AP 201                | 2                  |              | Softwa        | are Vei      | rsion:       |          | Versio    | on: 1.0.5.59            |      |
|                                                           |                 |                       | Pi                 | operty       | Address       | : The Sh     | ingles- E    | Be Greer | า         |                         |      |
| Address :                                                 | The Shingle     | es, Chelv             | vey Batch          | n, Back      | well, BRI     | STOL, E      | 3S48 3B      | Z        |           |                         |      |
| 1. Overall dwelling dime                                  | nsions:         |                       |                    |              |               |              |              |          |           |                         |      |
|                                                           |                 |                       |                    | Are          | ea(m²)        |              | Av. Hei      | ight(m)  | -         | Volume(m <sup>3</sup> ) |      |
| Ground floor                                              |                 |                       |                    | 2            | 211.32        | (1a) x       | 2.           | .75      | (2a) =    | 581.13                  | (3a) |
| First floor                                               |                 |                       |                    |              | 89.95         | (1b) x       | 2.           | .55      | (2b) =    | 229.37                  | (3b) |
| Total floor area TFA = (1a                                | a)+(1b)+(1c)+   | (1d)+(1e              | e)+(1n             | )            | 301.27        | (4)          |              |          |           |                         |      |
| Dwelling volume                                           |                 |                       |                    |              |               | (3a)+(3b     | )+(3c)+(3d   | )+(3e)+  | .(3n) =   | 810.5                   | (5)  |
| 2. Ventilation rate:                                      |                 |                       |                    |              |               |              |              |          |           |                         |      |
|                                                           | main<br>heating |                       | econdar<br>neating | у            | other         |              | total        |          |           | m <sup>3</sup> per hou  | •    |
| Number of chimneys                                        | 0               | +                     | 1                  | +            | 0             | ] = [        | 0            | x 4      | 40 =      | 0                       | (6a) |
| Number of open flues                                      | 0               | _ + _                 | 0                  | <u> </u> + [ | 0             |              | 0            | x 2      | 20 =      | 0                       | (6b) |
| Number of intermittent fa                                 | ns              |                       |                    |              |               | Ī            | 4            | x ^      | 10 =      | 40                      | (7a) |
| Number of passive vents                                   |                 |                       |                    |              |               | Γ            | 0            | x ^      | 10 =      | 0                       | (7b) |
| Number of flueless gas fi                                 | res             |                       |                    |              |               | Г            | 0            | x 4      | 40 =      | 0                       | (7c) |
|                                                           |                 |                       |                    |              |               | L            |              |          |           |                         |      |
|                                                           |                 |                       |                    |              |               |              |              |          | Air ch    | anges per ho            | ur   |
| Infiltration due to chimne                                | ys, flues and f | ans = <mark>(6</mark> | a)+(6b)+(7         | a)+(7b)+     | (7c) =        | Г            | 40           | · [      | ÷ (5) =   | 0.05                    | (8)  |
| If a pressurisation test has b                            |                 |                       | ed, proceed        | l to (17),   | otherwise     | continue fr  | rom (9) to ( | 16)      |           |                         | _    |
| Number of storeys in th                                   | ne dwelling (na | 5)                    |                    |              |               |              |              |          |           | 0                       | (9)  |
| Additional infiltration                                   | <b>.</b>        |                       |                    |              |               | _            |              | [(9)     | -1]x0.1 = | 0                       | (10) |
| Structural infiltration: 0                                |                 |                       |                    |              |               |              | uction       |          |           | 0                       | (11) |
| if both types of wall are pr<br>deducting areas of openir |                 |                       | ponaing to         | the grea     | iter wall are | a (anter     |              |          |           |                         |      |
| If suspended wooden f                                     | loor, enter 0.2 | (unseal               | led) or 0.         | 1 (seal      | ed), else     | enter 0      |              |          |           | 0                       | (12) |
| If no draught lobby, en                                   | ter 0.05, else  | enter 0               |                    |              |               |              |              |          |           | 0                       | (13) |
| Percentage of windows                                     | s and doors di  | aught st              | ripped             |              |               |              |              |          |           | 0                       | (14) |
| Window infiltration                                       |                 |                       |                    |              | 0.25 - [0.2   | 2 x (14) ÷ 1 | = [00        |          |           | 0                       | (15) |
| Infiltration rate                                         |                 |                       |                    |              | (8) + (10)    | + (11) + (1  | 12) + (13) + | + (15) = |           | 0                       | (16) |
| Air permeability value,                                   | q50, expresse   | ed in cub             | oic metre          | s per h      | our per s     | quare m      | etre of e    | nvelope  | area      | 5                       | (17) |
| If based on air permeabil                                 | ity value, then | (18) = [(1            | 7) ÷ 20]+(8        | ), otherv    | vise (18) =   | (16)         |              |          |           | 0.3                     | (18) |
| Air permeability value applie                             |                 | on test has           | s been don         | e or a de    | egree air pe  | rmeability   | is being us  | sed      |           |                         | _    |
| Number of sides sheltere                                  | d               |                       |                    |              | (20) = 1 -    | [0 075 v (1  | 10)1         |          |           | 2                       | (19) |
| Shelter factor                                            |                 |                       |                    |              |               | · ·          | [9]]=        |          |           | 0.85                    | (20) |
| Infiltration rate incorporat                              | -               |                       |                    |              | (21) = (18    | ) x (20) =   |              |          |           | 0.25                    | (21) |
| Infiltration rate modified for                            |                 | 1                     |                    |              |               |              |              | N.L.     |           | l                       |      |
|                                                           | Mar Apr         | May                   | Jun                | Jul          | Aug           | Sep          | Oct          | Nov      | Dec       |                         |      |
| Monthly average wind sp                                   |                 | i                     | ,                  |              |               |              |              |          |           | I                       |      |
| (22)m= 5.1 5                                              | 4.9 4.4         | 4.3                   | 3.8                | 3.8          | 3.7           | 4            | 4.3          | 4.5      | 4.7       |                         |      |

| Wind F                                                                                                                                                          | actor (2                                                                                                                                              | 2a)m =                                                                                                                                        | (22)m ÷                                                                                                                                                                                                                                                                                                                                                                    | 4                                                                   |                                                      |                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                     |                                                         |                    |             |             |                                                                                                                                                                                    |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------|------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------|--------------------|-------------|-------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| (22a)m=                                                                                                                                                         | 1.27                                                                                                                                                  | 1.25                                                                                                                                          | 1.23                                                                                                                                                                                                                                                                                                                                                                       | 1.1                                                                 | 1.08                                                 | 0.95                                                                                                                 | 0.95                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.92                                                                                                                          | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1.08                                                                                                                | 1.12                                                    | 1.18               |             |             |                                                                                                                                                                                    |
| Adjuste                                                                                                                                                         | ed infiltra                                                                                                                                           | ation rat                                                                                                                                     | e (allow                                                                                                                                                                                                                                                                                                                                                                   | ing for sl                                                          | nelter an                                            | id wind s                                                                                                            | peed) =                                                                                                                                                                                                                                                                                                                                                                                                                             | (21a) x                                                                                                                       | (22a)m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                     |                                                         |                    |             |             |                                                                                                                                                                                    |
| <b>.</b>                                                                                                                                                        | 0.32                                                                                                                                                  | 0.32                                                                                                                                          | 0.31                                                                                                                                                                                                                                                                                                                                                                       | 0.28                                                                | 0.27                                                 | 0.24                                                                                                                 | 0.24                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.24                                                                                                                          | 0.25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.27                                                                                                                | 0.29                                                    | 0.3                |             |             |                                                                                                                                                                                    |
|                                                                                                                                                                 | ate effec<br>echanica                                                                                                                                 |                                                                                                                                               | -                                                                                                                                                                                                                                                                                                                                                                          | rate for t                                                          | he appli                                             | cable ca                                                                                                             | se                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                     |                                                         |                    |             |             |                                                                                                                                                                                    |
|                                                                                                                                                                 |                                                                                                                                                       |                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                            | endix N, (2                                                         | 3h) - (23g                                           |                                                                                                                      | auation (N                                                                                                                                                                                                                                                                                                                                                                                                                          | N5)) other                                                                                                                    | nwieg (23h                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ) - (23a)                                                                                                           |                                                         |                    | (           |             | (23a)                                                                                                                                                                              |
|                                                                                                                                                                 |                                                                                                                                                       |                                                                                                                                               | • • • •                                                                                                                                                                                                                                                                                                                                                                    | ciency in %                                                         | , ,                                                  | , ,                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ) – (200)                                                                                                           |                                                         |                    | (           |             | (23b)                                                                                                                                                                              |
|                                                                                                                                                                 |                                                                                                                                                       |                                                                                                                                               | •                                                                                                                                                                                                                                                                                                                                                                          |                                                                     | •                                                    |                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                               | ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ⊃h.\                                                                                                                | 00k) [                                                  | 4 (00 a)           | (           | )           | (23c)                                                                                                                                                                              |
| ,                                                                                                                                                               | i                                                                                                                                                     |                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                            |                                                                     |                                                      |                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                     | HR) (248                                                                                                                      | $\frac{a}{b} = \frac{2}{c}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 20)m + (<br>0                                                                                                       | $230) \times [$                                         | 1 – (23c)<br>0     | ÷ 100]<br>] |             | (24a)                                                                                                                                                                              |
| (24a)m=                                                                                                                                                         | _                                                                                                                                                     |                                                                                                                                               | -                                                                                                                                                                                                                                                                                                                                                                          |                                                                     |                                                      |                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                               | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                     | -                                                       | 0                  |             |             | (244)                                                                                                                                                                              |
|                                                                                                                                                                 |                                                                                                                                                       |                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                            | entilation                                                          |                                                      | 1                                                                                                                    | <u> </u>                                                                                                                                                                                                                                                                                                                                                                                                                            | r Ó                                                                                                                           | ŕ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | r í                                                                                                                 | <u>,                                     </u>           |                    | 1           |             | (24b)                                                                                                                                                                              |
| (24b)m=                                                                                                                                                         |                                                                                                                                                       | 0                                                                                                                                             | 0                                                                                                                                                                                                                                                                                                                                                                          | 0                                                                   | 0                                                    | 0                                                                                                                    | 0                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0                                                                                                                             | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0                                                                                                                   | 0                                                       | 0                  |             |             | (24b)                                                                                                                                                                              |
| ,                                                                                                                                                               |                                                                                                                                                       |                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                            | ntilation of the                | •                                                    | •                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | E (22h                                                                                                              |                                                         |                    |             |             |                                                                                                                                                                                    |
| ا<br>=(24c)m                                                                                                                                                    | r`´                                                                                                                                                   | 0 0.5 ×                                                                                                                                       | 0                                                                                                                                                                                                                                                                                                                                                                          |                                                                     | (231) = (231)                                        |                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                     | $\frac{c}{c} = (22t)$                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                     | 0                                                       | 0                  | 1           |             | (24c)                                                                                                                                                                              |
|                                                                                                                                                                 | ÷                                                                                                                                                     | -                                                                                                                                             | -                                                                                                                                                                                                                                                                                                                                                                          | ÷                                                                   | -                                                    |                                                                                                                      | -                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                               | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0                                                                                                                   | 0                                                       | 0                  |             |             | (240)                                                                                                                                                                              |
| ,                                                                                                                                                               |                                                                                                                                                       |                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                            | ole hous<br>)m = (221                                               |                                                      |                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.51                                                                                                                |                                                         |                    |             |             |                                                                                                                                                                                    |
| (24d)m=                                                                                                                                                         |                                                                                                                                                       | 0.55                                                                                                                                          | 0.55                                                                                                                                                                                                                                                                                                                                                                       | 0.54                                                                | 0.54                                                 | 0.53                                                                                                                 | 0.53                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.53                                                                                                                          | 0.53                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.54                                                                                                                | 0.54                                                    | 0.54               |             |             | (24d)                                                                                                                                                                              |
|                                                                                                                                                                 |                                                                                                                                                       | change                                                                                                                                        | rate - er                                                                                                                                                                                                                                                                                                                                                                  | nter (24a                                                           | ) or (24t                                            | ) or (24                                                                                                             | L<br>c) or (24                                                                                                                                                                                                                                                                                                                                                                                                                      | d) in boy                                                                                                                     | (25)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                     |                                                         |                    | I           |             |                                                                                                                                                                                    |
| (25)m=                                                                                                                                                          | 0.55                                                                                                                                                  | 0.55                                                                                                                                          | 0.55                                                                                                                                                                                                                                                                                                                                                                       | 0.54                                                                | 0.54                                                 | 0.53                                                                                                                 | 0.53                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.53                                                                                                                          | 0.53                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.54                                                                                                                | 0.54                                                    | 0.54               | 1           |             | (25)                                                                                                                                                                               |
|                                                                                                                                                                 |                                                                                                                                                       |                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                            |                                                                     |                                                      | 1                                                                                                                    | 1                                                                                                                                                                                                                                                                                                                                                                                                                                   | I                                                                                                                             | I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                     |                                                         |                    | 1           |             |                                                                                                                                                                                    |
|                                                                                                                                                                 |                                                                                                                                                       |                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                            |                                                                     |                                                      |                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                     |                                                         |                    |             |             |                                                                                                                                                                                    |
|                                                                                                                                                                 |                                                                                                                                                       | s and he                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                            |                                                                     |                                                      |                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                     |                                                         |                    | _           | A \/        |                                                                                                                                                                                    |
| 3. He<br>ELEN                                                                                                                                                   |                                                                                                                                                       | Gros                                                                                                                                          | s                                                                                                                                                                                                                                                                                                                                                                          | Openin<br>Openin<br>rr                                              | gs                                                   | Net Ar<br>A ,r                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                     | U-valı<br>W/m2                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | A X U<br>(W/I                                                                                                       |                                                         | k-value<br>kJ/m²·I |             | A X<br>kJ/k |                                                                                                                                                                                    |
|                                                                                                                                                                 |                                                                                                                                                       |                                                                                                                                               | s                                                                                                                                                                                                                                                                                                                                                                          | Openin                                                              | gs                                                   | Net Ar<br>A ,r<br>2.64                                                                                               | m²                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | A X U<br>(W/                                                                                                        |                                                         |                    |             |             |                                                                                                                                                                                    |
| ELEN<br>Doors                                                                                                                                                   |                                                                                                                                                       | Gros<br>area                                                                                                                                  | s                                                                                                                                                                                                                                                                                                                                                                          | Openin                                                              | gs                                                   | A ,r                                                                                                                 | m <sup>2</sup>                                                                                                                                                                                                                                                                                                                                                                                                                      | W/m2                                                                                                                          | :K                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | (W/                                                                                                                 |                                                         |                    |             |             | K                                                                                                                                                                                  |
| ELEN<br>Doors<br>Windo                                                                                                                                          | IENT                                                                                                                                                  | Gros<br>area                                                                                                                                  | s                                                                                                                                                                                                                                                                                                                                                                          | Openin                                                              | gs                                                   | A ,r<br>2.64                                                                                                         | m <sup>2</sup> x<br>2 x <sup>1</sup>                                                                                                                                                                                                                                                                                                                                                                                                | W/m2                                                                                                                          | K<br>0.04] =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | (W/<br>2.64                                                                                                         |                                                         |                    |             |             | (26)                                                                                                                                                                               |
| ELEN<br>Doors<br>Windo<br>Windo                                                                                                                                 | <b>IENT</b><br>ws Type                                                                                                                                | Gros<br>area                                                                                                                                  | s                                                                                                                                                                                                                                                                                                                                                                          | Openin                                                              | gs                                                   | A ,r<br>2.64<br>19.32                                                                                                | m <sup>2</sup> x<br>2 x <sup>1</sup> / <sub>5</sub> x <sup>1</sup> / <sub>7</sub>                                                                                                                                                                                                                                                                                                                                                   | W/m2<br>1<br>/[1/( 1.4 )+                                                                                                     | K<br>0.04] =<br>0.04] =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | (W/<br>2.64<br>25.61                                                                                                |                                                         |                    |             |             | (26)<br>(27)                                                                                                                                                                       |
| ELEN<br>Doors<br>Windov<br>Windov<br>Windov                                                                                                                     | <b>IENT</b><br>ws Type<br>ws Type                                                                                                                     | Gros<br>area<br>1<br>2<br>3                                                                                                                   | s                                                                                                                                                                                                                                                                                                                                                                          | Openin                                                              | gs                                                   | A ,r<br>2.64<br>19.32<br>30.25                                                                                       | n <sup>2</sup> x<br>2 x <sup>1</sup><br>5 x <sup>1</sup><br>x <sup>1</sup>                                                                                                                                                                                                                                                                                                                                                          | W/m2<br>1<br>/[1/( 1.4 )+<br>/[1/( 1.4 )+                                                                                     | K<br>0.04] =<br>0.04] =<br>0.04] =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | (W/<br>2.64<br>25.61<br>40.1                                                                                        | к)                                                      |                    |             |             | <(26)<br>(27)<br>(27)                                                                                                                                                              |
| ELEN<br>Doors<br>Windov<br>Windov<br>Windov                                                                                                                     | <b>IENT</b><br>ws Type<br>ws Type<br>ws Type                                                                                                          | Gros<br>area<br>1<br>2<br>3                                                                                                                   | s                                                                                                                                                                                                                                                                                                                                                                          | Openin                                                              | gs                                                   | A ,r<br>2.64<br>19.32<br>30.25<br>9.94                                                                               | n <sup>2</sup> x<br>2 x <sup>1</sup> .<br>5 x <sup>1</sup> .<br>7 x <sup>1</sup> .                                                                                                                                                                                                                                                                                                                                                  | W/m2<br>1<br>/[1/( 1.4 )+<br>/[1/( 1.4 )+<br>/[1/( 1.4 )+                                                                     | K<br>0.04] =<br>0.04] =<br>0.04] =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | (W/)<br>2.64<br>25.61<br>40.1<br>13.18                                                                              | к)                                                      |                    |             |             | <ul> <li>(26)</li> <li>(27)</li> <li>(27)</li> <li>(27)</li> <li>(27)</li> </ul>                                                                                                   |
| ELEN<br>Doors<br>Windo<br>Windo<br>Windo<br>Floor                                                                                                               | <b>IENT</b><br>ws Type<br>ws Type<br>ws Type                                                                                                          | Gros<br>area<br>1<br>2<br>3                                                                                                                   | ss<br>(m²)                                                                                                                                                                                                                                                                                                                                                                 | Openin                                                              | gs<br>2                                              | A ,r<br>2.64<br>19.32<br>30.25<br>9.94<br>13.17                                                                      | n <sup>2</sup> x<br>2 x <sup>1</sup> / <sub>5</sub> x <sup>1</sup> / <sub>7</sub><br>x <sup>1</sup> / <sub>7</sub> x <sup>1</sup> / <sub>7</sub><br>2 x                                                                                                                                                                                                                                                                             | W/m2<br>1<br>/[1/( 1.4 )+<br>/[1/( 1.4 )+<br>/[1/( 1.4 )+<br>/[1/( 1.4 )+                                                     | K<br>0.04] =<br>0.04] =<br>0.04] =<br>0.04] =<br>0.04] =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | (W//<br>2.64<br>25.61<br>40.1<br>13.18<br>17.46                                                                     | к)                                                      |                    |             |             | <ul> <li>(26)</li> <li>(27)</li> <li>(27)</li> <li>(27)</li> <li>(27)</li> </ul>                                                                                                   |
| ELEN<br>Doors<br>Windo<br>Windo<br>Windo<br>Floor<br>Walls                                                                                                      | <b>IENT</b><br>ws Type<br>ws Type<br>ws Type<br>ws Type                                                                                               | Gros<br>area<br>1<br>2<br>3<br>4                                                                                                              | 92                                                                                                                                                                                                                                                                                                                                                                         | Openin<br>m                                                         | gs<br>2                                              | A ,r<br>2.64<br>19.32<br>30.25<br>9.94<br>13.17<br>211.3                                                             | n <sup>2</sup> x x <sup>1</sup> .<br>5 x <sup>1</sup> .<br>5 x <sup>1</sup> .<br>7 x <sup>1</sup> .<br>2 x<br>5 x                                                                                                                                                                                                                                                                                                                   | W/m2<br>1<br>/[1/( 1.4 )+<br>/[1/( 1.4 )+<br>/[1/( 1.4 )+<br>/[1/( 1.4 )+<br>0.13                                             | K<br>0.04] =<br>0.04] =<br>0.04] =<br>0.04] =<br>0.04] =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | (W//<br>2.64<br>25.61<br>40.1<br>13.18<br>17.46<br>27.4710                                                          | к)                                                      |                    |             |             | <ul> <li>(26)</li> <li>(27)</li> <li>(27)</li> <li>(27)</li> <li>(27)</li> <li>(27)</li> <li>(27)</li> <li>(28)</li> </ul>                                                         |
| ELEN<br>Doors<br>Windov<br>Windov<br>Windov                                                                                                                     | MENT<br>ws Type<br>ws Type<br>ws Type<br>ws Type<br>Type1                                                                                             | Gros<br>area<br>1<br>2<br>3<br>4<br>240.9                                                                                                     | 92<br>92                                                                                                                                                                                                                                                                                                                                                                   | Openin<br>m                                                         | gs<br>2                                              | A ,r<br>2.64<br>19.32<br>30.25<br>9.94<br>13.17<br>211.3<br>165.6                                                    | n <sup>2</sup> x x <sup>1</sup> .<br>5 x <sup>1</sup> .<br>5 x <sup>1</sup> .<br>7 x <sup>1</sup> .<br>2 x<br>5 x                                                                                                                                                                                                                                                                                                                   | W/m2<br>1<br>/[1/( 1.4 )+<br>/[1/( 1.4 )+<br>/[1/( 1.4 )+<br>/[1/( 1.4 )+<br>0.13<br>0.18                                     | K<br>0.04] =  <br>0.04] =  <br>0.04] =  <br>0.04] =  <br>0.04] =  <br>=                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | (W//<br>2.64<br>25.61<br>40.1<br>13.18<br>17.46<br>27.4710<br>29.81                                                 | к)                                                      |                    |             |             | <ul> <li>(26)</li> <li>(27)</li> <li>(27)</li> <li>(27)</li> <li>(27)</li> <li>(27)</li> <li>(28)</li> <li>(29)</li> </ul>                                                         |
| ELEN<br>Doors<br>Windov<br>Windov<br>Floor<br>Walls<br>Roof                                                                                                     | MENT<br>ws Type<br>ws Type<br>ws Type<br>ws Type<br>Type1                                                                                             | Gros<br>area<br>1<br>2<br>3<br>4<br>240.1<br>83.5<br>154                                                                                      | 92<br>12                                                                                                                                                                                                                                                                                                                                                                   | Openin<br>m<br>75.3                                                 | gs<br>2                                              | A ,r<br>2.64<br>19.32<br>30.25<br>9.94<br>13.17<br>211.3<br>165.6<br>83.52                                           | n <sup>2</sup> x x <sup>1</sup> .<br>2 x <sup>1</sup> .<br>5 x <sup>1</sup> .<br>7 x <sup>1</sup> .<br>2 x<br>3 x<br>2 x<br>2 x<br>2 x<br>2 x                                                                                                                                                                                                                                                                                       | W/m2<br>1<br>/[1/( 1.4 )+<br>/[1/( 1.4 )+<br>/[1/( 1.4 )+<br>/[1/( 1.4 )+<br>0.13<br>0.18<br>0.13                             | K<br>0.04] =  <br>0.04] =  <br>0.04] =  <br>0.04] =  <br>=  <br>=  <br>=                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | (W//<br>2.64<br>25.61<br>40.1<br>13.18<br>17.46<br>27.4710<br>29.81<br>10.86                                        | к)                                                      |                    |             |             | <ul> <li>(26)</li> <li>(27)</li> <li>(27)</li> <li>(27)</li> <li>(27)</li> <li>(28)</li> <li>(29)</li> <li>(30)</li> </ul>                                                         |
| ELEN<br>Doors<br>Windo<br>Windo<br>Windo<br>Windo<br>Rindo<br>Floor<br>Walls<br>Roof<br>Roof<br>Total a<br>* for win                                            | MENT<br>ws Type<br>ws Type<br>ws Type<br>ws Type<br>fype1<br>fype2<br>area of e<br>dows and                                                           | Gros<br>area<br>1<br>2<br>3<br>4<br>240.1<br>83.5<br>154<br>Iements<br>roof winder                                                            | 92<br>92<br>12<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1                                                                                                                                                                                                                                                                                            | Openin<br>m<br>75.3<br>0<br>0                                       | gs<br><sup>2</sup><br><br>ndow U-va                  | A ,r<br>2.64<br>19.32<br>30.25<br>9.94<br>13.17<br>211.3<br>165.6<br>83.52<br>154<br>689.7<br>alue calcul            | n <sup>2</sup> x x <sup>1</sup> .<br>2 x <sup>1</sup> .<br>5 x <sup>1</sup> .<br>7 x <sup>1</sup> .<br>2 x<br>5 x<br>2 x<br>6 x                                                                                                                                                                                                                                                                                                     | W/m2<br>1<br>/[1/( 1.4 )+<br>/[1/( 1.4 )+<br>/[1/( 1.4 )+<br>/[1/( 1.4 )+<br>0.13<br>0.13<br>0.13                             | K<br>0.04] =<br>0.04] =<br>0.04] =<br>0.04] =<br>=<br>=<br>=<br>=<br>=                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | (W//<br>2.64<br>25.61<br>40.1<br>13.18<br>17.46<br>27.4710<br>29.81<br>10.86<br>20.02                               | K)                                                      |                    |             |             | <ul> <li>(26)</li> <li>(27)</li> <li>(27)</li> <li>(27)</li> <li>(27)</li> <li>(27)</li> <li>(28)</li> <li>(29)</li> <li>(30)</li> <li>(30)</li> </ul>                             |
| ELEN<br>Doors<br>Windov<br>Windov<br>Windov<br>Floor<br>Walls<br>Roof T<br>Roof T<br>Total a<br>* for win<br>** includ                                          | MENT<br>ws Type<br>ws Type<br>ws Type<br>ws Type<br>fype1<br>fype2<br>area of e<br>dows and                                                           | Gros<br>area<br>1<br>2<br>3<br>4<br>240.9<br>83.5<br>154<br>lements<br>roof windo<br>is on both                                               | 92<br>92<br>12<br>14<br>15<br>15<br>15<br>15<br>15<br>15<br>15<br>15<br>15<br>15                                                                                                                                                                                                                                                                                           | Openin<br>m<br>75.3<br>0<br>0<br>effective wi<br>internal wal       | gs<br><sup>2</sup><br><br>ndow U-va                  | A ,r<br>2.64<br>19.32<br>30.25<br>9.94<br>13.17<br>211.3<br>165.6<br>83.52<br>154<br>689.7<br>alue calcul            | m <sup>2</sup> x x1<br>2 x1<br>5 x1<br>7 x1<br>2 x<br>2 x<br>2 x<br>2 x<br>4 x<br>2 x<br>2 x<br>2 x<br>4 x<br>2 x<br>2 x<br>2 x<br>4 x<br>2 x<br>2 x<br>2 x<br>4 x<br>4 x<br>4 x<br>4 x<br>4 x<br>4 x<br>4 x<br>4 | W/m2<br>1<br>/[1/( 1.4 )+<br>/[1/( 1.4 )+<br>/[1/( 1.4 )+<br>/[1/( 1.4 )+<br>0.13<br>0.13<br>0.13                             | K<br>0.04] =  <br>0.04] =  <br>0.04] =  <br>0.04] =  <br>1 =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | (W//<br>2.64<br>25.61<br>40.1<br>13.18<br>17.46<br>27.4710<br>29.81<br>10.86<br>20.02                               | K)                                                      | kJ/m²-I            | K           | kJ/ł        | <ul> <li>(26)</li> <li>(27)</li> <li>(27)</li> <li>(27)</li> <li>(27)</li> <li>(28)</li> <li>(29)</li> <li>(30)</li> <li>(30)</li> <li>(31)</li> </ul>                             |
| ELEN<br>Doors<br>Windov<br>Windov<br>Windov<br>Floor<br>Walls<br>Roof<br>Roof<br>Total a<br>* for win<br>** includ<br>Fabric                                    | MENT<br>ws Type<br>ws Type<br>ws Type<br>ws Type<br>ws Type<br>fype1<br>fype2<br>urea of e<br>dows and<br>le the area<br>heat los                     | Gros<br>area<br>1<br>2<br>3<br>4<br>240.1<br>83.5<br>154<br>lements<br>roof winde<br>s on both<br>s, W/K =                                    | 92<br>92<br>92<br>92<br>92<br>92<br>92<br>92<br>92<br>93<br>92<br>93<br>92<br>93<br>92<br>93<br>92<br>93<br>92<br>94<br>93<br>92<br>94<br>93<br>92<br>94<br>94<br>95<br>92<br>95<br>92<br>95<br>92<br>95<br>92<br>95<br>92<br>95<br>92<br>95<br>92<br>95<br>92<br>95<br>92<br>95<br>95<br>92<br>95<br>95<br>95<br>95<br>95<br>95<br>95<br>95<br>95<br>95<br>95<br>95<br>95 | Openin<br>m<br>75.3<br>0<br>0<br>effective wi<br>internal wal       | gs<br><sup>2</sup><br><br>ndow U-va                  | A ,r<br>2.64<br>19.32<br>30.25<br>9.94<br>13.17<br>211.3<br>165.6<br>83.52<br>154<br>689.7<br>alue calcul            | m <sup>2</sup> x x1<br>2 x1<br>5 x1<br>7 x1<br>2 x<br>2 x<br>2 x<br>2 x<br>4 x<br>2 x<br>2 x<br>2 x<br>4 x<br>2 x<br>2 x<br>2 x<br>4 x<br>2 x<br>2 x<br>2 x<br>2 x<br>4 x<br>2 x<br>2 x<br>2 x<br>2 x<br>2 x<br>2 x<br>2 x<br>2                                                                                                                                                                                                     | W/m2<br>1<br>/[1/( 1.4 )+<br>/[1/( 1.4 )+<br>/[1/( 1.4 )+<br>/[1/( 1.4 )+<br>[ 0.13<br>0.13<br>0.13<br>0.13<br>1<br>formula 1 | $\begin{array}{c} K \\ \hline \\ 0.04 \end{bmatrix} = \\ 0.04 \end{bmatrix} = \\ 0.04 \end{bmatrix} = \\ 0.04 \end{bmatrix} = \\ \hline \\ 0.04 \end{bmatrix} = \\ = \\ \hline \\ = \\ \\ (1/U-value) + (32) = \\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | (W//<br>2.64<br>25.61<br>40.1<br>13.18<br>17.46<br>27.4710<br>29.81<br>10.86<br>20.02                               | K)                                                      | kJ/m²-I            | K           | kJ/ł        | <ul> <li>(26)</li> <li>(27)</li> <li>(27)</li> <li>(27)</li> <li>(27)</li> <li>(27)</li> <li>(28)</li> <li>(29)</li> <li>(30)</li> <li>(30)</li> <li>(31)</li> </ul>               |
| ELEN<br>Doors<br>Windov<br>Windov<br>Windov<br>Floor<br>Floor<br>Walls<br>Roof<br>Roof<br>Total a<br>* for win<br>** includ<br>Fabric<br>Heat c                 | MENT<br>ws Type<br>ws Type<br>ws Type<br>ws Type<br>ws Type<br>fype1<br>fype2<br>urea of e<br>dows and<br>le the area<br>heat los<br>apacity (        | Gross<br>area<br>1<br>2<br>3<br>4<br>240.9<br>83.5<br>154<br>lements<br>roof winders<br>on both<br>s, W/K =<br>Cm = S(                        | 92<br>92<br>92<br>, m <sup>2</sup><br>ows, use e<br>sides of in<br>= S (A x<br>A x k )                                                                                                                                                                                                                                                                                     | Openin<br>m<br>75.3<br>0<br>0<br>effective wi<br>internal wal<br>U) | gs<br><sub>2</sub><br>2<br>ndow U-va<br>Is and par   | A ,r<br>2.64<br>19.32<br>30.25<br>9.94<br>13.17<br>211.3<br>165.6<br>83.52<br>154<br>689.7<br>alue calcul<br>titions | m <sup>2</sup> x x1<br>2 x1<br>5 x1<br>7 x1<br>2 x<br>2 x<br>5 x<br>2 x<br>6 s<br>ated using                                                                                                                                                                                                                                                                                                                                        | W/m2<br>1<br>/[1/( 1.4 )+<br>/[1/( 1.4 )+<br>/[1/( 1.4 )+<br>/[1/( 1.4 )+<br>[ 0.13<br>0.13<br>0.13<br>0.13<br>1<br>formula 1 | $\begin{array}{c} K \\ \hline \\ 0.04 \end{bmatrix} = \\ 0.04 \end{bmatrix} = \\ 0.04 \end{bmatrix} = \\ 0.04 \end{bmatrix} = \\ = \\ \hline \\ = \\ \\ (1/U-value) + (32) = \\ ((28). \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | (W//<br>2.64<br>25.61<br>40.1<br>13.18<br>17.46<br>27.4710<br>29.81<br>10.86<br>20.02<br>re)+0.04] a                | K)                                                      | kJ/m²-I            | K           | kJ/ł        | <ul> <li>(26)</li> <li>(27)</li> <li>(27)</li> <li>(27)</li> <li>(27)</li> <li>(28)</li> <li>(29)</li> <li>(30)</li> <li>(30)</li> <li>(31)</li> <li>(33)</li> <li>(34)</li> </ul> |
| ELEN<br>Doors<br>Windov<br>Windov<br>Windov<br>Floor<br>Walls<br>Roof T<br>Roof T<br>Total a<br>* for win<br>** includ<br>Fabric<br>Heat c<br>Therm<br>For desi | MENT<br>ws Type<br>ws Type<br>ws Type<br>ws Type<br>ws Type<br>Type<br>Type<br>urea of e<br>dows and<br>le the area<br>heat los<br>apacity<br>al mass | Gross<br>area<br>1<br>2<br>3<br>4<br>240.9<br>83.5<br>154<br>lements<br>roof winde<br>is on both<br>s, W/K =<br>Cm = S(<br>parame<br>ments wh | 92<br>92<br>92<br>92<br>92<br>92<br>92<br>92<br>92<br>92                                                                                                                                                                                                                                                                                                                   | Openin<br>T<br>T<br>T<br>T<br>T<br>T<br>T<br>T                      | gs<br>2<br>2<br>ndow U-va<br>Is and par<br>- TFA) ir | A ,r<br>2.64<br>19.32<br>30.25<br>9.94<br>13.17<br>211.3<br>165.6<br>83.52<br>154<br>689.7<br>alue calcul<br>titions | n <sup>2</sup> x x x x x x x x x x 6 x x x x x x x x                                                                                                                                                                                                                                                                                                                                                                                | W/m2<br>1<br>/[1/( 1.4 )+<br>/[1/( 1.4 )+<br>/[1/( 1.4 )+<br>/[1/( 1.4 )+<br>[0.13<br>0.13<br>0.13<br>0.13<br>1, (26)(30)     | K = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = | (W//<br>2.64<br>25.61<br>40.1<br>13.18<br>17.46<br>27.4710<br>29.81<br>10.86<br>20.02<br>re)+0.04] a<br>re)+0.04] a | K)<br>6<br>()<br>as given in<br>2) + (32a).<br>: Medium | kJ/m²-I            | K           | kJ/ł        | <ul> <li>(26)</li> <li>(27)</li> <li>(27)</li> <li>(27)</li> <li>(27)</li> <li>(27)</li> <li>(28)</li> <li>(29)</li> <li>(30)</li> <li>(30)</li> <li>(31)</li> </ul>               |

|           |                   |                       | are not kn              | own (36) =       | = 0.05 x (3      | 1)         |                   |                                                                                             |                       |             |                        |         |         |              |
|-----------|-------------------|-----------------------|-------------------------|------------------|------------------|------------|-------------------|---------------------------------------------------------------------------------------------|-----------------------|-------------|------------------------|---------|---------|--------------|
| Total f   | abric he          | at loss               |                         |                  |                  |            |                   |                                                                                             | (33) +                | (36) =      |                        |         | 237.74  | (37)         |
| Ventila   | ation hea         | at loss ca            | alculated               | monthl           | y                |            |                   |                                                                                             | (38)m                 | = 0.33 × (  | 25)m x (5)             |         | L       |              |
|           | Jan               | Feb                   | Mar                     | Apr              | May              | Jun        | Jul               | Aug                                                                                         | Sep                   | Oct         | Nov                    | Dec     |         |              |
| (38)m=    | 147.81            | 147.26                | 146.73                  | 144.21           | 143.74           | 141.55     | 141.55            | 141.14                                                                                      | 142.39                | 143.74      | 144.69                 | 145.69  |         | (38)         |
| Heat t    | ransfer o         | coefficier            | nt, W/K                 |                  |                  |            |                   |                                                                                             | (39)m                 | = (37) + (3 | 38)m                   |         |         |              |
| (39)m=    | 385.55            | 385.01                | 384.47                  | 381.95           | 381.48           | 379.29     | 379.29            | 378.88                                                                                      | 380.13                | 381.48      | 382.43                 | 383.43  |         |              |
|           |                   |                       |                         |                  |                  | _          |                   |                                                                                             |                       | Average =   |                        | 12 /12= | 381.95  | (39)         |
|           | <u> </u>          | `````                 | HLP), W/                | i                |                  |            |                   |                                                                                             |                       | = (39)m ÷   |                        |         | I       |              |
| (40)m=    | 1.28              | 1.28                  | 1.28                    | 1.27             | 1.27             | 1.26       | 1.26              | 1.26                                                                                        | 1.26                  | 1.27        | 1.27                   | 1.27    | 4.07    |              |
| Numb      | er of day         | vs in moi             | nth (Tab                | le 1a)           |                  |            |                   |                                                                                             | ,                     | Average =   | Sum(40)₁.              | 12 /12= | 1.27    | (40)         |
|           | Jan               | Feb                   | Mar                     | Apr              | May              | Jun        | Jul               | Aug                                                                                         | Sep                   | Oct         | Nov                    | Dec     |         |              |
| (41)m=    | 31                | 28                    | 31                      | 30               | 31               | 30         | 31                | 31                                                                                          | 30                    | 31          | 30                     | 31      |         | (41)         |
|           |                   |                       |                         |                  |                  |            |                   |                                                                                             |                       |             |                        |         |         |              |
| 4. Wa     | ater heat         | ting enei             | rgy requi               | irement:         |                  |            |                   |                                                                                             |                       |             |                        | kWh/ye  | ear:    |              |
| A         |                   |                       |                         |                  |                  |            |                   |                                                                                             |                       |             |                        |         | I       |              |
|           |                   | ıpancy, l<br>9. N = 1 | N<br>+ 1.76 x           | [1 - exp         | (-0.0003         | 49 x (TF   |                   | )2)] + 0.(                                                                                  | )013 x ( <sup>-</sup> | ΓFA -13.    |                        | 13      |         | (42)         |
|           | A £ 13.9          | -                     |                         | i onp            | ( 0.0000         |            |                   | /_/] · on                                                                                   |                       |             | 0)                     |         |         |              |
|           |                   |                       | ater usag               |                  |                  |            |                   |                                                                                             |                       |             |                        | 3.62    |         | (43)         |
|           |                   | -                     | hot water<br>person per |                  |                  | -          | -                 | to achieve                                                                                  | a water us            | se target o | t                      |         |         |              |
|           |                   |                       |                         |                  |                  |            | ·                 | <u> </u>                                                                                    | San                   | Oct         | Nov                    | Dee     |         |              |
| Hot wat   | Jan<br>er usage i | Feb                   | Mar<br>day for ea       | Apr<br>ach month | May<br>Vd.m = fa | Jun        | Jul<br>Table 1c x | Aug (43)                                                                                    | Sep                   | Oct         | Nov                    | Dec     |         |              |
| (44)m=    | 119.48            | 115.14                | 110.79                  | 106.45           | 102.11           | 97.76      | 97.76             | 102.11                                                                                      | 106.45                | 110.79      | 115.14                 | 119.48  |         |              |
| (44)///-  | 119.40            | 115.14                | 110.79                  | 100.43           | 102.11           | 97.70      | 57.70             | 102.11                                                                                      |                       | Total = Su  |                        |         | 1303.47 | (44)         |
| Energy    | content of        | hot water             | used - cal              | culated mo       | onthly $= 4$ .   | 190 x Vd,r | m x nm x D        | )<br>)<br>)<br>)<br>)<br>)<br>)<br>)<br>)<br>)<br>)<br>)<br>)<br>)<br>)<br>)<br>)<br>)<br>) |                       |             | · · ·                  |         | 1000.47 |              |
| (45)m=    | 177.19            | 154.97                | 159.92                  | 139.42           | 133.78           | 115.44     | 106.97            | 122.75                                                                                      | 124.22                | 144.76      | 158.02                 | 171.6   |         |              |
|           |                   |                       |                         |                  |                  |            |                   |                                                                                             |                       | Total = Su  | m(45) <sub>112</sub> = |         | 1709.06 | (45)         |
| lf instan | taneous w         | ater heatii           | ng at point             | of use (no       | hot water        | storage),  | enter 0 in        | boxes (46                                                                                   | ) to (61)             |             |                        |         |         |              |
| (46)m=    | 26.58             | 23.25                 | 23.99                   | 20.91            | 20.07            | 17.32      | 16.05             | 18.41                                                                                       | 18.63                 | 21.71       | 23.7                   | 25.74   |         | (46)         |
|           | storage           |                       | includin                |                  | alar ar M        |            | ctorago           | within or                                                                                   |                       |             |                        | 150     |         | (47)         |
| -         |                   | . ,                   | includin                |                  |                  |            | -                 |                                                                                             |                       | 561         |                        | 150     |         | (47)         |
|           | •                 | •                     | ind no ta<br>hot wate   |                  | •                |            |                   | · · ·                                                                                       | ers) ente             | er 'O' in ( | 47)                    |         |         |              |
|           | storage           |                       | not wate                | / (uno n         |                  | instantai  | 10003 00          |                                                                                             |                       |             |                        |         |         |              |
|           | -                 |                       | eclared l               | oss facto        | or is kno        | wn (kWł    | n/day):           |                                                                                             |                       |             | 2.                     | 52      |         | (48)         |
| Tempe     | erature f         | actor fro             | m Table                 | 2b               |                  |            |                   |                                                                                             |                       |             | 0.                     | 54      |         | (49)         |
| Energ     | y lost fro        | m water               | · storage               | , kWh/ye         | ear              |            |                   | (48) x (49)                                                                                 | ) =                   |             | 1.                     | 36      |         | (50)         |
|           |                   |                       | eclared o               | •                |                  |            |                   |                                                                                             |                       |             |                        |         |         |              |
|           |                   | -                     | factor fr               |                  | e 2 (kW          | h/litre/da | ay)               |                                                                                             |                       |             |                        | 0       |         | (51)         |
|           | •                 | eating s<br>from Ta   | ee sectio               | on 4.3           |                  |            |                   |                                                                                             |                       |             |                        |         | l       | (50)         |
|           |                   |                       | bie ∠a<br>m Table       | 2b               |                  |            |                   |                                                                                             |                       |             |                        | 0       |         | (52)<br>(53) |
|           |                   |                       | storage                 |                  | aar              |            |                   | (47) x (51)                                                                                 | V (50) v (            | 53) -       |                        |         |         |              |
| -         |                   | (54) in (5            | -                       | , ixvii/yt       | Jui              |            |                   | ( +                                                                                         | , , (02) ^ (          |             |                        | 0<br>36 |         | (54)<br>(55) |
|           | . ,               | . , (-                | ,                       |                  |                  |            |                   |                                                                                             |                       |             | ·                      | -       |         | · · · · ·    |

| Water                                                                                                               | storage                                                                                                                                                                           | loss cal                                                                                                                                      | culated                                                                                                                 | for each                                                                                                               | month                                                                                                     |                                                                                                           |                                                                                                | ((56)m = (                                                                               | 55) × (41)                                                                          | m                                                                          |                                                              |                                                              |                                                |
|---------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|----------------------------------------------------------------------------|--------------------------------------------------------------|--------------------------------------------------------------|------------------------------------------------|
| (56)m=                                                                                                              | 42.24                                                                                                                                                                             | 38.15                                                                                                                                         | 42.24                                                                                                                   | 40.88                                                                                                                  | 42.24                                                                                                     | 40.88                                                                                                     | 42.24                                                                                          | 42.24                                                                                    | 40.88                                                                               | 42.24                                                                      | 40.88                                                        | 42.24                                                        | (56)                                           |
| If cylinde                                                                                                          | er contains                                                                                                                                                                       | s dedicate                                                                                                                                    | d solar sto                                                                                                             | orage, (57)                                                                                                            | m = (56)m                                                                                                 | x [(50) – (                                                                                               | H11)] ÷ (5                                                                                     | 0), else (5                                                                              | 7)m = (56)                                                                          | m where (                                                                  | H11) is fro                                                  | m Append                                                     | lix H                                          |
| (57)m=                                                                                                              | 42.24                                                                                                                                                                             | 38.15                                                                                                                                         | 42.24                                                                                                                   | 40.88                                                                                                                  | 42.24                                                                                                     | 40.88                                                                                                     | 42.24                                                                                          | 42.24                                                                                    | 40.88                                                                               | 42.24                                                                      | 40.88                                                        | 42.24                                                        | (57)                                           |
| Primar                                                                                                              | y circuit                                                                                                                                                                         | loss (ar                                                                                                                                      | nual) fro                                                                                                               | om Table                                                                                                               | 93                                                                                                        |                                                                                                           |                                                                                                | -                                                                                        |                                                                                     | -                                                                          |                                                              | 0                                                            | (58)                                           |
|                                                                                                                     | •                                                                                                                                                                                 | •                                                                                                                                             | ,                                                                                                                       | for each                                                                                                               |                                                                                                           | 59)m = (                                                                                                  | (58) ÷ 36                                                                                      | 65 × (41)                                                                                | m                                                                                   |                                                                            |                                                              |                                                              | •                                              |
| (mo                                                                                                                 | dified by                                                                                                                                                                         | factor f                                                                                                                                      | rom Tab                                                                                                                 | le H5 if t                                                                                                             | here is s                                                                                                 | solar wat                                                                                                 | er heati                                                                                       | ng and a                                                                                 | cylinde                                                                             | r thermo                                                                   | ostat)                                                       |                                                              | _                                              |
| (59)m=                                                                                                              | 23.26                                                                                                                                                                             | 21.01                                                                                                                                         | 23.26                                                                                                                   | 22.51                                                                                                                  | 23.26                                                                                                     | 22.51                                                                                                     | 23.26                                                                                          | 23.26                                                                                    | 22.51                                                                               | 23.26                                                                      | 22.51                                                        | 23.26                                                        | (59)                                           |
| Combi                                                                                                               | loss ca                                                                                                                                                                           | lculated                                                                                                                                      | for each                                                                                                                | n month (                                                                                                              | (61)m =                                                                                                   | (60) ÷ 36                                                                                                 | 65 × (41                                                                                       | )m                                                                                       |                                                                                     |                                                                            |                                                              |                                                              |                                                |
| (61)m=                                                                                                              | 0                                                                                                                                                                                 | 0                                                                                                                                             | 0                                                                                                                       | 0                                                                                                                      | 0                                                                                                         | 0                                                                                                         | 0                                                                                              | 0                                                                                        | 0                                                                                   | 0                                                                          | 0                                                            | 0                                                            | (61)                                           |
| Total h                                                                                                             | neat requ                                                                                                                                                                         | uired for                                                                                                                                     | water h                                                                                                                 | eating ca                                                                                                              | alculated                                                                                                 | l for eacl                                                                                                | h month                                                                                        | (62)m =                                                                                  | 0.85 ×                                                                              | (45)m +                                                                    | (46)m +                                                      | (57)m +                                                      | (59)m + (61)m                                  |
| (62)m=                                                                                                              | 242.7                                                                                                                                                                             | 214.14                                                                                                                                        | 225.42                                                                                                                  | 202.81                                                                                                                 | 199.28                                                                                                    | 178.83                                                                                                    | 172.48                                                                                         | 188.26                                                                                   | 187.61                                                                              | 210.27                                                                     | 221.41                                                       | 237.11                                                       | (62)                                           |
| Solar DI                                                                                                            | HW input of                                                                                                                                                                       | calculated                                                                                                                                    | using App                                                                                                               | endix G o                                                                                                              | Appendix                                                                                                  | H (negati                                                                                                 | ve quantity                                                                                    | /) (enter '0                                                                             | ' if no sola                                                                        | r contribut                                                                | ion to wate                                                  | er heating)                                                  |                                                |
| (add a                                                                                                              | dditiona                                                                                                                                                                          | l lines if                                                                                                                                    | FGHRS                                                                                                                   | and/or \                                                                                                               | WWHRS                                                                                                     | applies                                                                                                   | , see Ap                                                                                       | pendix (                                                                                 | G)                                                                                  |                                                                            |                                                              |                                                              |                                                |
| (63)m=                                                                                                              | 0                                                                                                                                                                                 | 0                                                                                                                                             | 0                                                                                                                       | 0                                                                                                                      | 0                                                                                                         | 0                                                                                                         | 0                                                                                              | 0                                                                                        | 0                                                                                   | 0                                                                          | 0                                                            | 0                                                            | (63)                                           |
| Output                                                                                                              | t from w                                                                                                                                                                          | ater hea                                                                                                                                      | ter                                                                                                                     |                                                                                                                        |                                                                                                           |                                                                                                           |                                                                                                |                                                                                          |                                                                                     |                                                                            |                                                              |                                                              | _                                              |
| (64)m=                                                                                                              | 242.7                                                                                                                                                                             | 214.14                                                                                                                                        | 225.42                                                                                                                  | 202.81                                                                                                                 | 199.28                                                                                                    | 178.83                                                                                                    | 172.48                                                                                         | 188.26                                                                                   | 187.61                                                                              | 210.27                                                                     | 221.41                                                       | 237.11                                                       |                                                |
|                                                                                                                     |                                                                                                                                                                                   |                                                                                                                                               |                                                                                                                         |                                                                                                                        |                                                                                                           |                                                                                                           |                                                                                                | Outp                                                                                     | out from w                                                                          | ater heate                                                                 | r (annual)₁                                                  | 12                                                           | 2480.31 (64)                                   |
| Heat g                                                                                                              | ains fro                                                                                                                                                                          | m water                                                                                                                                       | heating                                                                                                                 | , kWh/m                                                                                                                | onth 0.2                                                                                                  | 5 ´ [0.85                                                                                                 | × (45)m                                                                                        | ı + (61)m                                                                                | n] + 0.8 x                                                                          | x [(46)m                                                                   | + (57)m                                                      | + (59)m                                                      | ·]                                             |
| (65)m=                                                                                                              | 111.32                                                                                                                                                                            | 98.86                                                                                                                                         | 105.58                                                                                                                  | 97.07                                                                                                                  | 96.88                                                                                                     | 89.1                                                                                                      | 87.97                                                                                          | 93.22                                                                                    | 92.02                                                                               | 100.54                                                                     | 103.26                                                       | 109.46                                                       | (65)                                           |
| inclu                                                                                                               | ude (57)                                                                                                                                                                          | m in calo                                                                                                                                     | culation                                                                                                                | of (65)m                                                                                                               | only if c                                                                                                 | ylinder is                                                                                                | s in the o                                                                                     | dwelling                                                                                 | or hot w                                                                            | ater is fi                                                                 | rom com                                                      | munity h                                                     | leating                                        |
| 5. Int                                                                                                              | ternal ga                                                                                                                                                                         | ains (see                                                                                                                                     | e Table 5                                                                                                               | 5 and 5a                                                                                                               | ):                                                                                                        |                                                                                                           |                                                                                                |                                                                                          |                                                                                     |                                                                            |                                                              |                                                              |                                                |
| Metab                                                                                                               |                                                                                                                                                                                   |                                                                                                                                               |                                                                                                                         |                                                                                                                        | /                                                                                                         |                                                                                                           |                                                                                                |                                                                                          |                                                                                     |                                                                            |                                                              |                                                              |                                                |
|                                                                                                                     | olic gain                                                                                                                                                                         | s (Table                                                                                                                                      | e 5), Wat                                                                                                               |                                                                                                                        |                                                                                                           | _                                                                                                         |                                                                                                |                                                                                          | _                                                                                   |                                                                            |                                                              |                                                              |                                                |
|                                                                                                                     | olic gain<br>Jan                                                                                                                                                                  | s (Table<br>Feb                                                                                                                               | 5), Wat<br>Mar                                                                                                          |                                                                                                                        | Мау                                                                                                       | Jun                                                                                                       | Jul                                                                                            | Aug                                                                                      | Sep                                                                                 | Oct                                                                        | Nov                                                          | Dec                                                          | ]                                              |
| (66)m=                                                                                                              |                                                                                                                                                                                   |                                                                                                                                               |                                                                                                                         | tts                                                                                                                    |                                                                                                           | Jun<br>156.68                                                                                             | Jul<br>156.68                                                                                  | Aug<br>156.68                                                                            | Sep<br>156.68                                                                       | Oct<br>156.68                                                              | Nov<br>156.68                                                | Dec<br>156.68                                                | (66)                                           |
|                                                                                                                     | Jan<br>156.68                                                                                                                                                                     | Feb<br>156.68                                                                                                                                 | Mar<br>156.68                                                                                                           | tts<br>Apr                                                                                                             | May<br>156.68                                                                                             | 156.68                                                                                                    | 156.68                                                                                         | 156.68                                                                                   | 156.68                                                                              |                                                                            |                                                              |                                                              | (66)                                           |
| Lightin                                                                                                             | Jan<br>156.68                                                                                                                                                                     | Feb<br><sup>156.68</sup><br>(calcula                                                                                                          | Mar<br>156.68<br>ted in Aj                                                                                              | Apr<br>156.68<br>Dpendix                                                                                               | May<br>156.68                                                                                             | 156.68                                                                                                    | 156.68<br>r L9a), a                                                                            | 156.68                                                                                   | 156.68                                                                              |                                                                            |                                                              |                                                              | (66)                                           |
| Lightin<br>(67)m=                                                                                                   | Jan<br>156.68<br>g gains<br>40.95                                                                                                                                                 | Feb<br>156.68<br>(calcula<br>36.37                                                                                                            | Mar<br>156.68<br>ted in Aj<br>29.58                                                                                     | Apr<br>156.68<br>Dpendix                                                                                               | May<br>156.68<br>L, equat<br>16.74                                                                        | 156.68<br>ion L9 oi<br>14.13                                                                              | 156.68<br>r L9a), a<br>15.27                                                                   | 156.68<br>Iso see<br>19.85                                                               | 156.68<br>Table 5<br>26.64                                                          | 156.68<br>33.82                                                            | 156.68                                                       | 156.68                                                       |                                                |
| Lightin<br>(67)m=                                                                                                   | Jan<br>156.68<br>g gains<br>40.95                                                                                                                                                 | Feb<br>156.68<br>(calcula<br>36.37                                                                                                            | Mar<br>156.68<br>ted in Aj<br>29.58                                                                                     | tts<br>Apr<br>156.68<br>opendix<br>22.39                                                                               | May<br>156.68<br>L, equat<br>16.74                                                                        | 156.68<br>ion L9 oi<br>14.13                                                                              | 156.68<br>r L9a), a<br>15.27                                                                   | 156.68<br>Iso see<br>19.85                                                               | 156.68<br>Table 5<br>26.64                                                          | 156.68<br>33.82                                                            | 156.68                                                       | 156.68                                                       |                                                |
| Lightin<br>(67)m=<br>Applia<br>(68)m=                                                                               | Jan<br>156.68<br>g gains<br>40.95<br>nces ga<br>459.29                                                                                                                            | Feb<br>156.68<br>(calcula<br>36.37<br>ins (calc<br>464.06                                                                                     | Mar<br>156.68<br>ted in Ap<br>29.58<br>ulated ir<br>452.05                                                              | tts<br>Apr<br>156.68<br>opendix<br>22.39<br>Append                                                                     | May<br>156.68<br>L, equat<br>16.74<br>dix L, eq<br>394.2                                                  | 156.68<br>ion L9 of<br>14.13<br>uation L<br>363.87                                                        | 156.68<br>r L9a), a<br>15.27<br>13 or L1<br>343.6                                              | 156.68<br>Iso see<br>19.85<br>3a), also<br>338.84                                        | 156.68<br>Table 5<br>26.64<br>see Ta<br>350.85                                      | 156.68<br>33.82<br>ble 5<br>376.42                                         | 156.68<br>39.48                                              | 156.68<br>42.08                                              | (67)                                           |
| Lightin<br>(67)m=<br>Applia<br>(68)m=                                                                               | Jan<br>156.68<br>g gains<br>40.95<br>nces ga<br>459.29                                                                                                                            | Feb<br>156.68<br>(calcula<br>36.37<br>ins (calc<br>464.06                                                                                     | Mar<br>156.68<br>ted in Ap<br>29.58<br>ulated ir<br>452.05                                                              | tts<br>Apr<br>156.68<br>opendix<br>22.39<br>Append<br>426.48                                                           | May<br>156.68<br>L, equat<br>16.74<br>dix L, eq<br>394.2                                                  | 156.68<br>ion L9 of<br>14.13<br>uation L<br>363.87                                                        | 156.68<br>r L9a), a<br>15.27<br>13 or L1<br>343.6                                              | 156.68<br>Iso see<br>19.85<br>3a), also<br>338.84                                        | 156.68<br>Table 5<br>26.64<br>see Ta<br>350.85                                      | 156.68<br>33.82<br>ble 5<br>376.42                                         | 156.68<br>39.48                                              | 156.68<br>42.08                                              | (67)                                           |
| Lightin<br>(67)m=<br>Applia<br>(68)m=<br>Cookir<br>(69)m=                                                           | Jan<br>156.68<br>g gains<br>40.95<br>nces ga<br>459.29<br>ng gains<br>38.67                                                                                                       | Feb<br>156.68<br>(calcula<br>36.37<br>ins (calc<br>464.06<br>(calcula                                                                         | Mar<br>156.68<br>ted in A<br>29.58<br>ulated ir<br>452.05<br>ted in A<br>38.67                                          | tts<br>Apr<br>156.68<br>opendix<br>22.39<br>Appendix<br>426.48<br>ppendix<br>38.67                                     | May<br>156.68<br>L, equat<br>16.74<br>dix L, eq<br>394.2<br>L, equat                                      | 156.68<br>ion L9 of<br>14.13<br>uation L<br>363.87<br>ion L15                                             | 156.68<br>r L9a), a<br>15.27<br>13 or L1<br>343.6<br>or L15a)                                  | 156.68<br>Iso see<br>19.85<br>3a), also<br>338.84<br>), also se                          | 156.68<br>Table 5<br>26.64<br>9 see Ta<br>350.85<br>ee Table                        | 156.68<br>33.82<br>ble 5<br>376.42<br>5                                    | 156.68<br>39.48<br>408.69                                    | 156.68<br>42.08<br>439.03                                    | ] (67)<br>] (68)                               |
| Lightin<br>(67)m=<br>Applia<br>(68)m=<br>Cookir<br>(69)m=                                                           | Jan<br>156.68<br>g gains<br>40.95<br>nces ga<br>459.29<br>ng gains<br>38.67                                                                                                       | Feb<br>156.68<br>(calcula<br>36.37<br>ins (calc<br>464.06<br>(calcula<br>38.67                                                                | Mar<br>156.68<br>ted in A<br>29.58<br>ulated ir<br>452.05<br>ted in A<br>38.67                                          | tts<br>Apr<br>156.68<br>opendix<br>22.39<br>Appendix<br>426.48<br>ppendix<br>38.67                                     | May<br>156.68<br>L, equat<br>16.74<br>dix L, eq<br>394.2<br>L, equat                                      | 156.68<br>ion L9 of<br>14.13<br>uation L<br>363.87<br>ion L15                                             | 156.68<br>r L9a), a<br>15.27<br>13 or L1<br>343.6<br>or L15a)                                  | 156.68<br>Iso see<br>19.85<br>3a), also<br>338.84<br>), also se                          | 156.68<br>Table 5<br>26.64<br>9 see Ta<br>350.85<br>ee Table                        | 156.68<br>33.82<br>ble 5<br>376.42<br>5                                    | 156.68<br>39.48<br>408.69                                    | 156.68<br>42.08<br>439.03                                    | ] (67)<br>] (68)                               |
| Lightin<br>(67)m=<br>Applia<br>(68)m=<br>Cookir<br>(69)m=<br>Pumps<br>(70)m=                                        | Jan           156.68           og gains           40.95           nces ga           459.29           ng gains           38.67           s and fair           3                    | Feb<br>156.68<br>(calcula<br>36.37<br>ins (calc<br>464.06<br>(calcula<br>38.67<br>ns gains<br>3                                               | Mar<br>156.68<br>ted in A<br>29.58<br>ulated ir<br>452.05<br>ted in A<br>38.67<br>(Table 5<br>3                         | tts<br>Apr<br>156.68<br>opendix<br>22.39<br>Appendix<br>426.48<br>ppendix<br>38.67<br>5a)                              | May<br>156.68<br>L, equat<br>16.74<br>dix L, eq<br>394.2<br>L, equat<br>38.67                             | 156.68<br>ion L9 of<br>14.13<br>uation L<br>363.87<br>ion L15<br>38.67                                    | 156.68<br>r L9a), a<br>15.27<br>13 or L1<br>343.6<br>or L15a)<br>38.67                         | 156.68<br>Iso see<br>19.85<br>3a), also<br>338.84<br>), also se<br>38.67                 | 156.68<br>Table 5<br>26.64<br>see Ta<br>350.85<br>ee Table<br>38.67                 | 156.68<br>33.82<br>ble 5<br>376.42<br>5<br>38.67                           | 156.68<br>39.48<br>408.69<br>38.67                           | 156.68<br>42.08<br>439.03<br>38.67                           | ] (67)<br>] (68)<br>] (69)                     |
| Lightin<br>(67)m=<br>Applia<br>(68)m=<br>Cookir<br>(69)m=<br>Pumps<br>(70)m=                                        | Jan           156.68           og gains           40.95           nces ga           459.29           ng gains           38.67           s and fai           3           s e.g. ev | Feb<br>156.68<br>(calcula<br>36.37<br>ins (calc<br>464.06<br>(calcula<br>38.67<br>ns gains<br>3<br>raporatic                                  | Mar<br>156.68<br>ted in A<br>29.58<br>ulated ir<br>452.05<br>ted in A<br>38.67<br>(Table 5<br>3                         | tts<br>Apr<br>156.68<br>opendix<br>22.39<br>Appendix<br>426.48<br>ppendix<br>38.67<br>5a)<br>3                         | May<br>156.68<br>L, equat<br>16.74<br>dix L, eq<br>394.2<br>L, equat<br>38.67                             | 156.68<br>ion L9 of<br>14.13<br>uation L<br>363.87<br>ion L15<br>38.67                                    | 156.68<br>r L9a), a<br>15.27<br>13 or L1<br>343.6<br>or L15a)<br>38.67                         | 156.68<br>Iso see<br>19.85<br>3a), also<br>338.84<br>), also se<br>38.67                 | 156.68<br>Table 5<br>26.64<br>see Ta<br>350.85<br>ee Table<br>38.67                 | 156.68<br>33.82<br>ble 5<br>376.42<br>5<br>38.67                           | 156.68<br>39.48<br>408.69<br>38.67                           | 156.68<br>42.08<br>439.03<br>38.67                           | ] (67)<br>] (68)<br>] (69)                     |
| Lightin<br>(67)m=<br>Applia<br>(68)m=<br>Cookir<br>(69)m=<br>Pumps<br>(70)m=<br>Losses<br>(71)m=                    | Jan<br>156.68<br>19 gains<br>40.95<br>nces ga<br>459.29<br>ng gains<br>38.67<br>s and fai<br>3<br>s e.g. ev<br>-125.34                                                            | Feb<br>156.68<br>(calcula<br>36.37<br>ins (calc<br>464.06<br>(calcula<br>38.67<br>ns gains<br>3<br>raporatic                                  | Mar<br>156.68<br>ted in A<br>29.58<br>ulated in<br>452.05<br>ited in A<br>38.67<br>(Table 9<br>3<br>on (nega<br>-125.34 | tts<br>Apr<br>156.68<br>opendix<br>22.39<br>Appendix<br>426.48<br>ppendix<br>38.67<br>5a)<br>3<br>tive valu            | May<br>156.68<br>L, equat<br>16.74<br>dix L, eq<br>394.2<br>L, equat<br>38.67<br>3<br>es) (Tab            | 156.68<br>ion L9 of<br>14.13<br>uation L<br>363.87<br>ion L15<br>38.67<br>3<br>le 5)                      | 156.68<br>r L9a), a<br>15.27<br>13 or L1<br>343.6<br>or L15a<br>38.67<br>3                     | 156.68<br>Iso see<br>19.85<br>3a), also<br>338.84<br>), also se<br>38.67<br>3            | 156.68<br>Table 5<br>26.64<br>see Ta<br>350.85<br>ee Table<br>38.67<br>3            | 156.68<br>33.82<br>ble 5<br>376.42<br>5<br>38.67<br>3                      | 156.68<br>39.48<br>408.69<br>38.67<br>3                      | 156.68<br>42.08<br>439.03<br>38.67<br>3                      | ] (67)<br>] (68)<br>] (69)<br>] (70)           |
| Lightin<br>(67)m=<br>Applia<br>(68)m=<br>Cookir<br>(69)m=<br>Pumps<br>(70)m=<br>Losses<br>(71)m=                    | Jan<br>156.68<br>19 gains<br>40.95<br>nces ga<br>459.29<br>ng gains<br>38.67<br>s and fai<br>3<br>s e.g. ev<br>-125.34                                                            | Feb<br>156.68<br>(calcula<br>36.37<br>ins (calc<br>464.06<br>(calcula<br>38.67<br>ns gains<br>3<br>aporatic<br>-125.34                        | Mar<br>156.68<br>ted in A<br>29.58<br>ulated in<br>452.05<br>ited in A<br>38.67<br>(Table 9<br>3<br>on (nega<br>-125.34 | tts<br>Apr<br>156.68<br>opendix<br>22.39<br>Appendix<br>426.48<br>ppendix<br>38.67<br>5a)<br>3<br>tive valu            | May<br>156.68<br>L, equat<br>16.74<br>dix L, eq<br>394.2<br>L, equat<br>38.67<br>3<br>es) (Tab            | 156.68<br>ion L9 of<br>14.13<br>uation L<br>363.87<br>ion L15<br>38.67<br>3<br>le 5)                      | 156.68<br>r L9a), a<br>15.27<br>13 or L1<br>343.6<br>or L15a<br>38.67<br>3                     | 156.68<br>Iso see<br>19.85<br>3a), also<br>338.84<br>), also se<br>38.67<br>3            | 156.68<br>Table 5<br>26.64<br>see Ta<br>350.85<br>ee Table<br>38.67<br>3            | 156.68<br>33.82<br>ble 5<br>376.42<br>5<br>38.67<br>3                      | 156.68<br>39.48<br>408.69<br>38.67<br>3                      | 156.68<br>42.08<br>439.03<br>38.67<br>3                      | ] (67)<br>] (68)<br>] (69)<br>] (70)           |
| Lightin<br>(67)m=<br>Applia<br>(68)m=<br>Cookir<br>(69)m=<br>Pumps<br>(70)m=<br>Losses<br>(71)m=<br>Water<br>(72)m= | Jan<br>156.68<br>19 gains<br>40.95<br>nces ga<br>459.29<br>19 gains<br>38.67<br>5 and fai<br>3<br>s e.g. ev<br>-125.34<br>heating<br>149.62                                       | Feb<br>156.68<br>(calcula<br>36.37<br>ins (calc<br>464.06<br>(calcula<br>38.67<br>ns gains<br>3<br>raporatic<br>-125.34<br>gains (T           | Mar<br>156.68<br>ted in A<br>29.58<br>ulated in<br>452.05<br>ted in A<br>38.67<br>(Table 5<br>able 5)<br>141.9          | tts<br>Apr<br>156.68<br>opendix<br>22.39<br>Appendix<br>426.48<br>ppendix<br>38.67<br>5a)<br>3<br>tive valu<br>-125.34 | May<br>156.68<br>L, equat<br>16.74<br>dix L, eq<br>394.2<br>L, equat<br>38.67<br>3<br>es) (Tab<br>-125.34 | 156.68<br>ion L9 of<br>14.13<br>uation L<br>363.87<br>ion L15<br>38.67<br>3<br>le 5)<br>-125.34<br>123.75 | 156.68<br>r L9a), a<br>15.27<br>13 or L1<br>343.6<br>or L15a<br>38.67<br>38.67<br>3<br>-125.34 | 156.68<br>Iso see<br>19.85<br>3a), also<br>338.84<br>), also se<br>38.67<br>3<br>-125.34 | 156.68<br>Table 5<br>26.64<br>See Ta<br>350.85<br>De Table<br>38.67<br>3<br>-125.34 | 156.68<br>33.82<br>ble 5<br>376.42<br>5<br>38.67<br>3<br>-125.34<br>135.13 | 156.68<br>39.48<br>408.69<br>38.67<br>3<br>-125.34           | 156.68<br>42.08<br>439.03<br>38.67<br>3<br>-125.34<br>147.12 | ] (67)<br>] (68)<br>] (69)<br>] (70)<br>] (71) |
| Lightin<br>(67)m=<br>Applia<br>(68)m=<br>Cookir<br>(69)m=<br>Pumps<br>(70)m=<br>Losses<br>(71)m=<br>Water<br>(72)m= | Jan<br>156.68<br>19 gains<br>40.95<br>nces ga<br>459.29<br>19 gains<br>38.67<br>5 and fai<br>3<br>s e.g. ev<br>-125.34<br>heating<br>149.62                                       | Feb<br>156.68<br>(calcula<br>36.37<br>ins (calc<br>464.06<br>(calcula<br>38.67<br>ns gains<br>3<br>raporatic<br>-125.34<br>gains (T<br>147.11 | Mar<br>156.68<br>ted in A<br>29.58<br>ulated in<br>452.05<br>ted in A<br>38.67<br>(Table 5<br>able 5)<br>141.9          | tts<br>Apr<br>156.68<br>opendix<br>22.39<br>Appendix<br>426.48<br>ppendix<br>38.67<br>5a)<br>3<br>tive valu<br>-125.34 | May<br>156.68<br>L, equat<br>16.74<br>dix L, eq<br>394.2<br>L, equat<br>38.67<br>3<br>es) (Tab<br>-125.34 | 156.68<br>ion L9 of<br>14.13<br>uation L<br>363.87<br>ion L15<br>38.67<br>3<br>le 5)<br>-125.34<br>123.75 | 156.68<br>r L9a), a<br>15.27<br>13 or L1<br>343.6<br>or L15a<br>38.67<br>38.67<br>3<br>-125.34 | 156.68<br>Iso see<br>19.85<br>3a), also<br>338.84<br>), also se<br>38.67<br>3<br>-125.34 | 156.68<br>Table 5<br>26.64<br>See Ta<br>350.85<br>De Table<br>38.67<br>3<br>-125.34 | 156.68<br>33.82<br>ble 5<br>376.42<br>5<br>38.67<br>3<br>-125.34<br>135.13 | 156.68<br>39.48<br>408.69<br>38.67<br>3<br>-125.34<br>143.41 | 156.68<br>42.08<br>439.03<br>38.67<br>3<br>-125.34<br>147.12 | ] (67)<br>] (68)<br>] (69)<br>] (70)<br>] (71) |

Solar gains are calculated using solar flux from Table 6a and associated equations to convert to the applicable orientation.

| Orientation:   | Access Factor<br>Table 6d | r | Area<br>m² |   | Flux<br>Table 6a |   | g_<br>Table 6b |   | FF<br>Table 6c |   | Gains<br>(W) |      |
|----------------|---------------------------|---|------------|---|------------------|---|----------------|---|----------------|---|--------------|------|
| Northeast 0.9x | 0.77                      | x | 9.94       | × | 11.28            | × | 0.63           | x | 0.7            | = | 34.28        | (75) |
| Northeast 0.9x | 0.77                      | x | 9.94       | x | 22.97            | x | 0.63           | x | 0.7            | = | 69.77        | (75) |
| Northeast 0.9x | 0.77                      | x | 9.94       | × | 41.38            | × | 0.63           | x | 0.7            | = | 125.7        | (75) |
| Northeast 0.9x | 0.77                      | x | 9.94       | x | 67.96            | × | 0.63           | x | 0.7            | = | 206.44       | (75) |
| Northeast 0.9x | 0.77                      | x | 9.94       | x | 91.35            | x | 0.63           | x | 0.7            | = | 277.49       | (75) |
| Northeast 0.9x | 0.77                      | x | 9.94       | x | 97.38            | × | 0.63           | x | 0.7            | = | 295.83       | (75) |
| Northeast 0.9x | 0.77                      | x | 9.94       | x | 91.1             | x | 0.63           | x | 0.7            | = | 276.75       | (75) |
| Northeast 0.9x | 0.77                      | x | 9.94       | × | 72.63            | × | 0.63           | x | 0.7            | = | 220.63       | (75) |
| Northeast 0.9x | 0.77                      | x | 9.94       | x | 50.42            | x | 0.63           | x | 0.7            | = | 153.17       | (75) |
| Northeast 0.9x | 0.77                      | x | 9.94       | × | 28.07            | x | 0.63           | x | 0.7            | = | 85.26        | (75) |
| Northeast 0.9x | 0.77                      | x | 9.94       | x | 14.2             | x | 0.63           | x | 0.7            | = | 43.13        | (75) |
| Northeast 0.9x | 0.77                      | x | 9.94       | × | 9.21             | × | 0.63           | x | 0.7            | = | 27.99        | (75) |
| Southeast 0.9x | 0.77                      | x | 30.25      | × | 36.79            | x | 0.63           | x | 0.7            | = | 340.15       | (77) |
| Southeast 0.9x | 0.77                      | x | 30.25      | x | 62.67            | × | 0.63           | x | 0.7            | = | 579.4        | (77) |
| Southeast 0.9x | 0.77                      | x | 30.25      | x | 85.75            | x | 0.63           | x | 0.7            | = | 792.77       | (77) |
| Southeast 0.9x | 0.77                      | x | 30.25      | × | 106.25           | x | 0.63           | x | 0.7            | = | 982.27       | (77) |
| Southeast 0.9x | 0.77                      | x | 30.25      | x | 119.01           | × | 0.63           | x | 0.7            | = | 1100.23      | (77) |
| Southeast 0.9x | 0.77                      | x | 30.25      | × | 118.15           | × | 0.63           | x | 0.7            | = | 1092.27      | (77) |
| Southeast 0.9x | 0.77                      | x | 30.25      | × | 113.91           | x | 0.63           | x | 0.7            | = | 1053.07      | (77) |
| Southeast 0.9x | 0.77                      | x | 30.25      | × | 104.39           | × | 0.63           | x | 0.7            | = | 965.07       | (77) |
| Southeast 0.9x | 0.77                      | x | 30.25      | x | 92.85            | x | 0.63           | x | 0.7            | = | 858.4        | (77) |
| Southeast 0.9x | 0.77                      | x | 30.25      | x | 69.27            | x | 0.63           | x | 0.7            | = | 640.36       | (77) |
| Southeast 0.9x | 0.77                      | x | 30.25      | x | 44.07            | × | 0.63           | x | 0.7            | = | 407.42       | (77) |
| Southeast 0.9x | 0.77                      | x | 30.25      | × | 31.49            | × | 0.63           | x | 0.7            | = | 291.1        | (77) |
| Southwest0.9x  |                           | x | 13.17      | x | 36.79            |   | 0.63           | x | 0.7            | = | 148.09       | (79) |
| Southwest0.9x  | 0.77                      | x | 13.17      | x | 62.67            |   | 0.63           | x | 0.7            | = | 252.26       | (79) |
| Southwest0.9x  | 0.77                      | x | 13.17      | x | 85.75            | ] | 0.63           | x | 0.7            | = | 345.15       | (79) |
| Southwest0.9x  | 0.77                      | x | 13.17      | × | 106.25           |   | 0.63           | x | 0.7            | = | 427.65       | (79) |
| Southwest0.9x  | 0.77                      | x | 13.17      | × | 119.01           |   | 0.63           | x | 0.7            | = | 479.01       | (79) |
| Southwest0.9x  | 0.77                      | x | 13.17      | x | 118.15           |   | 0.63           | x | 0.7            | = | 475.54       | (79) |
| Southwest0.9x  |                           | x | 13.17      | x | 113.91           |   | 0.63           | x | 0.7            | = | 458.48       | (79) |
| Southwest0.9x  | 0.77                      | x | 13.17      | × | 104.39           |   | 0.63           | x | 0.7            | = | 420.16       | (79) |
| Southwest0.9x  | -                         | x | 13.17      | x | 92.85            |   | 0.63           | x | 0.7            | = | 373.72       | (79) |
| Southwest0.9x  | 0.77                      | x | 13.17      | x | 69.27            |   | 0.63           | x | 0.7            | = | 278.8        | (79) |
| Southwest0.9x  | 0.77                      | x | 13.17      | x | 44.07            |   | 0.63           | x | 0.7            | = | 177.38       | (79) |
| Southwest0.9x  | 0                         | x | 13.17      | x | 31.49            |   | 0.63           | x | 0.7            | = | 126.74       | (79) |
| Northwest 0.9x |                           | x | 19.32      | × | 11.28            | × | 0.63           | x | 0.7            | = | 66.62        | (81) |
| Northwest 0.9x |                           | x | 19.32      | × | 22.97            | × | 0.63           | × | 0.7            | = | 135.61       | (81) |
| Northwest 0.9x | 0.77                      | x | 19.32      | x | 41.38            | x | 0.63           | x | 0.7            | = | 244.32       | (81) |

| Northwoo                                                                                                                                                     | Г                    |           |                  |                      |            |          |         |                | 1        |             |           |            |              |         |        |      |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|-----------|------------------|----------------------|------------|----------|---------|----------------|----------|-------------|-----------|------------|--------------|---------|--------|------|
| Northwes                                                                                                                                                     | Ļ                    | 0.77      | ×                | 19.                  |            | x        |         | 57.96          | X        |             | 0.63      | ⊣ × ⊢      | 0.7          | =       | 401.24 | (81) |
| Northwes                                                                                                                                                     |                      | 0.77      | ×                | 19.                  | 32         | x        | g       | 1.35           | X        |             | 0.63      | _ × L      | 0.7          | =       | 539.35 | (81) |
| Northwes                                                                                                                                                     |                      | 0.77      | x                | 19.                  | 32         | x        | g       | 7.38           | x        |             | 0.63      | x          | 0.7          | =       | 575    | (81) |
| Northwes                                                                                                                                                     | st <mark>0.9x</mark> | 0.77      | ×                | 19.                  | 32         | x        | 9       | 91.1           | x        |             | 0.63      | x          | 0.7          | =       | 537.9  | (81) |
| Northwes                                                                                                                                                     | st <u>0.9</u> x      | 0.77      | x                | 19.                  | 32         | x        | 7       | 2.63           | x        |             | 0.63      | x          | 0.7          | =       | 428.82 | (81) |
| Northwes                                                                                                                                                     | st <u>0.9</u> x      | 0.77      | X                | 19.                  | 32         | x        | 5       | 0.42           | x        |             | 0.63      | x          | 0.7          | =       | 297.71 | (81) |
| Northwes                                                                                                                                                     | st 0.9x              | 0.77      | x                | 19.                  | 32         | x        | 2       | 8.07           | x        |             | 0.63      | x          | 0.7          | =       | 165.72 | (81) |
| Northwes                                                                                                                                                     | st <mark>0.9x</mark> | 0.77      | x                | 19.                  | 32         | x        |         | 14.2           | x        |             | 0.63      | x          | 0.7          | =       | 83.82  | (81) |
| Northwes                                                                                                                                                     | st <mark>0.9x</mark> | 0.77      | x                | 19.                  | 32         | x        | 9       | 9.21           | x        |             | 0.63      | x          | 0.7          | =       | 54.4   | (81) |
|                                                                                                                                                              |                      |           |                  |                      |            |          |         |                |          |             |           |            |              |         |        |      |
| Solar <u>ga</u>                                                                                                                                              | ins in               | watts, ca | alculated        | for eac              | h month    | <u> </u> |         |                | (83)m    | า = Sเ      | um(74)m . | (82)m      |              |         |        |      |
|                                                                                                                                                              | 589.14               |           | 1507.93          |                      |            |          |         | 2326.19        | 2034     | 4.68        | 1682.99   | 1170.14    | 711.75       | 500.23  |        | (83) |
| Total gai                                                                                                                                                    | ins – iı             | nternal a | and solar        | <sup>-</sup> (84)m = | = (73)m    | + (8     | 83)m    | , watts        |          |             |           |            |              | -       |        |      |
| (84)m=                                                                                                                                                       | 1312                 | 1757.58   | 2204.46          | 2674.3               | 3010.24    | 30       | 013.4   | 2876.31        | 2591     | 1.66        | 2261.28   | 1788.52    | 1376.34      | 1201.47 |        | (84) |
| 7. Mear                                                                                                                                                      | n inter              | nal temp  | perature         | (heating             | seasor     | า)       |         |                |          |             |           |            |              |         |        |      |
| Tempe                                                                                                                                                        | rature               | during h  | neating p        | eriods i             | n the livi | ng       | area    | from Tab       | ole 9    | , Th′       | 1 (°C)    |            |              |         | 21     | (85) |
| Utilisati                                                                                                                                                    | ion fac              | tor for g | ains for I       | living are           | ea, h1,m   | n (s     | ee Ta   | ble 9a)        |          |             |           |            |              |         |        |      |
|                                                                                                                                                              | Jan                  | Feb       | Mar              | Apr                  | May        |          | Jun     | Jul            | A        | ug          | Sep       | Oct        | Nov          | Dec     |        |      |
| (86)m=                                                                                                                                                       | 1                    | 1         | 0.99             | 0.97                 | 0.88       | (        | 0.72    | 0.56           | 0.6      | 63          | 0.88      | 0.99       | 1            | 1       |        | (86) |
| Mean ir                                                                                                                                                      | nterna               | I temper  | ature in         | living ar            | ea T1 (f   | ollo     | w ste   | ps 3 to 7      | 7 in T   | able        | e 9c)     |            | •            |         |        |      |
| _                                                                                                                                                            | 19.44                | 19.65     | 19.97            | 20.38                | 20.73      | -        | 20.93   | 20.98          | 20.      |             | 20.81     | 20.33      | 19.8         | 19.4    |        | (87) |
| Tompo                                                                                                                                                        | ratura               | durina k  | neating p        | oriode i             | roct of    | dw       | olling  | from To        |          | <br>0 Tk    | 2 (°C)    |            |              | I       | 1      |      |
| ·                                                                                                                                                            | 19.86                | 19.86     | 19.86            | 19.87                | 19.87      | -        | 9.87    | 19.87          | 19.      | -           | 19.87     | 19.87      | 19.86        | 19.86   | ]      | (88) |
|                                                                                                                                                              |                      |           |                  |                      |            |          |         |                |          | •           |           |            | 10100        |         |        | ()   |
|                                                                                                                                                              |                      |           | ains for         |                      | <u> </u>   | -        |         | i              | r Ó      |             |           |            |              |         | 1      | (00) |
| (89)m=                                                                                                                                                       | 1                    | 1         | 0.99             | 0.95                 | 0.84       |          | 0.63    | 0.43           | 0.       | 5           | 0.81      | 0.98       | 1            | 1       |        | (89) |
| Mean ir                                                                                                                                                      | nterna               | l temper  | ature in         | the rest             | of dwell   | ing      | T2 (f   | ollow ste      | eps 3    | 8 to 7      | ' in Tabl | e 9c)      |              |         | 1      |      |
| (90)m=                                                                                                                                                       | 17.77                | 18.07     | 18.54            | 19.13                | 19.6       | 1        | 9.82    | 19.87          | 19.      | 86          | 19.71     | 19.07      | 18.3         | 17.72   |        | (90) |
|                                                                                                                                                              |                      |           |                  |                      |            |          |         |                |          |             | f         | LA = Livii | ng area ÷ (4 | 4) =    | 0.11   | (91) |
| Mean ir                                                                                                                                                      | nterna               | l temper  | ature (fo        | r the wh             | ole dwe    | ellin    | g) = fl | LA × T1        | + (1     | – fL        | A) × T2   |            |              |         |        |      |
| (92)m=                                                                                                                                                       | 17.94                | 18.24     | 18.69            | 19.26                | 19.72      | 1        | 9.94    | 19.99          | 19.      | 98          | 19.83     | 19.2       | 18.46        | 17.9    |        | (92) |
| Apply a                                                                                                                                                      | adjustn              | nent to t | he mear          | interna              | l tempei   | ratu     | ire fro | m Table        | 4e,      | whe         | re appro  | opriate    |              |         |        |      |
| (93)m=                                                                                                                                                       | 17.94                | 18.24     | 18.69            | 19.26                | 19.72      | 1        | 9.94    | 19.99          | 19.      | 98          | 19.83     | 19.2       | 18.46        | 17.9    |        | (93) |
| 8. Spac                                                                                                                                                      | ce hea               | ting requ | uirement         |                      |            |          |         |                |          |             |           |            |              |         |        |      |
| Set Ti to the mean internal temperature obtained at step 11 of Table 9b, so that Ti,m=(76)m and re-calculate the utilisation factor for gains using Table 9a |                      |           |                  |                      |            |          |         |                |          |             |           |            |              |         |        |      |
| the utili                                                                                                                                                    |                      | 1         | <u> </u>         |                      | 1          | Г        |         |                |          |             | -         | <b>0</b> / |              |         | 1      |      |
|                                                                                                                                                              | Jan                  | Feb       | Mar              | Apr                  | Мау        |          | Jun     | Jul            | A        | ug          | Sep       | Oct        | Nov          | Dec     |        |      |
| (94)m=                                                                                                                                                       | 1                    |           | ains, hm<br>0.98 | 0.94                 | 0.83       |          | 0.63    | 0.44           | 0.5      | 51          | 0.81      | 0.97       | 1            | 1       |        | (94) |
|                                                                                                                                                              | '<br>nains           | hmGm      | , W = (94        |                      |            | <u> </u> | 5.00    | 0.44           | 0.0      |             | 0.01      | 0.57       |              | 1       |        | (0.) |
|                                                                                                                                                              | -                    |           | 2168.37          |                      | <u> </u>   | 19       | 10.04   | 1267.51        | 1324     | 4.19        | 1826.11   | 1738.72    | 1371.82      | 1200.48 |        | (95) |
|                                                                                                                                                              |                      |           | ernal tem        |                      |            |          |         |                | I        | -           |           |            |              |         | 1      |      |
| (96)m=                                                                                                                                                       | 4.3                  | 4.9       | 6.5              | 8.9                  | 11.7       | 1        | 14.6    | 16.6           | 16       | .4          | 14.1      | 10.6       | 7.1          | 4.2     |        | (96) |
|                                                                                                                                                              | ss rate              | e for me  | an intern        | al temp              | erature,   | Lm       | , W =   | -<br>=[(39)m : | x [(9    | <br>3)m-    | - (96)m   | ]          | 1            | 1       | 1      |      |
| _                                                                                                                                                            |                      | 5135.15   | -                | · ·                  | · · · ·    | -        |         | 1284.03        | <u> </u> | <del></del> | 2176.72   | 3281.91    | 4343.15      | 5251.32 |        | (97) |
| L                                                                                                                                                            |                      |           |                  |                      |            |          |         |                |          |             |           |            |              |         | 1      |      |

| Space                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | e neatin   | y require           | ementic   | n each n            | IOIIIII, KI   |          | II = 0.02 | 4 X [(97 | )iii – (95 | ))))] X (4            | 1)111                   |            |          |             |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|---------------------|-----------|---------------------|---------------|----------|-----------|----------|------------|-----------------------|-------------------------|------------|----------|-------------|
| (98)m=                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2938.81    | 2275.21             | 1874.01   | 1037.64             | 417.91        | 0        | 0         | 0        | 0          | 1148.14               | 2139.35                 | 3013.82    |          | _           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |            |                     |           |                     |               |          |           | Tota     | l per year | (kWh/year             | r) = Sum(9              | 8)15,912 = | 14844.9  | (98)        |
| Spac                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | e heatin   | g require           | ement in  | kWh/m²              | /year         |          |           |          |            |                       |                         | [          | 49.27    | (99)        |
| 9a. En                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ergy rec   | quiremer            | nts – Ind | ividual h           | eating s      | ystems i | ncluding  | micro-C  | CHP)       |                       |                         |            |          |             |
| •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | e heatii   | -                   |           |                     | , .           |          |           |          |            |                       |                         | r          |          | <b>1</b>    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | -          |                     |           | econdar             |               | mentary  | -         | (222)    | (22.1)     |                       |                         |            | 0        | (201)       |
| Fraction of space heat from main system(s) $(202) = 1 - (201) =$ The state of th |            |                     |           |                     |               |          |           |          |            | 1                     | (202)                   |            |          |             |
| Fraction of total heating from main system 1 $(204) = (202) \times [1 - (203)] =$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |            |                     |           |                     |               |          |           |          |            | 1                     | (204)                   |            |          |             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | -          |                     |           | ing syste           |               |          |           |          |            |                       |                         |            | 93.5     | (206)       |
| Efficie                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ency of s  | seconda             | ry/suppl  | ementar             | y heating     | g system | ı, %      |          |            |                       |                         |            | 0        | (208)       |
| _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Jan        | Feb                 | Mar       | Apr                 | May           | Jun      | Jul       | Aug      | Sep        | Oct                   | Nov                     | Dec        | kWh/yea  | ar          |
| Space                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | r          | ř – –               | · · · ·   |                     |               | i i      | 0         | 0        |            | 4440.44               | 0400.05                 | 2042.02    |          |             |
| (= , , )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |            | 2275.21             |           | 1037.64             | 417.91        | 0        | 0         | 0        | 0          | 1148.14               | 2139.35                 | 3013.82    |          |             |
| (211)m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | r          | )m x (20<br>2433.38 | 1         | 00 ÷ (20<br>1109.77 | 96)<br>446.97 | 0        | 0         | 0        | 0          | 1227.95               | 2288.08                 | 3223.34    |          | (211)       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 3143.12    | 2433.30             | 2004.29   | 1109.77             | 440.97        | 0        | 0         |          |            | ar) = Sum(2)          |                         |            | 15876.9  | (211)       |
| Snac                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | o hoatin   | a fual (s           | econdar   | y), kWh/            | month         |          |           |          |            |                       | - · · / 15,1012         | 2          | 13070.9  | ](211)      |
| •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |            | •                   | 00 ÷ (20  | • • •               | monun         |          |           |          |            |                       |                         |            |          |             |
| (215)m=                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | í          | 0                   | 0         | 0                   | 0             | 0        | 0         | 0        | 0          | 0                     | 0                       | 0          |          |             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |            |                     |           |                     |               |          |           | Tota     | l (kWh/yea | ar) =Sum(2            | 215) <sub>15,1012</sub> | F          | 0        | (215)       |
| Water                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | heating    | 9                   |           |                     |               |          |           |          |            |                       |                         | L          |          | -           |
| Output                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |            |                     |           | ulated a            |               |          |           |          |            |                       |                         |            |          |             |
| <b>F</b> #isis                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 242.7      | 214.14              | 225.42    | 202.81              | 199.28        | 178.83   | 172.48    | 188.26   | 187.61     | 210.27                | 221.41                  | 237.11     |          |             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |            | ater hea            | 89.22     | 88.56               | 86.74         | 79.8     | 70.9      | 70.0     | 70.0       | 00.66                 | 00.20                   | 00.62      | 79.8     | (216) (217) |
| (217)m=                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |            |                     | kWh/m     |                     | 00.74         | 79.8     | 79.8      | 79.8     | 79.8       | 88.66                 | 89.38                   | 89.62      |          | (217)       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |            | •                   | ) ÷ (217) |                     |               |          |           |          |            |                       |                         |            |          |             |
| (219)m=                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 270.92     | 239.35              | 252.67    | 229.01              | 229.73        | 224.1    | 216.14    | 235.91   | 235.1      | 237.16                | 247.73                  | 264.56     |          | _           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |            |                     |           |                     |               |          |           | Tota     | l = Sum(2  | 19a) <sub>112</sub> = |                         |            | 2882.38  | (219)       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | al totals  |                     |           |                     |               |          |           |          |            | k                     | Wh/year                 | Г          | kWh/year | 7           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |            |                     |           | system              | 1             |          |           |          |            |                       |                         |            | 15876.9  | ļ           |
| Water                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | heating    | fuel use            | ed        |                     |               |          |           |          |            |                       |                         |            | 2882.38  |             |
| Electri                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | city for p | oumps, f            | ans and   | electric            | keep-ho       | t        |           |          |            |                       |                         |            |          |             |
| central heating pump: 30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |            |                     |           |                     |               |          |           | 30       |            | (230c)                |                         |            |          |             |
| boiler with a fan-assisted flue 45                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |            |                     |           |                     |               |          |           |          | 45         |                       | (230e)                  |            |          |             |
| Total electricity for the above, kWh/year sum of (230a)(230g) =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |            |                     |           |                     |               |          |           | ]        | 75         | (231)                 |                         |            |          |             |
| Electricity for lighting                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |            |                     |           |                     |               |          |           |          | [          | 723.12                | (232)                   |            |          |             |
| Total delivered energy for all uses (211)(221) + (231) + (232)(237b) =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |            |                     |           |                     |               |          |           | 19557.4  | ]<br>(338) |                       |                         |            |          |             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |            |                     |           |                     |               |          |           |          |            |                       |                         |            |          |             |

Space heating requirement for each month, kWh/month = 0.024 x [(97)m - (95)m] x (41)m

12a. CO2 emissions – Individual heating systems including micro-CHP

|                                                   | <b>Energy</b><br>kWh/year       | Emission factor<br>kg CO2/kWh | <b>Emissions</b><br>kg CO2/year |
|---------------------------------------------------|---------------------------------|-------------------------------|---------------------------------|
| Space heating (main system 1)                     | (211) x                         | 0.216 =                       | 3429.41 (261)                   |
| Space heating (secondary)                         | (215) x                         | 0.519 =                       | 0 (263)                         |
| Water heating                                     | (219) x                         | 0.216 =                       | 622.59 (264)                    |
| Space and water heating                           | (261) + (262) + (263) + (264) = |                               | 4052 (265)                      |
| Electricity for pumps, fans and electric keep-hot | (231) x                         | 0.519 =                       | 38.93 (267)                     |
| Electricity for lighting                          | (232) x                         | 0.519 =                       | 375.3 (268)                     |
| Total CO2, kg/year                                | sum                             | of (265)(271) =               | 4466.23 (272)                   |
|                                                   |                                 |                               |                                 |

TER =

22.22 (273)