

Land at Christon Mews Alnwick

Drainage Strategy

Report Ref: JCC22-158-C-01 Revision: 00, October 2022

Civil Engineering Structural Engineering Geo-Environmental Engineering

DOCUMENT CONTROL SHEET

Land at Christon Mews, Alnwick

DRAINAGE STRATEGY

Client:George F.WhiteClient Address:4-6 Market Street
Alnwick
Northumberland
NE66 1TLProject Reference:JCC22-158Report Reference:JCC22-158-C-01-00Status:PlanningAuthor:A Abelé

Revision Record:

Rev.	Date	Status	Prepared	Signed	Checked	Signed	Approved	Signed
00	12.10.22	Planning	A Abelé	Adamshelp	R Jones	ported	A Short	Ashort.

C		ITS PAGE	0
U	JNTEN	15 PAGE	.0
1	INT	RODUCTION	1
	1.1	BRIEF	1
	1.2	REPORT SCOPE	1
2	REL	EVANT POLICIES, LEGISLATION AND GUIDANCE	2
	21	OVERVIEW	2
	2.1		2
	2.3	PLANNING PRACTICE GUIDANCE	2
	2.4	NON-STATUTORY TECHNICAL STANDARDS FOR SUSTAINABLE DRAINAGE SYSTEMS	53
3	SITI	E AND SURROUNDINGS	4
	2 1		л
	3.1		 /
4	SUF	REACE WATER DRAINAGE STRATEGY	5
•	4 4		
	4.1 4.2		5
	4.Z		כ ב
	4.5 1 1		0 6
	4.4		
	4.5		,
	4.0 4.7	SURFACE WATER MAINTENANCE ISSUES	 9
	4.8	SURFACE WATER SAFETY ISSUES	9
	4.9	SURFACE WATER DRAINAGE SUMMARY	9
5	FOL	JL WATER DRAINAGE STRATEGY	10
	51	METHODOLOGY	10
	5.2		10 10
	53	POST DEVELOPMENT FOUL WATER DRAINAGE CALCULATION	10 10
6	2.5 COI	NCLUSION	12
-			40
1	LISI		тЗ.

1 INTRODUCTION

1.1 BRIEF

JC Consulting Ltd (JCC) have been commissioned by George F.White to undertake a Drainage Strategy to support a detailed planning application. The planning application consists of 5no. proposed residential dwellings, with associated hard landscaping and infrastructure.

The development site is located at Ordnance Survey (OS) Grid Reference: NU 21019 22386 (E421019, N622386), as shown in Figure 1.1.

Figure 1.1 - Ordnance Survey Map – Site Location

As a new development, Sustainable Drainage Systems (SuDS), surface and foul water drainage must be considered. This report gives an overview of the methodology used, summarises the options investigated and the drainage proposals for the development.

1.2 REPORT SCOPE

The principal objectives of this Drainage Strategy are as follows:

- To establish the appropriate design standards and guidance that will assist the design of the Drainage Strategy.
- To establish the existing site constraints and drainage features.
- To determine a Drainage Strategy for the discharge of surface water flows from the site.
- To determine a suitable Drainage Strategy for the discharge of foul water flows from the site.

2 RELEVANT POLICIES, LEGISLATION AND GUIDANCE

2.1 OVERVIEW

This Drainage Strategy will be in accordance with the following legislation and guidance:

- National Planning Policy Framework
- Planning Practice Guidance
- Non-Statutory Technical Standards for Sustainable Drainage Systems

This Drainage Strategy will be designed using the standards:

- BS EN 725:2017 Drain and sewer systems outside buildings.
- BS EN 12056-2 2000 Gravity drainage systems inside buildings.
- SuDS Manual (CIRIA C753)
- Building Regulations Approved Document Part H 2010 Drainage and waste disposal (2015 Edition)
- PPG3 Use and design of oil separators in surface water drainage systems
- National Building Specification
- Civil Engineering Specification for the Water Industry (7th Edition)
- SSG Appendix C Design and construction guidance for foul and surface water sewers offered for adoption under the Code for adoption agreements for water and sewerage companies operating wholly or mainly in England ("the Code"). Approved Version 2.0. 10 March 2020

2.2 NATIONAL PLANNING POLICY FRAMEWORK

The NPPF published in July 2018 and updated in February 2019, is a key part of the government's reform to make the planning system less complex and more accessible; to protect the environment and to promote sustainable growth.

In relation to drainage, the NPPF states that '*Major Developments*' should incorporate sustainable drainage systems unless there is clear evidence that this would be inappropriate. The systems used should:

- Take account of advice from the Lead Local Flood Authority.
- Have appropriate proposed minimum operational standards.
- Have maintenance arrangements in place to ensure an acceptable standard of operation for the lifetime of the development.
- Where possible provide multifunctional benefits.

2.3 PLANNING PRACTICE GUIDANCE

The Planning Practice Guidance (2014) reiterates the government's expectation that sustainable drainage systems are provided in new developments wherever appropriate. It states that the government expect decisions based on incorporated policies, relating to '*Major Developments*' (developments of 10 dwellings

or more, or equivalent non-residential developments) to ensure that sustainable drainage systems for the management of run-off are put in place, unless demonstrated otherwise.

2.4 NON-STATUTORY TECHNICAL STANDARDS FOR SUSTAINABLE DRAINAGE SYSTEMS

The 'Non-Statutory Technical Standards for Sustainable Drainage Systems' states that for greenfield developments, the peak run-off rate and run-off volume from the development to any drain, sewer, or surface water body for the 1 in 1-year rainfall event and the 1 in 100-year, 6-hour rainfall event should never exceed the peak greenfield run-off rate and volume for the same event.

For previously developed sites, the peak run-off rate and volume from the development to any drain, sewer or surface water body for the 1 in 1-year rainfall event and the 1 in 100-year, 6-hour rainfall event must be as close as reasonably possible to the greenfield run-off rate and volume from the development at the same rainfall event but should never exceed the rate of discharge or run-off volume from the development prior to re-development for that event.

Where it is not reasonably practicable to constrain volume of run-off, the volume must be discharged at a rate that does not affect flood risk.

Where the drainage system discharges to a surface water body that can accommodate uncontrolled surface water discharges without any impact on flood risk from that surface water body, the peak flow standards and volume control standards need not apply.

The drainage system must be designed so that flooding does not occur on any part of the site for a 1 in 30-year rainfall event, unless there is an area of the site dedicated for compensatory storage.

The drainage system must also be designed so that flooding does not occur during a 1 in 100-year rainfall event in any part of the building or any utility plant on-site.

The design of the proposed development must ensure that flows resulting from excess rainfall for a 1 in 100-year event are managed in exceedance routes that minimise the risks to people and properties.

Components of the drainage network must be designed to ensure the structural integrity of the network is maintained throughout its design life. Materials, products, or fittings must be of a suitable standard for intended use.

Pumping should only be used to facilitate drainage for parts of the site where it is not practicable to drain water via gravity.

The construction of any communication with an existing sewer or drainage system must be such that the making of the communication would not damage the structural integrity or functionality of the sewerage system. Damage to the drainage system must be minimised, if unavoidable, and must be rectified prior to completion of the system.

3 SITE AND SURROUNDINGS

3.1 SITE LOCATION AND PROPOSED DEVELOPMENT DESCRIPTION

The proposed development site is situated at Christon Bank, Alnwick; see *Appendix A* for the *Proposed Site Plan*. The proposed development site is centred at OS Grid Reference NU 21019 22386 (E421019, N622386).

This Drainage Strategy has been produced to support the planning application of a development site, which consists of 5no. proposed residential dwellings, with associated hard landscaping and infrastructure.

The site at Christon Bank is an irregular shaped parcel of land and encompasses an area of approximately 0.3613 ha (3,613m²), comprising of an existing structure used for agricultural purposes, and an area of external hard landscaping, used as a car park for the structure. The site is bounded by residential properties and farm cottages to the east, noted as 'Christon Bank Farm'. Land for agricultural use is located south of the site beyond 'Christon Bank Mews' access road, which is accessed via the 'B6347' highway. 'Pringle W Ltd' is directly to the west, which is a commercial property for maintenance and repair of motor vehicles. Further land for agricultural use is located north of the site. The proposed development site can be accessed via 'Christon Bank Mews'.

3.2 TOPOGRAPHY

A topographical survey has not been provided for the site. However, external level information can be obtained via the Ordnance Survey (OS) Maps.

After a review of the OS information, the site appears to slope approximately 1m at an average gradient of approximately 1:100 from west to east.

4 SURFACE WATER DRAINAGE STRATEGY

4.1 METHODOLOGY

The following methodology was used to produce a surface water Drainage Strategy for the site:

- Determine a suitable method for surface water discharge.
- Calculate pre-development/greenfield run-off rate, using the method outlined in the Interim Code of Practice for Sustainable Drainage Systems (ICP SuDS).
- Calculate the required post development attenuation/storage required for the critical storm with a return period of 30 years in line with the National Planning Policy Framework (NPPF).
- Test the sensitivity of the site by investigating the volume of runoff produced during storms with a return period of 100 year plus 40% allowance for climate change in line with the NPPF.
- Test the sites suitability for the use of Sustainable Drainage Systems.
- Test the sites post development water quality & outline any mitigation procedures.
- Outline the maintenance procedures for the proposed drainage network and determine who will be responsible for the maintenance of the network, in accordance with 'CIRIA The SuDS Manual C753'.
- Outline the relevant guidance to be followed with respect to safety issues of the network.

4.2 SURFACE WATER DISCHARGE METHOD

The potential methods of surface water discharge, in order of preference, are:

- Discharge to the ground via infiltration.
- Discharge to a nearby watercourse.
- Discharge to an existing surface water sewer.
- Discharge to an existing combined water sewer.

A site investigation has not been carried out for the proposed development site; however, geological information can be obtained from the British Geological Survey (BGS) Geology of Britain Viewer (2014).

According to the BGS Geology of Britain Viewer (2014), the sites bedrock geology comprises of an Alston Formation, which consists of limestone, sandstone, siltstone and mudstone.

The BGS Geology of Britain Viewer (2014) also indicates that the sites superficial deposits consist of till, devensian (diamicton), which is predominantly bolder clay.

Based on the hierarchy of discharge of surface water, the preferred method of surface water disposal is by infiltration. However, using the geological information above, the sites superficial deposits are shown to be predominantly till. Discharge via infiltration is not typically advised in till deposits due to the nature of the soil. The Ordnance Survey maps, and EA maps, show that the site is within the vicinity of a pond located within Christon Bank Farm.

However, there are no named bodies of water or drainage ditches understood to be within the vicinity of the site. Therefore, it is not considered feasible to dispose of surface water via a watercourse.

NWL have been contacted to identify any sewerage assets within the vicinity of the site (see *Appendix B* for the *NWL Sewerage Plan*).

NWL have verified that there is a 900mm diameter surface water sewer approximately 350m north of the site, within Springfield View, which is accessed via an access road named 'The Village'. The surface water sewer is expected to collect surface water drainage from the properties to the north of the site. This sewer flows to a culverted watercourse north of the site.

A significant amount of excavation and reinstatement to the areas beyond the site boundary would be required to connect to the surface water sewer. Therefore, this option is not considered the most appropriate method of surface water disposal.

Furthermore, the third-party landowner would be required to confirm that they will allow a pipeline to be installed across their land. Therefore, due to the site constraints, it is proposed to discharge surface water flows to the ground via infiltration with an appropriately sized cellular soakaway for each plot.

A percolation test is required, prior to construction, to determine the infiltration rate across the site.

4.3 INFILTRATION RATE CALCULATION

For a typical development of this nature, it would be proposed to restrict surface water flows to a rate agreed with the Lead Local Flood Authority (LLFA) to ensure that there will be no additional flooding to the surrounding area due to the increase in impermeable area. However, due to surface water flows being discharged to the ground via infiltration, it is considered appropriate to restrict flows as close as practicable to that of the typical infiltration rate for the anticipated strata. According to the Ciria SuDS Manual C753, till is considered to have the slowest infiltration rate, which is between $3x10^{-9}$ m/s and $3x10^{-6}$ m/s.

It is proposed to discharge surface water flows using a typical infiltration rate of $3x10^{-9}$ m/s, for a worstcase scenario calculation.

A percolation test is required, prior to construction, to determine the infiltration rate across the site.

4.4 POST DEVELOPMENT ATTENUATION

It is proposed to provide a surface water drainage system serving all hard-standing areas for the site. Surface water flows are to be discharged to the ground via infiltration, with an estimated infiltration rate of 3×10^{-9} m/s.

MicroDrainage has been used to model the proposed surface water drainage and carry out a simulation for various return periods for the site. Simulations were carried out to ensure that there is no exceedance of the surface water network for a 1 in 30-year return period event, in line with the NPPF guidelines. Further simulations have been carried out so that, for a 1 in 100-year return period event (+40% for climate change), surface water flows are directed away from any buildings / structures and retained on-site, in accordance with the NPPF guidance.

The proposed drainage model does not show any exceedance of the surface water network for a 1 in 30year return period event. All storms exceeding a 1 in 30-year return period (including 1 in 100-year return period events +40% for climate change) will be accommodated within the pipework and proposed soakaways. Refer to *Appendix C* for the *Proposed Drainage Stategy*, *Appendix D* for the *MicroDrainage Results*. Exceedance flow management has been designed to ensure any flows exceeding the discharge rate will be attenuated on-site, within the below ground sewerage network and SuDS features. The required storage has been sized for a 1 in 100-year storm event, with +40% for climate change.

However, based on an infiltration rate of $3x10^{-9}$ m/s; it is unlikely that, for a 1 in 100-year return period event (+40% for climate change), the cellular soakaway system will drain down by 50% in 24 hours. The system has been designed to accommodate flows for a 360minute, 1 in 100-year return period event (+40% for climate change). Therefore, the cellular soakaway sizes for each plot may be adjusted for a 1 in 100-year return period event (+40% for climate change), to satisfy a storm event lasting over 360minutes.

4.5 SUDS SUITABILITY ASSESSMENT

The NPPF states that SuDS should be incorporated in all new developments unless evidence of unsuitability is provided. Therefore, the following SuDS components have been considered for the site:

SuDS Component	Description	Site Suitability	Comments
Rainwater Harvesting	Systems that collect runoff from the roof of a building or other paved surface for use.	v	Potential for Rainwater Harvesting.
Green Roof	Planted soil layers on the roof of buildings that slow and store runoff.	×	Roof layout unsuitable.
Soakaway	Systems that collect and store runoff, allowing it to infiltrate into the ground.	~	Subject to percolation testing results.
Pervious Pavement	Structural paving through which runoff can soak and subsequently be stored in the sub-base beneath, and/ or allowed to infiltrate into the ground below.	✓	Potential for paving as part of car parking arrangements.
Filter Strip	Grass strips that promote sedimentation and filtration as runoff is conveyed over the surface.	~	Potential for a Filter Strip.
Filter Trench	Shallow stone-filled trenches that provide attenuation, conveyance and treatment of runoff.	~	Potential for Filter Trench.
Infiltration Trench	Systems that collect and store runoff, allowing it to infiltrate to the ground.	~	Subject to percolation testing results.
Swale	Vegetated channels (sometimes planted) used to convey and treat runoff.	\checkmark	Potential for a swale on- site.
Bioretention	Shallow landscaped depressions that allow runoff to pond temporarily on the surface. Before filtering through vegetation and underlying soils.	×	Restricted space for ponding.
Infiltration Basin	Vegetated depressions that store and treat runoff, allowing it to infiltrate into the ground.	×	Restricted space on site.
Detention Basin	Vegetated depressions that store and treat runoff.	×	Restricted space on site.
Pond	Permanent pools of water used to facilitate treatment of runoff – runoff can also be stored in attenuation zone above pool.	×	Restricted space on site.
Stormwater Wetlands	Permanent pools of water used to facilitate treatment of runoff – runoff	×	Size of development unsuitable.

Table 4.5 – SuDS Component Assessment

can also be stor	ed in attenuation zone	
ab	ove pool.	

Therefore, it is proposed to incorporate permeable paving, at a depth of 580mm (450mm sub-base), on the access road and all car parking areas, which will be used to manage rainfall landing directly onto the surface. Permeable surfaces will provide a level of surface water treatment to the network and accommodate surface water flows exceeding a 1 in 30-year return period. Refer to *Appendix D* to see the *MicroDrainage Results* for a volume summary.

4.6 WATER QUALITY MANAGEMENT

The surface water drainage design is required to consider the potential for contaminants to be collected with surface water runoff and discharge to the wider water catchment. Following the guidance within the Ciria SuDS Manual C753, Chapter 26, the impermeable areas to be drained have been classified as having the following pollution hazard levels:

Table 4.6 – Land Classification F	Pollution Haz	ard Indices
-----------------------------------	---------------	-------------

Land Use	Pollution Hazard Level	Total Suspended Solids	Metals	Hydrocarbons
Residential roofs	Very Low	0.2	0.2	0.05
Individual property driveways, residential car parks, low traffic roads (eg cul de sacs, homezones and general access roads) and non- residential car parking with infrequent change (eg schools, offices) ie < 300 traffic movements/day	Low	0.5	0.4	0.4

Residential roofs have a 'very low' pollution hazard level; therefore, the risk to water quality is considered very low.

Table 4.6.1 – SuDS Mitigation Indices

SuDS Component	Total Suspended Solids	Metals	Hydrocarbons
Permeable Paving	0.7	0.6	0.7

The pollution load associated with the total run-off volume from all storm events will be retained on-site, where it will have time to biodegrade or be acted on by natural treatment processes. Interception of the pollution load cannot be guaranteed for every rainfall event, due to the variations in evapotranspiration and rainfall. However, to ensure a high probability of interception, it is proposed to provide additional storage for the first 5mm of rainfall for the majority of rainfall events, which will mitigate the risk to water quality entering the network.

Permeable paving has been shown to decrease concentrations of surface water pollutants. Silt can be trapped within the top 30mm of the paving and further treatment is achieved via biodegradation of organic pollutants, such as petrol. The frequency of runoff from all types of pervious paving is significantly reduced compared to gully / pipe networks; therefore, runoff does not typically occur from permeable surfaces for rainfall events up to 5mm.

On this basis, it is considered that suitable SuDS features have been proposed for the development to mitigate potential contaminants to the wider water catchment.

4.7 SURFACE WATER MAINTENANCE ISSUES

Surface water drainage within the plot boundary is anticipated to be retained within private ownership. Therefore, this drainage will be the responsibility of the landowner. Refer to *Appendix E* for the *Drainage Maintenance Schedule*.

4.8 SURFACE WATER SAFETY ISSUES

Surface water pipework and manholes have been designed in accordance with the appropriate building regulations and Sewers for Adoption, to ensure suitable access for maintenance and operation as required.

Exceedance flow management caused by system blockages has been considered and the proposed network has been designed to mitigate the risks to people and property.

Works are to be carried out by an established and professional contractor and in accordance with standard good practice guidance. The potential for flooding, caused by surface water rainfall, during construction is to be mitigated by the contractor by providing an in-depth method statement in accordance with BS8582 2013 and CIRIA C768.

4.9 SURFACE WATER DRAINAGE SUMMARY

Based on the investigation carried out to date, the surface water drainage strategy can be summarised as:

- Flows from rooftop will be collected by traditional rainwater pipes and discharged into the pipe network.
- Flows from car parking areas and access road will be collected by the permeable surface course and discharged into the ground via infiltration.
- Surface water flows will be discharged to the ground via infiltration, through a soakaway for each plot, at an estimated infiltration rate of $3x10^{-9}$ m/s.
- Peak flows in excess of the infiltration rate during storms up to 1 in 100 years, plus 40% for climate change, will be attenuated on-site to ensure there is no flooding of the proposed site or flooding off site.

5 FOUL WATER DRAINAGE STRATEGY

5.1 METHODOLOGY

The following methodology was used to produce a foul water Drainage Strategy for the site:

- Determine a suitable method for foul water discharge.
- Calculate the post development foul water drainage flows, in accordance with BS EN 12056-2:2000.
- Outline the maintenance procedures for the proposed drainage network & who will be responsible for the maintenance of the network, in accordance with the relevant codes of practice.
- Outline the relevant guidance to be followed with respect to safety issues of the network.

5.2 FOUL DRAINAGE DISCHARGE METHOD

The potential methods of foul water discharge, in order of preference, are:

- Discharge to an existing foul water network.
- Discharge to an existing combined water network.
- Discharge to a septic tank, with an appropriate form of treatment or another wastewater treatment system.
- Discharge to a cesspool.

NWL have been contacted to identify any sewerage assets within the vicinity of the site (see *Appendix B* for the *NWL Sewerage Plan*).

NWL have verified that there is a 150mm diameter foul water sewer approximately 350m north of the site, within the Springfield View. The foul water sewer is expected to collect foul water drainage from the properties to the north of the site.

A significant amount of excavation and reinstatement to the areas beyond the site boundary would be required to connect to the foul water sewer. Therefore, this option is not considered the most appropriate method of foul water disposal.

Furthermore, the third-party landowner would be required to confirm that they will allow a pipeline to be installed across their land. Therefore, due to the lack of foul water sewers within the vicinity of the site, it is proposed to dispose of foul water flows via a package treatment plant.

It is understood that there are no feasible watercourses, within the vicinity of the site, for the package treatment plant to discharge to. Therefore, the package treatment plant will discharge to the ground through the use of an infiltration tunnel as a drainage field would not fit within the site boundary.

A permit will be required by the EA for the use of a sewage treatment plant alongside an infiltration tunnel prior to construction.

A percolation test is required, prior to construction, to determine the infiltration rate across the site.

5.3 POST DEVELOPMENT FOUL WATER DRAINAGE CALCULATION

The architect is to confirm soil vent pipe locations prior to construction, in order to determine the foul water flows on-site.

However, each package treatment plant has been sized to accommodate an average of 1-6 persons.

5.4 FOUL WATER MAINTENANCE ISSUES

Foul water drainage within the plot boundary is anticipated to be retained within private ownership. Therefore, this drainage will be the responsibility of the landowner. Refer to *Appendix E* for the *Drainage Maintenance Schedule*.

5.5 FOUL WATER SAFETY ISSUES

Foul water pipework and manholes have been designed in accordance with the appropriate building regulations and Sewers for Adoption, to ensure suitable access for maintenance and operation as required.

Works are to be carried out by an established and professional contractor and in accordance with standard good practice guidance. The potential for flooding, caused by surface water rainfall, during construction is to be mitigated by the contractor by providing an in-depth method statement in accordance with BS8582 2013 and CIRIA C768.

6 CONCLUSION

The Drainage Strategy has been produced for the development of 5no. domestic properties to multiple residential dwellings, with associated hard landscaping and infrastructure. This report has been produced to present the drainage proposals for the development and document the underlying analysis, as required by Northumberland County Council's planning process. The drainage strategy has been produced in accordance with the applicable regulatory framework and relevant best practice guidance, as set out within the report.

Based on the hierarchy of discharge of surface water, the preferred method of surface water disposal is by infiltration. However, using the geological information above, the sites superficial deposits are shown to be predominantly till. Discharge via infiltration is not typically advised in till deposits due to the nature of the soil. However, due to the site constraints, it is proposed to discharge surface water flows to the ground via infiltration with an appropriately sized soakaway for each plot.

Due to the lack of foul water sewers within the vicinity of the site, it is proposed to dispose of foul water flows via a package treatment plant.

7 LIST OF APPENDICES

APPENDIX A:	PROPOSED SITE PLAN
APPENDIX B:	NORTHUMBRIAN WATER SEWERAGE PLAN
APPENDIX C:	PROPOSED DRAINAGE STRATEGY
APPENDIX D:	PROPOSED MICRODRAINAGE RESULTS
APPENDIX E:	DRAINAGE MAINTENACE SCHEDULE

Report Ref: JCC22-158-C-01 Revision 00, October 2022

APPENDIX A PROPOSED SITE PLAN

APPENDIX B

NORTHUMBRIAN WATER SEWERAGE PLAN

APPENDIX C

PROPOSED DRAINAGE STRATEGY

DESIGN NOTES

- PROPOSED LEVELS HAVE BEEN BASED ON THE EXISTING ORDNANCE SURVEY INFORMATION AVAILABLE IN SEPTEMBER
- 2022 PROPOSED DRAWING INFORMATION HAS BEEN BASED ON THE ARCHITECTURAL LAYOUT PROVIDED BY GEORGE F.WHITE. ALL WORKS TO COMPLY WITH CURRENT VERSION OF THE FOLLOWING DOCUMENTS: DESIGN MANUAL FOR ROADS AND BRIDGES (DMRB), SPECIFICATION FOR HIGHWAY WORKS (SHW), LOCAL AUTHORITY DESIGN GUIDE AND SPECIFICATIONS. 4. ALL WORKS WITHIN THE PUBLIC HIGHWAY TO MEET LOCAL AUTHORITY REQUIREMENTS. CONTRACTOR TO APPLY FOR ROAD OPENING NOTICES ETC AS REQUIRED.

GENERAL NOTES

- 1. JC CONSULTING CAN ACCEPT NO LIABILITY FOR INACCURACIES / ERRORS CAUSED BY OS INFORMATION OR
- TOPOGRAPHICAL SURVEY INFORMATION RECEIVED. . THIS DESIGN HAS BEEN CARRIED OUT TO APPROPRIATE STANDARDS BUT IT IS TO BE CHECKED IN ACCORDANCE WITH
- PROCUREMENTS AND REQUIREMENTS PRIOR TO THE COMMENCEMENT OF WORKS. 3. ALL LEVELS, DIMENSIONS AND DETAILS ARE TO BE CONFIRMED BY THE CONTRACTOR PRIOR TO THE COMMENCEMENT OF CONSTRUCTION OR FABRICATION.
- 4. EXISTING GROUND LEVELS AND GROUND PROFILES HAVE BEEN TAKEN FROM THE INFORMATION PROVIDED AND AS SUCH ARE TO BE VERIFIED BY THE CONTRACTOR PRIOR TO THE COMMENCEMENT OF ANY ON-SITE WORKS. DISCREPANCIES ARE TO BE BROUGHT TO THE ATTENTION OF THE ENGINEER.

HEALTH & SAFETY AND CDM

(THE FOLLOWING ARE TO BE READ IN CONJUNCTION WITH CONTRACTORS RISK ASSESSMENTS)

- 1. A GROUND PENETRATING RADAR (GPR) SURVEY HAS NOT BEEN CARRIED OUT FOR THE SITE. THEREFORE, THE CONTRACTOR IS TO UNDERTAKE ALL POSSIBLE PRECAUTIONS WHEN EXCAVATING. ALL EXISTING SERVICES INFORMATION TO BE OBTAINED PRIOR TO THE COMMENCEMENT OF WORKS AND IDENTIFIED ON SITE USING CAT SCANNERS. EXCAVATION TO BE UNDERTAKEN WITH DUE DILIGENCE AND HAND DIGGING TO BE ADOPTED WHERE APPROPRIATE.
- 2. CONTRACTOR TO MINIMISE THE AMOUNT OF TIME ANY EXCAVATIONS REMAIN EXPOSED AND COMPLY WITH LEGISLATIVE AND GOOD PRACTICE GUIDELINES. 3. ALL TASKS TO BE UNDERTAKEN BY SUITABLY TRAINED AND EXPERIENCED OPERATIVES FOLLOWING APPROVED METHOD
- STATEMENTS WITH ADEQUATE RESOURCES ALLOCATED TO EACH TASK. 4. PERSONNEL TO USE SUITABLE PPE AND USE ONLY LOW VIBRATION EQUIPMENT FOR ANY WORK REQUIRING COMPACTING OF MATERIALS AND CONCRETE. AMOUNT OF TIME OF USE TO BE LIMITED TO SAFE LEVELS IN ACCORDANCE WITH THE
- CONTRACTORS APPROVED METHOD STATEMENTS. 5. APPROPRIATE MANAGEMENT SAFETY PLAN TO BE IN PLACE FOR DEALING WITH POTENTIAL GROUND CONTAMINATION. 6. IN ORDER TO ENSURE THAT THE SIDE EXCAVATIONS REMAIN STABLE DURING EXCAVATION. THE CONTRACTOR IS TO
- ASSESS STABILITY AND PROVIDE TEMPORARY SHORING TO ENSURE A SAFE WORKING AREA. 7. CONTRACTOR TO ENSURE ACCESS IS KEPT CLEAR OF PEDESTRIANS AND VEHICLES. ANY ROAD CLOSURES ARE TO BE
- AGREED WITH THE LOCAL HIGHWAYS AUTHORITY PRIOR TO WORKS COMMENCING ON-SITE. 8. A FULL SERVICES SEARCH MUST BE COMPLETED PRIOR TO WORKS COMMENCING. ANY APPLICABLE SERVICES DIVERSION WORKS ARE TO BE COMPLETED BY THE CONTRACTOR. ENSURING THE NECESSARY APPLICATIONS FOR DIVERSIONS ARE
- AGREED 9. CONTRACTOR SHOULD BE AWARE OF GENERAL CONSTRUCTION RISKS TO PREVENT SLIPS, TRIPS AND FALLS AND TAKE
- NECESSARY PRECAUTIONS WITHOUT SPECIAL INSTRUCTION. 10. THE TIME THAT EXCAVATIONS ARE OPEN ON SITE SHOULD BE KEPT TO A MINIMUM AND ALL TRENCHES SHOULD BE SURROUNDED BY A BARRIER.
- 11. CONNECTIONS TO EXISTING SEWERS TO BE MADE BY APPROVED CONTRACTOR ONLY. 12. UNFINISHED MANHOLES MUST BE COVERED WITH LOAD BEARING MATERIALS AND SURROUNDED WITH BARRIER.

DRAINAGE SUMMARY

- 1. SURFACE WATER INFILTRATION RATE: ~3 X10° m/s IN ACCORDANCE WITH THE CIRIA SuDS MANUAL.
- 2. INFILTRATION RATE IS TO BE CHECKED AND VERIFIED PRIOR TO CONSTRUCTION. 3. PROPOSED PERMEABLE PAVING AT CAR PARKING ARRANGEMENTS TO PROVIDE SURFACE WATER TREATMENT.
- 4. FOUL WATER OUTFALL POINT TO PROPOSED PACKAGE TREATMENT PLANT PER PLOT.
- 5. EXISTING FOUL AND SURFACE WATER ARRANGEMENT TO BE CLARIFIED PRIOR TO CONSTRUCTION.

DRAINAGE NOTES

SLAB CONSTRUCTION.

- 1. ALL PIPES 100mmØ UNLESS OTHERWISE STATED.
- 2. ALL PIPES CONNECTIONS TO BE SOFFIT TO SOFFIT UNLESS STATED OTHERWISE.
- 3. ALL RWP / SVP LOCATIONS ARE TO BE CONFIRMED BY THE ARCHITECT PRIOR TO CONSTRUCTION. ANY DISCREPANCIES ARE
- TO BE BROUGHT TO THE ATTENTION OF THE ENGINEER. 4. ALL DRAINAGE WORKS ARE TO BE CARRIED OUT IN ACCORDANCE WITH BUILDING REGULATIONS PART 'H' 2015 EDITION.
- 5. MANHOLE COVERS AND FRAMES ARE TO COMPLY WITH RELEVANT PROVISIONS OF BS EN 124. 6. ALL DRAINAGE BELOW PROPOSED BUILDINGS TO HAVE CLASS Z CONCRETE BED AND SURROUND OR CAST INTO FLOOR

SU V	SUBJECT TO LOCAL AUTHORITY & WATER AUTHORITY APPROVAL									
A	DRAWING I	SSUED FOR PLANN	NG	AA	RJ	12.10.22				
Rev		Description		Drawn	Check'd	Date				
Drawing	Drawing Status:									
	PLANNING									
T. (0191) 491 4684 E. enquiries@jc-consulting.net www.jc-consulting.net Unit 16, The Stottie Shed Bakers Yard, Christon Road Gosforth, Newcastle upon Tyne NE3 1XD Civil Engineering Structural Engineering Structural Engineering MODE CONSULTING LTD.										
Gilent.		GEORGE F	.WHITE	Ξ						
Project: LAND AT CHRISTON MEWS ALNWICK										
Drawing Title: PROPOSED DRAINAGE STRATEGY										
Scale:	1:200	Drawn: AA	Checke F	d: RJ	Date: 12.1	0.22				
Job Num JCC	^{ber:} 22 - 158	Drawing Number C - GA	A - 001		Rev: A	Size: A1				

APPENDIX D

PROPOSED MICRODRAINAGE RESULTS

JC Consulting Ltd		Page 1
4 McMillan Close		
Gateshead		4
Tyne & Wear NE9 5BF		Micro
Date 22/09/2022 10:55	Designed by aabele	
File PLANNING.MDX	Checked by	Diamaye
XP Solutions	Network 2017.1.1	
STORM SEWER DESIGN Design	by the Modified Rational Method Criteria for Storm	
Pine Sizes STA	ANDARD Manhole Sizes STANDARD	
FSR Rainfal: Return Period (years) M5-60 (mm) Ratio R Maximum Rainfall (mm/hr) Maximum Time of Concentration (mins) Foul Sewage (1/s/ha) Volumetric Runoff Coeff.	<pre>1 Model - England and Wales 30 PIM 18.000 Add Flow / Climate Chang 0.300 Minimum Backdrop Heigh 50 Maximum Backdrop Heigh 30 Min Design Depth for Optimisation 0.000 Min Vel for Auto Design only 0.750 Min Slope for Optimisation</pre>	P (%) 100 e (%) 0 t (m) 0.200 t (m) 1.500 n (m) 1.200 (m/s) 1.00 (1:X) 500
Design	ed with Level Soffits	
<u>Time Area Diagram fo</u>	or Storm at outfall (pipe 8.003)	
Time	Area Time Area	
0	4 0.015 4-8 0.011	
Total Area	Contributing (ha) = 0.026	
Total P	ipe Volume (m³) = 0.879	
<u>Time Area Diagr</u>	am at outfall (pipe 11.003)	
Time (mins)	Area Time Area) (ha) (mins) (ha)	
0	4 0.018 4-8 0.012	
Total Area	Contributing (ha) = 0.030	
Total P	ipe Volume $(m^3) = 0.754$	
<u>Time Area Diagra</u>	am at outfall (pipe 14.003)	
Time (mins)	Area Time Area) (ha) (mins) (ha)	
0	4 0.012 4-8 0.009	
Total Area	Contributing (ha) = 0.021	
Total P	ipe Volume (m³) = 0.691	
©1982	-2017 XP Solutions	

JC Consulting Ltd			Page 2							
4 McMillan Close										
Gateshead			4							
Tyne & Wear NE9 5BF			Micco							
Date 22/09/2022 10:55	Designed by	aabele								
File PLANNING.MDX	Checked by		Diamage							
XP Solutions	Network 201	7.1.1								
<u>Time Area Diag</u> Tim (mir	ram at outfal. Ne Area Time Ns) (ha) (mins)	l (pipe 17.00 Area (ha)	<u>3)</u>							
	-4 0.012 4-8	0.008								
Total Area Contributing (ha) = 0.020										
Total	Total Pipe Volume (m³) = 0.678									
Time Area Diag	ram at outfal	l (pipe 20.00	3)							
Tin	e Area Time	Area (ba)								
(0.013								
Total Are	- Contributing ($b_{2} = 0.028$								
IOLAL ARE	a contributing ((11a) = 0.028								
Total	Pipe Volume (m³)	= 0.709								
Network	Design Table	for Storm								
« - Indi	cates pipe capac	ity < flow								
PN Length Fall Slope I.Area ((m) (m) (1:X) (ha) (n	T.E. Base mins) Flow (1/s)	k HYD DIA (mm) SECT (mm)	Section Type Auto Design							
8.000 21.292 1.065 20.0 0.005 8.001 10.942 0.109 100.0 0.000	5.00 0.0 0.00 0.0	0.600 o 100 0.600 o 150	Pipe/Conduit 🔒 Pipe/Conduit 🔒							
9.000 21.165 1.058 20.0 0.006	5.00 0.0	0.600 o 100	Pipe/Conduit 🔒							
8.002 13.236 0.132 100.0 0.000	0.00 0.0	0.600 o <u>150</u>	Pipe/Conduit 🔒							
Net	work Results '	<u> Table</u>								
PN Rain T.C. US/IL Σ I (mm/hr) (mins) (m) (.Area ΣBase ha) Flow (1/s)	Foul Add Flow (l/s) (l/s)	Vel Cap Flow (m/s) (l/s) (l/s)							
8.000 50.00 5.20 53.513 8.001 50.00 5.39 52.398	0.005 0.0 0.005 0.0	0.0 0.0 0.0	1.73 13.6 0.7 1.00 17.8 0.7							
9.000 50.00 5.20 53.510	0.006 0.0	0.0 0.0	1.73 13.6 0.8							
8.002 50.00 5.61 52.289	0.011 0.0	0.0 0.0	1.00 17.8 1.5							
©198	2-2017 XP Solu	utions								

JC Consu	lting	Ltd								Pag	e 3
4 McMill	an Clo	se								5	
Gateshea	d									17	~~ ~
Tyne & W	ear N	E9 5B	F 							M	icro
Date 22/	09/202	2 10:	55		Des	signed by	aabel	е		n n	ainane
File PLA	NNING.	MDX			Che	ecked by					
XP Solut	ions				Net	twork 2017	.1.1				
Network Design Table for Storm											
PN	Length	Fall	Slope	I.Area	T.E.	Base	k	HYD	DIA	Section Type	Auto
	(m)	(m)	(1:X)	(ha)	(mins)	Flow (l/s)	(mm)	SECT	(mm)		Design
10.000	11.669	0.583	20.0	0.015	5.00	0.0	0.600	0	100	Pipe/Conduit	•
8.003	3.445	0.000	0.0	0.000	0.00	0.0	0.600	0	100	Pipe/Conduit	•
11.000	16.311	0.816	20.0	0.005	5.00	0.0	0.600	0	100	Pipe/Conduit	A
11.001	10.615	0.106	100.0	0.000	0.00	0.0	0.600	0	150	Pipe/Conduit	ě
12.000	16.311	0.816	20.0	0.006	5.00	0.0	0.600	0	100	Pipe/Conduit	•
11.002	13.746	0.137	100.0	0.000	0.00	0.0	0.600	0	150	Pipe/Conduit	•
13.000	5.071	0.254	20.0	0.020	5.00	0.0	0.600	0	100	Pipe/Conduit	•
11.003	3.515	0.000	0.0	0.000	0.00	0.0	0.600	0	100	Pipe/Conduit	۵
14.000	12.546	0.627	20.0	0.005	5.00	0.0	0.600	0	100	Pipe/Conduit	0
14.001	10.615	0.106	100.0	0.000	0.00	0.0	0.600	0	150	Pipe/Conduit	ē
15.000	12.489	0.624	20.0	0.006	5.00	0.0	0.600	0	100	Pipe/Conduit	•
				Ne	twor <u>k</u>	<u>Results</u> T	able				

PN	Rain (mm/hr)	T.C. (mins)	US/IL (m)	Σ I.Area (ha)	Σ Base Flow (l/s)	Foul (1/s)	Add Flow (1/s)	Vel (m/s)	Cap (1/s)	Flow (l/s)	
			. ,								
10.000	50.00	5.11	53.381	0.015	0.0	0.0	0.0	1.73	13.6	2.1	
8.003	50.00	6.43	53.744	0.026	0.0	0.0	0.0	0.07	0.5«	3.6	
11.000	50.00	5.16	53.043	0.005	0.0	0.0	0.0	1.73	13.6	0.7	
11.001	50.00	5.33	52.177	0.005	0.0	0.0	0.0	1.00	17.8	0.7	
12.000	50.00	5.16	53.045	0.006	0.0	0.0	0.0	1.73	13.6	0.8	
11.002	50.00	5.56	52.071	0.011	0.0	0.0	0.0	1.00	17.8	1.5	
13.000	50.00	5.05	53.078	0.020	0.0	0.0	0.0	1.73	13.6	2.7	
11.003	50.00	6.40	53.706	0.030	0.0	0.0	0.0	0.07	0.5«	4.1	
14.000	50.00	5.12	52.983	0.005	0.0	0.0	0.0	1.73	13.6	0.7	
14.001	50.00	5.30	52.306	0.005	0.0	0.0	0.0	1.00	17.8	0.7	
15.000	50.00	5.12	52.984	0.006	0.0	0.0	0.0	1.73	13.6	0.8	
			©	1982-201	7 XP Solu	tions					

JC Consu	lting	Ltd								Pag	re 4
4 McMill	an Clo	se									
Gateshea	d									4	
Tyne & W	ear N	E9 5B	F							М	icco
Date 22/	09/202	2 10:	55		Des	signed by	aabel	е			
File PLA	NNING.	MDX		Che	Checked by						
XP Solut	ions				Net	twork 2017	.1.1				
Network Design Table for Storm											
PN	Length	Fall	Slope	I.Area	T.E.	Base	k	HYD	DIA	Section Type	Auto
	(m)	(m)	(1:X)	(ha)	(mins)	Flow (l/s)	(mm)	SECT	(mm)		Design
14.002	11.922	0.319	37.4	0.000	0.00	0.0	0.600	0	150	Pipe/Conduit	0
16.000	8.612	0.431	20.0	0.010	5.00	0.0	0.600	0	100	Pipe/Conduit	۵
14.003	3.658	0.000	0.0	0.000	0.00	0.0	0.600	0	100	Pipe/Conduit	۵
17.000	12.489	0.624	20.0	0.005	5.00	0.0	0.600	0	100	Pipe/Conduit	a
17.001	10.615	0.106	100.0	0.000	0.00	0.0	0.600	0	150	Pipe/Conduit	ê
18.000	12.489	0.624	20.0	0.005	5.00	0.0	0.600	0	100	Pipe/Conduit	۲
17.002	11.237	0.643	17.5	0.000	0.00	0.0	0.600	0	150	Pipe/Conduit	۵
19.000	8.516	0.426	20.0	0.010	5.00	0.0	0.600	0	100	Pipe/Conduit	۵
17.003	3.723	0.000	0.0	0.000	0.00	0.0	0.600	0	100	Pipe/Conduit	۵
20.000	11.901	0.595	20.0	0.006	5.00	0.0	0.600	0	100	Pipe/Conduit	٨

Network Results Table

PN	Rain (mm/hr)	T.C. (mins)	US/IL (m)	Σ I.Area (ha)	Σ Base Flow (l/s)	Foul (l/s)	Add Flow (1/s)	Vel (m/s)	Cap (1/s)	Flow (l/s)	
14.002	50.00	5.42	52.200	0.011	0.0	0.0	0.0	1.65	29.2	1.4	
16.000	50.00	5.08	53.096	0.010	0.0	0.0	0.0	1.73	13.6	1.3	
14.003	50.00	6.29	53.501	0.021	0.0	0.0	0.0	0.07	0.5«	2.8	
17.000	50.00	5.12	53.038	0.005	0.0	0.0	0.0	1.73	13.6	0.7	
17.001	50.00	5.30	52.364	0.005	0.0	0.0	0.0	1.00	17.8	0.7	
18.000	50.00	5.12	53.035	0.005	0.0	0.0	0.0	1.73	13.6	0.7	
17.002	50.00	5.37	52.257	0.011	0.0	0.0	0.0	2.42	42.8	1.5	
19.000	50.00	5.08	53.114	0.010	0.0	0.0	0.0	1.73	13.6	1.3	
17.003	50.00	6.27	53.494	0.020	0.0	0.0	0.0	0.07	0.5«	2.8	
20.000	50.00	5.11	53.057	0.006	0.0	0.0	0.0	1.73	13.6	0.8	
			©	1982-201	7 XP Solu	tions					

JC Consulting Ltd		Page 5
4 McMillan Close		
Gateshead		<u> </u>
Tyne & Wear NE9 5BF		Micco
Date 22/09/2022 10:55	Designed by aabele	
File PLANNING.MDX	Checked by	Dialitage
XP Solutions	Network 2017.1.1	

Network Design Table for Storm

PN	Length (m)	Fall (m)	Slope (1:X)	I.Area (ha)	T.E. (mins)	Base Flow (l/s	k) (mm)	HYD SECT	DIA (mm)	Section Type	Auto Design
21.000	2.168	0.202	10.7	0.014	5.00	0.	0.600	0	100	Pipe/Conduit	ď
20.001	10.215	0.102	100.0	0.000	0.00	0.	0.600	0	150	Pipe/Conduit	•
22.000	17.938	0.897	20.0	0.008	5.00	0.	0.600	0	100	Pipe/Conduit	ď
20.002 20.003	13.839 4.135	0.138	100.0	0.000	0.00	0. 0.	0.600 0.600	0	150 100	Pipe/Conduit Pipe/Conduit	•

Network Results Table

PN	Rain (mm/hr)	T.C. (mins)	US/IL (m)	Σ I.Area (ha)	Σ Base Flow (l/s)	Foul (l/s)	Add Flow (l/s)	Vel (m/s)	Cap (1/s)	Flow (l/s)
21.000	50.00	5.02	52.664	0.014	0.0	0.0	0.0	2.37	18.6	1.9
20.001	50.00	5.28	52.412	0.019	0.0	0.0	0.0	1.00	17.8	2.6
22.000	50.00	5.17	53.058	0.008	0.0	0.0	0.0	1.73	13.6	1.1
20.002 20.003	50.00 50.00	5.51 6.51	52.310 53.727	0.028 0.028	0.0	0.0	0.0	1.00 0.07	17.8 0.5«	3.7 3.7

JC Consulting Ltd		Page 6
4 McMillan Close		
Gateshead		4
Tyne & Wear NE9 5BF		Micco
Date 22/09/2022 10:55	Designed by aabele	
File PLANNING.MDX	Checked by	Diamaye
XP Solutions	Network 2017.1.1	

Area Summary for Storm

Pipe Number	рімр Туре	PIMP Name	PIMP (%)	Gross Area (ha)	Imp. Area (ha)	Pipe Total (ha)
8.000	User	-	100	0.005	0.005	0.005
8.001	-	-	100	0.000	0.000	0.000
9.000	User	-	100	0.006	0.006	0.006
8.002	-	-	100	0.000	0.000	0.000
10.000	User	-	100	0.015	0.015	0.015
8.003	-	-	100	0.000	0.000	0.000
11.000	User	-	100	0.005	0.005	0.005
11.001	-	-	100	0.000	0.000	0.000
12.000	User	-	100	0.006	0.006	0.006
11.002	-	-	100	0.000	0.000	0.000
13.000	User	-	100	0.020	0.020	0.020
11.003	-	-	100	0.000	0.000	0.000
14.000	User	-	100	0.005	0.005	0.005
14.001	-	-	100	0.000	0.000	0.000
15.000	User	-	100	0.006	0.006	0.006
14.002	-	-	100	0.000	0.000	0.000
16.000	User	-	100	0.010	0.010	0.010
14.003	-	-	100	0.000	0.000	0.000
17.000	User	-	100	0.005	0.005	0.005
17.001	-	-	100	0.000	0.000	0.000
18.000	User	-	100	0.005	0.005	0.005
17.002	-	-	100	0.000	0.000	0.000
19.000	User	-	100	0.010	0.010	0.010
17.003	-	-	100	0.000	0.000	0.000
20.000	User	-	100	0.006	0.006	0.006
21.000	User	-	100	0.014	0.014	0.014
20.001	-	-	100	0.000	0.000	0.000
22.000	User	-	100	0.008	0.008	0.008
20.002	-	-	100	0.000	0.000	0.000
20.003	-	-	100	0.000	0.000	0.000
				Total	Total	Total
				0.125	0.125	0.125

Simulation Criteria for Storm

Volumetric Runoff Coeff 0.75	0 Additional Flow - % of Total Flow 0.000
Areal Reduction Factor 1.00	0 MADD Factor * 10m³/ha Storage 2.000
Hot Start (mins)	0 Inlet Coefficcient 0.800
Hot Start Level (mm)	0 Flow per Person per Day (1/per/day) 0.000
Manhole Headloss Coeff (Global) 0.50	0 Run Time (mins) 60
Foul Sewage per hectare (1/s) 0.00	0 Output Interval (mins) 1
Number of Input Hydrographs	0 Number of Storage Structures 10
Number of Online Controls	0 Number of Time/Area Diagrams 0
Number of Offline Controls	0 Number of Real Time Controls 0

JC Consulting Ltd		Page 7
4 McMillan Close		
Gateshead		4
Tyne & Wear NE9 5BF		Micco
Date 22/09/2022 10:55	Designed by aabele	
File PLANNING.MDX	Checked by	Diamage
XP Solutions	Network 2017.1.1	
Simulatio	on Criteria for Storm	
Quert h a t	in Dainfall Dataila	
Synthet	ic Rainfall Details	
Rainfall Model	FSR Profile Type Summe	er
Return Period (years)	30 Cv (Summer) 0.75	50
Region Engla	and and Wales Cv (Winter) 0.84	10
M5-60 (mm) Ratio P	18.000 Storm Duration (mins) 3	30
	0.000	

JC Consulting Ltd		Page 8							
4 McMillan Close									
Gateshead		<u> </u>							
Tyne & Wear NE9 5BF		Micco							
Date 22/09/2022 10:55	Designed by aabele								
File PLANNING.MDX	Checked by	Digiliada							
XP Solutions	Network 2017.1.1								
Storage Structures for Storm									
FOLOUS CAL PAIR	Mannole: PP, DS/PN: 10.000								
Infiltration Coefficient Base Membrane Percolation (Max Percolation Safety Pc Invert Lev	(m/hr) 0.00001 Width (m) mm/hr) 1000 Length (m) a (1/s) 42.8 Slope (1:X) Factor 2.0 Depression Storage (mm) prosity 0.30 Evaporation (mm/day) rel (m) 53.381 Cap Volume Depth (m)	15.4 10.0 100.0 5 3 0.450							
<u>Cellular Storage M</u>	Lanhole: SOAKAWAY, DS/PN: 8.003								
Invert Level (m) 52.157 Safety Factor 2.0 Infiltration Coefficient Base (m/hr) 0.00001 Porosity 0.95 Infiltration Coefficient Side (m/hr) 0.00001									
Depth (m) Area (m²) Inf. Ar	ea (m²) Depth (m) Area (m²) Inf. Area (r	n²)							
0.000 12.8 1.320 12.8	0.0 1.321 0.0 0	0.0							
<u>Porous Car Park</u>	Manhole: PP, DS/PN: 13.000								
Infiltration Coefficient Base Membrane Percolation (Max Percolation Safety Pc Invert Lev	(m/hr)0.00001Width (m)mm/hr)1000Length (m)a (1/s)56.7Slope (1:X)Factor2.0Depression Storage (mm)prosity0.30Evaporation (mm/day)rel (m)53.078Cap Volume Depth (m)	20.4 10.0 100.0 5 3 0.450							
<u>Cellular Storage Ma</u>	anhole: SOAKAWAY, DS/PN: 11.003								
Inve: Infiltration Coefficient Infiltration Coefficient	rt Level (m) 51.934 Safety Factor 2.0 Base (m/hr) 0.00001 Porosity 0.95 Side (m/hr) 0.00001								
Depth (m) Area (m²) Inf. Ar	ea (m²) Depth (m) Area (m²) Inf. Area (m	n²)							
0.000 7.7 1.320 7.7	0.0 0.0 1.321 0.0	0.0							
Porous Car Park	Manhole: PP, DS/PN: 16.000								
Infiltration Coefficient Base (m/hr) 0.00001 Safety Factor 2.0 Membrane Percolation (mm/hr) 1000 Porosity 0.30 Max Percolation (l/s) 27.2 Invert Level (m) 53.096									
©1982-	-2017 XP Solutions								

JC Consulting Ltd		Page 9							
4 McMillan Close									
Gateshead		4							
Tyne & Wear NE9 5BF		Micco							
Date 22/09/2022 10:55	Designed by aabele								
File PLANNING.MDX	Checked by	Drainage							
XP Solutions	Network 2017.1.1								
Porous Car Park Manhole: PP, DS/PN: 16.000									
Width (m) 9.8 Depression Storage (mm) 5 Length (m) 10.0 Evaporation (mm/day) 3 Slope (1:X) 100.0 Cap Volume Depth (m) 0.450									
<u>Cellular Storage Ma</u>	anhole: SOAKAWAY, DS/PN: 14.003								
Invert Level (m) 51.881 Safety Factor 2.0 Infiltration Coefficient Base (m/hr) 0.00001 Porosity 0.95 Infiltration Coefficient Side (m/hr) 0.00001									
Depth (m) Area (m²) Inf. Are	ea (m²) Depth (m) Area (m²) Inf. Area (m²)							
0.000 7.7 1.320 7.7	0.0 0.0	0.0							
<u>Porous Car Park</u>	Manhole: PP, DS/PN: 19.000								
Infiltration Coefficient Base Membrane Percolation (Max Percolation Safety Po Invert Lev	(m/hr)0.00000Width (m)mm/hr)1000Length (m)a (1/s)27.2Slope (1:X)Factor2.0Depression Storage (mm)prosity0.30Evaporation (mm/day)rel (m)53.114Cap Volume Depth (m)	9.8 10.0 100.0 5 3 0.450							
<u>Cellular Storage Ma</u>	anhole: SOAKAWAY, DS/PN: 17.003								
Inve: Infiltration Coefficient Infiltration Coefficient Depth (m) Area (m ²) Inf. Are	rt Level (m) 51.614 Safety Factor 2.0 Base (m/hr) 0.00001 Porosity 0.95 Side (m/hr) 0.00001 ea (m ²) Depth (m) Area (m ²) Inf. Area (m²)							
0.000 7.7 1.320 7.7	0.0 0.0	0.0							
Porous Car Park	Manhole: PP, DS/PN: 21.000								
Infiltration Coefficient Base Membrane Percolation (Max Percolation Safety Po Invert Lev	(m/hr)0.00001Width (m)mm/hr)1000Length (m)a (1/s)38.3Slope (1:X)Factor2.0Depression Storage (mm)rosity0.30Evaporation (mm/day)rel (m)52.664Cap Volume Depth (m)	13.8 10.0 100.0 5 3 0.450							
©1982-	-2017 XP Solutions								

JC Consulting Ltd						Page 10
4 McMillan Close						
Gateshead						14 . I
Tyne & Wear NE9 5	BF					- Com
Date 22/09/2022 10	:55	Des	signed by a	abele		- MICLO
File PLANNING MDX	••••	Che	acked by			Drainage
VD Colutions		Not	Ecked by	1 1		
		Net	LWOIK ZUI7.	• - • -		
Cel	lular Stor	are Manho	DIG. SOVKVV	אס אס או	20 003	
	IUIAI SCOIR	age Manne	DIE. SUARA	KI, D5/IN.	. 20.005	
		Invert L	evel (m) 51	.907 Safety	Factor 2.0	
Infilt	ration Coeff:	icient Bas	e (m/hr) 0.0	0001 Pc	prosity 0.95	
Infilt	ration Coeff:	icient Sid	e (m/hr) 0.0	0001		
Denth (m)	$\Delta rop (m^2)$ T	of Area (m²) Denth (m	a $area (m^2)$	Inf Area (m	2)
Depth (m)	Alea (m) II	III. Alea (i) Alea (m)	IIII. AIGA (II	.)
0.000	7.7		0.0 1.32	.0 0.0	0	.0
1.320	7.7		0.0			
	-		(~)			
	<u>\</u>	/olume Si	<u>ummary (Sta</u>	<u>atic)</u>		
	I an at h	aloulotio.	an beend on (Contro Contro	-	
	Length C	alculation	ns based on (Jentre-Centro	e	
				Storage		
Pipe	USMH I	Manhole	Pipe	Structure	Total	
Number	Name Vo	lume (m³)	Volume (m ³)	Volume (m³)	Volume (m³)	
0.000	25	0 0 0 1	0 1 6 7	0 000	0 100	
8.000	RE TC	0.021	0.167	0.000	0.188	
9.000	RE	0.021	0.166	0.000	0.187	
8.002	IC	0.368	0.234	0.000	0.602	
10.000	PP	0.000	0.092	20.790	20.882	
8.003	SOAKAWAY	0.028	0.027	16.055	16.111	
11.000	RE	0.021	0.128	0.000	0.149	
11.001	IC	0.334	0.188	0.000	0.522	
12.000	RE	0.021	0.128	0.000	0.149	
11.002	IC	0.386	0.243	0.000	0.629	
13.000	PP	0.000	0.040	27.540	27.580	
11.003	SOAKAWAY	0.028	0.028	9.658	9.714	
14.000	RE	0.021	0.099	0.000	0.120	
14.001	IC	0.277	0.188	0.000	0.464	
15.000	RE	0.021	0.098	0.000	0.119	
14.002	IC	0.307	0.211	0.000	0.517	
16.000	PP	0.000	0.068	13.230	13.298	
14.003	SOAKAWAY	0.028	0.029	9.658	9.715	
17.000	RE	0.021	0.098	0.000	0.119	
17.001	IC	0.274	0.188	0.000	0.461	
18.000	RE	0.021	0.098	0.000	0.119	
17.002	IC	0.305	0.199	0.000	0.504	
19.000	PP	0.000	0.067	13.230	13.297	
17.003	SOAKAWAY	0.028	0.029	9.658	9.716	
20.000	RE	0.021	0.093	0.000	0.115	
21.000	PP	0.000	0.017	18.630	18.647	
20.001	IC	0.265	0.181	0.000	0.446	
22.000	RE	0.021	0.141	0.000	0.162	
20.002	IC	0.296	0.245	0.000	0.540	
20.003	SOAKAWAY	0.113	0.032	9.658	9.803	
Total		3 561	3 710	148 109	155 385	
Total	-	2.304	J./12	140.108	T00.000	
1	(シエンロイーイロー	LI AF SOLUT	LIOUS		

JC Consulting Ltd		Page 11
4 McMillan Close		
Gateshead		4
Tyne & Wear NE9 5BF		Micco
Date 22/09/2022 10:55	Designed by aabele	
File PLANNING.MDX	Checked by	Diamaye
XP Solutions	Network 2017.1.1	·

Volume Summary (Static)

				Storage	
Pipe	USMH	Manhole	Pipe	Structure	Total
Number	Name	Volume (m³)	Volume (m³)	Volume (m³)	Volume (m³)
8 000	DF	0 021	0 164	0 000	0 195
8.000	KE TC	0.021	0.104	0.000	0.100
8.001	IC	0.315	0.163	0.000	0.498
9.000	RE TO	0.021	0.163	0.000	0.184
8.002	IC	0.368	0.223	0.000	0.592
10.000	PP	0.000	0.089	20.790	20.879
8.003	SOAKAWAY	0.028	0.025	16.055	10.108
11.000	RE	0.021	0.125	0.000	0.146
11.001	IC	0.334	0.177	0.000	0.511
12.000	RE	0.021	0.125	0.000	0.146
11.002	IC	0.386	0.232	0.000	0.618
13.000	PP	0.000	0.037	27.540	27.577
11.003	SOAKAWAY	0.028	0.025	9.658	9.712
14.000	RE	0.021	0.095	0.000	0.116
14.001	IC	0.277	0.177	0.000	0.454
15.000	RE	0.021	0.095	0.000	0.116
14.002	IC	0.307	0.200	0.000	0.507
16.000	PP	0.000	0.065	13.230	13.295
14.003	SOAKAWAY	0.028	0.026	9.658	9.713
17.000	RE	0.021	0.095	0.000	0.116
17.001	IC	0.274	0.177	0.000	0.451
18.000	RE	0.021	0.095	0.000	0.116
17.002	IC	0.305	0.188	0.000	0.493
19.000	PP	0.000	0.065	13.230	13.295
17.003	SOAKAWAY	0.028	0.027	9.658	9.713
20.000	RE	0.021	0.090	0.000	0.111
21.000	PP	0.000	0.015	18.630	18.645
20.001	TC	0.265	0.170	0.000	0.435
22.000	RE	0.021	0.137	0.000	0.159
20.002	TC	0.296	0.229	0.000	0.524
20.003	SOAKAWAY	0.113	0.028	9.658	9.799
Total		3.564	3.540	148.108	155.212

Length Calculations based on True Length

JC Consult	ing Lto	ł						Page 1	12
4 McMillan	Close								
Gateshead								4	
Tyne & Wea	r NE9	5BF						Micc	J
Date 22/09	/2022 1	0:55		De	signed by aa	bele			U
File PLANN	ING.MD>	K		Ch	lecked by			Uldii	Idye
XP Solution	ıs			Ne	twork 2017.1	.1			
<u>1 year Ret</u>	urn Pe	riod S	ummary	of Cri	tical Result:	s by Maxi	mum Level	(Rank 1) for
					<u>Storm</u>				
	_			Simul	ation Criteria				
	Area	AL Reduc	tion Fa	ctor 1.0 ins)	0 Additiona.	L Flow - % Factor * 10	of Total F. m³/ha Stor	Low 0.000	
	Ho	ot Start	Level	(mm)	0	Inlet	Coeffieci	ent 0.800	
Manho	le Headl	loss Coe	ff (Glo	bal) 0.5	00 Flow per Pe	rson per Da	y (l/per/d	ay) 0.000	
Fou	l Sewage	e per he	ctare (1/s) 0.0	00				
	Numk	per of I	nput Hy	drograph	s 0 Number of a	Storage Str	uctures 10		
	Nu	umber of	Online	Control	s 0 Number of '	Fime/Area D	iagrams 0		
	in un	IDEL OI	OIIIIIe	CONCLOT	S 0 NUMBEL OF I	keal line C	ONCIOIS U		
		Deinf	<u>.</u> 	Synthetic	<u>Rainfall Deta</u>	<u>ils</u>	0 200		
		Raini	all Mode Regio	e⊥ on Englar	FSR nd and Wales Cv	(Summer)	0.300		
		M	5-60 (mn	n)	18.000 Cv	(Winter)	0.840		
		c =1		·				0	
	Margin	for Fl	ood Ris Ana	k Warning lysis Tim	g (mm) Destep 2.5 Secc	nd Increme	300 ht (Extende	0.0 d)	
			ma	DTS S	Status	ind incremen	ite (Encentee	ON	
				DVD S	Status			ON	
			1	Inertia S	Status			ON	
			_	<u> </u>		~ .			
		Dı	P ration(rofile(s s) (mins)) 15, 30, 60, 1	Summer and 120, 180, 2	40, 360		
	I	Return H	Period(s) (years)	1,	30, 100		
		Cl	imate C	hange (%)	0	, 0, 40		
									Water
US/I	1H		Return	Climate	First (X)	First (Y)	First (Z)	Overflow	Level
PN Nan	e s	torm	Period	Change	Surcharge	FTOOD	Overilow	ACT.	(m)
8.000	RE 15	Winter	1	+0%					53.526
8.001	IC 360	Winter	1	+0%	30/120 Summer				52.460
9.000	RE 15	Winter Winter	1	+0% +0%	1/360 Wintor				53.524 52 460
10.000	PP 60	Winter	1	+0% +0%	1/500 Winter				53.397
8.003 SOAKA	WAY 360	Winter	1	+0%					52.460
11.000	RE 15	Winter	1	+0%	100/60 Winter				53.056
11.001	IC 360	Winter	1	+0%	1/240 Winter				52.470
11 002	KE 15 TC 360	Winter	1	+0응 +0의	1/120 Winter				53.059 52 470
13.000	PP 60	Winter	1	+0%	100/120 Winter				53.096
11.003 SOAKA	WAY 360	Winter	1	+0%					52.470
14.000	RE 15	Winter	1	+0%	100/120 Winter				52.997
14.001	IC 15	Winter	1	+0%	30/120 Summer				52.324
			C	1982-20	17 XP Soluti	ons			

JC Consulting Ltd		Page 13
4 McMillan Close		
Gateshead		4
Tyne & Wear NE9 5BF		Micco
Date 22/09/2022 10:55	Designed by aabele	
File PLANNING.MDX	Checked by	Diamaye
XP Solutions	Network 2017.1.1	

<u>1 year Return Period Summary of Critical Results by Maximum Level (Rank 1) for</u> <u>Storm</u>

	US/MH	Surcharged Depth	Flooded Volume	Flow /	Overflow	Pipe Flow		Level
PN	Name	(m)	(m³)	Cap.	(1/s)	(1/s)	Status	Exceeded
8.000	RE	-0.087	0.000	0.04		0.6	FLOOD RISK	
8.001	IC	-0.088	0.000	0.01		0.1	OK	
9.000	RE	-0.086	0.000	0.05		0.7	FLOOD RISK	
8.002	IC	0.021	0.000	0.01		0.2	SURCHARGED	
10.000	PP	-0.084	0.000	0.06		0.8	OK*	
8.003	SOAKAWAY	-1.384	0.000	0.00		0.0	OK	
11.000	RE	-0.087	0.000	0.04		0.6	FLOOD RISK	
11.001	IC	0.142	0.000	0.01		0.1	SURCHARGED	
12.000	RE	-0.086	0.000	0.05		0.7	FLOOD RISK	
11.002	IC	0.249	0.000	0.01		0.2	SURCHARGED	
13.000	PP	-0.082	0.000	0.07		1.0	OK*	
11.003	SOAKAWAY	-1.336	0.000	0.00		0.0	OK	
14.000	RE	-0.086	0.000	0.04		0.6	FLOOD RISK	
14.001	IC	-0.132	0.000	0.04		0.6	OK	

JC Cor	sulting	r Ltd							Page	14
4 McMi	llan Cl	ose								
Gatesh	nead								K.	
Tyne &	Wear	NE9 5BF							Micc	J
Date 22/09/2022 10:55 Designed by aabele								U		
File F	LANNING	.MDX		Ch	ecked b	JV			Ufall	nage
XP Sol	utions			Ne	twork 2	2017.1	.1			
							• -			
<u>1 year</u>	r Return	n Period	Summary	of Crit	cical R	esults	by Max	imum Leve	l (Rank 1) for
					Storm					
	IIS/MH		Return	Climate	First	(X)	First (Y) First (7)	Overflow	Water Level
PN	Name	Storm	Period	Change	Surch	arge	Flood	Overflow	Act.	(m)
				2		2				
15.000	RE	15 Wint	er 1	+0%	100/120	Winter				52.998
14.002		: 360 Wint	ier 1	+0%	30/60	Winter				52.292
14 003	SUZKYMYA	00 Wint 360 Wint	er 1	+U≷ ⊥∩ഉ	100/240	winter				52 202
17.000	RF	15 Wint	rer 1	+0%	100/180	Winter				53.052
17.001	IC	: 15 Wint	er 1	+0%	30/360	Winter				52.383
18.000	RE	15 Wint	er 1	+0%	100/180	Winter				53.049
17.002	IC	15 Wint	er 1	+0%	30/180	Winter				52.275
19.000	PF	9 60 Wint	er 1	+0%	100/240	Winter				53.127
17.003	SOAKAWAY	360 Wint	er 1	+0%						52.043
20.000	RE	15 Wint	er 1	+0%						53.072
21.000	PF	9 60 Wint	er 1	+0%	30/360	Winter				52.680
20.001	IC	: 60 Wint	ier 1	+0%	30/120	Summer				52.43/
22.000	KE TC	: IS WINU 360 Wint	ier 1	+03 +02	30/60	Winter				52 /02
20.002	SOAKAWAY	360 Wint	er 1	+0%	50700	WINCEL				52.402
			Gunchenned	Fleeded			Dime			
			Depth	Volume	Flow /	Overfl	Pipe W Flow		Level	
	PN	Name	(m)	(m ³)	Cap	(1/s)	(1/s)	Status	Exceeded	
		Traine	()	(oup.	(1,0)	(1)0)	blucub	Linoceaca	
	15.000	RE	-0.086	0.000	0.05		0.6	FLOOD RISK		
	14.002	IC	-0.057	0.000	0.01		0.2	OK		
	10.000 11 002	SUV KVMVA FL	-0.08/	0.000	0.04		0.6	OK*		
	17.000	RE	-0.086	0.000	0.05		0.6	FLOOD RISK		
	17.001	IC	-0.131	0.000	0.04		0.6	OK		
	18.000	RE	-0.086	0.000	0.05		0.6	FLOOD RISK		
	17.002	IC	-0.133	0.000	0.03		1.2	OK		
	19.000	PP	-0.087	0.000	0.04		0.5	OK*		
	17.003	SOAKAWAY	-1.551	0.000	0.00		0.0	OK		
	20.000	RE	-0.085	0.000	0.05		0.7	FLOOD RISK		
	21.000	PP	-0.084	0.000	0.06		0.7	OK*		
	20.001	1C 77	-0.125	0.000	0.07		1.1	UK		
	20.002	re tc	-0.083	0.000	0.04		0.9	UK TTOOD VIDV		
	20.003	SOAKAWAY	-1.425	0.000	0.00		0.0	OK		
		_								
				1000 05	1	~				
			C	т982-20	TI XF 2	SOLUTIO	ons			

JC Consulting Ltd	Page 15
4 McMillan Close	
Gateshead	
Tyne & Wear NE9 5BF	Micco
Date 22/09/2022 10:55	Designed by aabele
File PLANNING.MDX	Checked by UdilidUP
XP Solutions	Network 2017.1.1
30 year Return Period Summary of	f Critical Results by Maximum Level (Rank 1)
	<u>for Storm</u>
	mulation Critoria
Areal Reduction Factor	1.000 Additional Flow - % of Total Flow 0.000
Hot Start (mins)	0 MADD Factor * 10m ³ /ha Storage 2.000
Hot Start Level (mm)	0 Inlet Coefficient 0.800
Manhole Headloss Coeff (Global)	0.500 Flow per Person per Day (1/per/day) 0.000
Four sewage per nectare (1/s)	0.000
Number of Input Hydrogr	aphs 0 Number of Storage Structures 10
Number of Online Cont.	rols 0 Number of Time/Area Diagrams 0
Number of Offline Cont.	rols 0 Number of Real Time Controls 0
Synthe	etic Rainfall Details
Rainfall Model	FSR Ratio R 0.300
Region Eng	gland and Wales Cv (Summer) 0.750
M5-60 (mm)	18.000 Cv (Winter) 0.840
Margin for Flood Risk Warr	ning (mm) 300.0
Analysis	Timestep 2.5 Second Increment (Extended)
נים	IS Status ON
 Therti	ia Status ON
Duchil	c (c) Cumpon and Minton
Duration(s) (m	nins) 15, 30, 60, 120, 180, 240, 360
Return Period(s) (ye	ears) 1, 30, 100
Climate Change	e (%) 0, 0, 40
	Water
US/MH Return Clima	ate First (X) First (Y) First (Z) Overflow Level
PN Name Storm Period Chan	ge Surcharge Flood Overflow Act. (m)
8.000 RE 15 Winter 30 -	+0% 53.535
8.001 IC 360 Winter 30	+0% 30/120 Summer 52.901
9.000 RE 15 Winter 30 +	+0% 53.533
8.002 IC 360 Winter 30 +	+0% 1/360 Winter 52.901
8 003 SOAKAWAY 360 Winter 30	+0% 53.415
11.000 RE 360 Winter 30	+0% 100/60 Winter 53.136
11.001 IC 360 Winter 30 +	+0% 1/240 Winter 53.136
12.000 RE 360 Winter 30	+0% 100/60 Winter 53.136
13 000 PP 360 Winter 30	+U3 1/120 Winter 53.136
11.003 SOAKAWAY 360 Winter 30 +	+0% 53.136
14.000 RE 15 Winter 30 +	+0% 100/120 Winter 53.005
14.001 IC 360 Winter 30	+0% 30/120 Summer 52.826

JC Consulting Ltd		Page 16
4 McMillan Close		
Gateshead		<u> </u>
Tyne & Wear NE9 5BF		Micco
Date 22/09/2022 10:55	Designed by aabele	
File PLANNING.MDX	Checked by	Diginarye
XP Solutions	Network 2017.1.1	

<u>30 year Return Period Summary of Critical Results by Maximum Level (Rank 1)</u> <u>for Storm</u>

	US/MH	Surcharged Depth	Flooded Volume	Flow /	Overflow	Pipe Flow		Level
PN	Name	(m)	(m³)	Cap.	(1/s)	(l/s)	Status	Exceeded
8.000	RE	-0.078	0.000	0.11		1.4	FLOOD RISK	
8.001	IC	0.353	0.000	0.01		0.2	SURCHARGED	
9.000	RE	-0.077	0.000	0.12		1.6	FLOOD RISK	
8.002	IC	0.462	0.000	0.03		0.4	SURCHARGED	
10.000	PP	-0.066	0.000	0.25		3.4	OK*	
8.003	SOAKAWAY	-0.943	0.000	0.00		0.0	OK	
11.000	RE	-0.007	0.000	0.02		0.2	FLOOD RISK	
11.001	IC	0.809	0.000	0.01		0.2	FLOOD RISK	
12.000	RE	-0.009	0.000	0.02		0.3	FLOOD RISK	
11.002	IC	0.915	0.000	0.02		0.4	FLOOD RISK	
13.000	PP	-0.042	0.000	0.07		1.0	OK*	
11.003	SOAKAWAY	-0.670	0.000	0.00		0.0	OK	
14.000	RE	-0.078	0.000	0.11		1.4	FLOOD RISK	
14.001	IC	0.370	0.000	0.01		0.2	SURCHARGED	

JC Cor	sulting	Ltd							Page	17
4 McMi	llan Cl	ose								
Gatesh	nead								r.	
Tyne &	Wear	NE9 5BF							Mice	Jun
Date 2	2/09/20	22 10:55		De	esigned	by aak	bele			U
File F	PLANNING	.MDX		Ch	necked l	су			Uldi	nage
XP Sol	utions			Ne	etwork 2	2017.1	. 1			
<u>30 y</u>	ear Retu	urn Perio	d Summa	ry of C	ritical	l Resul	ts by 1	Maximum Le	vel (Ran	<u>k 1)</u>
				<u>f</u>	for Sto	<u>rm</u>				
										Watan
	US/MH		Return	Climate	First	(X)	First ()	() First (Z)	Overflow	Level
PN	Name	Storm	Period	Change	Surch	arge	Flood	Overflow	Act.	(m)
15 000	DF	15 Winton	- 30	±0%	100/120	Wintor				53 007
14.002	RE IC	360 Winter	- 30 - 30	+0% +0%	30/60	Winter				52.826
16.000	PP	15 Winter	30	+0%	100/240	Winter				53.124
14.003	SOAKAWAY	360 Winter	30	+0%						52.826
17.000	RE	15 Winter	30	+0%	100/180	Winter				53.061
17.001	IC	360 Winter	30	+0%	30/360	Winter				52.589
18.000	RE	15 Winter	30	+0%	100/180	Winter				53.058
17.002	IC	360 Winter	: 30	+0%	30/180	Winter				52.589
19.000	PP	15 Winter	<u> </u>	+0%	100/240	Winter				53.142
17.003	SUAKAWAI	15 Winter	: 30 - 20	+0%						52.589
20.000	KE DD	360 Winter	- 30	+03 +02	30/360	Winter				52 773
20.001	TC	360 Winter	- 30	+0%	30/120	Summer				52.774
22.000	RE	15 Winter		+0응	00/120	o unino 1				53.086
20.002	IC	360 Winter	30	+0%	30/60	Winter				52.774
20.003	SOAKAWAY	360 Winter	30	+0%						52.774
		Su	rcharged	Flooded			Pipe			
		US/MH	Depth	Volume	Flow /	Overflo	w Flow		Level	
	PN	Name	(m)	(m³)	Cap.	(l/s)	(l/s)	Status	Exceeded	
	15 000	BE	-0 077	0 000	0 12		16	FLOOD RISK		
	14.002	TC	0.477	0.000	0.02		0.4	SURCHARGED		
	16.000	PP	-0.072	0.000	0.17		2.4	OK*		
	14.003 S	SOAKAWAY	-0.775	0.000	0.00		0.0	OK		
	17.000	RE	-0.077	0.000	0.12		1.5	FLOOD RISK		
	17.001	IC	0.075	0.000	0.02		0.3	SURCHARGED		
	18.000	RE	-0.077	0.000	0.12		1.5	FLOOD RISK		
	17.002	IC	0.182	0.000	0.01		0.5	SURCHARGED		
	17 002 0	PP	-0.072	0.000	0.17		2.3	OK*		
	20 000 2	RF	-1.005	0.000	0.00		1 6	UK Vetg anout		
	21.000	PP NE	0.009	0.000	0.05		1.0 0.7	SURCHARGED*		
	20.001	IC	0.212	0.000	0.06		0.9	SURCHARGED		
	22.000	RE	-0.072	0.000	0.17		2.2	FLOOD RISK		
	20.002	IC	0.314	0.000	0.07		1.2	SURCHARGED		
	20.003 S	SOAKAWAY	-1.053	0.000	0.00		0.0	OK		
			0	1982-20	17 XP	Solutio	ns			
			•	1702 20			,110			

JC Consulting Ltd	Pa	ge 18
4 McMillan Close	Г	
Gateshead		
Tyne & Wear NE9 5BF		Airco
Date 22/09/2022 10:55	Designed by aabele	
File PLANNING.MDX	Checked by	rainage
XP Solutions	Network 2017.1.1	
100 year Return Period Summary o	of Critical Results by Maximum Level	(Rank 1)
	<u>for Storm</u>	
Areal Reduction Factor	<u>mulation Criteria</u> 1 000 Additional Flow - % of Total Flow 0	000
Hot Start (mins)	0 MADD Factor * 10m ³ /ha Storage 2	.000
Hot Start Level (mm)	0 Inlet Coefficient 0	.800
Manhole Headloss Coeff (Global)	0.500 Flow per Person per Day (l/per/day) 0	.000
Foul Sewage per hectare (1/s)	0.000	
Number of Input Hydrogr	aphs 0 Number of Storage Structures 10	
Number of Online Cont	rols 0 Number of Time/Area Diagrams 0	
Number of Offline Cont	rols 0 Number of Real Time Controls 0	
Synthe	etic Rainfall Details	
Rainfall Model	FSR Ratio R 0.300	
Region Eng	gland and Wales Cv (Summer) 0.750	
M5-60 (mm)	18.000 Cv (Winter) 0.840	
Margin for Flood Risk Warr	ning (mm) 300.0	
Analysis	Timestep 2.5 Second Increment (Extended)	
D	IS Status ON	
Dī Taparta	/D Status ON	
INCLU		
Profil Duration(s) (m	e(s) Summer and Winter	
Return Period(s) (ye	ars) 1, 30, 100	
Climate Change	(%) 0, 0, 40	
		Water
US/MH Return Clima	ate First (X) First (Y) First (Z) Overf	low Level
PN Name Storm Period Chan	ge Surcharge Flood Overflow Act	z. (m)
8 000 RE 15 Winter 100 +/	40%	53 543
8.001 IC 360 Winter 100 +4	40% 30/120 Summer	53.455
9.000 RE 15 Winter 100 +4	40%	53.542
8.002 IC 360 Winter 100 +4	40% 1/360 Winter	53.455
LU.UUU PP 360 Winter 100 +4	4U% 10%	53.455
11.000 RE 360 Winter 100 +4	40% 100/60 Winter	53.291
11.001 IC 360 Winter 100 +4	40% 1/240 Winter	53.297
12.000 RE 360 Winter 100 +4	40% 100/60 Winter	53.292
III.002 IC 360 Winter 100 +4 13.000 PP 360 Winter 100 +4	40% 1/120 Winter 40% 100/120 Winter	53.298
11.003 SOAKAWAY 360 Winter 100 +4	40%	53.299
14 000 DE 200 Minter 100	40% 100/120 Winter	53.256
14.000 RE 360 Winter 100 +4		
14.000 RE 360 Winter 100 +4 14.001 IC 360 Winter 100 +4	40% 30/120 Summer	53.256

JC Consulting Ltd		Page 19
4 McMillan Close		
Gateshead		<u> </u>
Tyne & Wear NE9 5BF		Micco
Date 22/09/2022 10:55	Designed by aabele	
File PLANNING.MDX	Checked by	Diamaye
XP Solutions	Network 2017.1.1	

100 year Return Period Summary of Critical Results by Maximum Level (Rank 1) for Storm

	US/MH	Surcharged Depth	Flooded Volume	Flow /	Overflow	Pipe Flow		Level
PN	Name	(m)	(m³)	Cap.	(1/s)	(1/s)	Status	Exceeded
8.000	RE	-0.070	0.000	0.19		2.5	FLOOD RISK	
8.001	IC	0.907	0.000	0.02		0.4	FLOOD RISK	
9.000	RE	-0.068	0.000	0.22		2.9	FLOOD RISK	
8.002	IC	1.016	0.000	0.05		0.8	FLOOD RISK	
10.000	PP	-0.026	0.000	0.10		1.4	OK*	
8.003	SOAKAWAY	-0.389	0.000	0.00		0.0	OK	
11.000	RE	0.148	0.000	0.03		0.4	FLOOD RISK	
11.001	IC	0.969	0.000	0.03		0.4	FLOOD RISK	
12.000	RE	0.147	0.000	0.04		0.5	FLOOD RISK	
11.002	IC	1.076	0.000	0.05		0.9	FLOOD RISK	
13.000	PP	0.111	0.000	0.13		1.7	SURCHARGED*	
11.003	SOAKAWAY	-0.507	0.000	0.00		0.0	OK	
14.000	RE	0.173	0.000	0.03		0.4	FLOOD RISK	
14.001	IC	0.800	0.000	0.02		0.3	FLOOD RISK	

JC Cor	sulting	Ltd							Page 2	20
4 McMi	4 McMillan Close									
Gateshead									4	_
Tyne & Wear NE9 5BF									Micc	Jun
Date 22/09/2022 10:55				De	esigned	by aal	pele			
File F	PLANNING	.MDX		Cł	necked }	ру			Didi	laye
XP Sol	utions			Ne	etwork 2	2017.1	.1			
<u>100 v</u>	year Ret	urn Per	iod Summa	ary of	Critica	l Resu	lts by	Maximum Le	evel (Rar	<u>nk 1)</u>
				<u>1</u>	for Stor	<u>rm</u>				
										Water
	US/MH		Return	Climate	First	(X)	First (Y) First (Z)	Overflow	Level
PN	Name	Storm	Period	Change	Surch	arge	Flood	Overflow	Act.	(m)
15.000	RF.	360 Wint	ter 100	+40%	100/120	Winter				53,256
14.002	IC	360 Wint	ter 100	+40%	30/60	Winter				53.256
16.000	PP	360 Wint	ter 100	+40%	100/240	Winter				53.255
14.003	SOAKAWAY	360 Wint	ter 100	+40%	100 /					53.256
17.000	RE	360 Wint	ter 100	+40%	100/180	Winter				53.270
	IC DE	360 Wint	ter 100	+40% +40%	30/360	Winter				53.273
17.002	IC	360 Wint	ter 100	+40%	30/180	Winter				53.273
19.000	PP	360 Wint	ter 100	+40%	100/240	Winter				53.270
17.003	SOAKAWAY	360 Wint	ter 100	+40%						53.274
20.000	RE	15 Wint	ter 100	+40%						53.089
21.000	PP	360 Wint	ter 100	+40%	30/360	Winter				52.951
20.001	IC PF	15 Wint	ter 100	+40% +40%	30/120	Summer				52.951
20.002	IC	360 Wint	ter 100	+40%	30/60	Winter				52.951
20.003	SOAKAWAY	360 Wint	ter 100	+40%						52.951
			Surcharged	Flooded	L		Pipe			
		US/MH	Depth	Volume	Flow /	Overflo	w Flow		Level	
	PN	Name	(m)	(m³)	Cap.	(1/s)	(1/s)	Status	Exceeded	
	15 000	RE	0 172	0 000	0 04		0 5	FLOOD BISK		
	14.002	IC	0.906	0.000	0.03		0.8	FLOOD RISK		
	16.000	PP	0.059	0.000	0.06		0.9	SURCHARGED*		
	14.003 S	OAKAWAY	-0.345	0.000	0.00		0.0	OK		
	17.000	RE	0.132	0.000	0.04		0.5	FLOOD RISK		
	18 000	IC	0.759	0.000	0.03		0.4	FLOOD RISK		
	17.002	TC	0.866	0.000	0.04		0.8	FLOOD RISK		
	19.000	PP	0.056	0.000	0.06		0.8	SURCHARGED*		
	17.003 S	OAKAWAY	-0.320	0.000	0.00		0.0	OK		
	20.000	RE	-0.068	0.000	0.22		2.9	FLOOD RISK		
	21.000	PP 	0.187	0.000	0.09		1.1	FLOOD RISK*		
	20.001 22 000	בת שב	0.389	0.000	0.09		1.4 / 1	SUKCHARGED		
	20.002	IC	0.491	0.000	0.12		2.0	SURCHARGED		
	20.003 S	OAKAWAY	-0.876	0.000	0.00		0.0	OK		
			©	1982-20)17 XP S	Soluti	ons			
-										

APPENDIX E

DRAINAGE MAINTENANCE SCHEDULE

1 DRAINAGE MAINTENANCE SCHEDULE

Maintenance of all drainage features not adopted by the local water authority will be the responsibility of the Landowner. The works will need to be carried out by a competent contractor.

1.1 PERVIOUS PAVEMENTS MAINTENANCE SCHEDULE

Maintenance Schedule	REQUIRED ACTION	TYPICAL FREQUENCY		
Regular Maintenance	Brushing and vacuuming (standard cosmetic sweep over whole surface)	Once a year, after autumn leaf fall, or reduced frequent as required, based on site-specific observations of clogging or manufacturer's recommendations – paying particular attention to areas where water runs onto permeable surfacing from adjacent impermeable areas as this is the most likely to collect the most sediment		
Occasional Maintenance	Stabilise and mow contributing and adjacent areas	As Required		
	Removal of weeds or management using glyphospate applied directly into the weeds by an applicator rather than spraying	As Required – once per year on less frequently used pavements		
Remedial Actions	Remediate and landscaping which, through vegetation maintenance or soil slip, which has been raised to within 50mm of the level of the paving	As Required		
	Remedial work to any depressions, rutting and cracked or broken blocks considered detrimental to the structural performance or a hazard to users, and replacing lost jointing material.	As Required		
	Rehabilitation of surface and upper substructure by remedial sweeping	Every 10 to 15 years or as required (if infiltration performance is reduced due to significant clogging)		
Monitoring	Initial inspection	Monthly for 3 months after installation		
	Inspect for evidence of poor operation and/or weed growth – if required, take remedial action	Three monthly, 48 hours after large storms in first 6 months		
	Inspect silt accumulation rates and establish appropriate brushing frequencies	Annually		
	Monitor inspection chamber	Annually		

As required by CDM 2015 designs have been produced to ensure that all maintenance risks have been identified, eliminated, reduced and/ or controlled where appropriate.

Any manufacturer specific maintenance requirements are to be included as part of the site health and safety file.

1 DRAINAGE MAINTENANCE SCHEDULE

Maintenance of all drainage features not adopted by the local water authority will be the responsibility of the Landowner. The works will need to be carried out by a competent contractor.

1.1 SOAKAWAYS MAINTENANCE SCHEDULE

Maintenance Schedule	REQUIRED ACTION	Typical Frequency	
Regular Maintenance	Inspect for sediment and debris in pre-treatment components and floor of inspection tube or chamber and inside of concrete manhole rings	Annually	
	Cleaning of gutters and any filters on downpipes	Annually (or as required based on inspections)	
	trimming any roots that may be causing blockages	Annually (or as required)	
Occasional Maintenance	Remove sediment and debris from pre-treatment components and floor of inspection tube or chamber and inside of concrete manhole rings	As required, based on inspections	
Remedial Actions	Reconstruct soakaway and⊡or replace or clean void fill, if performance deteriorates or failure occurs	As Required	
	Replacement of clogged geotextile (will require reconstruction of soakaway)	As Required	
Monitoring	Inspect silt traps and note rate of sediment accumulation	Monthly in the first year and then annually	
	Check soakaway to ensure emptying is occurring	Annually	

As required by CDM 2015 designs have been produced to ensure that all maintenance risks have been identified, eliminated, reduced and/ or controlled where appropriate.

Any manufacturer specific maintenance requirements are to be included as part of the site health and safety file.