

Energy Statement

Development: 1 new dwelling Site address: Woodrising, Bleadon, BS24 0AA

Local Authority: North Somerset Council Policy: Core Strategy CS2 – 10% of predicted energy to be from renewables

Report reference: BA-30

Date: 10th February 2023

Core Strategy CS2

Living within environmental limits

CS2: Delivering sustainable design and construction

New development both residential (including conversions) and non-residential should demonstrate a commitment to sustainable design and construction, increasing energy efficiency through design, and prioritising the use of sustainable low or zero carbon forms of renewable energy generation in order to increase the sustainability of the building stock across North Somerset.

The greatest potential for energy saving opportunities is likely to be at larger scale developments particularly at the Weston Villages and Weston town centre. In addition these areas are expected to demonstrate exemplar environmental standards contributing to the objectives of Policy CS1, and adding value to the local economy.

When considering proposals for development the council will:

- require designs that are energy efficient and designed to reduce their energy demands;
- 2) require the use of on-site renewable energy sources or by linking with/contributing to available local off-site renewable energy sources to meet a minimum of 10% of predicted energy use for residential development proposals involving one to nine dwellings, and 15% for 10 or more dwellings; and 10% for non-residential developments over 500m² and 15% for 1000m² and above;

Source: <u>https://www.n-somerset.gov.uk/sites/default/files/2020-07/core%20strategy.pdf</u> (Page 26).

Introduction

Therm Energy Ltd has been instructed to produce an Energy Statement for a proposed development at the above site. North Somerset Council requires an Energy Statement to be submitted to address the above planning condition.

SAP energy calculations have been prepared to determine the Baseline energy requirements based on the dwelling satisfying Building Regulation Part L1A (2021) Standards.

The Development

The residential development comprises of 1 detached house. See SAP reports for details.

Energy Efficiency Measures

This Development will benefit from energy efficiency measures to reduce the energy consumption and CO_2 emissions over and above those required to comply with Building Regulations Part L1A. The following section gives a breakdown of the improved fabric standards/detailing being adopted and highlights the additional energy efficiency measures which are being implemented at this development.

Element	Area weighted limiting U-Values AD Part L 2021	Proposed Specification
External Walls	0.26 W/m²K	0.16W/m²K
Ground Floor	0.18 W/m²K	0.16W/m²K
Roof Insulation	0.16 W/m²K	0.16W/m²K
Windows	1.4W/m²K	1.2W/m²K
Doors	1.4W/m²K	1.4W/m²K
Y-Value	0.15 W/m²K	0.04W/m²K
Air Permeability	8m³/h.m² at 50 pa	5m³/h.m² at 50 pa

Table 1 - Fabric Specification

Table 1 details the limiting values for fabric insulation set out in Approved Document L1A 2021 and the proposed specification values for the new residential units on this site. The proposed specification incorporates fabric standards that exceed Part L1A Building Regulations minimum requirements.

10% of predicted energy from onsite renewable energy

Energy	Predicted energy use BASE	Dwelling energy use ACTUAL	Percentage of energy from renewables							
Energy	10726 kWh/year	7579 kWh/year	10726 – 7579 = 3147							
demand 3147/10726 = 0.29 x 100 = 29										
The >10%	The >10% of predicted energy from onsite renewable energy is achieved through the installation of									

an ASHP (air source heat pump).

Design

Energy & CO2 Emissions

> Fabric insulation standards (including glazing), and airtightness, will meet or exceed current (2021) Building Regulations Part L standards.

- > Attention to be paid to minimize thermal bridging and air leakage at junctions.
- > 100% of new internal fixed lighting and external lighting will be low energy.
- > Advanced heating controls
- > Where supplied, white goods will be energy efficient (A+ or A rated).

Materials

> Consideration will be given to using materials and construction that have a low environmental impact, such as those achieving an A+ or A rated under BRE's Green Guide.

> Where possible, materials will be chosen that are responsibly sourced (such as FSC timber), recycled or reclaimed.

> All insulation materials will have a GWP (Global Warming Potential) of 5 or less.

Water Use

> Indoor water use will be restricted by use of fittings with lower flow rates, baths with smaller capacity (if applicable), dual-flush toilets, and (where applicable) washing machines and dishwashers with low water usage.

Surface Water & Flood Risk

> Where possible, Sustainable Drainage Systems will be used to avoid, reduce, and delay the discharge of rain-fall run-off to public watercourses and sewers.

> Measures are to be undertaken to reduce the risk of flooding where developments are in medium or high-risk flood zones.

Waste

> Construction site waste is to be minimized (diverted from landfill) by re-using materials on site (or to/from other sites), returning to the supplier where possible/practical recovery/recycling, and composting.
> Hazardous waste will be avoided (or minimized where unavoidable).

> If available, the kitchen design will incorporate fixed bin(s) in the kitchen cupboards to encourage recycling.

Health & Wellbeing

> Key rooms have reasonably good levels of daylighting, and décor will enhance this (the need for artificial lighting will also be reduced).

> Sound insulation (between dwelling and adjoining buildings, where applicable), and within the dwelling, will meet or exceed current Building Regulation standards.

> To ensure the dwelling is usable/adaptable for all potential existing and future owners or occupiers, as many as possible/practical of the 16 no Lifetime Homes criteria will be incorporated into the design and construction of the dwelling.

Management

> Guidance will be provided to the end owner/occupier of the dwelling, providing information on the correct and efficient use of their home.

> Security measures will be incorporated into the design and construction of the dwelling.

Lighting

Lighting will be improved above and beyond the current Building Regulations Part L minimum standards of 100% low energy fittings.

Heating

Main Heating: ASHP (Air Source Heat Pump).

Heating Controls

Heating controls will meet current Building Regulations Part L1A minimum standards. Fully independent time and temperature zone controls (note: separate plumbing circuits required, either with its own programmer, or separate channels in the same programmer).

Using on-site low or zero carbon renewable technology

To meet the Core Strategy CS2 '10% of predicted energy from renewables', the introduction of low and zero carbon (LZC) generation technologies has been investigated following the assessment of the building efficiency and fabric improvements detailed above. The table below gives a summary of the suitability of different low carbon and renewable energy technologies at the site ranked 1 (most suitable) to 7 (least suitable).

Technology	Feasibility	Rank
Air Source Heat Pumps (ASHP)	ASHP is an alternative renewable technology. This technology is suited to this Development as it meets the required reduction in carbon emissions.	1
Photovoltaic (PV) Panels	The dwelling should have a sufficiently large roof areas able to accommodate the installation of solar photovoltaic panels. The introduction of the Feed in Tariff (FIT) in 2010 has resulted in a significant reduction in the capital cost of the installation of PV systems, although tariff subsidies have since been reduced. Either roof mounted or building integrated systems (solar slates) can be used. The panels should be installed to face South or East.	2
Solar Thermal Hot Water (SHW)	Solar thermal hot water systems are a proven and mature technology in the UK and well suited to year-round domestic demand for hot water. Systems are restricted to only meeting a proportion of domestic hot water demand (typically in the region of 60%). This does limit the technologies' ability to achieve high levels of emission reduction. However, it is envisaged that this technology alone will not be sufficient to meet the 40% reduction in carbon emissions.	3
Ground Source Heat Pumps (GSHP)	Subject to investigation, a ground source heating systems could be considered at the site. This would involve horizontal ground loop collectors installed in the garden or alternatively vertical boreholes would be required. Spatial restrictions and any existing or future below ground constraints such as buried services and sewerage infrastructure could constrain deployment. Systems can be very expensive particularly vertical boreholes. In practice we feel that a GSHP is not ideally suited to a development of this scale.	4
Combined Heat and Power (CHP) and CHP District Heating	Although natural gas CHP or cogeneration is an efficient method of generating and utilising electricity and heat, the increased thermal efficiency due to fabric efficiency of new homes prohibits the application of domestic Micro-CHP systems such as the Baxi Whispergen. This development would call into question the viability of district heating and the effective operation of any communal CHP engine.	5
Wind Turbines	The wind speed at the site is estimated at 4.6m/s at 10m above ground level through to 6.1m/s at 45m above ground level, which is relatively modest and not conducive to a very high energy yield. Further, the associated landscape and visual impact implication, given the site's location, would restrict the inclusion of larger scale wind turbines (>1MWe).	6
Biomass Heating	It may not be practical or technically feasible to install biomass wood pellet boilers or stoves with supplementary heating. However, this would hinge on a local biomass fuel supply source being available to the site and appropriate storage for the pellets including automatic feed to the boiler.	7

Proposed Strategy

Based on the above findings it recommended that an ASHP (Air Source Heat Pump) is installed. A high fabric efficient specification is also recommended. The above u-values and specification will need to be followed to meet the planning condition.

Conclusions

This Energy Statement has been prepared to demonstrate compliance with the Core Strategy CS2 '10% of predicted energy from renewables.'

The dwelling is to be designed to high levels of fabric insulation and air tightness, in line with current requirements (Part L 2021) to reduce energy use and CO2 emissions through the installation of renewable sources of energy.

This Energy Statement describes how the Development proposes to meet the Planning Condition using good levels of fabric insulation and ASHPs. This Energy Statement shows the summary data derived from SAP energy calculations to support compliance with the Planning Condition.

Dwelling Reference:

Dwelling Type:

Woodrising Hillside Road WESTON-SUPER-MARE BS24 0AA

1. Overall dwelling dimensions

	Area(m²)	Av. Height(m)		Volume(m ³)	
Ground Floor	127.7 (1	a) x 2.4	(2a) =	306.48	(3a)
First Floor	115 (11) x 2.7	(2b) =	310.5	(3b)
2nd Floor	98.9 (10	c) x 3	(2c) =	296.7	(3c)
Total floor area TFA			. ,	341.6	(4)
Dwelling volume				913.68	(5)

BA-30

New Dwelling Design Stage

2. Ventilation Rate

Chimneys/Flues	0	x 80 =		0	(6a)
Open chimneys	0	x 20 =		0	(6b)
Chimneys / flues attached to closed fire	0	x 10 =		0	(6c)
Flues attached to solid fuel boiler	0	x 20 =		0	(6d)
Flues attached to other heater	0	x 35 =		0	(6e)
Number of blocked chimneys	0	x 20 =		0	(6f)
Number of intermittent extract fans	4	x 10 =		40	(7a)
Number of passive vents	0	x 10 =		0	(7b)
Number of flueless gas fires	0	x 40 =		0	(7c)
	-	Air changes per	[.] hour		(1-1)
Number of storeys in the dwelling (ns)			0.04	0.04	(8)
Infiltration due to chimneys, flues, fans, PSVs, etc			0	0	(9)
Additional infiltration			0	0	(10)
Structural infiltration			0	0	(11)
Suspended wooden ground floor			0	0	(12)
No draught lobby			0	0	(13)
Percentage of windows and doors draught proofed			0	0	(14)
Window infiltration			0	0	(15)
Infiltration rate			0	0	(16)
Air permeability value, AP50, (m ³ /h/m ²)			5	5	(17)
Air permeability value, AP4, (m ³ /h/m ²)			0	0	(17a)
Air permeability value)			0.29	0.29	(18)
Number of sides on which dwelling is sheltered			0	0	(19)

Shelter fa	actor												1	(20)
Infiltratio	on rate in	corporati	ing shelte	er factor									0.29	(21)
Infiltratio	on rate m	odified fo	or month	ly wind sp	beed									
	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Total	(22)
Monthly	average	wind spe	ed from T	Table U2										
Wind Fac	5.1 ctor	5	4.9	4.4	4.3	3.8	3.8	3.7	4	4.3	4.5	4.7	52.5	(22)
Adjusted	1.28 infiltratio	1.25 on rate (a	1.23 allowing f	1.1 or shelter	1.08 r and wir	0.95 nd speed)	0.95	0.93	1	1.08	1.13	1.18	13.13	(22a)
Calculate	0.37 e effective	0.37 e air char	0.36 nge rate f	0.32 or the app	0.32 olicable d	0.28 case:	0.28	0.27	0.29	0.32	0.33	0.35	3.86	(22b)
													0 0	(23a) (23b)
a) If bala	nced med	chanical v	ventilatio	n with he	at recove	ery (MVH	R)						0	(23C)
b) If bala	0 nced med	0 chanical v	0 ventilatio	0 n without	0 t heat ree	0 covery (N	0 1∨)	0	0	0	0	0		(24a)
c) If who	0 le house (0 extract ve	0 entilation	0 or positi	0 ve input	0 ventilatio	0 on from c	0 outside	0	0	0	0		(24b)
d) lf natu	0 Iral ventil	0 ation or v	0 whole ho	0 use positi	0 ive input	0 ventilati	0 on from l	0 oft	0	0	0	0		(24c)
Effective	0.57 air chang	0.57 ge rate	0.56	0.55	0.55	0.54	0.54	0.54	0.54	0.55	0.55	0.56		(24d)
Effective	0.57 air chang	0.57 ge rate fr	0.56 om PCDB	0.55 :	0.55	0.54	0.54	0.54	0.54	0.55	0.55	0.56		(25)
	0.57	0.57	0.56	0.55	0.55	0.54	0.54	0.54	0.54	0.55	0.55	0.56		(25)

3. Heat losses and heat loss parameter

Items in the tab	ole below are	e to be expanded as	necessary to allow	v for all different t	ypes of element	e.g. 4 wall types. T	ne k -value
	-	- ·					

ELEMENT	Gross	Openings	Net Area	U-value	AXU	k-value		AXk
Solid door	area (m²)	m²	A ,m²	W/m2K	(W/K)	kJ/m²∙K	2.1	kJ/K ₍₂₆₎
Semi-glazed door							2.1	(26a)
Window							44.3	(27)
Roof window							7.6	(27a)
Basement floor				0			0	(28)
Ground floor				9577.5			16.6	(28a)
Exposed floor				0			0	(28b)
Basement wall				0			0	(29)
External wall				17259.09			52.27	(29a)

Roof							1315.08	3				16.07	(30)
Total area of exte	ernal elem	nents ∑A,	m²									610.38	(31)
Party Wall												0	(32)
Party floor												0	(32a)
Party ceiling												0	(32b)
Internal wall **												0	(33c)
Internal floor												0	(32d)
Internal ceiling fl	oor											0	(32e)
Fabric heat loss,	W/K = ∑ (A	A x U)										138.95	(33)
Heat capacity Cm	n = Σ(A x k)										28151.67	(34)
Thermal mass pa	rameter (TMP = Cr	n ÷ TFA)	in kJ/m²K								250	(35)
Linear Thermal b	ridges:∑((L x Ψ) ca	lculated	using App	endix K							30.52	(36)
Point Thermal br	idges: ∑χ ((W/K) if s	ignificant	t point th	ermal bri	idge pres	ent and v	alues ava	ailable			30.52	(36a)
Total fabric heat	loss H = ∑	(A × U) +	Σ(L×Ψ)	+∑χ								169.47	(37)
Ventilation heat	loss calcul	lated mo	nthly										(-)
171.91 Heat transfer coe	171.09 efficient, V	170.28 V/K	166.5	165.79	162.5	162.5	161.89	163.77	165.79	167.22	168.72		(38)
341.37 Heat loss parame	340.55 eter (HLP),	339.75 . W/m²K	335.97	335.26	331.97	331.97	331.36	333.23	335.26	336.69	338.19		(39)
1	1	0 99	0 98	0 98	0 97	0 97	0 97	0 98	0 98	0 99	0 99		(40)
Number of days	in month ((Table 1a)	0.90	0.57	0.57	0.57	0.90	0.50	0.55	0.55		()
31	28	31	30	31	30	31	31	30	31	30	31		(41)
4. Water hea	ting ener	gy requi	rement										
Assumed occupa	ncy, N											3.19	(42)
Hot water usage	in litres p	er day fo	r mixer sl	nowers, V	d,showe	r (from A	ppendix	1)					
77.64 Hot water usage	76.47 in litres pe	74.77 er day fo	71.52 r baths, V	69.12 /d,bath (f	66.44 rom App	64.92 endix J)	66.61	68.46	71.33	74.65	77.34		(42a)
33.51 Hot water usage	33.01 in litres pe	32.31 er day fo	31.02 r other us	30.05 ses, Vd,ot	28.98 her (fror:	28.4 n Append	29.1 dix J)	29.85	31	32.32	33.4		(42b)
47.26 Annual average h	45.54 not water	43.82 usage in	42.1 litres per	40.38 day Vd,a	38.67 verage (f	38.67 From App	40.38 endix J)	42.1	43.82	45.54	47.26	145 82	(42c) (43)
Hot water usage	in litres po	er day fo	r each mo	onth Vd,n	n = (42a)	+ (42b) +	· (42c)					143.02	(43)
159./1	155.02	, 150.0	111 61	120 55	12/ 00	121 02	126.00	140 41	1/6 15	152 51	150	17/7 76	(44)
Energy content o	of hot wate	er used =	4.18 x V	139.33 d,m x nm	x DTm /	3600 kW	h/month	(from Ap	ppendix J)	120	1/4/./0	(44)
250.88 Distribution loss	220.75 (46) = 0.1	231.94 5 x (45)	198.01	187.87	164.87	159.62	168.5	173.14	198.33	217.28	247.38	2418.58	(45)
37.63 Storage volume (33.11 (litres) incl	34.79 luding an	29.7 y solar oi	28.18 r WWHRS	24.73 storage	23.94 within sa	25.28 me vesse	25.97 el	29.75	32.59	37.11	0	(46) (47)

Water storage loss (or HIU loss)

a) If manufacturer's declared loss factor is known (kWh/day):	1.65	(48)										
emperature factor from Table 2b 0.54												
Energy lost from water storage, kWh/day (48) x (49) =	0.89	(50)										
) If manufacturer's declared loss factor is not known :												
Hot water storage loss factor from Table 2 (kWh/litre/day)0												
Volume factor from Table 2a	0	(52)										
Temperature factor from Table 2b	0	(53)										
Energy lost from water storage, kWh/day	0	(54)										
Enter (50) or (54) in (55)	0.89	(55)										
Water storage (or HIU) loss calculated for each month (56) = (55) \times (41)												
27.66 24.99 27.66 26.77 27.66 26.77 27.66 26.77 27.66 26.77 27.66 26.77 27.66 If the vessel contains dedicated solar storage or dedicated WWHRS storage,		(56)										
(57)m = (56)m ☑ [(47) – Vs] ÷ (47), else (57)m = (56)m												
where Vs is Vww from Appendix G3 or (H12) from Appendix H (as applicable).												
27.66 24.99 27.66 26.77 27.66 26.77 27.66 27.66 26.77 27.66 26.77 27.66 Primary circuit loss for each month from Table 3		(57)										
modified by factor from Table H4 if there is solar water heating and a cylinder thermostat, although not for DHW-only	heat netwo	rks)										
23.26 21.01 23.26 22.51 23.26 22.51 23.26 23.26 23.26 22.51 23.26 22.51 23.26 Combi loss for each month from Table 3a, 3b or 3c (enter 0 if not a combi boiler)		(59)										
		(61)										
Total heat required for water heating calculated for each month $(62) = 0.85 \times (45) + (46) + (57) + (59) + (61)$. ,										
301.8 266.75 282.86 247.29 238.79 214.16 210.55 219.43 222.43 249.25 266.57 298.31 CWWHRS DHW input calculated using Appendix G (negative quantity) (enter 0 if no WWHRS contribution to water her	3018.19 ating)	(62)										
35.49 31.39 32.87 27.22 25.37 21.71 20.35 21.64 22.46 26.48 29.99 34.84 PV diverter DHW input calculated using Appendix G (negative quantity) (enter 0 if no PV diverter contribution)		(63a)										
		(63h)										
Solar DHW input calculated using Appendix H (negative quantity) (enter 0 if no solar contribution to water heating)		(055)										
		(63c)										
FGHRS DHW input calculated using Appendix G (negative quantity) (enter 0 if no FGHRS contribution to water heating))	(000)										
0 0 0 0 0 0 0 0 0 0		(63d)										
Output from water heater for each month, kWh/month (64) = (62) + (63a) + (63b) + (63c) + (63d)												
266.31 235.36 249.99 220.07 213.43 192.45 190.2 197.79 199.97 222.78 236.57 263.47 Output from water heater for each month, kWh/month (64) = (62) + (63a) + (63b) + (63c) + (63d)	2688.4	(64)										
0 0 0 0 0 0 0 0 0 0		(64a)										
Heat gains from water heating, kWh/month 0.25 x [0.85 × (45) + (61) + (64a)] + 0.8 x [(46) + (57) + (59)]		. ,										
124.16 110.2 117.86 105.26 103.21 94.25 93.82 96.77 97 106.69 111.67 123 include (57) m in calculation of (65) m only if hot water store is in the dwelling or hot water is from heat network		(65)										

5. Internal gains (see Tables 5 and 5a)

Metabolic gains (Table 5), watts													
	159.3	159.3	159.3	159.3	159.3	159.3	159.3	159.3	159.3	159.3	159.3	159.3	(66)

Lighting gains (calculated in Appendix L, equation L12 or L12a), also see Table 5

Appliance	269.13 es gains (297.96 calculate	269.13 d in Appe	278.1 endix L, e	269.13 quation L	278.1 .16 or L16	269.13 5a), also s	269.13 see Table	278.1 5	269.13	278.1	269.13	(67)
Cooking §	491.14 gains (cal	496.24 culated in	483.39 n Append	456.05 lix L, equa	421.54 ation L18	389.1 or L18a)	367.43 , also see	362.34 Table 5	375.18	402.52	437.03	469.47	(68)
Pumps ar	38.93 nd fans ga	38.93 ains (Tabl	38.93 le 5a)	38.93	38.93	38.93	38.93	38.93	38.93	38.93	38.93	38.93	(69)
Losses e.	3 g. evapor	3 ation (ne	3 gative va	3 Ilues) (Ta	3 ble 5	0	0	0	0	3	3	3	(70)
Water he	-127.44 ating gai	-127.44 ns (Table	-127.44 5)	-127.44	-127.44	-127.44	-127.44	-127.44	-127.44	-127.44	-127.44	-127.44	(71)
Total inte	166.88 ernal gain	163.99 s	158.41	146.2	138.72	130.9	126.1	130.06	134.72	143.39	155.1	165.32	(72)
	1000.94	1031.98	984.72	954.14	903.18	868.89	833.45	832.32	858.78	888.83	944.02	977.71	(73)

6. Solar gains

Solar gains in watts, calculated for each month											
550.05 930.36 1255.81 1527.78 1685.86 1662.61 1607.53 1491.22 1350.22 1023.59 657.62 471.51	(83)										
	(04)										
1550.98 1962.33 2240.53 2481.92 2589.04 2531.49 2440.97 2323.53 2209 1912.42 1601.65 1449.21	(84)										

7. Me	ean inter	mal tem	perature	e (heatin	ıg seasoı	n)								
Tempera	ature dur on factor	ing heati for gains	ng perioo for living	ds in the l	living are	a from Ta Table 9a)	able 9, Th	1 (°C)					21	(85)
Mean in	1 ternal te	1 mperatur	0.99 re in livin	0.98 g area T1	0.92 . (follow s	0.77 steps 3 ai	0.59 nd 4 in Ta	0.63 ble 9c)	0.87	0.99	1	1		(86)
Tempera	19.66 ature dur	19.86 ing heati	20.13 ng period	20.47 Is in rest	20.76 of dwelli	20.94 ng from ⁻	20.99 Table 9, T	20.98 h2 (°C)	20.88	20.48	20	19.63		(87)
Roof	20.08	20.09	20.09	20.1	20.1 Utilisatio	20.11 n factor f	20.11 or gains f	20.11 for rest o	20.1 f dwelling	20.1 g, ⊡2,m (s	20.1 ee Table	20.09 9a)		(88)
Roof	1	1	0.99	0.97	0.88 Me	0.69 ean inter	0.47 nal temp	0.52 erature ir	0.81 n the rest	0.98 of dwell	1 ing T2	1		(89)
Living ar	18.49 ea fractio	18.75 on	19.1	19.53	19.88	20.07	20.1	20.1	20.01	19.55	18.94	18.46	0.08	(90) (91)
Mean in	ternal te	mperatur	re (for the	e whole o	dwelling)									
Adjusted	18.59 d mean ir	18.85 nternal te	19.18 mperatu	19.61 re:	19.95	20.14	20.18	20.18	20.09	19.63	19.03	18.56		(92)
	18.59	18.85	19.18	19.61	19.95	20.14	20.18	20.18	20.09	19.63	19.03	18.56		(93)

8. Space heating requirement

Utilisation factor for gains,

Useful ga	1 ins, mGm	1 , W	0.99	0.96	0.88	0.69	0.48	0.53	0.81	0.97	1	1		(94)
Monthly	1549.32 average e	1954.47 external t	2213.54 emperat	2381.14 ure from	2273.08 Table U1	1750.09	1178.29	1235.08	1778.37	1859.05	1596.53	1448.15		(95)
Heat loss	4.3 rate for i	4.9 nean inte	6.5 ernal tem	8.9 perature	11.7	14.6	16.6	16.4	14.1	10.6	7.1	4.2		(96)
Space hea	4879.51 ating req	4750.19 uirement	4308.98 for each	3598.32 month	2767.55	1840.58	1187.97	1251.56	1994.74	3027.86	4017.6	4857.24		(97)
Solar spa	2477.66 ce heatin	1878.73 g calculat	1559 ted using	876.37 Appendi	367.89 x H (nega	0 ative qua	0 ntity)	0	0	869.6	1743.17	2536.36		(98a)
Space hea	0 ating req	0 uirement	0 for each	0 month a	0 fter solar	0 contribu	0 Ition	0	0	0	0	0		(98b)
Space hea	2477.66 ating req	1878.73 uirement	1559 in kWh/	876.37 m²/year	367.89	0	0	0	0	869.6	1743.17	2536.36	36.03	(98c) (99)

8c. S	pace C	ooling re	quireme	int					_					
Heat los	ss rate,													
Utilisati	0 on fact	0 or for loss	0	0	0	0	0	0	0	0	0	0		(100)
Useful l	0 oss, mL	0 .m (watts)	0	0	0	0	0	0	0	0	0	0		(101)
Gains	0	0	0	0	0	0	0	0	0	0	0	0		(102)
Space c	0 ooling r	0 equireme	0 ent for mo	0 onth, who	0 le dwel	0 ling, conti	0 inuous (k	0 (Wh)	0	0	0	0		(103) (104)
Cooled Intermi [:]	0 fractior ttency f	0 1 actor	0	0	0	0	0	0	0	0	0	0	0	(104) (105)
Space c	0 ooling r	0 equireme	0 ent for mo	0 onth	0	0	0	0	0	0	0	0	0	(106)
Space c	0 ooling r	0 equireme	0 ent in kWł	0 h/m²/year	0	0	0	0	0	0	0	0	0	(107) (108)
8f. S	pace he	eating re	quireme	nt										

Fabric Energy Efficiency,

9a. Energy requirements - Individual heating systems including micro-CHP

0

(109)

TER WORKSHEET

0

Fraction	of space h	neat fron	n seconda	ary/supp	lementar	y system	,		0					0	(201)
Fraction of space heat from main system(s),												1	(202)		
Fraction	of main h	eating fr	om main	system 2	<u>2,</u>									0	(203)
Fraction	of total sp	bace hea	t from m	ain syste	m 1,									1	(204)
Fraction	of total sp	bace hea	t from m	ain syste	m 2,									0	(205)
Efficienc	y of main	space he	eating sys	tem 1 (ir	ı %),									92.3	(206)
Efficienc	y of main	space he	eating sys	tem 2 (ir	ı %),									0	(207)
Efficience	y of secon	idary/su	oplement	tary heat	ing syster	n, %,								0	(208)
Cooling S	System Se	asonal E	nergy Eff	iciency R	atio,				0					0	(209)
Space he	eating requ	uirement	t (calcula	ted abov	e) <i>,</i>										
	0	0	0	0	0	0	0	0		0	0	0	0		(210)
Space he	eating fuel	(main h	eating sy	stem 1),	kWh/moi	nth			0					0	
	2684.35	2035.46	1689.06	949.48	398.58	0	0	0		0	942.14	1888.59	2747.96		(211)
Space he	eating fuel	(main h	eating sy	stem 2),	kWh/moi	nth			0					0	
	0	0	0	0	0	0	0	0		0	0	0	0		(213)
Space he	eating fuel	(second	ary), kWl	h/month					0					0	
	0	0	0	0	0	0	0	0		0	0	0	0		(215)
Output f	rom wate	r heater)	,						0					79.8	(216)
Efficienc	y of water	⁻ heater													
Fuel for v	87.84 water hea	87.7 ting	87.44	86.83	85.27	79.8	79.8	79	.8	79.8	86.8	87.62	87.87		(217)
Space Co	303.18 poling	268.37	285.91	253.44	250.3	241.17	238.35	24	7.86	250.59	256.65	270	299.85	3165.67	(219)
	0	0	0	0	0	0	0	0		0	0	0	0		(221)
Annual t	otals							kW	h/yea	r kW	/h/year				
Space he	eating fuel	used, m	ain syste	m 1										13335.62	(211)
Space he	eating fuel	used, m	ain syste	m 2										0	(213)
Space he	eating fuel	used, se	econdary											0	(215)
Water he	eating fue	l used												3165.67	(219)
Electricit	y for insta	intaneou	is electric	shower	(s)									0	(64a)
Space co	oling fuel	used												0	(221)
Electricit	y for pum	ps, fans	and elect	ric keep-	hot										
Mechani	cal vent fa	ans - bala	anced, ex	tract or p	positive ir	nput from	n outside		0		0			0	(230a)
warm air	r heating s	system fa	ans											0	(230b)
Heating	circulatior	n pump c	or water p	oump wit	hin warm	n air heat	ing unit							41	(230c)
Oil boile	r auxiliary	(oil pum	ip, flue fa	n, etc; ex	cludes ci	rculation	pump)							0	(230d)
Gas boile	er auxiliary	y (flue fa	n, etc; ex	cludes ci	rculation	pump)								45	(230e)
Maintain	ning electr	ic keep-ł	not facilit	y for gas	combi bo	biler								0	(230f)
Pump fo	r solar wa	ter heati	ng											0	(230g)
Pump fo	r storage \	WWHRS												0	(230h)
Total ele	ctricity for	r the abc	ove											86	(231)
Electricit	y for light	ing												451.3	(232)

Energy sa	iving/ger	neration t	technolog	gies (App	endices N	И, N) - En	ergy used	d in dwel	ling					
Electricity	y generat	ted by PV	's (Appen	dix M) (n	egative o	quantity)								
Electricity	107.54 / generat	145.87 ted by wi	201.63 nd turbin	217.46 es (Appe	226.62 ndix M) (208.34 negative	205.35 guantity	197.41	182.69	161.92	115.99	93.63	2064.45	(233a)
Electricity	0 y generat	0 ted by hy	0 dro-elect	0 ric gener	0 ators	0	0	0	0	0	0	0	0	(234a)
Electricity	0 y used or	0 net elec	0 tricity gei	0 nerated b	0 by micro-	0 CHP	0	0	0	0	0	0	0	(235a)
Energy sa	0 iving/ger	0 neration t	0 technolog	0 gies (App dix M) (p	0 endices N	0 И, N) - En шартіту)	0 ergy exp	0 orted	0	0	0	0	0	(235c)
LIECTICITY	general	Leu Dy FV	s (Appen			(uantity)								(2221)
Electricity	79.44 y generat	164.58 ted by wi	322.76 nd turbin	478.76 es (Appe	627.61 ndix M) (629.03 negative	622.01 quantity	529.43)	391.52	233.78	105.49	63.05	4247.45	(233b)
Electricity	0 y generat	0 ted by hy	0 dro-elect	0 ric gener	0 ators	0	0	0	0	0	0	0	0	(234b)
Electricity	0 y used or	0 net elec	0 tricity gei	0 nerated b	0 by micro-	0 CHP	0	0	0	0	0	0	0	(235b)
Appendix	0 Q items	0 : annual (0 energy	0	0	0	0	0	0	0	0	0	0	(235d)
Appendix	Q, <iten< td=""><td>n 1 descri</td><td>iption></td><td></td><td></td><td></td><td></td><td>Fuel</td><td>kW</td><td>/h/year</td><td></td><td></td><td></td><td></td></iten<>	n 1 descri	iption>					Fuel	kW	/h/year				
energy sa	ived												0	(236a)
energy us	sed												0	(237a)
Total deli	vered en	ergy for	all uses										10726.7	

10a. Fuel costs – Individual heating systems including micro-CHP

Fuel required	kWh/year	Fuel price	Fuel cost £/yea	r
Space heating - main system 1 (electric off-peak tariff				
High-rate fraction (Table 12a, or Appendix F for electric CPSU)	0		485.42	(240a)
Low-rate fraction	0		485.42	(240b)
High-rate cost	0		0	(240c)
Low-rate cost	0		0	(240d)
Space heating - main system 1 cost (other fuel)	0		0	(240e)
Space heating - main system 2 (electric off-peak tariff				
High-rate fraction (Table 12a, or Appendix F for electric CPSU)	0		485.42	(241a)
Low-rate fraction	0		485.42	(241b)
High-rate cost	0		0	(241c)
Low-rate cost	0		0	(241d)
Space heating - main system 2 cost (other fuel)	0		0	(241e)
Space heating - secondary (electric off-peak tariff)				
High-rate fraction (Table 12a, or Appendix F for electric CPSU)	0		485.42	(242a)

Low-rate fraction	0		485.42	(242b)
High-rate cost	0		0	(242c)
Low-rate cost	0		0	(242d)
Space heating - secondary cost (other fuel)	0		0	(242e)
Water heating (electric off-peak tariff)				
High-rate fraction (Table 12a, or Appendix F for electric CPSU)	0		0	(243)
Low-rate fraction	0		0	(242b)
High-rate cost	0		0	(242c)
Low-rate cost	0		0	(242d)
Water heating cost (other fuel)	0		115.23	(247)
(for a DHW-only heat network use (342a) or (342b) instead of (247)	1			
Energy For instantaneous electric shower(s)	0		0	(247a)
Space cooling	0		0	(248)
Pumps, fans And electric keep-hot	0		14.18	(249)
Energy For lighting	0		74.42	(250)
Additional standing charges	0		92	(251)
Energy saving/generation technologies	0		-578.17	(252)
Appendix Q, <item 1="" description=""></item>	Fuel	kWh/year		
energy saved Or generated	0		0	(253)
energy used	0		0	(254)
Total energy cost	0		203.08	(255)
11a. SAP rating – Individual heating systems including micro-CHP				
Energy cost deflator	0		0	(256)
Energy cost factor (ECF)	0		0	(257)
SAP rating	0		0	(258)

11a. SAP rating – Individual heating systems including micro-CHP		
Energy cost deflator	0.36	(256)
Energy cost factor (ECF)	0.19	(257)
SAP rating	96.93	(258)
12a CO2 emissions – Individual heating systems including micro-CHP		

Energy	Emission factor	Emissions	
KWh/year	kg	kg CO2/year	
Space heating - main system 1		2800.48	(261)
Space heating - main system 2		0	(262)
Space heating - secondary		0	(263)
Energy for water heating		664.79	(264)
Energy for instantaneous electric shower(s)		0	(264a

Space and water heating	3465.27	(265)
Space cooling	0	(266)
Electricity for pumps, fans and electric keep	11.93	(267)
Electricity for lighting	65.14	(268)
energy saved or generated 0	-815.97	(269b)
Appendix Q items		
energy saved 0	0	
energy used 0	0	
energy saved 0	0	(270b)
energy used	0	(271b)
Total CO2, kg/year	2726.37	(272)
Dwelling CO2 Emission Rate	7.98	(273)
El rating	91	(274)

13a. Primary Energy – Individual heating systems including micro-CHP

	Fnergy	Emission factor	Emissionsr	
	KWh/vear	kg	kg CO2/vear	
Space heating - main system 1			15069.25	(275)
Space heating - main system 2			0	(276)
Space heating - secondary			0	(277)
Energy for water heating			3577.21	(278)
Energy for instantaneous electric shower(s)			0	(278a)
Space and water heating			18646.46	(279)
Space cooling			0	(280)
Electricity for pumps, fans and electric keep			130.1	(281)
Electricity for lighting			692.22	(282)
energy saved or generated	0		-5066.8	. ,
Appendix Q items				
energy saved	0		0	
energy used	0		0	
energy saved	0		0	(284b)
energy used			0	(285b)
Total PE, kWh/year			14401.97	(286)
Dwelling PE Rate			42.16	(287)

Dwelling Reference:

Dwelling Type:

Woodrising Hillside Road WESTON-SUPER-MARE BS24 0AA

1. Overall dwelling dimensions

	Area(m²)	Av. Height(m)		Volume(m ³)	
Ground Floor	127.7 (1a	i) x 2.4	(2a) =	306.48	(3a)
First Floor	115 (11) x 2.7	(2b) =	310.5	(3b)
2nd Floor	98.9 (10	:) x 3	(2c) =	296.7	(3c)
Total floor area TFA		,	· · /	341.6	(4)
Dwelling volume				913.68	(5)

BA-30

New Dwelling Design Stage

2. Ventilation Rate

Chimneys/Flues	0	x 80 =	0	(6a)
Open chimneys	0	x 20 =	0	(6b)
Chimneys / flues attached to closed fire	0	x 10 =	0	(6c)
Flues attached to solid fuel boiler	0	x 20 =	0	(6d)
Flues attached to other heater	0	x 35 =	0	(6e)
Number of blocked chimneys	0	x 20 =	0	(6f)
Number of intermittent extract fans	0	x 10 =	0	(7a)
Number of passive vents	0	x 10 =	0	(7b)
Number of flueless gas fires	0	x 40 =	0	(7c)
	Ŭ	Air changes per hour	C C	(10)
Number of storeys in the dwelling (ns)		0	0	(8)
Infiltration due to chimneys, flues, fans, PSVs, etc		0	0	(9)
Additional infiltration		0	0	(10)
Structural infiltration		0	0	(11)
Suspended wooden ground floor		0	0	(12)
No draught lobby		0	0	(13)
Percentage of windows and doors draught proofed		0	0	(14)
Window infiltration		0	0	(15)
Infiltration rate		0	0	(16)
Air permeability value, AP50, (m ³ /h/m ²)		5	5	(17)
Air permeability value, AP4, (m ³ /h/m ²)		0	0	(17a)
Air permeability value)		0.25	0.25	(18)
Number of sides on which dwelling is sheltered		0	0	(19)

Shelter fa Infiltratio Infiltratio	actor on rate in on rate m	corporati odified fo	ing shelte or month	er factor ly wind sp	beed								1 0.25	(20) (21)
	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Total	(22)
Monthly	average v	wind spe	ed from 1	Table U2										
Wind Fac	5.1 ctor	5	4.9	4.4	4.3	3.8	3.8	3.7	4	4.3	4.5	4.7	52.5	(22)
Adjusted	1.28 infiltratio	1.25 on rate (a	1.23 allowing f	1.1 or shelter	1.08 r and wir	0.95 nd speed)	0.95	0.93	1	1.08	1.13	1.18	13.13	(22a)
Calculate	0.32 e effective	0.31 e air chan	0.31 Ige rate fo	0.28 or the app	0.27 olicable d	0.24 case:	0.24	0.23	0.25	0.27	0.28	0.29	3.28	(22b)
a) If bala	nced mec	chanical v	ventilatio	n with he	at recove	ery (MVH	R)						0.5 0.5 0	(23a) (23b) (23c)
b) If bala	0 nced med	0 chanical v	0 ventilatio	0 n without	0 t heat red	0 covery (N	0 1∨)	0	0	0	0	0		(24a)
c) lf who	0 le house e	0 extract ve	0 entilation	0 or positi	0 ve input	0 ventilatio	0 on from o	0 outside	0	0	0	0		(24b)
d) If natu	0.57 Iral ventil	0.56 ation or v	0.56 whole ho	0.53 use positi	0.52 ive input	0.5 ventilati	0.5 on from l	0.5 oft	0.5	0.52	0.53	0.54		(24c)
Effective	0 air chang	0 ge rate	0	0	0	0	0	0	0	0	0	0		(24d)
0.57 0.56 0.56 0.53 0.52 0.5 0.5 0.5 0.5 0.52 0.53 0.54 Effective air change rate from PCDB:														(25)
	0.57	0.56	0.56	0.53	0.52	0.5	0.5	0.5	0.5	0.52	0.53	0.54		(25)

3. Heat losses and heat loss parameter

Items in the table below are to be expanded as necessary to allow for all different types of element e.g. 4 wall types. The k -value

		-	-	-				
ELEMENT Solid door	Gross area (m²)	Openings m ²	Net Area A ,m²	U-value W/m2K	A X U (W/K)	k-value kJ/m²·K	2.94	A X k kJ/K ₍₂₆₎
Semi-glazed door							2.94	(26a)
Window							44.3	(27)
Roof window							6.15	(27a)
Basement floor				0			0	(28)
Ground floor				9577.5			20.43	(28a)
Exposed floor				0			0	(28b)
Basement wall				0			0	(29)
External wall				17259.09			44.2	(29a)

Roof 1315.08													(30)
Total area of exter	rnal elem	nents ∑A,	m²									610.38	(31)
Party Wall												0	(32)
Party floor												0	(32a)
Party ceiling												0	(32b)
Internal wall **												0	(33c)
Internal floor												0	(32d)
Internal ceiling flo	or											0	(32e)
Fabric heat loss, V	V/K = ∑ (/	ΑxU)										140.68	(33)
Heat capacity Cm	= ∑(A x k)										28151.67	(34)
Thermal mass par	ameter (TMP = Cr	n ÷ TFA) i	in kJ/m²K								250	(35)
Linear Thermal br	idges:∑(LxΨ) ca	lculated	using App	endix K							18.31	(36)
Point Thermal brid	dges: ∑χ	(W/K) if s	ignificant	t point th	ermal bri	idge pres	ent and v	alues ava	ailable			18.31	(36a)
Total fabric heat lo	oss H = ∑	(A × U) +	Σ(L×Ψ)	+∑χ								158.99	(37)
Ventilation heat lo	oss calcul	ated mo	nthly										()
171.49 Heat transfer coef	169.6 ficient, V	167.72 V/К	158.3	156.41	150.76	150.76	150.76	150.76	156.41	160.18	163.95		(38)
330.47 Heat loss paramet	328.59 ter (HLP),	326.71 W/m²K	317.28	315.4	309.75	309.75	309.75	309.75	315.4	319.17	322.94		(39)
0.97 Number of days ir	0.96 n month (0.96 (Table 1a	0.93)	0.92	0.91	0.91	0.91	0.91	0.92	0.93	0.95		(40)
31	28	31	30	31	30	31	31	30	31	30	31		(41)
4. Water heat	ing ener	gy requi	rement										
Assumed occupan	icy, N											3.19	(42)
Hot water usage in	n litres p	er day fo	r mixer sł	nowers, V	d,showe	r (from A	ppendix	J)					· /
75.68 Hot water usage in	74.52 n litres p	72.81 er day fo	70.18 r baths, V	67.83 /d,bath (f	64.54 rom App	61.93 endix J)	64.98	66.51	69.77	73.17	75.61		(42a)
32.76 Hot water usage in	32.27 n litres p	31.57 er day fo	30.51 r other us	29.56 ses, Vd,ot	28.25 her (fron	27.26 n Append	28.48 dix J)	29.11	30.41	31.75	32.74		(42b)
47.26	45.54	43.82	42.1	40.38	38.67	38.67	40.38	42.1	43.82	45.54	47.26		(42c)
Annual average ho Hot water usage in	ot water n litres p	usage in er day foi	litres per r each mo	day Vd,a onth Vd,r	verage (f n = (42a)	from App + (42b) +	endix J) - (42c)					143.31	(43)
													()

 155.7
 152.33
 148.2
 142.8
 137.78
 131.46
 127.86
 133.84
 137.72
 144
 150.46
 155.6
 1717.75
 (44)

 Energy content of hot water used = 4.18 x Vd,m x nm x DTm / 3600 kWh/month (from Appendix J)
 229.22
 201.56
 211.77
 186.53
 177.54
 152.03
 141.29
 157.53
 159.75
 185.56
 203.35
 228.52
 2234.65
 (45)

 Distribution loss (46) = 0.15 x (45)
 34.38 30.23 31.77 27.98 26.63 22.8 21.19 23.63 23.96 27.83 30.5 34.28 (46)

 Storage volume (litres) including any solar or WWHRS storage within same vessel
 0 (47)

 Water storage loss (or HIU loss)
 0

a) If manufacturer's declared loss factor is known (kWh/day):	2	(48)									
Temperature factor from Table 2b0.54											
Energy lost from water storage, kWh/day (48) x (49) = 1	.08	(50)									
b) If manufacturer's declared loss factor is not known :											
Hot water storage loss factor from Table 2 (kWh/litre/day)	0	(51)									
Volume factor from Table 2a	0	(52)									
Temperature factor from Table 2b	0	(53)									
Energy lost from water storage, kWh/day	0	(54)									
Enter (50) or (54) in (55)	.08	(55)									
Water storage (or HIU) loss calculated for each month (56) = $(55) \times (41)$		()									
33.48 30.24 33.48 32.4 33.48 32.4 33.48 33.48 33.48 32.4 33.48 32.4 33.48 If the vessel contains dedicated solar storage or dedicated WWHRS storage,		(56)									
(57)m = (56)m 🛛 [(47) − Vs] ÷ (47), else (57)m = (56)m											
where Vs is Vww from Appendix G3 or (H12) from Appendix H (as applicable).											
33.48 30.24 33.48 32.4 33.48 32.4 33.48 33.48 32.4 33.48 32.4 33.48 Primary circuit loss for each month from Table 3		(57)									
modified by factor from Table H4 if there is solar water heating and a cylinder thermostat, although not for DHW-only he	at networ	·ks)									
7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7		, (59)									
Combi loss for each month from Table 3a, 3b or 3c (enter 0 if not a combi boiler)		(33)									
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		(61)									
285.96 252.81 268.51 241.44 234.28 206.94 198.03 214.27 214.67 242.3 258.26 285.26 CWWHRS DHW input calculated using Appendix G (negative quantity) (enter 0 if no WWHRS contribution to water heatin	2902.74 g)	(62)									
0 0 0 0 0 0 0 0 0 0		(63a)									
PV diverter DHW input calculated using Appendix G (negative quantity) (enter 0 if no PV diverter contribution)		,									
0 0 0 0 0 0 0 0 0 0		(63b)									
Solar DHW input calculated using Appendix H (negative quantity) (enter 0 if no solar contribution to water heating)		,									
0 0 0 0 0 0 0 0 0 0		(63c)									
FGHRS DHW input calculated using Appendix G (negative quantity) (enter 0 if no FGHRS contribution to water heating)		. ,									
0 0 0 0 0 0 0 0 0 0 0		(63d)									
Output from water heater for each month, kWh/month (64) = (62) + (63a) + (63b) + (63c) + (63d)		. ,									
285.96 252.81 268.51 241.44 234.28 206.94 198.03 214.27 214.67 242.3 258.26 285.26 Output from water heater for each month, kWh/month (64) = (62) + (63a) + (63b) + (63c) + (63d)	2902.74	(64)									
		(64a)									
Heat gains from water heating, kWh/month 0.25 x [0.85 × (45) + (61) + (64a)] + 0.8 x [(46) + (57) + (59)]		. /									
121.61 108.02 115.81 105.95 104.43 94.48 92.37 97.77 97.05 107.09 111.54 121.38 include (57) m in calculation of (65) m only if hot water store is in the dwelling or hot water is from heat network		(65)									

5. Internal gains (see Tables 5 and 5a)

Metabolic gains	(Table 5),	watts										
159.3	159.3	159.3	159.3	159.3	159.3	159.3	159.3	159.3	159.3	159.3	159.3	(66)

Lighting gains (calculated in Appendix L, equation L12 or L12a), also see Table 5

Appliance	269.13 es gains (297.96 calculate	269.13 d in Appe	278.1 endix L, e	269.13 quation L	278.1 .16 or L16	269.13 5a), also s	269.13 see Table	278.1 5	269.13	278.1	269.13	(67)
Cooking §	491.14 gains (cal	496.24 culated ir	483.39 n Append	456.05 lix L, equa	421.54 ation L18	389.1 or L18a)	367.43 , also see	362.34 Table 5	375.18	402.52	437.03	469.47	(68)
Pumps ar	38.93 nd fans ga	38.93 ains (Tabl	38.93 e 5a)	38.93	38.93	38.93	38.93	38.93	38.93	38.93	38.93	38.93	(69)
Losses e.	3 g. evapor	3 ation (ne	3 gative va	3 Ilues) (Tal	3 ble 5	0	0	0	0	3	3	3	(70)
Water he	-127.44 ating gai	-127.44 ns (Table	-127.44 5)	-127.44	-127.44	-127.44	-127.44	-127.44	-127.44	-127.44	-127.44	-127.44	(71)
Total inte	163.45 ernal gain	160.74 s	155.66	147.15	140.36	131.22	124.16	131.42	134.79	143.94	154.92	163.14	(72)
	997.51	1028.73	981.97	955.1	904.81	869.21	831.51	833.67	858.85	889.38	943.84	975.53	(73)

6. Solar gains

Solar gains in watts, calculated for each month 550.05 930.36 1255.81 1527.78 1685.86 1662.61 1607.53 1491.22 1350.22 1023.59 657.62 471.51 (83) Total gains – internal and solar (watts) 1547.56 1959.09 2237.77 2482.88 2590.68 2531.82 2439.03 2324.88 2209.08 1912.97 1601.47 1447.04 (84)

7. Me	ean inter	mal tem	perature	e (heatin	ig seaso	n)								
Temper Utilisati	ature dur on factor	ing heati for gains	ng perioo for living	ds in the garea, 🛙	living are L,m (see T	a from Ta Fable 9a)	able 9, Th	1 (°C)					21	(85)
Mean in	1 Iternal te	1 mperatui	0.99 re in livin	0.97 g area T1	0.9 . (follow s	0.74 steps 3 ar	0.55 nd 4 in Ta	0.6 ible 9c)	0.84	0.98	1	1		(86)
Temper	19.98 ature dur	20.13 ing heati	20.33 ng period	20.6 ds in rest	20.8 of dwelli	20.92 ng from ⁻	20.94 Table 9, T	20.94 h2 (°C)	20.88	20.6	20.25	19.97		(87)
Roof	20.11 20.12 20.12 20.14 20.15 20.16 20.16 20.16 20.16 20.16 20.15 20.14 20.13 Utilisation factor for gains for rest of dwelling, 🛙2,m (see Table 9a)													
Roof	1	1	0.99	0.96	0.87 M	0.66 ean inter	0.45 nal temp	0.5 erature in	0.78 n the rest	0.98 of dwell	1 ing T2	1		(89)
Living a	18.89 rea fractio	19.09 on	19.35	19.71	19.95	20.08	20.1	20.09	20.05	19.72	19.27	18.9	0.08	(90) (91)
Mean in	iternal te	mperatu	re (for th	e whole o	dwelling)									
Adjuste	18.98 19.18 19.44 19.78 20.02 20.15 20.17 20.17 20.12 19.8 19.35 18.99 Adjusted mean internal temperature:													(92)
	18.98	19.18	19.44	19.78	20.02	20.15	20.17	20.17	20.12	19.8	19.35	18.99		(93)

8. Space heating requirement

Utilisation factor for gains,

	1	1	0.99	0.96	0.86	0.66	0.45	0.5	0.78	0.97	1	1		(94)
Useful ga	ins, mGm	1, W												
Monthly	1546.14 average e	1951.96 external t	2211.76 emperat	2375.15 ure from	2235.93 Table U1	1663.7	1100.09	1157.76	1716.98	1856.62	1596.81	1446.16		(95)
Heat loss	4.3 rate for i	4.9 mean inte	6.5 ernal tem	8.9 perature	11.7	14.6	16.6	16.4	14.1	10.6	7.1	4.2		(96)
Space he	4852.99 ating req	4693.1 uirement	4226.31 for each	3452.55 month	2625.34	1719.16	1104.91	1166.44	1864.41	2900.29	3909.66	4777.12		(97)
Solar spa	2460.29 ce heatin	1842.04 g calcula	1498.82 ted using	775.73 Appendi	289.72 x H (nega	0 ative qua	0 ntity)	0	0	776.49	1665.25	2478.24		(98a)
Space he	0 ating req	0 uirement	0 for each	0 month a	0 fter solar	0 contribu	0 Ition	0	0	0	0	0		(98b)
Space he	2460.29 ating req	1842.04 uirement	1498.82 : in kWh/	775.73 m²/year	289.72	0	0	0	0	776.49	1665.25	2478.24	34.5	(98c) (99)

8c. Space Cooling requirement														
Heat lo	ss rate,													
Utilisati	0 ion facto	0 r for loss	0	0	0	0	0	0	0	0	0	0		(100)
Useful l	0 loss, mLn	0 n (watts)	0	0	0	0	0	0	0	0	0	0		(101)
Gains	0	0	0	0	0	0	0	0	0	0	0	0		(102)
Space c	0 ooling re	0 equireme	0 nt for m	0 Ionth, who	0 ole dwel	0 ling, conti	0 inuous (k	0 :Wh)	0	0	0	0		(103) (104)
Cooled Intermi	0 fraction ttency fa	0 ictor	0	0	0	0	0	0	0	0	0	0	0	(104) (105)
Space c	0 cooling re	0 equireme	0 nt for m	0 Ionth	0	0	0	0 0	0	0	0	0	0	(106)
Space c	0 ooling re	0 equireme	0 nt in kW	0 /h/m²/yea	0 r	0	0	0	0	0	0	0	0	(107) (108)
8f. S	pace he	ating red	quirem	ent										

9a. Energy requirements - Individual heating systems including micro-CHP

Fabric Energy Efficiency,

Page 6

0

(109)

DER WORKSHEET

0

Fraction of space heat from secondary/supplementary system, 0													0	(201)	
Fraction	of space h	neat fron	n main sy	/stem(s),										1	(202)
Fraction	of main h	eating fr	om main	system 2	2,									0	(203)
Fraction	of total sp	bace hea	t from m	ain syste	m 1,									1	(204)
Fraction	of total sp	bace hea	t from m	ain syste	m 2,									0	(205)
Efficienc	y of main	space he	eating sys	stem 1 (ir	n %) <i>,</i>									249.9	(206)
Efficienc	y of main	space he	eating sys	stem 2 (ir	n %) <i>,</i>									0	(207)
Efficienc	y of secon	idary/su	oplement	tary heat	ing syste	m, %,								65	(208)
Cooling	System Se	asonal E	nergy Eff	iciency R	atio,				0					0	(209)
Space he	eating requ	uirement	t (calcula	ted abov	e),										
	0	0	0	0	0	0	0	0		0	0	0	0		(210)
Space he	eating fuel	(main h	eating sy	stem 1),	kWh/mo	nth			0					0	
	984.51	737.11	599.77	310.41	115.94	0	0	0		0	310.72	666.37	991.69		(211)
Space he	eating fuel	(main h	eating sy	stem 2),	kWh/mo	nth			0					0	
	0	0	0	0	0	0	0	0		0	0	0	0		(213)
Space he	eating fuel	(second	ary), kWl	h/month					0					0	
	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0														(215)
Output f	Output from water heater), 0 Efficiency of water heater														(216)
Efficiency of water heater															
	175.1	175.1	175.1	175.1	175.1	175.1	175.1	17	5.1	175.1	175.1	175.1	175.1		(217)
Fuel for	water hea	ting													
Space Co	163.31 ooling	144.38	153.35	137.89	133.8	118.18	113.1	12	2.37	122.6	138.38	147.5	162.91	1657.76	(219)
•	0	0	0	0	0	0	0	0		0	0	0	0		(221)
Annual t	otals	0	0	0	0	0	0	kW	h/vea	ar kW	/h/year	0	0		()
Space he	eating fuel	used, m	ain syste	m 1										4716.52	(211)
Space he	eating fuel	used, m	ain syste	m 2										0	(213)
Space he	eating fuel	used, se	econdary											0	(215)
Water h	eating fue	l used												1657.76	(219)
Electricit	y for insta	intaneou	is electric	c shower	(s)									0	(64a)
Space co	oling fuel	used												0	(221)
Electricit	y for pum	ps, fans	and elect	tric keep-	hot										
Mechani	ical vent fa	ans - bala	anced, ex	tract or p	oositive ir	nput from	n outside		0		0			724.55	(230a)
warm ai	r heating s	system fa	ans											0	(230b)
Heating	circulatior	n pump c	or water p	pump wit	hin warn:	n air heat	ing unit							0	(230c)
Oil boile	r auxiliary	(oil pum	p, flue fa	in, etc; ex	cludes ci	irculation	pump)							0	(230d)
Gas boiler auxiliary (flue fan, etc; excludes circulation pump)												0	(230e)		
Maintaining electric keep-hot facility for gas combi boiler												0	(230f)		
Pump fo	r solar wa	ter heati	ng											0	(230g)
Pump fo	r storage V	WWHRS												0	(230h)
Total ele	ctricity fo	r the abo	ove											724.55	(231)
Electricit	y for light	ing												480.43	(232)

Energy s	saving/g	eneratio	on techno	ologies (A	ppendice	es M, N) -	Energy ι	ised in dw	/elling					
Electrici	ty gene	rated by	PVs (App	pendix M)	(negativ	ve quantit	ty)							
	0	0	0	0	0	0	0	0	0	0	0	0	0	(233a)
Electrici	ty gene	rated by	wind tur	rbines (Ap	pendix N	И) (negati	ive quan	tity)						
	0	0	0	0	0	0	0	0	0	0	0	0	0	(234a)
Electrici	ty gene	rated by	hydro-el	lectric ger	nerators									
Electrici	0 ty used	0 or net e	0 lectricity	0 generate	0 d by mic	0 ro-CHP	0	0	0	0	0	0	0	(235a)
	0	0	0	0	0	0	0	0	0	0	0	0	0	(235c)
Energy	saving/g	generatio	on techno	ologies (A	ppendice	es M, N) -	Energy e	exported						
Electrici	ty gene	rated by	PVs (App	pendix M)	(negativ	ve quantit	ty)							
	0	0	0	0	0	0	0	0	0	0	0	0	0	(233b)
Electrici	ty gene	rated by	wind tur	bines (Ap	pendix I	И) (negati	ive quan	tity)						
	0	0	0	0	0	0	0	0	0	0	0	0	0	(234b)
Electrici	ty gene	rated by	hydro-el	lectric ger	nerators									
	0	0	0	0	0	0	0	0	0	0	0	0	0	(235b)
Electrici	ty used	or net e	lectricity	generate	d by mic	ro-CHP								
	0	0	0	0	0	0	0	0	0	0	0	0	0	(235d)
Append	ix Q iter	ns: annu	ial energ	У										
Append	ix Q, <it< td=""><td>em 1 de</td><td>scription</td><td>></td><td></td><td></td><td></td><td>Fue</td><td>el 👘</td><td>kWh/year</td><td></td><td></td><td></td><td></td></it<>	em 1 de	scription	>				Fue	el 👘	kWh/year				
energys	saved												0	(236a)
energy	used												0	(237a)
Total de	livered	energy f	or all use	es									7579.27	

10a. Fuel costs – Individual heating systems including micro-CHP

Fuel required	kWh/year	Fuel price	Fuel cost £/yea	r
Space heating - main system 1 (electric off-peak tariff				
High-rate fraction (Table 12a, or Appendix F for electric CPSU)	0		777.75	(240a)
Low-rate fraction	0		777.75	(240b)
High-rate cost	0		0	(240c)
Low-rate cost	0		0	(240d)
Space heating - main system 1 cost (other fuel)	0		0	(240e)
Space heating - main system 2 (electric off-peak tariff				
High-rate fraction (Table 12a, or Appendix F for electric CPSU)	0		777.75	(241a)
Low-rate fraction	0		777.75	(241b)
High-rate cost	0		0	(241c)
Low-rate cost	0		0	(241d)
Space heating - main system 2 cost (other fuel)	0		0	(241e)
Space heating - secondary (electric off-peak tariff)				
High-rate fraction (Table 12a, or Appendix F for electric CPSU)	0		777.75	(242a)

Low-rate fraction	0		777.75	(242b)
High-rate cost	0		0	(242c)
Low-rate cost	0		0	(242d)
Space heating - secondary cost (other fuel)	0		0	(242e)
Water heating (electric off-peak tariff)				
High-rate fraction (Table 12a, or Appendix F for electric CPSU)	0		0	(243)
Low-rate fraction	0		0	(242b)
High-rate cost	0		0	(242c)
Low-rate cost	0		0	(242d)
Water heating cost (other fuel)	0		273.37	(247)
(for a DHW-only heat network use (342a) or (342b) instead of (247	')			
Energy For instantaneous electric shower(s)	0		0	(247a)
Space cooling	0		0	(248)
Pumps, fans And electric keep-hot	0		119.48	(249)
Energy For lighting	0		79.22	(250)
Additional standing charges	0		0	(251)
Energy saving/generation technologies	0		0	(252)
Appendix Q, <item 1="" description=""></item>	Fuel	kWh/year		
energy saved Or generated	0		0	(253)
energy used	0		0	(254)
Total energy cost	0		1249.82	(255)
11a. SAP rating – Individual heating systems including micro-CHP				
Energy cost deflator	0		0	(256)
Energy cost factor (ECF)	0		0	(257)
SAP rating	0		0	(258)

11a. SAP rating – Individual heating systems including micro-CHP		
Energy cost deflator	0.36	(256)
Energy cost factor (ECF)	1.16	(257)
SAP rating	81.13	(258)
12a. CO2 emissions – Individual heating systems including micro-CHP		

Emissions Energy **Emission factor** KWh/year kg kg CO2/year Space heating - main system 1 734.4 (261) Space heating - main system 2 0 (262) Space heating - secondary 0 (263) Energy for water heating 233.61 (264) Energy for instantaneous electric shower(s) 0 (264a)

Space and water heating		0	(265)
Space cooling		0	(266)
Electricity for pumps, fans and electric keep		100.5	(267)
Electricity for lighting		69.34	(268)
energy saved or generated	0	0	(269b)
Appendix Q items			
energy saved	0	0	
energy used	0	0	
energy saved	0	0	(270b)
energy used		0	(271b)
Total CO2, kg/year		1137.85	(272)
Dwelling CO2 Emission Rate		3.33	(273)
El rating		96	(274)

13a. Primary Energy – Individual heating systems including micro-CHP

	Energy	Emission factor	Emissionsr	
	KWh/year	ka	kg CO2/year	
Space heating - main system 1	Kwiiy year	16	7435.37	(275)
Space heating - main system 2			0	(276)
Space heating - secondary			0	(277)
Energy for water heating			2521.56	(278)
Energy for instantaneous electric shower(s)			0	(278a)
Space and water heating			0	(279)
Space cooling			0	(280)
Electricity for pumps, fans and electric keep			1096.1	(281)
Electricity for lighting			736.9	(282)
energy saved or generated	0		0	,
Appendix Q items				
energy saved	0		0	
energy used	0		0	
energy saved	0		0	(284b)
energy used			0	(285b)
Total PE, kWh/year			11789.93	(286)
Dwelling PE Rate			34.51	(287)

Building Regulations England Part L (BREL) Compliance Report

Approved Document L1 2021 Edition, England assessed by Stroma SAP 10.2 SAP 10 program, 10.2

Date: Tue 07 Feb 2023 11:20:50

Project Information						
Assessed By	Dominic Bibby	Building Type	House, Detached			
OCDEA Registration	STRO034470	Assessment Date	2023-02-07			

Dwelling Details						
Assessment Type	As designed	Total Floor Area	342 m ²			
Site Reference	BA-30	Plot Reference	BA-30			
Address	Woodrising, Hillside Road, Ble	adon, WESTON-SUPER-MARE	E, BS24 0AA			

Client Details				
Name	Not Provided			
Company	Not Provided			
Address	Not Provided, Not Provided, WF10 5QU			

This report covers items included within the SAP calculations. It is not a complete report of regulations compliance.

1a Target emission rate and dwelling emission rate					
Fuel for main heating system	Electricity				
Target carbon dioxide emission rate	7.98 kgCO ₂ /m ²				
Dwelling carbon dioxide emission rate	3.33 kgCO ₂ /m ²	OK			
1b Target primary energy rate and dwelling primary energy					
Target primary energy	42.16 kWh _{PE} /m ²				
Dwelling primary energy	34.51 kWh _{PE} /m ²	OK			
1c Target fabric energy efficiency and dwelling fabric energy efficiency					
Target fabric energy efficiency	39.1 kWh/m ²				
Dwelling fabric energy efficiency	37.4 kWh/m ²	OK			

2a Fabric U-values								
Element	Maximum permitted average U-Value [W/m ² K]	Dwelling average U-Value [W/m ² K]	Element with highest individual U-Value					
External walls	0.26	0.15	Ext wall (0.16)	OK				
Party walls	0.2	N/A	N/A	N/A				
Curtain walls	1.6	N/A	N/A	N/A				
Floors	0.18	0.16	L Ground floor (0.16)	OK				
Roofs	0.16	0.16	Sloped (0.16)	OK				
Windows, doors,	1.6	1.21	1 (1.4)	OK				
and roof windows								
Rooflights	2.2	N/A	N/A	N/A				

2b Envelope elements (better than typically expected values are flagged with a subsequent (!))					
Name	Net area [m ²]	U-Value [W/m ² K]			
Exposed wall: Ext wall	240.09	0.16			
Exposed wall: Stud walls_rafters 0.72	50.31	0.115 (!)			
Ground floor: L Ground floor	127.7	0.16			
Exposed roof: Sloped	101.69	0.16			
Exposed roof: Flat	21	0.16			
Exposed roof: exp roof flat roof	12.7	0.16			
Exposed roof: void_rafters 0.72	16.1	0.115			

2c Openings (better than typically expected values are flagged with a subsequent (!))							
Name	Area [m ²]	Orientation	Frame factor	U-Value [W/m ² K]			
1, Doors	2.1	North	N/A	1.4			
2, Windows (1)	2.8	North	0.7	1.2			
3, Windows (1)	31.84	South	0.7	1.2			
4, Windows (1)	3.01	East	0.7	1.2			
5, Windows (1)	1.04	West	0.7	1.2			
6, Roof windows (1)	0	South	0.7	1.2			
7, Roof windows (1)	0	East	0.7	1.2			
8, Roof windows (1)	0	West	0.7	1.2			

2d Thermal brid	ging (better than typic	ally expected	ed values are flagged with a sub	sequent (!))		
Building part 1 - Main Dwelling: Thermal bridging calculated from linear thermal transmittances for each junction						
Main element	Junction detail		Source	Psi value	Drawing /	
				[W/mK]	reference	
				(!)		
3 Air pormoshili	ty (bottor than typicall	verpected	values are flagged with a subse	quent (I))		
3 Air permeability (better than typically expected values are flagged with a subsequent (!))						
Dwolling air parm	eu all permeability at 50	ога	$5 \text{ m}^3/\text{bm}^2$ Design value		OK	
Air permeability test certificate reference		Not Provided		UN		
4 Space heating						
Main heating sy	stem 1: Heat pump with	with radiators or underfloor heating - Electricity				
Efficiency		249.9%				
Emitter type		Both radiators and underfloor				
Flow temperature	9					
System type		Air source	neat pump			
Madal						
Commissioning						
Secondary best	ing system: Closed roo	n heater				
Fuel		Dual fuel a	ppliance (mineral and wood)			
Efficiency	Efficiency 65.0%					
Commissioning						
C Hoteret		•				
5 Hot water	tuno. Culinder					
Cylinder/store -	type: Cylinder	200 litraa				
Capacity	20	200 litres				
Declared heat los	inculated	Z KWII/day				
Manufacturer	Insulated	165				
Model						
Commissioning						
Waste water hea	at recovery system 1 -	type: N/A				
Efficiency						
Manufacturer						
Model						
0.0		•				
6 Controls	type: Time and temper	aturo zono o	optrol by arrangement of plumbing	and electrical co	nvicos	
Function	type. Time and tempera			g and electrical se	1063	
Fcodesign class						
Manufacturer						
Model						
Water heating -	type: Cylinder thermosta	at and HW s	eparately timed			
Manufacturer	<u>, , , , , , , , , , , , , , , , , , , </u>					
Model						
7 Lighting						
Minimum permitt	ed light source efficacy	75 lm/W				
Lowest light sour	ce efficacy	80 lm/W			ОК	
External lights co	ntrol	N/A				
8 Mechanical ve	entilation	-1				
System type: Ce	tod apooific for power					
Specific for power	ieu specific fan power	0.7 VV/(1/s)			OK	
Minimum permitt	ed heat recovery	N/Δ			UN	
efficiency	ou nout 1000101y	1.071				
Heat recovery eff	iciency	N/A		[N/A	
Manufacturer/Mo	del					
Commissionina		Not Provide	ed / Not Provided			
10 Heat network	S					
N/A						

11 Supporting documentary evidence						
N/A						
12 Declarations						
a. Assessor Declaration						
This declaration by the assessor is confirmation that the contents of this BREL Compliance Report are a true and accurate reflection based upon the design information submitted for this dwelling for the purpose of carrying out the "As designed" assessment, and that the supporting documentary evidence (SAP Conventions, Appendix 1 (documentary evidence) schedules the minimum documentary evidence required) has been reviewed in the course of preparing this BREL Compliance Report.						
Signed:	Assessor ID:					
Name:	Date:					
b. Client Declaration						
N/A						