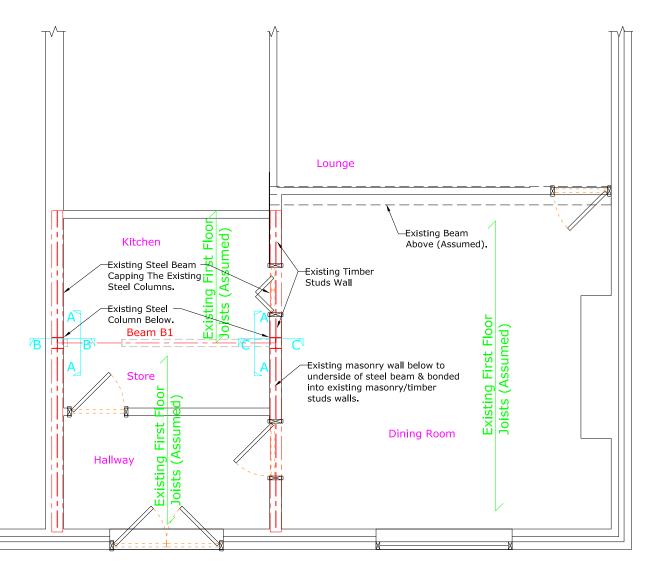

220 Regency Court, Upper Fifth Street, Keynes, Buckinghamshire. MK9 2HR t. 08455 443155, t. 01908 309996, e. info@cistec.net w: www.cistec.net			Milton 996,	
Job No.	Date:		Sheet No.	
2599	JUNE. 2021 Cover			over
Project or Title of Brief:	Drawn By:		Revision:	
11 The Posting House, Tring Station, Tring,	Designed By:	AQ	Revision:	
Hertfordshire HP23 5QS. Output Req'd Calcs / Drgs / Spec / Report & Others:	Checked By:	AA	Revision:	
Design Calculations & Mark-up Plans.	or Other: LOCAL AUTHORITY			RITY
Scope of Work:	Intended Use of Structure:			
Structural Steel Beam, Pier, Padstone & Typical				
cross-section.	Fire Resistance F	-	OTHERS	
Design Standards Adopted & Other References:			& Safety Info	
BS 6399 BS 5950	-		e and any related	drawing and actual construction
General Loading Conditions:	works are carrie	ed out by compe	tent contractor. T	he contractor will
FLOOR LIVE: 1.50 kN/m ²	have to be experienced enough to know the required construction procedures / process & techniques. Before start of any			
ROOF LIVE: 0.75 kN/m ²			paration & cleara	
Wind Load Conditions:	support, demoli	tion, excavation	and all other relat	ted building works)
NOT CRITICAL	 on site, the contractor will need to ensure that there are adequate Health & Safety provisions & precautions, with adequate temporal supports, appropriate health & safety risk assessments and methor statements, suitable construction materials, adequate capacity of structural elements and adequate bearing capacity of the ground (including suitability of surface finish of structural elements for some operations). If in doubt, please contact CISTEC immediately (before start of any work on site) for further advice and guidance. All of our design calculations and drawing details are subject to Building Control (or Approved Inspector) approval prior to start of any Cosntruction works on site. Cistec will not accept any 			
Exposure Conditions:				ments and method
Special Loading Requirements: (if any) N/A				l elements for
Materials: (Conc/Rein/Timber/Masonry etc.)				
Steel & Masonry.				al prior to start of
Design Assumptions/Limitations:	liability/respons	ibility for any dim	nensions or meas	urements, all
Dimensions scaled of Architect's / other drawings	dimensions shown on our calculation/sketches/drawings are indicative only and subject to a proper final checking and confirmation on site.			-
Interface With Other Parties:		SIIC.		
N/A				
Computer Programmes: TEDD'S			Regulations 20	
Subsoil Conditions:	Under Regulation 6 of CDM Regulations 2015, a project is notifiable if the construction work on a construction site is scheduled to:			on site is
N/A			days and have mo at any point in th	
Foundations Type:	(b) (b) exceed 5	500 person days	•	
N/A			e client must give HSE) as soon as	notice in writing to
Other Relevant Information:			egins. For furthe	
These calculations and sketches must be read in conjunction with all relevant drawings by architects and CISTEC			CDM Regulation 2	

<u>2599 - SK01</u>

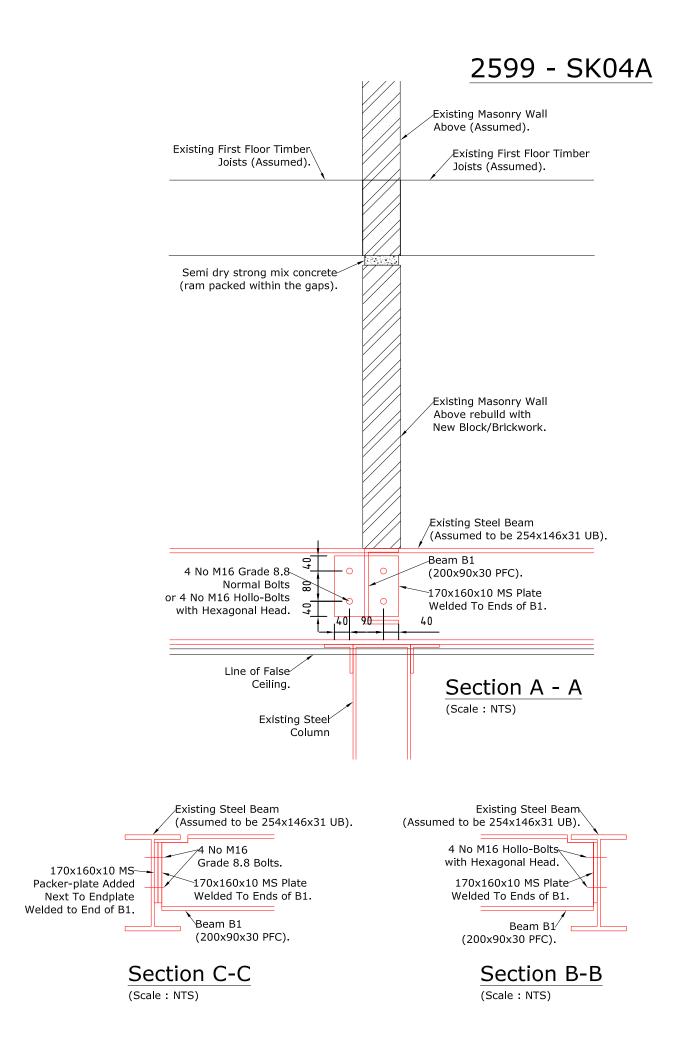
Existing Ground Floor Plan Scale 1:50

<u>2599 - SK02</u>

Existing Lower Ground Floor Plan Scale 1:50

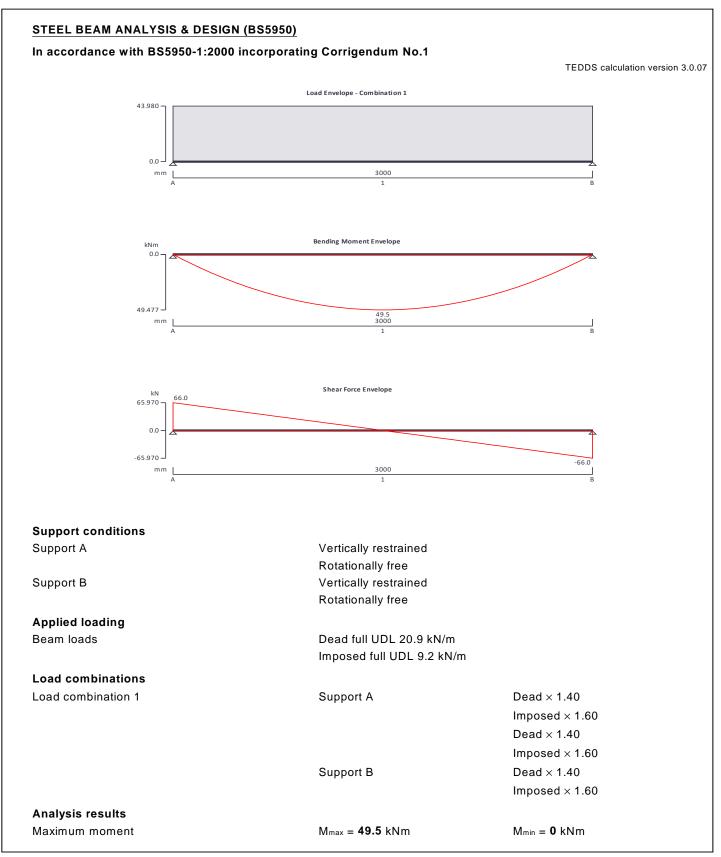

$\frac{\text{Roof/Floor Members:-}}{\text{Beam B1} = 200 \times 90 \times 30 \text{ PFC OR } 152 \times 152 \times 30 \text{ UC.}}$

Padstone Ps1 = 100x555x300 Deep.


All padstones are to be built with engineering bricks (class B) & mortar designation (i).

Notes:

All upper floors are assumed to be timber constructions (to be checked and confirmed on site).


Proposed Ground Floor Plan (Showing Structures Above) Scale 1:50

220 Regency CourtTel: 08455 443155Upper Fifth StreetDD: 01908 309996Milton KeynesEmail: info@cistec.netBucks. MK9 2HRWeb: www.cistec.net	
Project Title: Subject:	Project No: Date: Page No:
11 Posting House, Tring, Subject.	2311 0021 10/01
Hostfordshire, HP23 5Q3. Loadin	g Data By: Chekd By: Revision: A & AA
Roof (130 Pitch) Tiles Felt & Batlens	bead ludel Jmpsed load = 0.65 = 0.10
Rafters Battons & Insulations	=0.15 = 0.05 =0.05 = 1.10
Lood on Plan = 0.95/Cos 30° Roof Imposed Lood	0.75 /~1 7-0 -75 KN/M2
Ceiling Joists Battons & Insulations Plasterboard	bead Load Imposed Load = 0.10 = 0.05 = 0.25
ceiling Imposed Lada	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
Decking Boards & Finish Joists & Insulations Plasterboard & Skinn Romovable Partitions Floor Imposed Laad	$ bead load fmposed load \\ = 0.20 \\ = 0.15 \\ = 0.25 \\ = 0.90 \\ 1.5 $
	1.5 + 1.5 12M/m2
YW effected Brand -co-	sucu fin
100 min the Blockworte	2 x 0 2 5 f / 5 = 2 0 KN/M2

220 Regency Court Tel: 08455 443155 **Upper Fifth Street** DD: 01908 309996 **Milton Keynes** Email: info@cistec.net Bucks, MK9 2HR Web: www.cistec.net Project Title: Subject: Project No: Date: JUNE Page No: 11 Posting House, Fring, 2599 De/01 2021 Nortfordshire, HP23 5QS. Design Calculations By: AS Chckd By: Revision: AA Beam Bl Span = 3.0 m $W = (1.5 + 1.0) \times \frac{4.6}{2} + (1.5 + 1.5) \times \frac{4.6}{2} \times 2 + 2.0 \times 5.0 + 0.5$ = 30.1 < 44.0> KN/W. 20-9 + 9.2 R= 31.4 + 13-8 = 45.2 < 66.07KM TEMBS autfut 152 UC 30 adequate From OR 200 ×90 × 30 PFC adequate

	Project 11 The Posting House, Tring Station, Tring, Hertfordshire				Job no. 2599	
CISTEC Chartered Engineers Suite 116, Milton Keynes Business Centre Foxhunter Drive, Linford Wood, Milton Keynes MK14 6GD	Calcs for	Beam B1			Start page no./Revision DC 1	
	Calcs by AQ	Calcs date 04/06/2021	Checked by AA	Checked date	Approved by	Approved date

Tedds The Post CISTEC Chartered Engineers Calcs for uite 116, Milton Keynes Business Centre Calcs by hunter Drive, Linford Wood, Milton Keynes AQ Maximum shear Deflection Maximum reaction at support A Unfactored dead load reaction at support A Unfactored dead load reaction at support B Unfactored dead load reaction at support B Unfactored dead load reaction at support B Unfactored dead load reaction at support B Unfactored dead load reaction at support B Unfactored dead load reaction at support B Unfactored dead load reaction at support B Unfactored imposed load reaction at support B Unfactored imposed load reaction at support B Unfactored imposed load reaction at support B Unfactored imposed load reaction at support B Unfactored imposed load reaction at support B Unfactored imposed load reaction at support B Unfactored imposed load reaction at support B Unfactored imposed load reaction at support B The charter b Section details Section type Steel grade From table 9: Design strength py Thickness of element Design strength Modulus of elasticity A	R _{B_max} = 66 R _{B_Dead} = 31 B R _{B_Imposed} =	Checked by AA N nm kN 1.4 kN 13.8 kN kN 1.4 kN 13.8 kN 13.8 kN	Checked date Vmin = - δmin = 0 RA_min = RB_min =	Approved by 66 kN 0 mm = 66 kN	Revision DC 2 Approved da
hunter Drive, Linford Wood, Milton Keynes MK14 6GD Calcs by AQ Maximum shear Deflection Maximum reaction at support A Unfactored dead load reaction at support A Unfactored imposed load reaction at support A Maximum reaction at support B Unfactored dead load reaction at support B Unfactored dead load reaction at support B Unfactored dead load reaction at support B Unfactored imposed load reaction at support B Section details Section type Steel grade From table 9: Design strength py Thickness of element Design strength Modulus of elasticity	Calcs date 04/06/2021 Vmax = 66 k δmax = 6.1 m RA_max = 66 RA_Dead = 31 A RA_Imposed = RB_max = 66 RB_Dead = 31 B RB_Imposed = PFC 200x9 S275 max(T, t) = py = 275 N/	Checked by AA N nm kN 1.4 kN 13.8 kN kN 1.4 kN 13.8 kN 13.8 kN	Vmin = - δmin = 0 Ra_min =	Approved by 66 kN 0 mm = 66 kN	
Maximum shear Deflection Maximum reaction at support A Unfactored dead load reaction at support A Unfactored imposed load reaction at support A Maximum reaction at support B Unfactored dead load reaction at support B Unfactored imposed load reaction at support B Section details Section type Steel grade From table 9: Design strength py Thickness of element Design strength Modulus of elasticity	Vmax = 66 k δmax = 6.1 m RA_max = 66 RA_Dead = 31 RA_Imposed = RB_max = 66 RB_Dead = 31 RB_Imposed = PFC 200x9 S275 max(T, t) = py = 275 N/	N hm kN 1.4 kN 13.8 kN kN 1.4 kN 13.8 kN 0x30 (BS4-1)	$\delta_{min} = 0$ R _{A_min} =) mm = 66 kN	
Deflection Maximum reaction at support A Unfactored dead load reaction at support A Unfactored imposed load reaction at support A Maximum reaction at support B Unfactored dead load reaction at support B Unfactored imposed load reaction at support B Section details Section type Steel grade From table 9: Design strength py Thickness of element Design strength Modulus of elasticity	$\begin{array}{l} \delta_{max} = 6.1 \text{ m} \\ R_{A_{max}} = 66 \\ R_{A_{Dead}} = 31 \\ R_{A_{mposed}} = \\ R_{B_{max}} = 66 \\ R_{B_{Dead}} = 31 \\ R_{B_{mposed}} = \\ \end{array}$	nm kN 1.4 kN 13.8 kN kN 1.4 kN 13.8 kN 0x30 (BS4-1)	$\delta_{min} = 0$ R _{A_min} =) mm = 66 kN	
Maximum reaction at support A Unfactored dead load reaction at support A Unfactored imposed load reaction at support A Maximum reaction at support B Unfactored dead load reaction at support B Unfactored imposed load reaction at support B Section details Section type Steel grade From table 9: Design strength py Thickness of element Design strength Modulus of elasticity	RA_max = 66 RA_Dead = 31 RA_Imposed = RB_max = 66 RB_Dead = 31 RB_Imposed = PFC 200x9 S275 max(T, t) = py = 275 N/	kN 1.4 kN 13.8 kN kN 1.4 kN 13.8 kN 0x30 (BS4-1)	RA_min =	= 66 kN	
Unfactored dead load reaction at support A Unfactored imposed load reaction at support A Maximum reaction at support B Unfactored dead load reaction at support B Unfactored imposed load reaction at support B Section details Section type Steel grade From table 9: Design strength py Thickness of element Design strength Modulus of elasticity	RA_Dead = 31 RA_Imposed = RB_max = 66 RB_Dead = 31 RB_Imposed = PFC 200x9 S275 max(T, t) = py = 275 N/	1.4 kN 13.8 kN kN 1.4 kN 13.8 kN 0x30 (BS4-1)			
Unfactored imposed load reaction at support A Maximum reaction at support B Unfactored dead load reaction at support B Unfactored imposed load reaction at support B Section details Section type Steel grade From table 9: Design strength py Thickness of element Design strength Modulus of elasticity	 A RA_Imposed = RB_max = 66 RB_Dead = 31 B RB_Imposed = PFC 200x9 S275 max(T, t) = py = 275 N/ 	13.8 kN kN 1.4 kN 13.8 kN 0x30 (BS4-1)	R _{B_min} =	= 66 kN	
Maximum reaction at support B Unfactored dead load reaction at support B Unfactored imposed load reaction at support B Section details Section type Steel grade From table 9: Design strength py Thickness of element Design strength Modulus of elasticity	R _{B_max} = 66 R _{B_Dead} = 31 B R _{B_Imposed} = PFC 200x9 S275 max(T, t) = py = 275 N/	kN 1.4 kN 13.8 kN 0x30 (BS4-1)	R _{B_min} =	= 66 kN	
Unfactored dead load reaction at support B Unfactored imposed load reaction at support B Section details Section type Steel grade From table 9: Design strength py Thickness of element Design strength Modulus of elasticity	RB_Dead = 31 RB_Imposed = PFC 200x9 S275 max(T, t) = py = 275 N/	1.4 kN 13.8 kN 0x30 (BS4-1)	KB_inni -		
Unfactored imposed load reaction at support E Section details Section type Steel grade From table 9: Design strength py Thickness of element Design strength Modulus of elasticity	B RB_Imposed = PFC 200x9 S275 max(T, t) = py = 275 N/	13.8 kN 0x30 (BS4-1)			
Section details Section type Steel grade From table 9: Design strength py Thickness of element Design strength Modulus of elasticity	PFC 200x9 S275 max(T, t) = p _y = 275 N/	0x30 (BS4-1)			
Section type Steel grade From table 9: Design strength p y Thickness of element Design strength Modulus of elasticity	S275 max(T, t) = p _y = 275 N/				
Steel grade From table 9: Design strength p y Thickness of element Design strength Modulus of elasticity	S275 max(T, t) = p _y = 275 N/				
From table 9: Design strength py Thickness of element Design strength Modulus of elasticity	max(T, t) = p _y = 275 N/	14.0 mm			
Thickness of element Design strength Modulus of elasticity	p _y = 275 N/	14.0 mm			
Design strength Modulus of elasticity	p _y = 275 N/				
Modulus of elasticity		mm²			
	<u>↓</u> <u>↓</u>				
200 7	→7 ←	→			
Lateral restraint					
	Span 1 has	alateral restrain	t at supports on	ly	
Effective length factors					
Effective length factor in major axis	K _x = 1.00				
Effective length factor in minor axis	Ky = 1.00				
Effective length factor for lateral-torsional buck	kling K _{LT.A} = 1.00 K _{LT.B} = 1.00				
Classification of cross sections - Section 3	-	//mm² / p _y] = 1.0	0		
Internal compression parts - Table 11			-		
Depth of section	d = 148 mm	n			
		' ×ε <= 80 ×ε	Class 1	l plastic	
Outstand flanges Table 11	G, (- 21.1		01000		
Outstand flanges - Table 11 Width of section	b = B = 90	mm			
	D = D = 90	mm ×ε<=9×ε	.	l plastic	

	Project Job no. 11 The Posting House, Tring Station, Tring, Hertfordshire 2599					2599			
CISTEC Chartered Engineers Suite 116, Milton Keynes Business Centre	Bo	Beam B1			Start page no./Revision DC 3				
khunter Drive, Linford Wood, Milton Keynes	O sha ha	1							
MK14 6GD Calcs by		Calcs date 04/06/2021	Checked by AA	Checked date	Approved by	Approved da			
		•			Section is	class 1 plas			
Shear capacity - Section 4.2.3									
Design shear force			abs(V _{max}), abs((Vmin)) = 66 kN					
		d / t < 70 >		not nood to be	abaakad far a	hoorbuck			
Shear area		$\Delta_{\rm v} = t \times D$	= 1400 mm ²	s not need to be	checked for s	Silear Ducki			
Design shear resistance			p _y × A _v = 231	kN					
Design shear resistance			-	hear resistance	exceeds desi	an shear fo			
Moment capacity - Section 4.2	5		200 200 gil 0.			gii onoui io			
Design bending moment		M = max/r	be(Magaza) at	DS(Ms1_min)) = 49.5	kNm				
Moment capacity low shear - cl.	4252			$D_{y} \times Z_{xx}$ = 80.1 kN					
			-	<i>by</i> ~ <i>2</i> , <i>x</i>) = co i i ki	••••				
Effective length for lateral-tors Effective length for lateral torsio	-	-		n					
Slenderness ratio	nai bucking		$Le = 1.0 \times L_{s1} = 3000 \text{ mm}$ $\lambda = Le / r_{yy} = 104.197$						
	ion 4 2 6 7	$n = \mathbf{L}$							
Equivalent slenderness - Sect Buckling parameter	1011 4.3.0.7	u = 0.953							
Torsional index	x = 12.979								
Slenderness factor				v = 1 / $[1 + 0.05 \times (\lambda / x)^2]^{0.25} = 0.698$					
Ratio - cl.4.3.6.9				1					
Equivalent slenderness - cl.4.3.	6.7	βw = 1.00 λιτ = u × v	$\lambda \times \lambda \times \sqrt{[\beta w]} =$	69.263					
Limiting slenderness - Annex B.2.2			$\lambda_{L0} = 0.4 \times (\pi^2 \times E / p_y)^{0.5} = 34.310$						
-		λ ιτ > λ ιο -	Allowance sl	hould be made f	or lateral-tors	ional buck			
Bending strength - Section 4.3	3.6.5								
Robertson constant		αlt = 7.0							
Perry factor		η∟⊤ = max	$\eta_{LT} = \max(\alpha_{LT} \times (\lambda_{LT} - \lambda_{L0}) / 1000, 0) = 0.245$						
Euler stress		$p_E = \pi^2 \times E$	$p_{E} = \pi^{2} \times E / \lambda_{LT}^{2} = 421.7 \text{ N/mm}^{2}$						
			$\phi_{LT} = (p_y + (\eta_{LT} + 1) \times p_E) / 2 = 400 \text{ N/mm}^2$						
Bending strength - Annex B.2.1		$p_{b} = p_{E} \times p_{c}$	$p_b = p_E \times p_y / (\phi_{LT} + (\phi_{LT}^2 - p_E \times p_y)^{0.5}) = 190.2 \text{ N/mm}^2$						
Equivalent uniform moment fa	actor - Section	4.3.6.6							
Moment at quarter point of segn		M ₂ = 37.1							
Moment at centre-line of segme		M ₃ = 49.5							
Moment at three quarter point o	fsegment		M ₄ = 37.1 kNm						
Maximum moment in segment Maximum moment governing bu	ckling resistant		$M_{abs} = 49.5 \text{ kNm}$ $M_{LT} = M_{abs} = 49.5 \text{ kNm}$						
Equivalent uniform moment fact	-								
		-		$M_2 + 0.5 \times M_3 + 0.5$	15 imesM4) / Mabs	s, 0.44) = 0. 9			
Buckling resistance moment -	Section 4.3.6.	4							
Buckling resistance moment			S _{xx} = 55.4 kNm	ı					
		Mь / mlt =			de destrue la				
		PASS - Bucki	ing resistance	e moment excee	as aesign bei	naing mom			
Check vertical deflection - Sec		ade							
Consider deflection due to dead Limiting deflection			250 = 12 mm						

Tekla	Project				Job no.	
Tedds	11 The Posting House, Tring Station, Tring, Hertfordshire				2599	
CISTEC Chartered Engineers	Calcs for				Start page no./Revision	
Suite 116, Milton Keynes Business Centre	Beam B1				DC 4	
Foxhunter Drive, Linford Wood, Milton Keynes MK14 6GD	Calcs by AQ	Calcs date 04/06/2021	Checked by AA	Checked date	Approved by	Approved date

PASS - Maximum deflection does not exceed deflection limit