

PLOTS 2 & 3 THE STEADINGS, GUILDEN ROAD, WARKWORTH, MORPETH, NORTHUMBERLAND, NE65 OWR PREPARED FOR CATH BASILIO



## **QUALITY CONTROL**

| Project No.    | GEOL22-8277                    | Client                                                         | Cath Basilio                      |  |  |  |  |  |
|----------------|--------------------------------|----------------------------------------------------------------|-----------------------------------|--|--|--|--|--|
| Design Team    | <b>Croft Design Collective</b> |                                                                |                                   |  |  |  |  |  |
| Report Type    | Phase II Ground Investig       | gation Re                                                      | eport                             |  |  |  |  |  |
| Planning Ref.  | 18/02096/FUL                   |                                                                |                                   |  |  |  |  |  |
| Project Type   | Change of use to resid         | dential (C                                                     | C3 use) with the erection of 2 no |  |  |  |  |  |
|                | dwellinghouses with as         | sociated a                                                     | gardens and off street parking    |  |  |  |  |  |
| Site Address   | Plots 2 and 3 The Stea         | Plots 2 and 3 The Steadings, Guilden Road, Warkworth, Morpeth, |                                   |  |  |  |  |  |
|                | Northumberland, NE65           | 0WR                                                            |                                   |  |  |  |  |  |
| NGR            | 424870, 605170                 |                                                                |                                   |  |  |  |  |  |
| Date           | 23/09/2022                     |                                                                |                                   |  |  |  |  |  |
| Prepared by    | Richard Stripp                 |                                                                |                                   |  |  |  |  |  |
| Qualifications | BSc (Hons) MSc FGS MIEnvSc     |                                                                |                                   |  |  |  |  |  |
| Position       | Director                       |                                                                |                                   |  |  |  |  |  |
| Checked by     | Martin Davidson                |                                                                |                                   |  |  |  |  |  |
| Qualifications | BSc (Hons) FGS                 |                                                                |                                   |  |  |  |  |  |

This document has been prepared by Geol Consultants Limited (GEOL) for the titled project and should not be relied upon by any other third party or used for any other project without written authorisation being obtained from GEOL. This report was prepared for the sole use of the Client named above, and shall not be relied upon or transferred to any other party without the express written authorisation from GEOL.

**Position** | Principal Geoenvironmental Engineer

BSc (Hons) CSci CEnv FGS MIEnvSc FCMI MoID

Approved by Terry McMenam

Director

Qualifications

**Position** 

The findings and opinions provided in this document are given in good faith and are subject to the limitations and constraints imposed by the methods and information sources described in this report. Factual information, including, where stated, a visual inspection of the site, has been obtained from a variety of sources. GEOL assumes the third-party information to be reliable, but has not independently confirmed this, therefore, GEOL cannot and does not guarantee the authenticity or reliability of third-party information it has relied upon. The findings and opinions presented in this report are also relevant to the dates when the assessment was undertaken but should not necessarily be relied upon to represent conditions at a substantially later date. Further information, ground investigation, construction activities, change of site use, or the passage of time may reveal conditions that were not indicated in the data presented and therefore could not have been considered in the preparation of the report. Where such information might impact upon stated opinions, GEOL reserves the right to modify the opinions expressed in this report. Where opinions expressed in this report are based on current available guidelines and legislations, no liability can be accepted by GEOL for the effects of any future changes to such guidelines and legislation.

| REPORT REVISION HISTORY             |             |            |    |     |  |  |  |
|-------------------------------------|-------------|------------|----|-----|--|--|--|
| Issue Description Date Author Appro |             |            |    |     |  |  |  |
| 1                                   | Final Issue | 23/09/2022 | RS | TMc |  |  |  |
|                                     |             |            |    |     |  |  |  |







## **TABLE OF CONTENTS**

| 1.0 INTRODUCTION                                 | PAGE 3  |
|--------------------------------------------------|---------|
| 2.0 SCOPE OF WORKS                               | PAGE 4  |
| 3.0 GROUND CONDITIONS                            | PAGE 4  |
| 4.0 INSITU GEOTECHNICAL TESTING                  | PAGE 5  |
| 5.0 LABORATORY TESTING                           | PAGE 6  |
| 6.0 GROUND CONTAMINATION RISK ASSESSEMENT        | PAGE 8  |
| 7.0 PRELIMINARY WASTE DISPOSAL ASSESSMENT        | PAGE 10 |
| 8.0 RECOMMENDATIONS FOR NEW BUILDING FOUNDATIONS | PAGE 12 |
| 9.0 RECOMMENDATIONS & GENERAL COMMENTS           | PAGE 12 |

| APPENDIX I   | SITE LOCATION PLAN, EXISTING SITE LAYOUT PLAN & PROPOSED DEVELOPMENT LAYOUT PLAN |
|--------------|----------------------------------------------------------------------------------|
| APPENDIX II  | INVESTIGATION LOCATION PLAN, BOREHOLE RECORD SHEETS & TRL DCP TEST RECORD SHEETS |
| APPENDIX III | LABORATORY TESTING RESULTS                                                       |
| APEENDIX IV  | WASTE CLASSIFICATION REPORT                                                      |



### 1.0 Introduction

Geol Consultants Limited (GEOL) were instructed by Cath Basilio to undertake an appropriate programme of intrusive ground investigation works for a parcel of land designated as Plots 2 & 3 positioned within the boundaries of an area known as The Steadings, located off Guilden Road in Warkworth, Northumberland, where proposals have been made to develop the site with 2 no. dwellinghouses with associated gardens and off street parking. A copy of the proposed development layout plan produced by Croft Design Collective, reference 1912WRK 105 Rev D, dated April 2020, can be seen attached in Appendix I. The National Grid Reference for the centre of the development area is 424870, 605170.

The purpose of this Phase II report is to provide information relating to the following to assist with the new residential development proposals.

- Identify the ground conditions below the site area, where access would allow to assess the geotechnical properties of the underlying made ground and natural deposits to assist with determining suitable and appropriate new building foundation designs
- The standard of the levels of contamination within the existing shallow soil deposits, to assess the standard of the standard impacts from those contaminants towards the construction workforce and future site end-users (Human Health) based on a Residential with homegrown produce end-use
- To Determine the scope of any further investigation works or remediation measures required for the site prior to commencing with the proposed residential development

As part of the Land Contamination Risk Management (LCRM) guidance, dated April 2021, this report should be read in conjunction with the Phase I Preliminary Contamination Risk Assessment (PCRA) produced for the site by GEOL, reference GEOL22-8277, dated July 2022. The findings contained in the PCRA report were considered to aid the design and scope of the intrusive investigation works carried out on site by GEOL.

The information contained in this Phase II report is limited to the area of the site as shown on the existing and proposed development layout plans attached in Appendix I, and to those areas accessible at the time of the ground investigation works being undertaken. When considering the scope of works completed for the development proposals, any features or issues not specifically mentioned cannot be assumed to have been covered.



## 2.0 Scope of Works

To determine the shallow ground conditions below the site area, ground investigation works were completed by GEOL and comprised the sinking of 5 no. boreholes (labelled BH01 to BH05) to assist with foundation designs. In addition, 4 no. TRL Dynamic Cone Penetration (DCP) tests were completed to assist with the construction of new areas of hardstanding and floor slabs.

Detailed descriptions of the strata encountered during the investigation works, together with the results of all insitu field testing, are presented on the borehole record sheets, copies of which can be seen attached in Appendix II. The borehole positions can be seen on the investigation location plan attached in Appendix II.

## 3.0 Ground Conditions

#### 3.1 Soil Profile

A summary of the ground conditions encountered at the investigation locations (BH01 to BH05) are given in the Table below.

| Strata                           | Depths Recorded                                  | Description & Comments                                                                                                                                                                                                                      |
|----------------------------------|--------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| MADE GROUND<br>Variable          | From 0.00m (GL)<br>to between<br>0.50m and 1.15m | Made ground was recorded comprising grass & dark brown sandy soil and grey sandy dolerite gravel overlying typically dark brown gravelly sand and dark brown sandy gravelly clay with fragments of brick, dolerite, sandstone and limestone |
| TOPSOIL                          | From 0.00m (GL)<br>to<br>0.30m                   | At the borehole location of BH04 only, undisturbed overgrown grass and dark brown sandy SOIL was recorded                                                                                                                                   |
| SUPERFICIAL GEOLOGY Glacial Till | From 0.30m to 1.15m<br>up to at least<br>5.45m   | The natural deposits comprise stiff dark brown CLAY with bands of loose and medium dense fine to medium grained SAND                                                                                                                        |

There was no obvious visual or olfactory evidence of any fuel / oil type contamination, 'ashy' materials, potential asbestos containing materials (ACM's) or bundles of fibres noted at the investigation locations. Similarly, there was also no evidence of any biodegradable or putrescible deposits.

#### 3.2 Groundwater

Water ingresses were recorded upon encountering shallow sand bands ranging between depths of 3.00m and 3.50m. Standing water levels of between 2.20m and 3.10m were observed on completion of the boreholes prior to backfilling.



#### 3.0 Ground Conditions (Cont'd)

#### 3.2 Groundwater (Cont'd)

Based on the water observations made at the investigation locations, heavy ingresses of water are unlikely to occur within shallow construction related excavations (i.e. <3m), although it would be deemed prudent to allow for the introduction of temporary groundwater control techniques (i.e. sump pumping), to take care of any localised ingresses of groundwater, during the construction period, especially during the wetter periods of the year.

For future site works, adequate lateral trench support will be required for excavations, to prevent trench wall collapse or over excavations, as well as to create a safe working environment below a depth of 1.20m, and any excavations on this site should remain open for as short a period as possible, since some of these materials may be susceptible to deterioration, if left open to the natural elements for any significant period.

#### 4.0 Insitu Geotechnical Testing

#### 4.1 Insitu CBR Tests

Dynamic Cone Penetrometer (DCP) and MEXE cone penetrometer tests were completed to determine the insitu strength / density of the underlying made ground and natural deposits to provide characteristic design CBR values for the soil deposits.

The DCP field results are analysed using the UK DCP 3.1 software package to calculate the thickness and strength / density of differing layers. The calculated results provided comprise penetration rates (mm / blow) & CBR values (%), and the DCP test results, including a graphical representation, can be seen within the DCP test reports attached in Appendix II.

The results have identified variable values for the deposits tested. However, where new areas of hardstanding surfacing and ground bearing slabs are to be constructed and where the initial made ground and natural deposits are to be used as an undisturbed subgrade in their present condition, an equivalent CBR design value of 3% should be taken for design purposes. It would be prudent to proof roll the exposed subgrade to identify any potential 'soft spots' which can be taken care of with the introduction of additional subbase and / or the use of geogrid.



## 4.0 Insitu Geotechnical Testing (Cont'd)

#### 4.2 Insitu Hand Shear Vane Tests

Insitu hand shear vane tests were undertaken within the natural clay deposits encountered at the borehole locations and a summary of the results obtained can be seen in the Table below.

| Strata                | Results                                                     | Comments                                                                         |
|-----------------------|-------------------------------------------------------------|----------------------------------------------------------------------------------|
| Natural CLAY Deposits | Shear strength values ranging between 50kN/m² and >130kN/m² | The hand shear vane test results for the natural clay deposits are indicative of |
|                       | have been recorded                                          | medium and high strength deposits                                                |

#### 4.3 Insitu Cone Penetration Tests

Insitu cone penetration tests (CPT's) were undertaken within the natural sand and clay deposits encountered at the borehole locations. A summary of the results obtained can be seen in the Table below.

| Strata        | SPT Results                                                     | Comments                                                                                             |
|---------------|-----------------------------------------------------------------|------------------------------------------------------------------------------------------------------|
| SAND Deposits | CPT 'N' values ranging between 5<br>up to 24 have been recorded | The results obtained for the natural sand deposits are indicative of loose and medium dense deposits |
| CLAY Deposits | CPT 'N' values ranging between 6 up to 40 have been recorded    | The results obtained for the natural clay deposits are suggestive of soft, firm and stiff strata     |

### 5.0 Laboratory Testing

#### 5.1 Determination of Liquid & Plastic Limits

Six representative samples of the natural clay deposits recovered from the site were tested to determine their moisture content and liquid & plastic limits, to ascertain their volume change potential (shrinkage or swelling), to help assist with future foundation designs. The results of the tests are contained in the Professional Soils Laboratory (PSL) Laboratory Report (reference PSL22/5167), a copy of which can be seen attached in Appendix III.

The natural clay deposits tested fall within the intermediate and high plasticity range, and when considering the amount passing the 425um sieve, they display a medium volume change (shrinkage or swelling) potential. Therefore, these natural deposits may undergo significant changes in volume if large changes in their natural moisture content were to occur due to seasonal variations or the like, and as such if new foundations were to be based within these deposits, they should be placed at a minimum depth of 0.90m below finished ground levels.



### 5.0 Laboratory Testing (Cont'd)

#### 5.1 Determination of Liquid & Plastic Limits (Cont'd)

It should be noted that the natural clay deposits at the location of the BH04, and adjacent to an existing hedgerow, were observed to be 'dry' / desiccated to a depth of at least 1.00m. This is confirmed by the results of the testing identifying slightly lower moisture contents (16%) compared the natural clays tested away from the hedgerow (between 18% & 19%).

As such, consideration will need to be given to the presence of existing, proposed or recently removed vegetation to avoid the effects of future shrinkage and swelling of the natural deposits, and as such minimum foundation depths may need to be increased to take this into account. Reference should be made to the NHBC Technical Standards guidance, Part 4.2 Building Near Trees, and BS5837:2012 – Trees in relation to design, demolition and construction – Recommendations.

#### 5.2 Determination of Chemical Attack on Buried Concrete

Eleven representative samples of the made ground, topsoil and natural deposits encountered at the investigation locations were tested by Derwentside Environmental Testing Services Limited (DETS) to determine their pH value and soluble sulphate levels, so these materials can be classified in accordance with the guidance BRE Special Digest 1:2005, Concrete in Aggressive Ground. The results of the tests are contained in the DETS Certificate of Analysis, report reference 22-15348, a copy of which can be seen in Appendix III.

The laboratory test results have recorded soluble sulphate concentrations ranging between 17mg/l up to 180mg/l, and pH values ranging between 7.0 to 9.8. Therefore, where future foundations and buried concrete are to be constructed the site can be given a Design Sulphate Class classification of DS-1. The Aggressive Chemical Environment for Concrete (ACEC) class for the deposits present can be assessed as AC-1, assuming mobile water ground conditions and based on brownfield locations.

### 5.3 Contamination Screening / Screening Strategy

Eight representative samples of the made ground and topsoil deposits encountered at the investigation locations were screened for a wide range of chemical analytes to determine the levels of contamination present, to allow an assessment of the risks these materials may pose to the future site end-users and construction workforce. Ground contamination laboratory testing was completed by DETS of Consett, Co. Durham (UKAS & MCERTS accredited), and the suite of chemical analysis carried out is summarised on the following page.



## 5.0 Laboratory Testing (Cont'd)

#### Contamination Screening / Screening Strategy (Cont'd)

- 🜃 8 no. soil samples tested for Arsenic, Cadmium, Chromium (III & VI), Copper, Lead, Mercury, Nickel, Selenium, Zinc, Cyanide (free) and Total Organic Carbon (TOC)
- 🔻 8 no. soil samples screened for Speciated Polycyclic Aromatic Hydrocarbons (PAH's) based on the current USEPA 16 PAH's
- 🔻 6 no. soil sample screened for Petroleum Hydrocarbons (EPH C6-C40) used for the purposes of completing a waste classification assessment for the off-site disposal of soils if required
- 8 no. soil samples tested for Asbestos (presence)

The results of the tests are contained in the DETS Certificate of Analysis, report reference 22-15348, a copy of which can be seen in Appendix III, and a summary of the contamination results can be seen in the Table on the following page.

#### **Ground Contamination Risk Assessment** 6.0

#### 6.1 Human Health Risk Assessment

A Human Health Generic Quantitative Risk Assessment (GQRA) is carried out by comparing measured concentrations in soil with generic screening values appropriate for the Conceptual Model and pollutant linkage(s) being assessed. Provided the measured concentrations are below appropriate generic screening criteria, the risk from the pollutant linkages(s) being assessed are unlikely to represent a significant risk. The generic screening values referred to above usually take the form of risk-based Generic Assessment Criteria (GAC) values, that are most typically derived using the Environment Agency's Contaminated Land Exposure Assessment (CLEA) Model.

For the purpose of this Human Health contamination risk assessment, and when considering the nature and sensitivity of the proposed development (Residential with homegrown produce), the results have been compared against currently available assessment values published by LQM / CIEH (Suitable 4 Use Levels – S4UL's), CL:AIRE Category 4 Screening Levels (C4SL's) and Atkins ATRISKsoil Soil Screening Values (SSVs) for Cyanide only. To allow an assessment of the level of risk to be made, the shallow soil deposits present on this site has been assessed by comparing the maximum recorded value against the appropriate critical concentration.



## 6.0 Ground Contamination Risk Assessment (Cont'd)

### 6.1 Human Health Risk Assessment (Cont'd)

| Generic Analytes     | Critical concentration (mg/kg) | No. of samples<br>screened | Max. concentration recorded (mg/kg) |
|----------------------|--------------------------------|----------------------------|-------------------------------------|
| Arsenic              | 37 <sup>(1)</sup>              | 8                          | 15                                  |
| Cadmium              | 11 <sup>(1)</sup>              | 8                          | 0.6                                 |
| Chromium III         | 910 <sup>(1)</sup>             | 8                          | 34                                  |
| Chromium VI          | 6 <sup>(1)</sup>               | 8                          | <1.0                                |
| Copper               | 2,400 <sup>(1)</sup>           | 8                          | 150                                 |
| Lead                 | 200 <sup>(3)</sup>             | 8                          | 120                                 |
| Mercury              | 40 <sup>(1)</sup>              | 8                          | 0.16                                |
| Nickel               | 180 <sup>(1)</sup>             | 8                          | 27                                  |
| Selenium             | 250 <sup>(1)</sup>             | 8                          | 1.2                                 |
| Zinc                 | 3700 <sup>(1)</sup>            | 8                          | 260                                 |
| Cyanide              | 34 <sup>(2)</sup>              | 8                          | 0.3                                 |
| Asbestos             | Presence                       | 8                          | No asbestos detected                |
| Speciated PAH's      |                                |                            |                                     |
| Acenaphthene         | 1,100 <sup>(1)</sup>           | 8                          | 1.7                                 |
| Acenaphthylene       | 920 <sup>(1)</sup>             | 8                          | 0.6                                 |
| Anthracene           | 11,000 <sup>(1)</sup>          | 8                          | 3.3                                 |
| Benzo(a)anthracene   | 13 <sup>(1)</sup>              | 8                          | 6.1                                 |
| Benzo(a)pyrene       | 3.0 <sup>(1)</sup>             | 8                          | 5.2                                 |
| Benzo(b)fluoranthene | 3.7 <sup>(1)</sup>             | 8                          | 4.1                                 |
| Benzo(ghi)perylene   | 350 <sup>(1)</sup>             | 8                          | 3.4                                 |
| Benzo(k)fluoranthene | 100 <sup>(1)</sup>             | 8                          | 2.8                                 |
| Chrysene             | 27 <sup>(1)</sup>              | 8                          | 6.4                                 |
| Dibenz(ah)anthracene | 0.3 <sup>(1)</sup>             | 8                          | 8.2                                 |
| Fluoranthene         | 890 <sup>(1)</sup>             | 8                          | 18                                  |
| Fluorene             | 860 <sup>(1)</sup>             | 8                          | 3.1                                 |
| Indeno(123cd)pyrene  | 41 <sup>(1)</sup>              | 8                          | 3.5                                 |
| Naphthalene          | 13 <sup>(1)</sup>              | 8                          | 0.2                                 |
| Phenanthrene         | 440 <sup>(1)</sup>             | 8                          | 19                                  |
| Pyrene               | 2,000 <sup>(1)</sup>           | 8                          | 14                                  |

<sup>(1) =</sup> The LQM/CIEH Suitable 4 Use Levels (Residential with homegrown produce, 6% SOM) GEOL S4UL3816, (2) = ATRISK<sup>SOIL</sup> SSV (2015), (3) = CL:AIRE C4SLs (Residential with homegrown produce)



#### 6.0 Ground Contamination Risk Assessment (Cont'd)

#### Human Health Risk Assessment (Cont'd) 6.1

The maximum concentration values for most of the contaminants listed in the Table on the previous page do not exceed the critical concentration values adopted for this site, based on an end-use of Residential with homegrown produce.

However, exceedances of Benzo(a)pyrene, Benzo(b)fluoranthene and Dibenz(ah)anthracene have been recorded within the initial made ground and soil deposits recorded at several investigation locations. As such the levels of PAH's will represent an unacceptable risk to the future site end-users where exposure pathways are available post completion of the proposed development (i.e. within gardens and areas of soft landscaping). Therefore, remedial measures in the form of either removal of all made ground deposits / or the provision of clean (inert) soil will be required for all proposed gardens and areas of soft landscaping to make the development safe for future occupation.

It should be noted the made ground deposits can remain on site below areas of future hardcover (buildings and roadways) without representing a significant risk towards the future end-users.

Based on the contamination results obtained for the made ground, a Remediation Strategy (RS) will need to be produced for this development site and the contents will need to be agreed with the Local Planning Authority, prior to undertaking / implementing the necessary protection measures.

#### 7.0 **Preliminary Waste Disposal Assessment**

An assessment of any excavated materials which are generated from the creation of foundations, services, and the like, which cannot be accommodated on site and are required to be discarded and removed from site as a waste should be assessed and classified in accordance with the Environment Agency's Technical Guidance WM3: Waste Classification - Guidance on the classification and assessment of waste (1st Edition v1.1, June 2018).

Where any materials are being removed from site they should be disposed of at a suitably licensed and appropriate Landfill based on their classification, with a duty of care system in place and maintained throughout the disposal operation. Excavated materials should be segregated into different waste streams (i.e. made ground, impacted strata and natural strata) so that the materials can be appropriately assessed, classified and sent to the correct waste facility. It should be noted that prior to offsite disposal of any soils from this site, that additional sampling, analysis and screening may be required once the waste stream has been identified and volumes of material requiring disposal have been determined.



## 7.0 Preliminary Waste Disposal Assessment (Cont'd)

The made ground and soil deposits have been assessed using the WM3 technical guidance in conjunction with the on-line classification software tool HazWasteOnline<sup>TM</sup>. The soil screening results for each sample have been assessed individually to determine if the materials can be considered as a single waste stream or whether different areas of the site represent separate waste streams.

Based on the physical (visual and olfactory) appearance of the materials / samples tested, the materials have been assessed from the WM3 List of Waste (LoW) codes as either 17 05 03 (waste and stones containing hazardous substances) or 17 05 04 (waste and stones other than those mentioned in 17 05 03).

In order to determine the correct waste code to assign to each sample tested, the contamination screening results have been assessed by the HazWasteOnline<sup>TM</sup> software, and the full Classification Reports can be seen in Appendix IV. A summary of the results can be seen in the Table below.

| Position | Sample Depth (m) | Strata  | Waste Code | WM3 Waste Classification |
|----------|------------------|---------|------------|--------------------------|
| SS1      | -                | MG      | 17 05 04   | Non-Hazardous            |
| BH01     | 0.05-0.50        | MG      | 17 05 04   | Non-Hazardous            |
| BH02     | 0.00-0.20        | MG / TS | 17 05 04   | Non-Hazardous            |
| BH02     | 0.20-0.55        | MG      | 17 05 04   | Non-Hazardous            |
| BH03     | 0.20-0.45        | MG      | 17 05 04   | Non-Hazardous            |
| BH04     | 0.00-0.30        | TS      | 17 05 04   | Non-Hazardous            |
| BH05     | 0.30-0.60        | MG      | 17 05 04   | Non-Hazardous            |
| BH05     | 0.80-1.15        | MG      | 17 05 04   | Non-Hazardous            |

MG = Made ground, TS = Topsoil

The made ground and topsoil deposits present across the site can be considered as Non-Hazardous Waste (LoW code 17 05 04) and can be disposed of at a Non-Hazardous Landfill, without the requirement for any further testing. Based on the TOC values recorded for the made ground and topsoil deposits (between 1.3% up to 15%) not all of these materials would meet the Inert Waste acceptance criteria for disposal at an Inert Landfill, and therefore there would be no merit in carrying out further WAC testing on these materials if they are intended to be disposed of off-site.

Excavated materials (i.e. made ground free of significant contamination and natural strata) can be reused on this site as a general fill providing this material meets any geotechnical requirements for its intended end-use, however, these materials should be inspected to determine if any unforeseen potential contamination not previously identified requires an assessment. It may be necessary for confirmatory contamination screening to be carried out to confirm the suitability of the reuse of these materials.



## 7.0 Preliminary Waste Disposal Assessment (Cont'd)

Where natural strata is to be disposed of as a waste it is likely that subject to the completion of WAC testing, that these materials should meet the criteria for disposal at an Inert Waste Landfill. The number of samples to be screened would be dependent on the volume requiring disposal.

## 8.0 Recommendations for New Building Foundations

For the purposes of the following discussion, it is assumed that there will be only limited changes to the ground levels across the site area investigated, and recommendations are provided from existing ground levels. If significant changes in site levels are envisaged, then a reassessment of the foundation recommendations should be undertaken taking these changes into account.

From the shallow boreholes sunk on site by GEOL, the topsoil and made ground was recorded over the site to depths ranging between 0.30m up to 1.15m, in turn underlain by natural clay deposits, which are thought to be representative of Devensian Till.

Based on the findings of these ground investigation works and the insitu geotechnical testing, foundations based within the natural clay deposits can be designed to a maximum allowable bearing pressure of 150kN/m². Foundations should be maintained at a minimum depth of 0.90m below finished ground levels. However, consideration will need to be given to foundation depths where the existing hedgerow will influence the construction of new foundations within the natural clays, to take into account shrinkage / swell potential.

For all foundation excavations it would be prudent to make an allowance for these to be inspected by a suitably qualified Geotechnical Engineer during the construction phase of works, to verify the correct founding strata and depths have been achieved, and to ensure there are no significant changes or variations in the ground conditions below parts of the site where boreholes were not sunk.

#### 9.0 Recommendations & General Comments

During the ground preparation works and the development of the site, should the ground conditions appear to differ from those already identified as part of these investigation works, then advice should be sought from a suitably qualified Engineer to determine if a reassessment of the ground conditions and recommendations is required before the development progresses further.

From the results of the contamination screening and risk assessments carried out, and based on the sensitive nature of the proposed development (Residential end-use), it can be seen that the initial shallow soil and made ground deposits present below the site will represent an unacceptable level of risk towards future end-users (Human Health).



### 9.0 Recommendations & General Comments (Cont'd)

Therefore, these materials should either be covered with a layer of clean cover and / or excavated and removed from site to negate future risks to human health post-development of the residential dwellings. As such, there is a requirement for remediation and validation works to be completed on this site associated with ground contamination.

Furthermore and in accordance with Northumberland County Councils policy on mine gas protection, which is uniform over all Coal Authority low and high risk development areas within Northumberland, gas protection measures will need to be installed to a minimum classification of Characteristic Situation 2 (CS2). This level of protection would also provide the necessary level of protection to meet the required basic radon protection measures. As such, appropriate gas protection measures will be needed for the proposed development and should be selected based on the characteristic situation using the guidance contained in Section 7 of the BS8485:2015 + A1:2019 document.

When considering the above points, a Remediation Strategy will need to be compiled for the site / proposed development and submitted to Northumberland County Council for approval prior to the development commencing detailing the design of the gas protection measures in accordance with the guidance BS8485:2015 + A1:2019 Code of practice for the design of protective measures for methane and carbon dioxide ground gases for new buildings and the proposed remediation for dealing with ground contamination.

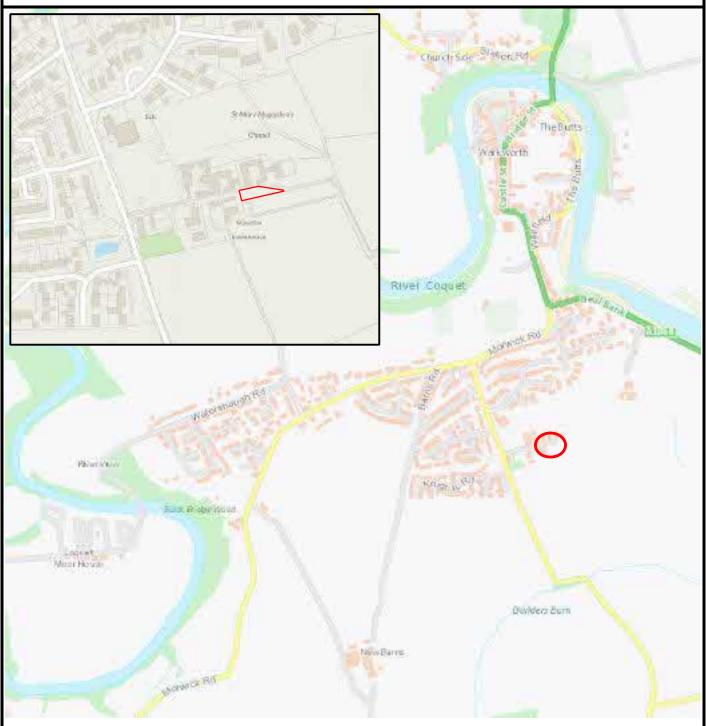
For future site works, adequate lateral trench support will be required for excavations, in order to prevent trench wall collapse or over excavations, as well as to create a safe working environment below a depth of 1.20m, and any excavations on this site should remain open for as short a period as possible, since some of these materials may be susceptible to deterioration, if left open to the natural elements for any significant period of time.

It is also recommended for any new developments, adequate surface drainage should be designed and installed by a competent contractor, to prevent surface water 'ponding' or collection, during and post construction, particularly where the existing surface drainage system is disrupted or damaged.

In addition, for deeper excavations, drainage, service runs or the like that may pass close to or beneath any proposed new foundations, these should be undertaken with care and completed prior to the preparation of any new foundations, so as not to allow any loose or granular material to move or 'flow', thus causing settlement to occur to any new foundations based at a higher level.

**End of Report** 




## APPENDIX I

Site Location Plan
Existing Site Layout Plan &
Proposed Development Layout Plan

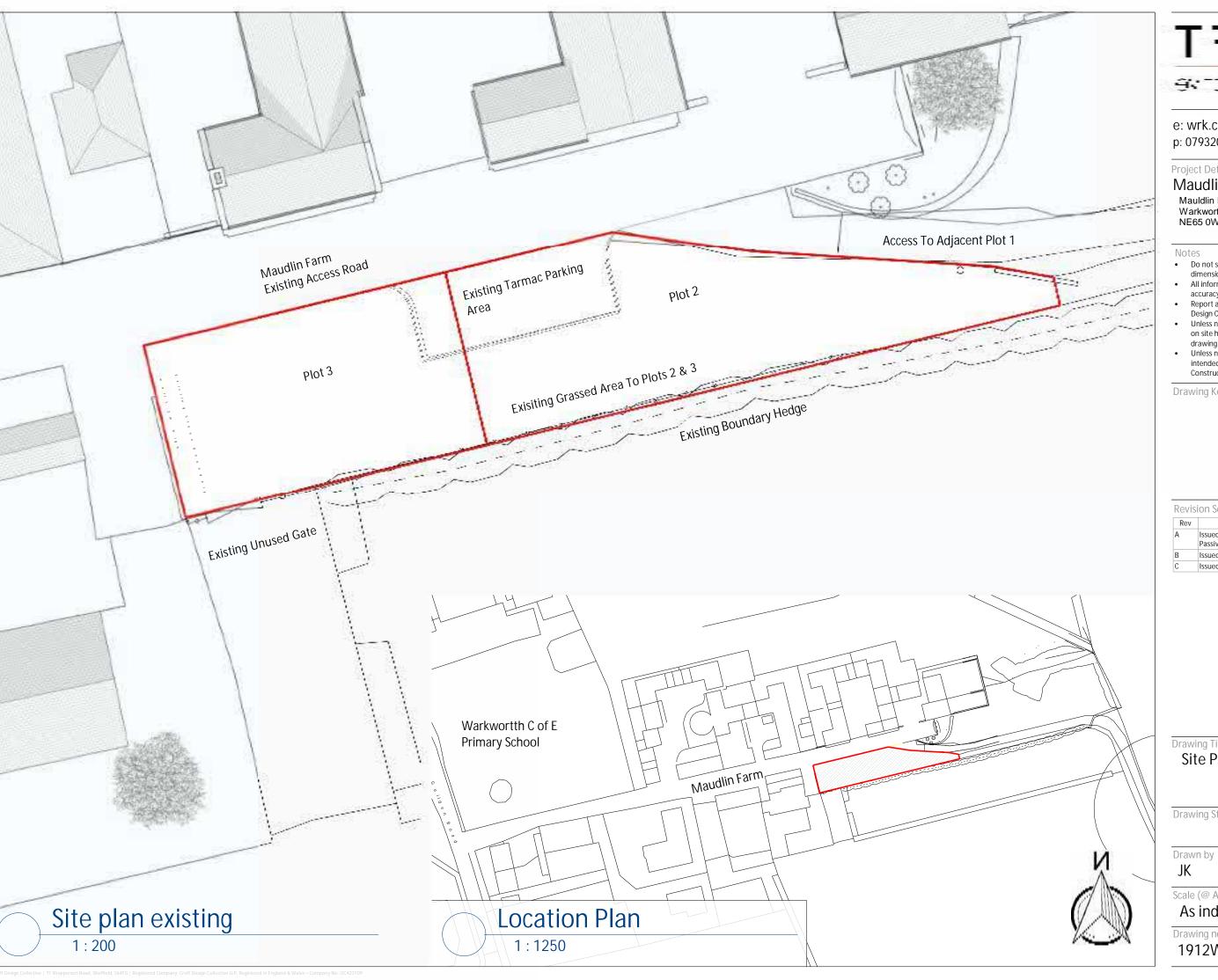


3 Gladstone Terrace Gateshead Tyne & Wear NE8 4DY Tel: 0191 477 2020

Email: enquiries@geolconsultants.co.uk






## SITE LOCATION PLAN



Purpose of Plan: Phase II Ground Investigation Report

Site Address: Plots 2 and 3 The Steadings, Guilden Road, Warkworth, Northumberland, NE65 OWR

Project No.: GEOL22-8277



# CROFT

design collective

e: wrk.croftdesign@gmail.com p: 07932017628 / 07748824567

Project Details

## Maudlin Farm Road

Mauldlin Farm Warkworth NE65 0WR

- Do not scale from this drawing, work to figured
- dimensions only.
  All information is to be checked onsite for
- Report any discrepancies or ommissions to Croft Design Collective
- Unless noted, changes made to the design intent on site have not been incorporated into this
- Unless noted information on this drawing is intended as 'design intent' and not to be used for

Drawing Key

Revision Schedule:

| Rev | Description                                  | Date       | Ву |
|-----|----------------------------------------------|------------|----|
| A   | Issued to Clients &<br>Passivhaus Consultant | 28/04/2020 | JK |
| В   | Issued to Clients                            | 25/06/2020 | JK |
| С   | Issued for Planning                          | 03/07/2020 | JK |

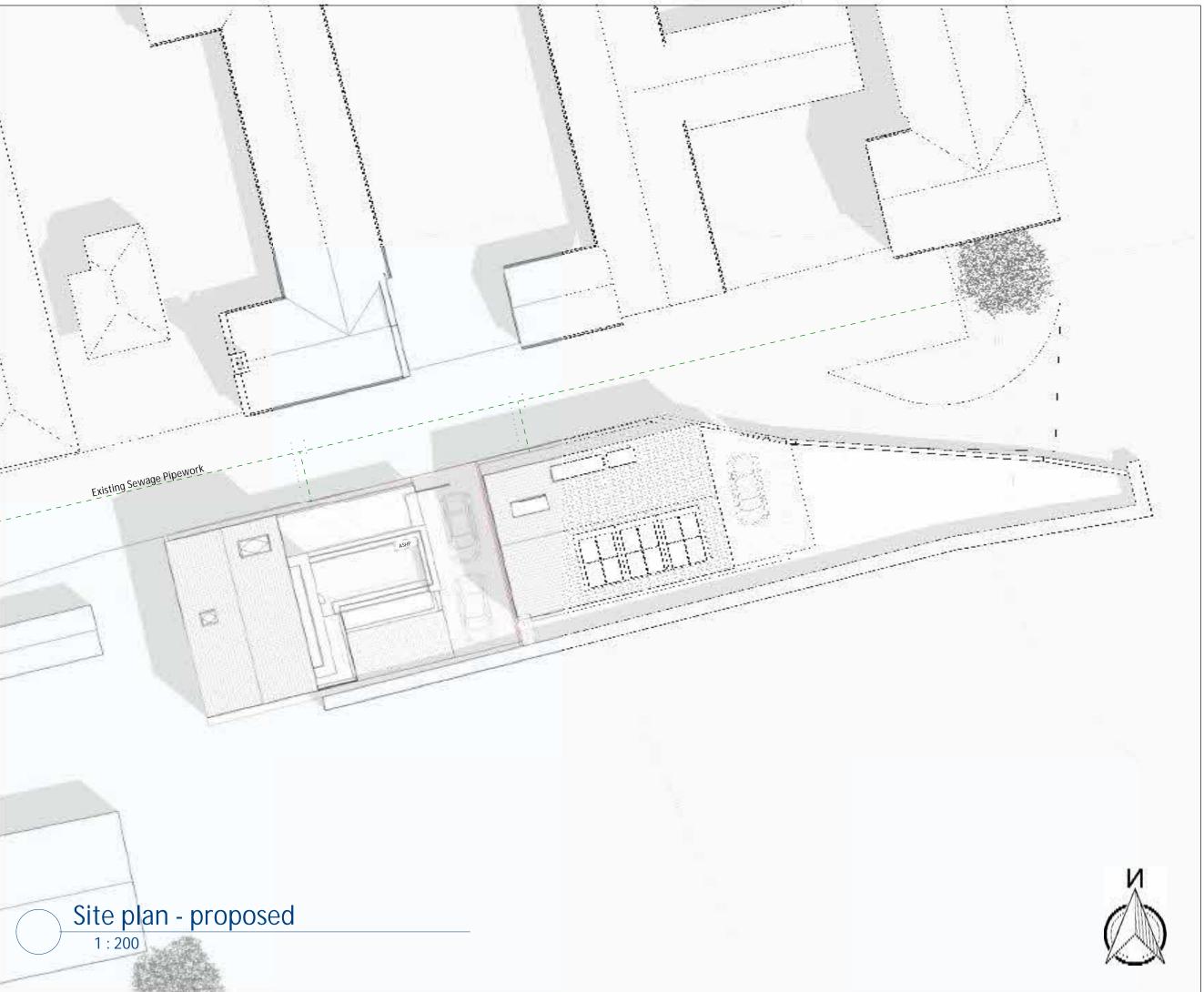
Drawing Title

Site Plan - Existing

Drawing Status

Planning

Checked by FmK


Scale (@ A3)

As indicated Feb 2020

Drawing no.

C

1912WRK \_100



# CROFT

design collective.

e: wrk.croftdesign@gmail.com p: 07932017628 / 07748824567

## Project Details Maudlin Farm Road

Mauldlin Farm Warkworth NE65 0WR

#### Notes

- Do not scale from this drawing, work to figured
- dimensions only.

  All information is to be checked onsite for
- Report any discrepancies or ommissions to Croft
- Unless noted, changes made to the design intent on site have not been incorporated into this
- Unless noted information on this drawing is intended as 'design intent' and not to be used for

Drawing Key

Revision Schedule:

| Rev | Description                                  | Date       | Ву |
|-----|----------------------------------------------|------------|----|
| Α   | Issued to Clients &<br>Passivhaus Consultant | 28/04/2020 | JK |
| В   | Issued to Clients                            | 25/06/2020 | JK |
| С   | Issued for Planning                          | 03/07/2020 | JK |
| D   | Re-Issued for Planning                       | 28/08/2020 | JK |

Drawing Title

Site Plan Proposed

Drawing Status

Planning

Drawn by JK

Checked by FmK

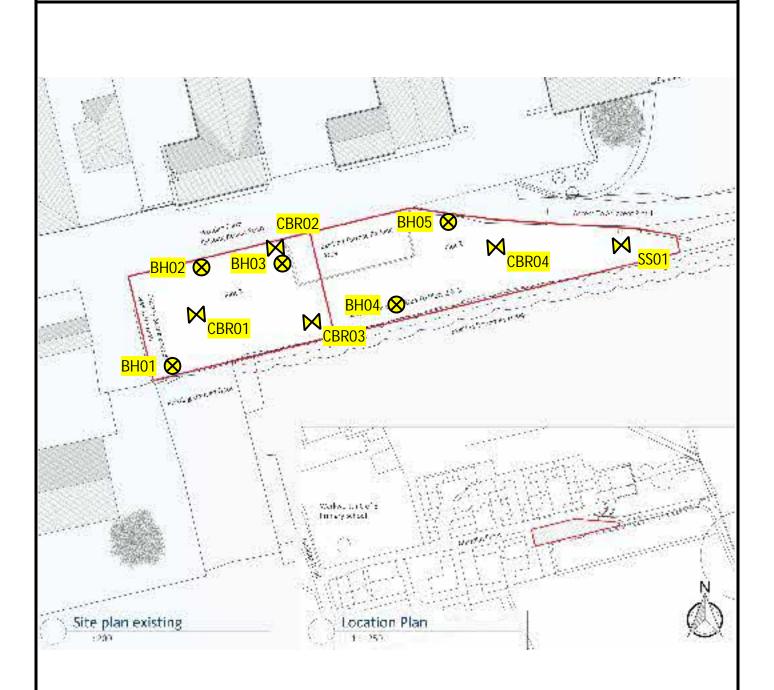
Scale (@ A3)

As indicated Apr 2020

Drawing no. 1912WRK \_105

D

## **APPENDIX II**


Investigation Location Plan Borehole Record Sheets & TRL DCP Record Sheets



3 Gladstone Terrace Gateshead Tyne & Wear NE8 4DY

Tel: 0191 477 2020

Email: enquiries@geolconsultants.co.uk





## INVESTIGATION LOCATION PLAN



Purpose of Plan: Phase II Ground Investigation Report

Site Address: Plots 2 & 3 The Steadings, Warkworth, Northumberland, NE65 OWR

Project No.: GEOL22-8277



## BOREHOLE LOG

| Project<br>Plots 2 & | 3 The S               | Steadings                   | . W            | arkwo           | rth Nor                               | thumberla                 | and                    |                                                                                                      |                           | BOREH                                           |         | NO             |
|----------------------|-----------------------|-----------------------------|----------------|-----------------|---------------------------------------|---------------------------|------------------------|------------------------------------------------------------------------------------------------------|---------------------------|-------------------------------------------------|---------|----------------|
| Job No               | 3 1110 1              | Dat                         |                | unkwo           | 111, 1101                             | Ground Le                 |                        | Co-Ordinates ()                                                                                      |                           | ⊢ BH                                            | 01      |                |
| GEOL2                | 22-8277               | 7                           | 0              | 1-08-2          | 2                                     |                           |                        |                                                                                                      |                           |                                                 |         |                |
| Contractor           |                       |                             |                |                 |                                       |                           |                        |                                                                                                      |                           | Sheet                                           |         |                |
| Geo                  | l Consi               | ıltants L                   | imite          | ed              |                                       |                           |                        |                                                                                                      |                           | 1 0                                             | f 1     |                |
| SAMPLI               | ES & T                | ESTS                        |                |                 |                                       |                           |                        | STRATA                                                                                               |                           |                                                 | >       | nent/          |
| Depth                | Type<br>No            | Test<br>Result              | Water          | Reduce<br>Level |                                       | Depth<br>(Thick-<br>ness) |                        | DESCRIPTION                                                                                          |                           |                                                 | Geology | Instrument     |
| 0.05-0.50            | ES                    |                             |                |                 |                                       | 0.05/<br>(0.45)<br>0.50   | Medium a<br>fragments  | rlying dark brown sandy soil (M<br>and dark brown slightly clayey sa<br>and dolerite gravel (MADE GR | and with abunda<br>OUND). |                                                 |         |                |
|                      |                       |                             |                |                 |                                       | 0.70                      | Stiff (high            | um brown sandy gravelly CLAY<br>strength) dark brown and grey<br>LAY (GLACIAL TILL).                 |                           | lightly                                         |         | PACKET.        |
| 1.00<br>1.00         | B<br>HSV              | >130kN/m                    | 1 <sup>2</sup> |                 |                                       | (1.30)                    |                        |                                                                                                      |                           |                                                 |         |                |
| 1.90                 | HSV                   | >130kN/m                    |                |                 |                                       | 2.00                      | Stiff (high<br>(GLACIA | strength) dark brown slightly si<br>L TILL).                                                         | ilty slightly grav        | relly CLAY                                      |         | ACK CASE       |
| 2.00                 | HGV                   | 120LN/                      | 2              |                 | x x x x x x x x x x x x x x x x x x x | (1.00)                    |                        |                                                                                                      |                           |                                                 |         | WOWOWOWO       |
| 2.90<br>3.00-3.45    | CPT                   | >130kN/m<br>N=11            | <u>‡</u>       |                 |                                       | (0.60)                    | Medium o               | lense medium brown fine to med<br>L TILL).                                                           | lium grained SA           | AND                                             |         | CANCARCA CA    |
| 3.80                 | HSV                   | 50kN/m <sup>2</sup>         |                |                 | × × × × × × × × × × × × × × × × × × × | (0.30)                    | CLAY (G                | lium strength) dark brown slight LACIAL TILL).                                                       |                           |                                                 |         |                |
| 4.00-4.45            | СРТ                   | N=9                         |                |                 |                                       | (0.84)                    | Loose med TILL).       | dium brown fine to medium grai                                                                       | ned SAND (GL              | ACIAL                                           |         | CANCEL CONTROL |
| 5.00-5.45<br>5.00    | CPT<br>HSV            | N=40<br>74kN/m <sup>2</sup> |                |                 | × × × × × × × × × × × × × × × × × × × | (0.71)                    | Stiff (high<br>(GLACIA | n strength) dark brown slightly si<br>L TILL).                                                       | ilty slightly lami        | nated CLAY                                      |         | TOWN ON ON ON  |
|                      |                       |                             |                |                 |                                       | -                         | Borehole               | terminated at 5.45m.                                                                                 |                           |                                                 |         |                |
|                      | Windo                 | wless Sa                    |                |                 | rilling P                             | rogress                   |                        |                                                                                                      |                           | GENE                                            |         |                |
| Depth 0              | Casing                | Diameter 5.45               | Rec            | covery          |                                       | Remarks                   |                        |                                                                                                      |                           | REMA WATER: Strike standing level a completion. | e at 3. | 50r            |
|                      |                       |                             |                |                 |                                       |                           |                        |                                                                                                      |                           |                                                 |         |                |
| All dimens           | ions in m<br>e 1:37.5 | netres C                    | lient          | Catl            | n Basilio                             | )                         |                        | hod/<br>nt Used Competitor Dart 1                                                                    | Rig                       | Logged By<br>RS                                 |         |                |



## BOREHOLE LOG

| Project              |              |                  |          |                     |                                         |                                                   |                    | BOREHOLE No      |                                                                   |                   |                                                 |          |             |
|----------------------|--------------|------------------|----------|---------------------|-----------------------------------------|---------------------------------------------------|--------------------|------------------|-------------------------------------------------------------------|-------------------|-------------------------------------------------|----------|-------------|
| Plots 2 & 3          | 3 The S      | steading         | s, W     | <sup>7</sup> arkwor | th, Nor                                 | thumberla                                         | and                |                  |                                                                   |                   | BL                                              | 102      |             |
| Job No               |              | Da               | te       |                     |                                         | Ground L                                          | evel (m)           |                  | Co-Ordinates ()                                                   |                   | ы                                               | 102      |             |
| GEOL2                | 2-8277       | '                | 0        | 1-08-22             | 2                                       |                                                   |                    |                  |                                                                   |                   |                                                 |          |             |
| Contractor           |              |                  |          |                     |                                         |                                                   |                    |                  |                                                                   |                   | Sheet                                           |          |             |
| Geol                 | l Consu      | ıltants L        | imit     | ed                  |                                         |                                                   |                    |                  |                                                                   |                   | 1 0                                             | of 1     |             |
| SAMPLE               | ES & T       | ESTS             |          |                     |                                         |                                                   |                    |                  | STRATA                                                            |                   |                                                 |          | ent/        |
| Depth                | Type<br>No   | Test<br>Result   | Water    | Reduced<br>Level    | Legend                                  | Depth<br>(Thick-<br>ness)                         |                    |                  | DESCRIPTION                                                       |                   |                                                 | Geology  | Instrument/ |
| 0.00-0.20            | ES           |                  |          |                     |                                         | 0.20                                              | Grass o            | verlyi           | ng dark brown sandy soil (MADE                                    | GROUN             | D).                                             |          |             |
| 0.20-0.55            | ES           |                  |          |                     |                                         | (0.35)<br>0.55                                    | Medium<br>sandsto  | n brow<br>ne and | n gravelly sand with occasional c<br>l large cobbles (MADE GROUNE | oal, brick<br>)). | fragments,                                      |          |             |
| •                    |              |                  |          |                     | -0. :                                   | 0.60                                              | Still da           |                  | wn sandy CLAY.                                                    |                   | /                                               |          |             |
| _0.90                |              | >130kN/r         | $n^2$    |                     |                                         | (0.40)                                            | medium<br>gravelly | brow<br>CLA      |                                                                   | ightly sand       | dy slightly                                     |          |             |
| 1.00                 | В            |                  |          |                     | * - x - x - x - x - x - x - x - x - x - | <del>                                      </del> | Stiff (hi<br>(GLAC | gh str<br>IAL T  | ength) dark brown and grey slight<br>ILL).                        | ly silty CI       | <b>LAY</b>                                      |          |             |
| 2.00                 | HSV          | >130kN/r         | m²       | 7                   | × × × × × × × × × × × × × × × × × × ×   | 7 (2.00)<br>7 (2.00)                              |                    |                  |                                                                   |                   |                                                 |          |             |
| 2.90<br>3.00-3.45    | HSV :<br>CPT | >130kN/r<br>N=22 | <b>1</b> |                     | × × × × × × × × × × × × × × × × × × ×   | 3.00                                              | Medium<br>(GLAC    |                  | e medium brown fine to medium g<br>ILL).                          | grained SA        | AND                                             |          |             |
| 4.00-4.45            | СРТ          | N=6              |          |                     | × × × = × = × × = × × = × × = × = × = × | 3.90                                              | Stiff da           | rk bro           | wn and grey slightly silty CLAY (                                 | GLACIA            | L TILL).                                        |          |             |
|                      |              |                  |          |                     | <u>**</u>                               | - 4.45<br>-<br>-<br>-                             | Borehol            | e tern           | ninated at 4.45m.                                                 |                   |                                                 |          | 200         |
| Depth C 4.45         |              |                  |          |                     |                                         | -<br>-<br>-<br>-<br>-<br>-<br>-                   |                    |                  |                                                                   |                   |                                                 |          |             |
|                      | Windo        | wless S          | amp      | ling Dr             | illing P                                | rogress                                           | 1                  |                  |                                                                   |                   | GENE                                            | RAI      |             |
|                      | Casing       | Diamete          |          | covery              |                                         | Remarks                                           |                    |                  |                                                                   |                   | REMA                                            |          |             |
| 4.45                 |              | 4.45             |          |                     |                                         |                                                   |                    |                  |                                                                   |                   | WATER: Strik<br>standing level a<br>completion. | e at 3.0 | 00m,        |
| All dimensi<br>Scale | ons in m     | etres            | Client   | Cath                | Basilio                                 | )                                                 |                    | lethod<br>lant U |                                                                   |                   | Logged By RS                                    | <u> </u> |             |



|            |            |                |                |                 |                | RC                        | KEHO         | LE LOG                                                             |                     |                                         |         |             |
|------------|------------|----------------|----------------|-----------------|----------------|---------------------------|--------------|--------------------------------------------------------------------|---------------------|-----------------------------------------|---------|-------------|
| Project    |            |                |                |                 |                |                           |              |                                                                    |                     | BOREH                                   | OLE     | No          |
| Plots 2 &  | 3 The S    | Steadings      | s, W           | arkwo           | rth, Nor       |                           |              |                                                                    |                     | ВН                                      | IU3     |             |
| Job No     |            | Dat            |                |                 |                | Ground Le                 | evel (m)     | Co-Ordinates ()                                                    |                     | БП                                      | 103     |             |
| GEOL2      | 22-8277    | '              | 0              | 1-08-2          | 2              |                           |              |                                                                    |                     |                                         |         |             |
| Contractor |            |                |                |                 |                |                           |              |                                                                    |                     | Sheet                                   | C 1     |             |
|            |            | ıltants L      | ımıt           | ed              |                |                           |              |                                                                    |                     | 1 o                                     | of 1    | T <         |
| SAMPLI     | ES & T     | ESTS           |                |                 |                | 1 1                       |              | STRATA                                                             |                     |                                         | 55      | nent<br>11  |
| Depth      | Type<br>No | Test<br>Result | Water          | Reduce<br>Level | Legend         | Depth<br>(Thick-<br>ness) |              | DESCRIPTION                                                        |                     |                                         | Geology | Instrument/ |
| 0.00-0.20  | ES         |                |                |                 |                | 0.20                      |              | lying dark brown sandy soil (M                                     |                     |                                         |         |             |
| 0.20-0.45  | ES         |                |                |                 |                | 0.45                      | Dark brown   | n clayey gravelly sand with lar<br>occasional grey limestone grave | ge rubble sized fra | amgent of                               |         |             |
|            |            |                |                |                 |                | <del>-</del>              | Dark brown   | n slightly sandy slightly gravel                                   | ly disturbed clay v |                                         |         |             |
|            |            |                |                |                 |                | 0.70                      |              | pieces of ceramic (MADE GR strength) medium brown and g            |                     | slightly                                |         |             |
| 0.90       | HSV:       | >130kN/m       | 2              |                 |                | _                         | gravelly CI  | LAY (GĹACIAL TILL).                                                |                     | <i>U</i> ,                              |         |             |
| 1.00       | В          |                |                |                 | <u> </u>       | -                         |              |                                                                    |                     |                                         |         |             |
|            |            |                |                |                 |                | (1.30)                    |              |                                                                    |                     |                                         |         |             |
|            |            |                |                |                 | -0             | [                         |              |                                                                    |                     |                                         |         |             |
|            |            |                |                |                 | <u></u>        | F                         |              |                                                                    |                     |                                         |         |             |
| 1.90       | HCV.       | >130kN/m       | 2              |                 |                | 2.00                      |              |                                                                    |                     |                                         |         |             |
| 2.00-2.45  | CPT        | N=15           |                |                 | <u>× × </u>    | <del></del>               | Firm to stif | f dark brown slightly silty CLA                                    | AY with thin sand   | band                                    |         |             |
|            |            |                | \[ \frac{1}{2} |                 | <u>x</u> _x _x | -                         | (0.03III) at | 2.70m (GLACIAL TILL).                                              |                     |                                         |         |             |
|            |            |                |                |                 | ××_            | (1.00)                    |              |                                                                    |                     |                                         |         |             |
|            |            |                |                |                 | <u> </u>       | 1                         |              |                                                                    |                     |                                         |         |             |
|            |            |                | <b>⊉</b>       |                 | × ×            | 3.00                      |              |                                                                    |                     |                                         |         |             |
| 3.00-3.45  | CPT        | N=11           | ₹              |                 | <u> </u>       |                           |              | ense medium brown fine to med                                      | dium grained SAN    | ND                                      |         |             |
|            |            |                |                |                 |                |                           | (GLACIAI     | TILL).                                                             |                     |                                         |         |             |
|            |            |                |                |                 |                |                           |              |                                                                    |                     |                                         |         |             |
|            |            |                |                |                 |                | (1.45)                    |              |                                                                    |                     |                                         |         |             |
|            |            |                |                |                 |                | - (11.5)                  |              |                                                                    |                     |                                         |         |             |
| 4.00-4.45  | CPT        | N=24           |                |                 |                | -                         |              |                                                                    |                     |                                         |         |             |
|            |            |                |                |                 |                | -                         |              |                                                                    |                     |                                         |         |             |
|            |            |                |                |                 | · . · . · .    | 4.45                      | Borehole te  | erminated at 4.45m.                                                |                     |                                         |         | 2006        |
|            |            |                |                |                 |                | -                         | Borenoic a   | inimated at 4.43m.                                                 |                     |                                         |         |             |
|            |            |                |                |                 |                | -                         |              |                                                                    |                     |                                         |         |             |
| -          |            |                |                |                 | -              | -                         |              |                                                                    |                     |                                         |         |             |
|            |            |                |                |                 |                | -                         |              |                                                                    |                     |                                         |         |             |
|            |            |                |                |                 |                | -                         |              |                                                                    |                     |                                         |         |             |
|            |            |                |                |                 |                | - 1                       |              |                                                                    |                     |                                         |         |             |
|            |            |                |                |                 |                | -                         |              |                                                                    |                     |                                         |         |             |
|            | Windo      | wless Sa       | amp            | ling D          | rilling P      | rogress                   |              |                                                                    |                     | GENE                                    | PAI     |             |
|            | Casing     | Diameter       |                | covery          |                | Remarks                   |              |                                                                    |                     | REMA                                    |         |             |
| 4.45       |            | 4.45           |                |                 |                |                           |              |                                                                    | st                  | ATER: Strike anding level a completion. |         |             |
|            |            |                |                |                 |                |                           |              |                                                                    |                     |                                         |         |             |
|            |            |                |                |                 |                |                           |              |                                                                    |                     |                                         |         |             |
|            |            |                |                |                 |                |                           |              |                                                                    |                     |                                         |         |             |
| All dimens |            | netres C       | lient          | Cath            | n Basilio      | 1                         | Meth         |                                                                    | L                   | ogged By                                | •       |             |
| Scale      | e 1:37.5   |                |                |                 |                |                           | Plant        | Used Competitor Dart                                               | Kıg                 | RS                                      | •       |             |



## **BOREHOLE LOG**

| Project Plots 2 & 3 The Steadings, Warkworth, Northumberland |                 |                |                |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           | BOREHOLE No |         |                                                        |              |                  |          |    |
|--------------------------------------------------------------|-----------------|----------------|----------------|------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------|-------------|---------|--------------------------------------------------------|--------------|------------------|----------|----|
|                                                              | 3 The S         | <u>_</u>       | -              | arkwor           | th, Nort                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                           |             |         |                                                        |              | ⊢ B⊦             | 104      |    |
| Job No                                                       |                 | Dat            |                | 1 00 22          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Ground L                  | evel (m)    |         | Co-Ordinates ()                                        |              |                  |          |    |
| GEOL2                                                        | 22-8277         |                | 0              | 1-08-22          | ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                           |             |         |                                                        |              | GI .             |          |    |
| Contractor                                                   | 1.0             | 1 T            | ,              | ,                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           |             |         |                                                        |              | Sheet            | C 1      |    |
|                                                              |                 | ıltants L      | ımıt           | ea               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           |             |         |                                                        |              | 1 (              | of 1     | 1. |
| SAMPLI                                                       | ES & T          | ESTS           |                |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           | T           | S       | TRATA                                                  |              |                  | 55       |    |
| Depth                                                        | Type<br>No      | Test<br>Result | Water          | Reduced<br>Level | Legend                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Depth<br>(Thick-<br>ness) |             |         | DESCRIPTION                                            |              |                  | Geology  |    |
| 0.00-0.30                                                    | ES              |                |                |                  | \(\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{ | (0.30)                    | Grass ove   | erlying | dark brown sandy soil (TOPS                            | OIL).        |                  |          | (F |
|                                                              |                 |                |                |                  | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.30                      | Stiff med   | ium b   | rown sandy gravelly CLAY.                              |              |                  |          | -9 |
|                                                              |                 |                |                |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.55                      |             |         |                                                        | 4h           |                  |          | 2  |
| 0.60                                                         | В               |                |                |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.80                      |             |         | n slightly sandy 'dry' CLAY wi                         |              |                  |          | 2  |
|                                                              |                 |                |                |                  | <u> </u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | -                         | Stiff (high | h strei | ngth) dark brown and grey sligh<br>LAY (GLACIAL TILL). | itly sandy s | slightly         |          |    |
| 1.00<br>1.00                                                 | В               | >130kN/n       | 2              |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Ţ                         | gravery     | ary C   | LAT (OLACIAL TILL).                                    |              |                  |          |    |
| 1.00                                                         | поч             | >1 30KIN/11    | 11             |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -                         |             |         |                                                        |              |                  |          | 2  |
|                                                              |                 |                |                |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | (1.20)                    |             |         |                                                        |              |                  |          |    |
|                                                              |                 |                |                |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ‡                         |             |         |                                                        |              |                  |          |    |
| 1.00                                                         | *****           | 100131/        | 2              |                  | · · · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 2.00                      |             |         |                                                        |              |                  |          |    |
| 1.90<br>2.00                                                 | В               | >130kN/n       | ท์             |                  | × ×                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | > 2.00                    |             | brow    | n slightly silty CLAY (GLACL                           | AL TILL).    |                  |          | -  |
| 2.00-2.45                                                    | CPT             | N=15           | 1<br>2         | ,                | × ×                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | <u> </u>                  |             |         |                                                        |              |                  |          |    |
|                                                              |                 |                | <del>-</del>   |                  | × ×                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | (1.00)                    |             |         |                                                        |              |                  |          |    |
|                                                              |                 |                |                |                  | × ×                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | (1.00)                    |             |         |                                                        |              |                  |          |    |
| 2.70                                                         | HSV :           | >130kN/n       | n <sup>2</sup> |                  | × ×                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -                         |             |         |                                                        |              |                  |          |    |
| 3.00-3.45                                                    | CPT             | N=5            | Ţ              |                  | × ×                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 3.00                      |             | dium    | brown fine to medium grained                           | SAND (GI     | ACIAI            |          | -  |
| 3.00-3.43                                                    | Cii             | 11-3           |                |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | · [                       | TILL).      | aiuiii  | brown thic to incutain granica                         | SAND (OI     | LACIAL           |          |    |
|                                                              |                 |                |                |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | (0.75)                    |             |         |                                                        |              |                  |          |    |
|                                                              |                 |                |                |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           |             |         |                                                        |              |                  |          |    |
|                                                              |                 |                |                |                  | × ×                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 3.75                      | Firm to st  | iff da  | rk brown silty CLAY (GLACIA                            | AL TILL).    |                  |          | -2 |
| 4.00-4.45                                                    | CPT             | N=21           |                |                  | × ×                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | <u>-</u>                  |             |         | •                                                      |              |                  |          |    |
| 4.00-4.43                                                    | CFI             | N=21           |                |                  | × ×                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | (0.70)                    |             |         |                                                        |              |                  |          |    |
|                                                              |                 |                |                |                  | × × -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 4.45                      |             |         |                                                        |              |                  |          |    |
|                                                              |                 |                |                |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -                         | Borehole    | termi   | nated at 4.45m.                                        |              |                  |          |    |
|                                                              |                 |                |                |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -                         |             |         |                                                        |              |                  |          |    |
|                                                              |                 |                |                |                  | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -                         |             |         |                                                        |              |                  |          |    |
|                                                              |                 |                |                |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -                         |             |         |                                                        |              |                  |          |    |
|                                                              |                 |                |                |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -                         |             |         |                                                        |              |                  |          |    |
|                                                              |                 |                |                |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Ŀ                         |             |         |                                                        |              |                  |          |    |
|                                                              |                 |                |                |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -                         |             |         |                                                        |              |                  |          |    |
|                                                              | XX 7' 1         | 1 2            |                | 1: 5             | .11: 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | <u> </u>                  |             |         |                                                        |              |                  |          |    |
|                                                              | Windo<br>Casing | wless S        |                | ling Dr          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | rogress<br>Remarks        |             | 1       |                                                        |              | GENE<br>REMA     |          |    |
| 4.45                                                         | Cuomig          | 4.45           | +              |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | - CHIMINS                 |             | +       |                                                        |              | WATER: Strik     |          | _  |
| 4.43                                                         |                 |                |                |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           |             |         |                                                        |              | standing level a |          |    |
|                                                              |                 |                |                |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           |             |         |                                                        |              | completion.      |          |    |
|                                                              |                 |                |                |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           |             |         |                                                        |              |                  |          |    |
|                                                              |                 |                |                |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           |             |         |                                                        |              |                  |          |    |
|                                                              |                 |                |                |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           |             |         |                                                        |              |                  |          |    |
| All dimens                                                   | ions in m       | netres C       | Client         | Cath             | Basilio                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1                         |             | thod/   | 1 0 0 0                                                |              | Logged By        | ,        |    |
| Scale                                                        | e 1:37.5        |                |                |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           | Plai        | nt Use  | d Competitor Dart Rig                                  |              | RS               | <b>S</b> |    |



## **BOREHOLE LOG**

| Project             | 2 1111                | 7. **               |              | , 1     | .1 37            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                         |                                                 |                    | BOREH                          | IOLE    | No          |
|---------------------|-----------------------|---------------------|--------------|---------|------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|-------------------------------------------------|--------------------|--------------------------------|---------|-------------|
| Plots 2 & 3         | 3 The S               |                     |              | arkwoi  | th, Nor          | Ground L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                         | C. O. E                                         |                    | BH                             | 105     |             |
| Job No              | 2 027                 | Dat                 |              | 1 00 2  | n                | Ground L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | evel (m)                | Co-Ordinates ()                                 |                    |                                |         |             |
| GEOL2<br>Contractor | 22-821                | /                   |              | 1-08-22 |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                         |                                                 |                    | Sheet                          |         |             |
|                     | l Consi               | ultants L           | imit         | ed      |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                         |                                                 |                    |                                | of 1    |             |
| SAMPLE              |                       |                     |              |         |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                         | STRATA                                          |                    | 1 (                            |         | ıt/         |
| Di HVII LI          | Type                  | Test                | er           | Reduce  | d                | Depth                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                         | SHAIII                                          |                    |                                | ogy     | Instrument/ |
| Depth               | No                    | Result              | Water        | Level   |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                         | DESCRIPTION                                     | 1                  |                                | Geology | Instr       |
| 0.00-0.30           | ES                    |                     |              |         |                  | \$ The state of the | Grey sandy g            | ravelly Dolerite (MADE GR                       | OUND).             |                                |         | Ę.          |
| 0.30-0.60           | ES                    |                     |              |         |                  | (0.30)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Dark brown              | very sandy gravelly clay with                   | fragments of bri   | ck.                            |         | 8           |
|                     |                       |                     |              |         |                  | (0.30)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | sandstone, lir          | mestone and coal (MADE GI                       | ROUND).            |                                |         |             |
|                     |                       |                     |              |         |                  | 0.80                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                         | brown slightly sandy clay (N                    |                    | *                              |         | 8           |
| 0.80-1.15           | ES                    |                     |              |         |                  | (0.35)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Stiff dark gre GROUND). | yish-brown very sandy grave                     | elly disturbed cla | y (MADE                        |         |             |
| 1.00-1.45           | CPT                   | N=10                |              |         |                  | 1.15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Stiff (high str         | rength) medium brown, orang                     | ve-hrown and ore   | v slightly                     |         | 8           |
| 1.40                |                       |                     |              |         |                  | (0.50)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | sandy slightly          | gravelly CLAY.                                  | se orown and gre   | y siightiy                     |         |             |
| 1.40<br>1.40        | B<br>HSV              | 94kN/m <sup>2</sup> |              |         | -0               | 1.65                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                         |                                                 |                    |                                |         | 8           |
|                     |                       |                     |              |         | 0                | (0.35)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Stiff (high str         | rength) medium brown and g<br>Y (GLACIAL TILL). | rey slightly sandy | y slightly                     |         |             |
| 1.90                |                       | 130kN/m             | 2            |         | <u></u>          | 2.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                         | own slightly silty slightly grav                | ualla CLAV (CL     | A CI A I                       |         |             |
| 2.00<br>2.00-2.45   | B<br>CPT              | N=13                |              |         | *                | 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | TILL).                  | own sugnuy suty sugnuy gra                      | velly CLA I (GL    | ACIAL                          |         |             |
|                     |                       |                     |              |         | ×x               | <del>1</del>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                         |                                                 |                    |                                |         |             |
|                     |                       |                     |              |         | × -×             | (1.00)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                         |                                                 |                    |                                |         |             |
|                     |                       |                     |              |         | <u>×</u> ×       | *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                         |                                                 |                    |                                |         |             |
| 3.00-3.45           | CPT                   | N=17                | <u>¥</u> 1   | ,       | × - ×            | 3.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Madium dans             | se medium brown fine to med                     | lium grained \$ A1 | ND                             |         | <b>2</b>    |
| 3.00-3.43           | CFI                   | N-17                | <del>-</del> |         |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | (GLACIAL 7              | TLL).                                           | num grameu SA      | ND                             |         |             |
|                     |                       |                     |              |         |                  | (0.60)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                         |                                                 |                    |                                |         | 8           |
|                     |                       |                     |              |         | × <sub>0</sub> × | 3.60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Firm to stiff           | lark brown slightly silty sligl                 | ntly gravelly CL A | ·Υ                             |         |             |
|                     |                       |                     |              |         | × × ×            | ×                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | (GLACIAL 7              | ILL).                                           | my graveny CLI     | • •                            |         |             |
| 4.00-4.45           | CPT                   | N=14                |              |         | × ×              | (0.85)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                         |                                                 |                    |                                |         |             |
|                     |                       |                     |              |         | <u> </u>         | 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                         |                                                 |                    |                                |         | 簽           |
|                     |                       |                     |              |         | x°x              | 4.45                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Danah ala tam           |                                                 |                    |                                |         | 3           |
|                     |                       |                     |              |         |                  | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Borenoie terr           | ninated at 4.45m.                               |                    |                                |         |             |
|                     |                       |                     |              |         |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                         |                                                 |                    |                                |         |             |
| -                   |                       |                     |              |         | -                | +                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                         |                                                 |                    |                                |         |             |
|                     |                       |                     |              |         |                  | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                         |                                                 |                    |                                |         |             |
|                     |                       |                     |              |         |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                         |                                                 |                    |                                |         |             |
|                     |                       |                     |              |         |                  | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                         |                                                 |                    |                                |         |             |
|                     |                       |                     |              |         |                  | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                         |                                                 |                    |                                |         |             |
|                     | ⊥<br>Windo            | wless Sa            | mn           | ling D  | rilling F        | Progress                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                         |                                                 |                    | GENE                           | DAT     |             |
|                     | Casing                | Diameter            | T            | covery  | <u>-</u>         | Remarks                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                         |                                                 |                    | REMA                           |         |             |
| 4.45                |                       | 4.45                |              |         |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                         |                                                 |                    | WATER: Strik                   |         |             |
|                     |                       |                     |              |         |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                         |                                                 |                    | tanding level a<br>completion. | at 3.10 | m or        |
|                     |                       |                     |              |         |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                         |                                                 |                    |                                |         |             |
|                     |                       |                     |              |         |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                         |                                                 |                    |                                |         |             |
|                     |                       |                     |              |         |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                         |                                                 |                    |                                |         |             |
|                     |                       | <u> </u>            |              |         |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                         |                                                 |                    |                                |         |             |
| All dimensi         | ions in n<br>: 1:37.5 | netres C            | lient        | Cath    | Basilio          | )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Method<br>Plant U       |                                                 | Rig                | ogged By                       | C       |             |

## Penetration Data Report

Project Name: GEOL22-8277- Plots 2 & 3 The Steadings, Warkworth

Chainage (km): 1.000 Surface Type: Unpaved

Direction: Thickness (mm): 0

Location/Offset:Lay-by / otherBase Type:Cone Angle:60 degreesThickness (mm):

Zero Error (mm): 0 Surface Moisture: Unknown
Test Date: 01/08/2022 Moisture adjustment factor: Not adjusted

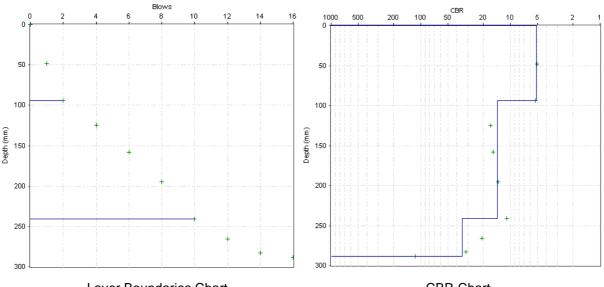
| No. | Blows | Cumulative | Penetration | Penetration | No. | Blows | Cumulative | Penetration | Penetration |
|-----|-------|------------|-------------|-------------|-----|-------|------------|-------------|-------------|
|     |       | Blows      | Depth (mm)  | Rate        |     |       | Blows      | Depth (mm)  | Rate        |
|     |       |            |             | (mm/blow)   |     |       |            |             | (mm/blow)   |
| 1   | 0     | 0          | 0           | 0.00        |     |       |            |             |             |
| 2   | 1     | 1          | 48          | 48.00       |     |       |            |             |             |
| 3   | 1     | 2          | 94          | 46.00       |     |       |            |             |             |
| 4   | 2     | 4          | 125         | 15.50       |     |       |            |             |             |
| 5   | 2     | 6          | 158         | 16.50       |     |       |            |             |             |
| 6   | 2     | 8          | 195         | 18.50       |     |       |            |             |             |
| 7   | 2     | 10         | 241         | 23.00       |     |       |            |             |             |
| 8   | 2     | 12         | 266         | 12.50       |     |       |            |             |             |
| 9   | 2     | 14         | 283         | 8.50        |     |       |            |             |             |
| 10  | 2     | 16         | 288         | 2.50        |     |       |            |             |             |
|     |       |            |             |             |     |       |            |             |             |
|     |       |            |             |             |     |       |            |             |             |
|     |       |            |             |             |     |       |            |             |             |
|     |       |            |             |             |     |       |            |             |             |
|     |       |            |             |             |     |       |            |             |             |
|     |       |            |             |             |     |       |            |             |             |
|     |       |            |             |             |     |       |            |             |             |
|     |       |            |             |             |     |       |            |             |             |
|     |       |            |             |             |     |       |            |             |             |
|     |       |            |             |             |     |       |            |             |             |
|     |       |            |             |             |     |       |            |             |             |
|     |       |            |             |             |     |       |            |             |             |
|     |       |            |             |             |     |       |            |             |             |
|     |       |            |             |             |     |       |            |             |             |
|     |       |            |             |             |     |       |            |             |             |

Remarks: Test Location:- DCP01

Report Date: 22-Sep-2022 Page 1 of 4

## UK DCP V3.1 DCP Layer Strength Analysis Report

## Project Name: GEOL22-8277- Plots 2 & 3 The Steadings, Warkworth


Chainage (km): 1.000 Surface Type: Unpaved

Direction: Thickness (mm):

Location/Offset: Lay-by / other Base Type:
Cone Angle: 60 degrees Thickness (mm):

Zero Error (mm):0Surface Moisture:UnknownTest Date:01/08/2022Moisture adjustment factor:Not adjusted

Layer Boundaries: Chainage 1.000



#### Layer Boundaries Chart

**CBR Chart** 

#### **Layer Properties**

| No. | Penetration | CBR | Thickness | Depth to     |
|-----|-------------|-----|-----------|--------------|
|     | Rate        | (%) | (mm)      | layer bottom |
|     | (mm/blow)   |     |           | (mm)         |
| 1   | 47.00       | 5   | 94        | 94           |
| 2   | 18.38       | 14  | 147       | 241          |
| 3   | 7.83        | 34  | 47        | 288          |

### CBR Relationship:

TRL equation:  $log_{10}(CBR) = 2.48 - 1.057 \times log_{10}(Strength)$ 

Report produced by .....

Report Date: 22-Sep-2022 Page 1 of 4

## Penetration Data Report

Project Name: GEOL22-8277- Plots 2 & 3 The Steadings, Warkworth

Chainage (km): 2.000 Surface Type: Unpaved

Direction: Thickness (mm): 0

Location/Offset:Lay-by / otherBase Type:Cone Angle:60 degreesThickness (mm):

Zero Error (mm): 0 Surface Moisture: Unknown
Test Date: 01/08/2022 Moisture adjustment factor: Not adjusted

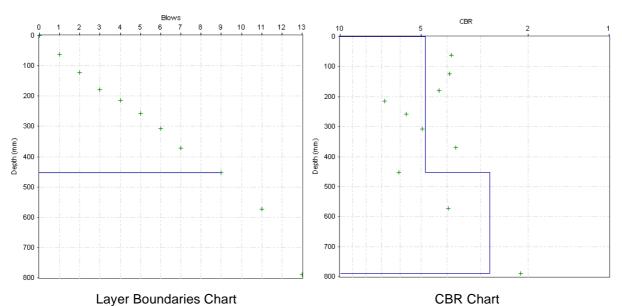
| No. | Blows | Cumulative | Penetration | Penetration | No. | Blows | Cumulative | Penetration | Penetration |
|-----|-------|------------|-------------|-------------|-----|-------|------------|-------------|-------------|
|     |       | Blows      | Depth (mm)  | Rate        |     |       | Blows      | Depth (mm)  | Rate        |
|     |       |            |             | (mm/blow)   |     |       |            |             | (mm/blow)   |
| 1   | 0     | 0          | 0           | 0.00        |     |       |            |             |             |
| 2   | 1     | 1          | 62          | 62.00       |     |       |            |             |             |
| 3   | 1     | 2          | 123         | 61.00       |     |       |            |             |             |
| 4   | 1     | 3          | 179         | 56.00       |     |       |            |             |             |
| 5   | 1     | 4          | 215         | 36.00       |     |       |            |             |             |
| 6   | 1     | 5          | 258         | 43.00       |     |       |            |             |             |
| 7   | 1     | 6          | 307         | 49.00       |     |       |            |             |             |
| 8   | 1     | 7          | 371         | 64.00       |     |       |            |             |             |
| 9   | 2     | 9          | 452         | 40.50       |     |       |            |             |             |
| 10  | 2     | 11         | 573         | 60.50       |     |       |            |             |             |
| 11  | 2     | 13         | 790         | 108.50      |     |       |            |             |             |
|     |       |            |             |             |     |       |            |             |             |
|     |       |            |             |             |     |       |            |             |             |
|     |       |            |             |             |     |       |            |             |             |
|     |       |            |             |             |     |       |            |             |             |
|     |       |            |             |             |     |       |            |             |             |
|     |       |            |             |             |     |       |            |             |             |
|     |       |            |             |             |     |       |            |             |             |
|     |       |            |             |             |     |       |            |             |             |
|     |       |            |             |             |     |       |            |             |             |
|     |       |            |             |             |     |       |            |             |             |
|     |       |            |             |             |     |       |            |             |             |
|     |       |            |             |             |     |       |            |             |             |
|     |       |            |             |             |     |       |            |             |             |
|     |       |            |             |             |     |       |            |             |             |

Remarks: Test Location:- DCP02

Report Date: 22-Sep-2022 Page 2 of 4

#### DCP Layer Strength Analysis Report UK DCP V3.1

## Project Name: GEOL22-8277- Plots 2 & 3 The Steadings, Warkworth


2.000 Chainage (km): Unpaved Surface Type: Thickness (mm):

Direction:

Location/Offset: Lay-by / other Base Type: 60 degrees Cone Angle: Thickness (mm):

Zero Error (mm): Surface Moisture: Unknown Test Date: 01/08/2022 Moisture adjustment factor: Not adjusted

Layer Boundaries: Chainage 2.000



#### **Layer Properties**

| No. | Penetration | CBR | Thickness | Depth to     |
|-----|-------------|-----|-----------|--------------|
|     | Rate        | (%) | (mm)      | layer bottom |
|     | (mm/blow)   |     |           | (mm)         |
| 1   | 50.22       | 5   | 452       | 452          |
| 2   | 84.50       | 3   | 338       | 790          |

### CBR Relationship:

TRL equation:  $log_{10}(CBR) = 2.48 - 1.057 \times log_{10}(Strength)$ 

Report produced by .....

Report Date: 22-Sep-2022 Page 2 of 4

## Penetration Data Report

Project Name: GEOL22-8277- Plots 2 & 3 The Steadings, Warkworth

Chainage (km): 3.000 Surface Type: Unpaved

Direction: Thickness (mm): 0

Location/Offset:Lay-by / otherBase Type:Cone Angle:60 degreesThickness (mm):

Zero Error (mm): 0 Surface Moisture: Unknown
Test Date: 01/08/2022 Moisture adjustment factor: Not adjusted

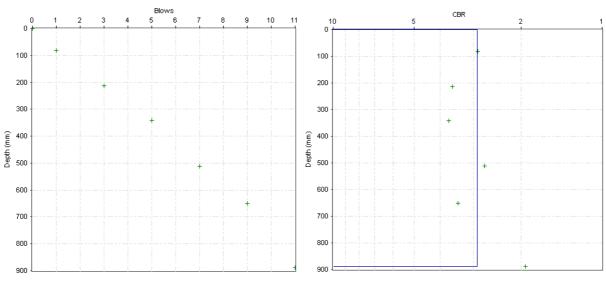
| No. | Blows | Cumulative | Penetration | Penetration | No. | Blows | Cumulative | Penetration | Penetration |
|-----|-------|------------|-------------|-------------|-----|-------|------------|-------------|-------------|
|     |       | Blows      | Depth (mm)  | Rate        |     |       | Blows      | Depth (mm)  | Rate        |
|     |       |            |             | (mm/blow)   |     |       |            |             | (mm/blow)   |
| 1   | 0     | 0          | 0           | 0.00        |     |       |            |             |             |
| 2   | 1     | 1          | 81          | 81.00       |     |       |            |             |             |
| 3   | 2     | 3          | 213         | 66.00       |     |       |            |             |             |
| 4   | 2     | 5          | 341         | 64.00       |     |       |            |             |             |
| 5   | 2     | 7          | 512         | 85.50       |     |       |            |             |             |
| 6   | 2     | 9          | 650         | 69.00       |     |       |            |             |             |
| 7   | 2     | 11         | 889         | 119.50      |     |       |            |             |             |
|     |       |            |             |             |     |       |            |             |             |
|     |       |            |             |             |     |       |            |             |             |
|     |       |            |             |             |     |       |            |             |             |
|     |       |            |             |             |     |       |            |             |             |
|     |       |            |             |             |     |       |            |             |             |
|     |       |            |             |             |     |       |            |             |             |
|     |       |            |             |             |     |       |            |             |             |
|     |       |            |             |             |     |       |            |             |             |
|     |       |            |             |             |     |       |            |             |             |
|     |       |            |             |             |     |       |            |             |             |
|     |       |            |             |             |     |       |            |             |             |
|     |       |            |             |             |     |       |            |             |             |
|     |       |            |             |             |     |       |            |             |             |
|     |       |            |             |             |     |       |            |             |             |
|     |       |            |             |             |     |       |            |             |             |
|     |       |            |             |             |     |       |            |             |             |
|     |       |            |             |             |     |       |            |             |             |
|     |       |            |             |             |     |       |            |             |             |

Remarks: Test Location:- DCP03

Report Date: 22-Sep-2022 Page 3 of 4

#### DCP Layer Strength Analysis Report UK DCP V3.1

## Project Name: GEOL22-8277- Plots 2 & 3 The Steadings, Warkworth


3.000 Chainage (km): Unpaved Surface Type: Thickness (mm):

Direction:

Location/Offset: Lay-by / other Base Type: 60 degrees Cone Angle: Thickness (mm):

Zero Error (mm): Surface Moisture: Unknown Test Date: 01/08/2022 Moisture adjustment factor: Not adjusted

Layer Boundaries: Chainage 3.000



Layer Boundaries Chart

#### **CBR Chart**

#### **Layer Properties**

| No. | Penetration | CBR | Thickness | Depth to     |
|-----|-------------|-----|-----------|--------------|
|     | Rate        | (%) | (mm)      | layer bottom |
|     | (mm/blow)   |     |           | (mm)         |
| 1   | 80.82       | 3   | 889       | 889          |

### CBR Relationship:

TRL equation:  $log_{10}(CBR) = 2.48 - 1.057 \times log_{10}(Strength)$ 

Report produced by .....

Report Date: 22-Sep-2022 Page 3 of 4

## Penetration Data Report

Project Name: GEOL22-8277- Plots 2 & 3 The Steadings, Warkworth

Chainage (km): 4.000 Surface Type: Unpaved

Direction: Thickness (mm): 0

Location/Offset:Lay-by / otherBase Type:Cone Angle:60 degreesThickness (mm):

Zero Error (mm): 0 Surface Moisture: Unknown
Test Date: 01/08/2022 Moisture adjustment factor: Not adjusted

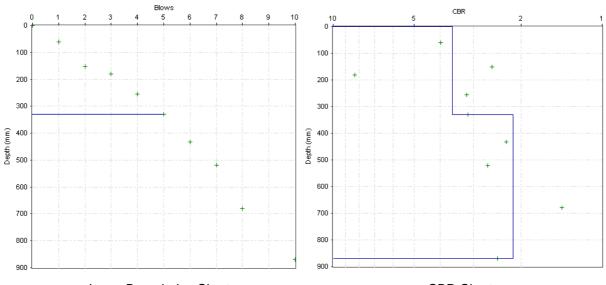
| No. | Blows | Cumulative | Penetration | Penetration | No. | Blows | Cumulative | Penetration | Penetration |
|-----|-------|------------|-------------|-------------|-----|-------|------------|-------------|-------------|
|     |       | Blows      | Depth (mm)  | Rate        |     |       | Blows      | Depth (mm)  | Rate        |
|     |       |            |             | (mm/blow)   |     |       |            |             | (mm/blow)   |
| 1   | 0     | 0          | 0           | 0.00        |     |       |            |             |             |
| 2   | 1     | 1          | 60          | 60.00       |     |       |            |             |             |
| 3   | 1     | 2          | 151         | 91.00       |     |       |            |             |             |
| 4   | 1     | 3          | 181         | 30.00       |     |       |            |             |             |
| 5   | 1     | 4          | 255         | 74.00       |     |       |            |             |             |
| 6   | 1     | 5          | 330         | 75.00       |     |       |            |             |             |
| 7   | 1     | 6          | 432         | 102.00      |     |       |            |             |             |
| 8   | 1     | 7          | 520         | 88.00       |     |       |            |             |             |
| 9   | 1     | 8          | 680         | 160.00      |     |       |            |             |             |
| 10  | 2     | 10         | 870         | 95.00       |     |       |            |             |             |
|     |       |            |             |             |     |       |            |             |             |
|     |       |            |             |             |     |       |            |             |             |
|     |       |            |             |             |     |       |            |             |             |
|     |       |            |             |             |     |       |            |             |             |
|     |       |            |             |             |     |       |            |             |             |
|     |       |            |             |             |     |       |            |             |             |
|     |       |            |             |             |     |       |            |             |             |
|     |       |            |             |             |     |       |            |             |             |
|     |       |            |             |             |     |       |            |             |             |
|     |       |            |             |             |     |       |            |             |             |
|     |       |            |             |             |     |       |            |             |             |
|     |       |            |             |             |     |       |            |             |             |
|     |       |            |             |             |     |       |            |             |             |
|     |       |            |             |             |     |       |            |             |             |
|     |       |            |             |             |     |       |            |             |             |

Remarks: Test Location:- DCP04

Report Date: 22-Sep-2022 Page 4 of 4

#### DCP Layer Strength Analysis Report UK DCP V3.1

## Project Name: GEOL22-8277- Plots 2 & 3 The Steadings, Warkworth


4.000 Chainage (km): Unpaved Surface Type: Thickness (mm):

Direction:

Location/Offset: Lay-by / other Base Type: 60 degrees Cone Angle: Thickness (mm):

Zero Error (mm): Surface Moisture: Unknown Test Date: 01/08/2022 Moisture adjustment factor: Not adjusted

Layer Boundaries: Chainage 4.000



#### Layer Boundaries Chart

#### **CBR Chart**

#### **Layer Properties**

| No. | Penetration | CBR | Thickness | Depth to     |
|-----|-------------|-----|-----------|--------------|
|     | Rate        | (%) | (mm)      | layer bottom |
|     | (mm/blow)   |     |           | (mm)         |
| 1   | 66.00       | 4   | 330       | 330          |
| 2   | 108.00      | 2   | 540       | 870          |

### CBR Relationship:

TRL equation:  $log_{10}(CBR) = 2.48 - 1.057 \times log_{10}(Strength)$ 

Report produced by .....

Report Date: 22-Sep-2022 Page 4 of 4

## **APPENDIX III**

**Laboratory Testing Results** 



## LABORATORY REPORT



4043

Contract Number: PSL22/5167

Report Date: 17 August 2022

Client's Reference: GEOL22-8277

Client Name: Geol Consultants Ltd

3 Gladstone Terrace

Gateshead NE8 4DY

For the attention of: Richard Stripp

Contract Title: Plots 2&3 The Steadings, Warkworth

Date Received: 8/8/2022
Date Commenced: 8/8/2022
Date Completed: 17/08/2022

A copy of the Laboratory Schedule of accredited tests as issued by UKAS is attached to this report. This certificate is issued in accordance with the accreditation requirements of the United Kingdom Accreditation Service. The results reported herein relate only to the material supplied to the laboratory. This certificate shall not be reproduced other than in full, without the prior written approval of the laboratory.

### Checked and Approved Signatories:

A Watkins R Berriman S Royle (Director) (Quality Manager) (Laboratory Manager)

L Knight S Eyre M Fennell (Assistant Laboratory Manager) (Senior Technician) (Senior Technician)

Page 1 of

5 – 7 Hexthorpe Road, Hexthorpe,

Doncaster DN4 0AR tel: +44 (0)844 815 6641 fax: +44 (0)844 815 6642

e-mail: rberriman@prosoils.co.uk awatkins@prosoils.co.uk

## **SUMMARY OF LABORATORY SOIL DESCRIPTIONS**

| Hole<br>Number | Sample<br>Number | Sample<br>Type | Top<br>Depth<br>m | Base<br>Depth<br>m | Description of Sample                            |
|----------------|------------------|----------------|-------------------|--------------------|--------------------------------------------------|
| BH01           |                  | В              | 1.00              |                    | Brown mottled grey slightly gravelly sandy CLAY. |
| BH02           |                  | В              | 1.00              |                    | Brown mottled grey slightly gravelly sandy CLAY. |
| BH04           |                  | В              | 0.60              |                    | Brown mottled grey slightly gravelly sandy CLAY. |
| BH04           |                  | В              | 1.00              |                    | Brown mottled grey slightly gravelly sandy CLAY. |
| BH04           |                  | В              | 2.00              |                    | Brown mottled grey slightly gravelly sandy CLAY. |
| BH05           |                  | В              | 1.40              |                    | Brown mottled grey slightly gravelly sandy CLAY. |
|                |                  |                |                   |                    |                                                  |
|                |                  |                |                   |                    |                                                  |
|                |                  |                |                   |                    |                                                  |
|                |                  |                |                   |                    |                                                  |
|                |                  |                |                   |                    |                                                  |
|                |                  |                |                   |                    |                                                  |
|                |                  |                |                   |                    |                                                  |
|                |                  |                |                   |                    |                                                  |
|                |                  |                |                   |                    |                                                  |
|                |                  |                |                   |                    |                                                  |
|                |                  |                |                   |                    |                                                  |
|                |                  |                |                   |                    |                                                  |
|                |                  |                |                   |                    |                                                  |



Plots 2&3 The Steadings, Warkworth

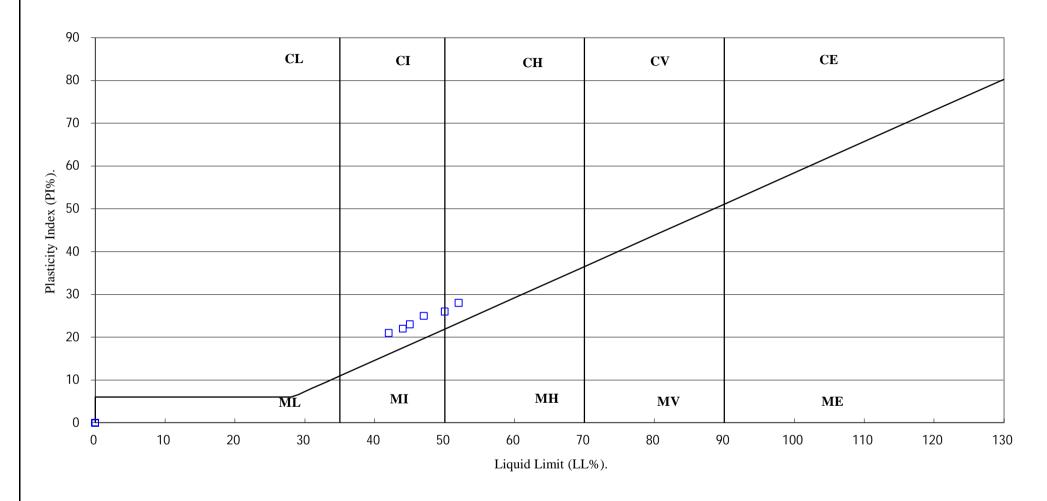
Contract No:
PSL22/5167
Client Ref:
GEOL22-8277

## **SUMMARY OF SOIL CLASSIFICATION TESTS**

(BS1377: PART 2: 1990)

| Hole<br>Number | Sample<br>Number | Sample<br>Type | Top<br>Depth | Base<br>Depth | Moisture<br>Content<br>% | Linear<br>Shrinkage<br>% | Particle<br>Density<br>Mg/m <sup>3</sup> | Liquid<br>Limit<br>% | Plastic<br>Limit<br>% | Plasticity<br>Index<br>% | Passing<br>.425mm<br>% | Remarks                    |
|----------------|------------------|----------------|--------------|---------------|--------------------------|--------------------------|------------------------------------------|----------------------|-----------------------|--------------------------|------------------------|----------------------------|
|                |                  |                | m            | m             | Clause 3.2               | Clause 6.5               | Clause 8.2                               | Clause 4.3/4         | Clause 5.3            | Clause 5.4               | 0.1                    |                            |
| BH01           |                  | В              | 1.00         |               | 18                       |                          |                                          | 45                   | 22                    | 23                       | 91                     | Intermediate Plasticity CI |
| BH02           |                  | В              | 1.00         |               | 19                       |                          |                                          | 47                   | 22                    | 25                       | 93                     | Intermediate Plasticity CI |
| BH04           |                  | В              | 0.60         |               | 16                       |                          |                                          | 52                   | 24                    | 28                       | 93                     | High Plasticity CH         |
| BH04           |                  | В              | 1.00         |               | 16                       |                          |                                          | 50                   | 24                    | 26                       | 96                     | High Plasticity CH         |
| BH04           |                  | В              | 2.00         |               | 18                       |                          |                                          | 42                   | 21                    | 21                       | 97                     | Intermediate Plasticity CI |
| BH05           |                  | В              | 1.40         |               | 19                       |                          |                                          | 44                   | 22                    | 22                       | 92                     | Intermediate Plasticity CI |
|                |                  |                |              |               |                          |                          |                                          |                      |                       |                          |                        |                            |
|                |                  |                |              |               |                          |                          |                                          |                      |                       |                          |                        |                            |
|                |                  |                |              |               |                          |                          |                                          |                      |                       |                          |                        |                            |
|                |                  |                |              |               |                          |                          |                                          |                      |                       |                          |                        |                            |
|                |                  |                |              |               |                          |                          |                                          |                      |                       |                          |                        |                            |
|                |                  |                |              |               |                          |                          |                                          |                      |                       |                          |                        |                            |
|                |                  |                |              |               |                          |                          |                                          |                      |                       |                          |                        |                            |
|                |                  |                |              |               |                          |                          |                                          |                      |                       |                          |                        |                            |
|                |                  |                |              |               |                          |                          |                                          |                      |                       |                          |                        |                            |
|                |                  |                |              |               |                          |                          |                                          |                      |                       |                          |                        |                            |
|                |                  |                |              |               |                          |                          |                                          |                      |                       |                          |                        |                            |
|                |                  |                |              |               |                          |                          |                                          |                      |                       |                          |                        |                            |
|                |                  |                |              |               |                          |                          |                                          |                      |                       |                          |                        |                            |

**SYMBOLS:** NP: Non Plastic


<sup>\*:</sup> Liquid Limit and Plastic Limit Wet Sieved.



Plots 2&3 The Steadings, Warkworth

| Contract No: |
|--------------|
| PSL22/5167   |
| Client Ref:  |
| GEOL22-8277  |

## PLASTICITY CHART FOR CASAGRANDE CLASSIFICATION.





Plots 2&3 The Steadings, Warkworth

| Contract No: |
|--------------|
| PSL22/5167   |
| Client Ref:  |
| GEOL22-8277  |



Issued:

Certificate Number 22-15348

Client Geol-Consultants Ltd.

3, Gladstone Terrace

Gateshead Tyne & Wear NE8 4DY

Our Reference 22-15348

Client Reference GEOL22-8277

Order No GEOL22-8277

Contract Title Plots 2 & 3 The Steadings, Warkworth

Description 11 Soil samples.

Date Received 09-Aug-22

Date Started 09-Aug-22

Date Completed 15-Aug-22

Test Procedures Identified by prefix DETSn (details on request).

Notes Opinions and interpretations are outside the laboratory's scope of ISO 17025 accreditation. This certificate is issued in accordance with the accreditation requirements of the United Kingdom Accreditation Service. The results reported herein relate only to the material supplied to the laboratory. This certificate shall not be reproduced except in full, without the prior written approval of the laboratory.

Approved By



Kirk Bridgewood General Manager





15-Aug-22

2139



## Summary of Chemical Analysis Soil Samples

Our Ref 22-15348 Client Ref GEOL22-8277

Contract Title Plots 2 & 3 The Steadings, Warkworth

| Lab No        | 2043318    | 2043319    | 2043320    | 2043321    | 2043322    | 2043323    | 2043324    |
|---------------|------------|------------|------------|------------|------------|------------|------------|
| .Sample ID    | SS1        | BH01       | BH01       | BH02       | BH02       | BH02       | BH03       |
| Depth         |            | 0.05-0.50  | 1.00       | 0.00-0.20  | 0.20-0.55  | 1.00       | 0.20-0.45  |
| Other ID      |            |            |            |            |            |            |            |
| Sample Type   | SOIL       |
| Sampling Date | 01/08/2022 | 01/08/2022 | 01/08/2022 | 01/08/2022 | 01/08/2022 | 01/08/2022 | 01/08/2022 |
| Sampling Time | n/s        |

|                                 |             | oumpin | ing initio | 11/3   | 11/3   | 11/3 | 11/3  | 11/3  | 11/3 | 11/3   |
|---------------------------------|-------------|--------|------------|--------|--------|------|-------|-------|------|--------|
| Test                            | Method      | LOD    | Units      |        |        |      |       |       |      |        |
| Preparation                     |             |        |            |        |        |      |       |       |      |        |
| Moisture Content                | DETSC 1004  | 0.1    | %          | 14     | 9.7    |      | 11    | 7.6   |      | 7.2    |
| Metals                          |             |        |            |        |        |      |       |       |      |        |
| Arsenic                         | DETSC 2301# | 0.2    | mg/kg      | 7.6    | 5.8    |      | 8.7   | 7.0   |      | 7.4    |
| Cadmium                         | DETSC 2301# | 0.1    | mg/kg      | 0.3    | 0.2    |      | 0.6   | 0.4   |      | 0.2    |
| Chromium                        | DETSC 2301# | 0.15   | mg/kg      | 23     | 34     |      | 22    | 25    |      | 25     |
| Chromium III                    | DETSC 2301* | 0.15   | mg/kg      | 23     | 34     |      | 22    | 25    |      | 25     |
| Chromium, Hexavalent            | DETSC 2204* | 1      | mg/kg      | < 1.0  | < 1.0  |      | < 1.0 | < 1.0 |      | < 1.0  |
| Copper                          | DETSC 2301# | 0.2    | mg/kg      | 29     | 34     |      | 83    | 150   |      | 35     |
| Lead                            | DETSC 2301# | 0.3    | mg/kg      | 45     | 28     |      | 120   | 45    |      | 36     |
| Mercury                         | DETSC 2325# | 0.05   | mg/kg      | < 0.05 | < 0.05 |      | 0.16  | 0.05  |      | < 0.05 |
| Nickel                          | DETSC 2301# | 1      | mg/kg      | 20     | 26     |      | 27    | 26    |      | 25     |
| Selenium                        | DETSC 2301# | 0.5    | mg/kg      | < 0.5  | < 0.5  |      | 1.2   | < 0.5 |      | 0.6    |
| Zinc                            | DETSC 2301# | 1      | mg/kg      | 79     | 82     |      | 260   | 140   |      | 94     |
| Inorganics                      |             |        |            | •      |        |      | •     |       | ·    |        |
| рН                              | DETSC 2008# |        | рН         | 8.2    | 7.6    | 8.0  | 7.0   | 7.7   | 7.9  | 9.4    |
| Cyanide, Free                   | DETSC 2130# | 0.1    | mg/kg      | 0.2    | 0.1    |      | 0.2   | < 0.1 |      | < 0.1  |
| Total Organic Carbon            | DETSC 2084# | 0.5    | %          | 3.4    | 2.3    |      | 15    | 5.2   |      | 1.3    |
| Sulphate Aqueous Extract as SO4 | DETSC 2076# | 10     | mg/l       | 160    | 35     | 37   | 24    | 24    | 110  | 180    |
| Petroleum Hydrocarbons          |             |        |            |        |        |      |       |       |      |        |
| EPH (C6-C40)                    | DETSC 3311* | 10     | mg/kg      | 420    | 110    |      |       | 190   |      | 150    |
| EPH (C10-C40) Clean Up          | DETSC 3311* | 10     | mg/kg      | 500    | 77     |      |       | 150   |      | 170    |
| PAHs                            |             |        |            |        |        |      |       |       |      |        |
| Naphthalene                     | DETSC 3301  | 0.1    | mg/kg      | 0.1    | < 0.1  |      | 0.2   | < 0.1 |      | < 0.1  |
| Acenaphthylene                  | DETSC 3301  | 0.1    | mg/kg      | 0.4    | < 0.1  |      | 0.4   | 0.1   |      | < 0.1  |
| Acenaphthene                    | DETSC 3301  | 0.1    | mg/kg      | 1.7    | 0.2    |      | 0.2   | < 0.1 |      | < 0.1  |
| Fluorene                        | DETSC 3301  | 0.1    | mg/kg      | 3.1    | 0.4    |      | 0.6   | 0.3   |      | < 0.1  |
| Phenanthrene                    | DETSC 3301  | 0.1    | mg/kg      | 19     | 1.2    |      | 3.5   | 1.2   |      | 0.4    |
| Anthracene                      | DETSC 3301  | 0.1    | mg/kg      | 3.3    | 0.5    |      | 1.2   | 0.2   |      | 0.2    |
| Fluoranthene                    | DETSC 3301  | 0.1    | mg/kg      | 18     | 2.9    |      | 7.1   | 2.0   |      | 1.3    |
| Pyrene                          | DETSC 3301  | 0.1    | mg/kg      | 14     | 2.4    |      | 5.9   | 1.8   |      | 1.2    |
| Benzo(a)anthracene              | DETSC 3301  | 0.1    | mg/kg      | 6.1    | 1.7    |      | 3.2   | 0.9   |      | 0.7    |
| Chrysene                        | DETSC 3301  | 0.1    | mg/kg      | 6.4    | 1.6    |      | 3.8   | 1.0   |      | 0.8    |
| Benzo(b)fluoranthene            | DETSC 3301  | 0.1    | mg/kg      | 4.1    | 1.2    |      | 2.4   | 0.9   |      | 0.8    |
| Benzo(k)fluoranthene            | DETSC 3301  | 0.1    | mg/kg      | 2.8    | 0.8    |      | 1.7   | 0.6   |      | 0.4    |
| Benzo(a)pyrene                  | DETSC 3301  | 0.1    | mg/kg      | 5.2    | 1.5    |      | 2.8   | 1.0   |      | 0.8    |
| Indeno(1,2,3-c,d)pyrene         | DETSC 3301  | 0.1    | mg/kg      | 3.5    | 1.1    |      | 1.9   | 0.7   |      | 0.6    |
| Dibenzo(a,h)anthracene          | DETSC 3301  | 0.1    | mg/kg      | 0.8    | 0.4    |      | 8.2   | 0.5   |      | 0.3    |
| Benzo(g,h,i)perylene            | DETSC 3301  | 0.1    | mg/kg      | 3.4    | 1.3    |      | 2.5   | 1.1   |      | 0.7    |
| PAH 16 Total                    | DETSC 3301  | 1.6    | mg/kg      | 92     | 17     |      | 45    | 13    |      | 8.3    |



## Summary of Chemical Analysis Soil Samples

Our Ref 22-15348 Client Ref GEOL22-8277

Contract Title Plots 2 & 3 The Steadings, Warkworth

| varkworth     |            |            |            |            |
|---------------|------------|------------|------------|------------|
| Lab No        | 2043325    | 2043326    | 2043327    | 2043328    |
| .Sample ID    | BH04       | BH05       | BH05       | BH05       |
| Depth         | 0.00-0.30  | 0.30-0.60  | 0.80-1.15  | 2.00       |
| Other ID      |            |            |            |            |
| Sample Type   | SOIL       | SOIL       | SOIL       | SOIL       |
| Sampling Date | 01/08/2022 | 01/08/2022 | 01/08/2022 | 01/08/2022 |
| Sampling Time | n/s        | n/s        | n/s        | n/s        |

| Test                            | Method      | LOD  | Units |       |        |       |     |  |
|---------------------------------|-------------|------|-------|-------|--------|-------|-----|--|
| Preparation                     |             |      |       |       |        |       |     |  |
| Moisture Content                | DETSC 1004  | 0.1  | %     | 16    | 13     | 20    |     |  |
| Metals                          |             |      | ·     |       |        |       |     |  |
| Arsenic                         | DETSC 2301# | 0.2  | mg/kg | 8.8   | 15     | 7.7   |     |  |
| Cadmium                         | DETSC 2301# | 0.1  | mg/kg | 0.4   | 0.3    | 0.2   |     |  |
| Chromium                        | DETSC 2301# | 0.15 | mg/kg | 25    | 18     | 26    |     |  |
| Chromium III                    | DETSC 2301* | 0.15 | mg/kg | 25    | 18     | 26    |     |  |
| Chromium, Hexavalent            | DETSC 2204* | 1    | mg/kg | < 1.0 | < 1.0  | < 1.0 |     |  |
| Copper                          | DETSC 2301# | 0.2  | mg/kg | 51    | 30     | 31    |     |  |
| Lead                            | DETSC 2301# | 0.3  | mg/kg | 78    | 51     | 42    |     |  |
| Mercury                         | DETSC 2325# | 0.05 | mg/kg | 0.14  | < 0.05 | 0.05  |     |  |
| Nickel                          | DETSC 2301# | 1    | mg/kg | 24    | 19     | 22    |     |  |
| Selenium                        | DETSC 2301# | 0.5  | mg/kg | < 0.5 | < 0.5  | < 0.5 |     |  |
| Zinc                            | DETSC 2301# | 1    | mg/kg | 200   | 87     | 74    |     |  |
| Inorganics                      |             |      |       |       |        |       |     |  |
| рН                              | DETSC 2008# |      | рН    | 7.1   | 9.8    | 7.5   | 8.0 |  |
| Cyanide, Free                   | DETSC 2130# | 0.1  | mg/kg | 0.3   | < 0.1  | 0.3   |     |  |
| Total Organic Carbon            | DETSC 2084# | 0.5  | %     | 10    | 2.9    | 4.5   |     |  |
| Sulphate Aqueous Extract as SO4 | DETSC 2076# | 10   | mg/l  | 18    | 160    | 100   | 17  |  |
| Petroleum Hydrocarbons          |             |      |       |       |        |       |     |  |
| EPH (C6-C40)                    | DETSC 3311* | 10   | mg/kg |       | 24     | < 10  |     |  |
| EPH (C10-C40) Clean Up          | DETSC 3311* | 10   | mg/kg |       | 46     | < 10  |     |  |
| PAHs                            |             |      |       |       |        |       |     |  |
| Naphthalene                     | DETSC 3301  | 0.1  | mg/kg | < 0.1 | < 0.1  | < 0.1 |     |  |
| Acenaphthylene                  | DETSC 3301  | 0.1  | mg/kg | < 0.1 | 0.6    | < 0.1 |     |  |
| Acenaphthene                    | DETSC 3301  | 0.1  | mg/kg | < 0.1 | < 0.1  | < 0.1 |     |  |
| Fluorene                        | DETSC 3301  | 0.1  | mg/kg | < 0.1 | 0.1    | < 0.1 |     |  |
| Phenanthrene                    | DETSC 3301  | 0.1  | mg/kg | 0.5   | 1.5    | < 0.1 |     |  |
| Anthracene                      | DETSC 3301  | 0.1  | mg/kg | 0.1   | 0.5    | < 0.1 |     |  |
| Fluoranthene                    | DETSC 3301  | 0.1  | mg/kg | 8.0   | 2.9    | < 0.1 |     |  |
| Pyrene                          | DETSC 3301  | 0.1  | mg/kg | 0.9   | 2.4    | < 0.1 |     |  |
| Benzo(a)anthracene              | DETSC 3301  | 0.1  | mg/kg | 0.5   | 1.4    | < 0.1 |     |  |
| Chrysene                        | DETSC 3301  | 0.1  | mg/kg | 0.5   | 1.4    | < 0.1 |     |  |
| Benzo(b)fluoranthene            | DETSC 3301  | 0.1  | mg/kg | 0.4   | 1.2    | < 0.1 |     |  |
| Benzo(k)fluoranthene            | DETSC 3301  | 0.1  | mg/kg | 0.4   | 0.7    | < 0.1 |     |  |
| Benzo(a)pyrene                  | DETSC 3301  | 0.1  | mg/kg | 0.5   | 1.6    | < 0.1 |     |  |
| Indeno(1,2,3-c,d)pyrene         | DETSC 3301  | 0.1  | mg/kg | 0.4   | 1.3    | < 0.1 |     |  |
| Dibenzo(a,h)anthracene          | DETSC 3301  | 0.1  | mg/kg | 0.3   | 0.5    | < 0.1 |     |  |
| Benzo(g,h,i)perylene            | DETSC 3301  | 0.1  | mg/kg | 0.6   | 1.5    | < 0.1 |     |  |
| PAH 16 Total                    | DETSC 3301  | 1.6  | mg/kg | 5.8   | 18     | < 1.6 |     |  |



## Summary of Asbestos Analysis Soil Samples

Our Ref 22-15348 Client Ref GEOL22-8277

Contract Title Plots 2 & 3 The Steadings, Warkworth

| Lab No  | Sample ID      | Material Type | Result | Comment* | Analyst   |
|---------|----------------|---------------|--------|----------|-----------|
| 2043318 | SS1            | SOIL          | NAD    | none     | Josh Best |
| 2043319 | BH01 0.05-0.50 | SOIL          | NAD    | none     | Josh Best |
| 2043321 | BH02 0.00-0.20 | SOIL          | NAD    | none     | Josh Best |
| 2043322 | BH02 0.20-0.55 | SOIL          | NAD    | none     | Josh Best |
| 2043324 | BH03 0.20-0.45 | SOIL          | NAD    | none     | Josh Best |
| 2043325 | BH04 0.00-0.30 | SOIL          | NAD    | none     | Josh Best |
| 2043326 | BH05 0.30-0.60 | SOIL          | NAD    | none     | Josh Best |
| 2043327 | BH05 0.80-1.15 | SOIL          | NAD    | none     | Josh Best |

Crocidolite = Blue Asbestos, Amosite = Brown Asbestos, Chrysotile = White Asbestos. Anthophyllite, Actinolite and Tremolite are other forms of Asbestos. Samples are analysed by DETSC 1101 using polarised light microscopy in accordance with HSG248 and documented in-house methods. NAD = No Asbestos Detected. Where a sample is NAD, the result is based on analysis of at least 2 sub-samples and should be taken to mean 'no asbestos detected in sample'. Key: \* not included in laboratory scope of accreditation.



Inappropriate

## Information in Support of the Analytical Results

Our Ref 22-15348 Client Ref GEOL22-8277

Contract Plots 2 & 3 The Steadings, Warkworth Containers Received & Deviating Samples

|         |                     | Date     |                     |                                 | container for |
|---------|---------------------|----------|---------------------|---------------------------------|---------------|
| Lab No  | Sample ID           | Sampled  | Containers Received | Holding time exceeded for tests | tests         |
| 2043318 | SS1 SOIL            | 01/08/22 | GJ 250ml, GJ 60ml   | pH + Conductivity (7 days)      |               |
| 2043319 | BH01 0.05-0.50 SOIL | 01/08/22 | GJ 250ml, GJ 60ml   | pH + Conductivity (7 days)      |               |
| 2043320 | BH01 1.00 SOIL      | 01/08/22 | PG                  | pH + Conductivity (7 days)      |               |
| 2043321 | BH02 0.00-0.20 SOIL | 01/08/22 | GJ 250ml, GJ 60ml   | pH + Conductivity (7 days)      |               |
| 2043322 | BH02 0.20-0.55 SOIL | 01/08/22 | GJ 250ml, GJ 60ml   | pH + Conductivity (7 days)      |               |
| 2043323 | BH02 1.00 SOIL      | 01/08/22 | PG                  | pH + Conductivity (7 days)      |               |
| 2043324 | BH03 0.20-0.45 SOIL | 01/08/22 | GJ 250ml, GJ 60ml   | pH + Conductivity (7 days)      |               |

2043325 BH04 0.00-0.30 SOIL 01/08/22 GJ 250ml, GJ 60ml pH + Conductivity (7 days) BH05 0.30-0.60 SOIL 01/08/22 2043326 GJ 250ml, GJ 60ml pH + Conductivity (7 days) pH + Conductivity (7 days) 2043327 BH05 0.80-1.15 SOIL 01/08/22 GJ 250ml, GJ 60ml 2043328 BH05 2.00 SOIL 01/08/22 pH + Conductivity (7 days)

Key: G-Glass J-Jar P-Plastic G-Bag

DETS cannot be held responsible for the integrity of samples received whereby the laboratory did not undertake the sampling. In this instance samples received may be deviating. Deviating Sample criteria are based on British and International standards and laboratory trials in conjunction with the UKAS note 'Guidance on Deviating Samples'. All samples received are listed above. However, those samples that have additional comments in relation to hold time, inappropriate containers etc are deviating due to the reasons stated. This means that the analysis is accredited where applicable, but results may be compromised due to sample deviations. If no sampled date (soils) or date+time (waters) has been supplied then samples are deviating. However, if you are able to supply a sampled date (and time for waters) this will prevent samples being reported as deviating where specific hold times are not exceeded and where the container supplied is suitable.

#### Soil Analysis Notes

Inorganic soil analysis was carried out on a dried sample, crushed to pass a 425µm sieve, in accordance with BS1377.

Organic soil analysis was carried out on an 'as received' sample. Organics results are corrected for moisture and expressed on a dry weight basis.

The Loss on Drying, used to express organics analysis on an air dried basis, is carried out at a temperature of 28°C +/-2°C.

### Disposal

From the issue date of this test certificate, samples will be held for the following times prior to disposal :-Soils - 1 month, Liquids - 2 weeks, Asbestos (test portion) - 6 months

End of Report

# PHASE II GROUND INVESTIGATION REPORT

# APPENDIX IV

Waste Classification Report



## Waste Classification Report

HazWasteOnline™ classifies waste as either **hazardous** or **non-hazardous** based on its chemical composition, related legislation and the rules and data defined in the current UK or EU technical guidance (Appendix C) (note that HP 9 Infectious is not assessed). It is the responsibility of the classifier named below to:

- a) understand the origin of the waste
- b) select the correct List of Waste code(s)
- c) confirm that the list of determinands, results and sampling plan are fit for purpose
- d) select and justify the chosen metal species (Appendix B)
- e) correctly apply moisture correction and other available corrections
- f) add the meta data for their user-defined substances (Appendix A)
- g) check that the classification engine is suitable with respect to the national destination of the waste (Appendix C)





HBO2D-K27OY-WXP7

#### Job name

The Steadings

#### **Description/Comments**

Waste classification of made ground and soil only - not all types / layers of made ground or natural deposits may have been tested Waste classification based on preliminary contamination screening results - DETS lab report references 22-15348

There was no significant visual or olfactory evidence of fuel, oils or other hydrocarbon / solvent contamination noted at the sample locations during these investigation works

| _ |   |        |    |   |
|---|---|--------|----|---|
| ы | r | $\sim$ | 10 | • |
|   |   |        |    |   |

GEOL22-8277

Site

Plots 2 & 3, The Steadings, Guilden Road, Warkworth, Northumberland, NE65 0WR

#### Classified by

Name: Richard Stripp Date:

Company:

**Geol Consultants Limited** 

HazWasteOnline™ provides a two day, hazardous waste classification course that covers the use of the software and both basic and advanced waste classification techniques. Certification has to be renewed every 3 years.

19 Sep 2022 09:31 GMT

Telephone: **0191 477 2020** 

HazWasteOnline™ Certification:

CERTIFIED

Course

Hazardous Waste Classification

**Date** 04 Jun 2020

Next 3 year Refresher due by Jun 2023

#### Job summary

| # | Sample name | Depth [m] | Classification Result | Hazard properties | Page |
|---|-------------|-----------|-----------------------|-------------------|------|
| 1 | SS1         |           | Non Hazardous         |                   | 2    |
| 2 | BH01        | 0.05-0.50 | Non Hazardous         |                   | 4    |
| 3 | BH02        | 0.00-0.20 | Non Hazardous         |                   | 7    |
| 4 | BH02[2]     | 0.20-0.55 | Non Hazardous         |                   | 9    |
| 5 | BH03        | 0.20-0.45 | Non Hazardous         |                   | 12   |
| 6 | BH04        | 0.00-0.30 | Non Hazardous         |                   | 15   |
| 7 | BH05        | 0.30-0.60 | Non Hazardous         |                   | 17   |
| 8 | BH05[2]     | 0.80-1.15 | Non Hazardous         |                   | 20   |

#### Related documents

| Totalou dodalilotto         |                                               |  |  |  |  |  |
|-----------------------------|-----------------------------------------------|--|--|--|--|--|
| # Name                      | Description                                   |  |  |  |  |  |
| 1 Waste Soils - Made Ground | waste stream template used to create this Job |  |  |  |  |  |

#### Report

Created by: Richard Stripp Created date: 19 Sep 2022 09:31 GMT

| Appendices                                                 | Page |
|------------------------------------------------------------|------|
| Appendix A: Classifier defined and non GB MCL determinands | 22   |
| Appendix B: Rationale for selection of metal species       | 23   |
| Appendix C: Version                                        | 24   |



Classification of sample: SS1

Non Hazardous Waste Classified as 17 05 04 in the List of Waste

#### Sample details

Sample name: LoW Code:

SS1 Chapter:

Moisture content:

14% Entry:

17: Construction and Demolition Wastes (including excavated soil from contaminated sites)

 $17\ 05\ 04$  (Soil and stones other than those mentioned in 17 05 03)

**Hazard properties** 

(dry weight correction)

None identified

#### **Determinands**

Moisture content: 14% Dry Weight Moisture Correction applied (MC)

| #  |     |                                                                 | Determinand  EU CLP index                                                                                                                                                   |                                |     | User entered | data  | Conv. | Compound of | conc. | Classification value | Applied  | Conc. Not<br>Used   |
|----|-----|-----------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------|-----|--------------|-------|-------|-------------|-------|----------------------|----------|---------------------|
|    |     | number                                                          |                                                                                                                                                                             | CAS Number                     | CLP |              |       |       |             |       |                      | MC       |                     |
| 1  | ď,  | arsenic { arsenic tr<br>033-003-00-0                            | <mark>ioxide</mark> }<br>215-481-4                                                                                                                                          | 4207 52 2                      |     | 7.6          | mg/kg | 1.32  | 8.802       | mg/kg | 0.00088 %            | ✓        |                     |
|    | æŽ. | cadmium { cadmiu                                                |                                                                                                                                                                             | 1327-53-3                      |     |              |       |       |             |       |                      |          |                     |
| 2  | -   | 048-002-00-0                                                    | 215-146-2                                                                                                                                                                   | 1306-19-0                      |     | 0.3          | mg/kg | 1.142 | 0.301       | mg/kg | 0.0000301 %          | ✓        |                     |
| 3  | 4   | chromium in chromoxide (worst case)                             |                                                                                                                                                                             |                                |     | 23           | mg/kg | 1.462 | 29.488      | mg/kg | 0.00295 %            | <b>√</b> |                     |
|    | æ   | chromium in chrom                                               | 215-160-9<br>nium(VI) compound:                                                                                                                                             | 1308-38-9                      |     |              |       |       |             |       |                      |          |                     |
| 4  | •   | oxide }                                                         | de }       -001-00-0     215-607-8      1333-82-0       oper { dicopper oxide; copper (I) oxide }                                                                           |                                |     | <1           | mg/kg | 1.923 | <1.923      | mg/kg | <0.000192 %          |          | <lod< td=""></lod<> |
|    |     |                                                                 |                                                                                                                                                                             |                                |     |              |       |       | ,           |       |                      |          |                     |
| 5  | 4   | 029-002-00-X                                                    |                                                                                                                                                                             |                                | -   | 29           | mg/kg | 1.126 | 28.641      | mg/kg | 0.00286 %            | ✓        |                     |
| 6  | 4   | lead { Plead compospecified elsewher                            | pounds with the exc<br>e in this Annex (wor                                                                                                                                 | eption of those<br>est case) } | 1   | 45           | mg/kg |       | 39.474      | mg/kg | 0.00395 %            | <b>√</b> |                     |
|    |     | 082-001-00-6                                                    |                                                                                                                                                                             |                                |     |              |       |       |             |       |                      |          |                     |
| 7  | ď,  | mercury { mercury                                               | •                                                                                                                                                                           |                                |     | <0.05        | mg/kg | 1.353 | <0.0677     | mg/kg | <0.00000677 %        |          | <lod< td=""></lod<> |
|    | _   |                                                                 | 231-299-8                                                                                                                                                                   | 7487-94-7                      |     |              |       |       |             |       |                      |          |                     |
| 8  | ≪*  | nickel { nickel sulfa<br>028-009-00-5                           | 232-104-9                                                                                                                                                                   | 7786-81-4                      |     | 20           | mg/kg | 2.637 | 46.258      | mg/kg | 0.00463 %            | ✓        |                     |
| 9  | 4   | selenium { seleniur                                             | n compounds with telenide and those sp                                                                                                                                      | the exception of               |     | <0.5         | mg/kg | 1.405 | <0.703      | mg/kg | <0.0000703 %         |          | <lod< td=""></lod<> |
| 10 |     | zinc { <mark>zinc sulphate</mark><br>030-006-00-9               | 231-793-3 [1]<br>231-793-3 [2]                                                                                                                                              | 7446-19-7 [1]<br>7733-02-0 [2] |     | 79           | mg/kg | 2.469 | 171.118     | mg/kg | 0.0171 %             | ✓        |                     |
| 11 | ٠   | TPH (C6 to C40) p                                               | etroleum group                                                                                                                                                              | TPH                            |     | 920          | mg/kg |       | 807.018     | mg/kg | 0.0807 %             | ✓        |                     |
| 12 | 4   | exception of compl<br>ferricyanides and n<br>specified elsewher | nides { * salts of hydrogen cyanide with the eption of complex cyanides such as ferrocyanides, icyanides and mercuric oxycyanide and those cified elsewhere in this Annex } |                                |     |              | mg/kg | 1.884 | 0.331       | mg/kg | 0.0000331 %          | <b>√</b> |                     |
| 13 | •   | pH                                                              | -007-00-5   PH                                                                                                                                                              |                                |     | 8.2          | рН    |       | 8.2         | рН    | 8.2 pH               |          |                     |
| 14 |     | naphthalene<br>601-052-00-2                                     | 202-049-5                                                                                                                                                                   | 91-20-3                        |     | 0.1          | mg/kg |       | 0.0877      | mg/kg | 0.00000877 %         | <b>√</b> |                     |





| $\overline{}$ | _ | <u> </u>                                                                                            |                                                      |             | _         |            |         |                 |          |            |                      | _                   |                   |
|---------------|---|-----------------------------------------------------------------------------------------------------|------------------------------------------------------|-------------|-----------|------------|---------|-----------------|----------|------------|----------------------|---------------------|-------------------|
| #             |   | Determinand  EU CLP index                                                                           |                                                      | CAC Niumbor | CLP Note  | User enter | ed data | Conv.<br>Factor | Compound | conc.      | Classification value | MC Applied          | Conc. Not<br>Used |
|               |   |                                                                                                     | EC Number                                            | CAS Number  | 딩         | 0.4 mg/kg  |         |                 |          |            |                      | MC                  |                   |
| 15            |   | acenaphthylene                                                                                      |                                                      |             |           | 0.4        | ma/ka   |                 | 0.351    | mg/kg      | 0.0000351 %          | 1                   |                   |
| 13            |   |                                                                                                     | 205-917-1                                            | 208-96-8    |           | 0.4        | ilig/kg |                 | 0.551    | mg/kg      | 0.0000331 /6         |                     |                   |
| 16            |   | acenaphthene                                                                                        |                                                      |             |           | 1.7        | mg/kg   |                 | 1.491    | mg/kg      | 0.000149 %           | <b>V</b>            |                   |
| 10            |   |                                                                                                     | 201-469-6                                            | 83-32-9     |           | 1.7        | ilig/kg |                 | 1.491    | ilig/kg    | 0.000149 /6          |                     |                   |
| 17            | • | fluorene                                                                                            |                                                      | ,           |           | 3.1        | mg/kg   |                 | 2.719    | mg/kg      | 0.000272 %           | 1                   |                   |
| ''            |   |                                                                                                     | 201-695-5                                            | 86-73-7     | 1         | 3.1        | ilig/kg |                 | 2.719    | ilig/kg    | 0.000272 /6          |                     |                   |
| 18            |   | phenanthrene                                                                                        |                                                      |             |           | 19         | m a/ka  |                 | 16.667   | ma/ka      | 0.00167 %            | ,                   |                   |
| 10            |   |                                                                                                     | 201-581-5                                            | 85-01-8     |           | 19         | mg/kg   |                 | 16.667   | mg/kg      | 0.00107 %            | <b>√</b>            |                   |
| 19            |   | anthracene                                                                                          |                                                      |             |           | 3.3        | m a/ka  |                 | 2.895    | ma/ka      | 0.000289 %           | ,                   |                   |
| 19            |   |                                                                                                     | 204-371-1                                            | 120-12-7    |           | 3.3        | mg/kg   |                 | 2.095    | mg/kg      | 0.000269 %           | <b>√</b>            |                   |
| 20            |   | fluoranthene                                                                                        | 1                                                    | ,           |           | 18         |         |                 | 15.789   |            | 0.00459.0/           |                     |                   |
| 20            |   |                                                                                                     | 205-912-4                                            | 206-44-0    | -         | 10         | mg/kg   |                 | 15.769   | mg/kg      | 0.00158 %            | ✓                   |                   |
| 04            |   | pyrene 204-927-3   129-00-0                                                                         |                                                      | ,           |           | 4.4        | //      |                 | 40.004   | /1         | 0.00400.0/           | 1                   |                   |
| 21            |   | 204-927-3   129-00-0                                                                                |                                                      |             | 14        | mg/kg      |         | 12.281          | mg/kg    | 0.00123 %  | ✓                    |                     |                   |
| 00            |   | benzo[a]anthracen                                                                                   | nzo[a]anthracene<br>1-033-00-9   200-280-6   56-55-3 |             |           | 0.4        | //      |                 | 5.054    | //         | 0.000505.0/          | ,                   |                   |
| 22            |   | 601-033-00-9                                                                                        |                                                      |             |           | 6.1        | mg/kg   |                 | 5.351    | mg/kg      | 0.000535 %           | ✓                   |                   |
| 00            |   | chrysene                                                                                            |                                                      |             |           | 0.4        |         |                 | 5.04.4   |            | 0.000504.0/          | 1.                  |                   |
| 23            |   | 601-048-00-0                                                                                        | 205-923-4                                            | 218-01-9    | 6.4       | mg/kg      |         | 5.614           | mg/kg    | 0.000561 % | ✓                    |                     |                   |
|               |   | benzo[b]fluoranthe                                                                                  | ene                                                  |             |           |            |         |                 | 0.500    |            |                      |                     |                   |
| 24            |   | 601-034-00-4                                                                                        | 205-911-9                                            | 205-99-2    | -         | 4.1        | mg/kg   |                 | 3.596    | mg/kg      | 0.00036 %            | <b>√</b>            |                   |
|               |   | benzo[k]fluoranthe                                                                                  | ne                                                   |             |           |            |         |                 | 0.450    |            |                      |                     |                   |
| 25            |   | 601-036-00-5                                                                                        | 205-916-6                                            | 207-08-9    | -         | 2.8        | mg/kg   |                 | 2.456    | mg/kg      | 0.000246 %           | <b>√</b>            |                   |
|               |   | benzo[a]pyrene; be                                                                                  | enzo[def]chrysene                                    | · ·         |           |            |         |                 |          |            |                      |                     |                   |
| 26            |   | 601-032-00-3                                                                                        | 200-028-5                                            | 50-32-8     | -         | 5.2        | mg/kg   |                 | 4.561    | mg/kg      | 0.000456 %           | ✓                   |                   |
|               |   | indeno[123-cd]pyre                                                                                  | ene                                                  |             |           |            |         |                 |          |            |                      |                     |                   |
| 27            | ľ |                                                                                                     | 205-893-2                                            | 193-39-5    | -         | 3.5        | mg/kg   |                 | 3.07     | mg/kg      | 0.000307 %           | ✓                   |                   |
|               |   | dibenz[a,h]anthrac                                                                                  |                                                      | (           | 1         |            | -       |                 |          |            |                      |                     |                   |
| 28            |   | 601-041-00-2                                                                                        | 200-181-8                                            | 53-70-3     |           | 0.8        | mg/kg   |                 | 0.702    | mg/kg      | 0.0000702 %          | <b>√</b>            |                   |
| -             |   | benzo[ghi]perylene                                                                                  |                                                      | [           |           |            |         |                 |          |            |                      |                     |                   |
| 29            |   |                                                                                                     | 205-883-8                                            | 191-24-2    | $\exists$ | 3.4        | mg/kg   |                 | 2.982    | mg/kg      | 0.000298 %           | <b>√</b>            |                   |
|               |   | asbestos                                                                                            |                                                      | 1           |           |            |         |                 |          |            |                      |                     |                   |
| 30            |   | aspestos 650-013-00-6 12001-28-4 132207-32-0 12172-73-5 77536-66-4 77536-68-6 77536-67-5 12001-29-5 |                                                      |             | <10       | mg/kg      |         | <10             | mg/kg    | <0.001 %   |                      | <lod< td=""></lod<> |                   |
|               |   | 12001-25-0                                                                                          |                                                      |             |           |            |         |                 |          | Total:     | 0.122 %              |                     |                   |

User supplied data

Determinand values ignored for classification, see column 'Conc. Not Used' for reason

Determinand defined or amended by HazWasteOnline (see Appendix A)

Speciated Determinand - Unless the Determinand is Note 1, the Conversion Factor is used to calculate the compound

concentration

<LOD Below limit of detection

ND Not detected

CLP: Note 1 Only the metal concentration has been used for classification

### **Supplementary Hazardous Property Information**

HP 3(i): Flammable "flammable liquid waste: liquid waste having a flash point below 60°C or waste gas oil, diesel and light heating oils having a flash point > 55°C and <= 75°C"

Force this Hazardous property to non hazardous because The TPH contamination recorded is not present in a liquid or vapour form and therefore is not flammable

Hazard Statements hit:

Flam. Liq. 3; H226 "Flammable liquid and vapour."

Because of determinand:

TPH (C6 to C40) petroleum group: (conc.: 0.0807%)

www.hazwasteonline.com HBO2D-K27OY-WXP7N Page 3 of 24



Classification of sample: BH01

Non Hazardous Waste Classified as 17 05 04 in the List of Waste

#### Sample details

Sample name: LoW Code: BH01 Chapter: Sample Depth: 0.05-0.50 m Entry: Moisture content:

17: Construction and Demolition Wastes (including excavated soil from contaminated sites)
17 05 04 (Soil and stones other than those mentioned in 17 05

03)

9.7%

(dry weight correction)

#### **Hazard properties**

None identified

#### **Determinands**

Moisture content: 9.7% Dry Weight Moisture Correction applied (MC)

| #  |     | Determinand  EU CLP index EC Number CAS Number number                                                                                    | CLP Note | User entered data | Conv.<br>Factor | Compound conc. | Classification value | MC Applied | Conc. Not<br>Used   |
|----|-----|------------------------------------------------------------------------------------------------------------------------------------------|----------|-------------------|-----------------|----------------|----------------------|------------|---------------------|
| 1  | 4   | arsenic { arsenic trioxide } 033-003-00-0   215-481-4   1327-53-3                                                                        |          | 5.8 mg/kg         | 1.32            | 6.981 mg/kg    | 0.000698 %           | <b>√</b>   |                     |
| 2  | 4   |                                                                                                                                          |          | 0.2 mg/kg         | 1.142           | 0.208 mg/kg    | 0.0000208 %          | <b>√</b>   |                     |
| 3  | 4   |                                                                                                                                          |          | 34 mg/kg          | 1.462           | 45.299 mg/kg   | 0.00453 %            | <b>√</b>   |                     |
| 4  | 4   |                                                                                                                                          |          | <1 mg/kg          | 1.923           | <1.923 mg/kg   | <0.000192 %          |            | <lod< th=""></lod<> |
| 5  | æ e | copper { dicopper oxide; copper (I) oxide } 029-002-00-X   215-270-7   1317-39-1                                                         | -        | 34 mg/kg          | 1.126           | 34.895 mg/kg   | 0.00349 %            | ✓          |                     |
| 6  | 4   | lead { • lead compounds with the exception of those specified elsewhere in this Annex (worst case) }                                     | 1        | 28 mg/kg          |                 | 25.524 mg/kg   | 0.00255 %            | <b>√</b>   |                     |
| 7  | ď.  | mercury { mercury dichloride }  080-010-00-X                                                                                             |          | <0.05 mg/kg       | 1.353           | <0.0677 mg/kg  | <0.00000677 %        |            | <lod< td=""></lod<> |
| 8  | d   | nickel { nickel sulfate } 028-009-00-5   232-104-9                                                                                       |          | 26 mg/kg          | 2.637           | 62.492 mg/kg   | 0.00625 %            | 1          |                     |
| 9  | 4   |                                                                                                                                          |          | <0.5 mg/kg        | 1.405           | <0.703 mg/kg   | <0.0000703 %         |            | <lod< th=""></lod<> |
| 10 |     | zinc { zinc sulphate } 030-006-00-9                                                                                                      |          | 82 mg/kg          | 2.469           | 184.578 mg/kg  | 0.0185 %             | <b>√</b>   |                     |
| 11 | •   | TPH (C6 to C40) petroleum group                                                                                                          |          | 187 mg/kg         |                 | 170.465 mg/kg  | 0.017 %              | <b>√</b>   |                     |
| 12 | 4   | exception of complex cyanides such as ferrocyanides, ferricyanides and mercuric oxycyanide and those specified elsewhere in this Annex } |          | 0.1 mg/kg         | 1.884           | 0.172 mg/kg    | 0.0000172 %          | ✓          |                     |
| 13 | 0   | 006-007-00-5<br>pH                                                                                                                       |          | 7.6 pH            |                 | 7.6 pH         | 7.6 pH               |            |                     |





| _        |                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |           |          | _        |             |         | 1               |          |        | <u> </u>                |            |                     |
|----------|-----------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|----------|----------|-------------|---------|-----------------|----------|--------|-------------------------|------------|---------------------|
| #        |                                                                                                     | Determinand  EU CLP index number CAS Number |           |          | CLP Note | User entere | ed data | Conv.<br>Factor | Compound | conc.  | Classification<br>value | MC Applied | Conc. Not<br>Used   |
|          |                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |           |          | $\bot$   |             |         |                 |          |        |                         | _          |                     |
| 14       |                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |           |          |          | <0.1        | mg/kg   |                 | <0.1     | mg/kg  | <0.00001 %              |            | <lod< td=""></lod<> |
|          |                                                                                                     | 601-052-00-2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 202-049-5 | 91-20-3  |          |             |         |                 |          |        |                         |            |                     |
| 15       |                                                                                                     | acenaphthylene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |          |          | <0.1        | mg/kg   |                 | <0.1     | mg/kg  | <0.00001 %              |            | <lod< td=""></lod<> |
|          |                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 205-917-1 | 208-96-8 |          |             |         |                 |          |        |                         |            |                     |
| 16       |                                                                                                     | acenaphthene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |           |          |          | 0.2         | mg/kg   |                 | 0.182    | mg/kg  | 0.0000182 %             | 1          |                     |
|          |                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 201-469-6 | 83-32-9  |          |             |         |                 |          | - 0    |                         | ľ          |                     |
| 17       | 0                                                                                                   | fluorene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |           |          |          | 0.4         | mg/kg   |                 | 0.365    | mg/kg  | 0.0000365 %             | 1          |                     |
|          |                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 201-695-5 | 86-73-7  |          |             |         |                 |          | 99     |                         | *          |                     |
| 18       |                                                                                                     | phenanthrene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |           |          |          | 1.2         | mg/kg   |                 | 1.094    | mg/kg  | 0.000109 %              | 1          |                     |
|          |                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 201-581-5 | 85-01-8  |          | 1.2         |         |                 |          | mg/ng  | 0.000100 70             | <b>'</b>   |                     |
| 19       |                                                                                                     | anthracene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |           |          |          | 0.5         | mg/kg   |                 | 0.456    | mg/kg  | 0.0000456 %             | 1          |                     |
| 13       |                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 204-371-1 | 120-12-7 |          | 0.0         | mg/kg   |                 | 0.400    | mg/kg  | 0.0000430 70            | <b>'</b>   |                     |
| 20       |                                                                                                     | fluoranthene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |           |          |          | 2.9         | ma/ka   |                 | 2.644    | mg/kg  | 0.000264 %              | ,          |                     |
| 20       |                                                                                                     | 205-912-4 206-44-0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |           | 206-44-0 |          | 2.9         | mg/kg   |                 | 2.044    | mg/kg  | 0.000204 /6             | <b> </b>   |                     |
| 21       |                                                                                                     | pyrene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |           | •        |          | 2.4         |         |                 | 2.400    |        | 0.000340.0/             | ,          |                     |
| 21       |                                                                                                     | 204-927-3   129-00-0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |           | 129-00-0 | _        | 2.4         | mg/kg   |                 | 2.188    | mg/kg  | 0.000219 %              | ✓          |                     |
|          |                                                                                                     | benzo[a]anthracene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |           |          |          | 4.7         |         |                 | 4.55     | //     | 0.000455.0/             |            |                     |
| 22       |                                                                                                     | benzo[a]anthracene<br>601-033-00-9   200-280-6   56-55-3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |           |          | -        | 1.7         | mg/kg   |                 | 1.55     | mg/kg  | 0.000155 %              | ✓          |                     |
| -        |                                                                                                     | chrysene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1         |          |          | 4.0         | ,,      |                 | 4.450    |        | 0.000440.0/             | ١.         |                     |
| 23       |                                                                                                     | 601-048-00-0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 205-923-4 | 218-01-9 | -        | 1.6         | mg/kg   |                 | 1.459    | mg/kg  | 0.000146 %              | <b>√</b>   |                     |
|          |                                                                                                     | benzo[b]fluoranthe                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1         |          |          |             |         |                 |          |        |                         |            |                     |
| 24       |                                                                                                     | 601-034-00-4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 205-911-9 | 205-99-2 | -        | 1.2         | mg/kg   |                 | 1.094    | mg/kg  | 0.000109 %              | ✓          |                     |
|          |                                                                                                     | benzo[k]fluoranthe                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1         |          |          |             |         |                 |          |        |                         |            |                     |
| 25       |                                                                                                     | 601-036-00-5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 205-916-6 | 207-08-9 | -        | 0.8         | mg/kg   |                 | 0.729    | mg/kg  | 0.0000729 %             | ✓          |                     |
|          |                                                                                                     | benzo[a]pyrene; be                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |           |          |          |             |         |                 |          |        |                         |            |                     |
| 26       |                                                                                                     | 601-032-00-3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 200-028-5 | 50-32-8  | _        | 1.5         | mg/kg   |                 | 1.367    | mg/kg  | 0.000137 %              | ✓          |                     |
|          | _                                                                                                   | indeno[123-cd]pyro                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |           | p0-32-0  |          |             |         |                 |          |        |                         |            |                     |
| 27       |                                                                                                     | maenoį rzo-cajpyn                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 205-893-2 | 193-39-5 | -        | 1.1         | mg/kg   |                 | 1.003    | mg/kg  | 0.0001 %                | ✓          |                     |
| $\vdash$ |                                                                                                     | dibenz[a,h]anthrac                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |           | 190-09-0 | +        |             |         |                 |          |        |                         |            |                     |
| 28       |                                                                                                     | 601-041-00-2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 200-181-8 | 53-70-3  | -        | 0.4         | mg/kg   |                 | 0.365    | mg/kg  | 0.0000365 %             | ✓          |                     |
| $\vdash$ |                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |           | μ3-70-3  | +        |             |         |                 |          |        |                         |            |                     |
| 29       |                                                                                                     | benzo[ghi]perylene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |           | 404.04.0 | 4        | 1.3         | mg/kg   |                 | 1.185    | mg/kg  | 0.000119 %              | ✓          |                     |
|          |                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 205-883-8 | 191-24-2 | -        |             |         |                 |          |        |                         |            |                     |
| 30       | asbestos 650-013-00-6 12001-28-4 132207-32-0 12172-73-5 77536-68-4 77536-68-6 77536-67-5 12001-29-5 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |           | <10      | mg/kg    |             | <10     | mg/kg           | <0.001 % |        | <lod< td=""></lod<>     |            |                     |
|          |                                                                                                     | 12001 20 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |           |          |          |             |         |                 |          | Total: | 0.0559 %                |            |                     |

User supplied data

Determinand values ignored for classification, see column 'Conc. Not Used' for reason

Determinand defined or amended by HazWasteOnline (see Appendix A)

Speciated Determinand - Unless the Determinand is Note 1, the Conversion Factor is used to calculate the compound

concentration

<LOD Below limit of detection

ND Not detected

CLP: Note 1 Only the metal concentration has been used for classification

#### **Supplementary Hazardous Property Information**

<u>HP 3(i): Flammable</u> "flammable liquid waste: liquid waste having a flash point below 60°C or waste gas oil, diesel and light heating oils having a flash point > 55°C and <= 75°C"

Force this Hazardous property to non hazardous because The TPH contamination recorded is not present in a liquid or vapour form and therefore is not flammable

Hazard Statements hit:

Flam. Liq. 3; H226 "Flammable liquid and vapour."

www.hazwasteonline.com HBO2D-K27OY-WXP7N Page 5 of 24





Because of determinand:

TPH (C6 to C40) petroleum group: (conc.: 0.017%)

Page 6 of 24 HBO2D-K27OY-WXP7N www.hazwasteonline.com



17: Construction and Demolition Wastes (including excavated soil

Classification of sample: BH02

Non Hazardous Waste Classified as 17 05 04 in the List of Waste

#### Sample details

Sample name: LoW Code: BH02 Chapter:

Moisture content: 11% Dry Weight Moisture Correction applied (MC)

#### Sample Depth: 0.00-0.20 m from contaminated sites) Entry: 17 05 04 (Soil and stones other than those mentioned in 17 05 Moisture content: 03) 11% (dry weight correction) **Hazard properties** None identified **Determinands**

| #        |     | Determinand  EU CLP index                                                                                                                                                                | CLP Note | User entered data | Conv.<br>Factor | Compound conc. | Classification value | 2 Applied | Conc. Not<br>Used   |
|----------|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|-------------------|-----------------|----------------|----------------------|-----------|---------------------|
|          |     | number                                                                                                                                                                                   | ರ        |                   |                 |                |                      | MC        |                     |
| 1        | ď.  | arsenic { arsenic trioxide }                                                                                                                                                             |          | 8.7 mg/kg         | 1.32            | 10.348 mg/kg   | 0.00103 %            | /         |                     |
|          | -   | 033-003-00-0 215-481-4 1327-53-3                                                                                                                                                         | -        |                   |                 |                | ,                    | ļ.        |                     |
| 2        | 4   | cadmium { cadmium oxide }           048-002-00-0         215-146-2         1306-19-0                                                                                                     |          | 0.6 mg/kg         | 1.142           | 0.617 mg/kg    | 0.0000617 %          | <b>√</b>  |                     |
| 3        | 4   | chromium in chromium(III) compounds { • chromium(III) oxide (worst case) }                                                                                                               |          | 22 mg/kg          | 1.462           | 28.968 mg/kg   | 0.0029 %             | <b>√</b>  |                     |
|          |     | 215-160-9   1308-38-9                                                                                                                                                                    |          |                   |                 |                |                      | ┡         |                     |
| 4        | 4   | chromium in chromium(VI) compounds { chromium(VI) oxide }                                                                                                                                |          | <1 mg/kg          | 1.923           | <1.923 mg/kg   | <0.000192 %          |           | <lod< th=""></lod<> |
|          |     | 024-001-00-0 215-607-8 1333-82-0                                                                                                                                                         |          |                   |                 |                |                      |           |                     |
| 5        | _   | copper { dicopper oxide; copper (I) oxide }<br>029-002-00-X                                                                                                                              |          | 83 mg/kg          | 1.126           | 84.188 mg/kg   | 0.00842 %            | ✓         |                     |
| 6        | 4   | lead { • lead compounds with the exception of those specified elsewhere in this Annex (worst case) }                                                                                     | 1        | 120 mg/kg         |                 | 108.108 mg/kg  | 0.0108 %             | <b>√</b>  |                     |
|          |     | 082-001-00-6                                                                                                                                                                             |          |                   |                 |                |                      |           |                     |
| 7        | 4   | mercury { mercury dichloride }<br>080-010-00-X 231-299-8 7487-94-7                                                                                                                       |          | 0.16 mg/kg        | 1.353           | 0.195 mg/kg    | 0.0000195 %          | <b>√</b>  |                     |
|          | 2   | nickel { nickel sulfate }                                                                                                                                                                |          |                   |                 |                |                      | 1         |                     |
| 8        | _   | 028-009-00-5 232-104-9 7786-81-4                                                                                                                                                         |          | 27 mg/kg          | 2.637           | 64.136 mg/kg   | 0.00641 %            | <b>√</b>  |                     |
| 9        | 4   | selenium { selenium compounds with the exception of cadmium sulphoselenide and those specified elsewhere in this Annex }                                                                 |          | 1.2 mg/kg         | 1.405           | 1.519 mg/kg    | 0.000152 %           | <b>√</b>  |                     |
| $\vdash$ | -   | 034-002-00-8                                                                                                                                                                             | $\vdash$ |                   |                 |                |                      | +         |                     |
| 10       |     | zinc { zinc sulphate } 030-006-00-9                                                                                                                                                      |          | 260 mg/kg         | 2.469           | 578.394 mg/kg  | 0.0578 %             | <b>√</b>  |                     |
| 11       | €\$ | cyanides { * salts of hydrogen cyanide with the exception of complex cyanides such as ferrocyanides, ferricyanides and mercuric oxycyanide and those specified elsewhere in this Annex } |          | 0.2 mg/kg         | 1.884           | 0.339 mg/kg    | 0.0000339 %          | 1         |                     |
| 12       | •   | pH PH                                                                                                                                                                                    |          | 7 pH              |                 | 7 pH           | 7pH                  |           |                     |
| 13       |     | naphthalene<br>601-052-00-2   202-049-5   91-20-3                                                                                                                                        |          | 0.2 mg/kg         |                 | 0.18 mg/kg     | 0.000018 %           | <b>√</b>  |                     |



| Total   Tot | _  | _ | <u> </u>                                                                                       |             |           | _            | 7      |             |       |        |             | _                 |                     |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|---|------------------------------------------------------------------------------------------------|-------------|-----------|--------------|--------|-------------|-------|--------|-------------|-------------------|---------------------|
| 14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | #  |   | EU CLP index                                                                                   | CAS Number  | LP Note   | User entered | l data | Compound of | conc. |        | IC Applied  | Conc. Not<br>Used |                     |
| 14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |    |   | number                                                                                         |             |           | ပ            |        |             |       |        |             | 2                 |                     |
| 205-917-1   208-96-8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 14 | 0 | acenaphthylene                                                                                 |             |           |              | 0.4    | ma/ka       | 0.36  | ma/ka  | 0.000036 %  | 1                 |                     |
| 15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |    |   |                                                                                                | 205-917-1   | 208-96-8  | 1_           |        |             |       |        |             | Ť                 |                     |
| 16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 15 |   | acenaphthene                                                                                   |             |           |              | 0.2    | mg/kg       | 0.18  | mg/kg  | 0.000018 %  | 1                 |                     |
| 16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |    |   |                                                                                                | 201-469-6   | 83-32-9   | 1            |        | - 0         |       |        |             | Ľ                 |                     |
| 17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 16 | 0 | fluorene                                                                                       |             |           |              | 0.6    | mg/kg       | 0.541 | mg/kg  | 0.0000541 % | 1                 |                     |
| 17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |    |   |                                                                                                | 201-695-5   | 86-73-7   |              |        |             |       |        |             | Ľ                 |                     |
| 18    anthracene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 17 | 0 | phenanthrene                                                                                   |             |           |              | 3.5    | mg/kg       | 3.153 | mg/kg  | 0.000315 %  | 1                 |                     |
| 18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |    |   |                                                                                                | 201-581-5   | 85-01-8   | -            |        |             |       |        |             |                   |                     |
| 19   *   fluoranthene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 18 | 0 | anthracene                                                                                     |             |           |              | 1.2    | mg/kg       | 1.081 | mg/kg  | 0.000108 %  | 1                 |                     |
| 19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |    |   | 0 1                                                                                            | 204-371-1   | 120-12-7  | -            |        |             |       |        |             |                   |                     |
| Denzolarity   | 19 | 0 | fluoranthene                                                                                   | loo= 0.40 4 | (222.11.2 | _            | 7.1    | mg/kg       | 6.396 | mg/kg  | 0.00064 %   | ✓                 |                     |
| 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |    |   |                                                                                                | 205-912-4   | 206-44-0  | -            |        |             |       |        |             |                   |                     |
| 21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 20 | 0 | 204-927-3   129-00-0                                                                           |             | (400.00.0 | _            | 5.9    | mg/kg       | 5.315 | mg/kg  | 0.000532 %  | ✓                 |                     |
| 21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |    |   | h f - 1 4h                                                                                     | 129-00-0    | +         |              |        |             |       |        |             |                   |                     |
| 22   chrysene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 21 |   | 601-033-00-9 200-280-6 56-55-3                                                                 |             |           | _            | 3.2    | mg/kg       | 2.883 | mg/kg  | 0.000288 %  | $\checkmark$      |                     |
| 22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | _  |   |                                                                                                |             | +         |              |        |             |       |        |             |                   |                     |
| Denzo[b]fluoranthene   2.4 mg/kg   2.162 mg/kg   0.000216 %   V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 22 |   | *                                                                                              | DOE 022 4   | 219 01 0  | -            | 3.8    | mg/kg       | 3.423 | mg/kg  | 0.000342 %  | $\checkmark$      |                     |
| 23                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |    |   |                                                                                                |             | 210-01-9  |              |        |             |       |        |             |                   |                     |
| Denzo[k]fluoranthene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 23 |   |                                                                                                |             | 205-00-2  | -            | 2.4    | mg/kg       | 2.162 | mg/kg  | 0.000216 %  | $\checkmark$      |                     |
| 24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |    |   |                                                                                                |             | 203-33-2  | +            |        |             |       |        |             |                   |                     |
| 25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 24 |   |                                                                                                |             | 207-08-9  | -            | 1.7    | mg/kg       | 1.532 | mg/kg  | 0.000153 %  | $\checkmark$      |                     |
| 25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |    |   |                                                                                                | 1           | 201 00 0  | +            |        |             |       |        |             |                   |                     |
| 26   indeno[123-cd]pyrene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 25 |   |                                                                                                |             | 50-32-8   | +            | 2.8    | mg/kg       | 2.523 | mg/kg  | 0.000252 %  | ✓                 |                     |
| 205-893-2   193-39-5   1.712   mg/kg   0.000171 %                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |    |   |                                                                                                |             | (55.52.5  |              |        |             |       |        |             |                   |                     |
| 27   dibenz[a,h]anthracene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 26 | - |                                                                                                |             | 193-39-5  | -            | 1.9    | mg/kg       | 1.712 | mg/kg  | 0.000171 %  | <b>√</b>          |                     |
| 27                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | C- |   | dibenz[a,h]anthrac                                                                             |             |           |              |        |             | 7.007 | //     | 0.000700.01 |                   |                     |
| 28 benzo[ghi]perylene  2.5 mg/kg  2.252 mg/kg  0.000225 %  29 asbestos  650-013-00-6   12001-28-4   132207-32-0   12172-73-5   77536-68-6   77536-68-6   77536-67-5   12001-29-5   12001-29-5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 27 |   |                                                                                                |             | 53-70-3   |              | 8.2    | mg/kg       | 7.387 | mg/kg  | 0.000739 %  | <b>√</b>          |                     |
| 29 asbestos 650-013-00-6   12001-28-4   132207-32-0   12172-73-5   77536-66-4   77536-67-5   12001-29-5     12001-29-5     <10 mg/kg   <10 mg/kg   <0.001 %   <loe< td=""><td>20</td><td></td><td>benzo[ghi]perylene</td><td></td><td></td><td></td><td>2.5</td><td>ma/ka</td><td>2.252</td><td>ma/ka</td><td>0.000225.9/</td><td>,</td><td></td></loe<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 20 |   | benzo[ghi]perylene                                                                             |             |           |              | 2.5    | ma/ka       | 2.252 | ma/ka  | 0.000225.9/ | ,                 |                     |
| 29   12001-28-4<br>132207-32-0<br>12172-73-5<br>77536-66-4<br>77536-68-6<br>77536-67-5<br>12001-29-5   <10 mg/kg <0.001 % <loe< td=""><td>20</td><td></td><td></td><td>205-883-8</td><td>191-24-2</td><td>1</td><td>2.5</td><td>mg/kg</td><td>2.232</td><td>mg/kg</td><td>0.000223 %</td><td><b>V</b></td><td></td></loe<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 20 |   |                                                                                                | 205-883-8   | 191-24-2  | 1            | 2.5    | mg/kg       | 2.232 | mg/kg  | 0.000223 %  | <b>V</b>          |                     |
| 132207-32-0<br>12172-73-5<br>77536-66-4<br>77536-68-6<br>77536-67-5<br>12001-29-5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |    |   | asbestos                                                                                       | •           |           |              |        |             |       |        |             |                   |                     |
| Total: 0.093 %                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 29 |   | 650-013-00-6 12001-28-4<br>132207-32-0<br>12172-73-5<br>77536-66-4<br>77536-68-6<br>77536-67-5 |             |           |              | <10    | mg/kg       | <10   | mg/kg  | <0.001 %    |                   | <lod< th=""></lod<> |
| 10tai. 0.000 /0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |    |   |                                                                                                | 12001-20-0  |           |              |        |             |       | Total: | 0.093 %     |                   |                     |

User supplied data

Determinand values ignored for classification, see column 'Conc. Not Used' for reason

Determinand defined or amended by HazWasteOnline (see Appendix A)

Speciated Determinand - Unless the Determinand is Note 1, the Conversion Factor is used to calculate the compound ď

concentration

<LOD Below limit of detection

ND Not detected

CLP: Note 1 Only the metal concentration has been used for classification

Page 8 of 24 HBO2D-K27OY-WXP7N www.hazwasteonline.com



17: Construction and Demolition Wastes (including excavated soil

17 05 04 (Soil and stones other than those mentioned in 17 05

Classification of sample: BH02[2]

Non Hazardous Waste Classified as 17 05 04 in the List of Waste

03)

from contaminated sites)

#### Sample details

Sample name: LoW Code:

BH02[2] Chapter:
Sample Depth:

**0.20-0.55 m** Entry:

Moisture content: **7.6%** 

(dry weight correction)

#### **Hazard properties**

None identified

#### **Determinands**

Moisture content: 7.6% Dry Weight Moisture Correction applied (MC)

#### Applied Determinand Conv Classification Conc. Not # User entered data Compound conc. Factor value Used S.P. EU CLP index EC Number CAS Number 2 number arsenic { arsenic trioxide } 1 7 mg/kg 1.32 8.589 mg/kg 0.000859 % 033-003-00-0 215-481-4 1327-53-3 cadmium { cadmium oxide } 2 0.425 mg/kg 0.0000425 % 0.4 mg/kg 1.142 215-146-2 048-002-00-0 1306-19-0 🕰 chromium in chromium(III) compounds { 🍨 chromium(III) mg/kg 1.462 33.958 0.0034 % 25 mg/kg oxide (worst case) } 215-160-9 1308-38-9 chromium in chromium(VI) compounds { chromium(VI) <LOD oxide } mg/kg 1.923 <1.923 < 0.000192 % <1 mg/kg 024-001-00-0 215-607-8 1333-82-0 copper { dicopper oxide; copper (I) oxide } 5 150 mg/kg 1.126 156.955 mg/kg 0.0157 % 029-002-00-X 215-270-7 1317-39-1 lead { • lead compounds with the exception of those 6 specified elsewhere in this Annex (worst case) } 45 mg/kg 41.822 mg/kg 0.00418 % 082-001-00-6 mercury { mercury dichloride } 7 0.05 mg/kg 1.353 0.0629 0.00000629 % mg/kg 080-010-00-X 231-299-8 7487-94-7 nickel { nickel sulfate } 8 mg/kg 2.637 63.712 0.00637 % 26 ma/ka 028-009-00-5 232-104-9 7786-81-4 selenium { selenium compounds with the exception of cadmium sulphoselenide and those specified elsewhere <LOD < 0.5 mg/kg 1.405 < 0.703 mg/kg <0.0000703 % in this Annex } 034-002-00-8 zinc { zinc sulphate } 10 0.0321 % 140 mg/kg 2.469 321.284 ma/ka 030-006-00-9 231-793-3 [1] 7446-19-7 [1] 231-793-3 [2] 7733-02-0 [2] TPH (C6 to C40) petroleum group 11 315.985 0.0316 % 340 mg/kg mg/kg TPH cyanides { \* salts of hydrogen cyanide with the exception of complex cyanides such as ferrocyanides, mg/kg <0.0000188 % <LOD 12 mg/kg 1.884 < 0.188 ferricyanides and mercuric oxycyanide and those < 0.1 specified elsewhere in this Annex } 006-007-00-5 рΗ 13 7.7 рΗ 7.7 На 7.7 pH PH



| =             |   |                                                                                                              |                    |          |     |            |             | ,               |            |             |                      | ,                   |                     |
|---------------|---|--------------------------------------------------------------------------------------------------------------|--------------------|----------|-----|------------|-------------|-----------------|------------|-------------|----------------------|---------------------|---------------------|
| #             |   | EU CLP index<br>number                                                                                       | number             |          |     | User enter | ed data     | Conv.<br>Factor | Compound ( | conc.       | Classification value | MC Applied          | Conc. Not<br>Used   |
|               |   | naphthalene                                                                                                  |                    |          |     |            |             |                 |            |             |                      |                     |                     |
| 14            |   | •                                                                                                            | 202-049-5          | 01-20-3  | -   | <0.1       | mg/kg       |                 | <0.1       | mg/kg       | <0.00001 %           |                     | <lod< td=""></lod<> |
|               |   |                                                                                                              | 202-043-3          | 31-20-3  | +   |            |             |                 |            |             |                      | ╁                   |                     |
| 15            | 0 | acenaphthylene                                                                                               | 005 047 4          | 600.00.0 | _   | 0.1        | mg/kg       |                 | 0.0929     | mg/kg       | 0.00000929 %         | ✓                   |                     |
| $\rightarrow$ |   |                                                                                                              | 205-917-1          | 208-96-8 | +   |            |             |                 |            |             |                      |                     |                     |
| 16            | 0 | acenaphthene                                                                                                 |                    |          |     | <0.1       | mg/kg       |                 | <0.1       | mg/kg       | <0.00001 %           |                     | <lod< td=""></lod<> |
|               |   |                                                                                                              | 201-469-6          | 83-32-9  |     |            |             |                 |            |             |                      |                     |                     |
| 17            | 0 | fluorene                                                                                                     |                    |          |     | 0.3        | mg/kg       |                 | 0.279      | mg/kg       | 0.0000279 %          | 1                   |                     |
|               |   |                                                                                                              | 201-695-5          | 86-73-7  |     | 0.0        | 9/9         |                 | 0.2.0      | 9,9         | 0.00002.0 /0         | *                   |                     |
| 18            | 0 | phenanthrene                                                                                                 |                    | ,        |     | 1.2        | no ar/1 car |                 | 1 115      |             | 0.000112 %           | ,                   |                     |
| '0            |   |                                                                                                              | 201-581-5          | 85-01-8  | 1   | 1.2        | mg/kg       |                 | 1.115      | mg/kg       | 0.000112 %           | √                   |                     |
|               |   | anthracene                                                                                                   |                    | \        |     |            |             |                 |            |             |                      |                     |                     |
| 19            | Ĭ |                                                                                                              | 204-371-1          | 120-12-7 | -   | 0.2        | mg/kg       |                 | 0.186      | mg/kg       | 0.0000186 %          | ✓                   |                     |
|               |   | fluoranthene                                                                                                 | 2010/11            | 120 12 1 | +   |            |             |                 |            |             |                      | T                   |                     |
| 20            |   | 205-912-4 206-44-0                                                                                           |                    | _        | 2   | mg/kg      |             | 1.859           | mg/kg      | 0.000186 %  | $\checkmark$         |                     |                     |
| $\vdash$      |   |                                                                                                              | 205-912-4 206-44-0 |          | +   |            |             |                 |            |             |                      | +                   |                     |
| 21            | 0 | pyrene 204-927-3   129-00-0                                                                                  |                    |          | 1.8 | mg/kg      |             | 1.673           | mg/kg      | 0.000167 %  | 1                    |                     |                     |
|               |   | · '                                                                                                          |                    |          |     |            |             |                 |            |             |                      |                     |                     |
| 22            |   | benzo[a]anthracene                                                                                           |                    |          | 0.9 | mg/kg      |             | 0.836           | mg/kg      | 0.0000836 % | 1                    |                     |                     |
|               |   | 601-033-00-9                                                                                                 | 200-280-6          | 56-55-3  |     | 0.0        | 9/1.9       |                 | 0.000      | 9,9         | 0.0000000 /0         | ľ                   |                     |
| 23            |   | chrysene                                                                                                     |                    |          |     | 1          | ma/ka       |                 | 0.929      | ma/ka       | 0.0000929 %          | ,                   |                     |
| 23            |   | 601-048-00-0                                                                                                 | 205-923-4          | 218-01-9 | 1   | '          | mg/kg       |                 | 0.929      | mg/kg       | 0.0000929 %          | √                   |                     |
|               |   | benzo[b]fluoranthe                                                                                           | ne                 | \        |     |            |             |                 |            |             |                      |                     |                     |
| 24            |   | 601-034-00-4                                                                                                 | 205-911-9          | 205-99-2 | -   | 0.9        | mg/kg       |                 | 0.836      | mg/kg       | 0.0000836 %          | √                   |                     |
| $\vdash$      |   | benzo[k]fluoranthe                                                                                           |                    | 200 00 2 | +   |            |             |                 |            |             |                      | +                   |                     |
| 25            |   | 601-036-00-5                                                                                                 | 205-916-6          | 207-08-9 | _   | 0.6        | mg/kg       |                 | 0.558      | mg/kg       | 0.0000558 %          | $\checkmark$        |                     |
|               |   |                                                                                                              |                    | 207-08-9 | +   |            |             |                 |            | -           |                      | +                   |                     |
| 26            |   | benzo[a]pyrene; be                                                                                           |                    |          |     | 1          | mg/kg       |                 | 0.929      | mg/kg       | 0.0000929 %          | 1                   |                     |
|               |   | 601-032-00-3                                                                                                 | 200-028-5          | 50-32-8  | _   |            |             |                 |            |             |                      | -                   |                     |
| 27            | 0 | indeno[123-cd]pyre                                                                                           |                    |          |     | 0.7        | mg/kg       |                 | 0.651      | mg/kg       | 0.0000651 %          | 1                   |                     |
|               |   |                                                                                                              | 205-893-2          | 193-39-5 |     | J          | 9,9         |                 | 3.00.      | 9           |                      | Ť                   |                     |
| 28            |   | dibenz[a,h]anthrac                                                                                           | ene                |          |     | 0.5        | mg/kg       |                 | 0.465      | mg/kg       | 0.0000465 %          | <b>√</b>            |                     |
| 20            |   | 601-041-00-2                                                                                                 | 200-181-8          | 53-70-3  |     | 0.5        | mg/kg       |                 | 0.403      | mg/kg       | 0.0000403 /6         | ~                   |                     |
|               | ė | benzo[ghi]perylene                                                                                           | 9                  | `        | Ť   |            |             |                 |            |             |                      |                     |                     |
| 29            |   | 10 1                                                                                                         | 205-883-8          | 191-24-2 | -   | 1.1        | mg/kg       |                 | 1.022      | mg/kg       | 0.000102 %           | √                   |                     |
|               |   | asbestos                                                                                                     | 1                  | (        | +   |            |             |                 |            |             |                      |                     |                     |
| 30            |   | 650-013-00-6 12001-28-4<br>132207-32-0<br>12172-73-5<br>77536-66-4<br>77536-68-6<br>77536-67-5<br>12001-29-5 |                    |          | <10 | mg/kg      |             | <10             | mg/kg      | <0.001 %    |                      | <lod< td=""></lod<> |                     |
|               |   |                                                                                                              |                    |          |     |            |             |                 |            | Total:      | 0.0967 %             |                     |                     |

User supplied data

Determinand values ignored for classification, see column 'Conc. Not Used' for reason

Determinand defined or amended by HazWasteOnline (see Appendix A)

Speciated Determinand - Unless the Determinand is Note 1, the Conversion Factor is used to calculate the compound

concentration

<LOD Below limit of detection

ND Not detected

CLP: Note 1 Only the metal concentration has been used for classification

#### **Supplementary Hazardous Property Information**

HP 3(i): Flammable "flammable liquid waste: liquid waste having a flash point below 60°C or waste gas oil, diesel and light heating oils having a flash point > 55°C and <= 75°C"

Force this Hazardous property to non hazardous because The TPH contamination recorded is not present in a liquid or vapour form and therefore is not flammable

Hazard Statements hit:

Flam. Liq. 3; H226 "Flammable liquid and vapour."

Page 10 of 24 HBO2D-K27OY-WXP7N www.hazwasteonline.com





Because of determinand:

TPH (C6 to C40) petroleum group: (conc.: 0.0316%)





Classification of sample: BH03

Non Hazardous Waste Classified as 17 05 04 in the List of Waste

#### Sample details

Sample name: LoW Code: **BH03** Chapter: Sample Depth: 0.20-0.45 m Entry: Moisture content: 7.2%

17: Construction and Demolition Wastes (including excavated soil from contaminated sites)
17 05 04 (Soil and stones other than those mentioned in 17 05

03)

#### **Hazard properties**

(dry weight correction)

None identified

#### **Determinands**

Moisture content: 7.2% Dry Weight Moisture Correction applied (MC)

| #   |    | Determinand                                                                                                                                                                              | Note     | User entered data | Conv.<br>Factor | Compound conc. | Classification value | Applied  | Conc. Not<br>Used   |
|-----|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|-------------------|-----------------|----------------|----------------------|----------|---------------------|
|     |    | EU CLP index number EC Number CAS Number                                                                                                                                                 | CLP      |                   |                 |                |                      | MC       |                     |
| 1   | ď. |                                                                                                                                                                                          |          | 7.4 mg/kg         | 1.32            | 9.114 mg/kg    | 0.000911 %           | 1        |                     |
|     | _  | 033-003-00-0 215-481-4  1327-53-3                                                                                                                                                        | ┢        |                   |                 |                |                      |          |                     |
| 2   | 4  | cadmium { cadmium oxide }   048-002-00-0   215-146-2   1306-19-0                                                                                                                         |          | 0.2 mg/kg         | 1.142           | 0.213 mg/kg    | 0.0000213 %          | ✓        |                     |
| 3   | 4  | oxide (worst case) }                                                                                                                                                                     |          | 25 mg/kg          | 1.462           | 34.085 mg/kg   | 0.00341 %            | <b>√</b> |                     |
|     | _  | 215-160-9   1308-38-9                                                                                                                                                                    | -        |                   |                 |                |                      |          |                     |
| 4   | 4  | oxide }                                                                                                                                                                                  |          | <1 mg/kg          | 1.923           | <1.923 mg/kg   | <0.000192 %          |          | <lod< th=""></lod<> |
|     | _  | 024-001-00-0 215-607-8  1333-82-0                                                                                                                                                        | -        |                   |                 |                |                      |          |                     |
| 5   | 4  | copper {   dicopper oxide; copper (I) oxide }                                                                                                                                            | -        | 35 mg/kg          | 1.126           | 36.759 mg/kg   | 0.00368 %            | ✓        |                     |
| 6   | ď  | specified elsewhere in this Annex (worst case) }                                                                                                                                         | 1        | 36 mg/kg          |                 | 33.582 mg/kg   | 0.00336 %            | <b>√</b> |                     |
|     |    | 082-001-00-6                                                                                                                                                                             |          |                   |                 |                |                      |          |                     |
| 7   | ď. | mercury { mercury dichloride } 080-010-00-X 231-299-8 7487-94-7                                                                                                                          | _        | <0.05 mg/kg       | 1.353           | <0.0677 mg/kg  | <0.00000677 %        |          | <lod< td=""></lod<> |
|     |    |                                                                                                                                                                                          | $\vdash$ |                   |                 |                |                      |          |                     |
| 8   | ď. | 028-009-00-5   232-104-9                                                                                                                                                                 | -        | 25 mg/kg          | 2.637           | 61.49 mg/kg    | 0.00615 %            | ✓        |                     |
| 9   | 4  | selenium { selenium compounds with the exception of cadmium sulphoselenide and those specified elsewhere in this Annex }                                                                 |          | 0.6 mg/kg         | 1.405           | 0.786 mg/kg    | 0.0000786 %          | <b>√</b> |                     |
|     |    | 034-002-00-8                                                                                                                                                                             | 1        |                   |                 |                |                      |          |                     |
| 4.0 |    | zinc { zinc sulphate }                                                                                                                                                                   |          | 0.4               | 0.400           | 040 504 . "    | 0.0047.0/            | ,        |                     |
| 10  |    | 030-006-00-9 231-793-3 [1] 7446-19-7 [1]<br>231-793-3 [2] 7733-02-0 [2]                                                                                                                  |          | 94 mg/kg          | 2.469           | 216.524 mg/kg  | 0.0217 %             | ✓        |                     |
| 11  |    | TPH (C6 to C40) petroleum group                                                                                                                                                          |          | 320 mg/kg         |                 | 298.507 mg/kg  | 0.0299 %             | <b>√</b> |                     |
| 12  | 4  | cyanides { * salts of hydrogen cyanide with the exception of complex cyanides such as ferrocyanides, ferricyanides and mercuric oxycyanide and those specified elsewhere in this Annex } |          | <0.1 mg/kg        | 1.884           | <0.188 mg/kg   | <0.0000188 %         |          | <lod< td=""></lod<> |
|     |    | 006-007-00-5                                                                                                                                                                             |          |                   |                 |                |                      |          |                     |
| 13  | •  | pH PH                                                                                                                                                                                    |          | 9.4 pH            |                 | 9.4 pH         | 9.4 pH               |          |                     |

Page 12 of 24 HBO2D-K27OY-WXP7N www.hazwasteonline.com





| _  |          | *                                                     |                       |          |     |            |         |                 |            |             |                      | ,                   |                     |
|----|----------|-------------------------------------------------------|-----------------------|----------|-----|------------|---------|-----------------|------------|-------------|----------------------|---------------------|---------------------|
| #  |          | EU CLP index number                                   | Determinand EC Number |          |     | User enter | ed data | Conv.<br>Factor | Compound o | conc.       | Classification value | MC Applied          | Conc. Not<br>Used   |
|    | $\vdash$ | naphthalene                                           |                       |          |     |            |         |                 |            |             |                      |                     |                     |
| 14 |          | 601-052-00-2                                          | 202-049-5             | 91-20-3  | -   | <0.1       | mg/kg   |                 | <0.1       | mg/kg       | <0.00001 %           | ш                   | <lod< td=""></lod<> |
|    |          | acenaphthylene                                        | -02 0 .0 0            | 0.200    |     |            |         |                 |            |             |                      |                     |                     |
| 15 |          | accriapitatylone                                      | 205-917-1             | 208-96-8 | -   | <0.1       | mg/kg   |                 | <0.1       | mg/kg       | <0.00001 %           | ш                   | <lod< td=""></lod<> |
|    |          | acenaphthene                                          |                       |          |     |            |         |                 |            |             |                      |                     |                     |
| 16 | ľ        | accinapilations                                       | 201-469-6             | 83-32-9  | +   | <0.1       | mg/kg   |                 | <0.1       | mg/kg       | <0.00001 %           | ш                   | <lod< td=""></lod<> |
|    |          | fluorene                                              | -000 0                | 00 02 0  |     |            |         |                 |            |             |                      |                     |                     |
| 17 | ľ        |                                                       | 201-695-5             | 86-73-7  | -   | <0.1       | mg/kg   |                 | <0.1       | mg/kg       | <0.00001 %           | ш                   | <lod< td=""></lod<> |
|    |          | phenanthrene                                          |                       | 00.0.    | +   |            |         |                 |            |             |                      |                     |                     |
| 18 | ľ        | priorita il il orio                                   | 201-581-5             | 85-01-8  | -   | 0.4        | mg/kg   |                 | 0.373      | mg/kg       | 0.0000373 %          | <b>√</b>            |                     |
|    |          | anthracene                                            | 201 001 0             | 00 01 0  | +   |            |         |                 |            |             |                      |                     |                     |
| 19 | "        | unundoono                                             | 204-371-1             | 120-12-7 | -   | 0.2        | mg/kg   |                 | 0.187      | mg/kg       | 0.0000187 %          | ✓                   |                     |
|    |          | fluoranthene                                          | 204 071 1             | 120 12 1 | ╁   |            |         |                 |            |             |                      |                     |                     |
| 20 | "        | ndorantilene                                          | 205-912-4             | 206-44-0 | _   | 1.3        | mg/kg   |                 | 1.213      | mg/kg       | 0.000121 %           | ✓                   |                     |
|    |          | pyrene                                                | ene                   |          | +   |            |         |                 |            |             |                      |                     |                     |
| 21 | ۰        | pyrene                                                | 204-927-3   129-00-0  |          | -   | 1.2        | mg/kg   |                 | 1.119      | mg/kg       | 0.000112 %           | ✓                   |                     |
| -  |          | 204-927-3   129-00-0<br>benzo[a]anthracene            |                       | +        |     |            |         |                 |            |             |                      |                     |                     |
| 22 |          | penzo[a]anthracene<br>01-033-00-9  200-280-6  56-55-3 |                       | 4        | 0.7 | mg/kg      |         | 0.653           | mg/kg      | 0.0000653 % | ✓                    |                     |                     |
|    | -        |                                                       | 200-280-6             | 00-00-3  | +   |            |         |                 |            |             |                      |                     |                     |
| 23 |          | chrysene<br>601-048-00-0                              | 005 000 4             | 040.04.0 | 4   | 0.8        | mg/kg   |                 | 0.746      | mg/kg       | 0.0000746 %          | ✓                   |                     |
|    |          |                                                       | 205-923-4             | 218-01-9 | +   |            |         |                 |            |             |                      |                     |                     |
| 24 |          | benzo[b]fluoranthe                                    |                       | hor oo o | 4   | 0.8        | mg/kg   |                 | 0.746      | mg/kg       | 0.0000746 %          | ✓                   |                     |
|    |          | 601-034-00-4                                          | 205-911-9             | 205-99-2 | +   |            |         |                 |            |             |                      |                     |                     |
| 25 |          | benzo[k]fluoranthe                                    |                       | 607.00.0 |     | 0.4        | mg/kg   |                 | 0.373      | mg/kg       | 0.0000373 %          | <b>V</b>            |                     |
|    |          | 601-036-00-5                                          | 205-916-6             | 207-08-9 |     |            |         |                 |            |             |                      |                     | <u> </u>            |
| 26 |          | benzo[a]pyrene; be                                    |                       |          |     | 0.8        | mg/kg   |                 | 0.746      | mg/kg       | 0.0000746 %          | 1                   |                     |
| -  | -        | 601-032-00-3                                          | 200-028-5             | 50-32-8  | +   |            |         |                 |            |             |                      |                     |                     |
| 27 |          | indeno[123-cd]pyre                                    |                       | ,        |     | 0.6        | mg/kg   |                 | 0.56       | mg/kg       | 0.000056 %           | 1                   |                     |
|    | _        |                                                       | 205-893-2             | 193-39-5 | +   |            |         |                 |            |             |                      |                     |                     |
| 28 |          | dibenz[a,h]anthrac                                    |                       |          |     | 0.3        | mg/kg   |                 | 0.28       | mg/kg       | 0.000028 %           | 1                   |                     |
|    | _        | 601-041-00-2                                          | 200-181-8             | 53-70-3  | -   |            |         |                 |            |             |                      |                     |                     |
| 29 |          | benzo[ghi]perylene                                    |                       |          |     | 0.7        | mg/kg   |                 | 0.653      | mg/kg       | 0.0000653 %          | 1                   |                     |
|    |          |                                                       | 205-883-8             | 191-24-2 | _   |            |         |                 |            |             |                      |                     |                     |
| 30 |          | asbestos 650-013-00-6                                 |                       |          | <10 | mg/kg      |         | <10             | mg/kg      | <0.001 %    |                      | <lod< td=""></lod<> |                     |
|    |          | 12001-23-3                                            |                       |          |     |            |         |                 |            | Total:      | 0.0711 %             |                     |                     |

User supplied data

Determinand values ignored for classification, see column 'Conc. Not Used' for reason

Determinand defined or amended by HazWasteOnline (see Appendix A)

Speciated Determinand - Unless the Determinand is Note 1, the Conversion Factor is used to calculate the compound

concentration

<LOD Below limit of detection

ND Not detected

CLP: Note 1 Only the metal concentration has been used for classification

#### **Supplementary Hazardous Property Information**

<u>HP 3(i): Flammable</u> "flammable liquid waste: liquid waste having a flash point below 60°C or waste gas oil, diesel and light heating oils having a flash point > 55°C and <= 75°C"

Force this Hazardous property to non hazardous because The TPH contamination recorded is not present in a liquid or vapour form and therefore is not flammable

Hazard Statements hit:

Flam. Liq. 3; H226 "Flammable liquid and vapour."

www.hazwasteonline.com HBO2D-K27OY-WXP7N Page 13 of 24





Because of determinand:

TPH (C6 to C40) petroleum group: (conc.: 0.0299%)



17: Construction and Demolition Wastes (including excavated soil

17 05 04 (Soil and stones other than those mentioned in 17 05

Classification of sample: BH04

Non Hazardous Waste Classified as 17 05 04 in the List of Waste

03)

from contaminated sites)

#### Sample details

Sample name: LoW Code:

BH04 Chapter:

Sample Depth:

0.00-0.30 m

Entry:

Moisture content: 16%

(dry weight correction)

**Hazard properties** 

None identified

#### **Determinands**

Moisture content: 16% Dry Weight Moisture Correction applied (MC)

| #  |          | EU CLP index                                                                                                                                                                             | Determinand<br>EC Number                                                                                                        | CAS Number                     | CLP Note | User entered | data  | Conv.<br>Factor | Compound conc. | Classification value | MC Applied | Conc. Not<br>Used   |
|----|----------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------|--------------------------------|----------|--------------|-------|-----------------|----------------|----------------------|------------|---------------------|
| 1  | _        | arsenic { arsenic tr                                                                                                                                                                     | l<br><mark>ioxide</mark> }<br>215-481-4                                                                                         | 1327-53-3                      |          | 8.8          | mg/kg | 1.32            | 10.016 mg/kg   | 0.001 %              | <b>√</b>   |                     |
| 2  | 4        | cadmium { cadmiu                                                                                                                                                                         |                                                                                                                                 | 1306-19-0                      |          | 0.4          | mg/kg | 1.142           | 0.394 mg/kg    | 0.0000394 %          | <b>✓</b>   |                     |
| 3  | 4        | oxide (worst case)                                                                                                                                                                       |                                                                                                                                 |                                |          | 25           | mg/kg | 1.462           | 31.499 mg/kç   | 0.00315 %            | <b>√</b>   |                     |
| 4  | 4        |                                                                                                                                                                                          | 215-160-9<br>nium(VI) compounds                                                                                                 | 1308-38-9<br>  chromium(VI)    |          | <1           | mg/kg | 1.923           | <1.923 mg/kg   | <0.000192 %          |            | <lod< td=""></lod<> |
| 5  | <b>4</b> | copper { dicopper o                                                                                                                                                                      | 215-607-8<br>oxide; copper (I) oxid                                                                                             |                                |          | 51           | mg/kg | 1.126           | 49.5 mg/kg     | 0.00495 %            | <b>✓</b>   |                     |
| 6  | æ å      | lead { Plead compospecified elsewhere                                                                                                                                                    | 215-270-7<br>pounds with the exc<br>e in this Annex (wor                                                                        |                                | 1        | 78           | mg/kg |                 | 67.241 mg/kg   | 0.00672 %            | ✓          |                     |
| 7  | -        | mercury { mercury                                                                                                                                                                        | recified elsewhere in this Annex (worst case) } 2-001-00-6     ercury { mercury dichloride } 0-010-00-X   231-299-8   7487-94-7 |                                |          |              | mg/kg | 1.353           | 0.163 mg/kg    | 0.0000163 %          | 1          |                     |
| 8  | 4        | nickel { nickel sulfa                                                                                                                                                                    |                                                                                                                                 | 7786-81-4                      |          | 24           | mg/kg | 2.637           | 54.552 mg/kg   | 0.00546 %            | <b>√</b>   |                     |
| 9  | 4        | selenium { seleniur                                                                                                                                                                      | m compounds with telenide and those sp                                                                                          | he exception of                |          | <0.5         | mg/kg | 1.405           | <0.703 mg/kg   | <0.0000703 %         |            | <lod< td=""></lod<> |
| 10 | 4        | zinc { zinc sulphate                                                                                                                                                                     | 231-793-3 [1]<br>231-793-3 [2]                                                                                                  | 7446-19-7 [1]<br>7733-02-0 [2] |          | 200          | mg/kg | 2.469           | 425.741 mg/kg  | 0.0426 %             | <b>√</b>   |                     |
| 11 |          | cyanides ( * salts of hydrogen cyanide with the exception of complex cyanides such as ferrocyanides, ferricyanides and mercuric oxycyanide and those specified elsewhere in this Annex } |                                                                                                                                 |                                |          | 0.3          | mg/kg | 1.884           | 0.487 mg/kç    | 0.0000487 %          | <b>√</b>   |                     |
| 12 | 1        | pH   PH                                                                                                                                                                                  |                                                                                                                                 |                                |          | 7.1          | pН    |                 | 7.1 pH         | 7.1 pH               |            |                     |
| 13 |          | naphthalene<br>601-052-00-2                                                                                                                                                              | phthalene                                                                                                                       |                                |          | <0.1         | mg/kg |                 | <0.1 mg/kg     | <0.00001 %           |            | <lod< td=""></lod<> |



| 4 | To the second |              |             |            |      |                   |        |                 | <b>ZWaste(</b> by Richard Stripp o |         |  |
|---|---------------|--------------|-------------|------------|------|-------------------|--------|-----------------|------------------------------------|---------|--|
| ‡ |               |              | Determinand |            | Note | User entered data | Conv.  | L Compound conc | Classification                     | Applied |  |
|   |               | EU CLP index | EC Number   | CAS Number | CLP  |                   | Factor |                 | value                              | MC /    |  |

| #        | Determinand |                                                         |            |                                                                                                 | User entere |      | ed data   | Conv.           | Compound conc. |         | Classification value | MC Applied     | Conc. Not<br>Used   |
|----------|-------------|---------------------------------------------------------|------------|-------------------------------------------------------------------------------------------------|-------------|------|-----------|-----------------|----------------|---------|----------------------|----------------|---------------------|
|          |             | EU CLP index number                                     | EC Number  | CAS Number                                                                                      | CLP         |      |           | i actor         | ı              |         | value                | MC.            | Oseu                |
| 14       | 0           | acenaphthylene                                          |            |                                                                                                 |             | <0.1 | mg/kg     |                 | <0.1           | mg/kg   | <0.00001 %           |                | <lod< td=""></lod<> |
|          |             |                                                         | 205-917-1  | 208-96-8                                                                                        | 1           |      |           |                 |                |         |                      | Щ              |                     |
| 15       | 0           | acenaphthene                                            |            |                                                                                                 |             | <0.1 | mg/kg     |                 | <0.1           | mg/kg   | <0.00001 %           |                | <lod< td=""></lod<> |
|          |             |                                                         | 201-469-6  | 83-32-9                                                                                         | _           |      |           |                 |                |         |                      |                |                     |
| 16       | 0           | fluorene                                                | 201-695-5  | 86-73-7                                                                                         | -           | <0.1 | mg/kg     |                 | <0.1           | mg/kg   | <0.00001 %           |                | <lod< th=""></lod<> |
| 17       |             | phenanthrene                                            |            |                                                                                                 |             | 0.5  | mg/kg     |                 | 0.431          | mg/kg   | 0.0000431 %          | ,              |                     |
| '        |             |                                                         | 201-581-5  | 85-01-8                                                                                         |             | 0.5  | mg/kg     |                 | 0.431          | ilig/kg | 0.0000431 %          | <b>√</b>       |                     |
| 18       | 0           | anthracene                                              | 204-371-1  | 120-12-7                                                                                        |             | 0.1  | mg/kg     |                 | 0.0862         | mg/kg   | 0.00000862 %         | <b>√</b>       |                     |
|          | •           | fluoranthene                                            | 20+ 37 1 1 | 120 12 1                                                                                        |             |      |           |                 |                |         |                      |                |                     |
| 19       | •           | Indorantifiche                                          | 205-912-4  | 206-44-0                                                                                        | _           | 0.8  | mg/kg     |                 | 0.69           | mg/kg   | 0.000069 %           | ✓              |                     |
| 20       | 0           | pyrene                                                  |            |                                                                                                 |             | 0.9  | mg/kg     |                 | 0.776          | mg/kg   | 0.0000776 %          | <b>√</b>       |                     |
|          |             |                                                         | 204-927-3  | 129-00-0                                                                                        | +           |      |           |                 |                |         | <del> </del>         |                |                     |
| 21       |             | benzo[a]anthracen                                       |            | (=0, == 0                                                                                       | _           | 0.5  | mg/kg     |                 | 0.431          | mg/kg   | 0.0000431 %          | 1              |                     |
|          |             | 601-033-00-9                                            | 200-280-6  | 56-55-3                                                                                         | -           |      |           |                 |                |         |                      | Н              |                     |
| 22       |             | chrysene                                                | loo= 000 / | (0.1.0.0.1.0                                                                                    | _           | 0.5  | mg/kg     |                 | 0.431          | mg/kg   | 0.0000431 %          | 1              |                     |
|          |             | 601-048-00-0                                            | 205-923-4  | 218-01-9                                                                                        |             |      |           |                 |                |         |                      |                |                     |
| 23       |             | benzo[b]fluoranthene<br>601-034-00-4 205-911-9 205-99-2 |            |                                                                                                 |             | 0.4  | 0.4 mg/kg |                 | 0.345          | mg/kg   | 0.0000345 %          | 1              |                     |
|          |             |                                                         |            |                                                                                                 |             |      |           |                 |                |         |                      | $\vdash\vdash$ |                     |
| 24       |             | benzo[k]fluoranthene                                    |            |                                                                                                 | 4           | 0.4  | mg/kg     |                 | 0.345          | mg/kg   | 0.0000345 %          | 1              |                     |
|          |             | 601-036-00-5                                            | 205-916-6  | 207-08-9                                                                                        |             |      |           |                 |                |         |                      | Н              |                     |
| 25       |             | benzo[a]pyrene; benzo[def]chrysene                      |            |                                                                                                 |             | 0.5  | mg/kg     | <mark>(g</mark> | 0.431          | mg/kg   | 0.0000431 %          | 1              |                     |
|          |             | 601-032-00-3                                            | 200-028-5  | 50-32-8                                                                                         |             |      |           |                 |                |         |                      |                |                     |
| 26       |             | indeno[123-cd]pyro                                      |            | 400.00.5                                                                                        | _           | 0.4  | mg/kg     |                 | 0.345          | mg/kg   | 0.0000345 %          | 1              |                     |
| $\vdash$ |             | dibanala blanthra                                       | 205-893-2  | 193-39-5                                                                                        | +           |      |           |                 |                |         | ,                    | $\vdash$       |                     |
| 27       |             | dibenz[a,h]anthrac<br>601-041-00-2                      | 200-181-8  | 53-70-3                                                                                         | -           | 0.3  | mg/kg     |                 | 0.259          | mg/kg   | 0.0000259 %          | ✓              |                     |
| 28       | 0           | benzo[ghi]perylene                                      |            | 404.04.0                                                                                        |             | 0.6  | mg/kg     |                 | 0.517          | mg/kg   | 0.0000517 %          | 1              |                     |
| $\vdash$ | _           |                                                         | 205-883-8  | 191-24-2                                                                                        | +           |      |           |                 |                |         |                      | Н              |                     |
| 29       |             | asbestos<br>650-013-00-6                                |            | 12001-28-4<br>132207-32-0<br>12172-73-5<br>77536-66-4<br>77536-68-6<br>77536-67-5<br>12001-29-5 |             | <10  | mg/kg     |                 | <10            | mg/kg   | <0.001 %             |                | <lod< th=""></lod<> |
|          |             | l                                                       |            |                                                                                                 |             |      |           |                 |                | Total:  | 0.0658 %             | Н              |                     |

User supplied data

Determinand values ignored for classification, see column 'Conc. Not Used' for reason

Determinand defined or amended by HazWasteOnline (see Appendix A)

Speciated Determinand - Unless the Determinand is Note 1, the Conversion Factor is used to calculate the compound ď

concentration

<LOD Below limit of detection

ND Not detected

CLP: Note 1 Only the metal concentration has been used for classification

Page 16 of 24 HBO2D-K27OY-WXP7N www.hazwasteonline.com



17: Construction and Demolition Wastes (including excavated soil

17 05 04 (Soil and stones other than those mentioned in 17 05

Classification of sample: BH05

Non Hazardous Waste Classified as 17 05 04 in the List of Waste

03)

from contaminated sites)

#### Sample details

Sample name: LoW Code:

BH05 Chapter:

Sample Depth:

0.30-0.60 m Entry:

Moisture content: 13%

(dry weight correction)

**Hazard properties** 

None identified

#### **Determinands**

Moisture content: 13% Dry Weight Moisture Correction applied (MC)

| #  |   | Determinand  EU CLP index EC Number CAS Number number                                                                                                                                    | CLP Note | User entered data | Conv.<br>Factor | Compound conc. | Classification value | MC Applied | Conc. Not<br>Used   |
|----|---|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|-------------------|-----------------|----------------|----------------------|------------|---------------------|
| 1  | 4 | arsenic { arsenic trioxide } 033-003-00-0   215-481-4   1327-53-3                                                                                                                        |          | 15 mg/kg          | 1.32            | 17.526 mg/kg   | 0.00175 %            | <b>√</b>   |                     |
| 2  | 4 |                                                                                                                                                                                          |          | 0.3 mg/kg         | 1.142           | 0.303 mg/kg    | 0.0000303 %          | <b>√</b>   |                     |
| 3  | 4 | chromium in chromium(III) compounds { • chromium(III) oxide (worst case) }                                                                                                               |          | 18 mg/kg          | 1.462           | 23.281 mg/kg   | 0.00233 %            | <b>√</b>   |                     |
| 4  | 4 |                                                                                                                                                                                          |          | <1 mg/kg          | 1.923           | <1.923 mg/kg   | <0.000192 %          |            | <lod< td=""></lod<> |
| 5  | 4 | copper { dicopper oxide; copper (I) oxide } 029-002-00-X   215-270-7   1317-39-1                                                                                                         |          | 30 mg/kg          | 1.126           | 29.891 mg/kg   | 0.00299 %            | ✓          |                     |
| 6  | 4 | lead { • lead compounds with the exception of those specified elsewhere in this Annex (worst case) }                                                                                     | 1        | 51 mg/kg          |                 | 45.133 mg/kg   | 0.00451 %            | <b>√</b>   |                     |
| 7  | 4 | mercury { mercury dichloride } 080-010-00-X 231-299-8 7487-94-7                                                                                                                          |          | <0.05 mg/kg       | 1.353           | <0.0677 mg/kg  | <0.00000677 %        |            | <lod< td=""></lod<> |
| 8  | 4 | nickel { nickel sulfate } 028-009-00-5   232-104-9   7786-81-4                                                                                                                           |          | 19 mg/kg          | 2.637           | 44.334 mg/kg   | 0.00443 %            | <b>√</b>   |                     |
| 9  | ~ | selenium { selenium compounds with the exception of cadmium sulphoselenide and those specified elsewhere in this Annex }                                                                 |          | <0.5 mg/kg        | 1.405           | <0.703 mg/kg   | <0.0000703 %         |            | <lod< td=""></lod<> |
| 10 |   | zinc { zinc sulphate } 030-006-00-9                                                                                                                                                      |          | 87 mg/kg          | 2.469           | 190.114 mg/kg  | 0.019 %              | <b>√</b>   |                     |
| 11 | ۰ | TPH (C6 to C40) petroleum group                                                                                                                                                          |          | 70 mg/kg          |                 | 61.947 mg/kg   | 0.00619 %            | <b>√</b>   |                     |
| 12 | 4 | cyanides { * salts of hydrogen cyanide with the exception of complex cyanides such as ferrocyanides, ferricyanides and mercuric oxycyanide and those specified elsewhere in this Annex } |          | <0.1 mg/kg        | 1.884           | <0.188 mg/kg   | <0.0000188 %         |            | <lod< td=""></lod<> |
| 13 | • | pH PH                                                                                                                                                                                    |          | 9.8 pH            |                 | 9.8 pH         | 9.8 pH               |            |                     |



| #        |   | EU CLP index<br>number      | Determinand<br>EC Number | CAS Number                                                                                      | CLP Note | User entere | ed data | Conv.<br>Factor | Compound of | conc.      | Classification<br>value | MC Applied   | Conc. Not<br>Used   |
|----------|---|-----------------------------|--------------------------|-------------------------------------------------------------------------------------------------|----------|-------------|---------|-----------------|-------------|------------|-------------------------|--------------|---------------------|
| 14       |   | naphthalene<br>601-052-00-2 | 202-049-5                | 91-20-3                                                                                         |          | <0.1        | mg/kg   |                 | <0.1        | mg/kg      | <0.00001 %              |              | <lod< th=""></lod<> |
| $\vdash$ |   |                             | 202-049-5                | 91-20-3                                                                                         | ╁        |             |         |                 |             |            |                         |              |                     |
| 15       | 0 | acenaphthylene              | 205-917-1                | 208-96-8                                                                                        | -        | 0.6         | mg/kg   |                 | 0.531       | mg/kg      | 0.0000531 %             | ✓            |                     |
| 4.0      |   | acenaphthene                |                          | `                                                                                               |          | 0.4         |         |                 | 0.4         | 0          | 0.00004.0/              |              | 1.00                |
| 16       | - | •                           | 201-469-6                | 83-32-9                                                                                         | 1        | <0.1        | mg/kg   |                 | <0.1        | mg/kg      | <0.00001 %              |              | <lod< td=""></lod<> |
|          |   | fluorene                    |                          |                                                                                                 |          |             |         |                 |             |            |                         |              |                     |
| 17       |   |                             | 201-695-5                | 86-73-7                                                                                         | -        | 0.1         | mg/kg   |                 | 0.0885      | mg/kg      | 0.00000885 %            | √            |                     |
|          |   | phononthrono                | 201 000 0                | 00 10 1                                                                                         | +        |             |         |                 |             |            |                         |              |                     |
| 18       |   | prieriaritirerie            | phenanthrene             |                                                                                                 |          | 1.5         | mg/kg   |                 | 1.327       | mg/kg      | 0.000133 %              | ✓            |                     |
|          |   |                             | 201-581-5                | 85-01-8                                                                                         | +        |             |         |                 |             |            |                         |              |                     |
| 19       | 0 | anthracene                  | ,                        |                                                                                                 |          | 0.5         | mg/kg   |                 | 0.442       | mg/kg      | 0.0000442 %             | 1            |                     |
|          |   |                             | 204-371-1                | 120-12-7                                                                                        | -        |             |         |                 |             |            |                         |              |                     |
| 20       | • | fluoranthene                | 00=0101                  | (000 110                                                                                        | _        | 2.9         | mg/kg   |                 | 2.566       | mg/kg      | 0.000257 %              | ✓            |                     |
|          |   | D. #000                     | 205-912-4                | 206-44-0                                                                                        | +        |             |         |                 |             |            |                         |              |                     |
| 21       |   | pyrene                      | 204-927-3                | 129-00-0                                                                                        | -        | 2.4         | mg/kg   |                 | 2.124       | mg/kg      | 0.000212 %              | $\checkmark$ |                     |
|          |   | benzo[a]anthracen           |                          | 123 00 0                                                                                        | +        |             |         |                 | 4 000       |            |                         |              |                     |
| 22       |   | 601-033-00-9                | 200-280-6                | 56-55-3                                                                                         | 1        | 1.4         | mg/kg   |                 | 1.239       | mg/kg      | 0.000124 %              | ✓            |                     |
| 23       |   | chrysene                    |                          |                                                                                                 | 1.4      | mg/kg       |         | 1.239           | mg/kg       | 0.000124 % | <b>√</b>                |              |                     |
| 25       |   | 601-048-00-0                | 205-923-4                | 218-01-9                                                                                        |          | 1.4         | mg/kg   |                 | 1.200       | mg/kg      | 0.000124 /0             | ~            |                     |
| 24       |   | benzo[b]fluoranthe          | ne                       |                                                                                                 |          | 1.2         | mg/kg   |                 | 1.062       | mg/kg      | 0.000106 %              | <b>√</b>     |                     |
|          |   | 601-034-00-4                | 205-911-9                | 205-99-2                                                                                        |          | 1.2         |         |                 | 1.002       |            |                         | *            |                     |
| 25       |   | benzo[k]fluoranthene        |                          |                                                                                                 |          | 0.7         | mg/kg   |                 | 0.619       | mg/kg      | 0.0000619 %             | <b>√</b>     |                     |
|          |   | 601-036-00-5                | 205-916-6                | 207-08-9                                                                                        |          | 0.7         |         |                 | 0.010       | mg/ng      | 0.0000010 70            | v            |                     |
| 26       |   | benzo[a]pyrene; be          | enzo[def]chrysene        |                                                                                                 |          | 1.6         | mg/kg   | 1               | 1.416       | mg/kg      | 0.000142 %              | 1            |                     |
|          |   | 601-032-00-3                | 200-028-5                | 50-32-8                                                                                         | 1        |             |         |                 |             |            |                         | ľ            |                     |
| 27       | • | indeno[123-cd]pyre          |                          |                                                                                                 |          | 1.3         | mg/kg   |                 | 1.15        | mg/kg      | 0.000115 %              | 1            |                     |
|          |   |                             | 205-893-2                | 193-39-5                                                                                        | +        |             |         |                 |             |            |                         |              |                     |
| 28       |   | dibenz[a,h]anthrac          |                          | (50.70.0                                                                                        | _        | 0.5         | mg/kg   |                 | 0.442       | mg/kg      | 0.0000442 %             | ✓            |                     |
|          |   | 601-041-00-2                | 200-181-8                | 53-70-3                                                                                         | +        |             |         |                 |             |            |                         |              |                     |
| 29       | 0 | benzo[ghi]perylene          |                          | 404.04.0                                                                                        | 4        | 1.5         | mg/kg   |                 | 1.327       | mg/kg      | 0.000133 %              | ✓            |                     |
|          |   |                             | 205-883-8                | 191-24-2                                                                                        | +        |             |         |                 |             |            |                         |              |                     |
| 30       |   | asbestos<br>650-013-00-6    |                          | 12001-28-4<br>132207-32-0<br>12172-73-5<br>77536-66-4<br>77536-68-6<br>77536-67-5<br>12001-29-5 |          | <10         | mg/kg   |                 | <10         | mg/kg      | <0.001 %                |              | <lod< td=""></lod<> |
|          |   |                             |                          |                                                                                                 |          |             |         |                 |             | Total:     | 0.0441 %                |              |                     |

User supplied data

Determinand values ignored for classification, see column 'Conc. Not Used' for reason

Determinand defined or amended by HazWasteOnline (see Appendix A)

Speciated Determinand - Unless the Determinand is Note 1, the Conversion Factor is used to calculate the compound

concentration

<LOD Below limit of detection

ND Not detected

CLP: Note 1 Only the metal concentration has been used for classification

#### **Supplementary Hazardous Property Information**

HP 3(i): Flammable "flammable liquid waste: liquid waste having a flash point below 60°C or waste gas oil, diesel and light heating oils having a flash point > 55°C and <= 75°C"

Force this Hazardous property to non hazardous because The TPH contamination recorded is not present in a liquid or vapour form and therefore is not flammable

Hazard Statements hit:

Flam. Liq. 3; H226 "Flammable liquid and vapour."

Page 18 of 24 HBO2D-K27OY-WXP7N www.hazwasteonline.com





Because of determinand:

TPH (C6 to C40) petroleum group: (conc.: 0.00619%)





Classification of sample: BH05[2]

Non Hazardous Waste Classified as 17 05 04 in the List of Waste

#### Sample details

Sample name:

BH05[2] Chapter:

Sample Depth:

0.80-1.15 m Entry:

Moisture content:

17: Construction and Demolition Wastes (including excavated soil from contaminated sites)

17 05 04 (Soil and stones other than those mentioned in 17 05  $\overline{03}$ )

20% (dry weight correction)

#### **Hazard properties**

None identified

#### **Determinands**

Moisture content: 20% Dry Weight Moisture Correction applied (MC)

| #  |                                                                                                    | EU CLP index number                  | Determinand<br>EC Number                  | CAS Number                                 | CLP Note | User entered | data  | Conv.<br>Factor | Compound o | onc.  | Classification<br>value | MC Applied | Conc. Not<br>Used   |
|----|----------------------------------------------------------------------------------------------------|--------------------------------------|-------------------------------------------|--------------------------------------------|----------|--------------|-------|-----------------|------------|-------|-------------------------|------------|---------------------|
| 1  |                                                                                                    | arsenic { arsenic tr<br>033-003-00-0 |                                           | 1327-53-3                                  |          | 7.7          | mg/kg | 1.32            | 8.472      | mg/kg | 0.000847 %              | ✓          |                     |
| 2  | 4                                                                                                  | cadmium { cadmiui<br>048-002-00-0    |                                           | 1306-19-0                                  |          | 0.2          | mg/kg | 1.142           | 0.19       | mg/kg | 0.000019 %              | ✓          |                     |
| 3  | 4                                                                                                  | oxide (worst case)                   | •                                         |                                            |          | 26           | mg/kg | 1.462           | 31.667     | mg/kg | 0.00317 %               | <b>√</b>   |                     |
| 4  | 4                                                                                                  | chromium in chromoxide }             | nium(VI) compounds                        | 1308-38-9<br>6 { chromium(VI)<br>1333-82-0 |          | <1           | mg/kg | 1.923           | <1.923     | mg/kg | <0.000192 %             |            | <lod< th=""></lod<> |
| 5  | 4                                                                                                  | copper { dicopper o                  | oxide; copper (I) oxid                    |                                            |          | 31           | mg/kg | 1.126           | 29.085     | mg/kg | 0.00291 %               | ✓          |                     |
| 6  | lead { lead compounds with the exception of those specified elsewhere in this Annex (worst case) } |                                      | 1                                         | 42                                         | mg/kg    |              | 35    | mg/kg           | 0.0035 %   | ✓     |                         |            |                     |
| 7  | 4                                                                                                  | mercury { mercury                    |                                           | 7487-94-7                                  |          | 0.05         | mg/kg | 1.353           | 0.0564     | mg/kg | 0.00000564 %            | <b>√</b>   |                     |
| 8  | 4                                                                                                  | nickel { nickel sulfa                | te }                                      | 7786-81-4                                  |          | 22           | mg/kg | 2.637           | 48.339     | mg/kg | 0.00483 %               | ✓          |                     |
| 9  | ~                                                                                                  | cadmium sulphose in this Annex }     | n compounds with t<br>lenide and those sp |                                            |          | <0.5         | mg/kg | 1.405           | <0.703     | mg/kg | <0.0000703 %            |            | <lod< th=""></lod<> |
| 10 | 4                                                                                                  |                                      | 231-793-3 [1]                             | 7446-19-7 [1]<br>7733-02-0 [2]             |          | 74           | mg/kg | 2.469           | 152.273    | mg/kg | 0.0152 %                | <b>√</b>   |                     |
| 11 | •                                                                                                  | TPH (C6 to C40) p                    | <u> </u>                                  | TPH                                        |          | <10          | mg/kg |                 | <10        | mg/kg | <0.001 %                |            | <lod< th=""></lod<> |
| 12 | ₫.                                                                                                 |                                      |                                           |                                            |          | 0.3          | mg/kg | 1.884           | 0.471      | mg/kg | 0.0000471 %             | <b>√</b>   |                     |
| 13 | •                                                                                                  | рН                                   |                                           | PH                                         |          | 7.5          | рН    |                 | 7.5        | рН    | 7.5 pH                  |            |                     |



| _        | _ | <u> </u>                        |                       |                                                                                                 |          |            |         |                 |             |            |                      |            |                     |
|----------|---|---------------------------------|-----------------------|-------------------------------------------------------------------------------------------------|----------|------------|---------|-----------------|-------------|------------|----------------------|------------|---------------------|
| #        |   | EU CLP index                    | Determinand EC Number | CAS Number                                                                                      | CLP Note | User enter | ed data | Conv.<br>Factor | Compound    | conc.      | Classification value | MC Applied | Conc. Not<br>Used   |
|          |   | number                          |                       |                                                                                                 | _        |            |         |                 |             |            |                      | _          |                     |
| 14       |   | naphthalene                     |                       |                                                                                                 |          | <0.1       | mg/kg   |                 | <0.1        | ma/ka      | <0.00001 %           |            | <lod< td=""></lod<> |
|          |   | 601-052-00-2                    | 202-049-5             | 91-20-3                                                                                         |          |            |         |                 |             | 3 3        |                      |            |                     |
| 15       |   | acenaphthylene                  |                       |                                                                                                 |          | <0.1       | mg/kg   |                 | <0.1        | mg/kg      | <0.00001 %           |            | <lod< td=""></lod<> |
|          |   | 205-917-1 208-96-8              |                       |                                                                                                 |          |            |         |                 |             |            |                      |            |                     |
| 16       |   | acenaphthene                    |                       |                                                                                                 |          | <0.1       | mg/kg   |                 | <0.1        | ma/ka      | <0.00001 %           |            | <lod< td=""></lod<> |
|          |   | 201-469-6 83-32-9               |                       |                                                                                                 |          | 10         |         |                 | 1011        | 9,9        |                      |            |                     |
| 17       |   | fluorene                        |                       |                                                                                                 |          | <0.1       | mg/kg   |                 | <0.1        | ma/ka      | <0.00001 %           |            | <lod< td=""></lod<> |
|          |   | 201-695-5 86-73-7               |                       |                                                                                                 |          | 30.1       |         |                 | 30.1        | mg/ng      |                      |            | 100                 |
| 18       |   | phenanthrene                    |                       |                                                                                                 |          | <0.1       | mg/kg   |                 | <0.1        | mg/kg      | <0.00001 %           |            | <lod< td=""></lod<> |
| 10       |   |                                 | 201-581-5             | 85-01-8                                                                                         |          | VO. 1      | mg/ng   |                 | <b>VO.1</b> | mg/kg      | <0.00001 70          |            | LOD                 |
| 19       |   | anthracene                      |                       |                                                                                                 |          | <0.1       | mg/kg   |                 | <0.1        | ma/ka      | <0.00001 %           |            | <lod< td=""></lod<> |
| 19       |   | 204-371-1 120-12-7              |                       |                                                                                                 |          | ζ0.1       | ilig/kg |                 | <b>VO.1</b> | mg/kg      | <0.00001%            |            | \LUD                |
| 20       |   | fluoranthene                    |                       |                                                                                                 |          | -0.4       |         |                 | <0.1        | mg/kg      | <0.00001 %           |            | <lod< td=""></lod<> |
| 20       |   |                                 | 205-912-4             | 206-44-0                                                                                        |          | <0.1       | mg/kg   |                 |             |            | <0.00001%            |            | <lud< td=""></lud<> |
| 21       |   | pyrene                          |                       |                                                                                                 | .0.4     | //         |         | 0.4             | nn ar/l+ar  | 0.00004.0/ |                      | 1.00       |                     |
| 21       |   | . ,                             | 204-927-3             | 129-00-0                                                                                        |          | <0.1       | mg/kg   |                 | <0.1        | mg/kg      | <0.00001 %           |            | <lod< td=""></lod<> |
|          |   | benzo[a]anthracer               | ne                    |                                                                                                 |          |            |         |                 |             |            |                      |            |                     |
| 22       |   | 601-033-00-9                    | 200-280-6             | 56-55-3                                                                                         |          | <0.1       | mg/kg   |                 | <0.1        | mg/kg      | <0.00001 %           |            | <lod< td=""></lod<> |
|          |   | chrysene                        |                       |                                                                                                 |          |            |         |                 |             |            |                      |            |                     |
| 23       |   | 601-048-00-0 205-923-4 218-01-9 |                       |                                                                                                 |          | <0.1       | mg/kg   |                 | <0.1        | mg/kg      | <0.00001 %           |            | <lod< td=""></lod<> |
|          |   | benzo[b]fluoranthene            |                       |                                                                                                 |          |            |         |                 |             |            |                      |            |                     |
| 24       |   | 601-034-00-4                    | 205-911-9             | 205-99-2                                                                                        |          | <0.1       | mg/kg   |                 | <0.1        | mg/kg      | <0.00001 %           |            | <lod< td=""></lod<> |
|          |   | benzo[k]fluoranthe              | 1                     | 200 33 2                                                                                        |          |            |         |                 |             |            |                      |            |                     |
| 25       |   | 601-036-00-5                    | -                     | <0.1                                                                                            | mg/kg    |            | <0.1    | mg/kg           | <0.00001 %  |            | <lod< td=""></lod<>  |            |                     |
|          |   | benzo[a]pyrene; b               | -                     |                                                                                                 |          |            |         |                 |             |            |                      |            |                     |
| 26       |   | 601-032-00-3                    | 200-028-5             | 50-32-8                                                                                         | _        | <0.1       | mg/kg   |                 | <0.1        | mg/kg      | <0.00001 %           |            | <lod< td=""></lod<> |
| $\vdash$ |   |                                 |                       | 00-32-0                                                                                         | +        |            |         |                 |             |            |                      |            |                     |
| 27       | • | indeno[123-cd]pyrene            |                       |                                                                                                 |          | <0.1       | mg/kg   |                 | <0.1        | mg/kg      | <0.00001 %           |            | <lod< td=""></lod<> |
| _        |   | -11b                            | +                     |                                                                                                 |          |            |         |                 |             |            |                      |            |                     |
| 28       |   | dibenz[a,h]anthrac              |                       | F0.70.0                                                                                         |          | <0.1       | mg/kg   |                 | <0.1        | <0.1 mg/kg | <0.00001 %           |            | <lod< td=""></lod<> |
|          |   | 601-041-00-2                    | 200-181-8             | 53-70-3                                                                                         |          |            |         |                 |             |            |                      |            |                     |
| 29       | 0 | benzo[ghi]perylene              |                       |                                                                                                 |          | <0.1       | mg/kg   |                 | <0.1        | mg/kg      | <0.00001 %           |            | <lod< td=""></lod<> |
|          |   | 205-883-8 191-24-2              |                       |                                                                                                 |          |            |         |                 |             |            |                      |            |                     |
| 30       |   | asbestos<br>650-013-00-6        | 1                     | 12001-28-4<br>132207-32-0<br>12172-73-5<br>77536-66-4<br>77536-68-6<br>77536-67-5<br>12001-29-5 |          | <10        | mg/kg   |                 | <10         | mg/kg      | <0.001 %             |            | <lod< td=""></lod<> |
|          |   |                                 |                       | `                                                                                               |          |            |         |                 |             | Total:     | 0.033 %              |            |                     |

User supplied data

Determinand values ignored for classification, see column 'Conc. Not Used' for reason

Determinand defined or amended by HazWasteOnline (see Appendix A)

Speciated Determinand - Unless the Determinand is Note 1, the Conversion Factor is used to calculate the compound concentration

<LOD Below limit of detection

ND Not detected

CLP: Note 1 Only the metal concentration has been used for classification





#### Appendix A: Classifier defined and non GB MCL determinands

#### \* chromium(III) oxide (worst case) (EC Number: 215-160-9, CAS Number: 1308-38-9)

Description/Comments: Data from C&L Inventory Database

Data source: https://echa.europa.eu/information-on-chemicals/cl-inventory-database/-/discli/details/33806

Data source date: 17 Jul 2015

Hazard Statements: Acute Tox. 4; H332, Acute Tox. 4; H302, Eye Irrit. 2; H319, STOT SE 3; H335, Skin Irrit. 2; H315, Resp. Sens. 1; H334, Skin

Sens. 1; H317, Repr. 1B; H360FD, Aquatic Acute 1; H400, Aquatic Chronic 1; H410

#### lead compounds with the exception of those specified elsewhere in this Annex (worst case)

GB MCL index number: 082-001-00-6

Description/Comments: Worst Case: IARC considers lead compounds Group 2A; Probably carcinogenic to humans; Lead REACH Consortium, following MCL protocols, considers lead compounds from smelting industries, flue dust and similar to be Carcinogenic category 1A

Additional Hazard Statement(s): Carc. 1A; H350 Reason for additional Hazards Statement(s):

20 Nov 2021 - Carc. 1A; H350 hazard statement sourced from: IARC Group 2A (Sup 7, 87) 2006; Lead REACH Consortium

www.reach-lead.eu/substanceinformation.html (worst case lead compounds). Review date 29/09/2015

#### • TPH (C6 to C40) petroleum group (CAS Number: TPH)

Description/Comments: Hazard statements taken from WM3 1st Edition 2015; Risk phrases: WM2 3rd Edition 2013

Data source: WM3 1st Edition 2015 Data source date: 25 May 2015

 $Hazard\ Statements:\ Flam.\ Liq.\ 3;\ H226\ ,\ Asp.\ Tox.\ 1;\ H304\ ,\ STOT\ RE\ 2;\ H373\ ,\ Muta.\ 1B;\ H340\ ,\ Carc.\ 1B;\ H350\ ,\ Repr.\ 2;\ H361d\ ,\ Aquatic\ Chronic\ 2;$ 

H411

#### salts of hydrogen cyanide with the exception of complex cyanides such as ferrocyanides, ferricyanides and mercuric oxycyanide and those specified elsewhere in this Annex

GB MCL index number: 006-007-00-5

Description/Comments: Conversion factor based on a worst case compound: sodium cyanide

Additional Hazard Statement(s): EUH032 >= 0.2 % Reason for additional Hazards Statement(s):

20 Nov 2021 - EUH032 >= 0.2 % hazard statement sourced from: WM3, Table C12.2

#### • pH (CAS Number: PH)

Description/Comments: Appendix C4
Data source: WM3 1st Edition 2015
Data source date: 25 May 2015
Hazard Statements: None

### acenaphthylene (EC Number: 205-917-1, CAS Number: 208-96-8)

Description/Comments: Data from C&L Inventory Database

Data source: http://echa.europa.eu/web/guest/information-on-chemicals/cl-inventory-database

Data source date: 17 Jul 2015

Hazard Statements: Acute Tox. 4; H302 , Acute Tox. 1; H330 , Acute Tox. 1; H310 , Eye Irrit. 2; H319 , STOT SE 3; H335 , Skin Irrit. 2; H315

#### acenaphthene (EC Number: 201-469-6, CAS Number: 83-32-9)

Description/Comments: Data from C&L Inventory Database

Data source: http://echa.europa.eu/web/guest/information-on-chemicals/cl-inventory-database

Data source date: 17 Jul 2015

 $Hazard\ Statements:\ Eye\ Irrit.\ 2;\ H319\ ,\ STOT\ SE\ 3;\ H335\ ,\ Skin\ Irrit.\ 2;\ H315\ ,\ Aquatic\ Acute\ 1;\ H400\ ,\ Aquatic\ Chronic\ 1;\ H410\ ,\ Aquatic\ Chronic\ 2;\ H315\ ,\ Aquatic\ Acute\ 1;\ H400\ ,\ Aquatic\ Chronic\ 1;\ H410\ ,\ Aquatic\ Chronic\ 2;\ H315\ ,\ Aquatic\ Acute\ 1;\ H400\ ,\ Aquatic\ Chronic\ 1;\ H410\ ,\ Aquatic\ Chronic\ 2;\ H315\ ,\ Aquatic\ Acute\ 1;\ H400\ ,\ Aquatic\ Chronic\ 1;\ H410\ ,\ Aquatic\ Chronic\ 2;\ H315\ ,\ Aquatic\ Acute\ 1;\ H400\ ,\ Aquatic\ Chronic\ 1;\ H410\ ,\ Aquatic\ Chronic\ 2;\ H315\ ,\ Aquatic\ Chronic\ 2;\ H315\ ,\ Aquatic\ Acute\ 1;\ H410\ ,\ Aquatic\ Chronic\ 1;\ H410\ ,\ Aquatic\ Chronic\ 2;\ H315\ ,\ Aquatic\ Acute\ 1;\ H410\ ,\ Aquatic\ Chronic\ 1;\ H410\ ,\ Aquatic\ Chronic\ 2;\ H315\ ,\ Aquatic\ Acute\ 1;\ H310\ ,\ Aquatic\ Acute\ 1;\ Aquatic\ Acute\ 1;$ 

H411

#### • fluorene (EC Number: 201-695-5, CAS Number: 86-73-7)

Description/Comments: Data from C&L Inventory Database

Data source: http://echa.europa.eu/web/guest/information-on-chemicals/cl-inventory-database

Data source date: 06 Aug 2015

Hazard Statements: Aquatic Acute 1; H400, Aquatic Chronic 1; H410

#### • phenanthrene (EC Number: 201-581-5, CAS Number: 85-01-8)

Description/Comments: Data from C&L Inventory Database

Data source: http://echa.europa.eu/web/guest/information-on-chemicals/cl-inventory-database

Data source date: 06 Aug 2015

Hazard Statements: Acute Tox. 4; H302 , Eye Irrit. 2; H319 , STOT SE 3; H335 , Carc. 2; H351 , Skin Sens. 1; H317 , Aquatic Acute 1; H400 , Aquatic Chronic 1; H410 , Skin Irrit. 2; H315

Page 22 of 24 HBO2D-K27OY-WXP7N www.hazwasteonline.com





#### anthracene (EC Number: 204-371-1, CAS Number: 120-12-7)

Description/Comments: Data from C&L Inventory Database

Data source: http://echa.europa.eu/web/quest/information-on-chemicals/cl-inventory-database

Data source date: 17 Jul 2015

Hazard Statements: Eye Irrit. 2; H319, STOT SE 3; H335, Skin Irrit. 2; H315, Skin Sens. 1; H317, Aquatic Acute 1; H400, Aquatic Chronic 1; H410

#### • fluoranthene (EC Number: 205-912-4, CAS Number: 206-44-0)

Description/Comments: Data from C&L Inventory Database

Data source: http://echa.europa.eu/web/guest/information-on-chemicals/cl-inventory-database

Data source date: 21 Aug 2015

Hazard Statements: Acute Tox. 4; H302, Aquatic Acute 1; H400, Aquatic Chronic 1; H410

#### • pyrene (EC Number: 204-927-3, CAS Number: 129-00-0)

Description/Comments: Data from C&L Inventory Database; SDS Sigma Aldrich 2014
Data source: http://echa.europa.eu/web/guest/information-on-chemicals/cl-inventory-database

Data source date: 21 Aug 2015

Hazard Statements: Skin Irrit. 2; H315, Eye Irrit. 2; H319, STOT SE 3; H335, Aquatic Acute 1; H400, Aquatic Chronic 1; H410

#### • indeno[123-cd]pyrene (EC Number: 205-893-2, CAS Number: 193-39-5)

Description/Comments: Data from C&L Inventory Database

Data source: http://echa.europa.eu/web/guest/information-on-chemicals/cl-inventory-database

Data source date: 06 Aug 2015 Hazard Statements: Carc. 2; H351

#### • benzo[ghi]perylene (EC Number: 205-883-8, CAS Number: 191-24-2)

Description/Comments: Data from C&L Inventory Database; SDS Sigma Aldrich 28/02/2015 Data source: http://echa.europa.eu/web/guest/information-on-chemicals/cl-inventory-database

Data source date: 23 Jul 2015

Hazard Statements: Aquatic Acute 1; H400, Aquatic Chronic 1; H410

#### Appendix B: Rationale for selection of metal species

#### arsenic {arsenic trioxide}

Reasonable case CLP species based on hazard statements/molecular weight and most common (stable) oxide of arsenic. Industrial sources include: smelting; main precursor to other arsenic compounds (edit as required)

#### cadmium {cadmium oxide}

Reasonable case CLP species based on hazard statements/molecular weight, very low solubility in water. Industrial sources include: electroplating baths, electrodes for storage batteries, catalysts, ceramic glazes, phosphors, pigments and nematocides. (edit as required) Worst case compounds in CLP: cadmium sulphate, chloride, fluoride & iodide not expected as either very soluble and/or compound's industrial usage not related to site history (edit as required)

#### chromium in chromium(III) compounds {chromium(III) oxide (worst case)}

Reasonable case species based on hazard statements/molecular weight. Industrial sources include: tanning, pigment in paint, inks and glass (edit as required)

#### chromium in chromium(VI) compounds {chromium(VI) oxide}

Worst case CLP species based on hazard statements/molecular weight. Industrial sources include: production stainless steel, electroplating, wood preservation, anti-corrosion agents or coatings, pigments (edit as required)

#### copper {dicopper oxide; copper (I) oxide}

Reasonable case CLP species based on hazard statements/molecular weight and insolubility in water. Industrial sources include: oxidised copper metal, brake pads, pigments, antifouling paints, fungicide. (edit as required) Worse case copper sulphate is very soluble and likely to have been leached away if ever present and/or not enough soluble sulphate detected. (edit as required)

#### lead {lead compounds with the exception of those specified elsewhere in this Annex (worst case)}

#### No Chromium VI recorded in any samples screened

#### mercury {mercury dichloride}

Worst case CLP species based on hazard statements/molecular weight (edit as required)

#### nickel {nickel sulfate}

#### No Chromium VI recorded in any samples screened

#### selenium (selenium compounds with the exception of cadmium sulphoselenide and those specified elsewhere in this Annex)

Harmonised group entry used as most reasonable case. Pigment cadmium sulphoselenide not likely to be present in this soil. No evidence for the other CLP entries: sodium selenite, nickel II selenite and nickel selenide, to be present in this soil. (edit as required)





#### zinc {zinc sulphate}

#### No Chromium VI recorded in any samples screened

cyanides {salts of hydrogen cyanide with the exception of complex cyanides such as ferrocyanides, ferricyanides and mercuric oxycyanide and those specified elsewhere in this Annex}

Harmonised group entry used as most reasonable case as complex cyanides and those specified elsewhere in the annex are not likely to be present in this soil: [Note conversion factor based on a worst case compound: sodium cyanide] (edit as required)

#### **Appendix C: Version**

HazWasteOnline Classification Engine: WM3 1st Edition v1.2.GB - Oct 2021
HazWasteOnline Classification Engine Version: 2022.261.5334.9968 (18 Sep 2022)

HazWasteOnline Database: 2022.261.5334.9968 (18 Sep 2022)

This classification utilises the following guidance and legislation:

WM3 v1.2.GB - Waste Classification - 1stEditionv1.2.GB-Oct2021

CLP Regulation - Regulation1272/2008/ECof16December2008

1st ATP - Regulation790/2009/ECof10August2009

2nd ATP - Regulation286/2011/ECof10March2011

3rd ATP - Regulation618/2012/EUof10July2012

4th ATP - Regulation487/2013/EUof8May2013

Correction to 1st ATP - Regulation758/2013/EUof7August2013

5th ATP - Regulation944/2013/EUof2October2013

6th ATP - Regulation605/2014/EUof5June2014

WFD Annex III replacement - Regulation1357/2014/EUof18December2014

Revised List of Waste 2014 - Decision2014/955/EUof18December2014

7th ATP - Regulation2015/1221/EUof24July2015

8th ATP - Regulation(EU)2016/918of19May2016

9th ATP - Regulation(EU)2016/1179of19July2016

10th ATP - Regulation(EU)2017/776of4May2017

HP14 amendment - Regulation(EU)2017/997of8June2017

13th ATP - Regulation(EU)2018/1480of4October2018

14th ATP - Regulation(EU)2020/217of4October2019

**15th ATP** - Regulation(EU)2020/1182of19May2020

The Chemicals (Health and Safety) and Genetically Modified Organisms (Contained Use)(Amendment etc.) (EU Exit)

Regulations 2020 - UK:2020No.1567of16thDecember2020

The Waste and Environmental Permitting etc. (Legislative Functions and Amendment etc.) (EU Exit) Regulations 2020 - UK:

2020 No. 1540 of 16th December 2020

GB MCL List - version1.1of09June2021

Page 24 of 24 HBO2D-K27OY-WXP7N www.hazwasteonline.com