

Prepared by: Norfolk Partnership Laboratory, Norse Eastern Ltd, County Hall, Martineau Lane, Norwich, Norfolk, NR1 2SG Telephone (01603) 578389

Site Investigation including Quantitative Risk Assessment Wolsey House Motors Millway Lane Diss Norfolk 104056 March 2023

Client: Mr D Pearcey Wolsey House Motors Wortham Diss Norfolk IP22 1SL

> Registered office: 280 Fifers Lane, Norwich, NR6 6EQ Registered in England and Wales No. 07445476 Norfolk Partnership Laboratory is part of Norse Eastern Limited a subsidiary of the Norse Group, a company wholly owned by Norfolk County Council

i)	Contents	
ii)	Appendices	4
iii)	Distribution	5
1.0	Introduction	6
1.1	General	6
1.2	Report objectives	6
1.3	Site location	6
1.4	Site layout	7
1.5	Planning application	7
2.0	Review and Summary of Previous Reports	8
2.1	Desk Study and Risk Assessment, Wolsey House Wortham, Diss, Norfolk re 101220 dated November 2020	
2.2	Further works undertaken within the site	10
2.3	Intended future use of the site	10
2.4	Planning applications or permissions at the site	10
2.5	Geology	11
2.6	Hydrogeology and Hydrology	12
3.0	Risk Assessment	13
3.0 3.1	Risk Assessment	
		13
3.1	Conceptual Model	13 13
3.1 3.2	Conceptual Model Sources of contamination	13 13 14
3.1 3.2 3.3	Conceptual Model Sources of contamination Pollution Linkages	13 13 14 15
3.1 3.2 3.3 3.4	Conceptual Model Sources of contamination Pollution Linkages Receptors	13 13 14 15 20
3.1 3.2 3.3 3.4 4.0	Conceptual Model Sources of contamination Pollution Linkages Receptors Recommendations for Site Investigation	13 13 14 15 20 20
3.1 3.2 3.3 3.4 4.0 4.1	Conceptual Model Sources of contamination Pollution Linkages Receptors Recommendations for Site Investigation Stage I Conclusion	13 13 14 15 20 20 20
3.1 3.2 3.3 3.4 4.0 4.1 4.2	Conceptual Model Sources of contamination Pollution Linkages Receptors Recommendations for Site Investigation Stage I Conclusion Consultation with Local authority	13 13 14 15 20 20 20
3.1 3.2 3.3 3.4 4.0 4.1 4.2 5.0	Conceptual Model Sources of contamination Pollution Linkages Receptors Recommendations for Site Investigation Stage I Conclusion Consultation with Local authority Site Investigation	13 13 14 15 20 20 20 21
3.1 3.2 3.3 3.4 4.0 4.1 4.2 5.0 5.1	Conceptual Model Sources of contamination Pollution Linkages Receptors Recommendations for Site Investigation Stage I Conclusion Consultation with Local authority Site Investigation Investigation Objectives	13 13 14 15 20 20 20 21 21
3.1 3.2 3.3 3.4 4.0 4.1 4.2 5.0 5.1 5.2	Conceptual Model Sources of contamination Pollution Linkages Receptors Recommendations for Site Investigation Stage I Conclusion Consultation with Local authority Site Investigation Investigation Objectives Preparatory Enabling Works	13 14 15 20 20 20 21 21 21 21
3.1 3.2 3.3 3.4 4.0 4.1 4.2 5.0 5.1 5.2 5.3	Conceptual Model Sources of contamination Pollution Linkages Receptors Recommendations for Site Investigation Stage I Conclusion Consultation with Local authority Site Investigation Investigation Objectives Preparatory Enabling Works Works undertaken	13 14 15 20 20 21 21 21 21 21 21

G:\Highways\Labs\Projects\HLE - Geoenvironmental IB\104056 Wortham Wolsey House Motors\Reports\104056 Wortham Wolsey Motors Stg II SI QRA.docx

5.6	Pollution prevention measures	21
6.0	Analytical Strategy	22
6.1	Soil	22
6.2	Water	22
7.0	Investigation Results	23
7.1	Ground conditions	23
7.2	Groundwater conditions	25
7.3	Geoenvironmental test results summary	25
7.4	Contamination	25
8.0	Quantitative Risk Assessment	26
8.1	Risk Assessment Objectives	26
8.2	Proposed Development	26
8.3	Revised Conceptual Model	26
8.4	Risk assessment rationale	26
8.5	Exposure scenario	27
8.6	Assessment criteria	31
8.7	Constraints and limitations	31
8.8	Risk to controlled waters	31
8.9	Effects on Human Health	31
8.10	Effects on buildings and services	32
8.11	Uncertainties	32
8.12	Risk Evaluation	32
9.0	Recommendations	33
10.0	References	34

ii) Appendices

- Appendix A Site location plan
- Appendix B Window sample location plan
- Appendix C Window sample logs
- Appendix D Contamination test reports
- Appendix E Geotechnical test report
- Appendix F Proposed site layout

iii) Distribution

Mr D Pearcey

1 сору

Norfolk Partnership Laboratory

1 сору

1.0 Introduction

1.1 General

This site investigation was carried out Wolsey House Motors in the parish of Wortham, Diss, Suffolk (OSGR 609453,278604). The area under consideration is a former garage workshop which is presently used for storage. Mr D Pearcey instructed Norfolk Partnership Laboratory (NPL) to carry out the work, on an email dated 27 February 2023 after acceptance of Norfolk Partnership Laboratory's quotation. NPL provides a service within Norse Eastern Ltd.

This report should be read in conjunction with the following report:

1) Desk Study and Risk Assessment, Wolsey House Wortham, Diss, Norfolk ref: 101220 dated November 2020 by Norfolk Partnership Laboratory.

This investigation and risk assessment has been carried out to the requirements of The Environmental Protection Act Part IIA. This report also considers the health and safety of construction workers and subsequent site users that may be affected due to any soil contamination.

It is proposed to convert the existing building to a detached single storey residential dwelling with associated garden and parking area.

Opinions and interpretations expressed herein are outside the scope of UKAS accreditation.

Although every effort has been made to give a true assessment of the condition of the site, it is possible that different ground conditions may exist in parts of the site that is neither recorded nor visible.

1.2 Report objectives

The objectives of these works are to assess contamination sources, pathways, and receptors, and to determine whether any contamination may be present either within the site boundaries or just outside the site. The report also assesses the extent to which human health, buildings and services and controlled waters may be affected. If contamination is thought likely to be present, recommendations will be made to ascertain the level of contamination and if these levels are within allowable limits.

1.3 Site location

The site is located to the south of Millway Lane in Wortham, Suffolk. (OSGR 609453,278604). The site is located approximately 2.60 kilometres to the southwest of Diss town centre.

A site location plan is in Appendix A.

1.4 Site layout

The development area is roughly rectangular in shape, relatively level, and approximately 0.04 hectare in area. A spot height of 34.1 metres is shown on the Ordnance Survey close to the site.

1.5 Planning application

The site is subject to the planning conditions of Babergh and Mid Suffolk Council planning ref: DC/20/03389.

2.0 Review and Summary of Previous Reports

2.1 <u>Desk Study and Risk Assessment, Wolsey House Wortham, Diss, Norfolk ref: 101220</u> <u>dated November 2020.</u>

A walkover survey was undertaken by Mr I Brown of NPL on 23 October 2020.

The site is accessed from Millway Lane on to a gravel drive. A piped surface water ditch runs parallel to the northern boundary through the site at the front. The building to be converted is constructed from timber and blockwork with a pan tiled roof. Four vehicles are parked on the land in front of the building which is the garden area of the proposed development. A number of vehicles are also located to the east which is the shared access drive to the proposed development. Adjacent to the south of the former garage workshop is a timber shed which will be demolished, the area will be used for vehicle parking. Adjacent to the south is a brick and steel clad more recent workshop building which has been occupied since 2004. A number of vehicles are parked close to the western boundary which is outside of the proposals. Inside the former garage workshop building is a stored vehicle and a number of tyres and general related tools etc. The workshop has no inspection pit. No fuel was sold from the site consequently no underground tanks are present.

Historic Mapping

No Enclosure or Tithe Map exists for the site area.

On the 1886 OS Map the site appears to be occupied by a number of small buildings although this is unclear. A building is present to the east with a pond to the south. Although unnamed it resembles Wolsey House which occupies the site presently. Low Water Lane and Union Lane are annotated to the north. Hartsmere School (workhouse) is also present to the north. The surrounding land is predominantly agricultural. Ling Farm and Wortham Hall are both annotated to the west.

The 1904 OS Map is clearer and shows two rectangular buildings present on the site. One is at the front of the site on the western side and the other is smaller and located centrally to the rear. Allotment land is present to the north west.

No significant changes are shown on the 1927 OS Map. Wortham House to the north has been renamed The Homestead.

No changes of significance are shown on the 1936 or 1953 1:10560 OS Map or the 1958 1:10000 OS Map.

On the 1977 OS Map the site resembles how it appears presently with three small rectangular buildings present on the site. Off site to the south a larger rectangular structure is shown. Wolsey House is present to the east with the pond shown to the south. A duck farm is present to the north.

On the 1988 aerial photograph the site remains as described above. The gravel drive is visible in the north as is the workshop building. The image is not detailed but it is clear a number of vehicles are present off site to the south. Wolsey House can be seen to the east.

No further changes of significance to the site are shown on the 1995, 2000 or 2020 OS Maps.

2.1.1 Potential sources of contamination

Historical land use indicates that the site has had a potentially contaminative past use as a garage workshop from 1984 to 2004. A number of potential pollutants are identified in the Department of the Environment Industry profiles. The profile for road vehicle fuelling service and repair, garages and filling stations was considered partially relevant to the site. After visual examination of the site and reviewing information from the desk study the following have been identified as potential pollution sources.

- a) Historical use as a garage workshop.
- b) Spillages and leaks from onsite parked vehicles.
- c) Spillages and leaks from offsite parked vehicles.
- d) Offsite garage and workshop to the south.

These have a variety of potential pollution linkages.

2.1.2 Conclusions

The study area has had a potentially contaminative past use as a garage for vehicle servicing, however, more recently the site has been used for the storing of classic cars and tools and equipment. The workshop building has an intact concrete floor and no inspection pit and once cleared of equipment should be a low risk to the construction worker and residential end user. The proposals are to convert the structure using the existing footprint reducing greatly the necessity to break ground.

It was noted that four vehicles were parked on the site in the area designated as the garden as well as a number of vehicles were parked offsite close to the western boundary. From this, there is a possibility that these vehicles or others which have been parked there historically have leaked oil or related fluids into the surface and near surface soils.

The business was moved to the workshop in 2004 and a minor oil storage is present within the building.

The risk level associated with the above risks were deemed as Low Risk – (considered conceivable but unlikely).

2.1.3 Recommendations

NPL recommend that in the proposed front garden area where vehicles are currently parked the existing soil is removed and disposed of to a suitably licensed facility.

The excavated area should be to a depth of 600mm below the proposed finished ground level. At this point a representative of NPL should inspect the formation soils to ensure that no visible or olfactory signs of contamination are present. Sampling will be undertaken for contamination testing if required.

The garden area should then be replenished with either 600mm of certified clean topsoil or 300mm of certified clean subsoil and 300mm of clean certified topsoil.

All imported topsoil and subsoil should be certified free from contaminants and be transported under a conveyance note system.

2.2 Further works undertaken within the site

No further work has been undertaken since the issue of the previous Desk Study and Risk Assessment.

2.3 Intended future use of the site

It is proposed to convert the existing building to a detached single storey residential dwelling.

2.4 Planning applications or permissions at the site

The site is subject to the planning conditions of Babergh and Mid Suffolk Council planning ref: DC/20/03389.

2.5 <u>Geology</u>

The geology of the region may be summarised as follows:

Pleistocene	: Lowestoft Formation : Ingham Sand and Gravel formation
Cretaceous	: Upper Chalk

Upper Chalk is a soft white or off white limestone that contains flints. Chalk was deposited in a warm sea close to a low lying landmass that remained free from the deposition of detritus for a long period of time. The chalk dips at a very shallow angle to the east. The surface of the chalk is thought to be 30 metres above ordnance survey datum in the area of the site.

Ingham Sand and Gravel Formation encompasses fluvial, lacustrine and organic deposits of the pre-glacial Bytham River. Deposits of four separate terrace levels are recognized as members of the formation. Commonly a basal fine to coarse-grained sandy gravel is overlain by fine- to coarse-grained pebbly sands, with few clay and silt beds. The gravels contain a high proportion of rounded pebbles of grey and purple quartzite, vein quartz, flint derived from the local chalk. There are traces of chalk and of igneous and metamorphic rocks. Recognised over a wide area of central East Anglia, from the Lark Valley in the west, to Knettishall in the valley of the Little Ouse, and along the valley of the Waveney to the North Sea coast at Pakefield and Kessingland. Thicknesses can be up to 13 metres.

The Lowestoft Formation forms an extensive sheet of chalky till, together with outwash sands and gravels, silts and clays. The till is characterised by its chalk and flint content. The deposit overlies a large range of Mesozoic, Palaeogene, Neogene and early Pleistocene bedrock formations, and in eastern East Anglia also overlies the older glacigenic Happisburgh Formation. The tills within the Lowestoft Formation typically contain a significantly higher percentage of chalk than the underlying tills. Thickness of the deposit is extremely variable, thickest in buried valleys where locally up to 60 metres may be present. Thick accumulations are also more generally present beneath much of northern Essex and south Suffolk.

A geology report is included in Appendix B of this report.

2.6 <u>Hydrogeology and Hydrology</u>

According to the Regional Hydrogeology Map of Southern East Anglia, the Chalk is the principal aquifer for the area. The estimated minimum hydrostatic level of the Chalk water table in the vicinity of the site is approximately 30 metres above Ordnance Survey Datum.

The site is approximately 34 metres above Ordnance Survey Datum therefore the groundwater is approximately 4.00 metres below the site.

The site falls within the Environment Agency total catchment Zone 3 for groundwater source protection. An outer Zone 2 is present approximately 1 kilometre to the west with an inner Zone 1 approximately 1.50 kilometres to the west.

The site is not within the Environment Agency Flood Zones.

According to the BGS Flood map the site is within an area with the potential for groundwater flooding to occur at the surface.

The superficial Lowestoft Formation is secondary undifferentiated in terms of aquifer designation.

The bedrock Chalk is designated a principal aquifer.

A surface water ditch is present at the front of the site (piped).

3.0 Risk Assessment

3.1 Conceptual Model

The known or perceived sources of contamination and pollution linkages are assessed in this section. The conceptual model is realised here in tabulated form.

3.2 Sources of contamination

Historical land use indicates that the site has had a potentially contaminative past use as a garage workshop from 1984 to 2004. A number of potential pollutants are identified in the Department of the Environment Industry profiles. The profile for road vehicle fuelling service and repair, garages and filling stations was considered partially relevant to the site. After visual examination of the site and reviewing information from the desk study the following have been identified as potential pollution sources.

- a) Historical use as a garage workshop.
- b) Spillages and leaks from onsite parked vehicles.
- c) Spillages and leaks from offsite parked vehicles.
- d) Offsite garage and workshop to the south.

These have a variety of potential pollution linkages.

3.3 Pollution Linkages

Each of the potential contaminants may have a number of pollution linkages. Each of these linkage types has a number of potential pathways.

- i) Surface soil linkages
 - a) Direct contact ingestion or absorption
 - b) Indirect contact ingestion or absorption
 - c) Leaching to groundwater
- ii) Subsurface soil linkages
 - a) Direct contact ingestion or absorption
 - b) Indirect contact ingestion or absorption
 - c) Leaching to groundwater
- iii) Surface water linkages
 - a) Direct contact ingestion or absorption
 - b) Indirect contact ingestion or absorption
 - c) Percolation to groundwater
- iv) Groundwater linkages
 - a) Direct contact ingestion or absorption
 - b) Indirect contact ingestion or absorption
- v) Airborne linkages
 - a) Vapour intrusion into confined / indoor spaces
 - b) Inhalation or absorption of particulates
 - c) Inhalation or absorption of volatile compounds

3.4 <u>Receptors</u>

Several potential receptors exist. These can be broadly grouped as:

- i) Construction Worker
- ii) Future Resident
- iii) Trespasser
- iv) Local population
- v) Flora and fauna
- vi) Buildings
- vii) Surface Water
- viii) Groundwater

For each source, the linkage type, pathway and potential receptors can be identified. A level of risk if no action is taken can then be assigned to each of these linkages. The level of risk has been divided into six categories as follows

Very Low Risk – Considered very unlikely or impossible Low Risk – Considered conceivable but unlikely Medium Risk – Considered possible but unusual High Risk – Considered probable i.e. about 50% chance Very High Risk – Considered that it is to be expected to happen Certainty – Considered that it will happen

Note: These risks are related to the probability of an event happening. They do not relate to the severity of the effects on human health or flora and fauna nor the financial consequences if the event should happen.

3.4.1 Historical use as a garage workshop

Linkage type	Pathway	Receptor	Risk
Surface soil	Direct contact ingestion	Construction Worker	Low
linkage	or absorption		
		Resident	Low
		Trespasser	Low
		Flora and fauna	Low
	Direct contact	Surface water	Low
	Indirect contact ingestion or absorption	Resident	Low
Subsurface soil linkage	Direct contact ingestion or absorption	Construction Worker	Low
		Resident	Low
		Flora and fauna	Low
	Direct contact	Buildings and services	Low
	Indirect contact ingestion or absorption	Resident	Low
	Leaching to groundwater	Local population	Low
		Flora and fauna	Low
		Construction Worker	Low
		Groundwater	Low
Surface water linkage	Direct contact ingestion or absorption	Construction Worker	Low
		Resident	Low
		Trespasser	Low
		Flora and fauna	Low
	Direct contact	Buildings and services	Low
		Surface water	Low
	Percolation to groundwater	Local population	Low
		Flora and fauna	Low
		Groundwater	Low
Groundwater linkage	Direct contact ingestion or absorption	Construction Worker	Low
-		Local population	Low
		Flora and fauna	Low
	Direct contact	Buildings and services	Low
		Groundwater	Low
	Indirect contact ingestion or absorption	Local population	Low
		Flora and fauna	Low
Airborne linkage	Inhalation of particulates	Construction Worker	Low
		Resident	Low
		Trespasser	Low
		Flora and fauna	Low
		Local population	Low
	Inhalation of volatile compounds	Construction Worker	Low
		Resident	Low
		Trespasser	Low
		Flora and fauna	Low
		Local population	Low
	Vapour intrusion into indoor spaces	Resident	Low
	P	Local population	Low

3.4.2 Spillages and leaks from onsite parked vehicles

Linkage type	Pathway	Receptor	Risk
Surface soil	Direct contact ingestion	Construction Worker	Medium
linkage	or absorption		
		Resident	Medium
		Trespasser	Low
		Flora and fauna	Low
	Direct contact	Surface water	Medium
	Indirect contact ingestion or absorption	Resident	Medium
Subsurface soil linkage	Direct contact ingestion or absorption	Construction Worker	Medium
		Resident	Medium
		Flora and fauna	Low
	Direct contact	Buildings and services	Low
	Indirect contact ingestion or absorption	Resident	Low
	Leaching to groundwater	Local population	Low
		Flora and fauna	Low
		Construction Worker	Low
		Groundwater	Low
Surface water linkage	Direct contact ingestion or absorption	Construction Worker	Low
		Resident	Low
		Trespasser	Low
		Flora and fauna	Low
	Direct contact	Buildings and services	Low
		Surface water	Low
	Percolation to groundwater	Local population	Low
		Flora and fauna	Low
		Groundwater	Low
Groundwater linkage	Direct contact ingestion or absorption	Construction Worker	Low
		Local population	Low
		Flora and fauna	Low
	Direct contact	Buildings and services	Low
		Groundwater	Low
	Indirect contact ingestion or absorption	Local population	Low
		Flora and fauna	Low
Airborne linkage	Inhalation of particulates	Construction Worker	Low
_		Resident	Low
		Trespasser	Low
		Flora and fauna	Low
		Local population	Low
	Inhalation of volatile compounds	Construction Worker	Low
		Resident	Low
		Trespasser	Low
		Flora and fauna	Low
		Local population	Low
			LOW
	Vapour intrusion into indoor spaces	Resident	Low

3.4.3 Spillages and leaks from offsite parked vehicles

Linkage type	Pathway	Receptor	Risk
Surface soil	Direct contact ingestion	Construction Worker	Medium
linkage	or absorption		
		Resident	Medium
		Trespasser	Low
		Flora and fauna	Low
	Direct contact	Surface water	Medium
	Indirect contact ingestion or absorption	Resident	Medium
Subsurface soil linkage	Direct contact ingestion or absorption	Construction Worker	Medium
		Resident	Medium
		Flora and fauna	Low
	Direct contact	Buildings and services	Low
	Indirect contact ingestion or absorption	Resident	Low
	Leaching to groundwater	Local population	Low
		Flora and fauna	Low
		Construction Worker	Low
		Groundwater	Low
Surface water linkage	Direct contact ingestion or absorption	Construction Worker	Low
		Resident	Low
		Trespasser	Low
		Flora and fauna	Low
	Direct contact	Buildings and services	Low
		Surface water	Low
	Percolation to groundwater	Local population	Low
		Flora and fauna	Low
		Groundwater	Low
Groundwater linkage	Direct contact ingestion or absorption	Construction Worker	Low
		Local population	Low
		Flora and fauna	Low
	Direct contact	Buildings and services	Low
		Groundwater	Low
	Indirect contact ingestion or absorption	Local population	Low
		Flora and fauna	Low
Airborne linkage	Inhalation of particulates	Construction Worker	Low
		Resident	Low
		Trespasser	Low
		Flora and fauna	Low
		Local population	Low
	Inhalation of volatile compounds	Construction Worker	Low
		Resident	Low
		Trespasser	Low
		Flora and fauna	Low
		Local population	Low
	Vapour intrusion into	Resident	Low
	indoor spaces		2011

3.4.4 Offsite garage and workshop to the south

Linkage type	Pathway	Receptor	Risk
Surface soil	Direct contact ingestion	Construction Worker	Low
linkage	or absorption		
		Resident	Low
		Trespasser	Low
		Flora and fauna	Low
	Direct contact	Surface water	Low
	Indirect contact ingestion or absorption	Resident	Low
Subsurface soil linkage	Direct contact ingestion or absorption	Construction Worker	Low
		Resident	Low
		Flora and fauna	Low
	Direct contact	Buildings and services	Low
	Indirect contact ingestion or absorption	Resident	Low
	Leaching to groundwater	Local population	Low
		Flora and fauna	Low
		Construction Worker	Low
		Groundwater	Low
Surface water linkage	Direct contact ingestion or absorption	Construction Worker	Low
		Resident	Low
		Trespasser	Low
		Flora and fauna	Low
	Direct contact	Buildings and services	Low
		Surface water	Low
	Percolation to groundwater	Local population	Low
		Flora and fauna	Low
		Groundwater	Low
Groundwater linkage	Direct contact ingestion or absorption	Construction Worker	Low
		Local population	Low
		Flora and fauna	Low
	Direct contact	Buildings and services	Low
		Groundwater	Low
	Indirect contact ingestion or absorption	Local population	Low
		Flora and fauna	Low
Airborne linkage	Inhalation of particulates	Construction Worker	Low
		Resident	Low
		Trespasser	Low
		Flora and fauna	Low
		Local population	Low
	Inhalation of volatile compounds	Construction Worker	Low
		Resident	Low
		Trespasser	Low
		Flora and fauna	Low
		Local population	Low
	Vapour intrusion into indoor spaces	Resident	Low

4.0 Recommendations for Site Investigation

4.1 Stage I Conclusion

Based upon the information contained herein it is recommended no intrusive investigation is required for the development.

It is recommended that in the proposed front garden area where vehicles are currently parked the existing soil is removed and disposed of to a suitably licensed facility.

The excavated area should be to a depth of 600mm below the proposed finished ground level. At this point a representative of NPL should inspect the formation soils to ensure that no visible or olfactory signs of contamination are present. Sampling will be undertaken for contamination testing if required.

The garden area should then be replenished with either 600mm of certified clean topsoil or 300mm of certified clean subsoil and 300mm of clean certified topsoil.

All imported topsoil and subsoil should be certified free from contaminants and be transported under a conveyance note system.

4.2 Consultation with Local authority

Following the review of the Stage I desk study and contamination risk assessment report, Environmental Protection at Babergh and Mid Suffolk Council responded under reference EP Reference : 283583 requesting that further investigation was required to justify the proposed remediation strategy.

5.0 Site Investigation

5.1 Investigation Objectives

The aim of this investigation is to determine whether any contamination exists on the site by targeting the potential sources areas documented in the Desk Study. In the event of contamination being found then it should be quantified as far as possible.

5.2 Preparatory Enabling Works

No preparatory enabling works were required on the site.

5.3 Works undertaken

On 8 March 2023, eight window sample holes were drilled to a maximum depth of 3.00 metres.

The locations of these excavations are shown on the plan in Appendix B.

5.4 Site Sampling Strategy

Disturbed samples were taken from the window sample holes in accordance with BS 5930:2015. The number and depths of these samples encountered are set out in Appendix C of this report.

5.5 In-situ and Geotechnical Testing

The following test was undertaken at the laboratory to assist classification of the soils and to determine their physical properties. Norfolk Partnership Laboratory is a UKAS testing laboratory No. 0920.

Location	Depth (m)	Test
WS08	1.50	Determination of liquid limit to BS 1377:PT 2: 1990 Cone Penetrometer (definitive method) (withdrawn) and determination of Plasticity Index to BS137-2:1990 (withdrawn)

5.6 Pollution prevention measures

No pollution prevention measures were required on this site. No material was removed except for samples for testing. Due diligence was employed to prevent any possible cross contamination of material. Window Sample holes were backfilled with bentonite.

6.0 Analytical Strategy

The following samples were tested for the parameters shown. The samples were sent to Envirolab, Cheshire for analysis. Envirolab is a UKAS accredited laboratory, No.1247.

6.1 <u>Soil</u>

Depth (m)		Tests		
WS01	0.10	Asbestos Screen, Speciated TPH to WGC UK		
WS02	0.05	Asbestos screen		
WS03	0.20	Speciated TPH to WGC UK		
WS04	0.30	Suite SB		
WS05	0.30	Suite SB		
WS06	0.30	Speciated TPH to WGC UK, Suite SB		
WS07	0.30	Speciated TPH to WGC UK		
WS08	0.30	Speciated TPH to WGC UK		

Suite SB = General contamination suite including testing for: Total Sulphate, Boron, Water Soluble, Arsenic, Cadmium, Chromium III, Chromium VI, Copper, Lead, Mercury, Nickel, Selenium, Zinc, Acid Soluble Sulphide, Phenols (Monohydric), Total Cyanide, Elemental Sulphur, pH Value, PAH Total, Speciated PAH, Soil Organic Matter (SOM).

6.2 <u>Water</u>

No groundwater was encountered during this investigation.

7.0 Investigation Results

7.1 Ground conditions

7.1.1 Made Ground

Made Ground was recorded as the surface deposit in all the window sample holes. The deposit comprised predominantly of gravelly, fine to coarse sand. The gravel content was fine to coarse chalk, flint, brick, concrete, and mortar. Colours recorded included light greyish brown, greyish brown and dark greyish brown. The thickness of the Made Ground deposit varied from 0.15 metre in WS04, 05, 06 and 08 up to 0.55 metre in WS03.

More detail can be found on the window sample logs in Appendix C.

7.1.2 Head

Head deposits were encountered in all window sample locations below the Made Ground. The deposit comprised mainly of silty, fine to medium sand. Colours included greyish brown, dark greyish brown, and greenish grey. The thickness of the deposit ranged from 0.50 metre in WS03 up to 1.05 metres in WS08. The base of this deposit was proven at a maximum depth of 1.20 metres.

More detail can be found on the window sample logs in Appendix C.

7.1.3 Lowestoft Till

The Lowestoft Till was identified below the Head deposits in all the window sample holes. The deposit generally comprised a firm silty, gravelly, clay and silty clay. Colours recorded included light grey, light greyish brown, light brown, and orangey brown. Clast content ranged from none to gravelly fine to coarse, sub-angular to subrounded flint and chalk. The thickness of the deposit ranged from 1.80 metres in WS08 to 2.00 metres in WS02. The base of this deposit was not proven in all the window sample holes at a maximum depth of 3.00 metres.

More detail can be found on the window sample logs in Appendix C.

According to NHBC Standards Chapter 4.3, Table 2 the Lowestoft Till can generally be treated as type of ground 3 and 4. Due to the variable nature strip footings would require examination after excavation to ensure an appropriate footing was used.

The minimum width (mm) of the strip footing in relation to total load should be according to the table shown below. Problems could possibly occur with the excavation of pipe runs or manholes in these materials.

NHBC Standards Chapter 4.3 Table 2

	Type of ground (including	Condition of ground	Field test applicable	Total load of load-bearing walling not more than (kN/linear metre)					
	engineered fill)			20	30	40	50	60	70
				Minimur	n width	of strip	found	dation	(mm)
1	Rock	Not inferior to sandstone, limestone or firm chalk	Requires at least a pneumatic or other mechanically operated pick for excavation.	Equal to each side		h of the	wall pl	us 50i	mm
2	Gravel Sand	Medium dense	Requires pick for excavation. Wooden peg 50mm square in cross- section is hard to drive beyond 150mm.	250	300	400	500	600	650
3	Clay Sandy clay	Stiff	Can be indented slightly by thumb.	250	300	400	500	600	650
4	Clay Sandy clay	Firm	Thumb makes impression easily.	300	350	450	600	750	850
5	Sand Silty sand Clayey sand	Loose	Can be excavated with a spade. Wooden peg 50mm square in cross- section can be easily driven.	400	600	Does not fall within the provisions of this guidance where the total load exceeds 30 kN/linear m.		e total	
6	Silt Clay Sandy clay Clay or silt	Soft	Finger can be pushed in up to 10mm.	450	650				
7	Silt Clay Sandy clay Clay or silt	Very soft	Finger can be easily pushed in up to 25mm.	Refer to specialist advice.					

The determination of Liquid Limit to BS1377-2 1990 Cone Penetrometer and determination of Plasticity Index to BS1377-2 1990 was undertaken at the laboratory on one sample. The results are tabulated below.

Hole ID	Depth	Natural Moisture	Liquid	Plastic	Plasticity	Modified
	(mbgl)	Content (%)	Limit (%)	Limit (%)	Index (%)	PI (%)
WS08	1.50	13	33	13	20	18

The sample from WS08 at 1.50 metres was classified as a clay of low plasticity in accordance with BS1377. NHBC Standards Chapter 4.2 table 4B (where planting is outside the zone of influence) classifies the material as having a low volume change potential. This depth may need to be increased in the vicinity of any proposed planting and in areas where trees are present adjacent the site. Depths should be increased in line with NHBC Standards Chapter 4.2.

7.1.4 Lewes Nodular Chalk Formation

No Lewes Nodular Chalk Formation was identified during this investigation.

7.2 Groundwater conditions

No groundwater strikes were recorded during the drilling of the window sample holes.

7.3 Geoenvironmental test results summary

The samples indicated in Section 6.0 were sent to Envirolab, Cheshire for analysis. Envirolab is a UKAS accredited laboratory, No.1247.

These samples were tested for the contaminants of concern noted in sections 6.1. The test results are included in Appendix D.

7.4 Contamination

7.4.1 Soil

All the results were found to below the C4SL's, Atkins ATRISK and LQM/CIEH S4UL's threshold values for residential with the consumption of home grown produce land use, with 1% soil organic matter with the exception of one speciated TPH result.

The result for Aromatic C8-C10 of 17 mg/kg in WS01 at 0.10 metre is over the Atkins ATRISK threshold value of 14.8 mg/kg.

8.0 Quantitative Risk Assessment

8.1 Risk Assessment Objectives

The objective of the quantitative risk assessment is to revisit the preliminary risk assessment in the light of information obtained during the site investigation and thus reassess the validity of the model.

8.2 Proposed Development

It is proposed to convert the existing building to a detached single storey residential dwelling with associated garden and parking area.

8.3 Revised Conceptual Model

Referring to the original risk assessment in Section 3.0 the following potentially contaminative linkages were present.

- a) Historical use as a garage workshop.
- b) Spillages and leaks from onsite parked vehicles.
- c) Spillages and leaks from offsite parked vehicles.
- d) Offsite garage and workshop to the south.

8.4 <u>Risk assessment rationale</u>

Where available levels of potential contaminants were compared to C4SL's, Atkins ATRISK and LQM/CIEH S4UL's threshold values to assess human health risk.

To assess the risk to buildings and services the WRAS documentation and BRE Special Digest 1 were used. These are specialist documents that focus on a particular target.

8.5 Exposure scenario

8.5.1 Historical use as a garage workshop

Linkage type	Pathway	Receptor	Risk
Surface soil	Direct contact ingestion	Construction Worker	Low
linkage	or absorption		
		Future Resident	Low
		Trespasser	Low
		Flora and fauna	Low
	Direct contact	Surface water	Low
	Indirect contact ingestion or absorption	Future Resident	Low
Subsurface soil linkage	Direct contact ingestion or absorption	Construction Worker	Low
		Future Resident	Low
		Flora and fauna	Low
	Direct contact	Buildings and services	Low
	Indirect contact ingestion or absorption	Future Resident	Low
	Leaching to groundwater	Local population	Low
		Flora and fauna	Low
		Construction Worker	Low
		Groundwater	Low
Surface water linkage	Direct contact ingestion or absorption	Construction Worker	Low
0	•	Future Resident	Low
		Trespasser	Low
		Flora and fauna	Low
	Direct contact	Buildings and services	Low
		Surface water	Low
	Percolation to groundwater	Local population	Low
		Flora and fauna	Low
		Groundwater	Low
Groundwater linkage	Direct contact ingestion or absorption	Construction Worker	Low
u	·	Local population	Low
		Flora and fauna	Low
	Direct contact	Buildings and services	Low
		Groundwater	Low
	Indirect contact ingestion or absorption	Local population	Low
		Flora and fauna	Low
Airborne linkage	Inhalation of particulates	Construction Worker	Low
		Future Resident	Low
		Trespasser	Low
		Flora and fauna	Low
		Local population	Low
	Inhalation of volatile compounds	Construction Worker	Low
		Future Resident	Low
		Trespasser	Low
		Flora and fauna	Low
		Local population	Low
	Vapour intrusion into indoor spaces	Future Resident	Low
		Local population	Low

8.5.2 Spillages and leaks from onsite parked vehicles

Linkage type	Pathway	Receptor	Risk
Surface soil	Direct contact ingestion	Construction Worker	Low
linkage	or absorption		
		Future Resident	Low
		Trespasser	Low
		Flora and fauna	Low
	Direct contact	Surface water	Low
	Indirect contact ingestion or absorption	Future Resident	Low
Subsurface soil linkage	Direct contact ingestion or absorption	Construction Worker	Low
		Future Resident	Low
		Flora and fauna	Low
	Direct contact	Buildings and services	Low
	Indirect contact ingestion or absorption	Future Resident	Low
	Leaching to groundwater	Local population	Low
		Flora and fauna	Low
		Construction Worker	Low
		Groundwater	Low
Surface water linkage	Direct contact ingestion or absorption	Construction Worker	Low
0	•	Future Resident	Low
		Trespasser	Low
		Flora and fauna	Low
	Direct contact	Buildings and services	Low
		Surface water	Low
	Percolation to groundwater	Local population	Low
		Flora and fauna	Low
		Groundwater	Low
Groundwater linkage	Direct contact ingestion or absorption	Construction Worker	Low
	·	Local population	Low
		Flora and fauna	Low
	Direct contact	Buildings and services	Low
		Groundwater	Low
	Indirect contact ingestion or absorption	Local population	Low
		Flora and fauna	Low
Airborne linkage	Inhalation of particulates	Construction Worker	Low
		Future Resident	Low
		Trespasser	Low
		Flora and fauna	Low
		Local population	Low
	Inhalation of volatile compounds	Construction Worker	Low
		Future Resident	Low
		Trespasser	Low
		Flora and fauna	Low
		Local population	Low
	Vapour intrusion into indoor spaces	Future Resident	Low
		Local population	Low

8.5.3 Spillages and leaks from offsite parked vehicles

Linkage type	Pathway	Receptor	Risk
Surface soil	Direct contact ingestion	Construction Worker	Low
linkage	or absorption		
		Future Resident	Low
		Trespasser	Low
		Flora and fauna	Low
	Direct contact	Surface water	Low
	Indirect contact ingestion or absorption	Future Resident	Low
Subsurface soil linkage	Direct contact ingestion or absorption	Construction Worker	Low
		Future Resident	Low
		Flora and fauna	Low
	Direct contact	Buildings and services	Low
	Indirect contact ingestion or absorption	Future Resident	Low
	Leaching to groundwater	Local population	Low
		Flora and fauna	Low
		Construction Worker	Low
		Groundwater	Low
Surface water linkage	Direct contact ingestion or absorption	Construction Worker	Low
		Future Resident	Low
		Trespasser	Low
		Flora and fauna	Low
	Direct contact	Buildings and services	Low
		Surface water	Low
	Percolation to groundwater	Local population	Low
		Flora and fauna	Low
		Groundwater	Low
Groundwater linkage	Direct contact ingestion or absorption	Construction Worker	Low
	·	Local population	Low
		Flora and fauna	Low
	Direct contact	Buildings and services	Low
		Groundwater	Low
	Indirect contact ingestion or absorption	Local population	Low
		Flora and fauna	Low
Airborne linkage	Inhalation of particulates	Construction Worker	Low
		Future Resident	Low
		Trespasser	Low
		Flora and fauna	Low
		Local population	Low
	Inhalation of volatile compounds	Construction Worker	Low
		Future Resident	Low
		Trespasser	Low
		Flora and fauna	Low
		Local population	Low
	Vapour intrusion into	Future Resident	Low
	indoor spaces		

8.5.4 Offsite garage and workshop to the south

Linkage type	Pathway	Receptor	Risk
Surface soil	Direct contact ingestion	Construction Worker	Medium
linkage	or absorption		
		Future Resident	Low
		Trespasser	Low
		Flora and fauna	Low
	Direct contact	Surface water	Low
	Indirect contact ingestion or absorption	Future Resident	Low
Subsurface soil linkage	Direct contact ingestion or absorption	Construction Worker	Low
		Future Resident	Low
		Flora and fauna	Low
	Direct contact	Buildings and services	Low
	Indirect contact ingestion or absorption	Future Resident	Low
	Leaching to groundwater	Local population	Low
		Flora and fauna	Low
		Construction Worker	Low
		Groundwater	Low
Surface water linkage	Direct contact ingestion or absorption	Construction Worker	Low
Ŭ	· ·	Future Resident	Low
		Trespasser	Low
		Flora and fauna	Low
	Direct contact	Buildings and services	Low
		Surface water	Low
	Percolation to groundwater	Local population	Low
		Flora and fauna	Low
		Groundwater	Low
Groundwater linkage	Direct contact ingestion or absorption	Construction Worker	Low
		Local population	Low
		Flora and fauna	Low
	Direct contact	Buildings and services	Low
		Groundwater	Low
	Indirect contact ingestion or absorption	Local population	Low
		Flora and fauna	Low
Airborne linkage	Inhalation of particulates	Construction Worker	Low
		Future Resident	Low
		Trespasser	Low
		Flora and fauna	Low
		Local population	Low
	Inhalation of volatile compounds	Construction Worker	Low
		Future Resident	Low
		Trespasser	Low
		Flora and fauna	Low
		Local population	Low
	Vapour intrusion into indoor spaces	Future Resident	Low
		Local population	Low
			1

8.6 Assessment criteria

The assessment criterion used is for residential with the consumption of homegrown produce land use using 1% SOM.

CLEA v1.06, C4SL's, Atkins ATRISK and LQM/CIEH S4ULs models were used to assess human health risk and determine allowable values for any contaminants present.

To assess the risk to buildings and services the WRAS documentation and BRE Special Digest 1 were used. These are specialist documents that focus on a particular target.

8.7 Constraints and limitations

The CLEA model is limited to published data. These assessing criteria only apply to human health and do not assess risk to groundwater.

Atkins AT**RISK**^{soil} SSV data was derived to use where CLEA guidance was not available. AT**RISK**^{soil} SSV was derived using toxicological data inputted into BP RISC 4.0.

The WRAS, CIRIA and BRE documents are specific to the target receptor.

8.8 Risk to controlled waters

According to the Regional Hydrogeology Map of Southern East Anglia, the Chalk is the principal aquifer for the area. The estimated minimum hydrostatic level of the Chalk water table in the vicinity of the site is approximately 30 metres above Ordnance Survey Datum.

The site is approximately 34 metres above Ordnance Survey Datum therefore the groundwater is approximately 4.00 metres below the site.

The site is thought to represent a Low Risk – (considered conceivable but unlikely) to the groundwater beneath the site.

8.9 Effects on Human Health

The testing undertaken during this investigation has indicated that the site generally poses a low risk. If the works discussed in Section 9.0 are undertaken the site will be suitable for the proposed end use and the site will pose an insignificant risk to the end user.

8.10 Effects on buildings and services

The site poses a low risk to buildings and services.

The Sulphate (water sol 2:1) levels was <0.01 g/l for all samples tested.

The pH values ranged from 7.77 to 7.99.

8.11 Uncertainties

There is a risk that contamination may exist in areas not investigated.

8.12 Risk Evaluation

With current knowledge this site represents a low risk to human health, buildings, and services and to controlled waters.

9.0 Recommendations

It is concluded that no further investigation works are required within the site.

With respect to the marginally elevated Aromatic C8-C10 at a depth of 0.10 metre in WS01 highlighted in Section 7.4.1. This area is proposed to be parking spaces. This area will be excavated and removed from site as part of the construction process which will see the new parking area created with a minimum of 300mm of construction material.

It is recommended the garden area is reduced by a minimum of 300mm below the existing site levels to ensure the removal of all the Made Ground. The Made Ground ranges in depth from 0.15 metre in WS05 and WS06 up to 0.25 metre in WS07. The garden area should then be reconstructed with a minimum depth of 300mm of certified contaminant free Topsoil and be transported under a conveyance note system.

It should also be stressed that if any possibly contaminated material is discovered during the development, then Babergh and Mid Suffolk Council, and Norfolk Partnership Laboratory should be informed immediately.

10.0 References

DEFRA: Contaminated Land exposure assessment "CLEA Version 1.04:2009"

Environment Agency: R&D Publication 20; Methodology for the derivation of remedial targets for soil and groundwater to protect water resources: 1999.

Environment Agency: Technical advice to third parties on the pollution of controlled waters for part IIA: 2002.

Environment Agency: Guidance on Requirements for Land Contamination Reports; July 2005.

Environment Agency website.

RAIS website.

WRAS Information and Guidance Note No 9-04-03, Issue 1: The Selection of Materials for Water Supply Pipes to be Laid in Contaminated Land: October 2002.

CIRIA Report 149: Protecting Development from Methane: 1995.

CIRIA C665 Assessing risks posed by hazardous ground gases to buildings, 2007.

BRE Special Digest 1: Concrete in aggressive ground, 3rd Edition: 2005.

Atkins ATRISK SSV's derived using CLEA Version 1.06.

NHBC Standards January 2019.

NHBC Technical Extra October 2014, Issue 15.

BS 1377: 1990; Soils for Civil Engineering Purposes.

BS 5930:2015 incorporating amendment A1:2020; Code of practice for Site Investigations.

BS 10175: 2011; Investigation of potentially contaminated sites – Code of practice.

LQM/CIEH S4ULs for Human Health Risk Assessment.

Norfolk Partnership Laboratory Site Investigation Section

This report was prepared under the direction of

Head of Laboratory Services

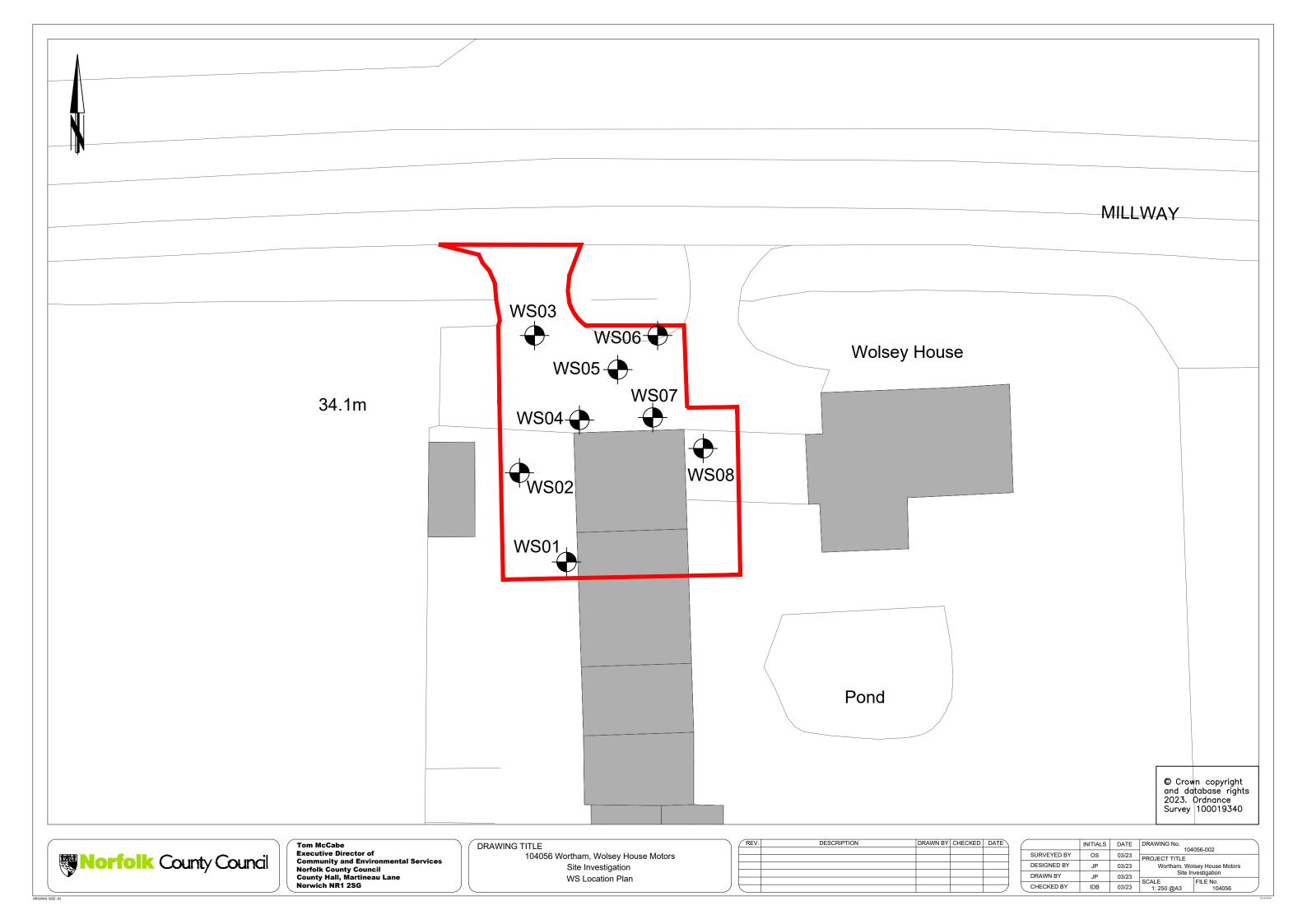
landons

I D Brown

Author of report

Assistant Engineer

J Price


Date: 31/03/2023

G:\Highways\Labs\Projects\HLE - Geoenvironmental IB\104056 Wortham Wolsey House Motors\Reports\104056 Wortham Wolsey Motors Stg II SI QRA.docx

Appendix A

Appendix **B**

Appendix C

Window Sampler Log

										Shee	et 1 of	1			
Scher	ne		Wortham Wolsey House Motors	Job	No.	10405	6	WS N	lo.		WS0)1			
Carrie	d out	for	Wolsey House Motors	Date	e Starte	08/0 b	3/2023	Date	Finish	ed	08/0	3/202	23		
Rema	rks:			Туре	e of Rig	Pren	nier 110	•					Logge	d by	DJ
				Dep	th (m)	3.00		Grour (m AC	nd Lev DD)	/el			Drawr	ו by	JP
				Co-o	ords	6094	47 - 27860		,				Checke	∍d by	IDB
Backfill	Water	Casing	Description	Legend	Depth (m)	Scale	Samp	le	Field Tests				ory Test		
					(11)		Туре	No.	10313	MC%	LL	PL	MPI	Org.	CBI
			MADE GROUND; comprising of dark greyish brown, silty, gravelly, fine to medium sand. Gravel is fine to coarse, sub- angular to sub-rounded chalk and flint. MADE GROUND			-									
			Dark greyish brown silty, fine SAND. HEAD		0.30	-		1							
			Greyish brown silty, fine to medium SAND with rare fine to medium, sub-angular to sub-rounded flint.	× × × ×	0.60	_		·							
			HEAD		2	-									
			Firm light greyish brown silty CLAY. LOWESTOFT TILL	× × × ×	1.05										
				×	-	-									
			Firm light greyish brown and light brown gravelly, silty CLAY. Gravel is fine to coarse, sub-angular to sub-rounded chalk and flint.	× × ×	1.35	-		2							
			LOWESTOFT TILL	× ×	2 21 1 2 21 2 21 1 2	_									
				× · · · ×	- 12 FL - 12	-									
				×	21 - 12 21 - 12	-2.00									
				× · · ×		-									
				× · · · ×		-									
				× - ×	2 2 2	-		3							
				× • • • • • • • • • • • • • • • • • • •	1 2 1 2	-									
				× - ×	* 3.00	- 									
						-									
						-									
						_									
						-									
						-									
						-4.00 -									
						-									
						- -									
						-									
						-									

Window Sampler Log

										Shee	t 1 of	1			
Schen	ne		Wortham Wolsey House Motors	Job I	No.	10405	6	WS N	No.		WSC)2			
Carrie	d out	for	Wolsey House Motors	Date	Starte	d 08/0	3/2023	Date	Finish	ed	08/0	3/202	23		
Rema	rks:			Туре	of Rig	Pren	nier 110						Logge	d by	DJ
				Dept	h (m)	3.00		Grou (m A0	nd Lev OD)	vel			Drawr	ı by	JP
				Co-o	ords	6944	13 - 2786 ⁻						Checke	ed by	IDB
Backfill	Water	Casing	Description	Legend	Depth	Scale	San	-	Field				ory Test		
Backfill	Water	Casing	Description MADE GROUND; comprising of dark greyish brown, gravelly, fin to coarse sand. Gravel is fine to coarse, sub-angular to sub- rounded asphalt, flint, brick and concrete. MADE GROUND Dark greyish brown silty, fine to medium SAND with rare fine to medium, sub-angular to sub-rounded flint. HEAD Firm light greyish brown and light brown gravelly, silty CLAY. Gravel is fine to coarse, sub-angular to sub-rounded chalk and fint. LOWESTOFT TILL		Depth (m)	Scale	San Type	2 2 3	Field Tests	MC%		Laborat	MPI	s Org.	CBR

Window Sampler Log

										Shee	t 1 of	1			
Scher	ne		Wortham Wolsey House Motors	Job	No.	10405	6	WSN	No.		WS0	3			
Carrie	ed out	for	Wolsey House Motors	Date	Starte	d 08/0	3/2023	Date	Finish	led	08/0	3/202	23		
Rema	rks:			Туре	e of Rig	Pren	nier 110						Logge	d by	DJ
				Dep	th (m)	3.00		Grou (m A	nd Lev OD)	vel			Drawr	ו by	JP
				Co-c	ords	6094	145 - 2786		,				Checke	∍d by	IDB
Backfill	Water	Casing	Description	Legend	Depth (m)	Scale	Sam		Field Tests				ory Test		
			MADE GROUND; comprising of dark greyish brown, silty, gravelly, sand. Gravel is fine to coarse, sub-angular to sub- rounded brick, flint and concrete. MADE GROUND MADE GROUND		0.25	-	Туре	No.		MC%	LL	PL	MPI	Org.	CBR
			MADE GROUND; comprising of firm mottled light grey and greyish brown, gravelly, silty clay. Gravel is up to cobble sized brick, flint and mortar. MADE GROUND Greenish grey soft, very sandy, silty CLAY.		0.55	_		1							
			HEAD	× ×		-									
			Greyish brown silty, fine to medium SAND. HEAD	× × × × × ×	0.90	- 									
			Firm mottled light greyish brown and orangey brown, silty CLAY. LOWESTOFT TILL		1.05	-									
			Firm becoming stiff, mottled light grey and light brown, gravelly, silty CLAY. Gravel is fine to coarse, sub-angular to sub-rounded chalk and fint. LOWESTOFT TILL		3.00	- - - - - - - - - - - - - - - - - - -		2 3							

Window Sampler Log

										Shee	t 1 of	1			
Scher	ne		Wortham Wolsey House Motors	Job	No.	10405	6	WSN	lo.		WS0)4			
Carrie	ed out	for	Wolsey House Motors	Date	Starteo	d 08/0	3/2023	Date	Finish	led	08/0	3/202	23		
Rema	rks:			Туре	of Rig	Prer	nier 110						Logge	d by	DJ
				Dept	:h (m)	3.00		Grou (m A0	nd Lev OD)	vel			Drawr	n by	JP
				Co-c	ords	6094	148 - 2786						Checke	ed by	IDB
Backfill	Water	Casing	Description	Legend	Depth (m)	Scale	Sam		Field Tests				ory Test		
							Туре	No.	10313	MC%	LL	PL	MPI	Org.	CBR
			MADE GROUND; comprising of greyish brown, gravelly, fine to coarse, sub-angular to sub- rounded flint and concrete. MADE GROUND Greyish brown silty, fine to medium SAND with rare fine to coarse, sub-angular to sub-rounded flint. HEAD Greyish brown very clayey, silty, fine to medium SAND. HEAD Bedded firm light greyish brown, silty CLAY, and light greyish brown sandy, silty CLAY. Lonses of fine to medium sand between 1.45 - 1.60 metres.		0.15			2							

Window Sampler Log

										Shee	t 1 of	1			
Schei	ne		Wortham Wolsey House Motors	Job	No.	10405	6	WS N	۱o.		WSC)5			
Carrie	ed out	for	Wolsey House Motors	Date	Starte	d 08/0	3/2023	Date	Finish	ned	08/0	3/202	23		
Rema	irks:			Туре	of Rig	Pren	nier 110						Logge	d by	DJ
				Dept	h (m)	3.00		Grou (m A0	nd Lev OD)	vel			Drawr	ı by	JP
				Co-c	ords	6094	151 - 2780					(Checke	ed by	IDB
Backfill	Water	Casing	Description	Legend	Depth	Scale	San	nple	Field		l		ory Test		
			MADE GROUND; comprising of greyish brown gravelly, fine to coarse sand. Gravel is fine to coarse, sub-angular to sub- rounded finit and concrete. MADE GROUND Greyish brown silty, fine to medium SAND with rare fine to coarse, sub-angular to sub-rounded flint. HEAD Soft to firm light greyish brown gravelly, silty CLAY with rare fine to coarse, sub-angular to sub-rounded flint. LOWESTOFT TILL firm light greyish brown gravelly, silty CLAY. Gravel is fine to medium, sub-angular to sub-rounded chalk and flint. LOWESTOFT TILL <i>Becoming gravelly and very still between</i> 2:40 - 3.00 metres.		(m) 0.15 1.05 1.40		Type	No. 1 3	- Tests				MPI	Org.	CBF

Window Sampler Log

										Shee	t 1 of	1			
Scher	ne		Wortham Wolsey House Motors	Job	No.	10405	6	WS N	No.		WSC	6			
Carrie	ed out	for	Wolsey House Motors	Date	e Starteo	d 08/0	3/2023	Date	Finish	ned	08/0	3/202	23		
Rema	arks:			Туре	e of Rig	Pren	nier 110						Logge	d by	DJ
				Dep	th (m)	3.00		Grou (m A0	nd Le [.] OD)	vel			Drawr	ו by	JP
				Co-o	ords	6094	54 - 278						Checke	ed by	IDB
Backfill	Water	Casing	Description	Legend	Depth (m)	Scale	San		Field Tests				ory Test		
			MADE GROUND; comprising of greyish brown gravelly, fine to coarse sand. Gravel is fine to coarse, sub-angular to sub- rounded fint and concrete. MADE GROUND Greyish brown slightly gravelly, sandy, slity CLAY. Gravel is fine to coarse, sub-angular to sub-rounded flint. HEAD Firm greyish brown slightly gravelly, sandy, slity CLAY. Gravel is fine to coarse, sub-angular to sub-rounded flint. LOWESTOFT TILL Firm becoming light greyish brown, gravelly, slity CLAY. Gravel is fine to medium, sub-angular to sub-rounded chalk and flint. LOWESTOFT TILL		0.15		Type	2 2 3		MC%		PL		Org.	CBR

Window Sampler Log

										Shee	t 1 of	1			
Schei	ne		Wortham Wolsey House Motors	Job	No.	10405	6	WS N	lo.		WS0)7			
Carrie	ed out	for	Wolsey House Motors	Date	Starte	d 08/0	3/2023	Date	Finish	ed	08/0	3/202	23		
Rema	ırks:			Туре	of Rig	Pren	nier 110						Logge	d by	DJ
				Dept	:h (m)	3.00		Grou (m A0	nd Lev DD)	/el			Drawr	ı by	JP
				Co-c	ords	6094	154 - 2786						Checke	ed by	IDB
Backfill	Water	Casing	Description	Legend	Depth (m)	Scale	Sam		Field				ory Test		
	valer		Lescription MADE GROUND; comprising of dark greyish brown, gravelly, clayey, silty, fine to coarse sand. Gravel is fine to coarse, sub- angular to sub-rounded brick, flint, coal and concrete. MADE GROUND Light greyish brown clayey, silty, fine to coarse SAND with occasional fine to coarse, sub-angular to sub-rounded flint. HEAD Firm light greyish brown, silty CLAY. LOWESTOFT TILL Firm becoming stiff light greyish brown, gravelly, silty CLAY. Gravel is fine to medium, sub-angular to sub-rounded chalk and fint. LOWESTOFT TILL		1.10 1.30	Scale	Type	2 2 3	Tests	MC%		PL	MPI	Org.	CBR

Window Sampler Log

										Shee	t 1 of	1			
Scher	ne		Wortham Wolsey House Motors	Job I	No.	10405	6	WSN	No.		WSC	8			
Carrie	ed out	for	Wolsey House Motors	Date	Starte	d 08/0	3/2023	Date	Finish	ed	08/0	3/202	23		
Rema	rks:			Туре	of Rig	Pren	nier 110						Logge	d by	DJ
				Dept	h (m)	3.00		Grou (m A	nd Lev OD)	/el			Drawn	ı by	JP
				Co-o	rds	6094	58 - 2786		,				Checke	ed by	IDB
Backfill	Water	Casing	Description	Legend	Depth (m)	Scale	San	•	Field Tests				ory Test		
			MADE GROUND; comprising of light greyish brown, gravelly, silty, fine to medium sand. Gravel is fine to coarse, sub-angular to sub-rounded with flint with occasional brick fragments. MADE GROUND Light greyish brown dayey, silty, fine to coarse SAND with occasional fine to coarse, sub-angular to sub-rounded flint. HEAD Firm light greyish brown silty CLAY. LOWESTOFT TILL Firm becoming stiff light greyish brown, gravelly, silty CLAY. Gravel is fine to medium, sub-angular to sub-rounded chalk and fint. LOWESTOFT TILL		 (III) 0.15 1.20 1.50 3.00 		Type	No. 1 3		MC%		PL	MPI	Org.	

Appendix D

FINAL ANALYTICAL TEST REPORT

Envirolab Job Number: Issue Number:

23/02346 1

Date: 21 March, 2023

Client:

Norse Eastern Ltd t/a Norse Highways 280 Fifers Lane Norwich Norfolk NR6 6EQ

Project Manager: Project Name: Project Ref: Order No: Date Samples Received: Date Instructions Received: Date Analysis Completed: Josh Thompson/Sharon Woods; Simon Holden Wortham, Wolsey House Motors 104056 PN05056615 14/03/23 14/03/23 21/03/23

Approved by:

Richard Wong Client Manager

Client Project Name: Wortham, Wolsey House Motors

					Client Pro	ject Ref: 10	4056			
Lab Sample ID	23/02346/1	23/02346/2	23/02346/3	23/02346/4	23/02346/5	23/02346/6	23/02346/7			
Client Sample No	03135	03136	03137	03138	03139	031310	031311			
Client Sample ID	WS01	WS02	WS03	WS04	WS05	WS06	WS07			
Depth to Top	0.10	0.05	0.20	0.30	0.30	0.30	0.30			
Depth To Bottom									io	
Date Sampled	13-Mar-23	13-Mar-23	13-Mar-23	13-Mar-23	13-Mar-23	13-Mar-23	13-Mar-23		etect	ų
Sample Type	Soil - D	Soil - D		Limit of Detection	Method ref					
Sample Matrix Code	4AB	4AB	4A	1A	4	1	1	Units	Limit	Meth
% Stones >10mm _A	<0.1	-	<0.1	<0.1	<0.1	<0.1	<0.1	% w/w	0.1	A-T-044
pH₀ ^{m#}	-	-	-	7.77	7.99	7.94	-	рН	0.01	A-T-031s
Sulphate (water sol 2:1) ^{D^{M#}}	-	-	-	<0.01	<0.01	<0.01	-	g/l	0.01	A-T-026s
Sulphate (acid soluble) _D ^{M#}	-	-	-	<200	<200	<200	-	mg/kg	200	A-T-028s
Cyanide (total) _A ^{M#}	-	-	-	<1	<1	<1	-	mg/kg	1	A-T-042sTCN
Phenols - Total by HPLC _A	-	-	-	<0.2	<0.2	<0.2	-	mg/kg	0.2	A-T-050s
Sulphide _A	-	-	-	<5	<5	<5	-	mg/kg	5	A-T-043-s
Sulphur (elemental) ^{D^{M#}}	-	-	-	<5	<5	<5	-	mg/kg	5	A-T-029s
Organic Matter _D ^{M#}	-	-	-	0.7	0.5	0.4	-	% w/w	0.1	A-T-032s
Arsenic ^{D^{M#}}	-	-	-	4	6	3	-	mg/kg	1	A-T-024s
Boron (water soluble) _D ^{M#}	-	-	-	<1.0	2.8	<1.0	-	mg/kg	1	A-T-027s
Cadmium _D ^{M#}	-	-	-	<0.5	<0.5	<0.5	-	mg/kg	0.5	A-T-024s
Copper _D ^{M#}	-	-	-	6	7	6	-	mg/kg	1	A-T-024s
Chromium _D ^{M#}	-	-	-	10	13	11	-	mg/kg	1	A-T-024s
Chromium (hexavalent)₀	-	-	-	<1	<1	<1	-	mg/kg	1	A-T-040s
Lead _D ^{M#}	-	-	-	9	9	7	-	mg/kg	1	A-T-024s
Mercury _D	-	-	-	<0.17	<0.17	0.26	-	mg/kg	0.17	A-T-024s
Nickel ^{D^{M#}}	-	-	-	7	9	8	-	mg/kg	1	A-T-024s
Selenium _D ^{M#}	-	-	-	<1	<1	<1	-	mg/kg	1	A-T-024s
Zinc _D ^{M#}	-	-	-	39	33	29	-	mg/kg	5	A-T-024s

Client Project Name: Wortham, Wolsey House Motors

					Chefit FIO	ject Ref: 10	4030			
Lab Sample ID	23/02346/1	23/02346/2	23/02346/3	23/02346/4	23/02346/5	23/02346/6	23/02346/7			
Client Sample No	03135	03136	03137	03138	03139	031310	031311			
Client Sample ID	WS01	WS02	WS03	WS04	WS05	WS06	WS07			
Depth to Top	0.10	0.05	0.20	0.30	0.30	0.30	0.30			
Depth To Bottom									ion	
Date Sampled	13-Mar-23	13-Mar-23	13-Mar-23	13-Mar-23	13-Mar-23	13-Mar-23	13-Mar-23		Detection	*
Sample Type	Soil - D	Soil - D	_	t of D	Method ref					
Sample Matrix Code	4AB	4AB	4A	1A	4	1	1	Units	Limit of	Meth
Asbestos in Soil (inc. matrix)										
Asbestos in soil _D #	NAD	NAD	-	-	-	-	-			A-T-045
Asbestos Matrix (visual) _D	-	-	-	-	-	-	-			A-T-045
Asbestos Matrix (microscope)₀	-	-	-	-	-	-	-			A-T-045
Asbestos ACM - Suitable for Water Absorption Test? _D	N/A	N/A	-	-	-	-	-			A-T-045

Client Project Name: Wortham, Wolsey House Motors

					Client Proj	ject Ref: 10	4056	-		
Lab Sample ID	23/02346/1	23/02346/2	23/02346/3	23/02346/4	23/02346/5	23/02346/6	23/02346/7			
Client Sample No	03135	03136	03137	03138	03139	031310	031311			
Client Sample ID	WS01	WS02	WS03	WS04	WS05	WS06	WS07			
Depth to Top	0.10	0.05	0.20	0.30	0.30	0.30	0.30			
Depth To Bottom									ion	
Date Sampled	13-Mar-23	13-Mar-23	13-Mar-23	13-Mar-23	13-Mar-23	13-Mar-23	13-Mar-23		Limit of Detection	ų
Sample Type	Soil - D	Soil - D	Soil - D		: of D	Method ref				
Sample Matrix Code	4AB	4AB	4A	1A	4	1	1	Units	Limit	Meth
PAH-16MS										
Acenaphthene _A ^{M#}	-	-	-	<0.01	<0.01	<0.01	-	mg/kg	0.01	A-T-019s
Acenaphthylene _A ^{M#}	-	-	-	<0.01	<0.01	<0.01	-	mg/kg	0.01	A-T-019s
Anthracene₄ ^{M#}	-	-	-	<0.02	<0.02	<0.02	-	mg/kg	0.02	A-T-019s
Benzo(a)anthracene ^{AM#}	-	-	-	<0.04	<0.04	<0.04	-	mg/kg	0.04	A-T-019s
Benzo(a)pyrene₄ ^{M#}	-	-	-	<0.04	<0.04	<0.04	-	mg/kg	0.04	A-T-019s
Benzo(b)fluoranthene₄ ^{M#}	-	-	-	<0.05	<0.05	<0.05	-	mg/kg	0.05	A-T-019s
Benzo(ghi)perylene₄ ^{M#}	-	-	-	<0.05	<0.05	<0.05	-	mg/kg	0.05	A-T-019s
Benzo(k)fluoranthene _A ^{M#}	-	-	-	<0.07	<0.07	<0.07	-	mg/kg	0.07	A-T-019s
Chrysene _A ^{M#}	-	-	-	<0.06	<0.06	<0.06	-	mg/kg	0.06	A-T-019s
Dibenzo(ah)anthracene _A ^{M#}	-	-	-	<0.04	<0.04	<0.04	-	mg/kg	0.04	A-T-019s
Fluoranthene _A ^{M#}	-	-	-	<0.08	<0.08	<0.08	-	mg/kg	0.08	A-T-019s
Fluorene ^{AM#}	-	-	-	<0.01	<0.01	<0.01	-	mg/kg	0.01	A-T-019s
Indeno(123-cd)pyrene ^{AM#}	-	-	-	<0.03	<0.03	<0.03	-	mg/kg	0.03	A-T-019s
Naphthalene A ^{M#}	-	-	-	<0.03	<0.03	<0.03	-	mg/kg	0.03	A-T-019s
Phenanthrene _A ^{M#}	-	-	-	<0.03	<0.03	<0.03	-	mg/kg	0.03	A-T-019s
Pyrene₄ ^{M#}	-	-	-	<0.07	<0.07	<0.07	-	mg/kg	0.07	A-T-019s
Total PAH-16MS₄ ^{M#}	-	-	-	<0.08	<0.08	<0.08	-	mg/kg	0.01	A-T-019s

Client Project Name: Wortham, Wolsey House Motors

Client Project Ref: 104056

					•	ject kei. 10				
Lab Sample ID	23/02346/1	23/02346/2	23/02346/3	23/02346/4	23/02346/5	23/02346/6	23/02346/7			
Client Sample No	03135	03136	03137	03138	03139	031310	031311			
Client Sample ID	WS01	WS02	WS03	WS04	WS05	WS06	WS07			
Depth to Top	0.10	0.05	0.20	0.30	0.30	0.30	0.30			
Depth To Bottom									uo	
Date Sampled	13-Mar-23	13-Mar-23	13-Mar-23	13-Mar-23	13-Mar-23	13-Mar-23	13-Mar-23		etecti	т.
Sample Type	Soil - D	Soil - D		Limit of Detection	Method ref					
Sample Matrix Code	4AB	4AB	4A	1A	4	1	1	Units	Limit	Meth
TPH UKCWG with Clean Up										
Ali >C5-C6 _A #	<0.01	-	<0.01	-	-	<0.01	<0.01	mg/kg	0.01	A-T-022s
Ali >C6-C8 _A #	<0.01	-	<0.01	-	-	<0.01	<0.01	mg/kg	0.01	A-T-022s
Ali >C8-C10 _A	<10	-	<1	-	-	<1	<1	mg/kg	1	A-T-055s
Ali >C10-C12 _A ^{M#}	<10	-	<1	-	-	<1	<1	mg/kg	1	A-T-055s
Ali >C12-C16 _A ^{M#}	<10	-	<1	-	-	<1	<1	mg/kg	1	A-T-055s
Ali >C16-C21 _A ^{M#}	<10	-	2	-	-	<1	<1	mg/kg	1	A-T-055s
Ali >C21-C35 _A ^{M#}	369	-	44	-	-	<1	<1	mg/kg	1	A-T-055s
Ali >C35-C44 _A	142	-	21	-	-	<1	<1	mg/kg	1	A-T-055s
Total Aliphatics _A	511	-	68	-	-	<1	<1	mg/kg	1	Calc-As Recd
Aro >C5-C7 _A #	<0.01	-	<0.01	-	-	<0.01	<0.01	mg/kg	0.01	A-T-022s
Aro >C7-C8 _A #	<0.01	-	<0.01	-	-	<0.01	<0.01	mg/kg	0.01	A-T-022s
Aro >C8-C10 _A	17	-	2	-	-	<1	<1	mg/kg	1	A-T-055s
Aro >C10-C12 _A	20	-	1	-	-	<1	<1	mg/kg	1	A-T-055s
Aro >C12-C16 _A	40	-	2	-	-	<1	<1	mg/kg	1	A-T-055s
Aro >C16-C21 ^{AM#}	155	-	14	-	-	<1	<1	mg/kg	1	A-T-055s
Aro >C21-C35₄ ^{M#}	553	-	139	-	-	<1	<1	mg/kg	1	A-T-055s
Aro >C35-C44 _A	39	-	3	-	-	<1	<1	mg/kg	1	A-T-055s
Total Aromatics _A	824	-	162	-	-	<1	<1	mg/kg	1	Calc-As Recd
TPH (Ali & Aro >C5-C44)₄	1340	-	229	-	-	<1	<1	mg/kg	1	Calc-As Recd
BTEX - Benzene _A #	<0.01	-	<0.01	-	-	<0.01	<0.01	mg/kg	0.01	A-T-022s
BTEX - Toluene _A #	<0.01	-	<0.01	-	-	<0.01	<0.01	mg/kg	0.01	A-T-022s
BTEX - Ethyl Benzene ⁴	<0.01	-	<0.01	-	-	<0.01	<0.01	mg/kg	0.01	A-T-022s
BTEX - m & p Xylene _A #	<0.01	-	<0.01	-	-	<0.01	<0.01	mg/kg	0.01	A-T-022s
BTEX - o Xylene₄ [#]	<0.01	-	<0.01	-	-	<0.01	<0.01	mg/kg	0.01	A-T-022s
MTBE _A #	<0.01	-	<0.01	-	-	<0.01	<0.01	mg/kg	0.01	A-T-022s

Client Project Name: Wortham, Wolsey House Motors

Client Project Ref: 104056

Lab Sample ID	23/02346/8						
Client Sample No	031312						
Client Sample ID	WS08						
Depth to Top	0.30						
Depth To Bottom						ion	
Date Sampled	13-Mar-23					Detection	ref
Sample Type	Soil - D					oť	od re
Sample Matrix Code	1				Units	Limit	Method
% Stones >10mm _A	<0.1				% w/w	0.1	A-T-044

Client Project Name: Wortham, Wolsey House Motors

Client Project Ref: 104056

				,				
Lab Sample ID	23/02346/8							
Client Sample No	031312							
Client Sample ID	WS08							
Depth to Top	0.30							
Depth To Bottom							uo	
Date Sampled	13-Mar-23						etect	÷
Sample Type	Soil - D					Units Limit of Detection	of D	od re
Sample Matrix Code	1						Method ref	
TPH UKCWG with Clean Up								
Ali >C5-C6 _A [#]	<0.01					mg/kg	0.01	A-T-022s
Ali >C6-C8 _A #	<0.01					mg/kg	0.01	A-T-022s
Ali >C8-C10 _A	<1					mg/kg	1	A-T-055s
Ali >C10-C12 _A ^{M#}	<1					mg/kg	1	A-T-055s
Ali >C12-C16 _A ^{M#}	<1					mg/kg	1	A-T-055s
Ali >C16-C21 _A ^{M#}	<1					mg/kg	1	A-T-055s
Ali >C21-C35 _A ^{M#}	<1					mg/kg	1	A-T-055s
Ali >C35-C44 _A	<1					mg/kg	1	A-T-055s
Total Aliphatics _A	<1					mg/kg	1	Calc-As Recd
Aro >C5-C7 _A #	<0.01					mg/kg	0.01	A-T-022s
Aro >C7-C8 _A #	<0.01					mg/kg	0.01	A-T-022s
Aro >C8-C10 _A	<1					mg/kg	1	A-T-055s
Aro >C10-C12 _A	<1					mg/kg	1	A-T-055s
Aro >C12-C16 _A	<1					mg/kg	1	A-T-055s
Aro >C16-C21 ^{AM#}	<1					mg/kg	1	A-T-055s
Aro >C21-C35 _A ^{M#}	<1					mg/kg	1	A-T-055s
Aro >C35-C44 _A	<1					mg/kg	1	A-T-055s
Total Aromatics _A	<1					mg/kg	1	Calc-As Recd
TPH (Ali & Aro >C5-C44)₄	<1					mg/kg	1	Calc-As Recd
BTEX - Benzene _A #	<0.01					mg/kg	0.01	A-T-022s
BTEX - Toluene _A #	<0.01					mg/kg	0.01	A-T-022s
BTEX - Ethyl Benzene ⁴	<0.01					mg/kg	0.01	A-T-022s
BTEX - m & p Xylene _A #	<0.01					mg/kg	0.01	A-T-022s
BTEX - o Xylene ^{"#}	<0.01					mg/kg	0.01	A-T-022s
MTBE _A #	<0.01					mg/kg	0.01	A-T-022s

REPORT NOTES

General

This report shall not be reproduced, except in full, without written approval from Envirolab.

The results reported herein relate only to the material supplied to the laboratory. The residue of any samples contained within this report, and any received with the same delivery, will be disposed of six weeks after samples tested for Asbestos we will retain a portion of the dried sample for a minimum of six months after the initial Asbestos testi initial scheduling For initial Asbestos testing is completed. Analytical results reflect the quality of the sample at the time of analysis only.

Opinions and interpretations expressed are outside the scope of our accreditation.

If results are in italic font they are associated with an AQC failure, these are not accredited and are unreliable.

A deviating samples report is appended and will indicate if samples or tests have been found to be deviating. Any test results affected may not be an

accurate record of the concentration at the time of sampling and, as a result, may be invalid. The Client Sample No, Client Sample ID, Depth to Top, Depth to Bottom and Date Sampled were all provided by the client.

Soil chemical analysis:

All results are reported as dry weight (<40°C).

For samples with Matrix Codes 1 - 6 natural stones, brick and concrete fragments >10mm and any extraneous material (visible glass, metal or twigs) are removed and excluded from the sample prior to analysis and reported results corrected to a whole sample basis. This is reported as '% stones >10mm'. For samples with Matrix Code 7 the whole sample is dried and crushed prior to analysis and this supersedes any "A" subscripts All analysis is performed on the sample as received for soil samples which are positive for asbestos or the client has informed asbestos may be present and/or if they are from outside the European Union and this supersedes any "D" subscripts.

TPH analysis of water by method A-T-007:

Free and visible oils are excluded from the sample used for analysis so that the reported result represents the dissolved phase only

Electrical Conductivity of water by Method A-T-037:

Results greater than 12900µS/cm @ 25°C / 11550µS/cm @ 20°C fall outside the calibration range and as such are unaccredited.

Asbestos:

Asbestos in soil analysis is performed on a dried aliquot of the submitted sample and cannot guarantee to identify asbestos if only present in small numbers as discrete fibres/fragments in the original sample.

Stones etc. are not removed from the sample prior to analysis.

Quantification of asbestos is a 3 stage process including visual identification, hand picking and weighing and fibre counting by sedimentation/phase contrast optical microscopy if required. If asbestos is identified as being present but is not in a form that is suitable for analysis by hand picking and weighing (normally if the asbestos is present as free fibres) quantification by sedimentation is performed. Where ACMs are found a percentage asbestos is assigned to each with reference to 'HSG264, Asbestos: The survey guide' and the calculated asbestos content is expressed as a percentage of the dried soil sample aliquot used.

Predominant Matrix Codes:

1 = SAND, 2 = LOAM, 3 = CLAY, 4 = LOAM/SAND, 5 = SAND/CLAY, 6 = CLAY/LOAM, 7 = OTHER, 8 = Asbestos bulk ID sample, 9 = INCINERATOR ASH. Samples with Matrix Code 7 & 8 are not predominantly a SAND/LOAM/CLAY mix and are not covered by our BSEN 17025 or MCERTS accreditations, with the exception of bulk asbestos which are BSEN 17025 accredited.

Secondary Matrix Codes: A = contains stones, B = contains construction rubble, C = contains visible hydrocarbons, D = contains glass/metal,

E = contains roots/twigs.

Key:

IS indicates Insufficient Sample for analysis.

US indicates Unsuitable Sample for analysis.

NDP indicates No Determination Possible. NAD indicates No Asbestos Detected.

N/A indicates Not Applicable.

Superscript # indicates method accredited to ISO 17025. Superscript "M" indicates method accredited to MCERTS.

Subscript "A" indicates analysis performed on the sample as received.

Subscript "D" indicates analysis performed on the dried sample, crushed to pass a 2mm sieve

Subscript "^" indicates analysis has dependent options against results. Testing dependent on results appear in the comments area of your sample receipt. EPH CWG results have humics mathematically subtracted through instrument calculation

TPH results "with Cleanup" indicates results cleaned up with Silica during extraction

EPH CWG GCxGC ID from TPH CWG

Where we have identified humic substances in any ID's from TPH CWG with Clean Up please note that the concentration of these

humic substances is not included in the quantified results and are included in the ID for information.

Please contact us if you need any further information.

Envirolab Analysis Dates

Lab Sample ID	23/02346/1	23/02346/2	23/02346/3	23/02346/4	23/02346/5	23/02346/6	23/02346/7	23/02346/8
Client Sample No	03135	03136	03137	03138	03139	031310	031311	031312
Client Sample ID/Depth	WS01 0.10m	WS02 0.05m	WS03 0.20m	WS04 0.30m	WS05 0.30m	WS06 0.30m	WS07 0.30m	WS08 0.30m
Date Sampled	13/03/23	13/03/23	13/03/23	13/03/23	13/03/23	13/03/23	13/03/23	13/03/23
A-T-019s				20/03/2023	20/03/2023	20/03/2023		
A-T-022s	17/03/2023		17/03/2023			17/03/2023	17/03/2023	17/03/2023
A-T-024s				17/03/2023	17/03/2023	17/03/2023		
A-T-026s				17/03/2023	17/03/2023	17/03/2023		
A-T-027s				17/03/2023	17/03/2023	17/03/2023		
A-T-028s				17/03/2023	17/03/2023	17/03/2023		
A-T-029s				20/03/2023	20/03/2023	20/03/2023		
A-T-031s				20/03/2023	20/03/2023	20/03/2023		
A-T-032s				20/03/2023	20/03/2023	20/03/2023		
A-T-040s				17/03/2023	17/03/2023	17/03/2023		
A-T-042sTCN				16/03/2023	16/03/2023	16/03/2023		
A-T-043-s				16/03/2023	16/03/2023	16/03/2023		
A-T-044	16/03/2023		16/03/2023	16/03/2023	16/03/2023	16/03/2023	16/03/2023	16/03/2023
A-T-045	15/03/2023	15/03/2023						
A-T-050s				20/03/2023	20/03/2023	20/03/2023		
A-T-055s	21/03/2023		21/03/2023			21/03/2023	21/03/2023	21/03/2023
Calc-As Recd	21/03/2023		21/03/2023			21/03/2023	21/03/2023	21/03/2023

The above dates are the analysis completion dates, please note that these are not necessarily the date that the analysis was weighed/extracted.

End of Report

Appendix E

Wolsey House Motors

FAO Danny Pearcey

Millway Wortham Diss Norfolk IP22 1SL Email: civil.laboratory@norsegroup.co.uk

Our Reference No.	NNPL2023031313
Our Project No	104056
Your Sample Ref	D31313
Your Project or Order No.	Dan Pearcey 28/02/2
Date Report Issued	29 Mar 2023
	Page 1 of 1

dan@wolseyhousemotors.co.uk

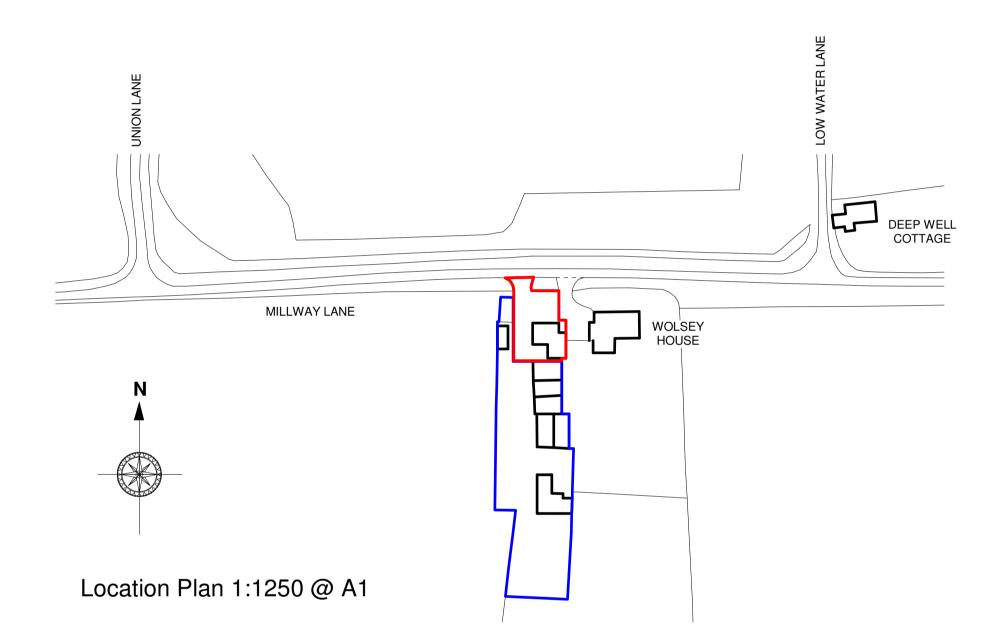
Determination of Liquid Limit to BS1377-2:1990 Cl 4.3 Cone Penetrometer (Definitive Method) (Withdrawn)

and Determination of Plasticity Index to BS1377-2:1990 CI 5 (Withdrawn)

Scheme	Wortham, Wolsey House Motors			
Location	WS08	Depth	1.5m	
Date sampled	13 Mar 2023	Date received	13 Mar 2023	
Sampled by	DJ (NPL Staff)	Date tested	20 Mar 2023	
Sample type	Small disturbed sample	Sample Mass (g)	642	

If a sample certificate was provided, it is available for inspection. The accuracy of any information provided by third parties cannot be guaranteed. These results only relate to the sample tested.

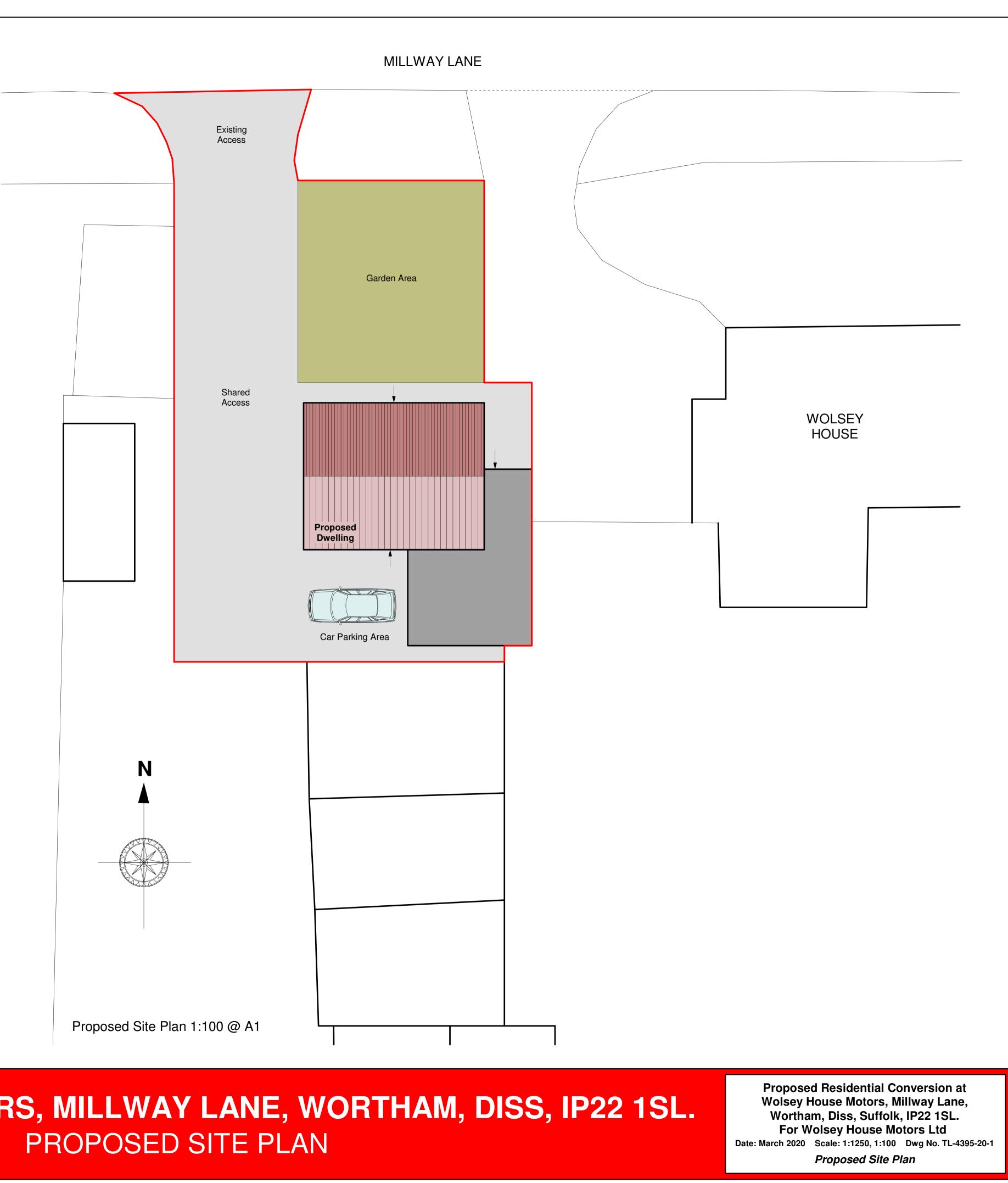
Material	Soil	
Description		greyish brown, gravelly, silty CLAY. , sub-angular to sub-rounded chalk and
Supplier	Not applicable	Source Ex site
	Test Specimen	
Location	Not applicable	
Orientation	Not applicable	
	Preparation Details	
Method of Division	Quartering	
Preparation Method	Wet sieving	
Retained 425µm (%)	10.4	
Natural MC (%)	13	
Drying Temp. (°C)	105-110	
Liquid Limit (%)	33	
Plastic Limit (%)	13	
Plasticity Index (%)	20	
Modified PI *(%)	18	*BRE Digest 240:1993.
		This calculation is outside the scope of UKAS accreditation.
BS Soil Classification	CL	
Remarks	NHBC Volume change p	potential classification is low.


This report shall not be reproduced, except in full, without the prior approval of Norfolk Partnership Laboratory.

Please be aware that we only report compliance with specifications using 'simple acceptance' as a guide as the specifications for the material as well as the methodology for testing are well established and take into account uncertainty in their formulation.

Jan Eller

Appendix F



WOLSEY HOUSE MOTORS, MILLWAY LANE, WORTHAM, DISS, IP22 1SL. PROPOSED SITE PLAN

Anglia Design architects.surveyor mail@angliadesign.co.uk www.angliadesign.co.uk

London Office: 30 Robin House, Newcourt Street, St Johns Wood, London NW8 7AD tel: 020 7722 9558 fax: 0870 131 3804
 Norwich Office:
 11 Charing Cross, Norwich, Norfolk , NR2 4AX

 tel:
 01603 666576
 fax:
 01603 764535

C ANGLIA DESIGN LLP

DO NOT SCALE