Energy & Sustainability Statement

Weavings farm, 101 Abingdon Rd, Standlake,

Witney, OX29 7QN

PR10548 Date: 24/04/2023

Suite L, The Kidlington Centre, High Street, Kidlington, OX5 2DL

www.erscltd.co.uk

Notice

This document has been prepared for the titled project or named part thereof and should not be relied upon or used for any other project without an independent check being carried out as to its suitability and prior written authority of ERS Consultants Ltd being obtained. This document, which may include extracts from or refer to British Standards, is the sole copyright of ERS Consultants Ltd. It shall not be reproduced in whole or in part without written permission of ERS Consultants Ltd accepts no responsibility or liability for the consequences of this document being used for a purpose other than the purposes for which it was commissioned. Any person using or relying on the document for such other purpose agrees, and will by such use or reliance be taken to confirm his agreement to indemnify ERS Consultants Ltd Limited for all loss of damage resulting therefrom.

Document History

Client:	AJP Design
Project:	Weavings farm, 101 Abingdon Rd, Standlake, Witney, OX29 7QN
Document title:	Energy & Sustainability Strategy
ERS reference:	PR10548

Revision	Remarks	Author	Checked	Approved	Date
00		SAM		RA	24/04/2023

Contents

Notice 2
Document History
Contents
Executive summary
Be Lean – Use less energy
Be Clean – Supply energy efficiently
Specification Summary7
Introduction
Site & proposal
Policy context10
Calculation methodology10
Be Lean – Use less energy12
Active design measures17
Overheating Risk analysis19
Be Clean – Supply energy efficiently21
Low Carbon Energy Sources21
Be Green – Use renewable energy
Renewable technologies feasibility study22
Detailed assessment of Photovoltaic Panels24
Be Green CO ₂ emissions & savings24
Conclusion25
Appendix A - Low or Zero Carbon Energy Sources
Biomass As a fuel
Geothermal Energy:26
Ground source earth coupling options27
Vertical Closed Loop System27
Horizontal Closed Loop System28

Weavings farm, 101 Abingdon Rd, Standlake, Witney, OX29 7QN Energy & Sustainability Strategy

Vertical Open Boreholes System	28
Air Source Heat Pumps	29
СНР	
Solar thermal collectors	30
Photovoltaic	31
Wind energy	32
Appendix B-Fuel prices and emission factors	35
Appendix D, E, F, G & H	

Executive summary

ERS Consultants Ltd has been appointed to prepare an Energy & Sustainability Statement for the properties to be built at Weavings farm, 101 Abingdon Rd, Standlake, Witney, OX29 7QN.

The proposal is for the construction of a new 3-bedroom house. This report will be focusing on implementing careful design and sustainable measures. This is so that the project creates an attractive new residential development, addressing current housing needs within the local area.

Proposed schedules of accommodation are as follows:

• 3-bedroom house

Total combined habitable floor area for dwellings: 213.88m²

This energy and sustainability strategy outlines the key measures to be incorporated in the design, in regard to sustainability, carbon emissions, renewable energy and environmental impact of the considered development in accordance and with guidance from the following documents and policies:

- West Oxfordshire District Council (WODC) sustainability standards
- The National Planning Policy Framework (NPPF) July 2021

In line with WODCs sustainability targets, the dwellings would need to have a primary energy usage (DPER) of less than 35 kWh/m²/year. The DPER metric will be calculated using Elmhurst's Design SAP 10.2, which is approved software for assessing Part L 2021 compliance. This uses Primary Energy Factors determined in the latest 2021 Building Regulations.

The primary energy metric in SAP 10.2 is new for the 2021 regulations and is a measure of the energy demand in the properties. This energy statement will demonstrate the measures taken to ensure that energy demand has been minimalized in the residential development.

The methodology used to determine and reduce the energy demand follows the GLA guidance for energy statements, which uses a Be Lean, Be Clean, Be Green approach. While this approach is not specified for use by WODC, it is the most effective and appropriate way to reduce energy demand and uses a holistic approach toward achieving this. The steps are outlined below:

Be Lean – Use less energy

The second step addresses, the reduction in energy demand, through the adoption of passive and active design measures with an emphasis on a fabric-first approach.

Emphasis will be put on the buildings' fabric performance to reduce energy demand. This is because less energy will be lost through the high-performance fabric, hence reducing the demand. Fabric first measures include levels of insulation beyond Building Regulation 2021 requirements, which will help in achieving low air tightness levels, as well as adopting enhanced construction details for the junctions, reducing thermal bridging.

Be Clean – Supply energy efficiently

Once the demand for energy has been minimised through fabric first measurements, all remaining energy should be supplied as cleanly as possible, using systems with a low primary energy factor and a high efficiency.

When selecting the proposed heating system, it is also imperative to consider carbon dioxide emissions, as all combustion processes can emit oxides of Nitrogen (NOx). Solid or liquid-fueled appliances (such as those using biomass or biodiesel) can also emit Particulate Matter. These pollutants contribute to poor air quality and can have negative impacts on the health of local residents and occupiers of the dwelling. It is important that these impacts are taken into account in determining the heating strategy of a property.

Be Green – Use renewable energy

At this stage of the project, various low-zero carbon and renewable technologies were considered to further the reduction in energy demand. For this development, Solar Photovoltaic Panels are considered a suitable technology that reduces reliance on grid electricity.

After implementing 4.00kWp of PV on the south west facing pitched roof per unit, in addition to the high-performance fabric and highly efficient Air Source Heat Pump implemented at the previous stages of the project, **the energy demand reduces to 1832.33kWh/yr**, thus meeting the sustainability targets set by West Oxfordshire District Council.

Specification Summary

Table 1: Proposed Fabric Specifications							
	Fabric Construction and Insulation						
Element Type U-Value							
External FloorGround Floor - Solid0.12							
External Wall	Cavity Wall	0.18					
Pitched Roof, Rafter Insulation	Pitched – insulated at rafters	lat 0.15					
Windows/Roof light	Window	Aluminium framed double glazed, argon filled, 16mm unit with low-e coating; G-Value of 63%;	1.00				
Roof Windows	Roof Light	Aluminium framed double glazed, argon filled, 16mm unit with low-e coating; G-Value of 63%;	1.00				
External Doors	Solid Door	Insulated composite door unit with <30% glazing;	1.00				

	Τα	ble 2: P	ropose	d System S	Specif	ication	IS			
Space Heating										
Main Heating System		SAP Default Air-Source Heat-Pump supplying radiators and wet underfloor heating system;								
Heating Controls	Time an	d tempe	erature z	zone contro	ol;					
Secondary Heating	n/a;									
			Wa	ter Heating						
Heat source	From	Main He	ating	Cylinder S	ize	250-li	tre	Heat Loss	1.70	kWh/day
WWHRS Instantaneous System 1		N/A		WWHRS Instantane System 2	eous			N/A	ι.	
Water Use <=125 l/p/d		Yes		Cold Wate Source	er		F	rom M	ains	
Shower(s)	or u	pination nvented ater syste	hot	Flow Rate	[l/s]	10.0				
Bath Count		1			Primo	ary pipe	work ful	ly insul	ated;	
Solar Thermal	n/a;									
			V	entilation						
Mechanical Ventilation		rmittent h/ensuite		fans in kitc s)	hen ar	nd wet	rooms (i	incl. ut	ility and	k
Cooling system	n/a	;								
Pressure Test Blower Do	5.00)m³/hm²	@ 50 Pc	a Please not	e ERS c	an provi	ide Air Le	eakage	Testing	
				Other						
Detailing (linear thermal bridging junctions – formerly ACDs)Enhanced construction details from Concrete Block Association, with psi values based off 150mm cavity with Knauf Dritherm 32 Full Fill insulation and a lightweight block inner leaf. Concrete Block Association Certificate number with associated detail referenced in thermal bridging. Any change to the construction should be checked through this office to ensure compliance is maintained.										
Lighting	No. Fittings	20	Powe [W]	e r 2		cacy n/W]	75	-	acity m]	150
Tariff and Meters	Standard Smart Electricity Meter Yes Smart Gas Meter Not present					present				
PV/Renewables	 4.00kWp PV per unit mounted on the south west facing pitched roof at same gradient; 3.50 kwh battery storage 									
Please note: There may be the relevant Approved Doct stage. Please ensure	e upgrades ument Part	compared L. Failure to	l to your o impleme	original specifi ent these upgr	ades m	ay result i	in a Buildi	ng Regu	lation Fa	ilure at final

Introduction

Site & proposal

The site is located at Weavings farm, 101 Abingdon Rd, Standlake, Witney, OX29 7QN.

Proposed development: Construction of 3-bedroom house.

Sitewide Gross Internal Area for the proposed dwelling: 213.88m²

The approximate site location of the proposed development is shown in the site plan Fig.1.

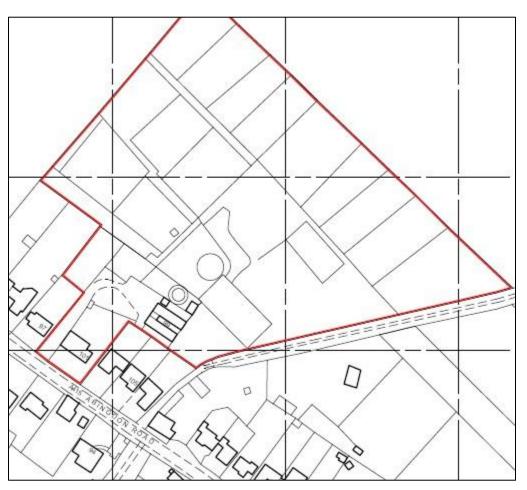


Fig.1 Site Plan

Policy context

This energy and sustainability statement will seek to respond to the energy policies that apply to these dwellings. The most relevant applicable energy policies in the context of the proposed development are presented below.

- West Oxfordshire District Council (WODC) sustainability standards
- The National Planning Policy Framework (NPPF) July 2021

The WODC policy aims for a reduction in Energy Demand, so that the dwelling consumes less than 35.00 kWh/m²/yr.

Calculation methodology

The sections below present the methodology followed in reducing the energy demand for the dwellings.

The methodology employed by the energy and sustainability statement is in line with the GLA's Guidance on preparing energy assessments.

The energy demand is shown by the primary energy metric (DPER) in SAP 10, and is calculated using the primary energy factors in Part L 2021. SAP 10 is the approved compliance software for Part L developed by Elmhurst Energy Systems Ltd.

Baseline:

The buildings baseline uses the same heating system as the as designed counterpart; therefore, in this exercise the baseline models also use an Air Source Heat Pump. The full specification of the baseline can be found in Table 1.1 of the Approved Document L Volume, 2021 Edition.

Be Lean: use less energy

The demand for energy is reduced through a range of passive and active energy efficiency measures; as part of this step, the dwellings' fabric u-values and glazing have been improved to a high standard. In addition to this suitable heating systems are utilised as per the specifications in Tables 2 and 3.

Be Clean: supply energy efficiently

As much of the remaining energy demand is supplied as efficiently as possible in the previous stage. Here, we consider the most highly efficient versions of the selected heating system.

Be Green: use renewable energy

Renewable and low-zero carbon technologies are incorporated to reduce the reliance on grid electricity for the dwelling. The uptake of renewable technologies is based on feasibility and viability considerations, including their compatibility with the energy system determined in the previous step.

The primary energy factors used in all calculations in this document are those used for Part L of the Building Regulations. The relevant factors are reproduced in Table 3 below.

Table 3 Carbon Emission Factors for selected fuel type				
Fuel	Primary energy factor			
Mains Gas	1.130			
Bulk/Bottled LPG	1.141			
Biogas	1.286			
Heating Oil	1.180			
Wood Pellets	1.325			
Grid Electricity	1.501			

* Table extracted from the document SAP Version 10.2 (21-04-2022). Table 12: Fuel prices, emission factors and primary energy factors, Page 189. this can be found in the appendix of the report.

Be Lean - Use less energy

The proposals incorporate a range of passive and active design measures that will reduce the energy demand for space conditioning, hot water, and lighting. The following is a description of the sustainable design methods under the Be Lean umbrella.

Passive design measures

Materials and Waste

A site waste management plan that provides details of waste minimisation, sorting, reuse and recycling procedures are required for all levels in the planning guidance. Sustainable waste management should follow the hierarchy described in *BS 5906*: *Waste Management in buildings. Code of practice.* This outlines the following principles in decreasing order of desirability:

- Reuse land and buildings wherever feasible and consistent with maintaining and enhancing local character and distinctiveness.
- Reuse and recycle materials that arise through demolition and refurbishment, including the reuse of excavated soil and hardcore within the site.
- Prioritise the use of materials and construction techniques that have smaller ecological and carbon footprints, help to sustain or create good air quality and improve resilience to a changing climate where appropriate.
- Incorporate green roofs and/or walls into the structure of buildings where technically feasible to improve water management in the built environment, provide space for biodiversity and aid resilience and adaptation to climate change.
- Consider the lifecycle of the building and public spaces, including how they can be easily adapted and modified to meet changing social and economic needs and how materials can be recycled at the end of their lifetime.

Space is provided and appropriately designed to foster greater levels of recycling of domestic waste.

Using Recycled/Recyclable Materials and Sourcing them Responsibly

The following measures will be put in place to minimise environmental impact

Regarding for reuse & efficient use of materials: Material efficiency will be a priority for the design team and will be one of the key considerations during detailed design. Potential measures for reducing the material demand and for designing out waste will be explored by all key design team disciplines at each design stage, according to the first stages of the Waste Hierarchy.

Regard will be given to reducing the use of virgin materials, such as ensuring a recycled aggregate of content 10-15% in concrete, for example.

Specifically, the following notes have been made on the durability and recycling potential of project materials:

- Brick-in-the-wall finishes have a long usable life and can be reclaimed/re-used in the future. It can also be recycled although it is more a down-cycle into rubble material for aggregates.
- Window glass, carpeting, and concrete can also be down-cycled.
- The hard landscaping has many timber elements (seats, benches, fences, the acoustic fence) which is a renewable material and are likely to be FSC certified. It can also be recycled or down-cycled into chipboard / crushed timber.
- Similarly, the use of pre-made sections, such as pre-cast floor slabs in the flatted element will reduce waste and maximise material efficiency. A study by the HSE concluded that waste reductions approaching 70% were possible when compared with traditional techniques.
- The design seeks to use prefabrication for some internal spaces and will be used, subject to the availability of skilled labour and resources within a reasonable distance of the site.

Environmentally conscious materials

- Materials with the lowest environmental impact tend to have only minimal processing requirements and contain as many naturally occurring constituents as possible. The design team will ensure that 'good practice' is implemented in the specification of materials, making conscious decisions to specify more natural products and the wider environmental impact of the materials will be considered when choosing between different options. This could include reviewing Environmental Product Declarations.
- Furthermore, efforts will be made to use materials with low/zero Global Warming Potential (GWP), low Ozone Depletion Potential (ODP) and low embodied energy.
- Local and responsible sourcing Transport associated with extracting, processing and delivering materials can contribute significantly to their carbon and environmental footprint. A robust system of responsible materials sourcing will ensure that native materials will be used as a matter of preference before any are sourced internationally. It is reasonable to expect as well that deliveries will be made using fuel-efficient vehicles.
- The responsible sourcing of materials will be a key consideration in the selection of suppliers, and a sustainable procurement strategy will be produced for the development before construction.
- Materials from suppliers who participate in responsible sourcing schemes such as the BRE BES 6001:2008 Responsible Sourcing Standard will be prioritised where economically possible.

Where there are suitable opportunities to recycle a proportion of the material recovered from the existing site it should always be done.

Enhanced U-values

The heat loss of different building fabric elements is dependent upon their U-value. A building with low U-Values provides better levels of insulation and reduced heating demand during the cooler months.

The proposed development will incorporate high levels of insulation and highperformance glazing beyond Part L 2021 targets and notional building specifications, to reduce the demand for space conditioning (heating and/or cooling).

Table 4 demonstrates the improved performance of the proposed building fabric beyond the Building Regulations requirements.

Table 4 Proposed Fabric U-Values						
Domestic (U-Values in W/m²k)						
Element	Part L 2021 Building Regulation	Proposed				
Wall	0.26	0.18 (External Wall)				
Floor	0.18	0.12(Ground floor)				
Roof	0.16	0.15				
Windows/Rooflights	1.60	1.00				
Doors 1.60 1.00						
These u-values are recommended but may change during the construction stage, to meet site constraints, any worsening of the u-values must ensure compliance and the required energy demand target.						

Air tightness improvement

Heat loss may also occur due to air infiltration. Although this cannot be eliminated, good construction detailing and the use of best-practice construction techniques can minimise the amount of air infiltration.

The proposed development will aim to improve upon the Part L 2021 minimum standards for air tightness by targeting air permeability rates of **5.00m³/m².h at 50Pa for the proposed unit**, should the air test be below 3.00m³/m².h at 50Pa Mechanical ventilation will be required.

Reducing the need for artificial lighting

The development has been designed to maximize daylight in all habitable spaces as a way of improving the health and well-being of its occupants.

Natural lighting reduces the energy used for artificial lighting and creates a healthier internal environment. Issues to consider include how much of the sky is visible through a window (the more, the better), the dimensions of the interior living/working space and distance from the window, and the proportion of glazed surfaces. The depth of the room is an important factor in determining the amount of natural light received. Naturally dark rooms may be lit naturally through measures such as sun tubes which 'pipe' sunlight from sunny areas to internal areas.

Glare created by natural or artificial light can be uncomfortable for people both inside and outside a building. This can be minimised if considered early in the design process through building layout (e.g., low eaves height) or building design (e.g., blinds, brise soleil screening). If considered together with a lighting strategy this can reduce energy consumption.

All of the habitable areas will benefit from suitable level glazed fenestration to increase the amount of daylight within the internal spaces where possible. This is expected to reduce the need for artificial lighting whilst delivering pleasant, healthy spaces for occupants.

Active design measures

High efficacy & low energy lighting

Where artificial lighting will be needed it will be low energy lighting without compensating for luminance and will accommodate LED.

Water

The sustainability targets require water efficiency in the new development to meet the highest national standard. For residential development, this is defined in the supporting text as the 'optional Building Regulation' for water efficiency in new dwellings, which is 110 litres per day per person.

There are presently no other national standards for non-residential developments than those in the Building Regulations. However, the principle of water efficiency in line with the waste hierarchy applies to all developments. As a result, all developments should seek to reduce demand through efficiency measures, and then meet the remaining demand from sustainable sources wherever possible.

For all developments, the submitted information should set out an approach to water management that reduces water usage and waste and prioritises demand reduction measures oversupply measures.

Reducing water use

Development, whether new construction or change of use and refurbishment, can save water by including measures such as:

- systems for greywater reuse
- aerated washbasin/kitchen taps and shower heads,
- tapered and low-capacity baths,
- sensor and low flush toilets,
- shower timers, and
- water efficient white goods and appliances such as washing machines and dishwashers.

Water use during construction can be reduced through measures including:

- closed loop wheel washers,
- waterless wheel washing using angled steel grids to remove debris,
- high-pressure low volume power hoses, recirculating water where possible,
- limiting the water used for flushing building services by stopping it as soon as the flush water turns clear, and
- employing a regime for monitoring water use and water waste.

Choosing the best location for a boiler can reduce water consumption and heat loss. By minimising the length of hot water pipes the volume of water that must be drawn off each time a tap or shower is used can be reduced. Positioning hot water pipes above pipes carrying cold water will reduce heat transfer. Further heat loss can be reduced by insulating the piping.

For all new dwellings, a completed "water efficiency calculator for new dwellings" worksheet that accords with Part G of the building regulations Approved Documents should be provided before occupation. The calculation must demonstrate that the new dwellings will achieve a maximum water usage of 110 litres per person per day.

Rainwater harvesting

Rainwater harvesting is the collection of rainwater directly from a surface it falls on (e.g. a roof). Once collected and stored it can be used for non-potable purposes such as watering gardens, supplying washing machines and flushing toilets, thereby reducing the consumption of potable water. Potable water is produced through a purification process and is pumped over large distances, both of which require energy and result in embodied carbon that is not present in water harvested locally. In residential development, rainwater can be captured for domestic use using water butts connected to a downpipe. Larger systems can use water stored in underground water tanks.

Schemes should be designed to include space for water storage. In residential developments, down pipes should be carefully placed so that water collection and use are convenient for residents.

Greywater re-use

Water that is recycled from bathrooms and kitchens for non-potable uses is known as greywater. Greywater systems must ensure treatment regularly to prevent a build-up of bacteria, and some systems are powered, which entails an energy cost. As a result, greywater reuse is generally less preferable than water use minimisation measures.

Water recycling systems are better suited to new developments rather than retrofitting in existing buildings because of the excavation required for storage tanks and changes needed to the plumbing system, and they are generally more cost-effective for new developments and developments of a larger scale.

Recycling systems should be backed up by a mains supply or a sufficiently large reserve storage system to meet higher demands during dry spells. Storage tanks will need an overflow to allow excess water to be released which should be able to flow into a soakaway.

Controls and Monitoring

Advanced lighting and space conditioning controls will be incorporated, specifically:

- For areas of infrequent use, occupant sensors will be fitted for lighting, whereas day-lit areas will incorporate daylight sensors where appropriate;
- Heating and cooling systems controls will comprise time and temperature controls, both centrally for the whole building and locally for each space;
- Smart metering to be installed on all new dwellings for adequate monitoring;

Overheating Risk analysis

Passive solar gain refers to the process whereby a building is heated by the sun, either directly from sunlight passing through a window and heating the inside of the building, or indirectly as sunlight warms the external fabric of the building and the heat travels to the interior. The level of passive solar gain can significantly impact the quality of a building, how it is used and the energy needed for it to be inhabited comfortably. Passive solar gain can reduce the need for mechanical heating, which in turn reduces energy use and carbon emissions.

Key factors that influence passive solar gain include the physical characteristics of the site, immediate surroundings, the orientation of buildings, external design, internal layout and the construction materials used.

Whilst passive solar gain can reduce the carbon emissions associated with heating, if used incorrectly it can lead to overheating, which in turn can lead to the installation of mechanical cooling equipment (e.g. air conditioning). Mechanical cooling increases energy consumption and requires maintenance, resulting in costs and carbon emissions. Mechanical cooling units also produce heat that requires dissipation. The need for mechanical cooling can be avoided or lessened by designing-in passive ventilation and passive cooling measures. Developments should not incorporate mechanical cooling unless passive measures have been fully explored and appraised and proposals that include mechanical cooling should demonstrate that passive measures would not be adequate.

Passive measures have been considered at the design stage to minimise the risk of overheating. These include providing openable roof windows on both sides of the roof allowing the release of excess heat and effective cross ventilation. The roof windows will be fitted with motorised blackout blinds which can also be deployed to minimise heat gain when needed. This reduces the risk of physical changes to the design that may have planning implications in order to achieve Part O compliance during the building regulations stage.

The following list includes some of the key considerations in the design of new schemes:

- Rooms that are most frequently occupied should benefit from a southerly aspect, but with appropriate measures to avoid overheating.
- Orientation and layout of habitable rooms, and window size and orientation, should be carefully considered about the path of the sun.
- Rooms that include a concentration of heat-generating appliances (e.g. kitchens) or are less frequently occupied (e.g. bathrooms) should be located in the cooler part of the building, generally the northern side.
- Conservatories and atria can be used to assist natural ventilation in the summer by drawing warm air upward to roof vents and to collect heat during the spring and autumn.
- Deep projections that overshadow windows should be avoided, particularly on south-facing elevations. Projections should be sized appropriately so that they provide shading from the sun during the hottest part of the year but allow solar gain in the colder months.
- Where there is a chance that overheating can occur (e.g., due to large expanses of glazing on roofs and south-facing elevations), design measures such as roof overhangs, brise soleil, external shuttering, photochromatic and thermochromic glass and a lighter colour palette can help.
- Zonal heating and ventilation systems and controls can be used allowing areas subject to high solar gain to occupy their temperature control zone. Dynamic controls reduce energy waste.
- Use of materials to build in thermal mass to absorb excess heat during warmer periods and release it slowly during cooler periods (e.g., day/night, summer/winter).
- Buildings should be designed for passive ventilation:
 - cross ventilation with windows located on opposite walls and/or roofmounted turbines or wind cowls that assist with the circulation of air by drawing air through windows or top floor openings and
 - passive stack ventilation (PSV) that uses pressure differences to draw in fresh air from outside to replace rising warm air which is released from the top of the building. A heat exchanger can be placed where the air escapes the building to reduce heat loss.

Be Clean - Supply energy efficiently

The Be Clean stage considers clean energy supply to the building. The following describes the possible systems considered for use in this project. The latest GLA guidance, asks developers to consider Combines heat & power (CHP) and other types of district heating. Neither of these was considered feasible for this project due to size, site constraints, and the overall cost of those systems.

Low Carbon Energy Sources

Combined Heat and Power (CHP)

The presence of a year-round base hot water generation heat load in residential units is favourable to CHP. To date, there are readily available micro gas-fired CHP units (such as EC power) on the market. At this stage gas fired CHP will be provisionally incorporated into the development's LZC strategy, however, the carbon reductions due to CHP are extremely sensitive to the system design, unit selection and running time.

CHP (Combined Heat & Power) is a great technology to use, however, the system itself needs to run on a 24-hour basis. The heat generated would be exceeding the demand and needs for this site, and would require to have an outlet area which can profit from this excess; however, this development does not have a space that benefits from this; therefore, this option has been considered not feasible for this development.

In this project, there will be no direct heating networks or CHP incorporated so therefore, the Be Clean scenario will not further reduce CO2 emissions on site for the proposed Site, therefore meaning there are no changes to the carbon reduction to be implemented to the property.

Heat Networks

All new developments should look connected, or be connection ready, where a heat distribution network already exists. The investigation of opportunities should cover all scales and should not be limited to district heating systems.

Where such networks exist and developments should propose to connect to them, the energy statement should set out details showing how the connection will occur (a connection strategy). Where such networks exist, and developments do not propose to connect to them, the energy statement must set out clear reasons as to why the connection is not feasible, or why an alternative source of energy would be more sustainable. The development is not currently located within a local heat network, so therefore it is not feasible to use district heating in this project.

Be Green – Use renewable energy

Renewable technologies feasibility study

Methods of generating on-site renewable energy (Green) were assessed, once Lean and Clean measures were considered.

This section provides an overview of the technologies considered, a brief assessment of their feasibility, and a proposed mixture of suitable technologies.

The proposed development will benefit from an energy-efficient building fabric which will reduce the energy consumption of the proposed development in the first instance.

A range of renewable technologies was subsequently considered including:

- Biomass;
- Ground/water source heat pumps;
- Wind energy;
- Photovoltaic panels, and,
- Solar thermal panels.

In determining the appropriate renewable technology for the site, the following factors were considered:

- CO₂ savings achieved;
- Site constraints;
- Financial benefit
- Any potential visual impacts

Demand profiles

The balance of technologies chosen will depend on the development's energy demand patterns.

Keeping in mind that the space heating energy demand changes according to the season. While hot water energy demand will provide a significant base load throughout the year.

Electrical demand is likely to be moderate throughout the year. Lighting loads will be highest during the evening but will continue at reduced levels throughout the night and during the day.

Feasibility

At this early stage in the design, it is possible only to outline the likely feasibility of specific technologies. Further descriptions of the LZC technologies below are included in Appendix A.

	Table 5. Renewable an	d Low Ze	ero Carbon To	echnologie	S	
Renewable Technology	Comments	Lifetime (Years)	Maintenance	External Impact	Site Feasibility	Adopted for Site
BIOMASS	Burning of wood pellets releases high NOx emissions and there are limitations to their storage and delivery within an urban location. These however aren't as beneficial to DPER.	20	High	High	3	
PV	PV panels would generate significant energy savings, whilst having minimal impact on the appearance of the building. These are to be incorporated on the south-facing roof.	25	Low	Med	9	
Solar Thermal	Solar thermal array mounted on the roof may contribute to energy reductions but will reduce the amount of available roof space where Photo voltaic panels are proposed.	25	Low	Med	7	
Heat Pump	Ground loops require space, additional time at the beginning of the construction process and very high capital costs. Air source heat pumps were, however, viable for this project.	20	Med	Low	0	
Wind	Due to insufficient open area for the installation of a stand-alone wind turbine and planning issues this option has not been considered in this development.	25	Med	High	0	

Detailed assessment of Photovoltaic Panels

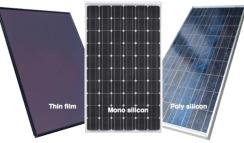


Fig 2. Photovoltaic Panels

Photovoltaic Panel is considered a suitable technology for this development as the development provides an extent of roof space for the installation of PV panels. In addition to this, the PV arrays are relatively easy to install when compared to other renewable systems and provide a significant amount of energy savings.

The PV shall comprise of 4.00kWp of horizontal arrays to the dwelling; Table 6 summarizes the technical data for the proposed PV array. In total, the PV installation would reduce energy demand below the target threshold, to 33.33kWh/m²/yr.

Photovoltaic Panels					
Module Efficiency	15%				
Panel Orientation	South West				
Tilt	As per the sloped roof				
Array Area (approximately)	~20.40m ²				
Total power to be installed	4.00 kWp				
Energy Savings	2,267.05 kWh/yr				

Table 6. Proposed PV Specifications

Be Green CO₂ emissions & savings

After the Be Green Stage, with the MCS-approved installation of a highly efficient airsource heat pump, the high-performance fabric and the PV panels, the energy demand of the building now meets the sustainability targets set by WODC. This means the energy demand is **33.33kWh/m²/yr**, below the target of 35.00 kWh/m²/yr.

Conclusion

Following the implementation of the three-step Energy Hierarchy, the regulated energy demand of the property is **33.33kWh/m²/yr** according to a SAP 10 calculation against Part L standards, using the Primary Energy metric.

Overall, the proposed development at Weavings farm, 101 Abingdon Rd, Standlake, Witney, OX29 7QN, has been designed to meet energy policies set out by local and national planning requirements. This demonstrates that the development is committed to reducing energy demand using sustainable design measures and clean energy systems.

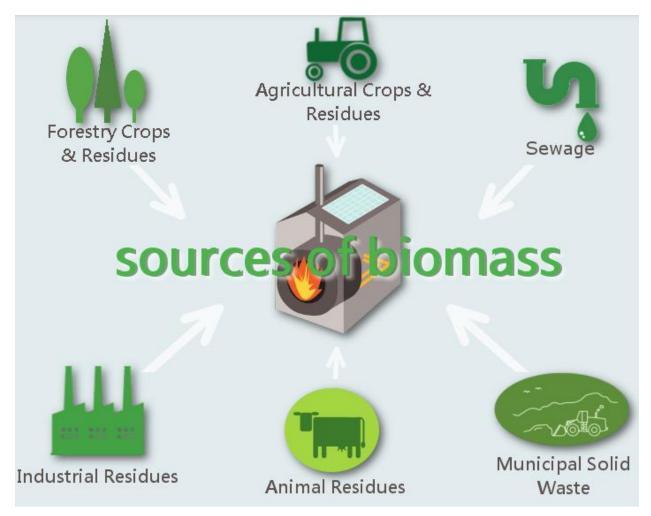
The new development will be designed with a high level of insulation and low air permeability to reduce heat loss as much as is practically possible, also the use of lowenergy lighting and A – Rated White goods are essential for the reduction of energy consumption. The control strategy throughout the proposed site must also be carefully designed to ensure the most economical operation of all equipment.

To achieve the required energy demand target, an air source heat pump will be installed by an MCS-accredited professional, with relevant certification to be provided for the as-built stage. In addition to this, levels of insulation mean the U-Values fall below the minimum notional standards of Part L reducing heat loss and therefore energy demand. After these measures, PV is added to achieve the remaining reduction needed for the target.

All buildings are to have suitable meter/smart meter management installed on every household so that the homeowner can benefit from accurate savings to allow for suitable management of energy usage.

CHP (Combined Heat & Power) is a highly efficient technology to use for new development, however, due to the low energy demands of the development and the lack of additional space required for this technology, it will not be a preferable solution, as the site does not have the demand and space to accommodate this technology.

As per the West Oxfordshire District Councils' sustainability targets, residential developments are required to have an energy demand below 35.00 kWh/m²/yr. This development, after Be Lean, Be Clean and Be Green measures are implemented, consumes **33.33kWh/m²/yr**, falling below the usage targets.Post construction each building/dwelling is to have suitable testing to be provided to ensure the dwellings satisfy the requirements of this document and building regulation standards at the time of completion. These reports are to be provided as As-Built SAP worksheets, EPC and Air testing, for all conditioned spaces in the development.



Appendix A - Low or Zero Carbon Energy Sources

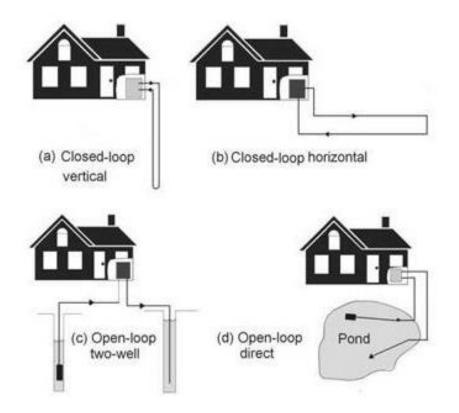
Biomass As a fuel

Biomass is a renewable energy source, generated from burning wood, plants and other organic matter, such as manure or household waste. It releases CO2 when burned, but considerably less than fossil fuels. We consider biomass a renewable energy source if the plants or other organic materials being burned are replaced.

Biomass is known for its versatility, given it can be used to generate heat, and electricity, be used in combined heat and power units and be used as a liquid fuel. In domestic settings, it tends to be found in the form of wood-fueled heating systems.

Geothermal Energy:

Geothermal energy technologies use the heat energy stored in the ground; either for direct-use applications: such as using the grounds' heat to defrost a driveway or indirect use with additional equipment such as a geothermal heat pump. Most commercial installations couple a heat pump with the ground to upgrade the low-



grade heat from the ground or groundwater to a higher-grade heat, which it can be used for heating purposes.

The suitability of a ground source system depends heavily on the type of earth coupling heat exchange system used:

Ground source earth coupling options

The right choice of appropriate heat exchanger depends on several factors such as size of the space heating/hot water system, available site area for the heat exchangers, and local ground conditions. Due to the specialist nature of this technology, we recommend that a specialist is employed to size the heat exchangers based on a desk-top study of the site's geological conditions – this normally being required in advance of any other contractor appointment.

Vertical Closed Loop System

A frequently used and simple ground source heat exchanger, for a small to medium size project, is a closed-loop vertical system. The system comprises vertically drilled boreholes, usually up to 100 m deep, into which are inserted two polyethene pipes with a U-shape connector at the base of the hole – effectively providing a flow down to the bottom of the hole and return back up to the surface. All the flow and return loops are connected together across the site - completing the entire heat exchange loop. Water

is pumped around the loop and is then circulated around the heat pump to achieve the required heat exchange. The distance between boreholes is dependent on ground conditions but is typically a minimum of a 6mx6m grid, to prevent overlapping of the heat exchange process between loops.

Horizontal Closed Loop System

Horizontal closed loop heat exchangers are usually applied to small projects such as individual houses, which usually require a relatively low heat output. Consisting of horizontal trenches 1.5-2m deep, with either straight pipes or 'slinky' coiled pipes, these require significant excavation work and significant site area to achieve appreciable outputs as such are not normally suited to medium to large projects.

Vertical Open Boreholes System

A further option is a vertical open borehole system. The system involves the abstraction and discharge of natural ground water using boreholes; into which pumps are inserted, connected to collapsible pipework. Each borehole pump abstracts ground water, circulates it around the heat pump and then discharges the water back to the ground via an absorbing well, some distance from the original abstraction borehole. The system is capable of providing very high rates of heat exchange for a relatively small number of boreholes, which makes it very efficient in terms of site area required. However, this depends greatly on the availability of ground water, which in turn varies according to location. A major downside of this system is that the extraction of water from deep boreholes via pumps consumes a lot of energy, as the water has to be physically lifted to the surface by the pump – this in effect reduces the carbon emissions saved by this system as a whole.

Ground source heat exchange options in summary:

Vertical loop system - closed boreholes

- moderate heat capacity
- relatively low installation cost

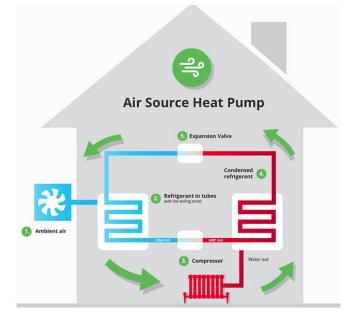
Vertical open system - open boreholes

- high heat capacity
- high running energy
- high installation cost

Horizontal loop system – straight pipes

- low capacity,
- high installation cost
- extensive ground excavation work

Horizontal coiled loop system – 'slinky' pipes

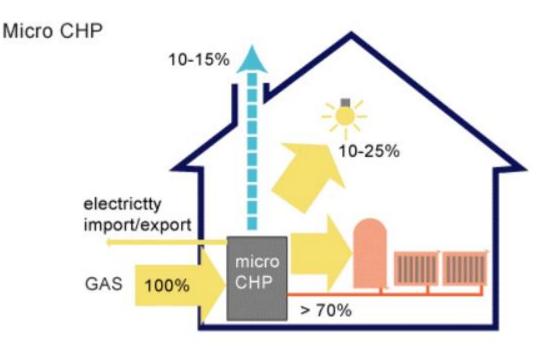

- good capacity
- low installation cost
- extensive ground excavation work

Air Source Heat Pumps

Heat pumps are basically refrigeration units which work in reverse – instead of cooling being produced and heat rejected, the unit produces heat and rejects cooling. Conventional heat pumps use air as the medium to reject this 'coolth' to atmosphere. Ground source units use the ground as a means of improving the unit efficiency because the ground is a constant 11-13 °C at depths of 50m down – this suits the heat pump much better during the coldest weather than the extremes of air temperature. Reversible heat pumps can also be used for cooling, however this is not being considered further for this project.

A heat pump consumes electrical power to drive the compressor and other ancillary elements. The ratio between total energy input and heat energy output of the heat pump is a measure of its efficiency – usually referred to as 'Coefficient of Performance' - COP. A ground source heat pump has a higher COP than an air cooled heat pump – this additional energy effectively being the grounds' natural contribution to the system.

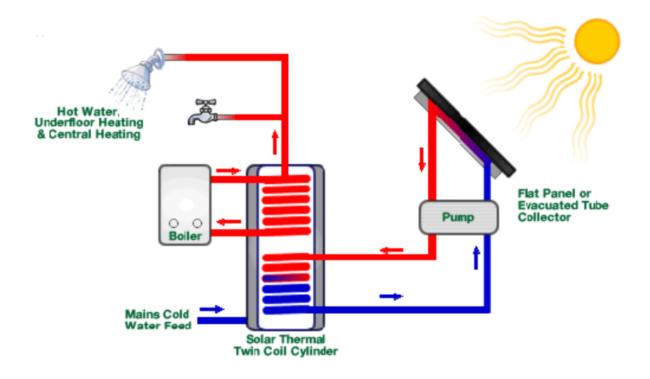
The heat produced by a heat pump is usually used to either provide space heating say to underfloor heating or radiators or the heat is used to generate domestic hot water via a storage vessel.



CHP

Combined heat and power (CHP) is a process involving simultaneous generation of heat and electricity, where the heat generated in the process in harnessed via heat recovery equipment. CHP at the large commercial size is now fairly common in premises which have a simultaneous demand for heating and electricity for long periods, such as hospitals, recreational centres and hotels. In addition, small CHP systems are now becoming available for individual houses, group residential units and small non-domestic premises. Compared with using centrally generated electricity supplied via the grid, CHP can offer a more efficient and economic method of supplying energy demand, if installed and operated appropriately, owing to the utilization of heat which is normally rejected to the atmosphere from central generating stations, and by reducing network distribution losses due to local generation and use.

Heat generated will be used for space and water heating, and additional heat storage may be used to lengthen use periods, to assist in warm-up and to improve overall energy efficiency. For overall good energy efficiency, as with all CHP, usage must be heat demand led. Thus, a sophisticated control system is required and users should be made aware of efficient operating practices.



Solar thermal collectors

Solar thermal collectors (flat plate or evacuated tubes) convert solar thermal energy into heat for hot water generation. These are usually located on a roof oriented south

facing in an ideal slope of 45 degree. Solar collectors properly sized and designed provide approx 50% of annual hot water demand.

Photovoltaic

Photovoltaic modules convert sunlight directly into DC electricity and can be integrated into buildings. Photovoltaics (PVs) are distinct from other renewable energy technologies since they have no moving parts to be maintained and are silent. PV systems can be incorporated into buildings in various ways: on sloped roofs and fl at roofs, in façades, atria and shading devices. Modules can be mounted using frames or they can be fully incorporated into the actual building fabric;

for example, PV roof tiles are now available which can be fitted in place of standard tiles.

Currently, a PV system will cost between £1500 and £2500 per kWp, and frequently part of this cost can be offset owing to the displacement of a conventional cladding material. Costs have fallen significantly since the first systems were installed (1980s) and are predicted to fall further still.

While single crystal silicon remains the most efficient flat plate technology (15–16% conversion efficiency); it also has the least potential for cost reduction. PV cells made from poly-crystalline silicon have become popular as they are less expensive to produce, although they have a slightly lower efficiency.

Thin film modules are constructed by depositing extremely thin layers of photosensitive materials on a low-cost backing such as glass, stainless steel or plastic. As much less semiconductor material is required as for crystalline silicon cells, material costs are potentially much lower. Efficiencies are much lower, around 4–5%, although this can be boosted to 8–10% by depositing two or three layers of thin film material. Thin film production also requires less handling as the films are produced as large, complete modules and not as individual cells that have to be mounted in frames and wired together. Hence, there is the potential for significant cost reductions with volume production.

Since PVs generate DC output, an inverter and other equipment is needed to deliver the power to a building or the grid in an acceptable AC form. The cost of the inverter and these 'Balance of System' (BOS) components can approach 30% of the total cost of a PV system. Hence, simplification and cost reductions in these components over the coming years will also be necessary to make PV systems affordable.

Wind energy

Wind power is the most successful and fastest spreading renewable energy technology in the UK with a number of individual and group installations of varying size, capacity and location. Traditionally, turbines are installed in non-urban areas with a strong trend for large offshore wind farms. In parallel with the design and development of ever-bigger machines, which are deemed to be more efficient and cost-effective, it is being increasingly recognized that smaller devices installed at the point of use, i.e. urban

settings, can play an important role in reducing carbon emissions if they become mainstream.

At present there is a wide range of available off-the-shelf wind products, many manufactured in the UK and EU with proven good performance and durability. The dominant type is horizontal axis wind turbines (HAWT), which are typically ground mounted. Vertical axis wind turbines (VAWT) have limited market presence and there is a trade-off between lower efficiency and potentially higher resistance to extreme conditions. Capacity ranges from 500W to more than 1.5MW, but, for practical purposes and in built-up areas in particular, machines of more than 1kW and below 500kW are likely to be considered.

Wind technology is also currently one of the most cost-effective renewable energy technologies, which is attributable to the large scale of installations reducing the unit output cost. Individual building or community wind projects, although smaller, have the advantage of feeding electricity directly into the building's electricity circuit, thus sparing costly distribution network development and avoiding distribution losses. The downside is the still high capital cost per kW installed for smaller turbines, plus location constraints, such as visual intrusion and noise. The wind regime in urban areas is also a concern owing to higher wind turbulence which reduces the potential electricity output.

In most cases, wind turbines are connected to the electricity grid and all generated energy is used regardless of the building demand fluctuations. The output largely depends on the wind speed and the correlation between the two is a cube function. This means that in short periods of above-average wind speeds the generation increases exponentially. As a result, it is difficult to make precise calculations of the annual output of a turbine, but average figures can provide useful guidance to designers and architects. In reasonably windy areas (average wind speed of 6m/s) the expected output from 1kW installed is about 2500kWh annually.

The cost per kW installed varies considerably by manufacturer and size of machine with an indicative bracket of $\pounds 2,500-\pounds 5,000$. With a lifespan of more than 20 years, wind turbines can save money if design and planning are carried out in a robust way.

Building-integrated wind turbines are starting to be a reality in the UK, but potential projects may face difficulties with obtaining planning permission. There are a few examples now of permitted development rights for certain rooftop turbines in some local councils. A number of horizontal axis devices specifically designed for building integration are now available commercially, having design and reliability parameters relevant to the urban context. Building-mounted vertical axis devices are under development. At present, turbines installed near buildings, as well as community installations for groups of buildings, should be regarded as the larger wind energy source related to buildings, when they contribute to the carbon emissions from these premises using 'private wire' networks. However, the contribution of several building-

integrated turbines in a development is likely to become significant in the next few years.

Appendix B-Fuel prices and emission factors

	Standing	Unit Price	Emission Kg CO2	PE Fuel
Gas fuels:	Charge £	p/kWh	p/kWh	Factor Code
mains gas	92	3.64	0.210	1.130 1
bulk LPG	62	6.74	0.241	1.141 2
bottled LPG (for main heating system)		9.46	0.241	1.141 3
bottled LPG (for secondary heating)		11.20	0.241	1.133 5
LPG subject to Special Condition 11F (a)	92	3.64	0.241	1.163 9
biogas (including anaerobic digestion)	62	6.74	0.024	1.286 7
	02	0.74	0.024	1.200 /
Liquid fuels:				
heating oil		4.94	0.298	1.180 4
bio-liquid HVO from used cooking oil (d)		6.79	0.036	1.180 71
bio-liquid FAME from animal/vegetable oils ^(e)		6.79	0.018	1.180 73
B30K (0		5.49	0.214	1.136 75
bioethanol from any biomass source		47	0.105	1.472 76
Solid fuels: (g)				
house coal		5.58	0.395	1.064 11
anthracite		4.19	0.395	1.064 15
manufactured smokeless fuel		5.91	0.366	1.261 12
		5.12	0.028	1.046 20
wood logs				
wood pellets (in bags for secondary heating)		6.91	0.053	1.325 22
wood pellets (bulk supply for main heating)		6.25	0.053	1.325 23
wood chips		3.72	0.023	1.046 21
dual fuel appliance (mineral and wood)		4.77	0.087	1.049 10
Electricity: (a)				
standard tariff	81	16.49	0.136 (s)	1.5010t)
	30			
7-hour tariff (high rate) (h)	7	19.60	0.136 (s)	1.5010t)
	32			
7-hour tariff (low rate) (h)		9.40	0.136 (s)	1.501 (†)
		31		
10-hour tariff (high rate) (">	21	20.54	0.136 (s)	1.501 (†)
	34	20.04	0.100 (3)	1.501 (1)
10-hour tariff (low rate) fib)	0.	12.27	0.136 (a)	1.501 (0
		33	0.100 (0)	1.001 (0
18-hour tariff (high rate) (">	26	17.41	$0.12(1_{0})$	1 501 /0
	38	17.41	0.136 (s)	1.501 (0
18-hour tariff (low rate) 00	50	14.17	0.136 (s)	1 501 (+)
		40	0.136 (5)	1.501 (†)
	24			
24-hour heating tariff	26	14.04	0.136 (s)	1.501 0)
	35	5 50 /0	0.10///	0.501.0)
electricity sold to grid, PV		5.59 (0	0.136 (s)	0.501 0)
		60		
electricity sold to grid, other		5.59 ()	0.136 (s)	0.501 0)
		36		011
electricity, any tariff 0)		N/A	0.136 (s)	1.501 ^{Ot)}
		39		
Heat networks: (k)	92 0)			
heat from boilers - mains gas		4.44	0.210	1.130
		51		
heat from boilers - LPG		4.44	0.241	1.141
		52		
heat from boilers - oil (assumes 'gas oil')		4.44	0.335	1.180
		53		
heat from boilers that can use mineral oil or biodies	sel	4.44	0.335	1.180
		56		
heat from boilers using HVO from used cooking oil		4.44	0.036	1.180

Weavings farm, 101 Abingdon Rd, Standlake, Witney, OX29 7QN Energy & Sustainability Strategy

	57		
heat from boilers FAME from animal/vegetable oils (a)	4.44 58	0.018	1.180
heat from boilers - B30D 0)	4.4 4 55	0.269	1.090
heat from boilers - coal	4.44 54	0.375	1.064
heat from electric heat pump	4.44 41	0.136 (s)	1.501 0)
heat recovered from waste combustion	4.44 42	0.015 0')	0.063
heat from boilers - biomass	4.44 43	0.029	1.037
heat from boilers - biogas (landfill or sewage gas)	4.44 44	0.024	1.286
heat recovered from power station	3.77 45	0.015 0')	0.063
high grade heat recovered from process (Appendix C4.3)	3.77 47	0.011	0.051
low grade heat recovered from process (Appendix C4.4)	3.77 49	0.136 001)	1.501 (001)
heat recovered from geothermal or other natural processes	3.77 46	0.011	0.051
heat from CHP	3.77 48	as above0D	as above0D

Appendix D, E, F, G & H

This appendix contains the following reports used in producing the content of this Energy and Sustainability Statement.

Appendix D – Plan, elevation and section drawings used for SAP Calculation

- Appendix E BREL Worksheets for As-Designed Dwelling (i.e., Be Green Specification)
- Appendix F Be Green SAP calculation reports for the As-Designed Dwelling

Appendix G – Be Green PEA showing potential EPC rating using provided specification

Appendix H – Sample Water calculation showing how to achieve consumption below 110/litres/person/day

OVERVIEW 1

OVERVIEW 3

OVERVIEW 4

The Studio Ammonite Cottage Church Road North Leigh OX29 6TX 01993 402 993 www.ajp-design.co.uk

REV A : 09-02-2023 - PLANNING APPLICATION

NEW DWELLING AT WEAVINGS FARM, ABINGDON ROAD, STANDLAKE

3D OVERVIEWS

S.BOOTH

428 - 125
REV: A

EYE LEVEL VIEW 1

EYE LEVEL VIEW 3

EYE LEVEL VIEW 2

3D EYE LEVEL VIEWS

EYE LEVEL VIEW 4

The Studio Ammonite Cottage Church Road North Leigh OX29 6TX 01993 402 993 www.ajp-design.co.uk

REV A: 09-02-2023 - PLANNING APPLICATION

NEW DWELLING AT WEAVINGS FARM, ABINGDON ROAD, STANDLAKE

S.BOOTH NOT TO SCALE

		407
428	-	126

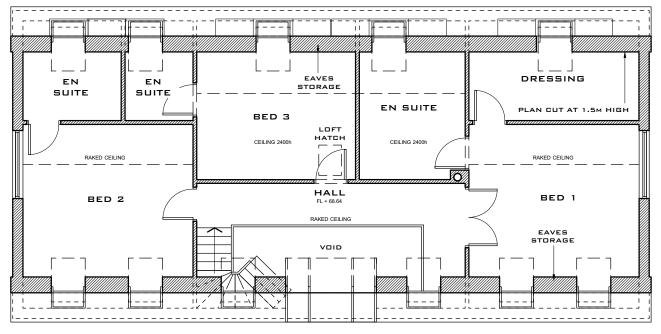
DETAIL VIEW 1

DETAL VIEW 3

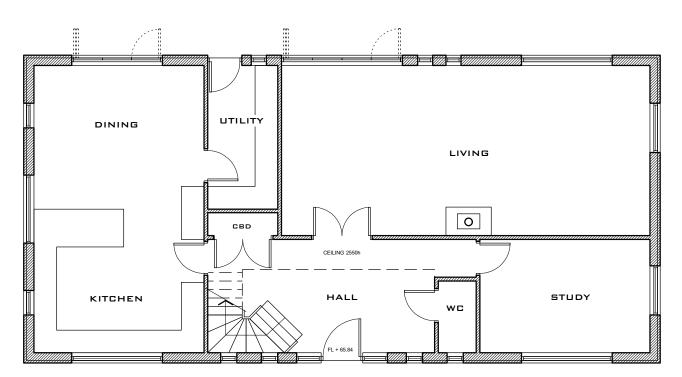
DETAIL VIEW 2

DETAIL VIEW 4

The Studio Ammonite Cottage Church Road North Leigh OX29 6TX 01993 402 993 www.ajp-design.co.uk


REV A : 09-02-2023 - PLANNING APPLICATION

3D DETAIL VIEWS


NEW DWELLING AT WEAVINGS FARM, ABINGDON ROAD, STANDLAKE

S.BOOTH

428 - 127
REV: A

FIRST FLOOR PLAN

GROUND FLOOR PLAN

The Studio Ammonite Cottage Church Road North Leigh OX29 6TX 01993 402 993 www.ajp-design.co.uk

REV A : 08-03-2023 - PLANNING APPLICATION

S.BOOTH

428	_	130
420	-	TOO

The Studio Ammonite Cottage Church Road North Leigh OX29 6TX
01993 402 993
www.ajp-design.co.uk

S.BOOTH

1:100 @ A3

01993 402 993 www.ajp-design.co.uk

NEW DWELLING AT WEAVINGS FARM, ABINGDON ROAD, STANDLAKE

S.BOOTH 1:100 @ A3

REV: A

Building Regulations England Part L (BREL) Compliance Report

Approved Document L1 2021 Edition, England assessed by Array SAP 10 program, Array

Date: Wed 19 Apr 2023 15:14:58

Project Information			
Assessed By	Iraj Maghounaki	Building Type	House, Detached
OCDEA Registration	EES/015723	Assessment Date	2023-04-19

Dwelling Details					
Assessment Type	As designed	Total Floor Area	214 m ²		
Site Reference	Weavings Farm Plot Reference 001-AD				
Address weavings farm Abingdon Rd, Witney , OX29 7QN					

Client Details	
Name	AJP Design
Company	AJP Design
Address	The Studio, North Leigh, OX29 6TX

This report covers items included within the SAP calculations. It is not a complete report of regulations compliance.

1a Target emission rate and dwelling emission rate				
Fuel for main heating system	Electricity			
Target carbon dioxide emission rate	7.89 kgCO ₂ /m ²			
Dwelling carbon dioxide emission rate	3.36 kgCO ₂ /m ²	OK		
1b Target primary energy rate and dwelling primary energy				
Target primary energy	41.9 kWh _{PE} /m ²			
Dwelling primary energy	33.33 kWh _{PE} /m ²	OK		
1c Target fabric energy efficiency and dwelling fabric energy efficiency				
Target fabric energy efficiency	42.8 kWh/m ²			
Dwelling fabric energy efficiency	40.3 kWh/m ²	OK		

2a Fabric U-values					
Element	Maximum permitted	Dwelling average U-Value	Element with highest		
	average U-Value [W/m ² K]	[W/m ² K]	individual U-Value		
External walls	0.26	0.18	Walls (1) (0.18)	ОК	
Party walls	0.2	N/A	N/A	N/A	
Curtain walls	1.6	N/A	N/A	N/A	
Floors	0.18	0.12	Heat Loss Floor 1 (0.12)	ОК	
Roofs	0.16	0.15	Roof (1) (0.15)	ОК	
Windows, doors,	1.6	1.01	Hlaf galze door (1.2)	ОК	
and roof windows					
Rooflights	2.2	N/A	N/A	N/A	

2b Envelope elements (better than typically expected values are flagged with a subsequent (!))				
Name	Net area [m ²]	U-Value [W/m ² K]		
Exposed wall: Walls (1)	143.4531	0.18		
Ground floor: Heat Loss Floor 1, Heat Loss Floor 1	123.88	0.12		
Exposed roof: Roof (1)	50.5285	0.15		
Exposed roof: Roof (2)	68.13	0.15		

2c Openings (better than typically expected values are flagged with a subsequent (!))				
Name	Area [m ²]	Orientation	Frame factor	U-Value [W/m ² K]
NE windows, Windows	3.2428	North East	0.8	1 (!)
NE windows, Windows	0.544	North East	0.8	1 (!)
NE windows, Windows	0.544	North East	0.8	1 (!)
NE windows, Windows	0.544	North East	0.8	1 (!)
NE windows, Windows	0.544	North East	0.8	1 (!)
NE windows, Windows	1.3578	North East	0.8	1 (!)
NE windows, Windows	1.3578	North East	0.8	1 (!)
NE windows, Windows	3.2912	North East	0.8	1 (!)
NE windows, Windows	2.5122	North East	0.8	1 (!)
NE RL, Roof light	3.91	North East	0.8	1 (!)
NE RL, Roof light	1.0965	North East	0.8	1 (!)
NE RL, Roof light	1.0965	North East	0.8	1 (!)
NE RL, Roof light	1.0965	North East	0.8	1 (!)

ntation Fra	ame factor	U-Value [W/m ² K]
East 0.8		1 (!)
East 0.8		1 (!)
East 0.8		1 (!)
i East N/A	4	1 (!)
n West 0.8		1 (!)
n West 0.8		1 (!)
n West 0.8		1 (!)
n West 0.8		1 (!)
n West 0.8		1 (!)
n West 0.8		1 (!)
n West N/A	4	1.2
n West 0.8		1 (!)
n West 0.8		1 (!)
n West 0.8		1 (!)
n West 0.8		1 (!)
n West 0.8		1 (!)
West 0.8		1 (!)
West 0.8		1 (!)
West 0.8		1 (!)
n East 0.8		1 (!)
n East 0.8		1 (!)
n East 0.8		1 (!)
n East 0.8		1 (!)
ł	h East 0.8 h East 0.8	h East 0.8

Main element	Junction detail	Source	Psi value	Drawing /
			[W/mK]	reference
External wall	E2: Other lintels (including other	Calculated by person with suitable	0.019 (!)	E2 FF CBA-313
	steel lintels)	expertise		
External wall	E3: Sill	Calculated by person with suitable expertise	0.02 (!)	E3 FF CBA-314
External wall	E4: Jamb	Calculated by person with suitable	0.02 (!)	E4 FF
		expertise		CBA-315
External wall	E5: Ground floor (normal)	Calculated by person with suitable	0.101	E5 FF CBA-301
		expertise		
External wall	E6: Intermediate floor within a	Calculated by person with suitable	0 (!)	E6 FF CBA-303
	dwelling	expertise		
External wall	E11: Eaves (insulation at rafter	Calculated by person with suitable	0.007 (!)	E11 FF
	level)	expertise		CBA-309
External wall	E12: Gable (insulation at ceiling	Calculated by person with suitable	0.077	E12 FF
	level)	expertise		CBA-310
External wall	E13: Gable (insulation at rafter	Calculated by person with suitable	0.075	E13 FF
	level)	expertise		CBA-311
External wall	E16: Corner (normal)	Calculated by person with suitable	0.051	E16 FF
		expertise		CBA-316
Roof	R1: Head of roof window	SAP table default	0.24	
Roof	R2: Sill of roof window	SAP table default	0.24	
Roof	R3: Jamb of roof window	SAP table default	0.24	
Roof	R6: Flat ceiling	SAP table default	0.12	
3 Air permeabi	ity (better than typically expected	values are flagged with a subsequ	uent (!))	
-	itted air permeability at 50Pa	$8 m^3/hm^2$		
		1 3. 3		

5 An permeability (better than typically expected	values are hagged with a subsequent (:))	
Maximum permitted air permeability at 50Pa	$8 m^3/hm^2$	
Dwelling air permeability at 50Pa	5 m³/hm², Design value	ОК
Air permeability test certificate reference		

4 Space heating		
Main heating system 1: Heat pump wit	h radiators or underfloor heating - Electricity	
Efficiency	170.0%	
Emitter type	Both radiators and underfloor	
Flow temperature	35°C	
System type	Air source heat pump	
Manufacturer	dfults	
Model	SAP	
Commissioning		
Secondary heating system: Closed ro	om heater	
Fuel	Wood logs	
Efficiency	65.0%	
Commissioning	03.070	
Commissioning		
5 Hot water		
Cylinder/store - type: Cylinder		
Capacity	250 litres	
Declared heat loss	1.7 kWh/day	
Primary pipework insulated	Yes	
Manufacturer		
Model		
Commissioning		
Waste water heat recovery system 1	L - type: Ν/Δ	
Efficiency	- type. tv/A 	
Manufacturer		
Model		
6 Controls		
	rature zone control by arrangement of plumbing and ϵ	electrical services
Function		
Ecodesign class		
Manufacturer		
Model		
Water heating - type: Cylinder thermos	L tat and HW concrately timed	
Manufacturer		
Model		
7 Lighting		
7 Lighting	75 lm/W	
7 Lighting Minimum permitted light source efficacy	75 <i>lm/W</i> 75 lm/W	ОК
7 Lighting Minimum permitted light source efficacy Lowest light source efficacy	75 lm/W	ОК
7 Lighting Minimum permitted light source efficacy Lowest light source efficacy External lights control		ОК
7 Lighting Minimum permitted light source efficacy Lowest light source efficacy External lights control 8 Mechanical ventilation	75 lm/W	ОК
7 Lighting Minimum permitted light source efficacy Lowest light source efficacy External lights control 8 Mechanical ventilation System type: N/A	75 lm/W N/A	ОК
7 Lighting Minimum permitted light source efficacy Lowest light source efficacy External lights control 8 Mechanical ventilation System type: N/A Maximum permitted specific fan power	75 lm/W N/A	
7 Lighting Minimum permitted light source efficacy Lowest light source efficacy External lights control 8 Mechanical ventilation System type: N/A Maximum permitted specific fan power Specific fan power	75 lm/W N/A <i>N/A</i> N/A	ОК N/А
7 Lighting Minimum permitted light source efficacy Lowest light source efficacy External lights control 8 Mechanical ventilation System type: N/A Maximum permitted specific fan power	75 lm/W N/A	
7 Lighting Minimum permitted light source efficacy Lowest light source efficacy External lights control 8 Mechanical ventilation System type: N/A Maximum permitted specific fan power Specific fan power Minimum permitted heat recovery efficiency	75 lm/W N/A N/A N/A N/A	N/A
7 Lighting Minimum permitted light source efficacy Lowest light source efficacy External lights control 8 Mechanical ventilation System type: N/A Maximum permitted specific fan power Specific fan power Minimum permitted heat recovery	75 lm/W N/A <i>N/A</i> N/A	
7 Lighting Minimum permitted light source efficacy Lowest light source efficacy External lights control 8 Mechanical ventilation System type: N/A Maximum permitted specific fan power Specific fan power Minimum permitted heat recovery efficiency	75 lm/W N/A N/A N/A N/A	N/A
7 Lighting Minimum permitted light source efficacy Lowest light source efficacy External lights control 8 Mechanical ventilation System type: N/A Maximum permitted specific fan power Specific fan power Minimum permitted heat recovery efficiency Heat recovery efficiency Manufacturer/Model	75 lm/W N/A N/A N/A N/A	N/A
7 Lighting Minimum permitted light source efficacy Lowest light source efficacy External lights control 8 Mechanical ventilation System type: N/A Maximum permitted specific fan power Specific fan power Minimum permitted heat recovery efficiency Heat recovery efficiency Manufacturer/Model Commissioning	75 lm/W N/A N/A N/A N/A	N/A
7 Lighting Minimum permitted light source efficacy Lowest light source efficacy External lights control 8 Mechanical ventilation System type: N/A Maximum permitted specific fan power Specific fan power Minimum permitted heat recovery efficiency Heat recovery efficiency Manufacturer/Model Commissioning 9 Local generation	75 lm/W N/A N/A N/A N/A N/A	N/A
7 Lighting Minimum permitted light source efficacy Lowest light source efficacy External lights control 8 Mechanical ventilation System type: N/A Maximum permitted specific fan power Specific fan power Minimum permitted heat recovery efficiency Heat recovery efficiency Manufacturer/Model Commissioning 9 Local generation Technology type: Photovoltaic system	75 lm/W N/A N/A N/A N/A N/A (1)	N/A
7 Lighting Minimum permitted light source efficacy Lowest light source efficacy External lights control 8 Mechanical ventilation System type: N/A Maximum permitted specific fan power Specific fan power Minimum permitted heat recovery efficiency Heat recovery efficiency Manufacturer/Model Commissioning 9 Local generation Technology type: Photovoltaic system Peak power	75 lm/W N/A N/A N/A N/A N/A N/A (1) 4 kWp	N/A
7 Lighting Minimum permitted light source efficacy Lowest light source efficacy External lights control 8 Mechanical ventilation System type: N/A Maximum permitted specific fan power Specific fan power Minimum permitted heat recovery efficiency Heat recovery efficiency Manufacturer/Model Commissioning 9 Local generation Technology type: Photovoltaic system Peak power Orientation	75 lm/W N/A N/A N/A N/A N/A (1) 4 kWp South West	N/A
7 Lighting Minimum permitted light source efficacy Lowest light source efficacy External lights control 8 Mechanical ventilation System type: N/A Maximum permitted specific fan power Specific fan power Minimum permitted heat recovery efficiency Heat recovery efficiency Manufacturer/Model Commissioning 9 Local generation Technology type: Photovoltaic system Peak power Orientation	75 lm/W N/A N/A N/A N/A N/A (1) 4 kWp South West 45°	N/A
7 Lighting Minimum permitted light source efficacy Lowest light source efficacy External lights control 8 Mechanical ventilation System type: N/A Maximum permitted specific fan power Specific fan power Minimum permitted heat recovery efficiency Heat recovery efficiency Manufacturer/Model Commissioning 9 Local generation Technology type: Photovoltaic system Peak power Orientation	75 lm/W N/A N/A N/A N/A N/A (1) 4 kWp South West	N/A
7 Lighting Minimum permitted light source efficacy Lowest light source efficacy External lights control 8 Mechanical ventilation System type: N/A Maximum permitted specific fan power Specific fan power Minimum permitted heat recovery efficiency Heat recovery efficiency Manufacturer/Model Commissioning 9 Local generation Technology type: Photovoltaic system Peak power Orientation	75 lm/W N/A N/A N/A N/A N/A (1) 4 kWp South West 45°	N/A
7 Lighting Minimum permitted light source efficacy Lowest light source efficacy External lights control 8 Mechanical ventilation System type: N/A Maximum permitted specific fan power Specific fan power Minimum permitted heat recovery efficiency Heat recovery efficiency Manufacturer/Model Commissioning 9 Local generation Technology type: Photovoltaic system Peak power Orientation Pitch Overshading	75 lm/W N/A N/A N/A N/A N/A (1) 4 kWp South West 45°	N/A
7 Lighting Minimum permitted light source efficacy Lowest light source efficacy External lights control 8 Mechanical ventilation System type: N/A Maximum permitted specific fan power Specific fan power Minimum permitted heat recovery efficiency Heat recovery efficiency Manufacturer/Model Commissioning 9 Local generation Technology type: Photovoltaic system Peak power Orientation Pitch Overshading Manufacturer MCS certificate	75 lm/W N/A N/A N/A N/A N/A (1) 4 kWp South West 45°	N/A
7 Lighting Minimum permitted light source efficacy Lowest light source efficacy External lights control 8 Mechanical ventilation System type: N/A Maximum permitted specific fan power Specific fan power Minimum permitted heat recovery efficiency Heat recovery efficiency Manufacturer/Model Commissioning 9 Local generation Technology type: Photovoltaic system Peak power Orientation Pitch Overshading Manufacturer MCS certificate 10 Heat networks	75 lm/W N/A N/A N/A N/A N/A (1) 4 kWp South West 45°	N/A
7 Lighting Minimum permitted light source efficacy Lowest light source efficacy External lights control 8 Mechanical ventilation System type: N/A Maximum permitted specific fan power Specific fan power Minimum permitted heat recovery efficiency Heat recovery efficiency Manufacturer/Model Commissioning 9 Local generation Technology type: Photovoltaic system Peak power Orientation Pitch Overshading Manufacturer MCS certificate	75 lm/W N/A N/A N/A N/A N/A (1) 4 kWp South West 45°	N/A
7 Lighting Minimum permitted light source efficacy Lowest light source efficacy External lights control 8 Mechanical ventilation System type: N/A Maximum permitted specific fan power Specific fan power Minimum permitted heat recovery efficiency Heat recovery efficiency Manufacturer/Model Commissioning 9 Local generation Technology type: Photovoltaic system Peak power Orientation Pitch Overshading Manufacturer MCS certificate 10 Heat networks N/A	75 lm/W N/A N/A N/A N/A N/A N/A N/A N/A South West 45° None or very little	N/A
7 Lighting Minimum permitted light source efficacy Lowest light source efficacy External lights control 8 Mechanical ventilation System type: N/A Maximum permitted specific fan power Specific fan power Minimum permitted heat recovery efficiency Heat recovery efficiency Manufacturer/Model Commissioning 9 Local generation Technology type: Photovoltaic system Peak power Orientation Pitch Overshading Manufacturer MCS certificate 10 Heat networks	75 lm/W N/A N/A N/A N/A N/A N/A N/A N/A South West 45° None or very little	N/A

12 Declarations										
a. Assessor Declaration										
This declaration by the assessor is confirmation that the contents of this BREL Compliance Report										
are a true and accurate reflection based upon the design information submitted for this dwelling for										
the purpose of carrying out the "As designed" assessment,										
evidence (SAP Conventions, Appendix 1 (documentary evidence)	,									
documentary evidence required) has been reviewed in the	course of preparing this BREL									
Compliance Report.										
Signed:	Assessor ID:									
Neme	Deter									
Name:	Date:									
b. Client Declaration										
N/A										

Assessment Referen		vveav	ings Farm						Issue	u on Date	19/	/04/2023	
	nce	001-A	D				Prop	Type Ref	PR105	48			
Property		weavi	ngs farm, Abingdo	n Rd, Witney , O	X29 7QN								
SAP Rating						DER				TER			
ě				84			ER < TER	3.36		IER		7.89	
Environmental				96				10.00				57.41	
CO₂ Emissions (t/yea	ar)			0.		DFE		40.29		TFEE		42.84	
Compliance Check					e BREL		EE < TFEE			11		5.94	
% DPER < TPER				20	0.45	DPE	R	33.33		TPER		41.90	
Assessor Details		Mr. Iraj Magi	ounaki							Assessor II	C	V571-0001	
Client													
AP 10 WORKSHEE ALCULATION OF						y 2022)							
. Overall dwel	lling charac	teristics						Area (m2) 123.8800		ey height (m) 2.6300			
rst floor	Pa TFA = (1a)+(1b)+(1c)	+(1d)+(1e)	(1n)	2	13.8800		90.0000	(1c) x	2.4800	(2c) =	223.2000	(1c
irst floor otal floor are welling volume	e)+(1d)+(1e).	(ln)	2	13.8800			(1c) x Ba)+(3b)+(3c)				(1c (4) (5)
irst floor otal floor are welling volume . Ventilation . Wentilation umber of open umber of flues umber of flues umber of flues umber of block umber of inter umber of passi	chimneys flues neys / flues s attached t s attached t ked chimneys rmittent ext ive vents	attached t o solid fue o other hea	co closed fi boiler		2:	13.8800						549.0044 m3 per hour 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	(1c) (4) (5) (6c) (6c) (6c) (6c) (6c) (6c) (6c) (7a)
irst floor otal floor are welling volume	chimneys flues flues reys / flues s attached t s attached	attached f o solid fue o other hea ract fans res	co closed fi 1 boiler uter	.re			 	(:		+(3d)+(3e)	0 * 80 = 1 * 20 = 0 * 10 = 0 * 20 = 0 * 20 = 6 * 10 = 0 * 10 = 0 * 40 =	549.0044 m3 per hour 0.000000	(1c (4) (5) (6a (6b) (6c (6d (6c (6f (7a (7a) (7c) (8)) (17 (18)
irst floor otal floor are welling volume . Ventilation . Ventilation . umber of open umber of open umber of flues umber of flues auber of flues umber of state assure Test M easured/design nfiltration ra	chimneys flues flues sattached t s attached t sattached satt	attached t o solid fue o other hea ract fans res ys, flues a	co closed fi il boiler nter	.re : (6a)+(6b)-			 - 6g)+(7a)+(7	(:	(20) = 1 -	+(3d)+(3e) 80.0000	0 * 80 = 1 * 20 = 0 * 10 = 0 * 20 = 0 * 20 = 0 * 20 = 6 * 10 = 0 * 10 = 0 * 40 = Air chang 0 / (5) =	549.0044 m3 per hour 0.000000	(1c (4) (5) (6) (6) (6) (6) (6) (7a (7b) (7c) (8) (17 (18) (19) (20)
irst floor otal floor are welling volume . Ventilation . Ventilation umber of open umber of flues umber of flues auber of flues umber of sides flitration du ressure Test M easured/design nfiltration ra umber of sides helter factor	chimneys flues flues reys / flues s attached t ked chimneys mittent ext ive vents less gas fir ue to chimne Method n AP50 ate s sheltered ate adjusted Jan 5.1000 1.2750	attached t o solid fue o other hea ract fans res ys, flues a	co closed fi il boiler nter	.re : (6a)+(6b)-			Gg)+(7a)+(7 Jul 3.8000 0.9500	(:	(20) = 1 -	+(3d)+(3e) 80.0000	0 * 80 = 1 * 20 = 0 * 10 = 0 * 20 = 0 * 20 = 0 * 20 = 6 * 10 = 0 * 10 = 0 * 40 = Air chang 0 / (5) =	549.0044 m3 per hour 0.0000 20.0000 0.00000 0.00000 0.000000	(6a) (6b) (6c) (6d) (6c) (6d) (7a) (7b) (7c) (8) (177) (18) (19) (20) (21)

_____ ------Openings m2 A x U W/K 42.0865 Element K-value Gross NetArea U-value АхК MetArea m2 43.7700 2.3300 2.0400 10.4900 5.4800 123.8800 W/m2K 0.9615 1.0000 m2 kJ/m2K kJ/K (27) (26) (26a) (27a) (27a) Windows (Uw = 1.00) Door Hlaf glaze door 2.3300 2.4480 1.2000 10.0865 5.2692 14.8656 NE RL SW RL 0.9615 0.9615 13626.8000 (28a) Heat Loss Floor 1 0.1200 110.0000 External Wall 1 191.6000 48.1400 190.0000 27257.4000 (29a) 143.4600 0.1800 25.8228

Roof @ rafter Roof @ joists	66.5000 68.1300	15.9700	68	.5300	0.1500 0.1500	7.57 10.21		9.0000 9.0000	454.7700 613.1700	(30)
Total net area of external elements Aum Fabric heat loss, W/K = Sum (A x U) Internal Wall 1 Internal Floor 1	(A, m2)		298 90	.0000 .0000	30) + (32) =	= 120.70	1	9.0000 8.0000	2682.0000 1620.0000	(32d)
Internal Ceiling 1 Heat capacity Cm = Sum(A x k)			90	.0000	(28)			9.0000 (32e) =	810.0000	
Thermal mass parameter (TMP = Cm / TFA) List of Thermal Bridges	in kJ/m2K						Psi-value	Tot	220.0493	
<pre>K1 Element E2 Other lintels (including oth E3 Sill E4 Jamb E5 Ground floor (normal) E6 Intermediate floor within a E11 Eaves (insulation at rafter E12 Gable (insulation at ceilin E13 Gable (insulation at rafter E16 Corner (normal) R1 Head of roof window R2 Sill of roof window R3 Jamb of roof window R6 Flat ceiling E14 ceiling E14 Conter (for (for Data) and and and and and and and and and and</pre>	dwelling level) g level) level)	X			30, 21, 61, 47, 42, 32, 8, 8, 14, 11, 11, 31,	ngth 4100 6500 8600 2500 6600 3600 1600 9600 6500 6500 7800 6600	0.0190 0.0200 0.0200 0.1010 0.0000 0.0070 0.0770 0.0750 0.0510 0.2400 0.2400 0.2400 0.1200	0.57 0.43 1.23 4.82 0.60 0.22 0.64 0.61 0.76 2.79 2.79 7.62 3.91	78 30 72 78 00 82 37 20 30 60 60 72 20	
Thermal bridges (Sum(L x Psi) calculate Point Thermal bridges Total fabric heat loss	d using Appendix K	.)				(33) + (36)	(36a) = + (36a) =	26.4539 0.0000 147.1616	
	y (38)m = 0.33 x (Mar Apr 1.8722 107.7497	25)m x (5) May 106.9784	Jun 103.3878	Jul 103.3878	Aug 102.7228	Sep 104.7708	0ct 106.9784	Nov 108.5387	Dec 110.1700	(38)
Heat transfer coeff 260.8069 259.9115 25	9.0338 254.9113	254.1399	250.5493	250.5493	249.8844	251.9324	254.1399	255.7003	257.3316	(39)
Average = Sum(39)m / 12 = Jan Feb	Mar Apr	May	Jun	Jul	Aug	Sep	0ct	Nov	254.9076 Dec	
HLP 1.2194 1.2152 HLP (average) Days in mont 31 28	1.2111 1.1918 31 30	1.1882	1.1714 30	1.1714 31	1.1683 31	1.1779 30	1.1882 31	1.1955 30	1.2032 1.1918 31	
		96.3374	92.6060	90.4850	92.8368	95.4148	99.4213	104.0528	3.0200 107.7989	
Hot water usage for baths 0.0000 0.0000 Hot water usage for other uses	0.0000 0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	(42b)
5	2.2443 40.5876)	38.9310	37.2743	37.2743	38.9310	40.5876	42.2443	43.9009	45.5575 141.1852	
Jan Feb Daily hot water use	Mar Apr	Мау	Jun	Jul	Aug	Sep	0ct	Nov	Dec	
153.7711 150.4882 14	6.4618140.27115.1064192.0241	135.2684 182.0973	129.8803 159.7030	127.7593 154.5138	131.7678 163.1560	136.0024 167.7046	141.6656 192.2388 Total = S	147.9537 210.7871 Sum(45)m =	153.3565 240.1192 2345.2794	(45)
Distribution loss (46)m = 0.15 x (45)m 36.5304 32.1440 3 Water storage loss:	3.7660 28.8036	27.3146	23.9554	23.1771	24.4734	25.1557	28.8358	31.6181	36.0179	(46)
Store volume a) If manufacturer declared loss facto Temperature factor from Table 2b Enter (49) or (54) in (55) Total storage loss	r is known (kWh/d	ay):							250.0000 1.7000 0.5400 0.9180	(48) (49)
	8.4580 27.5400 orage	28.4580	27.5400	28.4580	28.4580	27.5400	28.4580	27.5400	28.4580	(56)
Primary loss 23.2624 21.0112 2	8.458027.54003.262422.5120	28.4580 23.2624	27.5400 22.5120	28.4580 23.2624	28.4580 23.2624	27.5400 22.5120	28.4580 23.2624	27.5400 22.5120	28.4580 23.2624	(59)́
Total heat required for water heating c	0.0000 0.0000 alculated for each 6.8268 242.0761	0.0000 month 233.8177	0.0000 209.7550	0.0000 206.2342	0.0000 214.8764	0.0000 217.7566	0.0000 243.9592	0.0000 260.8391	0.0000 291.8396	
WWHRS 0.0000 0.0000 PV diverter -0.0000 -0.0000 - Solar input 0.0000 0.0000 - FGHRS 0.0000 0.0000 -	0.0000 0.0000 0.0000 -0.0000 0.0000 -0.0000 0.0000 0.0000 0.0000 0.0000	0.0000 -0.0000 0.0000 0.0000	0.0000 -0.0000 0.0000 0.0000	0.0000 -0.0000 0.0000 0.0000	0.0000 -0.0000 0.0000 0.0000	0.0000 -0.0000 0.0000 0.0000	0.0000 -0.0000 0.0000 0.0000	0.0000 -0.0000 0.0000 0.0000	0.0000 -0.0000 0.0000 0.0000	(63a) (63b) (63c)
	6.8268 242.0761	233.8177	209.7550	206.2342	214.8764 Total pe	217.7566 er year (kW	243.9592 h/year) = S	260.8391 Sum(64)m =	291.8396 2954.2454	(64)
12Total per year (kWh/year) Electric shower(s) 0.0000 0.0000	0.0000 0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	
Heat gains from water heating, kWh/mont 122.3520 108.6247 11		al Energy us 101.9237	ed by insta 93.1428	antaneous e	lectric show 95.6257	ver(s) (kWh 95.8034	/year) = Su 105.2957	m(64a)m = 110.1283	0.0000 121.2159	

5. Internal gains (see Table 5 and 5a)

Metabolic gai	ns (Table 5), Watts										
0	Jan	Feb	Mar	Apr	Мау	Jun	Jul	Aug	Sep	0ct	Nov	Dec
(66)m	150.9986	150.9986	150.9986	150.9986	150.9986	150.9986	150.9986	150.9986	150.9986	150.9986	150.9986	150.9986 (66)
Lighting gain	Lighting gains (calculated in Appendix L, equation L9 or L9a), also see Table 5											
	193.7106	214.4653	193.7106	200.1676	193.7106	200.1676	193.7106	193.7106	200.1676	193.7106	200.1676	193.7106 (67)
Appliances ga	ins (calcula	ated in Appe	endix L, eq	uation L13	or L13a), a	lso see Tab	le 5					
	384.0529	388.0382	377.9955	356.6156	329.6275	304.2624	287.3170	283.3317	293.3744	314.7542	341.7424	367.1075 (68)
Cooking gains	(calculated	d in Appendi	ix L, equat	ion L15 or	L15a), also	see Table	5					
	38.0999	38.0999	38.0999	38.0999	38.0999	38.0999	38.0999	38.0999	38.0999	38.0999	38.0999	38.0999 (69)
Pumps, fans	3.0000	3.0000	3.0000	3.0000	3.0000	0.0000	0.0000	0.0000	0.0000	3.0000	3.0000	3.0000 (70)
Losses e.g. e	vaporation	(negative va	alues) (Tab	le 5)								
	-120.7989	-120.7989	-120.7989	-120.7989	-120.7989	-120.7989	-120.7989	-120.7989	-120.7989	-120.7989	-120.7989	-120.7989 (71)
Water heating	gains (Tab	le 5)										
	164.4516	161.6438	156.2153	144.2911	136.9942	129.3651	124.6669	128.5292	133.0603	141.5265	152.9560	162.9247 (72)
Total interna	l gains											
	813.5147	835.4469	799.2210	772.3740	731.6318	702.0947	673.9940	673.8710	694.9019	721.2910	766.1656	795.0424 (73)

6. Solar gains	

[Jan] Area Solar flux g FF

[Jan]	Area m2	Solar flux Table 6a W/m2	g Specific data or Table 6b	FF Specific data or Table 6c	Access factor Table 6d	Gains W
Northeast	13.9400	11.2829	0.6300	0.8000	0.7700	54.9350 (75)
Southeast	6.7200	36.7938	0.6300	0.8000	0.7700	86.3591 (77)
Southwest	17.3700	36.7938	0.6300	0.8000	0.7700	223.2228 (79)
Northwest	5.7400	11.2829	0.6300	0.8000	0.7700	22.6203 (81)
Northeast	10.4900	16.3666	0.6300	0.8000	1.0000	77.8765 (82)
Southwest	5.4800	39.9751	0.6300	0.8000	1.0000	99.3673 (82)

Solar gains 564.3810 1028.1379 1580.2473 2242.4551 2766.7629 2857.7020 2709.0493 2301.7445 1807.4537 1183.4691 688.2556 475.0100 (83) Total gains 1377.8957 1863.5848 2379.4682 3014.8291 3498.3947 3559.7967 3383.0434 2975.6155 2502.3556 1904.7600 1454.4213 1270.0524 (84)

7. Mean internal temperature (heating season)

			0 ,										
Temperature du						ĥ1 (C)						21.0000	(85)
Utilisation fa	ictor for ga	ins for liv	ing area, n	i1,m (see T	able 9a)								
	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	0ct	Nov	Dec	
tau	50.1266	50.2993	50.4698	51.2860	51.4416	52.1788	52.1788	52.3177	51.8924	51.4416	51.1277	50.8036	
alpha	4.3418	4.3533	4.3647	4.4191	4.4294	4.4786	4.4786	4.4878	4.4595	4.4294	4.4085	4.3869	
util living ar	ea												
Ū	0.9954	0.9834	0.9453	0.8246	0.6318	0.4434	0.3244	0.3830	0.6463	0.9212	0.9884	0.9967	(86)
MIT	19.7068	19.9650	20.3111	20.6837	20.8671	20.9206	20.9289	20.9270	20.8806	20.5642	20.0589	19.6735	(87)
Th 2	19.9045	19.9078	19.9111	19.9265	19.9294	19.9429	19.9429	19.9454	19.9377	19.9294	19.9236	19.9175	(88)
util rest of h	iouse												
	0.9940	0.9786	0.9305	0.7858	0.5716	0.3731	0.2472	0.2968	0.5638	0.8928	0.9844	0.9957	(89)
MIT 2	18.3943	18.7244	19.1571	19.6034	19.7913	19.8487	19.8537	19.8555	19.8169	19.4854	18.8582	18.3615	(90)
Living area fr	action								fLA =	Living area	/ (4) =	0.2052	(91)
MIT	18.6636	18.9789	19.3938	19.8250	20.0120	20.0686	20.0743	20.0754	20.0352	19.7067	19.1046	18.6307	(92)
Temperature ad	ljustment											0.0000	
adjusted MIT	18.6636	18.9789	19.3938	19.8250	20.0120	20.0686	20.0743	20.0754	20.0352	19.7067	19.1046	18.6307	(93)

8. Space heating requirement

	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	0ct	Nov	Dec	
Utilisation	0.9917	0.9733	0.9219	0.7817	0.5764	0.3816	0.2569	0.3076	0.5718	0.8856	0.9801	0.9940	(94)
Useful gains	1366.5136	1813.7705	2193.5406	2356.8128	2016.6441	1358.3840	868.9910	915.1617	1430.8333	1686.8040	1425.4831	1262.4794	(95)
Ext temp.	4.3000	4.9000	6.5000	8.9000	11.7000	14.6000	16.6000	16.4000	14.1000	10.6000	7.1000	4.2000	(96)
Heat loss rat	e W												
	3746.1160	3659.2810	3339.9407	2784.9051	2112.4171	1370.1596	870.4717	918.4141	1495.2632	2314.3710	3069.5718	3713.4676	(97)
Space heating	kWh												
	1770.4242	1240.1830	852.9217	308.2265	71.2552	0.0000	0.0000	0.0000	0.0000	466.9099	1183.7439	1823.5353	(98a)
Space heating	requiremen	t - total p	er year (kW	h/year)								7717.1996	
Solar heating	kWh												
	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	(98b)
Solar heating	contributi	on - total	per year (k	Wh/year)								0.0000	
Space heating	kWh												
	1770.4242	1240.1830	852.9217	308.2265	71.2552	0.0000	0.0000	0.0000	0.0000	466.9099	1183.7439	1823.5353	(98c)
Space heating	requiremen	t after sol	ar contribu	tion - tota	l per year	(kWh/year)						7717.1996	
Space heating	per m2									(98c) / (4) =	36.0819	(99)

9a. Energy requirements - Individual heating systems, including micro-CHP

		0			
Fraction of space heat from secondary/supplementa	y system	(Table 11)		0.0000	(201)
Fraction of space heat from main system(s)				1.0000	(202)
Efficiency of main space heating system 1 (in %)				170.0000	(206)
Efficiency of main space heating system 2 (in %)				0.0000	(207)
Efficiency of secondary/supplementary heating system	.em, %			65.0000	(208)

Jan	Feb	Mar	Apr	Мау	Jun	Jul	Aug	Sep	0ct	Nov	Dec	
Space heating requirement 1770.4242	1240.1830	852.9217	308.2265	71.2552	0.0000	0.0000	0.0000	0.0000	466.9099	1183.7439	1823.5353	(98)
Space heating efficiency 170.0000	170.0000	170.0000	1) 170.0000	170.0000	0.0000	0.0000	0.0000	0.0000	170.0000	170.0000	170.0000	(210)
Space heating fuel (main 1041.4260	729.5194	501.7187	181.3097	41.9148	0.0000	0.0000	0.0000	0.0000	274.6529	696.3199	1072.6678	(211)
Space heating efficiency 0.0000	0.0000	0.0000	2) 0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	(212)
Space heating fuel (main 0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	(213)
Space heating fuel (secon 0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	(215)
Water heating Water heating requirement												
Efficiency of water heate	261.0084	276.8268	242.0761	233.8177	209.7550	206.2342	214.8764	217.7566	243.9592	260.8391	291.8396 170.0000	
(217)m 170.0000 Fuel for water heating, k	170.0000	170.0000	170.0000	170.0000	170.0000	170.0000	170.0000	170.0000	170.0000	170.0000	170.0000	
173.6801 Space cooling fuel requir	153.5344	162.8393	142.3977	137.5398	123.3853	121.3143	126.3979	128.0921	143.5054	153.4348	171.6703	(219)
(221)m 0.0000 Pumps and Fa 0.0000	0.0000	0.0000 0.0000	0.0000 0.0000	0.0000 0.0000	0.0000 0.0000	0.0000 0.0000	0.0000 0.0000	0.0000 0.0000	0.0000 0.0000	0.0000 0.0000	0.0000 0.0000	
Lighting 56.4581 Electricity generated by	45.2928	40.7811	29.8780	23.0786	18.8554	21.0531	27.3656	35.5452	46.6373	52.6767	58.0273	
	-142.5009	-223.0466	-258.0664	-274.6070		-248.4934	-231.4166	-199.6826	-167.4290	-103.9801	-76.0113	(233a)
(234a)m 0.0000 Electricity generated by	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000 itv)	0.0000	0.0000	0.0000	0.0000	0.0000	(234a)
(235a)m 0.0000 Electricity used or net e	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000 eneration)	0.0000	0.0000	0.0000	0.0000	(235a)
(235c)m 0.0000 Electricity generated by	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	(235c)
(233b)m 0.0000 Electricity generated by	0.0000	0.0000	0.0000	0.0000	0.0000 tv)	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	(233b)
(234b)m 0.0000 Electricity generated by	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000 itv)	0.0000	0.0000	0.0000	0.0000	0.0000	(234b)
(235b)m 0.0000 Electricity used or net e	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000 ve if net g	0.0000 eneration)	0.0000	0.0000	0.0000	0.0000	(235b)
(235d)m 0.0000 Annual totals kWh/year	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	(235d)
Space heating fuel - main Space heating fuel - main											4539.5292 0.0000	
Space heating fuel - seco Efficiency of water heate	ndary										0.0000	
Water heating fuel used Space cooling fuel											1737.7914 0.0000	
Electricity for pumps and	fans:											()
Total electricity for the Electricity for lighting	above, kWh		ix L)								0.0000 455.6493	
Energy saving/generation				10)								()
PV generation Wind generation			, , ,	0							-2267.0538 0.0000	
Hydro-electric generation Electricity generated - M											0.0000 0.0000	
Appendix Q - special feat Energy saved or generated	ures										-0.0000	
Energy used Total delivered energy fo											0.0000 4465.9162	
3, 3												
12a. Carbon dioxide emiss	ions - Indi	vidual hea	ting systems	including	micro-CHP							

	Energy kWh/year	Emission factor kg CO2/kWh	Emissions kg CO2/year
Space heating - main system 1 Total CO2 associated with community systems	4539.5292	0.1569	712.0405 (261) 0.0000 (373)
Water heating (other fuel) Space and water heating	1737.7914	0.1410	245.0315 (264) 957.0720 (265)
Pumps, fans and electric keep-hot Energy for lighting	0.0000 455.6493	0.0000 0.1443	0.0000 (267) 65.7643 (268)
Energy saving/generation technologies PV Unit electricity used in dwelling	-2267.0538	0.1340	-303.6908
PV Unit electricity used in unering PV Unit electricity exported Total Total CO2, kg/year EPC Dwelling Carbon Dioxide Emission Rate (DER)	0.0000	0.0000	-303.0900 -303.6908 (269) 719.1455 (272) 3.3600 (273)

13a. Primary energy - Individual heating systems including micro-CHP

	Energy Prima	ry energy factor	Primary energy
	kWh/year	kg CO2/kWh	kWh/year
Space heating - main system 1	4539.5292	1.5807	7175.4184 (275)
Total CO2 associated with community systems			0.0000 (473)
Water heating (other fuel)	1737.7914	1.5214	2643.8378 (278)
Space and water heating			9819.2562 (279)

Pumps, fans and Energy for light		keep-hot						0.0000 455.6493		0.0000 1.5338		0.0000 698.8902	
Energy saving/g PV Unit electric PV Unit electric Total	ity used i ity export	in dwelling ted	es					-2267.0538 0.0000		1.4951 0.0000	-	3389.4218 0.0000 3389.4218	(283)
Total Primary er Dwelling Primary												7128.7246 33.3300	
SAP 10 WORKSHEET CALCULATION OF T	FOR New E	Build (As De			.2, February								
1. Overall dwell													
Ground floor First floor Total floor area	1 TFA = (1a	a)+(1b)+(1c)+(1d)+(1e)	(1n)	21	3.8800		Area (m2) 123.8800 (90.0000 (1b) x 1c) x	/ height (m) 2.6300 2.4800	(2c) =	Volume (m3) 325.8044 223.2000	(1b) (1c) (4)
Dwelling volume								(3a	ı)+(3b)+(3c)+ı	(3d)+(3e)	(3n) =	549.0044	(5)
2. Ventilation r	ate												
Number of open	himneye											per hour	
Number of open of Number of open f Number of chimne Number of flues Number of flues Number of blocke Number of interm	lues eys / flues attached f attached f ed chimneys nittent ext	to solid fu to other hea s	el boiler	ire							0 * 80 = 0 * 20 = 0 * 10 = 0 * 20 = 0 * 35 = 0 * 20 = 4 * 10 = 0 * 10 =	0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 40.0000	(6b) (6c) (6d) (6e) (6f) (7a)
Number of passiv Number of fluele		res									0 * 10 = 0 * 40 =	0.0000 0.0000	
Infiltration due Pressure test Pressure Test Me Measured/design Infiltration rat	thod AP50	eys, flues a	and fans =	= (6a)+(6b)	+(6c)+(6d)+(6e)+(6f)+(6g)+(7a)+(7b)+(7c) =		40.0000		per hour 0.0729 Yes ower Door 5.0000 0.3229	(8) (17)
Number of sides Shelter factor	sheltered							(20) = 1 -	[0.075 x	(19)] =	0 1.0000	(19)
Infiltration rat	e adjusted	d to includ	e shelter fa	actor				,			(20) =	0.3229	
Wind speed Wind factor Adj infilt rate	Jan 5.1000 1.2750	Feb 5.0000 1.2500	Mar 4.9000 1.2250	Apr 4.4000 1.1000	May 4.3000 1.0750	Jun 3.8000 0.9500	Jul 3.8000 0.9500	Aug 3.7000 0.9250	Sep 4.0000 1.0000	Oct 4.3000 1.0750	Nov 4.5000 1.1250	Dec 4.7000 1.1750	
Effective ac	0.4116 0.5847	0.4036 0.5814	0.3955 0.5782	0.3551 0.5631	0.3471 0.5602	0.3067 0.5470	0.3067 0.5470	0.2986 0.5446	0.3229 0.5521	0.3471 0.5602	0.3632 0.5660	0.3794 0.5720	
3. Heat losses a													
Element				Gross m2	Openings m2	Net	Area m2	U-value W/m2K	A x U W/K		-value <j m2k<="" td=""><td>A x K kJ/K</td><td></td></j>	A x K kJ/K	
TER Opaque door TER Semi-glazed TER Opening Type NE RL SW RL	e (Uw = 1.2	20)				2. 35. 8. 4.	3300 0400 9800 6200 5000	1.0000 1.0000 1.1450 1.4151 1.4151	2.3300 2.0400 41.1985 12.1981 6.3679				(26) (26a) (27) (27a) (27a)
Heat Loss Floor External Wall 1 Roof @ rafter Roof @ joists Total net area c Fabric heat loss	of external		6	91.6000 56.5000 58.1300	40.3500 13.1200	151. 53. 68.	8800 2500 3800 1300 1100 (26)(1	0.1300 0.1800 0.1100 0.1100 30) + (32) =	16.1044 27.2250 5.8718 7.4943				(28a) (29a) (30) (30) (31) (33)
Thermal mass par	ameter (TM		FA) in kJ/m2	2K				, , , , , , , , , , , , , , , , , , , ,				220.0493	
List of Thermal K1 Eleme E2 Other	ent	(including (other steel	lintels)					ength Ps: 4100	i-value 0.0500	Tota 1.520		

Thermail brieflages (Sar(1 \times F2) (akculated using Ageendix K) (3) = 4.34 (23) = 6.33 (2	E3 Sill E4 Jamb E5 Ground floo E6 Intermediat E11 Eaves (ins E12 Gable (ins E13 Gable (ins E13 Gable (ins E16 Corner (no R1 Head of roo R2 Sill of roo R3 Jamb of roo R6 Flat ceilin	e floor withi ulation at ra ulation at ce ulation at ra rmal) f window f window f window f window	fter level) iling level)				61 47 42 32 8 8 14 11 11 31	.6500 .8600 .2500 .6600 .3600 .1600 .6500 .6500 .6500 .7800 .6600	0.0500 0.1600 0.0600 0.0400 0.0600 0.0600 0.0800 0.0800 0.0800 0.0800 0.0800 0.0800	1.08 3.09 7.64 0.00 1.30 0.50 0.55 1.34 0.93 0.69 2.54 1.95	30 80 00 40 16 28 64 20 90 24	
$ \begin{array}{c} 1_{DB} & 1_{DB} & 1_{DB} & 0_{DB} & 0_{D$		x Psi) calcu	lated using	Appendix K)						(36a) =	23.2782 0.0000	
220,0439 220,0479 240,0479 240,0159 242,1739 241,145 1.14	Jan (38)m 105.935	Feb	Mar	Apr	May								(38)
HE 1.1693 1.1693 1.1693 1.1997 1.1972 1.1272 1.1272 1.1212	250.043		248.8636	246.1193	245.6059	243.2158	243.2158	242.7732	244.1364	245.6059	246.6446		
4. Matter heating energy requirements (kek/year) 4. Matter heating energy requirements (kek/year) 4. Matter usage for miler shower's 0.1009 B, 1745 92.4014 95.5211 (42.5) 9.0008 0.0000 0.000												1.1583	• •
4. Mater heating energy requirements (kM/year) Assumed accupancy Assumed accupancy Assumed accupancy Assumed accupancy Based accupancy B	Days in mont 3	1 28	31	30	31	30	31	31	30	31	30	31	
Assumed occupancy 32.0200 (42) Assumed occupancy 94.7439 94.7439 92.6378 88.6075 85.6333 82.3764 88.1312 88.3745 92.4944 95.813 (42a) Not water usage for enter uses 0.9600 0.6000													
9.189 9.1743 9.2.078 88.675 55.633 82.3164 80.411 62.525 64.8122 88.374 92.4014 95.811 (42) Wertster usage daily hot water use (litres/day) 30.0000 0.0000	Assumed occupancy											3.0200	(42)
6.0000 0.0000<	96.189	94.7443	92.6378	88.6075	85.6333	82.3164	80.4311	82.5216	84.8132	88.3745	92.4914	95.8213	(42a)
45.5575 43.0009 42.243 49.5876 38.9310 37.2743 37.2743 37.2743 38.9310 46.5876 42.243 43.9009 45.5575 (42) Jan Feb Mar Apr May Jun Jul Ang Sep Oct Nov Dec Baily how water use Jain Ar44 136.6452 134.8621 127.1952 124.5631 117.7854 121.4562 125.4088 136.1837 136.353.353 141.1788 (44) Boily how water use Jain Ar44 31.0642 26.5293 25.1531 22.0576 21.3532 22.5575 23.1948 26.5873 29.1474 33.2048 (46) Boily famoria Jain Feb Mar Apr 30.6236 31.644 30.6236 31.644 30.6236 31.644 30.6236 31.644 30.6236 31.644 30.6236 31.644 30.6236 31.644 30.6236 31.644 30.6236 31.644 30.6236 31.644 30.6236 31.644 30.6236 31.644 30.6236 31.644 30.6236 31.644 30.6236 31.644	0.000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	(42b)
bally hot water use 141.7474 138.6452 134.821 129.1952 124.5643 119.5908 117.7854 121.4526 125.4008 136.6187 136.923 141.3788 (44) Energy contet (24.4932 197.4289 207.988 176.8017 107.6874 147.9598 142.3545 159.3837 134.6317 177.2484 194.3138 221.3531 (45) Energy contet (24.4932 197.4289 207.988 176.8017 107.6874 147.9598 142.3545 159.3837 134.6317 177.2484 194.3138 221.3531 (45) Total = 50.4708 136.6187 136.6187 136.923 141.3788 (44) Distribution loss (46)m = 0.15 x (45)m Distribution loss factor is known (k0h/day): Temperature factor from Table 20 Frimary loss (25,203 31.6444 30.6236 31.6444 30.6236 31.6444 30.6236 31.6444 30.6236 31.6444 (56) Distribution loss (46)m = 0.00000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0	45.557	5 43.9009		40.5876	38.9310	37.2743	37.2743	38.9310	40.5876	42.2443	43.9009		
$ \begin{array}{c} 141, 747 & 138, 6452 & 134, 8821 & 129, 1952 & 124, 5643 & 119, 5968 & 117, 7654 & 121, 4526 & 125, 4608 & 136, 6187 & 135, 3923 & 141, 3788 (44) \\ 50177 total a sum (45) m = 2261, 1299 \\ 12017 total a sum (45) m = 2261, 1299 \\ 12017 total a sum (45) m = 2261, 1299 \\ 12017 total a sum (45) m = 2261, 1299 \\ 12017 total a sum (45) m = 2261, 1299 \\ 12017 total a sum (45) m = 2261, 1299 \\ 12017 total a sum (45) m = 2261, 1299 \\ 12017 total a sum (45) m = 2261, 1299 \\ 12017 total a sum (45) m = 2261, 1299 \\ 12017 total a sum (45) m = 2261, 1299 \\ 12017 total a sum (45) m = 2261, 1299 \\ 12017 total a sum (45) m = 2261, 1299 \\ 12017 total a sum (45) m = 2261, 1299 \\ 12017 total a sum (45) m = 2261, 1299 \\ 12017 total a sum (45) m = 2261, 1292 \\ 12017 total a sum (45) m = 22624 \\ 12017 total a sum (45) m = 127273 \\ 12017 total a sum (46) m = 2294 \\ 12017 total a sum (46) m = 10000 \\ 100000 & 0.00000 & 0.0000$		Feb	Mar	Apr	Мау	Jun	Jul	Aug	Sep	Oct	Nov	Dec	
33.6740 29.6143 31.9963 26.5293 25.1531 22.0576 21.3532 22.5575 23.1948 26.5873 29.1474 33.2448 (46) Mater storage loss: Store volume 250.0800 (A7) 1.6444 30.6236 31.6444 30.6236	141.747 Energy conte 224.493	2 197.4289								177.2484	194.3158	221.3651	(45)
Store volume 256.0000 (47) J Ff maunfacturer declared loss factor is known (k0h/day): 1.5803 (48) Temperature factor from Table 2b 5.5400 (49) Total Storage loss 31.6444 28.5820 31.6444 30.6236 31.644 30.6236 31.64121617 1173.2946 172.6546 179.7462 120.6166 130.7466 12	33.674			26.5293	25.1531	22.0576	21.3532	22.5575	23.1948	26.5873	29.1474	33.2048	(46)
Total storage loss 31.644 28.5820 31.644 30.6236 31.644 30.6236 31.644 30.6236 31.644 30.6236 31.644 30.6236 31.644 30.6236 31.644 (56) Ff cylinder contains dedicated solar storage 31.644 28.5820 31.644 30.6236 31.644 30.6236 31.644 30.6236 31.644 30.6236 31.644 (57) primary loss 23.7624 21.0112 23.2624 22.5120 23.2624 22.5120 23.2624 23.2624 23.5120 23.2624 22.5120 23.2624 (25.120 23.2624 22.5120 23.2624 (25.120 23.2624 22.5120 23.2624 22.5120 23.2624 22.5120 23.2624 (25.275 22) 247.4514 27.61718 (62) Total heat required for water heating calculated for each month 279.4000 47.0221 26.2155 229.9797 222.5942 200.1664 197.613 205.2955 27.7673 23.1552 247.4514 27.61718 (62) WMHK - 43.9740 -38.8909 -40.7243 -33.7214 -31.4271 -26.8924 -25.2073 -26.8055 -27.6239 -32.8013 -37.1599 -43.1596 (63) Poly diverter - 0.0000 -0.0000 0.0000 0.0000 -0.0000 -0.0000 0.0000 0.0000 0.0000 -0.0000 -0.0000 -0.0000 -0.0000 0.00000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00	Store volume a) If manufacturer de Temperature factor f	rom Table 2b	actor is kn	own (kWh/d	ay):							1.8903 0.5400	(48) (49)
If eylinder contains dedicated solar storage If even the storage If even the storage If eylinder contains dedicated solar storage If even the storage If even the storage If even the storage If eylinder contains dedicated solar storage If even the	Total storage loss		21 6444	20 6226	21 6444	20 6226	21 6444	21 6444	20 6226	21 6444	20 6226		
Primary loss 23.2624 21.6112 23.2624 22.5120 23.2624 22.5120 23.2624 22.5120 23.2624 22.5120 23.2624 22.5120 23.2624 (25) combined by the set of the set o	If cylinder contains d	edicated sola	ir storage										
Total heat required for water heating calculated for each month 279.400 47,021 262.155 229.9973 222.5942 200.1864 197.2613 205.2965 207.7673 232.1552 247.4514 276.2718 (62) WWHRS -43.9740 -38.8090 -40.7243 -33.7214 -31.4271 -26.8024 -25.2073 -26.8055 -27.8239 -32.8013 -37.1599 -43.1596 (63) PV diverter -0.0000 -0.0000 -0.0000 -0.0000 -0.0000 -0.0000 -0.0000 -0.00000 -0.00000 -0.00000 -0.00000 (53C) Solar inpu 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000 0.00000 (53C) Cutput from W/h 235.4260 208.1312 221.4912 196.2759 191.1671 173.2940 172.0540 178.4850 179.9434 199.3539 210.2915 233.1122 (64) 235.4260 208.1312 221.4912 196.2759 191.1671 173.2940 172.0540 178.4850 179.9434 199.3539 210.2915 233.1122 (64) 235.4260 0.0000 0	Primary loss 23.262	4 21.0112	23.2624	22.5120	23.2624	22.5120	23.2624	23.2624	22.5120	23.2624	22.5120	23.2624	(59)
WelkHS -43.9740 -38.8999 -49.7243 -37.214 -11.4271 -26.8924 -25.2673 -26.8855 -27.8239 -32.8013 -37.1599 (-3).1596 (-3).9906 -0.0000 -0.0000 -0.0000 -0.0000 -0.0000 -0.0000 -0.0000 -0.0000 -0.0000 -0.0000 -0.0000 -0.0000 -0.0000 -0.0000 -0.0000 -0.0000 -0.0000 -0.0000 -0.0000 0.0000	Total heat required fo	r water heati	ng calculat	ed for each	month								
Solar input 0.0000 0.00													
FGHRS 0.00000 0.0000 0.0000													
235.4260 208.1312 221.4912 196.2759 191.1671 173.2940 172.0540 178.4850 179.9434 199.3539 210.2915 233.1122 (64) Total per year (kWh/year) = Sum(64)m = 2399.6253 (64) 2399.6243 (64) 2399.6243 (64) 2399.6243 (64) 2399.6243 (64) 2399.6243 (64) 121 Total per year (kWh/year) = Sum(64)m = 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 (0.0000 (64a) Heat gains from water heating, kWh/month 118.5694 105.3197 112.8556 101.3150 99.6815 91.4029 91.2583 93.9280 93.9235 102.8605 107.1185 117.5293 (65) Metabolic gains (Table 5), Watts Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec (66)m 150.9986 150.9986 150.9986 150.9986 150.9986 150.9986 150.9986 150.9986 150.9986 150.9986 150.9986 150.9986 150.9986 150.9986 150.9986 (66) Lighting gains (calculated in Appendix L, equation L9 or L93), also see Table 5 384.0529 388.0382 377.9955 356.6156 239.6275 304.2624 287.3170 283.3317 293.3744 314.7542 341.7424 367.1075 (68) 2006 (66)m 3.0009 38.0099 38.0099 38.099	FGHRS 0.000												
Electric shower(s) 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 (64a) Total Energy used by instantaneous electric shower(s) (kWh/year) = Sum(64a)m = 0.0000 (64a) 118.5694 105.3197 112.8556 101.3150 99.6815 91.4029 91.2583 93.9280 93.9235 102.8605 107.1185 117.5293 (65) Metabolic gains (see Table 5 and 5a) Metabolic gains (see Table 5), Watts Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec (66)m 150.9986 150.9986 150.9986 150.9986 150.9986 150.9986 150.9986 150.9986 150.9986 150.9986 150.9986 (66) Lighting gains (calculated in Appendix L, equation L9 or L9a), also see Table 5 193.7106 214.4653 193.7106 200.1676 193.7106 200.1676 193.7106 200.1676 193.7106 200.1676 193.7106 (67) Appliances gains (calculated in Appendix L, equation L13a), also see Table 5 384.08529 388.0382 377.9955 356.6156 329.6275 304.2624 287.3170 283.3317 293.3744 314.7542 341.7424 367.1075 (68) Cooking gains (calculated in Appendix L, equation L15 or L15a), also see Table 5 386.0999 38.0999	235.426		221.4912	196.2759	191.1671	173.2940	172.0540					2399.0253	(64)
Heat gains from water heating, kWh/month 118.5694 105.3197 112.8556 101.3150 99.6815 91.4029 91.2583 93.9280 93.9235 102.8605 107.1185 117.5293 (65) 5. Internal gains (see Table 5 and 5a) Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec (66)m 150.9986	Electric shower(s)		0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		
5. Internal gains (see Table 5 and 5a) Metabolic gains (Table 5), Watts Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec (66)m 150.9986 150.9986 150.9986 150.9986 150.9986 150.9986 150.9986 150.9986 150.9986 150.9986 150.9986 150.9986 150.9986 (66) Lighting gains (calculated in Appendix L, equation L9 or L9a), also see Table 5 193.7106 214.4653 193.7106 200.1676 193.7106 200.1676 193.7106 200.1676 193.7106 200.1676 193.7106 (67) Appliances gains (calculated in Appendix L, equation L13 or L13a), also see Table 5 384.0529 388.0382 377.9955 356.6156 329.6275 304.2624 287.3170 283.3317 293.3744 314.7542 341.7424 367.1075 (68) Cooking gains (calculated in Appendix L, equation L15 or L15a), also see Table 5 38.0999 38.0000 3.0000 0.0000 0.0000 0.0000 0.0000 3.0000 3.0000 (70) Losses e.g. evaporation (negative values) (Table 5) -120.7989 -12	Heat gains from water	heating, kWh/	month	Tot	al Energy u	sed by inst	antaneous e	lectric sho	wer(s) (kWh	/year) = Su	um(64a)m =	0.0000	(64a)
Metabolic gains (Table 5), Watts Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec (66)m 150.9986 150.9986 150.9986 150.9986 150.9986 150.9986 150.9986 150.9986 150.9986 150.9986 150.9986 150.9986 150.9986 (66) Lighting gains (calculated in Appendix L, equation L9 or L9a), also see Table 5 193.7106 214.4653 193.7106 200.1676 193.7106 200.1676 193.7106 193.7106 200.1676 193.7106 200.1676 193.7106 (67) Appliances gains (calculated in Appendix L, equation L13 or L13a), also see Table 5 384.0529 388.0832 377.9955 356.6156 329.6275 304.2624 287.3170 283.3317 293.3744 314.7542 341.7424 367.1075 (68) Cooking gains (calculated in Appendix L, equation L15 or L15a), also see Table 5 38.0999 38.0999 38.0999 38.0999 38.0999 38.0999 38.0999 38.0999 38.0999 38.0999 38.0999 38.0999 38.0999 38.0999 38.0999 (69) Pumps, fans 3.0000 3.0000 3.0000 3.0000 0.0000 0.0000 0.0000 0.0000 3.0000 3.0000 3.0000 (70) Losses e.g. evaporation (negative values) (Table 5) -120.7989 -120									93.9235	102.8605	107.1185	117.5293	(65)
Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec (66)m 150.9986													
193.7106 214.4653 193.7106 200.1676 193.7106 200.1676 193.7106 193.7106 200.1676 193.7106 200.1676 193.7106 200.1676 193.7106 (67) Appliances gains (calculated in Appendix L, equation L13 or L13a), also see Table 5 384.0529 388.0382 377.9955 356.6156 329.6275 304.2624 287.3170 283.3317 293.3744 314.7542 341.7424 367.1075 (68) Cooking gains (calculated in Appendix L, equation L15 or L15a), also see Table 5 38.0999 38.0999 38.0999 38.0999 38.0999 38.0999 38.0999 38.0999 38.0999 38.0999 38.0999 38.0999 38.0999 38.0999 (69) Pumps, fans 3.0000 3.0000 3.0000 3.0000 0.0000 0.0000 0.0000 0.0000 3.0000 3.0000 (70) Losses e.g. evaporation (negative values) (Table 5) -120.7989 -120.7989 -120.7989 -120.7989 -120.7989 -120.7989 -120.7989 -120.7989 -120.7989 -120.7989 (71)	Jan (66)m 150.998	Feb 6 150.9986	150.9986	150.9986	150.9986	150.9986	150.9986						(66)
384.0529 388.0382 377.9955 356.6156 329.6275 304.2624 287.3170 283.3317 293.3744 314.7542 341.7424 367.1075 (68) Cooking gains (calculated in Appendix L, equation L15 or L15a), also see Table 5 38.0999 38.0000 3.0000 3.0000 3.0000 3.0000 3.0000 3.0000 3.0000 3.0000 3.0000 3.0000 3.0000 3.0000 3.0000 3.0000	193.710	6 214.4653	193.7106	200.1676	193.7106	200.1676	193.7106	193.7106	200.1676	193.7106	200.1676	193.7106	(67)
38.0999 38.0999 38.0999 38.0999 38.0999 38.0999 38.0999 38.0999 38.0999 38.0999 38.0999 38.0999 38.0999 38.0999 (69) Pumps, fans 3.0000 3.0000 3.0000 3.0000 0.0000 0.0000 0.0000 0.0000 3.0000 3.0000 3.0000 (70) Losses e.g. evaporation (negative values) (Table 5) -120.7989 -120.7989 -120.7989 -120.7989 -120.7989 -120.7989 -120.7989 -120.7989 -120.7989 -120.7989 -120.7989 (71)	384.052	9 388.0382	377.9955	356.6156	329.6275	304.2624	287.3170	283.3317	293.3744	314.7542	341.7424	367.1075	(68)
-120.7989 -120.7989 -120.7989 -120.7989 -120.7989 -120.7989 -120.7989 -120.7989 -120.7989 -120.7989 -120.7989 -120.7989 -120.7989 (71)	38.099 Pumps, fans 3.000	9 38.0999 0 3.0000	38.0999 3.0000	38.0999 3.0000	38.0999	38.0999	38.0999						
	-120.798	9 -120.7989			-120.7989	-120.7989	-120.7989	-120.7989	-120.7989	-120.7989	-120.7989	-120.7989	(71)

21.0000 (85)

T-4-1	156.7257	151.6876	140.7153	133.9805	126.9484	122.6590	126.2473	130.4493	138.2534	148.7757	157.9695 (72)
Total internal	830.5288	794.6933	768.7981	728.6182	699.6780	671.9862	671.5892	692.2910	718.0178	761.9853	790.0872 (73)

6. Solar gains

[Jan]	Area m2	Solar flux Table 6a W/m2	g Specific data or Table 6b	FF Specific data or Table 6c	Access factor Table 6d	Gains W
Northeast	11.4500	11.2829	0.6300	0.7000	0.7700	39.4820 (75
Southeast	5.5300	36.7938	0.6300	0.7000	0.7700	62.1830 (77
Southwest	14.2800	36.7938	0.6300	0.7000	0.7700	160.5739 (79
Northwest	4.7200	11.2829	0.6300	0.7000	0.7700	16.2756 (81
Northeast	8.6200	16.3666	0.6300	0.7000	1.0000	55.9946 (82
Southwest	4.5000	39.9751	0.6300	0.7000	1.0000	71.3976 (82

Solar gains 405.9068 739.4228 1136.4435 1612.6076 1989.6026 2054.9795 1948.0902 1655.2251 1299.8173 851.1213 494.9943 341.6332 (83) Total gains 1214.3374 1569.9516 1931.1368 2381.4058 2718.2207 2754.6575 2620.0764 2326.8143 1992.1083 1569.1392 1256.9796 1131.7204 (84)

7. Mean internal temperature (heating season)

Temperature during	heating periods i	in the living area t	from Table 9, Th1 (C)

Utilisation factor for gains for living area, ni1,m (see Table 9a)													
	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	0ct	Nov	Dec	
tau	52.2843	52.4092	52.5323	53.1180	53.2291	53.7522	53.7522	53.8502	53.5495	53.2291	53.0049	52.7726	
alpha	4.4856	4.4939	4.5022	4.5412	4.5486	4.5835	4.5835	4.5900	4.5700	4.5486	4.5337	4.5182	
util living	area												
	0.9972	0.9910	0.9712	0.8978	0.7421	0.5463	0.4044	0.4712	0.7457	0.9549	0.9933	0.9980 (86	6)
MIT	19.3649	19.6424	20.0432	20.5350	20.8521	20.9714	20.9942	20.9887	20.8896	20.4152	19.7939	19.3239 (87	7)
Th 2	19.9448	19.9471	19.9493	19.9596	19.9616	19.9706	19.9706	19.9723	19.9671	19.9616	19.9576	19.9535 (88	8)
util rest of	f house												
	0.9964	0.9883	0.9626	0.8697	0.6841	0.4659	0.3118	0.3702	0.6658	0.9365	0.9909	0.9974 (89	Э)
MIT 2	18.0326	18.3879	18.8950	19.4972	19.8411	19.9543	19.9686	19.9681	19.8917	19.3719	18.5904	17.9862 (90	9)
Living area	fraction								fLA =	Living area	/ (4) =	0.2052 (91	1)
MIT	18.3060	18.6453	19.1305	19.7102	20.0485	20.1630	20.1790	20.1775	20.0964	19.5860	18.8373	18.2606 (92	2)
Temperature	adjustment											0.0000	
adjusted MI	r 18.3060	18.6453	19.1305	19.7102	20.0485	20.1630	20.1790	20.1775	20.0964	19.5860	18.8373	18.2606 (93	3)

8. Space heating requirement

8. Space neating requirement

	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	0ct	Nov	Dec
Utilisation	0.9943	0.9836	0.9538	0.8618	0.6893	0.4814	0.3308	0.3908	0.6767	0.9279	0.9870	0.9958 (94)
Useful gains	1207.4606	1544.1645	1841.9511	2052.3055	1873.7446	1326.0362	866.7483	909.2870	1348.1556	1455.9849	1240.6225	1126.9560 (95)
Ext temp.	4.3000	4.9000	6.5000	8.9000	11.7000	14.6000	16.6000	16.4000	14.1000	10.6000	7.1000	4.2000 (96)
Heat loss rat	e W											
	3502.1029	3428.7361	3143.2823	2660.5892	2050.4432	1353.0088	870.4796	917.0702	1463.9402	2207.0050	2894.9457	3483.2452 (97)
Space heating	; kWh											
	1707.2139	1266.4321	968.1904	437.9642	131.4637	0.0000	0.0000	0.0000	0.0000	558.7590	1191.1127	1753.0792 (98a)
Space heating	; requiremen	t - total p	er year (kW	h/year)								8014.2153
Solar heating	; kWh											
	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000 (98b)
Solar heating	; contributi	on - total	per year (k	Wh/year)								0.0000
Space heating	; kWh											
	1707.2139	1266.4321	968.1904	437.9642	131.4637	0.0000	0.0000	0.0000	0.0000	558.7590	1191.1127	1753.0792 (98c)
Space heating	; requiremen	t after sol	ar contribu	tion - tota	l per year	(kWh/year)						8014.2153
Space heating	per m2									(98c) / (4) =	37.4706 (99)

9a. Energy requirements - Individual heating systems, including micro-CHP													
Fraction of space heat from secondary/supplementary system (Table 11) Fraction of space heat from main system(s) Efficiency of main space heating system 1 (in %) Efficiency of main space heating system 2 (in %) Efficiency of secondary/supplementary heating system, %												0.0000 1.0000 92.3000 0.0000 0.0000	(202) (206) (207)
	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	0ct	Nov	Dec	
Space heating													
	1707.2139		968.1904	437.9642	131.4637	0.0000	0.0000	0.0000	0.0000	558.7590	1191.1127	1753.0792	(98)
Space heating		•	0,										
	92.3000	92.3000	92.3000	92.3000	92.3000	0.0000	0.0000	0.0000	0.0000	92.3000	92.3000	92.3000	(210)
Space heating													
		1372.0824		474.5008	142.4309	0.0000	0.0000	0.0000	0.0000	605.3727	1290.4797	1899.3274	(211)
Space heating													
	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	(212)
Space heating													
	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	(213)
Space heating													
	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	(215)

Water heating		
Water heating requirement		
235.4260 208.1312 221.4912 196.2759 191.1671 173.2940 172.0540 178.4850 179.9434 199.3539 210.2915	233.1122 ((64)
Efficiency of water heater	79.8000 (216)
(217)m 87.6027 87.4086 86.9738 85.8052 83.2375 79.8000 79.8000 79.8000 86.2423 87.3222	87.6399 (217)
Fuel for water heating, kWh/month		
268.7430 238.1131 254.6643 228.7460 229.6645 217.1604 215.6065 223.6654 225.4930 231.1556 240.8225	265.9886 ((219)
Space cooling fuel requirement		
(221)m 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	0.0000 (
Pumps and Fa 7.3041 6.5973 7.3041 7.0685 7.3041 7.0685 7.3041 7.0685 7.3041 7.0685 7.3041 7.0685 7.3041 7.0685	7.3041 (
Lighting 40.2492 32.2894 29.0731 21.3002 16.4529 13.4421 15.0088 19.5091 25.3404 33.2479 37.5534 Electricity generated by PVs (Appendix M) (negative quantity)	41.3679 ((232)
(233a)m -97.9380 -129.8513 -175.5783 -185.1896 -189.7593 -173.4070 -170.9092 -165.8063 -155.9437 -142.0002 -104.5356	-85.6381 ((2222)
(253)	-02.0201 ((2558)
(234a) 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	0.0000 ((234a)
Electricity generated by hydro-electric generators (Appendix M) (negative quantity)	0.0000 (2340)
(235a)m 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	0.0000 (235a)
Electricity used or net electricity generated by micro-CHP (Appendix N) (negative if net generation)		
(235c)m 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	0.0000 (235c)
Electricity generated by PVs (Appendix M) (negative quantity)		
(233b)m -83.4467 -171.3066 -333.1213 -490.2078 -638.9167 -638.9154 -631.6955 -539.2915 -401.0932 -241.8639 -110.3164	-66.3478 ((233b)
Electricity generated by wind turbines (Appendix M) (negative quantity)		
(234b)m 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	0.0000 ((234b)
Electricity generated by hydro-electric generators (Appendix M) (negative quantity)		
(235b)m 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	0.0000 (235b)
Electricity used or net electricity generated by micro-CHP (Appendix N) (negative if net generation)		00510
(235d)m 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	0.0000 (2350)
	0.0000 (
Annual totals kWh/year		. ,
Annual totals kWh/year Space heating fuel - main system 1	8682.7901 ((211)
Annual totals kWh/year Space heating fuel - main system 1 Space heating fuel - main system 2	8682.7901 (0.0000 ((211) (213)
Annual totals kWh/year Space heating fuel - main system 1 Space heating fuel - main system 2 Space heating fuel - secondary	8682.7901 (0.0000 (0.0000 ((211) (213)
Annual totals kWh/year Space heating fuel - main system 1 Space heating fuel - main system 2 Space heating fuel - secondary Efficiency of water heater	8682.7901 (0.0000 (0.0000 (79.8000	(211) (213) (215)
Annual totals kWh/year Space heating fuel - main system 1 Space heating fuel - main system 2 Space heating fuel - secondary Efficiency of water heater Water heating fuel used	8682.7901 (0.0000 (0.0000 (79.8000 2839.8228 ((211) (213) (215) (219)
Annual totals kWh/year Space heating fuel - main system 1 Space heating fuel - main system 2 Space heating fuel - secondary Efficiency of water heater	8682.7901 (0.0000 (0.0000 (79.8000	(211) (213) (215) (219)
Annual totals kWh/year Space heating fuel - main system 1 Space heating fuel - main system 2 Space heating fuel - secondary Efficiency of water heater Water heating fuel used Space cooling fuel	8682.7901 (0.0000 (0.0000 (79.8000 2839.8228 ((211) (213) (215) (219)
Annual totals kWh/year Space heating fuel - main system 1 Space heating fuel - secondary Efficiency of water heater Water heating fuel used Space cooling fuel Electricity for pumps and fans:	8682.7901 (0.0000 (0.0000 (79.8000 2839.8228 (0.0000 ((211) (213) (215) (219) (221)
Annual totals kWh/year Space heating fuel - main system 1 Space heating fuel - main system 2 Space heating fuel - secondary Efficiency of water heater Water heating fuel used Space cooling fuel Electricity for pumps and fans: Total electricity for the above, kWh/year	8682.7901 0.0000 (0.0000 (79.8000 2839.8228 (0.0000 (86.0000 ((211) (213) (215) (219) (221) (231)
Annual totals kWh/year Space heating fuel - main system 1 Space heating fuel - secondary Efficiency of water heater Water heating fuel used Space cooling fuel Electricity for pumps and fans:	8682.7901 (0.0000 (0.0000 (79.8000 2839.8228 (0.0000 ((211) (213) (215) (219) (221) (231)
Annual totals kWh/year Space heating fuel - main system 1 Space heating fuel - secondary Efficiency of water heater Water heating fuel used Space cooling fuel Electricity for pumps and fans: Total electricity for the above, kWh/year Electricity for lighting (calculated in Appendix L)	8682.7901 0.0000 (0.0000 (79.8000 2839.8228 (0.0000 (86.0000 ((211) (213) (215) (219) (221) (231)
Annual totals kWh/year Space heating fuel - main system 1 Space heating fuel - secondary Efficiency of water heater Water heating fuel used Space cooling fuel Electricity for pumps and fans: Total electricity for the above, kWh/year Electricity for lighting (calculated in Appendix L) Energy saving/generation technologies (Appendices M ,N and Q)	8682.7901 0.0000 (0.0000 (79.8000 2839.8228 (0.0000 (86.0000 ((211) (213) (215) (219) (221) (221) (231) (231) (232)
Annual totals kWh/year Space heating fuel - main system 1 Space heating fuel - secondary Efficiency of water heater Water heating fuel used Space cooling fuel Electricity for pumps and fans: Total electricity for the above, kWh/year Electricity for lighting (calculated in Appendix L)	8682.7901 0.0000 0.0000 2839.8228 0.0000 86.0000 324.8344	(211) (213) (215) (219) (221) (231) (232) (233)
Annual totals kWh/year Space heating fuel - main system 1 Space heating fuel - main system 2 Space heating fuel - secondary Efficiency of water heater Water heating fuel used Space cooling fuel Electricity for pumps and fans: Total electricity for the above, kWh/year Electricity for lighting (calculated in Appendix L) Energy saving/generation technologies (Appendices M ,N and Q) PV generation	8682.7901 (0.0000 (0.0000 (79.8000 (2839.8228 (0.0000 (324.8344 (-6123.0794 ((211) (213) (215) (219) (221) (231) (232) (233) (233) (234)
Annual totals kWh/year Space heating fuel - main system 1 Space heating fuel - main system 2 Space heating fuel - secondary Efficiency of water heater Water heating fuel used Space cooling fuel Electricity for pumps and fans: Total electricity for the above, kWh/year Electricity for lighting (calculated in Appendix L) Energy saving/generation technologies (Appendices M ,N and Q) PV generation Wind generation	8682.7901 (0.0000 (0.0000 (79.8000 2839.8228 (0.0000 (324.8344 (-6123.0794 (0.0000 ((211) (213) (215) (219) (221) (231) (232) (233) (233) (234) (235a)
Annual totals kWh/year Space heating fuel - main system 1 Space heating fuel - main system 2 Space heating fuel - secondary Efficiency of water heater Water heating fuel used Space cooling fuel Electricity for pumps and fans: Total electricity for the above, kWh/year Electricity for lighting (calculated in Appendix L) Energy saving/generation technologies (Appendices M ,N and Q) PV generation Wind generation Hydro-electric generation (Appendix N)	8682.7901 0.0000 (0.0000 (79.8000 2839.8228 (0.0000 (86.0000 (324.8344 (-6123.0794 (0.0000 (0.0000 ((211) (213) (215) (219) (221) (231) (232) (233) (233) (234) (235a)
Annual totals kWh/year Space heating fuel - main system 1 Space heating fuel - main system 2 Space heating fuel - secondary Efficiency of water heater Water heating fuel used Space cooling fuel Electricity for pumps and fans: Total electricity for the above, kWh/year Electricity for lighting (calculated in Appendix L) Energy saving/generation technologies (Appendices M ,N and Q) PV generation Wind generation Hydro-electric generation (Appendix N) Electricity generated - Micro CHP (Appendix N)	8682.7901 0.0000 (0.0000 (79.8000 2839.8228 (0.0000 (86.0000 (324.8344 (-6123.0794 (0.0000 (0.0000 (211) 213) 215) 2219) 221) 221) 2231) 233) 234) 235a) 235a)
Annual totals kWh/year Space heating fuel - main system 1 Space heating fuel - main system 2 Space heating fuel - secondary Efficiency of water heater Water heating fuel used Space cooling fuel Electricity for pumps and fans: Total electricity for the above, kWh/year Electricity for lighting (calculated in Appendix L) Energy saving/generation technologies (Appendices M ,N and Q) PV generation Wind generation Mydro-electric generation (Appendix N) Electricity generated - Micro CHP (Appendix N) Appendix Q - special features	8682.7901 0.0000 0.0000 2839.8228 0.0000 86.0000 324.8344 -6123.0794 0.00000 0.00000 0.0000 0.00000 0.0000	211) 213) 215) 219) 221) 231) 231) 232) 233) 234) 235a) 235a) 235)
Annual totals kWh/year Space heating fuel - main system 1 Space heating fuel - secondary Efficiency of water heater Water heating fuel used Space cooling fuel Electricity for pumps and fans: Total electricity for the above, kWh/year Electricity for lighting (calculated in Appendix L) Energy saving/generation technologies (Appendices M ,N and Q) PV generation Wind generation Hydro-electric generation (Appendix N) Electricity generated - Micro CHP (Appendix N) Appendix Q - special features Energy saved or generated	8682.7901 0.0000 0.0000 2839.8228 0.0000 86.0000 324.8344 -6123.0794 0.00000 0.00000 0.0000 0.00000 0.0000	(211) (213) (215) (219) (221) (221) (231) (232) (233) (233) (233) (235a) (235a) (235a) (235a) (235a) (237)

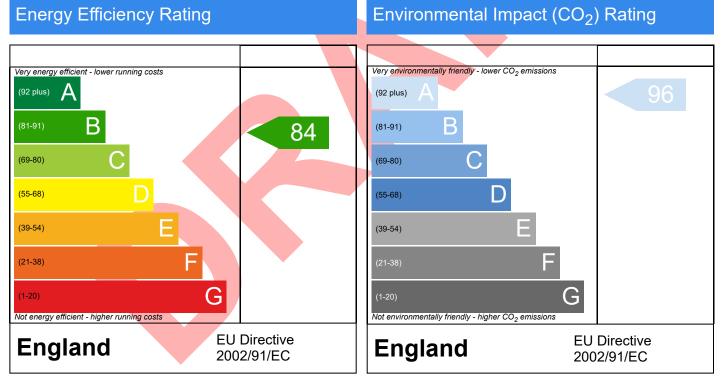
12a. Carbon dioxide emissions - Individual heating systems including r	nicro-CHP		
	Energy	Emission factor	Emissions
	kWh/year	kg CO2/kWh	kg CO2/year
Space heating - main system 1	8682.7901	0.2100	1823.3859 (261)
Total CO2 associated with community systems			0.0000 (373)
Water heating (other fuel)	2839.8228	0.2100	596.3628 (264)
Space and water heating			2419.7487 (265)
Pumps, fans and electric keep-hot	86.0000	0.1387	11.9293 (267)
Energy for lighting	324.8344	0.1443	46.8836 (268)
Energy saving/generation technologies			
PV Unit electricity used in dwelling	-1776.5566	0.1360	-241.5650
PV Unit electricity exported	-4346.5228	0.1265	-549.8287
Total			-791.3937 (269)
Total CO2, kg/year			1687.1679 (272)
EPC Target Carbon Dioxide Emission Rate (TER)			7.8900 (273)

TOTAL CO2,	кg/yeai	•			
EPC Target	Carbon	Dioxide	Emission	Rate	(TER)

13a. Primary energy - Individual heating systems including micro-CHP $% \left({{{\bf{T}}_{{\rm{s}}}} \right)$

Energy Prima	ry energy factor	Primary energy
kWh/year	kg CO2/kWh	kWh/year
8682.7901	1.1300	9811.5529 (275)
		0.0000 (473)
2839.8228	1.1300	3208.9998 (278)
		13020.5526 (279)
86.0000	1.5128	130.1008 (281)
324.8344	1.5338	498.2419 (282)
-1776.5566	1.5026	-2669.4752
-4346.5228	0.4644	-2018.3616
		-4687.8369 (283)
		8961.0584 (286)
		41.9000 (287)
	kWh/year 8682.7901 2839.8228 86.0000 324.8344 -1776.5566	8682.7901 1.1300 2839.8228 1.1300 86.0000 1.5128 324.8344 1.5338 -1776.5566 1.5026

Predicted Energy Assessment



weavings farm, Abingdon Rd, Witney, OX29 7QN

Dwelling type: Date of assessment: Produced by: Total floor area: DRRN: House, Detached 20/04/2023 Iraj Maghounaki 213.88 m²

This document is a Predicted Energy Assessment for properties marketed when they are incomplete. It includes a predicted energy rating which might not represent the final energy rating of the property on completion. Once the property is completed, this rating will be updated and an official Energy Performance Certificate will be created for the property. This will include more detailed information about the energy performance of the completed property.

The energy performance has been assessed using the Government approved SAP 10 methodology and is rated in terms of the energy use per square meter of floor area; the energy efficiency is based on fuel costs and the environmental impact is based on carbon dioxide (CO2) emissions.

The energy efficiency rating is a measure of the overall efficiency of a home. The higher the rating the more energy efficient the home is and the lower the fuel bills are likely to be. The environmental impact rating is a measure of a home's impact on the environment in terms of carbon dioxide (CO_2) emissions. The higher the rating the less impact it has on the environment.

	Job no:	PR8908
brealobal	Date:	05/07/2021
	Assessor name:	Nikolas Koutsorizof
	Registration no:	BRE400012
	Development name:	House 1 & 2, 14 Sunderland Avenue, Oxford, OX2 8DX

BRE Global 2008. BRE Certification is a registered trademark owned by BRE Global and may not be used without BRE Global's written permission.

Permission is given for this tool to be copied without infringement of copyright for use only on projects where a Code for Sustainable Homes assessment is carried out. Whilst every care is taken in preparing the Wat 1 assessment tool, BREG cannot accept responsibility for any inaccuracies or for consequential loss incurred as a result of such inaccuracies arising through the use of the Wat 1 tool.

PRINTING: before printing please make sure that in "Page Setup" you have selected the page to be as "Landscape" and that the Scale has been set up to 70% (maximum)

WATER EFFICIENCY CALCULATOR FOR NEW DWELLINGS - (BASIC CALCULATOR)																											
	House Type:	Тур	e 1	Type 2 Type 3		e 3	Type 4		Type 5		Type 6		Type 7		Type 8		Type 9		Type 10								
	Description:	Hou	se 1	Hou	se 2																						
Installation Type	Unit of measure	Capacity/ flow rate	Litres/ person/ day																								
Is a dual or single flush WC specified? Dual		Dual		Dual		Dual		Jual Dual																			
WC	Full flush volume	6	8.76	6	8.76		0.00		0.00		0.00		0.00		0.00		0.00		0.00		0.00						
wc	Part flush volume	4	11.84	4	11.84		0.00		0.00		0.00		0.00		0.00		0.00		0.00		0.00						
Taps (excluding kitchen and external taps)	Flow rate (litres / minute)	7	12.64	7	12.64		0.00		0.00		0.00		0.00		0.00		0.00		0.00		0.00						
Are both a Bath &	Shower Present?	Bath &	Shower	Bath & Shower																							
Bath	Capacity to overflow	165	18.15	165	18.15		0.00		0.00		0.00		0.00		0.00		0.00		0.00		0.00						
Shower	Flow rate (litres / minute)	10	43.70	10	43.70		0.00		0.00		0.00		0.00		0.00		0.00		0.00		0.00						
Kitchen sink taps	Flow rate (litres / minute)	9	14.32	9	14.32		0.00		0.00		0.00		0.00		0.00		0.00		0.00		0.00						
Has a washi	ng machine been specified?	N	0	Z	0																						
Washing Machine	Litres / kg	7	17.16	7	17.16		0.00		0.00		0.00		0.00		0.00		0.00		0.00		0.00						
Has a dishwashe	-	N	0	N	0																						
Dishwasher	Litres / place setting	0.9	4.50	0.9	4.50		0.00		0.00		0.00		0.00		0.00		0.00		0.00		0.00						
Has a waste di	sposal unit been specified?	No	0.00	No	0.00		0.00		0.00		0.00		0.00		0.00		0.00		0.00		0.00						
Water Softener	Litres / person / day		0.00		0.00		0.00		0.00		0.00		0.00		0.00		0.00		0.00		0.00						
	Calcul	ated Use	131.1		131.1		0.0		0.0		0.0		0.0		0.0		0.0		0.0		0.0						
	Normalisat		0.91		0.91		0.91		0.91		0.91		0.91		0.91		0.91		0.91		0.91						
Code for	Total Consun	nption	119.3		119.3		0.0		0.0		0.0		0.0		0.0		0.0		0.0		0.0						
Sustainable Homes	Mandatory	level	Level 1/2		Level 1/2		-		-		-		-		-		-		-		-						
Duilding	External u	ise	5.0		5.0		5.0		5.0		5.0		5.0		5.0		5.0		5.0		5.0						
Building Regulations 17.K	Total Consur	nption	124.3		124.3		0.0		0.0		0.0		0.0		0.0		0.0		0.0		0.0						
	17.K Complia	ance?	Yes		Yes		-		-		-		-		-		-		-		-						