

306-006-RP04 REV A

Drainage Statement

Land at The Leys and Ivy Farm, Yaxley, Suffolk

DOCUMENT STATUS	DATE	BY	APPROVED
A	25.04.2023	Beverley Hunter	James Calvert
			BSc (Hons) CEng MICE

Second Floor, Hyde Park House Crown Street, Ipswich IP1 3LG 01473 236550 www.haydnevans.co.uk

Contents

1	Introduction	. 1
2	Location & Existing Conditions	.2
2.1	Site Location	.2
2.2	Existing Topography	.2
2.3	Existing Sewer Assets	.2
2.4	Existing Drainage Regime	.2
2.5	Ground Conditions	.3
3	Surface Water Drainage Strategy	.4
3.1	SuDS Hierarchy	.4
3.2	SuDS Selection	.4
3.3	Surface Water Drainage Strategy	.4
3.4	Pollution Mitigation	.7
3.5	SuDS Drainage Maintenance	.7
4		_
-	Summary and Conclusion	.8
4.1	Summary and Conclusion	. 8

Appendices

- Appendix B Site Investigation
- Appendix C Drainage Strategy

1 Introduction

Haydn Evans Consulting Ltd (HEC) has been commissioned by Conrad Energy Ltd (the Client) to carry out a drainage design for the *'Construction and operation of Synchronous Condensers with ancillary infrastructure, an associated works including access and landscaping'* located on Land at The Leys and Ivy Farm, Mellis Road, Yaxley, Suffolk IP21 4BT.

This document has been prepared for the sole use of the Client. The copyright of this report is vested in HEC and the Client. HEC accepts no responsibility whatsoever to other parties to whom this report, or any part thereof, is made known. Any such other parties that rely upon the report do so at their own risk.

The development has been granted Planning Permission by Mid Suffolk District Council under application reference DC/22/04021 dated 20th February 2023. This document has been produced to support the discharge of Condition 6 which states:

6. ACTION REQUIRED PRIOR TO COMMENCEMENT: SURFACE WATER DRAINAGE DETAILS

No development shall commence until a strategy for surface water drainage, including implementation, maintenance and management, has been submitted to and approved, in writing, by the Local Planning Authority. The surface water drainage strategy shall be implemented and maintained as approved.

Reason - To safeguard the ground water environment and minimise the risk of flooding.

2 Location & Existing Conditions

2.1 Site Location

The greenfield site is located off Leys Lane, to the north of Yaxley in Suffolk on approximate Ordnance Survey (OS) grid reference 611914,274987 (see Figure 1).

Figure 1: Site location map

The site is bound to the north and east by Leys Lane, and to the south and west by greenfield land.

2.2 Existing Topography

The topographical survey (Appendix A) shows ground levels to fall from south-east to northwest. Ground levels in the south-east are circa 48.10 metres Above Ordnance Datum (mAOD), falling to circa 44.60 mAOD in the north-west. Ground levels continue to fall to the north-west.

2.3 Existing Sewer Assets

There are no sewer assets in the vicinity of the site.

2.4 Existing Drainage Regime

The site is greenfield and therefore does not benefit from any formal drainage. Surface water run-off would flow overland towards the watercourse beyond the north-western boundary of the site.

2.5 Ground Conditions

British Geological Survey (BGS) mapping shows the site to have a bedrock geology of Crag Group (Sand) with superficial deposits of Lowestoft Formation (Diamicton).

Geo Environmental Group (GEG) trial pit and borehole logs (see Appendix B) show clay ground conditions with sandier ground conditions at depth. No groundwater was encountered in any of the trial pits. Borehole log CP01 encountered two water strikes; one at 1.30 m below ground level (bgl) and one at 13.3 mbgl. CP02 encountered water at 3.0 mbgl as seepage and CP03 at 3.45 mbgl as seepage. As none of the trial pits encountered groundwater, it is assumed that this was a localised pocket of perched groundwater and that high groundwater levels are not present across the whole site. No groundwater was encountered in TP05 nor TP12 (closest to the proposed basin) and therefore this will not affect the proposed surface water drainage strategy.

3 Surface Water Drainage Strategy

3.1 SuDS Hierarchy

Surface water drainage should be managed in a way that replicates the natural drainage processes for the site as closely as possible. The proposals should follow the NPPF hierarchy and should be disposed of to a receptor in the order of preference described below:

- 1. Into the ground;
- 2. To a surface water body e.g. watercourse;
- 3. To a surface water, highway drain, or another drainage system;
- 4. To a combined sewer.

3.2 SuDS Selection

Into the ground

Infiltration testing has been undertaken across the site. The testing proved that infiltration is not feasible at the site (see Infiltration Test results in Appendix B).

To a surface water body

The closest watercourse is located approximately 120m north of the site and flows in a northeasterly direction. The topographical survey shows the southern watercourse bank levels to be circa 43.36mAOD and channel levels to be circa 42.01mAOD; the watercourse is therefore approximately 1.35m deep.

The watercourse and land between the site and the watercourse is under the same ownership as the site and therefore no third party land is crossed or permission required.

3.3 Surface Water Drainage Strategy

Surface water run-off generated by the impermeable areas of the site will be collected via gullies and conveyed using underground pipes to an attenuation basin located towards the north of the site. Surface water will discharge to the watercourse at a restricted rate equal to the Qbar greenfield run-off rate, in accordance with the requirements of the LLFA.

The greenfield run-off discharge rates have been calculated using the HR Wallingford IH124 method and are based on the proposed impermeable area of the site (0.538 ha). The greenfield rates for the site are summarised in Table 1 below (see Greenfield Calculations in Appendix C).

Rainfall event	Greenfield discharge rate (l/s)
1:1 year	1.1
Qbar	1.3
1:30 year	3.1
1:100 year	4.5

Table 1: Greenfield run-off calculations

The attenuation basin has been sized to accommodate the temporary run-off for rainfall events up to and including the 1:100 year event inclusive of 45% climate change in line with the gov.uk 'peak rainfall intensity allowances' (see Figure 3).

The A	peak rainfall		ent 🛞
10-0-		exceedance rainfall event	
35	Epech		
1 5		Control allowater	Upper and allowance
	2009	27%	40%
- S - W morne	2075	27%	40%
an a mar	1% annual e	ceedance rainfall event	
- VWN B -	Epech		
- JA JA		Central allowance	Uspar and allowers
5. Nor 2 7	jimini	29.6	COLUMN T
	.#0736	38%	40%
Jo And le m	"the 2000' to develope development with a theory	ed with a trialmini ga 2000 and avail the 2000s egosys for Instrument (2001 and 21128	
	This hap complex the tag get year tag (Wite 1980)	tel generati la Var 1954 radov Celte (2010) (2019 1811 Generati Enversarial Data Anaton, 2011	land Projection in a first

Figure 3 - Peak rainfall allowances

The volume of attenuation provided by the basin is 481 m³ (see calculations in Appendix C).

The total contributing area is shown on the drawing in Appendix C and includes the area of the attenuation basin. The remainder of the site will comprise a permeable aggregate to allow surface water drainage to mimic the existing regime. Any exceedance flows would follow the topography and flow towards the watercourse, as is currently the case.

Surface water is limited by a flow control device to a maximum rate of 1.3 l/s up to and including the 1% AEP including 45% climate change rainfall scenario. Downstream of the flow control device, surface water will flow along a filter drain towards the watercourse; due to the depth of the basin and flow control manhole, a swale would not be a viable option due to the associated land take to achieve 1:4 side slopes.

No groundwater was encountered in TP05 nor TP12 (closest to the proposed basin) and therefore this will not affect the proposed surface water drainage strategy.

Discharge to the ditch will be via a protruding pipe outfall at an invert level of 42.50mAOD. This method of connection does not require land drainage consent as it does not obstruct the flow of water (see water level shown on Photograph 1).

At the time of the topographical survey the ditch was dry and so a water level was not recorded. The ditch is uninterrupted and has significant falls to where it connects to mapped watercourse downstream of the site.

Photo 1. Watercourse at proposed discharge location.

3.4 Pollution Mitigation

The above proposal ensures that surface water is managed 'at source'. Pollution indices from the different land types can be found on Table 26.2 of C753. The relevant land uses are tabled below, with the SuDS pollution indices tabled (as per table 26.3 of C753).

Land Use	Pollution Hazard Level	Total suspended solids pollution index	Metals	Hydrocarbons (HC)						
Commercial yard and delivery areas, non-residential car parking with frequent change (eg hospitals, retail), all roads except low traffic roads and trunk roads/motorways	Medium	0.7	0.6	0.7						
SuDS Mitigation Indices										
Detention basin		0.5	0.5	0.6						
Filter drain		0.2*	0.2*	0.2*						
Total		0.7	0.7	0.8						

* Secondary mitigation indices halved as per C753 guidance

Table 2: SuDS Pollution Assessment

The use of the detention basin and a filter drain provides appropriate mitigation for the pollutants likely for a commercial development.

3.5 SuDS Drainage Maintenance

The surface water drainage system should be maintained to ensure the system operates at its maximum capacity for the lifetime of development. The maintenance required by each SuDS component and the person of responsibility is outlined in the document in Appendix C.

4 Summary and Conclusion

4.1 Summary

Haydn Evans Consulting Ltd (HEC) has been commissioned by Conrad Energy Ltd (the Client) to carry out a drainage strategy for the 'Construction and operation of Synchronous Condensers with ancillary infrastructure, and associated works including access and landscaping on land at The Leys and Ivy Farm, Mellis Road, Yaxley.

Infiltration testing has been undertaken across the site which has proven that infiltration is not feasible at the site.

It is proposed to discharge surface water run-off directly to the closest watercourse located approximately 120m north of the site. The watercourse and land between the site and watercourse are in the same ownership and no third party land is crossed or permissions required.

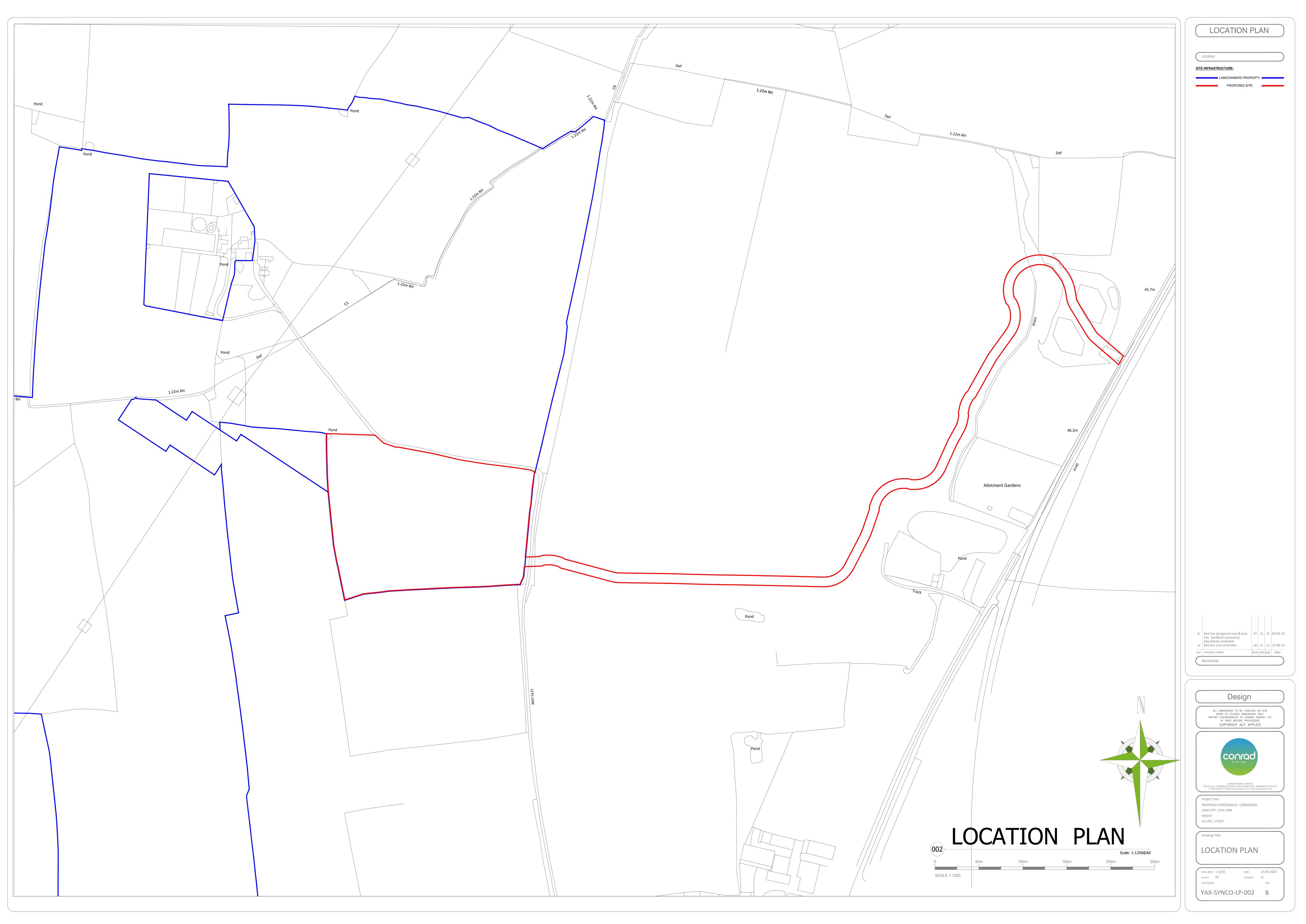
Surface water run-off generated by the impermeable areas of the site will be collected by gullies and conveyed using underground pipes to an attenuation basin. The volume of attenuation provided by the attenuation basin is 481 m³.

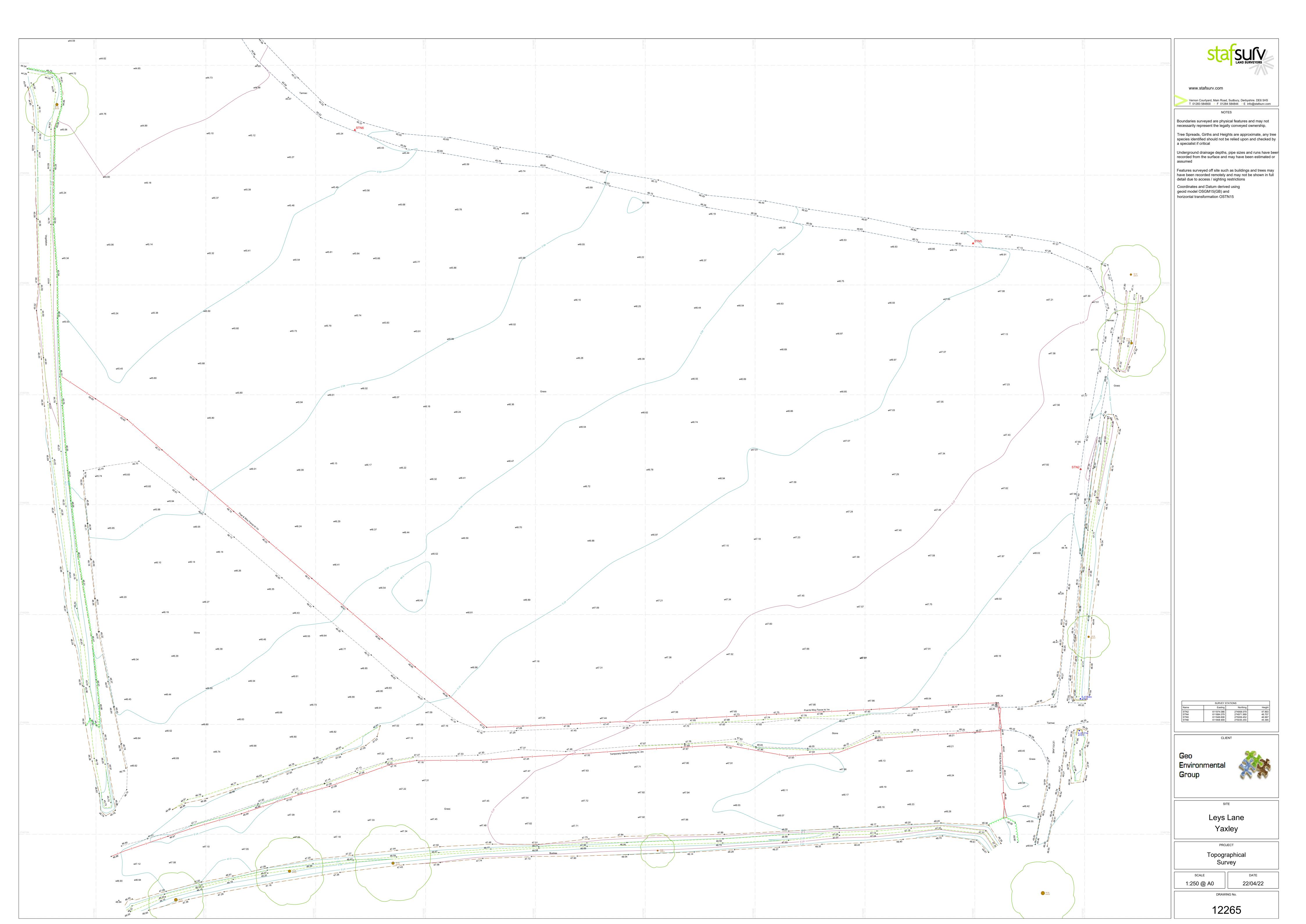
Surface water is limited by a flow control orifice to a maximum rate of 1.3 l/s up to and including the 1% AEP including 45% climate change rainfall scenario. Surface water discharge flows along a filter drain to the watercourse.

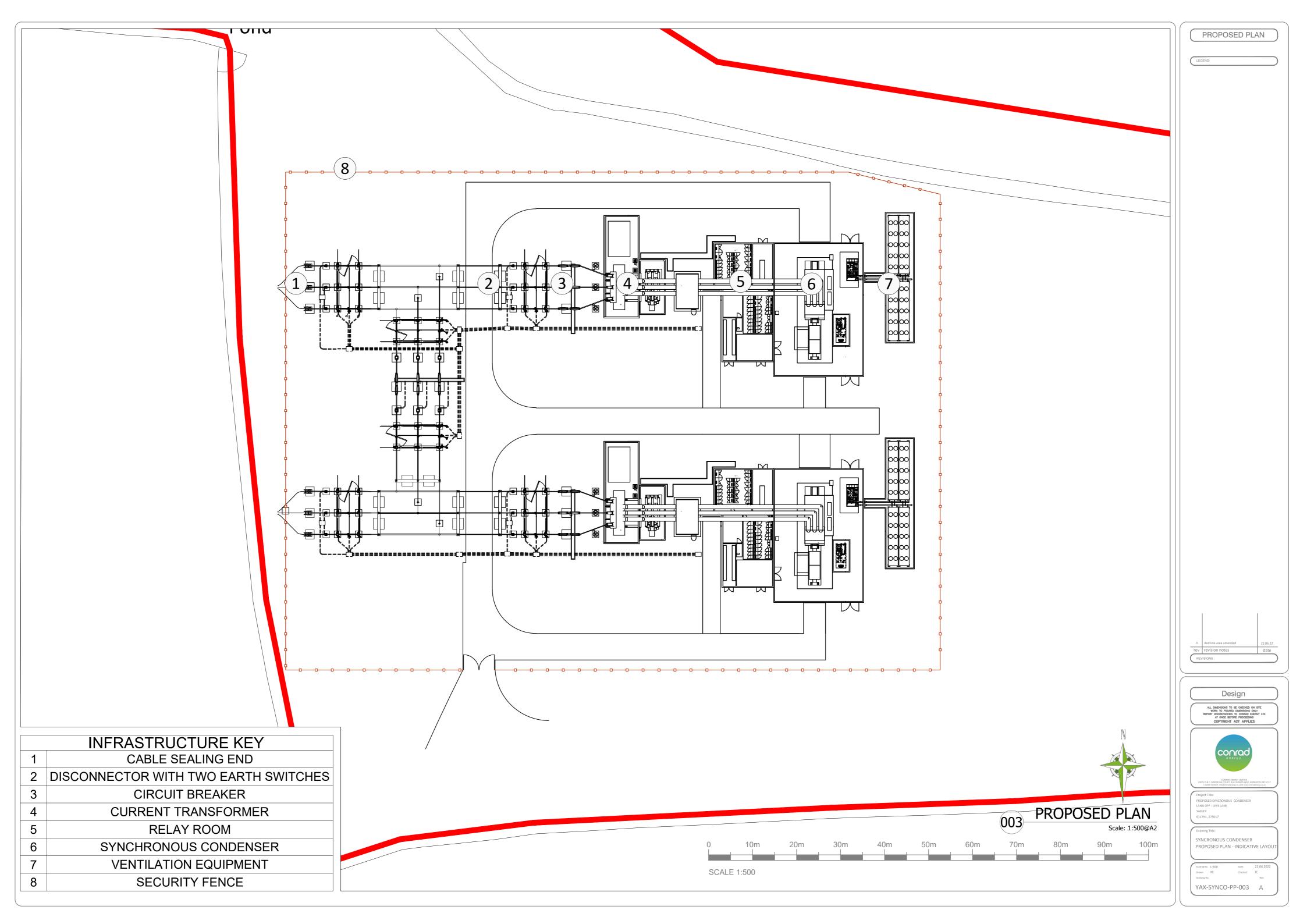
The use of the detention basin and filter drain provides appropriate mitigation for the pollutants likely for a commercial development.

The surface water drainage system should be maintained to ensure the system operates at its maximum capacity for the lifetime of development.

4.2 Conclusion

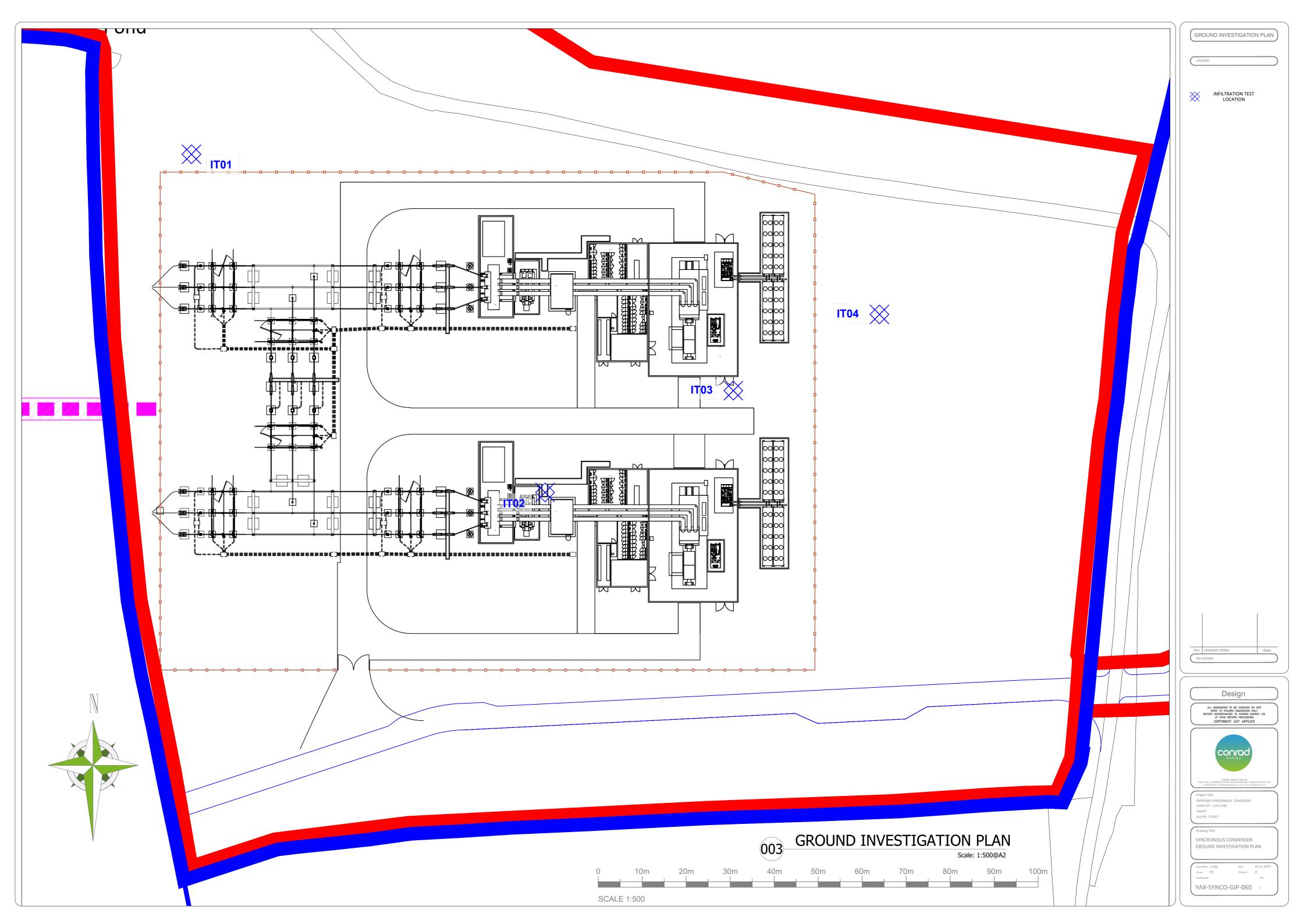

The drainage strategy complies with guidance; surface water generated by the proposed development can be attenuated on site in the extreme climate change event and discharged to a surface water body.


Appendix A Existing & Proposed Site

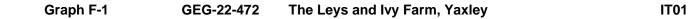

Conrad Energy drawing YAX-SYNCO-LP-002 - Location Plan

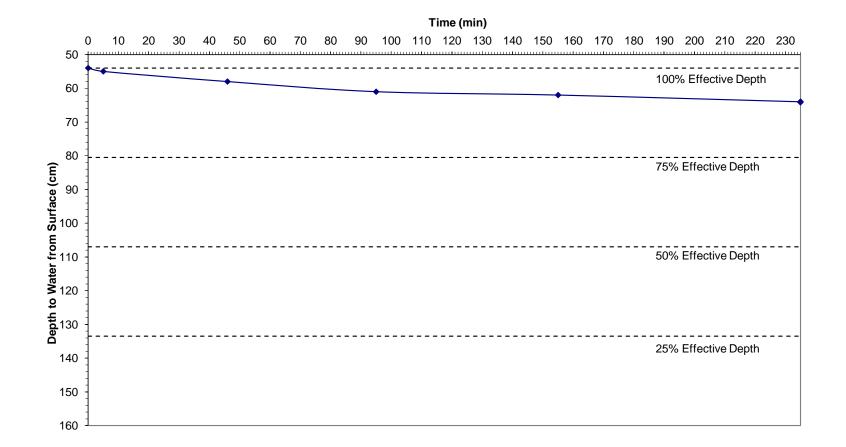
GEG drawing 12265 - Topographical Survey

Conrad Energy drawing YAX-SYNCO-PP-003 - Proposed Plan

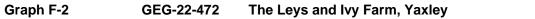

Appendix B Site Investigation

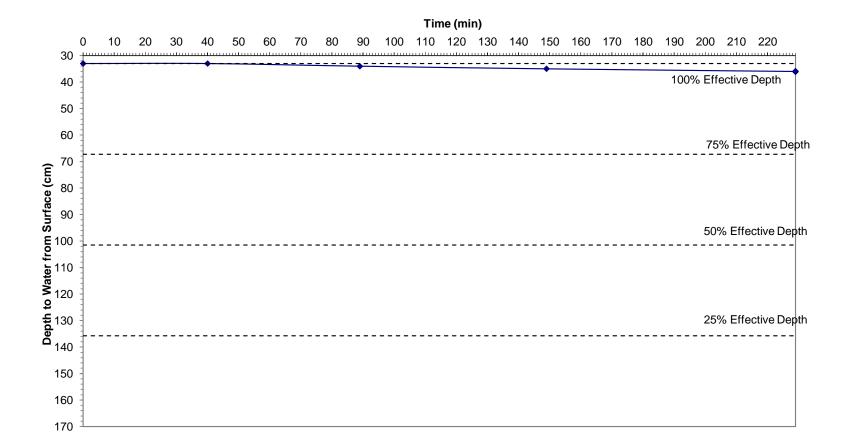
Siemens Energy drawing YAX-SYNCO-GIP-060 - Ground Investigation Plan


GEG Infiltration Test results ref: GEG-22-472

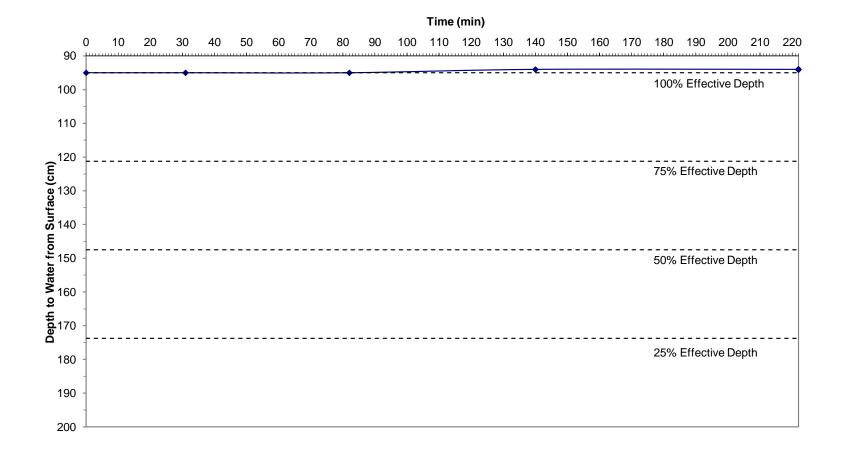

GEG Trial Pit Logs (IT01-IT04 and TP01-TP13)

GEG Borehole Logs (CP01-CP03)



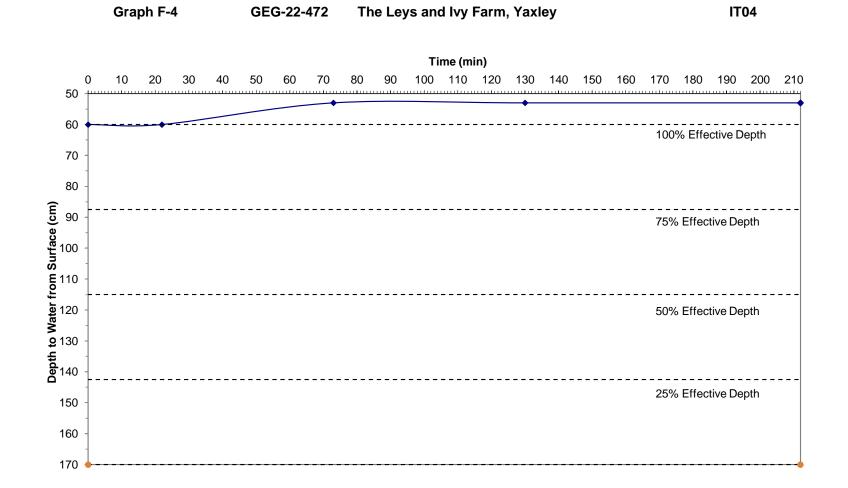

	Project Name: Project Ref.: Trial Pit: Test No.:	The Leys and Ivy GEG-22-472 IT01 Test 1 of 1	Depth of Water at Start of I	of Pit (cm): Depth (cm): ate of Test:	160.00 54.00 10 November 2022	×	S.
Time (min)	Depth from Surface (cm)	% Effective Depth	Parameter	Symbol	Calculation	Units	IT01
0	54	100.0%	Effective Depth of Trial Pit	d _p		m	1.06
5	55	99.1%	Width of Trial Pit	w		m	0.60
46	58	96.2%	Length of Trial Pit	I		m	1.90
95	61	93.4%	Volume of Trial Pit	V	$=d_{p} \times w \times l$	m ³	1.21
155	62	92.5%	Volume of Trial Pit at 50% Effective Depth	V _{50%}	$= V \times 0.5$	m ³	0.6042
235	64	90.6%	Internal Surface Area of Trial Pit*	a _{p50%}	$= l x w + d_p x (w + l)$	m ²	3.79
			Time to reach 75% Effective Depth	T _{p75%}		min	n/a
			Time to reach 25% Effective Depth	T _{p25%}		min	n/a
			Time 25% - 75%	T _{p75%-25%}	$=T_{p25\%} - T_{p75\%}$	min	n/a
			Infiltration Rate	f	$= V_{50\%} / a_{p50\%} x (T_{p75\%-25\%})$	m/s	n/a
	End of Test						
	With Reference to	Graph F-1			Engineer:	AT	

	Project Name: Project Ref.: Trial Pit: Test No.:	The Leys and Ivy GEG-22-472 IT02 Test 1 of 1	Depth of Water at Start of I	of Pit (cm): Depth (cm): Date of Test:	170.00 33.00 10 November 2022	×	- Ale
Time (min)	Depth from Surface (cm)	% Effective Depth	Parameter	Symbol	Calculation	Units	IT02
0	33	100.0%	Effective Depth of Trial Pit	d _p		m	1.37
40	33	100.0%	Width of Trial Pit	w		m	0.60
89	34	99.3%	Length of Trial Pit	I		m	2.00
149	35	98.5%	Volume of Trial Pit	V	$=d_{p} \times w \times I$	m ³	1.64
229	36	97.8%	Volume of Trial Pit at 50% Effective Depth	V _{50%}	$= V \times 0.5$	m ³	0.822
			Internal Surface Area of Trial Pit*	a _{p50%}	$= l \times w + d_p \times (w + l)$	m ²	4.76
			Time to reach 75% Effective Depth	T _{p75%}		min	n/a
			Time to reach 25% Effective Depth	T _{p25%}		min	n/a
			Time 25% - 75%	T _{p75%-25%}	$=T_{p25\%} - T_{p75\%}$	min	n/a
			Infiltration Rate	f			
			*To 50% Effective Depth (including base)	I	$= V_{50\%} / a_{p50\%} x (T_{p75\%-25\%})$	m/s	n/a


IT02

Project Ref.: Trial Pit:		The Leys and Ivy GEG-22-472 IT03 Test 1 of 1	Depth of Water at Start of I D	95.00 10 November 2022	N.S.		
Time (min)	Depth from Surface (cm)	% Effective Depth	Parameter	Symbol	Calculation	Units	IT03
0	95	100.0%	Effective Depth of Trial Pit	d _p		m	1.05
31	95	100.0%	Width of Trial Pit	w		m	0.60
82	95	100.0%	Length of Trial Pit	I		m	2.00
140	94	101.0%	Volume of Trial Pit	V	$=d_{p} \times w \times l$	m ³	1.26
222	94	101.0%	Volume of Trial Pit at 50% Effective Depth	V _{50%}	$= V \times 0.5$	m ³	0.63
			Internal Surface Area of Trial Pit*	a _{p50%}	$= l \times w + d_p \times (w + l)$	m ²	3.93
			Time to reach 75% Effective Depth	T _{p75%}		min	n/a
			Time to reach 25% Effective Depth	T _{p25%}		min	n/a
			Time 25% - 75%	T _{p75%-25%}	$= T_{p25\%} - T_{p75\%}$	min	n/a
			Infiltration Rate	f	$= V_{50\%} / a_{p50\%} x (T_{p75\%-25\%})$	m/s	n/a
			Note : Groundwater level rose during tes				
	End of Test With Reference to	Graph F-3			Engineer:	AT	

Checked by: LS



IT03

	Project Name: Project Ref.: Trial Pit: Test No.:	The Leys and Ivy GEG-22-472 IT04 Test 1 of 1	Depth of Water at Start of D	ate of Test:	170.00 60.00 10 November 2022	×	S.
Time (min)	Depth from Surface (cm)	% Effective Depth	Parameter	Symbol	Calculation	Units	IT04
0	60	100.0%	Effective Depth of Trial Pit	d _p		m	1.10
22	60	100.0%	Width of Trial Pit	w		m	0.60
73	53	106.4%	Length of Trial Pit	I		m	1.90
130	53	106.4%	Volume of Trial Pit	V	$=d_{p} \times w \times l$	m ³	1.25
212	53	106.4%	Volume of Trial Pit at 50% Effective Depth	V _{50%}	= V x 0.5	m ³	0.627
			Internal Surface Area of Trial Pit*	a _{p50%}	$= l x w + d_p x (w + l)$	m ²	3.89
			Time to reach 75% Effective Depth	T _{p75%}		min	n/a
			Time to reach 25% Effective Depth	T _{p25%}		min	n/a
			Time 25% - 75%	T _{p75%-25%}	$=T_{p25\%} - T_{p75\%}$	min	n/a
			Infiltration Rate	f	$= V_{50\%} / a_{p50\%} x (T_{p75\%-25\%})$	m/s	n/a
			Note: Groundwater level rose during tes	i due lo pan	liai collapse of sides.		

Checked by: LS

53								TrialPit	No
X	No.					IT01			
Geo Environ	imental Group						ial Pit Log	Sheet 1	of 1
Project	The Leve	and by F	arm Vayley	Proj	ect No.		Co-ords: 611769.00 - 275021.00	Date	•
Name:	Name: The Leys and Ivy Farm, Yaxley				6-22-742		Level: 45.30	10/11/2	
Locatio	n: Mellis Roa	id, Yaxley	, Eye, IP23 8DB				Dimensions 1.90 (m): O	Scale 1:25	
Client:	Conrad Er						Depth o	Logge	
		oles & In Sit					1.60	AT	
Water Strike	Depth	Туре	Results	Depth (m)	Level (m)	Legend	Stratum Description		
	Deptil	туре	results	0.00			Soft brown sandy silty CLAY.		1 -
							(TOPSOIL)		-
				0.30	45.00		Firm light brown slightly sandy slightly gravelly (
							Firm light brown slightly sandy slightly gravelly (Gravel is fine to medium sub-angular to sub-rou chalk.	inded	-
							(LOWESTOFT FORMATION - DIAMICTON)		0.5 -
									-
				0.90	44.40		- - - - - -		-
				0.00		· · · · ·	Firm to stiff grey and brown slightly gravelly CLA Gravel is fine to medium sub-angular to sub-rou	AY. Inded	1.0 —
						· · · · · ·	chalk and flint. (LOWESTOFT FORMATION - DIAMICTON)		-
							1.00-1.20m Boulder size pocket of orangish brown fine san	d.	_
							2 2 2		
				1.60	43.70				1.5 -
							End of Pit at 1.600m		
									2.0
									-
									-
									2.5 —
									-
									3.0
									-
									-
									-
									3.5 -
									-
									4.0
									- 4.0
									-
									4.5 -
									-
Berrer	(a. 1 No are	undwater	encountered 2 la	filtratio	n test ur	dertaker	ו ו in trial pit. 3. Upon completion backfilled א	with	
	/: Stable.	4. Equipm	ient: JCB 3CX.	maac					25

5	Ra.							TrialPit	No
	S.				Trial Pit Log				2
Geo Enviro	onmental Group							Sheet 1 of 1	
Projec	t The Levs a	and Ivy F	arm, Yaxley	-	ect No.		Co-ords: 611840.00 - 274930.00	Date	
Name: The Leys and tvy Farm, faxley					6-22-742		Level: 46.85	10/11/20	
Locatio	on: Mellis Roa	d, Yaxley	, Eye, IP23 8DB				Dimensions 2.00 (m):	Scale 1:25	
Client:	Conrad Er	nerav					Depth o	Logge	
		oles & In Si	tu Testina				1.70	AT	
Water Strike	Depth	Туре	Results	Depth (m)	Level (m)	Legend	Stratum Description		
	Bopti	1390	roound	0.00		XX	Soft brown sandy silty CLAY.		
						×	(TOPSOIL)		
						×			-
				0.40	46.45		Firm brown very sandy CLAY.		0.5 —
							(LOWESTOFT FORMATION - DIAMICTON)		0.5 -
				0.80	46.05		Firm brown sandy slightly gravelly CLAY. Gravel	is fine	
							to coarse sub-angular to sub-rounded flint and c (LOWESTOFT FORMATION - DIAMICTON)	naik.	1.0 —
				1.10	45.75		Firm to stiff grey and brown slightly gravelly CLA	Y with	- 1
						· · · · · ·	 occasional boulder size pockets of orangish brow sand. Gravel is fine to medium sub-angular to su 	vn fine ıb-	-
							rounded chalk and flint. (LOWESTOFT FORMATION - DIAMICTON)		-
									1.5 —
				1.70	45.15				
							End of Pit at 1.700m		-
									2.0
									2.0 -
									-
									-
									2.5 —
									-
									-
									-
									3.0 —
									-
									3.5 —
									3.5 -
									4.0
									-
									_
									-
									4.5 —
									-
									-
Remai	rke: 1 No arou	undwater	encountered 2 h	nfiltratio	 n test ur	 dertaker	ן ו in trial pit. 3. Upon completion backfilled w	/ith	
	arisings. 4	4. Equipn	nent: JCB 3CX.						35
	·								

Geo Enviro	nmental Group					Tr	ial Pit Log	TrialPit IT03 Sheet 1	3
Project Name:		and Ivy Fa	ırm, Yaxley		ect No.		Co-ords: 611887.00 - 274954.00	Date	
		d Vaylov	Eye, IP23 8DB	GEG	-22-742		Level: 46.90 Dimensions 2.00	10/11/20 Scale	
			Lye, IF23 oDB				(m): Depth o	1:25 Logge	d
Client:	Conrad En	les & In Situ	Tooting				2.00	AT	
Water Strike	Depth	Type	Results	Depth (m)	Level (m)	Legend	Stratum Description		
				0.00	46.60		Soft brown sandy silty CLAY. (TOPSOIL) Firm brown very sandy CLAY. (LOWESTOFT FORMATION - DIAMICTON)		0.5
				0.80	46.10		Firm light brown slightly sandy slightly gravelly C Gravel is fine to medium sub-angular to sub-rou chalk. (LOWESTOFT FORMATION - DIAMICTON)	CLAY. nded	1.0
				1.70	45.20		Firm to stiff grey and brown slightly gravelly CLA Gravel is fine to medium sub-angular to sub-rou chalk and flint. (LOWESTOFT FORMATION - DIAMICTON)	Y. nded	
				2.00	44.90	<u></u>	End of Pit at 2.000m		2.0 -
									3.0 -
									3.5
									4.0 -
									4.5
	ks: 1. Ground completion y: Stable.	water enc n backfille	countered at 1.9 ed with arisings.	 0m as se 4. Equipr	epage. 2 nent: JC	L Infiltrat B 3CX.	ion test undertaken in trial pit. 3. Upon	×.	

52	20.							TrialPit	No
X	S.					Tr	ial Pit Log	IT04	4
Geo Enviror	nmental Group							Sheet 1	of 1
Project	The Levs	and Ivy F	arm, Yaxley		oject No.		Co-ords: 611934.00 - 274974.00	Date	
Name:				GE	EG-22-742		Level: 47.03	10/11/2	
Locatio	on: Mellis Roa	ad, Yaxley	y, Eye, IP23 8DB				Dimensions 1.90 (m): O	Scale 1:25	
Client:	Conrad Er	nergy					(m): 6 Depth 6 1.70	Logge AT	
e (e	Sam	ples & In Sit	tu Testing	Dept	h Level	<u> </u>			
Water Strike	Depth	Туре	Results	(m)		Legend	Stratum Description		
		+		0.00	,	××	Soft brown sandy silty CLAY. (TOPSOIL)		_
						××	()		
				0.30	46.73		Firm light brown slightly sandy slightly gravelly (Gravel is fine to medium sub-angular to sub-rou	CLAY.	
							chalk. (LOWESTOFT FORMATION - DIAMICTON)	llueu	0.5 —
							9 2 2 4		
				0.90	46.13		Medium dense orangish brown fine SAND.		
				1.10	45.93		(LOWESTOFT FORMATION - DIAMICTON)		1.0
				1.10	40.00		Firm to stiff grey slightly gravelly CLAY. Gravel is medium sub-angular to sub-rounded chalk and	s fine to flint.] -
							(LOWESTOFT FORMATION - DIAMICTON)		-
									1.5 -
							2 2		-
				1.70	45.33	<u> </u>	End of Pit at 1.700m		-
									-
									2.0 —
									-
									-
									-
									2.5 -
									-
									-
									3.0
									-
									-
									3.5 -
									-
									4.0
									-
									-
									4.5 -
									-
									-
				nfiltra	tion test un	dortaker	ו ו in trial pit. 3. Upon completion backfilled ו	with	
	y: Stable	4. Equipm	nent: JCB 3CX.	lillitra	แบบ เธอเ นก	UCILANCI			20
Clabing	<u>y. etable</u>								

Geo Enviror	amental Group						rial Pit Log	1 of 1
Project Name:	The Leys	and Ivy Fa	rm, Yaxley		ect No. 6-22-742		Co-ords: 611794.00 - 274995.00 Date Level: 45.70 14/11/20	
	n: Mallia Da	ad Vaylay	Eye, IP23 8DE		-22-142		Dimensions 2.20 Scale	
		-)			(m): 00 1:25 Depth 0 Logged	
lient:	Conrad E				1		3.30 AT	u
Water Strike	Sam Depth	nples & In Situ Type	Results	Depth (m)	Level (m)	Legend	Stratum Description	
				0.00		×	Soft brown sandy silty CLAY. (TOPSOIL)	
				0.30	45.40	×× × ×	Stiff brown very sandy CLAY.	
	0.50 0.50 0.50	HVP HVP HVP	116 120 120				(LOWESTOFT FORMATION - DIAMICTON)	0.5
	1.10 1.10 1.10	HVP HVP HVP	160 166 170	0.80	44.90		Very stiff light brown and grey slightly sandy slightly gravelly CLAY with occasional boulder sized pockets of wet orange fine sand. Gravel is fine to course sub- angular to sub-rounded chalk and flint. (LOWESTOFT FORMATION - DIAMICTON)	1.(
				2.00	43.70		Very stiff grey slightly sandy slightly gravelly CLAY. Gravel is fine to coarse sub-angular to sub-rounded chalk and flint. (LOWESTOFT FORMATION - DIAMICTON)	2.0
				3.30	42.40		End of Pit at 3.300m	3.
								3.
								4.
								4.
emarl	ks: 1. No gro	oundwater	encountered. 2	. HVP= H	and Van	e Measu	irements (in kPa). 3. Upon completion trial pit	
tability		a with arisir	igs. 4. Equipme	ent: JCB 3	SCX.			

	mental Group			Proje	ect No.	Tr	ial Pit Log	alPit No F P02 eet 1 of Date
Project Name:	The Leys	and Ivy Fa	ırm, Yaxley	-	i-22-742			/11/2022
ocatior	n: Mellis Roa	ad, Yaxley,	Eye, IP23 8DB					Scale 1:25
Client:	Conrad E	nergy						.ogged AT
ke	Sam	ples & In Situ	ı Testing	Depth	Level			<u>AI</u>
Water Strike	Depth	Туре	Results	(m)	(m)	Legend	Stratum Description	
	0.50 0.50 0.50	HVP HVP HVP	136 144 150	0.00	46.10		Soft brown sandy silty CLAY. (TOPSOIL) Stiff brown very sandy CLAY. (LOWESTOFT FORMATION - DIAMICTON)	0.5
	1.00 1.00 1.00	HVP HVP HVP	190 190 198	0.80	45.60		Very stiff light greyish brown slightly sandy slightly gravelly CLAY. Gravel is fine to medium sub-angular to sub-rounded chalk. (LOWESTOFT FORMATION - DIAMICTON)	, 1.0
				1.40	45.00		Very stiff light brown slightly sandy slightly gravelly CLA with occasional boulder sized pockets of orange fine sand. Gravel is fine to medium sub-angular to sub- rounded chalk and flint. (LOWESTOFT FORMATION - DIAMICTON)	Y 1.5
	2.30 2.30 2.30	PP PP PP	PP=300 PP=350 PP=350				2.30-2.90m Becoming stiff to very stiff	2.
				2.90	43.50		End of Pit at 2.900m	3.
								3.
								4.
								4.
	s: 1. No gro Penetron : Stable.	oundwater neter. 4. Up	encountered. 2 pon completion	HVP= Habackfilled	and Vand with aris	e Measu sings. 5.	rements (in kPa). 3. PP=ELE Pocket Equipment: JCB 3CX.	

Geo Environm	ental Group					Tr	ial Pit Log	03
Project	The Leys	and Ivy Fa	ırm, Yaxley		ect No.		Co-ords: 611896.00 - 274972.00 Da	
lame:		-		I	6-22-742		Level: 46.70 10/11, Dimensions 2.20 Sca	
ocation	: Mellis Roa	ad, Yaxley,	Eye, IP23 8DB	3			(m): 00 1:2	25
Client:	Conrad E	nergy					Depth o Log 3.10 A	ged T
Water Strike	Sam Depth	ples & In Situ Type	I Testing Results	Depth (m)	Level (m)	Legend	Stratum Description	
	Deptil	туре	results	0.00		X	Soft brown sandy silty CLAY.	
				0.30	46.40	XX XX		
	0.50 0.50 0.50	HVP HVP HVP	190 198 204				Very stiff brown very sandy CLAY. (LOWESTOFT FORMATION - DIAMICTON)	0.5
	1.20 1.20 1.20	PP PP PP	PP=200 PP=250 PP=250	1.10	45.60		Stiff light brown slightly sandy slightly gravelly CLAY with occasional boulder sized pockets of orange fine sand. Gravel is fine to medium sub-angular to sub-rounded chalk and flint. (LOWESTOFT FORMATION - DIAMICTON)	1.0
	2.10 2.10 2.10	pp pp	PP=350 PP=350 PP=350				2.10-3.10m Becoming very stiff	2.0
				3.10	43.60		End of Pit at 3.100m	3.
								3.
								4.
								4.
emarks tability:	Penetron	undwater o neter. 4. Up	encountered. 2 oon completion	. HVP= H backfilled	and Vano I with aris	e Measu sings. 5.	ements (in kPa). 3. PP=ELE Pocket Equipment: JCB 3CX.	

Geo Environm	ental Group					Tr	ial Pit Log	TrialPit TP0 Sheet 1	4
Project Name:	The Leys	and Ivy Fa	rm, Yaxley		ect No.		Co-ords: 611822.00 - 274979.00	Date	
	· Mallia Par	ad Vaylay	Eye, IP23 8DI		6-22-742		Level: 46.10 Dimensions 2.20	14/11/20 Scale	
			Eye, IF23 ODI				(m): Depth o	1:25 Logge	
Client:	Conrad E		— <i>u</i>			1	3.30	AT	
Water Strike	Depth	ples & In Situ Type	Results	Depth (m)	Level (m)	Legend	Stratum Description		
	0.20	ES		0.00	45.80	X	Soft brown sandy silty CLAY. (TOPSOIL)		
	0.50 0.50 0.50	HVP HVP HVP	112 116 124				Stiff brown very sandy CLAY. (LOWESTOFT FORMATION - DIAMICTON)		0.5
	0.80 1.00 1.00 1.00	D HVP HVP HVP	158 168 170	1.20	44.90		1.00-1.20m Becoming very stiff Stiff light brown and grey slightly sandy slightly gra	avelly	1.0
	1.60	D					CLAY with occasional boulder sized pockets of ora fine sand. Gravel is fine to course sub-angular to s rounded chalk and flint. (LOWESTOFT FORMATION - DIAMICTON)	ange	1.5
									2.0
				3.30	42.80		2.80-3.30m Boulder size pocket of chalk at eastern end of pit.		3.0
				0.00	42.00		End of Pit at 3.300m		3.
									4.0
									4.8
emarks	s: 1. No gro	oundwater e	encountered. 2	2. HVP= H	and Vand	e Measu	rements (in kPa). 3. Upon completion trial pit		
tability:		i with arisin	igs. 4. Equipm					×	S.

ieo Environ	mental Group					Tr	rial Pit Log TrialPit N Sheet 1 c	5	
roject ame:	The Leys	and Ivy Fa	rm, Yaxley		ect No.		Co-ords: 611816.00 - 275018.00 Date Level: 45.68 14/11/202	~~	
	ni Mallia Da	ad Vaylay			-22-742		Level: 45.68 14/11/202 Dimensions 2.20 Scale		
		-	Eye, IP23 8DE)			(m): Depth o Logged	1:25	
lient:	Conrad E				1	1	3.10		
Water Strike	Sam Depth	nples & In Situ Type	Testing	Depth (m)	Level (m)	Legend	Stratum Description		
	Bopti	1900		0.00		×	Soft brown sandy silty CLAY.		
						××	(TOPSOIL)		
				0.30	45.38	×	Very stiff brown very sandy CLAY. (LOWESTOFT FORMATION - DIAMICTON)		
	0.50 0.50	HVP HVP	164 170					0.	
	0.50	HVP	174	0.70	44.98				
							Very stiff light brown and grey slightly sandy slightly gravelly CLAY with occasional boulder sized pockets of		
	1.00	HVP	190				wet orange fine sand. Gravel is fine to course sub- angular to sub-rounded chalk and flint. (LOWESTOFT FORMATION - DIAMICTON)	1.	
	1.00 1.00	HVP HVP	214 214						
								1.	
								2	
				2.20	43.48				
				2.20	43.40		Very stiff grey slightly sandy slightly gravelly CLAY. Gravel is fine to coarse sub-angular to sub-rounded		
							chalk and flint. (LOWESTOFT FORMATION - DIAMICTON)	2	
								2	
				3.10	42.58			3.	
				0.10	42.50		End of Pit at 3.100m		
								_	
								3.	
								4	
								4	
emark	s: 1. No gro backfilled	oundwater e d with arisin	encountered. 2 igs. 4. Equipmo	. HVP= Ha ent: JCB 3	and Van BCX.	e Measu	rements (in kPa). 3. Upon completion trial pit	S	
ability	: Stable						2000	1	

Geo Environr Project Name:	mental Group The Leys	and Ivy Fa	rm, Yaxley		ect No.		Co-ords: 611856.00 - 274995.00	TrialPit TP0 Sheet 1 Date	6 of 1
	n [.] Mellis Ro	ad Yaxley	Eye, IP23 8DB		-22-742		Level: 46.10 Dimensions 2.20	14/11/20 Scale	Э
Client:	Conrad E	-	Ly0, 11 20 000				(m): Depth o	1:25 Logge	
		iples & In Situ	Testing				3.10	ĂŤ	
Water Strike	Depth	Туре	Results	Depth (m)	Level (m)	Legend	Stratum Description		
	0.10	ES		0.00	45.80		Soft brown sandy silty CLAY. (TOPSOIL) Stiff brown very sandy gravelly CLAY. Gravel is fin coarse sub-angular flint.	e to	-
	0.50 0.50 0.50 0.80 0.80	HVP HVP HVP B D	138 146 150	0.60	45.50		(LOWESTOFT FORMATION - DIAMICTON) Stiff light brown and grey slightly sandy slightly gra CLAY with occasional boulder sized pockets of we orange fine sand. Gravel is fine to course sub-ang sub-rounded chalk and flint. (LOWESTOFT	t	0.5
	1.00 1.00 1.00	HVP HVP HVP	238 240 240				FORMATION - DIAMICTON)		1.0
	1.70	D		1.50	44.60		Very stiff grey slightly sandy slightly gravelly CLAY Gravel is fine to coarse sub-angular to sub-rounde chalk and flint. (LOWESTOFT FORMATION - DIAMICTON)	: d	- 1.
									2.
				3.10	43.00	<u></u>	End of Pit at 3.100m		3.
									4.
									4.
	s: 1. No gro backfilleo r: Stable	bundwater e	encountered. 2. Igs. 4. Equipme	HVP= Ha ent: JCB 3	and Vand CX.	e Measu	rements (in kPa). 3. Upon completion trial pit		

Geo Environm	nental Group					Tr	rial Pit Log	rialPit N TP07 heet 1 of	
Project Name:	The Leys	and Ivy Fa	ırm, Yaxley		ect No. 6-22-742		Co-ords: 611947.00 - 274974.00 Level: 47.05 1	Date 0/11/202	22
ocation	: Mellis Roa	ad, Yaxley,	Eye, IP23 8DB				Dimensions 2.20	Scale	_
Client:	Conrad E						(m): Depth o	1:25 Logged	
		iples & In Situ	Testing				3.60	AT	
Water Strike	Depth	Туре	Results	Depth (m)	Level (m)	Legend	Stratum Description		
	0.20	ES		0.00	40.05	X - X X - X X - X X - X X - X	Soft brown sandy silty CLAY. (TOPSOIL)		
	0.50 0.50 0.50	HVP HVP HVP	128 130 152	0.40	46.65		Stiff to very stiff brown sandy CLAY. (LOWESTOFT FORMATION - DIAMICTON)	Q	0.5
	1.00 1.00 1.00	HVP HVP HVP	214 220 220	0.80	46.25		Very stiff light brown slightly sandy slightly gravelly C with occasional boulder sized pockets of orange fine sand. Gravel is fine to medium sub-angular to sub- rounded chalk. (LOWESTOFT FORMATION - DIAMICTON)	1	1.0
	2.50	PP	PP=350				2.50-3.60m Occasional sub-angular and sub-rounded chalk and		2.(
	2.50 2.50	PP PP	PP=350 PP=400				flint cobbles.		3.
				3.60	43.45		End of Pit at 3.600m		
								4	4.
								4	4.
	(in kPa).	3. PP=ELE nt: JCB 3C	E Pocket Peneti X.	plated see rometer. 4	epage fro I. Upon o	om sand completic	pockets. 2. HVP= Hand Vane Measurements on trial pit backfilled with arisings. 5.		

Geo Environn	nental Group					Tr	ial Pit Log	Pit No 208 1 of 1
roject lame:	The Leys	and Ivy Fa	ırm, Yaxley		ect No. 6-22-742			ate /2022
		ad Vaylov	Eye, IP23 8DE		-22-142			ale
								25 Iged
lient:	Conrad E				T	1	3.20 A	T
Water Strike	Sam Depth	ples & In Situ Type	Results	Depth (m)	Level (m)	Legend	Stratum Description	
		.,,-		0.00		×	Soft brown sandy silty CLAY. (TOPSOIL)	
	0.20	ES				<u>× </u>		
				0.30	45.70	×	Stiff brown sandy CLAY. (LOWESTOFT FORMATION - DIAMICTON)	
	0.50	HVP	84					0.
	0.50 0.50	HVP HVP	90 96					
				0.90	45.10		Very stiff grey and brown slightly gravelly CLAY. Gravel	_
	1.00 1.00	D HVP	256				is fine to medium sub-angular to sub-rounded chalk and flint.	1.
	1.00 1.00	HVP HVP	264 266			* * * * * *	(LOWESTOFT FORMATION - DIAMICTON)	
							1.30-1.50m Large boulder size pocket of orangish brown fine sand.	
						· · · · · · · · · · · · · · · · · · ·		1.
						* * * * *		
								2
	2.20	PP	PP=350					
	2.20 2.20	PP PP	PP=350 PP=350			· · · · ·	2.30-3.20m Occasional sub-angular and sub-rounded chalk	
							cobbles.	2.
								3.
				3.20	42.80	* <u>*</u> * <u>*</u> *	End of Pit at 3.200m	
								3.
								4
								4.
emark	s: 1. Groun (in kPa). 3CX.	dwater end 3. PP=ELE	countered as is E Pocket Penet	olated see rometer. 4	epage fro . Upon c	m sand	pockets. 2. HVP= Hand Vane Measurements n backfilled with arisings. 5. Equipment: JCB	200
	00A.							S. 20

Geo Enviro	nmental Group					Tr	rial Pit Log	TrialPit TP0 Sheet 1	9		
Project		and Ivy Fa	rm, Yaxley		ect No.		Co-ords: 611835.00 - 274946.00	Date			
lame:	,	,	, ,	GEG	-22-742		Level: 46.60 Dimensions 2.20	14/11/2022 Scale			
ocatio	on: Mellis Ro	ad, Yaxley,	Eye, IP23 8DI	В				1:25			
lient:	Conrad E	nergy					(m): 6 Depth 6 3.20	Logge AT	d		
Water Strike		nples & In Situ	0	Depth (m)	Level (m)						
> 00	Depth	Туре	Results	0.00	(,	×÷÷	Soft brown sandy silty CLAY.				
				0.30	46.30		(TOPSOIL) Stiff brown very sandy CLAY. (LOWESTOFT FORMATION - DIAMICTON)		0.8		
	0.60 0.60 0.60	HVP HVP HVP	240 240 252				0.60-0.80m Becoming very stiff				
	1.00 1.00 1.00	HVP HVP HVP	240 256 264	0.80	45.80		Very stiff light brown and grey slightly sandy slig gravelly CLAY with occasional boulder sized po orange fine sand. Gravel is fine to medium sub- to sub-rounded chalk and flint. (LOWESTOFT FORMATION - DIAMICTON)	ckets of	1.0		
				2.10	44.50		Very stiff grey slightly sandy slightly gravelly CL	AV	2.		
							Gravel is fine to coarse sub-angular to sub-roun chalk and flint. (LOWESTOFT FORMATION - DIAMICTON)	ided	2.		
				3.20	43.40		End of Pit at 3.200m		-		
									3.		
									4.		
									4		
emar	ks: 1. No gro backfilled	bundwater of d with arisir	encountered. 2 igs. 4. Equipm	2. HVP= H	and Vand SCX.	e Measu	rements (in kPa). 3. Upon completion trial	pit			
tabilit	y: Stable							X	No.		

Geo Environn	mental Group					Tr	ial Pit Log	TrialPit TP1 Sheet 1	D
Project Name:		-	ırm, Yaxley	GEG	ect No. 6-22-742		Co-ords: 611920.00 - 274936.00 Level: 47.50 Dimensions 2.20	Date 14/11/2022 Scale	
Location	n: Mellis Roa	d, Yaxley,	Eye, IP23 8DI	В			(m):	1:25	
Client:	Conrad Er				1	1	Depth ö	Logge AT	a
Water Strike	Samp Depth	bles & In Situ Type	r Testing Results	Depth (m)	Level (m)	Legend	Stratum Description		
	0.50	HVP	108	0.00	47.20		Soft brown sandy silty CLAY. (TOPSOIL) Firm brown very sandy CLAY. (LOWESTOFT FORMATION - DIAMICTON)		0.5
	0.50 0.50 1.00	HVP HVP HVP	110 116 206	0.90	46.60		0.50-0.90m Becoming stiff	Gravel alk and	1.0
	1.00 1.00	HVP HVP	220 220				flint. (LOWESTOFT FORMATION - DIAMICTON)		1.5
									2.0
				3.30	44.20		End of Pit at 3.300m		3.0
									3.5
									4.0
									4.5
Remark	backfilled	undwater with arisir	encountered. 2 ıgs. 4. Equipm	2. HVP= H lent: JCB 3	and Vano 8CX.	e Measu	rements (in kPa). 3. Upon completion trial pi	t	20

Geo Environn	mental Group					Tr	ial Pit Log	TrialPit TP1 Sheet 1	1	
Project	The Levs	and Ivv Fa	rm, Yaxley		ect No.		Co-ords: 611872.00 - 274920.00	Date		
lame:		-			-22-742		Level: 47.30 Dimensions 2.20	14/11/20 Scale		
ocation	n: Mellis Roa	ad, Yaxley,	Eye, IP23 8DB				(m): 00	1:25		
Client:	Conrad E				1	1	Depth ö	Logge AT	a	
Water Strike		ples & In Situ	-	Depth (m)	Level (m)	Legend	Stratum Description			
> 07	Depth	Туре	Results	0.00		×	Soft brown sandy silty CLAY.		<u> </u>	
	0.30 0.50 0.50 0.50 0.90 0.90 1.00 1.00 1.00	ES HVP HVP HVP HVP HVP HVP HVP	124 134 136 158 160 166	0.40	46.90 46.60		(TOPSOIL) Stiff brown very sandy CLAY. (LOWESTOFT FORMATION - DIAMICTON) Stiff light brown and grey slightly sandy slightly g CLAY with occasional boulder sized pockets of g fine sand. Gravel is fine to medium sub-angular rounded chalk and flint. (LOWESTOFT FORMATION - DIAMICTON) 1.00-1.90m Becoming very stiff	orange	0.5	
				1.90	45.40		Very stiff grey slightly sandy slightly gravelly CL/ Gravel is fine to coarse sub-angular to sub-round chalk and flint. (LOWESTOFT FORMATION - DIAMICTON)	YY. ded	2.0	
				3.40	43.90		End of Pit at 3.400m		3.0	
									4.(
									4.5	
Remark	backfillec	undwater of with arisir	encountered. 2. ags. 4. Equipme	HVP= Ha	and Vand BCX.	e Measu	rements (in kPa). 3. Upon completion trial p	pit	200	

Geo Environm	ental Group					Tr	ial Pit Log		
Project Jame:	The Leys	and Ivy Fa	rm, Yaxley	-	ect No. -22-742			Date 14/11/2022	
	· Mellis Po	ad Varley	Eye, IP23 8DE		-22-142		Dimensions 2.20 Sc	ale	
		-	Lye, ir 25 obl	,				25 ged	
Client:	Conrad E				T		3.20	T	
Water Strike	Sam Depth	nples & In Situ Type	Testing Results	Depth (m)	Level (m)	Legend	Stratum Description		
			rtesuits	0.00		X	Soft brown sandy silty CLAY.		
	0.10	ES		0.30	44.70	× × ×	(TOPSOIL) Stiff brown very sandy gravelly CLAY. Gravel is fine to		
	0.50 0.50 0.50	HVP HVP HVP	124 126 134	0.70	44.30		Coarse sub-angular flint. (LOWESTOFT FORMATION - DIAMICTON)	0.5	
	0.80 0.80	B D					gravelly CLAY with occasional boulder sized pockets of orange fine sand. Gravel is fine to course sub-angular to sub-rounded chalk and flint. (LOWESTOFT FORMATION - DIAMICTON)	1.0	
	1.10 1.10 1.10	HVP HVP HVP	160 164 182					1.5	
							1.70-3.20m Rare mudstone and chalk cobbles and mudstone boulders	2.	
								2.	
				3.20	41.80		End of Pit at 3.200m	3.	
								3.	
								4.	
								4.	
	s 1 Group	dwater epo	ountered as is		page fro	m sand	pockets. 2. HVP= Hand Vane Measurements		
emarks tability:	(in kPa).	3. Upon co	mpletion trial p	it backfille	ed with a	risings. 4	. Equipment: JCB 3CX.		

Location: Mellis Road, Yaxley, Eye, IP23 8DB	P13	TrialPit TP1: Sheet 1
Samples Samples Depth Type Results Depth Clark		
		2.20 Scale
Samples & In Situ Testing Depth Level (m) Level (m) Level (m) Stratum Description ⁸ 0.0 1.	:25	1:25
By Control Depth Type Results One Legend Stratum Description 0.00 0.00 0.00 0.00 Soft brown sandy silly CLAY. (COPSOIL) Soft brown sandy silly CLAY. (COPSOIL) Soft brown sandy silly CLAY. (COPSOIL) 0.00 HVP 194 0.50 44.80 Soft brown sandy silly CLAY. (COPSOIL) Very stiff grey and brown silghtly gravely CLAY. (COVESTOFT FORMATION - DIAMICTON) 0.00 HVP 222 0.50 44.80 Very stiff grey and brown silghtly gravely CLAY. (LOWESTOFT FORMATION - DIAMICTON) 1.00 HVP 228 0.50 44.80 Very stiff grey and brown silghtly gravely CLAY. (LOWESTOFT FORMATION - DIAMICTON) 1.00 HVP 228 Very stiff grey and brown silghtly gravely CLAY. (LOWESTOFT FORMATION - DIAMICTON) 1.00 HVP 228 Very stiff grey and brown silghtly gravely CLAY. (LOWESTOFT FORMATION - DIAMICTON) 1.00 HVP 228 Very stiff grey and brown silghtly gravely clay. (LOWESTOFT FORMATION - DIAMICTON) 1.00 HVP 2280 Very stiff grey and brown silghtly gravely clay. (LOWESTOFT FORMATION - DIAMICTON) 2.50 PP PP=350 PP		Logge
1 1 1 0 0.00 30 45.00 Soft brown sandy silty CLAY. (TOPSOL) 0.60 HVP 104 0.50 44.80 Firm brown very sandy CLAY. (LOWESTOFT FORMATION - DIAMICTON) 1.00 HVP 222 44.80 Very stiff grey and brown slightly gravely CLAY. (LOWESTOFT FORMATION - DIAMICTON) 1.00 HVP 218 Very stiff grey and brown slightly gravely cLAY. (LOWESTOFT FORMATION - DIAMICTON) 1.00 HVP 228 Very stiff grey and brown slightly gravely cLAY. (LOWESTOFT FORMATION - DIAMICTON) 1.00 HVP 228 Very stiff grey and brown slightly gravely cLAY. (LOWESTOFT FORMATION - DIAMICTON) 1.00 HVP 228 Very stiff grey and brown slightly gravely cLAY. (LOWESTOFT FORMATION - DIAMICTON) 1.00 HVP 228 Very stiff grey and brown slightly gravely cLAY. (LOWESTOFT FORMATION - DIAMICTON) 1.00 HVP 228 Very stiff grey and brown slightly gravely cLAY. (LOWESTOFT FORMATION - DIAMICTON) 2.50 PP PP=350 Very stiff grey and brown slightly gravely cLAY. 2.50 PP PP=350 Very stiff grey and brown slightly gravely cLAY.		Description
0.60 HVP 194 0.60 HVP 194 0.60 HVP 222 1.00 HVP 228 1.00 HVP 230 1.70 HVP 230 1.70 HVP 252 2.50 PP PP=350 2.50 <td< td=""><td></td><td></td></td<>		
0.60 HVP 194 0.50 44.80 Very stiff grey and brown slightly gravelly CLAY. Gravel is fine to medium sub-angular to sub-rounded chalk and final. (LOWESTOFT FORMATION - DIAMICTON) 1.00 HVP 222 Very stiff grey and brown slightly gravelly CLAY. Gravel is fine to medium sub-angular to sub-rounded chalk and final. (LOWESTOFT FORMATION - DIAMICTON) 1.00 HVP 222 Very stiff grey and brown slightly gravelly CLAY. Gravel is fine to medium sub-angular to sub-rounded chalk and final. (LOWESTOFT FORMATION - DIAMICTON) 1.00 HVP 228 Very stiff grey and brown slightly gravelly CLAY. Gravel is fine to medium sub-angular to sub-rounded chalk and final. (LOWESTOFT FORMATION - DIAMICTON) 1.00 HVP 228 Very stiff grey and brown slightly gravelly CLAY. Gravel is fine to medium sub-angular to sub-rounded chalk and final. (LOWESTOFT FORMATION - DIAMICTON) 1.00 HVP 228 Very stiff grey and brown fine state poket of orangub brown fine state for the final state is the		AI.
0.60 HVP 194 0.50 44.80 Very stiff grey and brown slightly gravelly CLAY. Gravel is fine to medium sub-angular to sub-rounded chalk and fint. 1.00 HVP 222 220 1.00 HVP 221 1.00 HVP 222 1.01 HVP 228 1.01 HVP 228 1.00 HVP 228 1.01 HVP 228 1.01 1.02 HVP 228 1.00 HVP 228 1.01 HVP 228 1.01 1.02 <td></td> <td>AY. DN - DIAMICTON)</td>		AY. DN - DIAMICTON)
0.60 HVP 202 0.60 HVP 222 1.00 HVP 223 1.00 HVP 220 1.00 HVP 230 1.70 HVP 230 1.70 HVP 252 2.50 PP PP=350 PP PP=350 PP=350 PP PP=350 PP PP=350 PP PP=350	0	slightly gravelly CLAY Gravel
1.00 HVP 218 1.00 HVP 220 1.00 HVP 230 1.70 HVP 230 1.70 HVP 252 1.70 HVP 250 2.50 PP PP=350 2.50 PP PP=350 1.70 HVP 2.60.3.60m Occasional sub-angular and sub-rounded chaik 1.70 PP PP=350 PP 1.70 PP=350		
1.00 HVP 220 1.00 HVP 228 1.70 HVP 230 2.50 PP PP=300 PP PP=350 2.50 PP PP=350 PP PP=350 PP PP=350 PP		ON - DIAMICTON)
1.00 HVP 220 1.00 HVP 228 1.70 HVP 230 2.50 PP PP=300 PP PP=350 2.50 PP PP=350 PP PP=350 PP PP=350 PP	1.	
1.00 IIII Lo 1.70 HVP 230 2.50 PP PP=300 PP=350 2.50 PP PP=350 PP=350 2.50 PP PP=350 PP=350	.	pocket of orangish brown fine
1.70 HVP 230 1.70 HVP 252 2.50 PP PP=300 2.50 PP PP=350		_
1.70 HVP 230 1.70 HVP 252 2.50 PP PP=300 2.50 PP PP=350		
1.70 HVP 230 1.70 HVP 252 2.50 PP PP=300 2.50 PP PP=350	1	
1.70 HVP 230 1.70 HVP 252 2.50 PP PP=300 2.50 PP PP=350		
2.50 PP PP=300 2.50 PP PP=300 2.50 PP PP=350		
2.50 PP PP=350 2.50 PP PP=350 2.50 PP PP=350		
2.50 PP PP=350 2.50 PP PP=350 2.50 PP P=350 P=350	2	
2.50 PP PP=350 2.50 PP PP=350 2.50 PP P=350 P=350		
2.50 PP PP=350 2.50 PP PP=350 2.50 PP P=350 P=350		
2.50 PP PP=350	2	gular and sub-rounded chalk
3.60 41.70 End of Pit at 3.600m		_
3.60 41.70 End of Pit at 3.600m		
3.60 41.70 End of Pit at 3.600m		
3.60 41.70 End of Pit at 3.600m	3	
3.60 41.70 End of Pit at 3.600m		
3.60 41.70 End of Pit at 3.600m		
3.60 41.70 ± · · • · · · · · · · · · · · · · · · ·	3	
		² it at 3.600m
	.	
	4	
	4	
emarks: 1. No groundwater encountered. 2. HVP= Hand Vane Measurements (in kPa). 3. PP=ELE Pocket Penetrometer. 4. Upon completion backfilled with arisings. 5. Equipment: JCB 3CX.	2A	ELE Pocket
ability: Stable.	53	340

		Geo Environment	tal Group			Во	reho	ole Log	Borehole No. CP01 Sheet 1 of 2		
roject	Name:	The Ley	s and I	vy Farm Yayley	Project No. SEG-22-742		Co-ords:	611790E - 274991N	Hole Type BH		
ocatio	n:	Mellis R	oad, Ya	axley, Eye, IP23 8DI	3		Level:	45.70 m AOD	Scale 1:50		
lient:		Conrad	Energy	,			Dates:	Logged			
	Water Strikes	Sample	e and l	n Situ Testing	Depth	Level	Legend	Stratum Description			
1	Suikes	Depth (m) 0.00 - 0.50	Type B	Results	(m) 0.00	(m)	xx	Soft brown sandy silty CLAY.			
		0.50 - 1.00	в		0.50	45.70		(TOPSOIL)		0.5	
		0.50 - 1.00			0.50	45.70		Medium dense yellowish brown clayey fine to coarse SAND. (LOWESTOFT FORMATION - DIAMIC		1.0	
	\square	1.20 - 1.65 1.20	D SPT	N=13 (1,2/3,3,3,4)	1.30	45.20	×××× ××××	-			
		1.30 - 1.80 1.80	B	N=10 (1,2/0,0,0,4)				Firm grey mottled brown locally sandy CLAY. Sand is fine. Gravel is sub angu fine chalk. (LOWESTOFT FORMATION - DIAMIC	lar to angular	1.5	
		2.00 - 2.45	U	Ublow=46				<u>2.00 - 2.45m : (QUT 57 k</u> Pa).		2.0	
		2.45 - 2.50	D							2.5	
		3.00 - 3.45 3.00	D SPT	N=20 (1,3/4,3,5,8)				3.00-3.80m Becoming stiff.		3.0	
		3.50	D							3.	
		4.00 - 4.45 4.00	D SPT	N=25 (3,4/5,6,7,7)	3.80	44.40		Stiff very dark grey slightly gravelly silty is sub angular to angular fine chalk. (LOWESTOFT FORMATION - DIAMIC		4.(
		4.50 - 5.00	в		4.50	41.90		Firm greyish brown mottled grey slightl	y sandy slightly	4.5	
		5.00 - 5.45	U	Ublow=77				gravelly silty CLAY. Sand is fine. Grave to angular fine to medium chalk. (LOWESTOFT FORMATION - DIAMIC	Í is sub angular	5.	
		5.45 - 5.50	D							5.	
		6.00 - 6.45 6.00	D SPT	N=26 (2,3/3,5,8,10)				6.00-6.50m Becoming stiff.		6.	
		6.50 - 7.00	в		6.50	41.20		Medium dense orangish brown slightly		6.	
		7.00 - 7.45	D					Sand is fine to coarse. Gravel is sub ar angular fine to medium chalk. (LOWESTOFT FORMATION - DIAMIC	ngular to	7.	
		7.00 7.30 - 7.80	SPT B	N=14 (2,2/3,3,4,4)	7.30	39.20		Firm light orangish brown very sandy s silty CLAY. Sand is fine to coarse. Grav		7.	
		8.00 - 8.50 8.00 - 8.50	B UF	Ublow=100				angular to angular fine chalk. (LOWESTOFT FORMATION - DIAMIC	TON)	8.	
		8.50	D							8.	
		9.00 - 9.45 9.00	D SPT	N=25 (3,4/8,6,6,5)	9.20	38,40				9.	
		9.50	D					Stiff light orangish brown very sandy sl silty CLAY. Sand is fine to coarse. Grav angular to angular fine chalk. (LOWESTOFT FORMATION - DIAMIC	el is sub	9.	
H		10.00 - 10.45	D		10.00	36.50					

 Hand excavated service pit to 1.20 m. 2. N=SPT/CPT 'N'Value. 3. Borehole refused on very denes SAND. 4. Borehole cased (150mm) to 1.40m. 4. 50mm standpipe installed 13.80m, response zone 13.80-1.00m, bentonite seal 1.00-0.30m, flush cover concreted 0.30-0.00m. 5. Groundwater encountered at 1.30m and 13.20m as moderate inflow, rising to 0.90m and 11.00m after 20 minutes of monitoring. 6. Equipment used: Dando 3000 cable percussive rig.

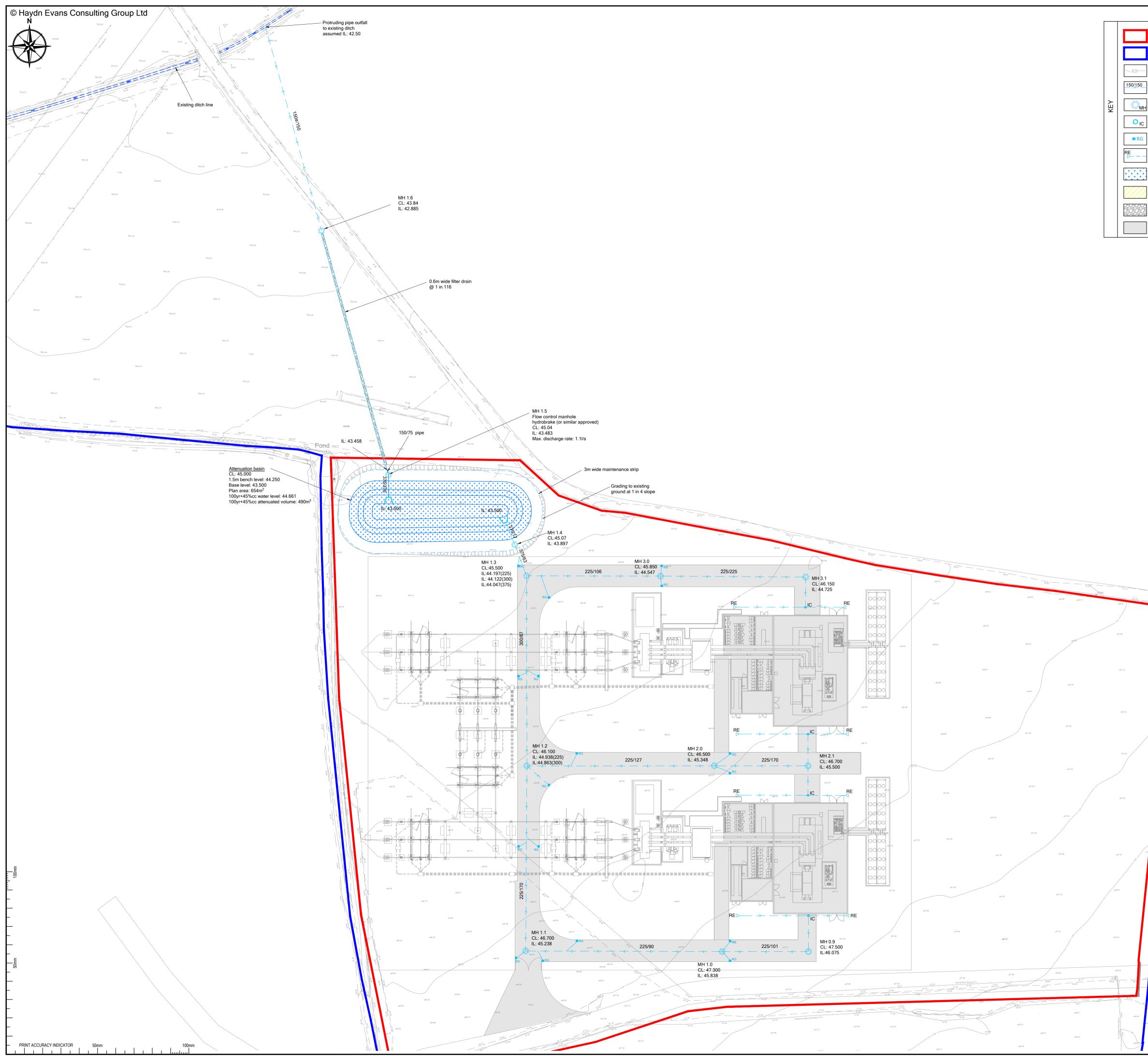
		Geo Environment	tal Group			Во	reho	ole Log	Borehole N CP01 Sheet 2 of	
Project	: Name:	The Ley	s and I	vy Farm, Yaxley	Project No. GEG-22-742		Co-ords:	611790E - 274991N	Hole Typ BH	
Locatio	on:	Mellis R	oad, Ya	axley, Eye, IP23 8I	ЭВ		Level:	45.70 m AOD	Scale 1:50	
Client:		Conrad	Energy	,			Dates:	25/11/2022	Logged E CM	By .
Well	Water Strikes			n Situ Testing	Depth (m)	Level (m)	Legend	Stratum Descriptio	on	
		Depth (m) 10.00 10.60 - 11.00 11.00 - 11.45 11.00	Type SPT B SPT SPT	Results N=15 (3,4/3,4,4,4 N=41 (4,6/8,9,10,1) 10.60	35.70		Firm to stiff dark brown locally mottle slightly gravelly silty CLAY. Sand is fi angular to angular fine chalk. (LOWESTOFT FORMATION - DIAM Very stiff orangish brown and light gr Sand is fine. Gravel is sub angular to medium flint. (POSSIBLE CRAG GROUP)	ne. Gravel is sub ICTON) ey sandy CLAY.	10.5 -
		12.00 - 12.45 12.00 12.10 - 12.60	D SPT B	N=25 (2,3/5,6,6,8) 12.10	35.10		Stiff greenish blue and brown lamina (POSSIBLE CRAG GROUP)	ted SILT.	12.0
		13.00 - 13.45 13.00 13.80	D SPT SPT	N=40 (5,6/8,9,11,1 50 (6,12/50 for	2) 13.20	33.60		Dense thickly laminated orangish bro greenish grey very silty SAND with ra angular fine to medium flint. (POSSIBLE CRAG GROUP) 13.80-14.15m Becoming very den	are sub angular to	13.0
				197mm)	14.15	32.50		End of Borehole at 14.1	50m	14.0 -
										15.0 —
										15.5 -
										16.0 - 16.5 -
										17.0 -
										17.5 -
										18.0
										18.5 -
										19.5 -
										-
(150mi concre	d excava n) to 1.4 ted 0.30	10m. 4. 50mm -0.00m. 5. Grc	standp oundwa	ipe installed 13.80	m, response : t 1.30m and 1	zone 13.80 3.20m as r	-1.00m, be noderate ir	l n very denes SAND. 4. Borehole ca ntonite seal 1.00-0.30m, flush cove nflow, rising to 0.90m and 11.00m a	er 🔍	

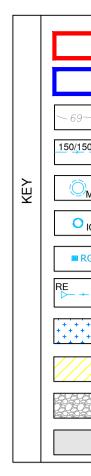
		Geo Environmen	tal Group			Во	reh	ole Log	Borehole No. CP02 Sheet 1 of 2	
rojec	t Name:	The Ley	s and I	W Farm Vavley	Project No. GEG-22-742		Co-ords:	611845E - 274976N	Hole Type BH	e
ocati	on:	Mellis R	load, Ya	axley, Eye, IP23 8D			Level:	46.40 m AOD	Scale 1:50	
lient:		Conrad	Energy				Dates:	16/11/2022	Logged B CM	ly
Nell	Water Strikes	•		n Situ Testing	Depth (m)	Level (m)	Legend	Stratum Descriptio	n	
1 🖾	Cuntoo	Depth (m) 0.00 - 0.50	Type B	Results	0.00	(11)	××	Soft brown sandy silty CLAY.		+
								(TOPSOIL)		0.5
		0.60 - 1.10	В		0.60	46.40		Firm light brown slightly sandy gravel fine to medium. Gravel is sub angula chalk.		
		1.20 - 1.65	D		1.10	45.80		(LOWESTOFT FORMATION - DIAMI Firm grey mottled brown slightly sand		1.0
		1.20 - 1.70 1.20	B SPT	N=12 (1,2/2,3,3,4)				CLAY. Sand is fine. Gravel is sub ang fine to medium chalk. (LOWESTOFT FORMATION - DIAMI	ular to angular	1.5
		1.80 2.00 - 2.45	D U	Ublow=100			<u>~~~~</u>	· · · · · · · · · · · · · · · · · · ·		2.0
		2.45 - 2.50	D					2.00 - 2.45:m: (LAB HSV 58 kPa)		
	_	2.10 2.00								2.5
		3.00 - 3.45 3.00	D SPT	N=12 (2,2/2,3,3,4)	3.00	45.30		Firm very dark grey slightly sandy gra Sand is fine. Gravel is sub angular to chalk.		- 3.0
		3.50	D					(LOWESTOFT FORMATION - DIAMI	CTON)	3.5
		4.00 - 4.45 4.00	D SPT	N=28 (10,7/5,7,8,8))			4.40-4.60m Becoming stiff.		4.0
		4.50 4.60 - 5.00	D B		4.60	43.40		Firm dark grey slightly sandy gravelly	silty CLAY Sand	4.5
		5.00 - 5.45	U	Ublow=100				is fine. Gravel is sub angular to angul (LOWESTOFT FORMATION - DIAMI 5.00 - 5.45:m (QUT 64 kPa).	ar fine chalk.	5.0
		5.45 - 5.50	D				××			5.5
		6.00 - 6.45	D		5.70	41.80		Stiff orangish brown slightly silty sand gravelly CLAY. Sand is fine. Gravel is		6.0
		6.00	SPT	N=22 (3,4/5,5,6,6)			X	angular fine chalk and rare flint. (LOWESTOFT FORMATION - DIAMI	CTON)	0.0
							X			6.5
		7.00 - 7.45 7.00	D SPT	N=4 (1,0/1,1,1,1)	6.80	40.70		Very loose to loose fine yellowish bro SAND. Sand is fine to medium. Grave to angular fine to coarse chalk and fli	el is sub angular	7.0
		7.50 - 7.95	в				× × × × × × × × × × × ×	(POSSIBLE CRAG GROUP)		7.5
		8.00 - 8.45 8.00 - 8.50	U B	Ublow=100	7.95	39.60		Firm brown slightly sandy silty gravel is sub angular to angular fine to medi		8.0
		8.50	D					(POSSIBLE CRAG GROUP)		8.5
		9.00 - 9.45 9.00	D SPT	N=20 (1,3/4,4,6,6)				9.00-9.70m Becoming stiff.		9.0
H				11-20 (1,0/4,4,0,0)						
⊥ل−ر		9.50 - 9.94 9.50	D SPT	N=50 (4,11/50 for 291mm)	9.70 9.94	38.45 36.70		9.50-9.70m Becoming very stiff. Very dense orangish brown slightly cl SAND. Sand is medium to coarse. Gi		9.5

1. Hand excavated service pit to 1.20 m. 2. N=SPT/CPT 'N'Value. 3. Borehole refused on very denes SAND. 4. Borehole cased (150mm) to 1.00m. 4. 50mm standpipe installed 9.50m, response zone 9.50-1.00m, bentonite seal 1.00-0.30m, flush cover concreted 0.30-0.00m. .5. Groundwater encountered at 3.00m as seepage. 6. Equipment used: Dando 3000 cable percussive rig.

	Geo Environmental Group				Во	reho	ole Log	Borehole No. CP02 Sheet 2 of 2	
Projec	t Name:	The Leys a	and Ivy Farm, Yaxley	Project No. GEG-22-742		Co-ords:	611845E - 274976N	Hole Type BH	
_ocati	on:	Mellis Roa	id, Yaxley, Eye, IP23 8			Level:	46.40 m AOD	Scale	
lient:		Conrad En	nergy			Dates:	16/11/2022	1:50 Logged By CM	у
Well	Water Strikes		nd In Situ Testing	Depth (m)	Level (m)	Legend	Stratum Descriptic	'n	
		Depth (m) T	ype Results				Very dense orangish brown slightly c SAND. Sand is medium to coarse. G angular to angular fine to coarse flint (POSSIBLE CRAG GROUP) End of Borehole at 9.94	ravel is sub	10.5 11.0 11.5 12.0 12.5 13.0 13.5 14.0 14.5 15.0 14.5 15.0 16.5 17.0 17.5 18.0 18.5 18.0 19.0

		Geo Environment	tal Group			Во	reho	ole Log	Borehole N CP03 Sheet 1 of	2	
roject	Name:	The Ley	s and I	vy Farm Yayley	roject No. EG-22-742		Co-ords:	611887E - 274965N	Hole Typ		
ocatic	on:	Mellis R	oad, Ya	axley, Eye, IP23 8DE	3		Level:	46.70 m AOD	Scale 1:50		
ient:		Conrad	Energy				Dates:	14/11/2022	Logged B CM	у	
Vell	Water Strikes			n Situ Testing	Depth (m)	Level (m)	Legend	Stratum Descriptior	1		
		Depth (m) 0.00 - 0.50	Type B	Results	0.00		×××	Soft brown sandy silty CLAY. (TOPSOIL)			
		0.70 - 1.20	в		0.70	46.70		Firm bluish grey mottled light brown go CLAY. Gravel is sub angular to angula		0.	
· · · · · · · · · · · · · · · · · · ·		1.20 - 1.65 1.20	D SPT	N=11 (2,2/2,3,3,3)			0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	chalk. (LOWESTOFT FORMATION - DIAMIC	CTON)	1.	
		1.70 - 2.00 2.00 - 2.45	B U	Ublow=65	1.70	46.00	00000000000000000000000000000000000000	Stiff grey mottled brown very sandy sli silty CLAY. Sand is fine. Gravel is sub angular fine to medium chalk. (LOWESTOFT FORMATION - DIAMIC	angular to	2.	
		2.45 - 2.50	D					<u>2.00 - 2.45m: (QUT 89 kP</u> a).	(10N)	2.	
	_	3.00 - 3.45 3.00	D SPT	N=17 (2,5/4,5,4,4)						3.	
		3.50	D							3.	
		4.00 - 4.45 4.00 4.50	D SPT D	N=25 (3,3/6,6,7,6)	4.20	45.00		Stiff very dark grey very gravelly silty (sub angular to angular fine to medium	chalk.	4.	
		5.00 - 5.45	U	Ublow=100				(LOWESTOFT FORMATION - DIAMIC	CTON)	5	
		5.45 - 5.50 5.50 - 6.00	D B		5.30	42.50		Stiff orangish brown slightly sandy slig silty CLAY. Sand is fine. Gravel is sub angular fine to medium chalk.		5	
		6.00 - 6.45 6.00	D SPT	N=19 (3,3/4,6,5,4)			×	(LOWESTOFT FORMATION - DIAMIC	CTON)	6	
		6.50	D				(* * × × × × * * × × * * × × ×			6	
		7.00 - 7.45 7.00	D SPT	N=15 (3,3/3,4,4,4)			×	7.00-7.50m Becoming firm to stiff.		7	
		7.50 - 8.00 8.00 - 8.45 8.00	B D SPT	N-20 (4 4/5 5 5 5)	7.50	41.40		Firm light brown becoming orangish b gravelly sandy silty CLAY. Sand is fine Gravel is sub angular to angular fine t (LOWESTOFT FORMATION - DIAMIC	to coarse. o medium chalk.	- 7	
		8.50	D	N=20 (4,4/5,5,5,5)						8	
		9.00 - 9.45 9.00 9.10 - 9.60	D SPT B	N=11 (2,1/1,3,3,4)	9.10	39.20	XX	Firm brown very sandy slightly gravell Sand is fine to coarse. Gravel is sub a chalk. (LOWESTOFT FORMATION - DIAMIC	ngular fine	9	
		10.00 - 10.50	в		10.00	37.60	$\begin{array}{c} \times \times \times \times \\ \times \times \times \times \\ \times \times \times \times \end{array} \\ \end{array}$			_	


1. Hand excavated service pit to 1.20 m. .2. N=SPT/CPT 'N'Value. 3. Borehole refused on very stiff CLAY. 4 Borehole cased (150mm) to 3.00m. 4. 50mm standpipe installed 11.00m, response zone 11.00-1.00m, bentonite seal 1.00-0.30m, flush cover concreted 0.30-0.00m. 5. Groundwater encountered at 3.45m as seepage. 6. Equipment used: Dando 3000 cable percussive rig.



		Geo Environment	al Group			Во	reho	ole Log	Borehole I CP03 Sheet 2 o	3	
Projec	t Name:	The Ley	s and	lvy Farm, Yaxley	Project No. GEG-22-74	-2	Co-ords:	611887E - 274965N	Hole Typ BH		
_ocati	on:	Mellis R	oad, Y	axley, Eye, IP23 8	DB		Level: 46.70 m AOD		Scale 1:50		
lient:		Conrad	Energy	/			Dates:	14/11/2022	Logged E CM	Зу	
Well	Water Strikes	Sample Depth (m)	-	n Situ Testing Results	Depth (m)	n Level (m)	Legend	d Stratum Description			
		10.00 - 10.50 10.50 11.00 - 11.45 11.00 11.70	Type UF D SPT SPT	Ubiow=100 N=36 (3,4/8,8,10, 50 (8,8/50 for 225r		36.70		Firm orangish brown very sandy sligh CLAY. Sand is fine to coarse. Gravel fine flint. (POSSIBLE CRAG GROUP) <u>11.00-12.08m Becoming</u> very stiff. End of Borehole at 12.08	is sub angular	10.5 11.0 11.5 12.0 12.5 13.0 13.5 14.0 14.5 15.0 15.5 16.0 15.5 16.0 15.5 16.0 15.5 18.0 17.0 18.5 18.0 18.5 19.0	

Appendix C Drainage Strategy

Haydn Evans drawing 306-006-D100 - Surface Water Drainage Design Haydn Evans drawing 306-006-D101 - Drainage Details Sheet 1 of 2 Haydn Evans drawing 306-006-D102 - Drainage Details Sheet 2 of 2 Haydn Evans drawing 306-006-D103 - Detention Pond Details Surface water drainage calculations SuDS Management & Maintenance Plan SCC correspondence

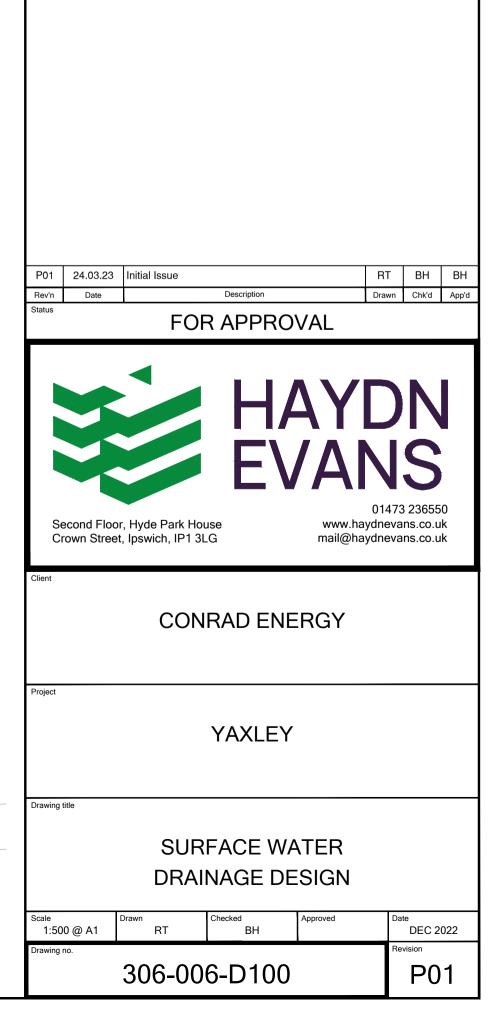
Site Boundary

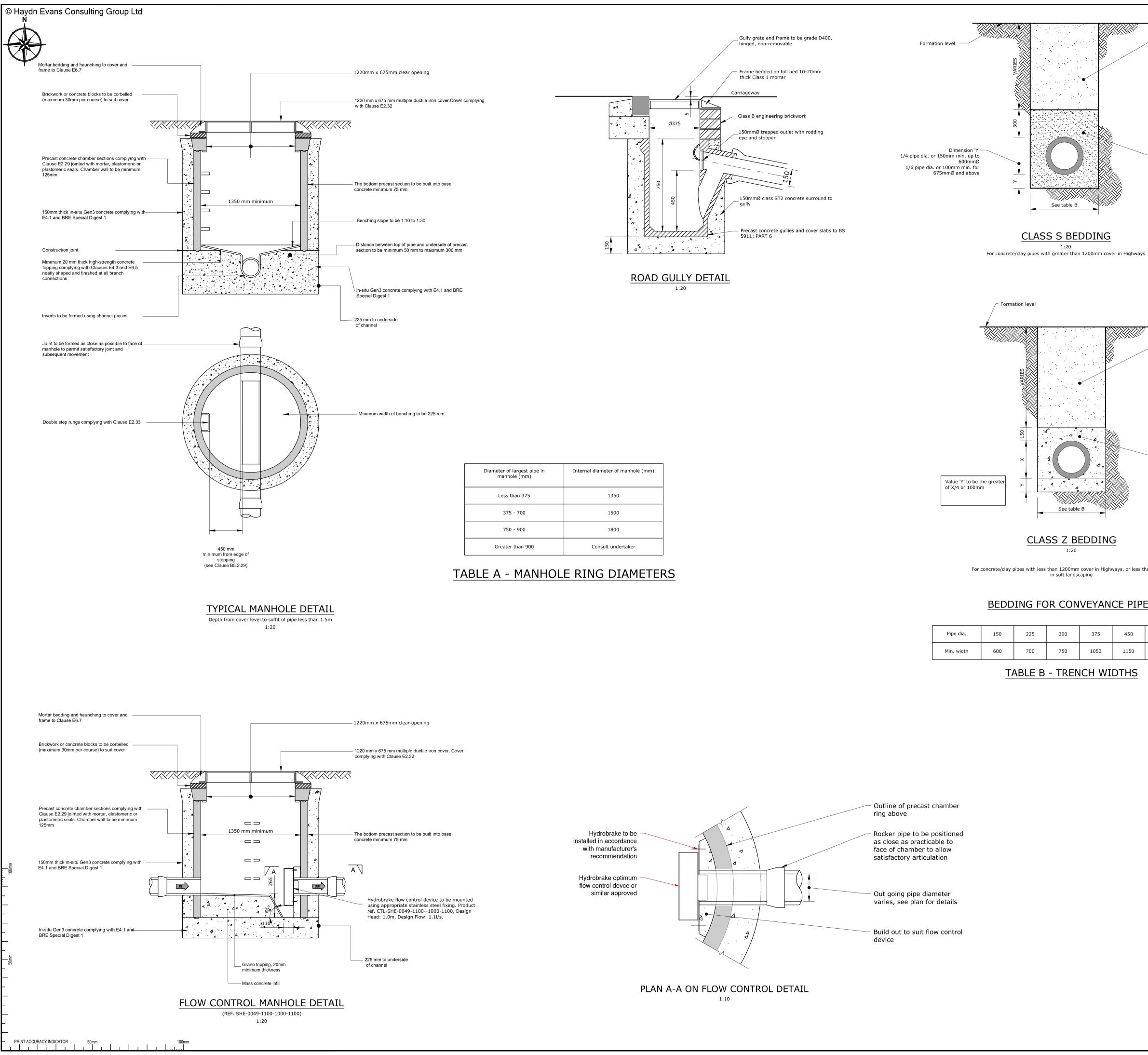
Ownership Boundary

- Existing ground contours
- Surface water pipe (Dia./Gradient)
- Surface water manhole
- Surface water PPIC 450mmØ

Road gully

Surface water rodding eye


Attenuation basin


3m wide basin maintenance strip

Filter drain

Impermeable area

- All private drainage works shall be in accordance with 'The Building Regulations Approved Document H' and British Standard EN 752.
- Prior to commencement of the works the contractor shall liaise with all relevant authorities to obtain their requirements and to obtain approval for his method of working and where appropriate his intended choice of materials.
- Refer to site survey for details of existing site conditions and bench marks.
- Prior to commencement of the works the contractor shall liaise with all relevant authorities to locate, protect and where necessary divert all existing services affected by the works. All excavations shall be kept free of standing water.
- The contractor shall ensure the stability of all excavations is maintained at all times.
- Prior to commencement of the works all drainage outfall points, whether existing sewer, drain or watercourse, shall be verified on site by the contractor. If the outfall point is found to be higher or significantly lower than shown on the drawings then the contract administrator shall be notified immediately (significant redesign of drainage and levels may be necessary). Prior to commencement of construction on-site the contractor shall install all off-site drainage connections, or satisfy himself that there are no obstructions or other reasons preventing the drain connections being made.
- All cover levels shown on this drawing are approximate. Exact levels of new covers and frames to be determined on site to match level and profile of finished surface.
- The construction of all existing chambers, gullies etc. and their covers, gratings and frames to be improved, repaired or replaced as necessary to suit their location within the finished development.). All covers, gratings and frames to chambers, gullies, channels etc. shall be of the correct load
- class to suit their location.
- Load class A15 pedestrian areas (not accessible by vehicles) Load class B125 private drives - Load class C250 basements / parking bays / lightly trafficked roads.
- Load class D400 main roads
- Gratings in pedestrian areas to be designed for pedestrian use.
- . All existing chambers, gullies channels, pipes and other drainage apparatus shall be protected from damage during the works. The contractor shall take all necessary measures to ensure that no material enters the drains (other than that which they are designed to carry).
- Refer to site investigation report for existing ground conditions and any special requirements for buried concrete (special requirements for buried concrete shall include all pre-cast and in-situ concrete and mortars). Where appropriate refer to contamination reports for details of chemicals affecting choice of materials and other additional requirements.
- 3. All pre-cast and in-situ concrete and mortars used in the construction of foul drains and sewers shall be made from sulphate resisting cement.
- I. Unless noted otherwise all pipework shall be 100mm diameter laid to a fall of 1 in 100 or steeper for surface water and 1 in 40 or steeper for foul water.
- Unless noted otherwise all pipework shall be constructed from 'super strength' vitrified clay to BS 65,BS EN 295 or UPVC to BS EN 1201 bedded and backfilled as per the manufacturers recommendations and the above listed publications.
- 6. The contractor's attention is drawn to diagrams 7 and 8 of 'The Building Regulations Approved Document H' showing details of drains laid below and near to buildings. Where ground beams are used, their level shall be set to avoid clashing with drain connections.
- Exact location of gullies to be determined on site to suit low points. The contractor shall ensure that all finished surface are laid to falls that are sufficient for all surface water to drain without surface ponding.
- . Rainwater downpipes that do not connect directly to an access point shall be fitted with a rodding access.
- . Access fittings, inspection chambers and manholes shall be constructed to the dimensions shown in tables 11 and 12 of 'The Building Regulations Approved Document H' and from the materials listed in table 14. Access points, inspection chambers and manholes shall be constructed from products designed/rated for the location in which they are to be used. They shall be installed in accordance with the manufacturers/suppliers recommendations.

For concrete/clay pipes with less than 1200mm cover in Highways, or less than 900mm

BEDDING FOR CONVEYANCE PIPES

Pipe dia.	150	225	300	375	450	525	600
Min. width	600	700	750	1050	1150	1200	1350

Backfill to trench to be type 6F1 to dot specification for Highway Works, compacted in max. 225mm layers (moisture content to be tested in accordance with BS 1377: Part 2 with acceptable of optimum MC and optimum

Type A granular material to Dot

Specification- table 5/5, well compacted

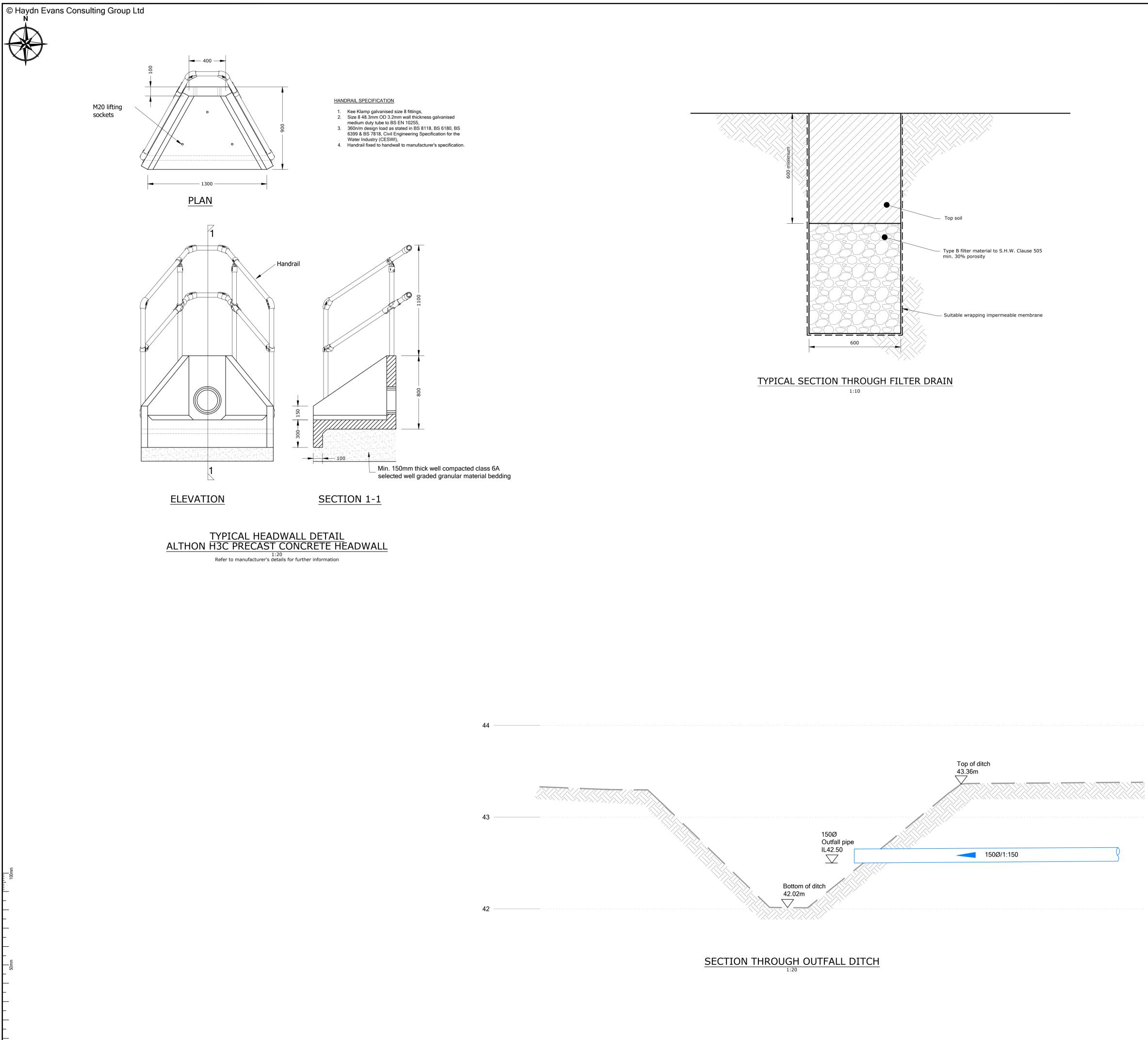
MC -2%)

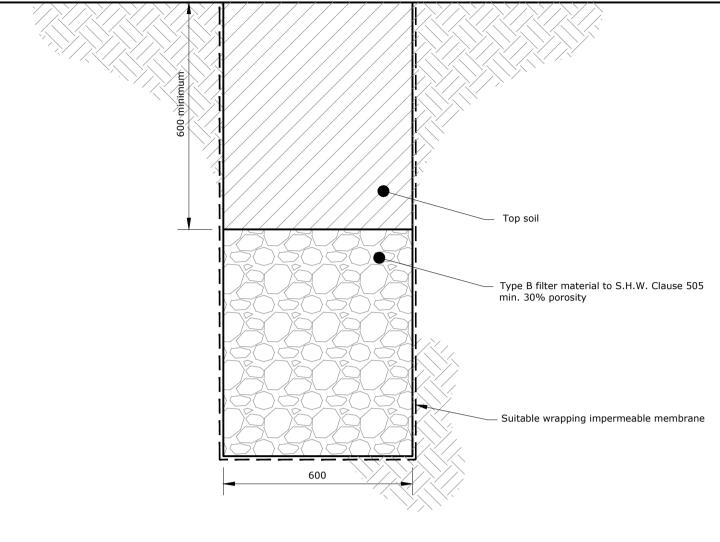
Notes

- All private drainage works shall be in accordance with 'The Building Regulations Approved Document H' and British Standard EN 752.
- Prior to commencement of the works the contractor shall liaise with all relevant authorities to obtain their requirements and to obtain approval for his method of working and where appropriate his intended choice of materials.
- Refer to site survey for details of existing site conditions and bench marks.
- Prior to commencement of the works the contractor shall liaise with all relevant authorities to locate, protect and where necessary divert all existing services affected by the works.
- All excavations shall be kept free of standing water.
- The contractor shall ensure the stability of all excavations is maintained at all times.
- Prior to commencement of the works all drainage outfall points, whether existing sewer, drain or watercourse, shall be verified on site by the contractor. If the outfall point is found to be higher or significantly lower than shown on the drawings then the contract administrator shall be notified immediately (significant redesign of drainage and levels may be necessary). Prior to commencement of construction on-site the contractor shall install all off-site drainage connections, or satisfy himself that there are no obstructions or other reasons preventing the drain connections being made.
- All cover levels shown on this drawing are approximate. Exact levels of new covers and frames to be determined on site to match level and profile of finished surface.
- The construction of all existing chambers, gullies etc. and their covers, gratings and frames to be improved, repaired or replaced as necessary to suit their location within the finished development.
- 0. All covers, gratings and frames to chambers, gullies, channels etc. shall be of the correct load class to suit their location
- Load class A15 pedestrian areas (not accessible by vehicles) - Load class B125 private drives
- Load class C250 basements / parking bays / lightly trafficked roads. - Load class D400 main roads
- Gratings in pedestrian areas to be designed for pedestrian use.
- All existing chambers, gullies channels, pipes and other drainage apparatus shall be protected from damage during the works. The contractor shall take all necessary measures to ensure that no material enters the drains (other than that which they are designed to carry).
- Refer to site investigation report for existing ground conditions and any special requirements for buried concrete (special requirements for buried concrete shall include all pre-cast and in-situ concrete and mortars). Where appropriate refer to contamination reports for details of chemicals affecting choice of materials and other additional requirements.
- 3. All pre-cast and in-situ concrete and mortars used in the construction of foul drains and sewers shall be made from sulphate resisting cement.
- 4. Unless noted otherwise all pipework shall be 100mm diameter laid to a fall of 1 in 100 or steeper for surface water and 1 in 40 or steeper for foul water.
- 5. Unless noted otherwise all pipework shall be constructed from 'super strength' vitrified clay to BS 65,BS EN 295 or UPVC to BS EN 1201 bedded and backfilled as per the manufacturers recommendations and the above listed publications.
- 5. The contractor's attention is drawn to diagrams 7 and 8 of 'The Building Regulations Approved Document H' showing details of drains laid below and near to buildings. Where ground beams are used, their level shall be set to avoid clashing with drain connections.
- Exact location of gullies to be determined on site to suit low points. The contractor shall ensure that all finished surface are laid to falls that are sufficient for all surface water to drain without surface ponding. Rainwater downpipes that do not connect directly to an access point shall be fitted with a rodding
- access. Access fittings, inspection chambers and manholes shall be constructed to the dimensions shown in tables 11 and 12 of The Building Regulations Approved Document H' and from the materials listed in table 14. Access points, inspection chambers and manholes shall be constructed from products designed/rated for the location in which they are to be used. They shall be installed in accordance with the manufacturers/suppliers recommendations.

Concrete grade ST4 (designed to BRE special Digest 1 concrete in aggressive ground) to specification for Highway Works clause 503.3 (iii) with 18mm compressive board at all pipe joints

Selected as-dug material to be compacted in layers of maximum

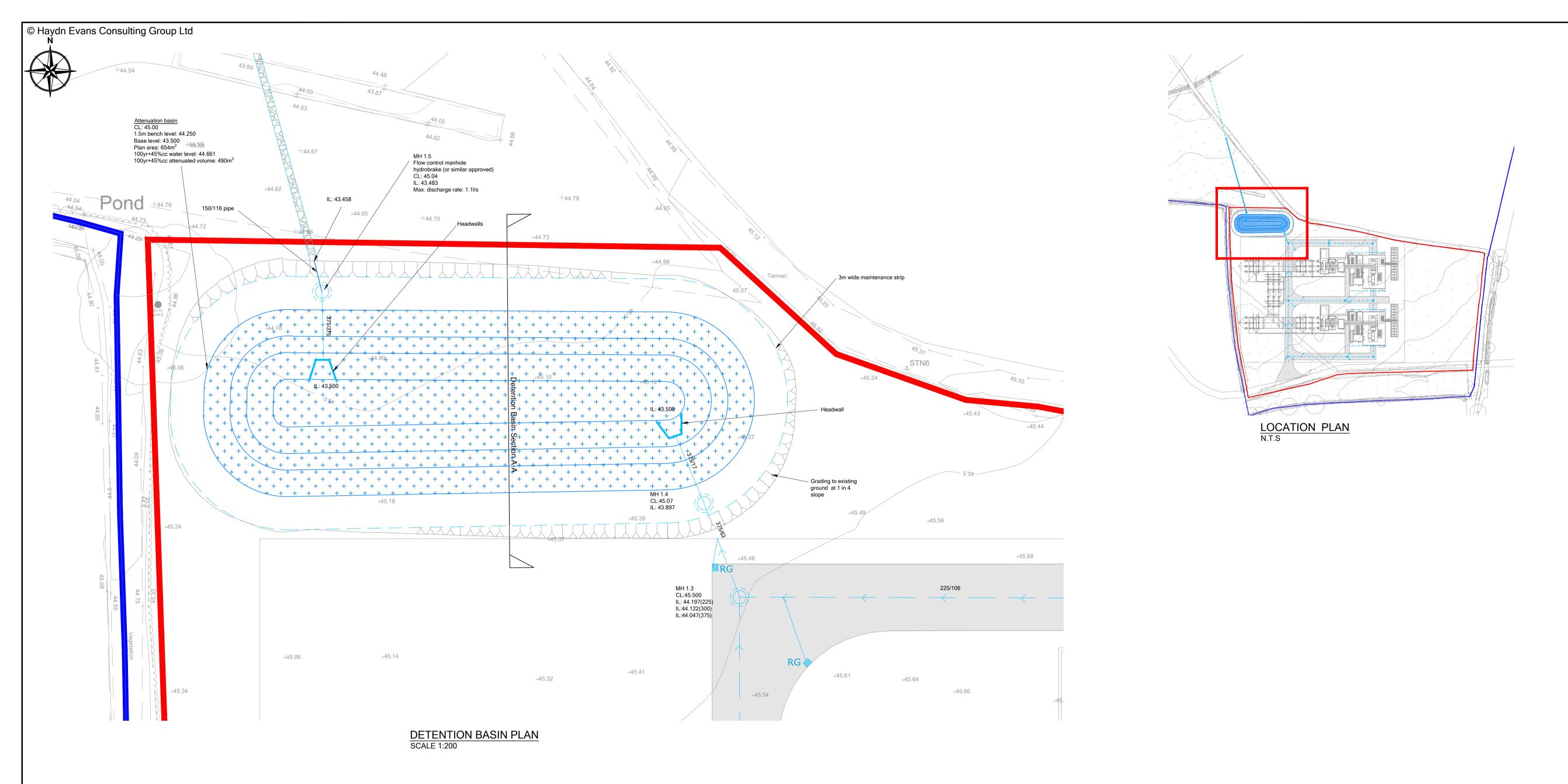

225mm thickness, to be free from


aggregate larger than 40mm and building debris under landscaped

up to formation level of sub-base

areas, under roads and hard standings

P01	24.04.23	Initial issue			RT	ВН	вн
Rev'n	Date		Description		Drawn	Chk'd	App'd
Status		FOR		VAL			
		r, Hyde Park Hous , Ipswich, IP1 3L0	E	AY /AI www.ha mail@ha	01473 oydneva	S 23655 ns.co.u	i0 ik
		CONF	RAD ENE	ERGY			
Project			YAXLEY				
Drawing		SH	IAGE DE EET 1 O	F 2	1-		
Scale AS SHO Drawing	OWN @ A1	RT		Approved	Da Re	DEC 2	
		300-000	וטוס-נ			P0	



Notes

- All private drainage works shall be in accordance with 'The Building Regulations Approved Document H' and British Standard EN 752.
- Prior to commencement of the works the contractor shall liaise with all relevant authorities to obtain their requirements and to obtain approval for his method of working and where appropriate his intended choice of materials.
- Refer to site survey for details of existing site conditions and bench marks.
- Prior to commencement of the works the contractor shall liaise with all relevant authorities to locate, protect and where necessary divert all existing services affected by the works.
- . All excavations shall be kept free of standing water.
- . The contractor shall ensure the stability of all excavations is maintained at all times.
- Prior to commencement of the works all drainage outfall points, whether existing sewer, drain or watercourse, shall be verified on site by the contractor. If the outfall point is found to be higher or significantly lower than shown on the drawings then the contract administrator shall be notified immediately (significant redesign of drainage and levels may be necessary). Prior to commencement of construction on-site the contractor shall install all off-site drainage connections, or satisfy himself that there are no obstructions or other reasons preventing the drain connections being made.
- . All cover levels shown on this drawing are approximate. Exact levels of new covers and frames to be determined on site to match level and profile of finished surface.
- . The construction of all existing chambers, gullies etc. and their covers, gratings and frames to be improved, repaired or replaced as necessary to suit their location within the finished development.
- 10. All covers, gratings and frames to chambers, gullies, channels etc. shall be of the correct load class to suit their location.
- Load class A15 pedestrian areas (not accessible by vehicles) - Load class B125 private drives
- Load class C250 basements / parking bays / lightly trafficked roads. Load class D400 main roads
- Gratings in pedestrian areas to be designed for pedestrian use.
- All existing chambers, gullies channels, pipes and other drainage apparatus shall be protected from damage during the works. The contractor shall take all necessary measures to ensure that no material enters the drains (other than that which they are designed to carry).
- Refer to site investigation report for existing ground conditions and any special requirements for buried concrete (special requirements for buried concrete shall include all pre-cast and in-situ concrete and mortars). Where appropriate refer to contamination reports for details of chemicals affecting choice of materials and other additional requirements.
- 3. All pre-cast and in-situ concrete and mortars used in the construction of foul drains and sewers shall be made from sulphate resisting cement.
- 4. Unless noted otherwise all pipework shall be 100mm diameter laid to a fall of 1 in 100 or steeper for surface water and 1 in 40 or steeper for foul water.
- 5. Unless noted otherwise all pipework shall be constructed from 'super strength' vitrified clay to BS 65,BS EN 295 or UPVC to BS EN 1201 bedded and backfilled as per the manufacturers recommendations and the above listed publications.
- 6. The contractor's attention is drawn to diagrams 7 and 8 of 'The Building Regulations Approved Document H' showing details of drains laid below and near to buildings. Where ground beams are used, their level shall be set to avoid clashing with drain connections.
- 7. Exact location of gullies to be determined on site to suit low points. The contractor shall ensure that all finished surface are laid to falls that are sufficient for all surface water to drain without surface ponding. Rainwater downpipes that do not connect directly to an access point shall be fitted with a rodding
- access. 9. Access fittings, inspection chambers and manholes shall be constructed to the dimensions shown in tables 11 and 12 of 'The Building Regulations Approved Document H' and from the materials listed in table 14. Access points, inspection chambers and manholes shall be constructed from products designed/rated for the location in which they are to be used. They shall be installed in accordance with

the manufacturers/suppliers recommendations.

RTBHBHDrawnChk'dApp'd P01 24.04.23 Initial issue Rev'n Date Description FOR APPROVAL 01473 236550 www.haydnevans.co.uk Second Floor, Hyde Park House Crown Street, Ipswich, IP1 3LG mail@haydnevans.co.uk CONRAD ENERGY YAXLEY wing title DRAINAGE DETAILS SHEET 2 OF 2 Scale AS SHOWN @ A1 Drawn RT DEC 2022 evision 306-006-D102 P01

Filter Medium Topsoil

Sieve Size (mm)

0.06

0.063 - 0.2

0.2 - 0.6

0.6 - 2.0

2.0 - 6.0

% Passing

less than 5

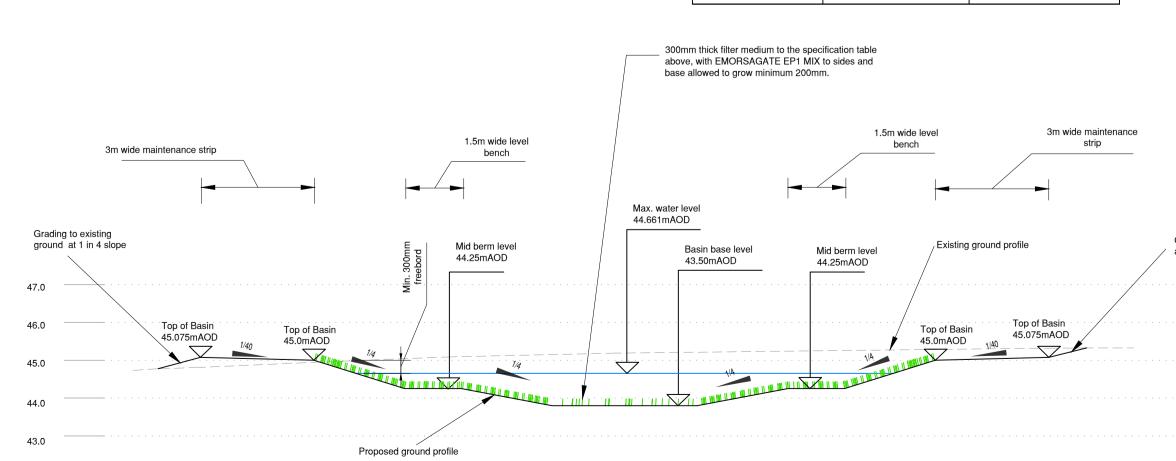
less than 20

35-65

50-60

less than 10

Soil Type


Clay and Silt

Fine Sand

Medium Sand

Coarse Sand

Fine Gravel

In addition to the sieve size, the filter material shall comply as below:

The organic matter content should be 3-5% (w/w),

ph-should be 5.5-8.5 (1:2.5 soil water extract), Total nitrogen should be 0.10-0.30%, Extractable phosphorus should be 16-100mg/i,

Extractible pothassium should be 120-900mg/i

particle size range,

• •

stated)

- The filter medium should well-grade and the composition contain limited

(Methods of analysis in accordance with BS 3882:2015, unless otherwise

Notes

- 1. All private drainage works shall be in accordance with 'The Building Regulations Approved Document H' and British Standard EN 752.
- 2. Prior to commencement of the works the contractor shall liaise with all relevant authorities to obtain their requirements and to obtain approval for his method of working and where appropriate his intended choice of materials.
- 3. Refer to site survey for details of existing site conditions and bench marks.
- Prior to commencement of the works the contractor shall liaise with all relevant authorities to locate, protect and where necessary divert all existing services affected by the works.
- All excavations shall be kept free of standing water.The contractor shall ensure the stability of all excavations is maintained at all times.
- 7. Prior to commencement of the works all drainage outfall points, whether existing sewer, drain or watercourse, shall be verified on site by the contractor. If the outfall point is found to be higher or significantly lower than shown on the drawings then the contract administrator shall be notified immediately (significant redesign of drainage and levels may be necessary). Prior to commencement of construction on-site the contractor shall install all off-site drainage connections, or satisfy himself that there are no obstructions or other reasons preventing the drain connections being made.
- All cover levels shown on this drawing are approximate. Exact levels of new covers and frames to be determined on site to match level and profile of finished surface.
- The construction of all existing chambers, gullies etc. and their covers, gratings and frames to be improved, repaired or replaced as necessary to suit their location within the finished development.
 All covers, gratings and frames to chambers, gullies, channels etc. shall be of the correct load
- class to suit their location.
- Load class A15 pedestrian areas (not accessible by vehicles)
 Load class B125 private drives
 Load class C250 basements / parking bays / lightly trafficked roads.
- Load class D400 main roads
- Gratings in pedestrian areas to be designed for pedestrian use.
- 11. All existing chambers, gullies channels, pipes and other drainage apparatus shall be protected from damage during the works. The contractor shall take all necessary measures to ensure that no material enters the drains (other than that which they are designed to carry).
- 12. Refer to site investigation report for existing ground conditions and any special requirements for buried concrete (special requirements for buried concrete shall include all pre-cast and in-situ concrete and mortars). Where appropriate refer to contamination reports for details of chemicals affecting choice of materials and other additional requirements.
- 13. All pre-cast and in-situ concrete and mortars used in the construction of foul drains and sewers shall be made from sulphate resisting cement.
- 14. Unless noted otherwise all pipework shall be 100mm diameter laid to a fall of 1 in 100 or steeper for surface water and 1 in 40 or steeper for foul water.
- 15. Unless noted otherwise all pipework shall be constructed from 'super strength' vitrified clay to BS 65,BS EN 295 or UPVC to BS EN 1201 bedded and backfilled as per the manufacturers recommendations and the above listed publications.
- 16. The contractor's attention is drawn to diagrams 7 and 8 of 'The Building Regulations Approved Document H' showing details of drains laid below and near to buildings. Where ground beams are used, their level shall be set to avoid clashing with drain connections.
- 17. Exact location of gullies to be determined on site to suit low points. The contractor shall ensure that all finished surface are laid to falls that are sufficient for all surface water to drain without surface ponding.
- 18. Rainwater downpipes that do not connect directly to an access point shall be fitted with a rodding access.
- 19. Access fittings, inspection chambers and manholes shall be constructed to the dimensions shown in tables 11 and 12 of 'The Building Regulations Approved Document H' and from the materials listed in table 14. Access points, inspection chambers and manholes shall be constructed from products designed/rated for the location in which they are to be used. They shall be installed in accordance with the manufacturers/suppliers recommendations.

P01	24.04.23	Initial issue		R	т вн вн				
Rev'n Status	Date		Description	Dra	awn Chk'd App'd				
		FOF	R APPRO	VAL					
		r, Hyde Park Hou , Ipswich, IP1 3L	EV	AYC AAC AAC 01. www.haydow mail@haydow	1S 473 236550 evans.co.uk				
Chen		CON	RAD ENE	RGY					
Project	Project								
Drawing t	Drawing title DETENTION POND DETAILS								
Scale 1:20	۱ 0 @ A1	Drawn RT	Checked	Approved	Date DEC 2022				
Drawing I		306-00	6-D103		P01				

Grading to existing ground 4 at 1 in 4 slope

File: 306-003-CA1-Rev2-2cond	Page 1
Network: Storm Network	306-006-CA03
James Calvert	Yaxley
06/12/2022	Surface Water Calcs

Design Settings

Rainfall Methodology	FEH-99	Time of Entry (mins)	3.00
Return Period (years)	100	Maximum Time of Concentration (mins)	30.00
Additional Flow (%)	45	Maximum Rainfall (mm/hr)	50.0
C (1km)	-0.023	Minimum Velocity (m/s)	1.00
D1 (1km)	0.279	Connection Type	Level Soffits
D2 (1km)	0.319	Minimum Backdrop Height (m)	0.200
D3 (1km)	0.285	Preferred Cover Depth (m)	1.200
E (1km)	0.312	Include Intermediate Ground	\checkmark
F (1km)	2.469	Enforce best practice design rules	х
CV	0.750		

<u>Nodes</u>

Name	Area (ha)	T of E (mins)	Add Inflow (I/s)	Cover Level (m)	Diameter (mm)	Easting (m)	Northing (m)	Depth (m)
0.9	0.048	3.00		47.500	1200	611870.894	274911.715	1.425
1.0	0.030	3.00		47.300	1200	611847.000	274911.000	1.462
1.1	0.057	3.00		46.700	1200	611793.000	274911.000	1.462
2.1	0.096	3.00		46.700	1200	611870.769	274962.558	1.200
2.0	0.043	3.00		46.500	1200	611845.000	274962.000	1.152
1.2	0.063	3.00		46.100	1200	611793.000	274962.000	1.237
3.1	0.048	3.00		46.150	1200	611870.137	275014.235	1.425
3.0	0.032	3.00		45.850	1200	611830.000	275014.000	1.303
1.3	0.059	3.00		45.500	1200	611793.000	275014.000	1.453
1.4	0.000	3.00	0.0	45.070	1200	611790.541	275023.078	1.173
Basin	0.062	3.00		45.000	1	611789.461	275036.095	1.500
1.5	0.000	3.00		45.040	1200	611755.957	275042.214	1.557
1.6	0.000	3.00		43.840	1200	611737.649	275109.042	0.955
Outfall	0.000	3.00		43.300	1	611722.335	275164.724	0.800

<u>Links (Results)</u>

Name	Vel (m/s)	Cap (I/s)	Flow (I/s)	US Depth (m)	DS Depth (m)	Σ Area (ha)	Σ Add Inflow (I/s)	Pro Depth (mm)	Pro Velocity (m/s)
0.900	1.302	51.7	9.4	1.200	1.237	0.048	0.0	65	0.993
1.000	1.379	54.8	15.3	1.237	1.237	0.078	0.0	81	1.187
1.001	1.000	39.7	26.5	1.237	0.937	0.135	0.0	135	1.069
2.100	1.001	39.8	18.9	0.975	0.927	0.096	0.0	109	0.989
2.000	1.159	46.1	27.3	0.927	0.937	0.139	0.0	124	1.206
1.002	1.879	132.8	66.2	0.937	1.078	0.337	0.0	150	1.877
3.100	0.867	34.5	9.4	1.200	1.078	0.048	0.0	80	0.742
3.000	1.271	50.5	15.7	1.078	1.078	0.080	0.0	86	1.123
1.004	2.291	253.1	93.5	1.078	0.798	0.476	0.0	158	2.127
1.005_1	4.477	494.5	93.5	0.798	1.125	0.476	0.0	109	3.468
1.005	0.929	102.7	105.7	1.125	1.182	0.538	0.0	321	1.050
1.006	0.932	16.5	105.7	1.407	0.805	0.538	0.0	150	0.950
1.007	0.818	14.5	105.7	0.805	0.650	0.538	0.0	150	0.833

AUSEWAY 🛟	Haydn Evans Cons	ulting Ltd	File: 306-003-CA1 Network: Storm N James Calvert 06/12/2022		Page 2 306-006-CA03 Yaxley Surface Water Calcs	
		<u>Simulatio</u>	n Settings			
Rainfall Methodolog C (1km D1 (1km D2 (1km D3 (1km E (1km	 i) -0.023 i) 0.279 i) 0.319 i) 0.285 	Summ	State x	Check Dis Check Dis	storage (m³/ha) 20.0 scharge Rate(s) x charge Volume √ 50 minute (m³) 73	
60 120		Storm D00960201440	urations 2160 432 2880 576		10080	
I		•		Additional Flo	w	
	(years) 2	(CC %) 0	(A %) 0	(Q %)	0	
	30	0	0		0	
	100	0	0		0	
	100	45	0		0	
	Pre-o	development	Discharge Volume			
Pos	Site Make Greenfield Meth itively Drained Area (l Soil Inc	nod FSR/FEH ha) 0.286	Climate Storm Dura	Change (%) (ation (mins)	100 D 360 D	
	S	SPR 0.47 SWI 84.360		PR (0.408 73	
	Node	1.5 Online Hy	dro-Brake [®] Contro	<u>) </u>		
Replaces Downs Inver Design	Flap Valvextream Link \checkmark t Level (m)43.483Depth (m)1.200t Flow (l/s)1.3	Min Out	Sump Available Product Number let Diameter (m)	\checkmark	upstream storage -1300-1200-1300	
	<u>Node B</u>	asin Depth/A	rea Storage Structu	<u>ire</u>		
Base Inf Coefficie Side Inf Coefficie		Safety Fa Porc		Invert ne to half emp	Level (m) 43.500 ty (mins)	
Depth Area Inf Are (m) (m ²) (m ²) 0.000 143.3 0.	(m) (m²)	(m²)	DepthArea(m)(m²)0.601502.0	Inf Area (m ²) 0.0	Depth Area Inf Area (m) (m²) (m²) 1.500 770.2 0.0	
	<u>Node 1</u>	.5 Link Surrou	nd Storage Structu	ire		
Base Inf Coefficient (Side Inf Coefficient (Safety	. ,		Porosity 1.0 vert Level (m) 43. empty (mins) 0	.483 Surro	Link 1.005 ound Shape (Trench) neter (mm) 100	

Results for 2 year Critical Storm Duration. Lowest mass balance: 99.70%

Node Event	US Node	Peak (mins)	Level (m)	Depth (m)	Inflow (I/s)	Node Vol (m³)	Flood (m³)	Status
60 minute summer	0.9	32	46.121	0.046	4.8	0.0831	0.0000	ОК
60 minute summer	1.0	32	45.895	0.057	7.8	0.0872	0.0000	ОК
60 minute summer	1.1	33	45.327	0.089	13.4	0.1699	0.0000	ОК
60 minute summer	2.1	32	45.577	0.077	9.6	0.2093	0.0000	ОК
60 minute summer	2.0	33	45.432	0.084	13.9	0.1581	0.0000	ОК
60 minute summer	1.2	33	44.965	0.102	32.0	0.2196	0.0000	ОК
60 minute summer	3.1	32	44.782	0.057	4.8	0.1020	0.0000	ОК
60 minute summer	3.0	33	44.607	0.060	8.0	0.0977	0.0000	ОК
60 minute summer	1.3	33	44.169	0.122	45.3	0.2363	0.0000	ОК
60 minute summer	1.4	33	43.977	0.080	45.3	0.0901	0.0000	ОК
960 minute winter	Basin	915	43.899	0.399	5.5	81.5889	0.0000	SURCHARGED
960 minute winter	1.5	915	43.899	0.416	1.1	0.4707	0.0000	SURCHARGED
60 minute summer	1.6	262	42.912	0.027	1.0	0.0308	0.0000	ОК
60 minute summer	Outfall	262	42.527	0.027	1.0	0.0000	0.0000	ОК

Link Event (Upstream Depth)	US Node	Link	DS Node	Outflow (I/s)	Velocity (m/s)	Flow/Cap	Link Vol (m³)	Discharge Vol (m³)
60 minute summer	0.9	0.900	1.0	4.8	0.710	0.093	0.1629	. ,
60 minute summer	1.0	1.000	1.1	7.7	0.702	0.140	0.6006	
60 minute summer	1.1	1.001	1.2	12.8	0.892	0.323	0.7331	
60 minute summer	2.1	2.100	2.0	9.6	0.757	0.242	0.3279	
60 minute summer	2.0	2.000	1.2	13.5	1.009	0.293	0.6961	
60 minute summer	1.2	1.002	1.3	32.1	1.546	0.242	1.0802	
60 minute summer	3.1	3.100	3.0	4.8	0.589	0.139	0.3269	
60 minute summer	3.0	3.000	1.3	7.8	0.921	0.153	0.3115	
60 minute summer	1.3	1.004	1.4	45.3	1.908	0.179	0.2255	
60 minute summer	1.4	1.005_1	Basin	45.4	1.973	0.092	0.2803	
960 minute winter	Basin	1.005	1.5	1.1	0.117	0.011	0.6986	
960 minute winter	1.5	Hydro-Brake®	1.6	1.0				
60 minute summer	1.6	1.007	Outfall	1.0	0.477	0.071	0.1252	17.2

Results for 30 year Critical Storm Duration. Lowest mass balance: 99.70%

Node Event	US Node	Peak (mins)	Level (m)	Depth (m)	Inflow (I/s)	Node Vol (m³)	Flood (m³)	Status
60 minute summer	0.9	32	46.150	0.075	12.3	0.1356	0.0000	ОК
60 minute summer	1.0	32	45.931	0.093	20.0	0.1434	0.0000	ОК
60 minute summer	1.1	33	45.400	0.162	34.5	0.3097	0.0000	ОК
60 minute summer	2.1	32	45.634	0.134	24.6	0.3650	0.0000	ОК
60 minute summer	2.0	32	45.498	0.150	35.6	0.2823	0.0000	ОК
60 minute summer	1.2	33	45.042	0.179	83.1	0.3840	0.0000	ОК
60 minute summer	3.1	32	44.818	0.093	12.3	0.1686	0.0000	ОК
60 minute summer	3.0	32	44.648	0.101	20.5	0.1643	0.0000	ОК
60 minute summer	1.3	33	44.258	0.211	117.1	0.4098	0.0000	ОК
1440 minute winter	1.4	1410	44.244	0.347	12.6	0.3921	0.0000	ОК
1440 minute winter	Basin	1410	44.244	0.744	14.1	216.3818	0.0000	SURCHARGED
1440 minute winter	1.5	1410	44.244	0.761	1.1	0.8610	0.0000	SURCHARGED
1440 minute winter	1.6	1410	42.913	0.028	1.1	0.0312	0.0000	ОК
1440 minute winter	Outfall	1410	42.527	0.027	1.1	0.0000	0.0000	ОК

Link Event (Upstream Depth)	US Node	Link	DS Node	Outflow (I/s)	Velocity (m/s)	Flow/Cap	Link Vol (m³)	Discharge Vol (m ³)
60 minute summer	0.9	0.900	1.0	12.3	0.912	0.238	0.3236	
60 minute summer	1.0	1.000	1.1	19.9	0.876	0.363	1.2330	
60 minute summer	1.1	1.001	1.2	33.2	1.120	0.836	1.5123	
60 minute summer	2.1	2.100	2.0	24.7	0.939	0.619	0.6798	
60 minute summer	2.0	2.000	1.2	34.7	1.268	0.753	1.4305	
60 minute summer	1.2	1.002	1.3	83.3	1.962	0.628	2.2093	
60 minute summer	3.1	3.100	3.0	12.3	0.750	0.358	0.6600	
60 minute summer	3.0	3.000	1.3	20.1	1.189	0.397	0.6262	
60 minute summer	1.3	1.004	1.4	117.3	2.375	0.464	0.5065	
1440 minute winter	1.4	1.005_1	Basin	13.5	1.260	0.027	0.7105	
1440 minute winter	Basin	1.005	1.5	1.1	0.117	0.010	0.6986	
1440 minute winter	1.5	Hydro-Brake [®]	1.6	1.1				
1440 minute winter	1.6	1.007	Outfall	1.1	0.481	0.074	0.1277	93.6

Results for 100 year Critical Storm Duration. Lowest mass balance: 99.70%

Node Event	US Node	Peak (mins)	Level (m)	Depth (m)	Inflow (I/s)	Node Vol (m³)	Flood (m³)	Status
60 minute summer	0.9	32	46.168	0.093	17.9	0.1681	0.0000	ОК
60 minute summer	1.0	32	45.953	0.115	29.1	0.1778	0.0000	OK
60 minute summer	1.1	33	45.529	0.290	50.3	0.5551	0.0000	SURCHARGED
60 minute summer	2.1	32	45.682	0.182	35.9	0.4982	0.0000	ОК
60 minute summer	2.0	33	45.582	0.234	51.7	0.4388	0.0000	SURCHARGED
60 minute summer	1.2	33	45.093	0.230	116.4	0.4938	0.0000	ОК
60 minute summer	3.1	32	44.841	0.116	17.9	0.2099	0.0000	ОК
60 minute summer	3.0	32	44.675	0.128	30.0	0.2072	0.0000	ОК
1440 minute winter	1.3	1440	44.402	0.355	10.3	0.6905	0.0000	ОК
1440 minute winter	1.4	1380	44.405	0.508	14.9	0.5742	0.0000	SURCHARGED
1440 minute winter	Basin	1410	44.403	0.903	20.0	307.2162	0.0000	SURCHARGED
1440 minute winter	1.5	1410	44.403	0.920	1.2	1.0415	0.0000	SURCHARGED
1440 minute winter	1.6	1410	42.914	0.029	1.2	0.0325	0.0000	ОК
1440 minute winter	Outfall	1410	42.529	0.029	1.2	0.0000	0.0000	ОК

Link Event	US	Link	DS	Outflow	Velocity	Flow/Cap	Link	Discharge
(Upstream Depth)	Node		Node	(I/s)	(m/s)		Vol (m³)	Vol (m³)
60 minute summer	0.9	0.900	1.0	17.9	0.998	0.346	0.4302	
60 minute summer	1.0	1.000	1.1	29.0	0.918	0.529	1.6269	
60 minute summer	1.1	1.001	1.2	46.3	1.187	1.165	1.8814	
60 minute summer	2.1	2.100	2.0	35.6	0.989	0.894	0.9518	
60 minute summer	2.0	2.000	1.2	48.4	1.322	1.049	1.9340	
60 minute summer	1.2	1.002	1.3	116.3	2.081	0.875	2.9044	
60 minute summer	3.1	3.100	3.0	18.0	0.817	0.521	0.8819	
60 minute summer	3.0	3.000	1.3	29.4	1.303	0.582	0.8372	
1440 minute winter	1.3	1.004	1.4	14.9	1.208	0.059	1.0269	
1440 minute winter	1.4	1.005_1	Basin	18.7	1.284	0.038	0.7230	
1440 minute winter	Basin	1.005	1.5	1.2	0.113	0.011	0.6986	
1440 minute winter	1.5	Hydro-Brake®	1.6	1.2				
1440 minute winter	1.6	1.007	Outfall	1.2	0.493	0.080	0.1356	99.8

Results for 100 year +45% CC Critical Storm Duration. Lowest mass balance: 99.70%

Node Event	US Node	Peak (mins)	Level (m)	Depth (m)	Inflow (I/s)	Node Vol (m³)	Flood (m³)	Status
60 minute summer	0.9	34	46.398	0.323	26.0	0.5831	0.0000	SURCHARGED
60 minute summer	1.0	34	46.356	0.518	42.4	0.7989	0.0000	SURCHARGED
60 minute summer	1.1	34	46.129	0.891	66.7	1.7031	0.0000	SURCHARGED
60 minute summer	2.1	34	46.484	0.984	52.0	2.6861	0.0000	FLOOD RISK
60 minute summer	2.0	34	46.279	0.931	64.6	1.7487	0.0000	FLOOD RISK
60 minute summer	1.2	34	45.474	0.611	146.7	1.3131	0.0000	SURCHARGED
60 minute summer	3.1	32	44.874	0.149	26.0	0.2682	0.0000	ОК
60 minute summer	3.0	32	44.713	0.166	43.3	0.2699	0.0000	ОК
2160 minute winter	1.3	2100	44.678	0.631	10.8	1.2254	0.0000	SURCHARGED
2160 minute winter	1.4	2160	44.678	0.781	18.4	0.8838	0.0000	SURCHARGED
2160 minute winter	Basin	2100	44.677	1.177	25.4	480.7501	0.0000	SURCHARGED
2160 minute winter	1.5	2100	44.677	1.194	1.3	1.4015	0.0000	SURCHARGED
2160 minute winter	1.6	2100	42.915	0.030	1.3	0.0345	0.0000	ОК
2160 minute winter	Outfall	2100	42.530	0.030	1.3	0.0000	0.0000	ОК

Link Event (Upstream Depth)	US Node	Link	DS Node	Outflow (I/s)	Velocity (m/s)	Flow/Cap	Link Vol (m³)	Discharge Vol (m³)
60 minute summer	0.9	0.900	1.0	26.1	1.061	0.504	0.9507	,
60 minute summer	1.0	1.000	1.1	36.0	1.006	0.657	2.1476	
60 minute summer	1.1	1.001	1.2	56.1	1.416	1.412	2.0283	
60 minute summer	2.1	2.100	2.0	42.7	1.073	1.072	1.0251	
60 minute summer	2.0	2.000	1.2	60.8	1.530	1.320	2.0681	
60 minute summer	1.2	1.002	1.3	143.6	2.077	1.081	3.6618	
60 minute summer	3.1	3.100	3.0	26.0	0.880	0.754	1.1902	
60 minute summer	3.0	3.000	1.3	43.4	1.298	0.858	1.2817	
2160 minute winter	1.3	1.004	1.4	18.4	1.102	0.073	1.0373	
2160 minute winter	1.4	1.005_1	Basin	24.2	0.729	0.049	0.7230	
2160 minute winter	Basin	1.005	1.5	1.3	0.109	0.013	0.6986	
2160 minute winter	1.5	Hydro-Brake [®]	1.6	1.3				
2160 minute winter	1.6	1.007	Outfall	1.3	0.510	0.090	0.1472	155.2

306-006-RP02

Land at The Leys and Ivy Farm, Yaxley, Suffolk SuDS Management & Maintenance Plan

1 Introduction

Sustainable Drainage Systems (SuDS) features are utilised to manage rainfall and use landscape features to deal with surface water. SuDS control the flow rate and volume of water leaving the development area and reduce pollution by intercepting silt and cleaning run-off from hard surfaces.

Like all aspects of drainage systems, SuDS components should be regularly inspected and maintained. This ensures efficient operation and reduces the likelihood of failure. The level of inspection and maintenance will vary depending on the type of SuDS component. Further information on maintenance can be found in The SuDS Manual (CIRIA publication C753).

The SuDS and drainage features for the development are to be maintained by the site owner/occupant.

2 Managing SuDS

The SuDS features have been designed for easy maintenance to comprise:

- Regular day to day care litter collection and checking the inlets and outlets where water enters or leaves the SuDS feature.
- Occasional tasks removing any silt that builds up, cutting back and clearing excessive vegetation growth, inspection of outlets, manholes and flow controls.
- Remedial work repairing damage where necessary.

3 Contact

In the event of concern over any matter to do with the SuDS, please contact the site owner/occupant.

4 SuDS Maintenance

The surface water drainage system includes gullies, pipes and manholes, an attenuation basin, a flow control and a filter drain.

Surface water generated by the hardstanding area is collected by gullies and directed to the attenuation basin via a piped network. Surface water is then directed to the outfall via a flow control and a filter drain.

Table 1 below provides a breakdown of general maintenance requirements to be undertaken, appropriate to the types of SuDS and surface water drainage systems proposed at this site.

Re	gular Maintenance	Frequency
1	Litter Management Check for and pick up litter around the entire site.	Monthly or as required
2	Inlets and Outlets Remove silt and debris from inlets and outlets.	Quarterly or as required
3	Respond to reported blockages, etc.	As required
00	casional Maintenance	Frequency
4	Inspection of Control Chamber Inspection of chambers for silt build up and visually check pipes appear clear and free flowing. Remove silt as required. Jetting as required.	Annually
5	Inspection of Attenuation Check for blockages within the connecting pipes.	Quarterly and following heavy storms
Re	medial Work	Frequency
6	Inspect SuDS systems to check for damage or failure Undertake remedial work as required.	Annually
7	Silt control and removal Wash or replace filter medium when required.	As required

Table 1: SuDS General Maintenance Requirements

Tables 2 to 5 below provides a breakdown of typical maintenance requirements appropriate to the types of SuDS proposed at this site.

Haydn Evans Consulting Ltd is a company registered in England & Wales. Company no. 03902427 Registered Office Second Floor, Hyde Park House, Crown Street, Ipswich, IP1 3LG

Operation and Maintenance Requirements for Detention Basins						
Responsible for Maintenance						
Maintenance Schedule	Required Action	Typical Frequency				
	Remove litter and debris.	Monthly				
	Cut grass - for spillways and access routes.	Monthly (during growing season), or as required.				
	Cut grass - meadow grass in and around basin.	Half yearly (spring - before nesting season, and autumn)				
	Manage other vegetation and remove nuisance plants.	Monthly (at start), then as required				
	Inspect inlets, outlets and overflows for blockages, and clear if required.	Monthly				
Regular maintenance	Inspect banksides, structures, pipework etc for evidence of physical damage.	Monthly				
	Inspect inlets and facility surface for silt accumulation. Establish appropriate silt removal frequencies.	Monthly (for first year), then annually or as required				
	Check any penstocks and other mechanical devices.	Annually				
	Tidy all dead growth before start of growing season.	Annually				
	Remove sediment from inlets, outlets and forebay.	Annually, or as required				
	Manage wetland plants in outlet pool, where provided.	Annually				
	Reseed areas of poor vegetation growth	As required				
Occasional maintenance	Prune and trim any trees and remove cuttings Every 2 years, or as rec					
	Remove sediment from inlets, outlets, forebay and main basin when required	Every 5 years, or as required (likely to be minimal requirements where effective upstream source control is provided)				
	Repair erosion or other damage by reseeding or re- turfing.	As required				
Remedial actions	Realignment of rip-rap.	As required				
	Repair/rehabilitation of inlets, outlets and overflows.	As required				
	Relevel uneven surfaces and reinstate design levels.	As required				
Table 2: Site specific maintenance requirements - Detention Basin						

Engineering technical excellence

Haydn Evans Consulting Ltd is a company registered in England & Wales. Company no. 03902427 Registered Office: Second Floor, Hyde Park House, Crown Street, Ips wich, IP1 3LG

Operation and Maintenance Requirements for Pipes, Manholes and Gullies					
Responsible for Maintenance	Site Owner/Occupier				
Maintenance Schedule	Required Action Typical Frequency				
Regular	Remove cover and inspect, ensuring that water is flowing freely and that the exit route for water is unobstructed. Remove debris and silt.	Annually and after leaf fall in autumn			
inspections	Jetting pipes or poor performance to assess requirements for CCTV survey and potential replacement pipes.	Annually or as required			
Remedial action	Repair physical damage if necessary.	As required			

Table 3: Site specific maintenance requirements -Pipes, manholes and gullies

Operation and Maintenance Requirements for a Flow Control					
Responsible for Maintenance					
Maintenance Schedule	Required Action	Typical Frequency			
Routine	Remove litter and debris and inspect for sediment, oil and grease accumulation	Six monthly			
maintenance	Remove sediment, oil, grease and floatables	As necessary - indicated by system inspections or immediately following significant spill			
Remedial actions	Replace malfunctioning parts or structures	As required			
	Inspect for evidence of poor operation	Six monthly			
Monitoring	Inspect sediment accumulation rates and establish appropriate removal frequencies	Monthly during first half year of operation, then every six months			

Table 4: Site specific maintenance requirements - Flow control

Engineering technical excellence

Haydn Evans Consulting Ltd is a company registered in England & Wales. Company no. 03902427 Registered Office: Second Floor, Hyde Park House, Crown Street, Ipswich, IP1 3LG

Operation and Maintenance Requirements for Filter Drains				
Responsible for Maintenance	Developer/Household			
Maintenance Schedule	Required Action	Typical Frequency		
	Remove litter (including leaf litter) and debris from filter drain surface, access chambers and pre-treatment devices	Monthly, or as required		
Regular maintenance	Inspect filter drain surface, inlet/outlet pipework and control systems for blockages, clogging, standing water and structural damage	Monthly		
	Inspect pre-treatment systems, inlets and perforated pipework for silt accumulation, and establish appropriate silt removal frequencies	Six monthly		
	Remove sediment from pre-treatment	Six monthly, or as required		
Occasional maintenance	Remove or control tree roots where they are encroaching the sides of the filter drain, using recommended methods (eg NJUG, 2007 or BS 3998:2010)	As required		
	At locations with high pollution loads, remove surface geotextile and replace, and wash or replace overlying filter medium	Five yearly, or as required		
	Clear perforated pipework of blockages	As required		

Table 5: Site specific maintenance requirements - Filter drain

Engineering technical excellence

01473 236550 / mail@haydnevans.co.uk / www.haydnevans.co.uk

Bee

From: Sent: To: Subject: Bev Hunter 25 April 2023 13:11 Bee Fwd: 306-006 Yaxley

From: GHI Floods <floods@suffolk.gov.uk> Sent: Monday, April 24, 2023 3:12:15 PM To: Bev Hunter <bev.hunter@haydnevans.co.uk> Subject: RE: 306-006 Yaxley

Dear Beverly,

Thank you for your email.

In most cases a head wall does not require consent as long as no part of it obstructs the flow of water.

Kind Regards

Jason Skilton Flood and Water Engineer Suffolk County Council

<u>The Suffolk SuDS Guide has been updated (March 2023)</u> *Suffolk Developers Event is back! This years event will take place on Thursday 15th June in Ipswich. For further info and to book a place, <u>click here.</u>*

From: Bev Hunter <bev.hunter@haydnevans.co.uk> Sent: Monday, April 24, 2023 3:10 PM To: GHI Floods <floods@suffolk.gov.uk> Subject: 306-006 Yaxley

EXTERNAL EMAIL: Don't click any links or open attachments unless you trust the sender and know the content is safe. Click <u>here</u> for more information or help from Suffolk IT

Dear Floods

We are proposing to discharge to a minor watercourse in Suffolk, via a protruding pipe connection, at the Qbar greenfield run-off rate (1.27 l/s). There will be no other works to the watercourse. Please can you advise if land drainage consent is required? Looking at the consentable activities sheet on your website, this would suggest that consent is not required for such a connection? Please confirm.

Kind regards

Beverley Hunter Assistant Engineer

T: 01473 236550 M: 07423 096006

Second Floor, Hyde Park House, Crown Street, Ipswich, IP1 3LG www.haydnevans.co.uk

Haydn Evans Consulting Ltd is a company registered in England and Wales no. 03902427. Registered office: Second Floor, Hyde Park House, Crown Street, Ipswich, IP1 3LG. This email and any files transmitted with it are confidential and intended solely for the use of the individual or entity to whom they are addressed. If you have received this email in error please notify the system manager. This message contains confidential information and is intended only for the individual named. If you are not the named addressee you should not disseminate, distribute or copy this e-mail. Please notify the sender immediately by e-mail if you have received this e-mail by mistake and delete this e-mail from your system. If you are not the intended recipient you are notified that disclosing, copying, distributing or taking any action in reliance on the contents of this information is strictly prohibited.

The information contained in this email or any of its attachments may be privileged or confidential and is intended for the exclusive use of the addressee. Any unauthorised use may be unlawful. If you receive this email by mistake, please advise the sender immediately by using the reply facility in your email software.

The Council reserves the right to monitor, record and retain any incoming and outgoing emails for security reasons and for monitoring internal compliance with our policy on staff use. Email monitoring and/or blocking software may be used and email content may be read.

For information about what we do with personal data see our privacy notice <u>https://www.suffolk.gov.uk/about/privacy-notice/</u>

