Jacobs

Bishop Auckland Bus Station and Car Park

DRAINAGE STRATEGY REPORT
BL000034-JAC-XX-XX-RP-C-00001 | P01
16/12/22

Bishop Auckland Bus Station and Car Park

Project No:	BL000034
Document Title:	DRAINAGE STRATEGY REPORT
Document No.:	BL000034-JAC-XX-XX-RP-C-00001
Revision:	P01
Document Status:	Suitable for Stage approval
Date:	$16 / 12 / 22$
Client Name:	Durham County Council
Client No:	N/A
Project Manager:	Dominic Brown
Author:	S. CLARK
File Name:	BL000034-JAC-XX-XX-RP-C-00001

J acobs
2nd Floor Cottons Centre
Cottons Lane
London SE1 2QG
England
Phone: +44 (0)203 9802000
www.jacobs.com
© Copyright 2022 J acobs. The concepts and information contained in this document are the property of Jacobs. Use or copying of this document in whole or in part without the written permission of J acobs constitutes an infringement of copyright.

Limitation: This document has been prepared on behalf of, and for the exclusive use of J acobs' client, and is subject to, and issued in accordance with, the provisions of the contract between J acobs and the client. J acobs accepts no liability or responsibility whatsoever for, or in respect of, any use of, or reliance upon, this document by any third party.

Document history and status

| Revision | Date | Description | Author | Checked | Reviewed | Approved |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| P01 | $16 / 12 / 2^{-}$ | ISSUED FOR PLANNING APPLICATION | SC | GC | MS | DB |
| | | | | | | |
| | | | | | | |
| | | | | | | |
| | | | | | | |
| | | | | | | |

Contents

1. Introduction 2
2. Site Description 3
3. Soil Conditions 4
4. Flood Risk 5
5. Foul Water Drainage Strategy 6
6. Surface Water Drainage Strategy 7
7. Sustainable Urban Drainage Systems (SUDS) 8
8. Pollution Prevention 9
9. Maintenance. 11
10. Conclusion 13
Appendix A. EA Flood Mapping
Appendix B. Greenfiled Runoff Estimation
Appendix C. Drainage Strategy
Appendix D. Sewer Records
Appendix E. Hydraulic Calculations
Appendix F. AquaTreat Interceptor Certificates
Appendix G. Topo Survey
Appendix H. Scheme Drawings
Appendix I. Maintenance Schedule
Figure 1: Ground Profile 4
Figure 2: Pollution Hazard Indices 9
Figure 3: Pollution Mitigation Indices 9

1. Introduction

The purpose of this report is to present the basis of the foul and surface water drainage design proposals associated with a new bus station and car park in Bishop Auckland.

This project forms part of the wider regeneration of Bishop Auckland town centre. The proposed bus station and car park will be constructed in the location of the existing bus station, near the historical town centre. The bus station will provide improved facilities for tourists and locals. The carpark will provide parking provision for an anticipated increase in tourists as a result of several attractions currently under development in the town.

2. Site Description

The project site is situated toward the north of Bishop Auckland. The site is bound to the north by Clayton Street, to the east by the existing Newgate shopping centre, to the south by Saddler Street and the A689 to the west.

The existing project site is composed of an external bus station to the north, at grade carpark to the south and pedestrianised area to the east adjacent to the Newgate Centre. The site is predominantly hard paved with a small number of raised planters/tree pits in the pedestrian area close to the shopping centre.

The topographical survey indicates site levels fall significantly from west to east with a level difference across the site of approximately 6 m .
3. Soil Conditions

The following sources of information have been used to provide historical borehole information:
-BGS Geolndex Onshore website

- BGS Maps Portal
- Coal Authority's Interactive Viewer

According to the BGS records, in the area of the proposed car park and bus station building, there are only records of shallow geotechnical investigation information of up to 3 m in depth, undertaken for the purpose of the existing open space car parking and bus station. Therefore, deep exploratory holes located on the east side of the proposed site, namely NZ22NW 174, NZ22NW176 and NZ22NW 177, were mainly used to determine the ground model.

According to BGS (Bedrock geology 1:50:000), the site is underlined by Pennine Middle Coal Measures Formation. It comprises of interbedded grey mudstone, siltstone, pale grey sandstone and commonly coal seams, with a bed of mudstone marine fossils at the base, and several such marine fossil-bearing mudstones in the upper half of the unit. The site surface is covered by superficial deposits according to BGS (superficial geology 1:50:000), described as Devensian Till. All nearby historical boreholes were drilled within this formation proven to be extent up to 26 m depth.

The ground profile below (Figure 1) is mainly derived from the information on borehole log NZ22NW176 since it is the most adjacent to the proposed site works and presents the least favourable profile with the competent boulder clay layer encountered at greater depths. Field and laboratory tests were assessed from the aforementioned boreholes to derive the engineering properties summarized in the table below. The water table was assumed 3.00 m BGL according to the borehole records.

Intrusive soil investigations are to be carried out as part of the preliminary works. These investigations will include infiltration testing and groundwater monitoring to help determine the feasibility and suitability of using infiltration techniques within the overall drainage strategy at detailed design stage.

Level (mbgl)	Thickness (m)	Unit Weight $\mathrm{kN} / \mathrm{m} 3$	$\varphi^{\prime}(0)$	$\mathrm{Cu}(\mathrm{kPa})$	$\mathrm{E}(\mathrm{MPa})$		
	From	To					
Made Ground	0.0	1.6		18	30		20
Sand	1.7	8.7	7.0	19		40	20
Clay	8.7	14.0	5.3	18	30		20
Sand	14.0	16.0	2.0	20		130	65
Boulder clay	16.0	22.0	6.0	19		100	50
Clay	22.0	24.5	2.5	35		50	
Sand	24.5	26.0	Not Proven	18	35		

Figure 1: Ground Profile

4. Flood Risk

Fluvial:
In accordance with the Environment Agency's indicative online flood maps, the Site is located within a Flood Zone 1 area, which is classed as having less than 1 in $1000(<0.1 \%)$ chance of river flooding in any one year.

In accordance with Table 3 of the NPPF Technical Guidance all forms of development are considered appropriate within zone 1.

Please refer to Appendix A for EA Flood Map.

Surface Water:

The George Street/S addler Street junction at the south-eastern corner of the site is susceptible to 'low risk' flooding from surface water according to the Long-Term Flood R isk information available on Gov.uk.

Low risk means that each year this area has a chance of flooding of between 0.1% and1\%. Flooding from surface water is difficult to predict as rainfall location and volume are difficult to forecast. In addition, local features can greatly affect the chance and severity of flooding.

This is the lowest corner of the site and therefore surface water flooding in this area is unlikely to affect the proposed development, as any surface water flooding will flow overland in a southerly direction along George Street and away from the development.

Reservoir:

In accordance with the Environment Agency's indicative online flood maps, the Site is not located in an area at risk of flooding from reservoirs.

Local Drainage System Failure:

As noted in Section 6 of this report, the existing site discharges surface water at uncontrolled rates to the surrounding infrastructure. The proposed development will restrict surface water flows from the new development to equivalent greenfield runoff rates, offering a substantial load reduction on the receiving network and increased capacity downstream.

In the event of total failure of the existing network, overland flows from the site would flow to the lowest point in the southeastern corner towards George Street.

Ground Water:

According to the Durham County Councils Preliminary Flood Risk Assessment (PRFA) May 2016, no records of groundwater flooding have been found within the County of Durham.

The PFRA reports that in 2004, Defra commissioned J acobs to carry out a detailed investigation into areas of potential 'groundwater emergence' throughout England. This study concluded that there were no areas of predicted groundwater flooding within this area.

The PFRA notes that there is a long history of coal mining within the northeast region, and it is understood that mine dewatering has recently ceased in some areas. This may lead to an increase in groundwater levels within historical mining areas of the County. The PFRA concludes (from strategic perspective) that there is a high level of uncertainty as to the long-term impacts of the cessation of dewatering upon groundwater levels, and there is no evidence that groundwater flooding will ensue.
5. Foul Water Drainage Strategy

Existing:

The Northumbrian Water asset records indicate an adopted combined sewer network which surrounds the site on all four sides.

The existing foul drainage network within the site is limited. The topographical survey indicates foul connections serving the small building containing facilities for the bus operators, the public toilet block and a small retail outlet which serves food and drinks.

All three of these facilities are shown to discharge to the existing combined sewer network along the northern boundary of the development site adjacent to Clayton Street.

Proposed:

The proposed bus station building forming part of the redevelopment scheme will contain public toilet facilities, staff toilet facilities and a small retail outlet. It is proposed to discharge foul flows from this building to the combined sewer network in Clayton Street via an indirect connection. (Indirect connection subject to the results of a line, level and condition survey of the existing lateral).

Proposed discharge rates and point of connection are subject to Northumbrian Waters approval.
Please refer to Appendix C for Drainage Strategy Layout

6. Surface Water Drainage Strategy

Existing:

Survey information indicates that the surface water runoff from the existing site is positively drained via surface level gullies and a below ground gravity pipe network. The existing surface water network is shown to fall from west to east eventually discharging to the existing combined sewer network at the corner of Saddler Street/G eorge Street to the south-eastern corner of the site.

There is no indication or evidence of attenuation features or flow control structures in place within the existing surface water network. It is assumed that surface water runoff currently discharges unrestricted to the surrounding infrastructure.

Proposed:

It is proposed to maintain similar flow paths in line with the existing site. Surface water flows will be conveyed west to east via a below ground gravity piped network and discharge to the existing surface water lateral that serves the existing site.

In accordance with requirements of Durham County Councils Surface Water Management Plan (SWMP), it is proposed to restrict peak flows from the new development to equivalent greenfield runoff rates. Please refer to Appendix B for greenfield runoff estimation calculations

Due to the large level difference across the site, it is proposed to cascade the network with several flow controls and associated below ground attenuation at both the higher parking area to the west and at the bus station turning area to the east.

Peak flows from the proposed development will be restricted to less than or equal to the equivalent greenfield runoff rates for the respective 1 in 1 yr , 1 in 30 yr and 100 yr return period events using a complex control chamber.

Attenuation will be provided to accommodate all storms up to and including the 100 yr RP event with an additional 45% allowance for climate change.

There are a number of existing road gullies serving Saddler Street carriageway which are assumed to discharge to the existing on-site surface water drainage network. It is therefore proposed to introduce a new highway carrier drain in Saddler Street to serve all of the existing road gullies to separate the highway drainage from the new on-site drainage network.

Proposed discharge rates and points of connection are subject to Northumbrian Waters approval.
Please refer to Appendix C for Drainage Strategy Layout

7. Sustainable Urban Drainage Systems (SUDS)

It is proposed to implement a number of SUDS elements into the new surface water drainage scheme as outlined below:

Green Roof:
The roof above the bus station concourse area will utilise a sedum roof construction. R unoff from the green roof will subsequently discharge directly to the rain garden features to the north of the bus station.

R ainwater Harvesting:

The area of flat roof above the bus station accommodation block will collect and convey water to a rainwater harvesting system for reuse in the bus station facilities.

R ain Garden:

It is proposed to introduce a rain garden feature to the north of the bus station building. Flows from the green roof, overflow from the rainwater harvesting system, and localised hardstanding areas in the immediate vicinity north of the bus station building will be conveyed into the rain garden. There are also a number of smaller rain gardens to collect and convey runoff to the pedestrian area between the bus station and ground level car parking area. For the purposes of the preliminary design, it has been assumed at this stage that the rain gardens will be tanked with an impermeable liner. Intrusive soil investigations to be carried out as part of the preliminary works will include infiltration testing and groundwater monitoring to help determine the feasibility and suitability of using infiltration techniques within the overall drainage strategy.

Permeable Paving:

The parking bays to the ground level parking area to the west of the site will be constructed of permeable block paving. For the purposes of the preliminary design, it has been assumed at this stage that the permeable parking bays will be tanked with an impermeable liner. Intrusive soil investigations to be carried out as part of the preliminary works will include infiltration testing and groundwater monitoring to help determine the feasibility and suitability of using infiltration techniques within the overall drainage strategy.

8. Pollution Prevention

Compliance with the requirements of the simple index approach to pollution control outlined in Chapter 26 of the CIRIA SUDS Manual C 753 is summarized below:

Land Use	Pollution Hazard Level	Total Suspended solids (TSS)	Metals	Hydro-Carbons
Commercial yard and delivery areas	Medium	0.7	0.6	0.7

Figure 2: Pollution Hazard Indices
Due to the size, layout, and topographical profile; the pollution mitigation process will be via a treatment management train formed of several propriety systems.

Trapped Gully Pots:

Within the access road to the west and bus turning area to the east, surface water will be drained via a series of trapped gully outlets. Trapped gullies will offer mitigation against the first flush and trap sediment/small oil spills within the gully pot. They are easily accessible and readily maintainable. Gully pots alone do not achieve the required mitigation indices in line with the requirements of the SUDS manual for the given land use.

Permeable Paving (Parking Bays):

All parking bays within the ground level car park are to be formed using permeable block paving. The SUDS Manual (CIRIA, 2015) recognises the effectiveness of concrete block permeable paving in removing pollution. For areas with low to medium pollution hazard level permeable block paving is more than sufficient on its own to provide an adequate pollution mitigation index.

Catchpits:

The flow control chambers used to limit peak flows to acceptable rates will be formed with a sump to aid sediment removal prior to the attenuation tank system, flow control device and downstream treatment system.

Oil Separator:

All run-off from the proposed development site will pass through a full retention separator such as the Klargester AquaTreat system or similar approved. The AquaTreat Full R etention GRP surface water treatment separators have been designed for use in SuDS schemes that require a full pollution treatment. This system helps to reduce pollution by removing TSS, Metals \& Hydrocarbons from surface water entering the local watercourse or network.

Proprietary Treatment System	Total Suspended solids (TSS)	Metals	Hydro-Carbons
AquaTreat SWT010	0.85	0.75	0.99

Figure 3: Pollution Mitigation Indices
Please refer to Appendix F for AquaTreat Interceptor Mitigation certificates

By incorporating the above measures through a treatment management train approach, the receiving watercourse will be protected from excessive deposits of suspended solids, metals and hydro-carbons.
9. Maintenance

Management

SUDS management proposals will need to involve a framework for the maintenance of the Site, considering the SUDS, how the Site will change with time, and the operations required to achieve the management aims for the Site, particularly having regard to:

The function of SUDS.
How and why they work on the Site.
Health and safety issues.
Long-term expectations for the SUDS on Site.

Programme

SUDS maintenance should comprise:
Regular maintenance - for day-to-day care of the SUDS
Litter collection.
Vegetation pruning.
Inspection of inlets, outlets and control structures.
These activities are normally carried out monthly to coincide with regular landscape maintenance.
Occasional tasks - to manage silt and vegetation:
Silt control on hard surfaces, in silt traps and in general SUDS features.
The occasional task activities are to be undertaken on a frequency determined by regular inspection or specification.

Remedial work - to repair unforeseen defects that occur during the design life of the system due to damage or vandalism. Remedial action due to failure or damage will be required on an as necessary basis but should be minimal with good design, maintenance and the control of water flows through the development.

General

For this scheme, it is assumed that all parts of the drainage system are to be owned and maintained by the Site owner/operator, Durham County Council.

The below-ground surface water drainage system requires regular inspection/clearing to prevent blockages due to accumulation of silt. It is recommended that the following items are initially inspected and cleared by a suitably trained person in accordance with the outline maintenance schedule in Appendix I to establish a longterm inspection/clearing interval appropriate for this site.

Trapped gullies
Drainage channels

Catchpit chambers
Flow Control Devices

Attenuation Tanks
Petrol Interceptors
Rain Gardens

Permeable Paving
Outfall pipes to the public sewers
Inspection/clearing should also be carried out after every major storm event.

Maintenance Schedule

A preliminary maintenance schedule for this site can be found in Appendix I
This schedule is intended to give an overview of the operation and maintenance for the drainage features included within the proposed drainage strategy. Where proprietary products are specified the manufacturer's instructions and recommendations should be followed.

The recommended operations and frequencies are typical only and should be more frequent initially to ensure that there are no unforeseen issues with the operation of the system. These activities and their frequency can then be adjusted to suit the specific site requirements.
10. Conclusion

In accordance with the Environment Agency's indicative flood map the Site is located within a Flood Zone 1 area, which is classed as having less than 1 in $1000(<0.1 \%)$ chance of river flooding in any one year.

In accordance with Table 3 of the NPPF Technical Guidance all forms of development are considered appropriate within zone 1.

The surface water system to serve the proposed development will follow best practice using sustainable drainage systems (SUDS) to both intercept storm water at source and treat the runoff from roofs, hardstandings and other impermeable areas.

Preliminary soil information as documented in Section 3 of this report indicates a thick band of sand at reasonably shallow depths which may be conducive to infiltration and/or partial infiltration methods for the disposal of surface water runoff. However, the ground profile notes a potential layer of made ground in the near surface formation. Borehole logs also note the possibility of relatively high groundwater levels. F or the purpose of the preliminary hydraulic design and ensuring adequate spacial provisions for SUDS within the scheme design, infiltration methods have not been considered at this stage. Intrusive soil investigations are to be carried out as part of the preliminary works. These investigations will include infiltration testing and groundwater monitoring to help determine the feasibility and suitability of using infiltration techniques within the overall drainage strategy at detailed design stage.

Peak flows from the proposed development will be restricted to less than or equal to the equivalent greenfield runoff rates for the respective 1 in 1 yr , 1 in 30 yr and 100 yr return period events using a complex control chamber. The SUDS systems will be designed to accommodate all storms up to and including the 100 yr RP event with a 45% allowance for climate change. Unaffected areas within the site planning boundary will remain unchanged and continue to discharge as existing.

By incorporating the above measures, the Proposed Development complies with the requirements of the National Planning Policy Framework by protecting the users of the development and reducing the flood risk to third parties beyond the Site. Appropriate levels of treatment will be provided within the combination of proposed SUDS measures to minimise the risk of contamination to the receiving watercourse.

Appendix A. EA Flood Mapping

Flood map for planning

Your reference	Location (easting/northing)	Created
Bishop Auckland	420888/529963	13 Dec 2022 9:41

Your selected location is in flood zone 1, an area with a low probability of flooding.

You will need to do a flood risk assessment if your site is any of the following:

- bigger that 1 hectare (ha)
- In an area with critical drainage problems as notified by the Environment Agency
- identified as being at increased flood risk in future by the local authority's strategic flood risk assessment
- at risk from other sources of flooding (such as surface water or reservoirs) and its development would increase the vulnerability of its use (such as constructing an office on an undeveloped site or converting a shop to a dwelling)

Notes

The flood map for planning shows river and sea flooding data only. It doesn't include other sources of flooding. It is for use in development planning and flood risk assessments.

This information relates to the selected location and is not specific to any property within it. The map is updated regularly and is correct at the time of printing.

Flood risk data is covered by the Open Government Licence which sets out the terms and conditions for using government data. https://www.nationalarchives.gov.uk/doc/open-governmentlicence/version/3/

Use of the address and mapping data is subject to Ordnance Survey public viewing terms under Crown copyright and database rights 2022 OS 100024198. https://flood-map-for-planning.service.gov.uk/os-terms

[^0]Appendix B. Greenfiled Runoff Estimation

Greenfield runoff rate estimation for sites www.uksuds.com | Greenfield runoff tool Site Details

Latitude:	$54.66430^{\circ} \mathrm{N}$
Longitude:	$1.67778^{\circ} \mathrm{W}$

Calculated by:	Stuart Clark
Site name:	Bishop Auckland
Site location:	Bishop Auckland

This is an estimation of the greenfield runoff rates that are used to meet normal bes practice criteria in line with Environment Agency guidance "Rainfall runoff

Reference: management for developments", SC030219 (2013) , the SuDS Manual C753 (Ciria, 2015) and the non-statutory standards for SuDS (Defra, 2015). This information on greenfield Date:

956217831
runoff rates may be the basis for setting consents for the drainage of surface water runoff from sites.

Runoff estimation approach IH124

Site characteristics
Total site area (ha): 0.77

Methodology

QBAB estimation method:
Calculate from SPR and SAAR
SPR estimation method:
Soil characteristics
Calculate from SOIL type Default Edited

SOIL type:
HOST class:
SPR/SPRHOST:
Hydrological

4	4
N/A	N/A
0.47	0.47
	Default

SAAR (mm):	670	670
Hydrological region:	3	3
Growth curve factor 1 year.	0.86	0.86
Growth curve factor 30 years:	1.75	1.75
Growth curve factor 100 years:	2.08	2.08
Growth curve factor 200	2.37	2.37

Notes

(1) Is $Q_{B A R}<2.0 \mathrm{l} / \mathrm{s} / \mathrm{ha}$?

When $Q_{B A R}$ is $<2.0 \mathrm{l} / \mathrm{s} /$ ha then limiting discharge rates are set at $2.0 \mathrm{l} / \mathrm{s} / \mathrm{ha}$.
(2) Are flow rates < $5.0 \mathrm{l} / \mathrm{s}$?

Where flow rates are less than $5.0 \mathrm{l} / \mathrm{s}$ consent for discharge is usually set at $5.0 \mathrm{l} / \mathrm{s}$ if blockage from vegetation and other materials is possible. Lower consent flow rates may be set where the blockage risk is addressed by using appropriate drainage elements.
(3) Is SPR/SPRHOST ≤ 0.3 ?

Where groundwater levels are low enough the use of soakaways to avoid discharge offsite would normally be preferred for disposal of surface water runoff.

Greenfield runoff rates	Default	Edited
$\mathrm{Q}_{\mathrm{BAR}}(1 / \mathrm{s})$:	3.53	3.53
1 in 1 year (1/s):	3.04	3.04
1 in 30 years (l/s):	6.18	6.18
1 in 100 year (1/s):	7.35	7.35
1 in 200 years (l/s):	8.37	8.37

This report was produced using the greenfield runoff tool developed by HR Wallingford and available at www.uksuds.com. The use of this tool is subject to the UK SuDS terms and conditions and licence agreement, which can both be found at www.uksuds.com/terms-and-conditions.htm. The outputs from this tool are estimates of greenfield runoff rates. The use of these results is the responsibility of the users of this tool. No liability will be accepted by HR Wallingford, the Environment Agency, CEH, Hydrosolutions or any other organisation for the use of this data in the design or operational characteristics of any drainage scheme.

Appendix C. Drainage Strategy

Appendix D. Sewer Records

NWG Property Solutions is part of Northumbrian Water Group (NWG)
Northumbrian Water and Essex \& Suffolk Water are also part of NWG

Site Enquiry

Plan

We enclose plan(s) showing the location of any Company apparatus in the vicinity of the area of your enquiry.

If your request for plan(s) is part of a C2 enquiry, or relates to development, information about connecting to our water and sewer networks and the protection of existing apparatus, details for further information can be found via the following link https://www.nwl.co.uk/developers.aspx

1. The company is not responsible for private water supply pipes, private drains and sewers that connect the property to the public sewerage system and does not hold details of these.

General Notes

A copy of the standard conditions for working near Company apparatus is enclosed for your information. If you require any further assistance to identify Company apparatus, then do not hesitate to make contact with the Area Office at the contact number shown in the standard conditions.

Important:- Please ensure this detail is made available to anyone carrying out any works which may affect our apparatus.
From the 1st October 2011 there may be lateral drains and/or public sewers which are not recorded on the public sewer map.

Signed.

On behalf of Northumbrian Water, Essex \& Suffolk Water

Date: 30/MAR/2020
Ref: 1148443

STANDARD CONDITIONS FOR WORKING NEAR NORTHUMBRIAN WATER APPARATUS

THE FOLLOWING CONDITIONS WILL APPLY TO ALL WORKS IN THE VICINITY OF COMPANY APPARATUS

1. Contact should be made with the appropriate Company Area Office prior to the commencement of any work. Arrangements can then be made for the local representative to visit the site and assist in the location and protection of any apparatus affected. The Company must be given two working days notice before any works, including trial holes, are carried out within their easements. Contact 03457171100.
2. The information shown on any plan provided by the Company is for general guidance only. The position of apparatus shown should not be relied upon as being precise. No service pipes are shown on plans.
3. The actual position of apparatus must be established by taking trial holes in all cases. No machine excavation will be permitted within 1 metre side of a main. The actual position of any apparatus must be found by hand excavation.
4. Where Company apparatus is exposed by excavation, support and protection measures are to be agreed on site. Where excavations are taken out below the invert of a main, adequate support is to be provided to prevent collapse of the excavation and subsequent undermining of the main. Special attention is to be given to the compaction of selected backfill material under the main and the company may require the use of lean mix concrete to replace inadequately compacted or unsuitable support backfill material. The compaction of selected backfill material under, around and up to a level of 300 mm above the top of any main shall be carried out by hand. Upon completion of operations, any excavation is to be left open until after inspection by Company i s representative.
5. No installation of plant may take place within the Company's easements without the prior consent of the Company and with all special conditions and arrangements being finalised before commencement of work
6. Indiscriminate crossing of the main by heavy construction plant will not be permitted. Where applicable, Crossing Points must be agreed by the Company and any protective measures necessary taken before work begins.
7. Surface boxes and covers should not be removed without obtaining prior consent of the Company. All surface covers to washouts, valves, air valves, hydrants, stopcocks etc., are to be kept clear of obstruction and with free access at all times. If surface boxes or covers have been temporarily removed, positions should be clearly marked.
8. Where the levels of carriageway and footpath surfaces are raised or lowered, then the Company's surface covers must be adjusted as appropriate
9. No pipes or cables are to be laid or structures placed directly over the line of Company apparatus.
10. Where drains, pipes or cables cross over or under any mains, a minimum clearance of 300 mm must be maintained. Where it is necessary for any plant to lay parallel to the pipelines, a minimum distance of 1 metre shall be maintained between the outside of the pipeline and any plant being installed, except in the case of small diameter plant where N.J.U.G 7 dimensions apply. The Company must agree exceptions to these conditions in writing.
11. All crossing of the company's pipelines and easements shall be at right angles where possible. Where skew crossings are necessary, no more than 3 metres of the Company's pipeline shall be exposed at any time.
12. The Company will require three copies of proposal drawings showing the details of any proposed crossing of pipelines above 300 mm diameter. The drawings must show the Company's pipelines in relation to the proposed works, to a scale of no less than 1:500 and no work shall commence until the Company has given approval.
13. Where it is necessary to carry out piling works closer than 6 m to the Company' apparatus, or to carry out works using plant that is likely to damage the integrity of the Company's apparatus, the Company will require a method statement of the works shall be consulted before work commences.
14. Where the Company's pipeline is protected by a cathodic protection system, the Company will require a suitable joint testing programme to be agreed before the application of any cathodic protection scheme proposed by another authority or utility undertaking. If any bond-wires or test leads associated with the Company's cathodic protection system are damaged, disconnected or found to be in poor condition, the Company should be notified so that repairs can be made.
15. In the case of Trunk mains which cross development sites, no development is to take place within an agreed distance either side of the pipeline. A guide showing the easement widths for the various diameters and depths of pipe is available from the RASWA department.
16. No tree planting or landscaping work is done in close proximity to Company apparatus unless otherwise agreed in writing by the Company. A planting guide is available from the RASWA department.
17. In the event of any damage to any of the Company's plant the Company must be informed immediately. Where any damage occurs to Company apparatus, the appropriate remedial work will be carried out by the Company and charged to the promoter of the works.
18. Every effort should be made to secure the site against vandalism of the Company's plant.
19. A copy of these conditions is to be made available to all Contractors or Sub-Contractors working in the vicinity of Company apparatus.

The material contained on this plot has been reproduced from an Ordnance Survey map with permission of the controller of H.M.S.O. Crown Copyright Reserved. Licence No. 100022480 The information shown on this plan should be regarded as approximate and is intended for guidance only. No Liability of any kind whatsoever is accepted by Northumbrian Water, it's Northumbrian Water must be given two working days notice of their intention to excavate trial holes. With effect from 1 October 2011, private lateral drains and sewers automatically transferred to Northumbrian Water under a scheme made by the Secretary of State pursuant to section 105A Water Industry Act 1991. These former private drains and sewers together with existing private connections may not be shown but their presence should be anticipated. WARNING...Where indicated on the plan there could be abandoned asbestos
cement materials or shards of pipe. If excavating in the vicinity of these abandoned asbestos cement materials, the appropriate Health \& Safety precautions should be taken Northumbrian Water accepts no liability in respect of claims, costs, losses or other liabilities which arise as the result of the presence of the pipes or any failure to take adequate precautions

Appendix E. Hydraulic Calculations

Jacobs Engineering Limited		Page 1
\cdot	Bishop Auckland Bus Station and Car Park	
Date 13／12／2022 09：26 File BA－Drainage Model＿v19．MDX	Designed by G．Jones Checked by S．Clark	Drainage
Innovyze	Network 2020．1．3	

STORM SEWER DESIGN by the Modified Rational Method
\section*{Design Criteria for Storm－SIte Network}
Pipe Sizes STANDARD Manhole Sizes STANDARD
FSR Rainfall Model－England and Wales

Designed with Level Soffits

Network Design Table for Storm－SIte Network

« - Indicates pipe capacity < flow

PN	Length （m）	Fall （m）	Slope $(1: X)$	I．Area （ha）	$\begin{aligned} & \text { T.E. } \\ & \text { (mins) } \end{aligned}$	$\begin{gathered} \text { Base } \\ \text { Flow }(1 / s) \end{gathered}$	$\begin{gathered} \mathbf{k} \\ (\mathrm{mm}) \end{gathered}$	$\begin{aligned} & \text { HYD } \\ & \text { SECT } \end{aligned}$	$\begin{aligned} & \text { DIA } \\ & (\mathrm{mm}) \end{aligned}$	Section Type	Auto Design
S23．000	20.267	1.043	19.4	0.018	4.00	0.0	0.600	\bigcirc	150	Pipe／Conduit	寊
S23．001	12.697	0.519	24.5	0.010	0.00	0.0	0.600	\bigcirc	150	Pipe／Conduit	䍖
S24．000	7.855	0.530	14.8	0.000	4.00	0.0	0.600	\bigcirc	150	Pipe／Conduit	－
S25．000	3.795	0.163	23.3	0.000	4.00	0.0	0.600	\bigcirc	150	Pipe／Conduit	畧
S24．001	4.650	0.289	16.1	0.000	0.00	0.0	0.600	\bigcirc	150	Pipe／Conduit	配
S23．002	11.512	0.248	46.4	0.000	0.00	0.0	0.600	\bigcirc	150	Pipe／Conduit	8
S26．000	17.550	1.111	15.8	0.000	4.00	0.0	0.600	\bigcirc	150	Pipe／Conduit	顑
S26．001	5.093	0.085	59.9	0.013	0.00	0.0	0.600	\bigcirc	150	Pipe／Conduit	B
S27．000	7.855	0.642	12.2	0.000	4.00	0.0	0.600	\bigcirc	150	Pipe／Conduit	8

Network Results Table

PN	$\begin{gathered} \text { Rain } \\ (\mathrm{mm} / \mathrm{hr}) \end{gathered}$	$\begin{aligned} & \text { T.C. } \\ & \text { (mins) } \end{aligned}$	$\begin{gathered} \text { US / IL } \\ \text { (m) } \end{gathered}$	$\begin{gathered} \Sigma \text { I.Area } \\ \text { (ha) } \end{gathered}$	$\begin{gathered} \Sigma \text { Base } \\ \text { Flow }(1 / s) \end{gathered}$	Foul (1/s)	Add Flow $(1 / s)$	$\begin{gathered} \mathrm{Vel} \\ (\mathrm{~m} / \mathrm{s}) \end{gathered}$	$\begin{aligned} & \text { Cap } \\ & (1 / s) \end{aligned}$	$\begin{aligned} & \text { Flow } \\ & (1 / s) \end{aligned}$
S23．000	50.00	4.15	100.260	0.018	0.0	0.0	0.0	2.30	40.6	3.2
S23．001	50.00	4.25	99.217	0.028	0.0	0.0	0.0	2.04	36.1	5.1
S24．000	50.00	4.05	99.517	0.000	0.0	0.0	0.0	2.63	46.5	0.0
S25．000	50.00	4.03	99.150	0.000	0.0	0.0	0.0	2.10	37.0	0.0
S24．001	50.00	4.08	98.987	0.000	0.0	0.0	0.0	2.52	44.6	0.0
S23．002	50.00	4.38	98.698	0.028	0.0	0.0	0.0	1.48	26.2	5.1
S26．000	50.00	4.11	99.646	0.000	0.0	0.0	0.0	2.55	45.0	0.0
S26．001	50.00	4.18	98.535	0.013	0.0	0.0	0.0	1.30	23.0	2.4
S27．000	50.00	4.05	99.409	0.000	0.0	0.0	0.0	2.90	51.2	0.0

Jacobs Engineering Limited		Page 2
\cdot	Bishop Auckland Bus Station and Car Park	
－		
Date 13／12／2022 09：26	Designed by G．Jones File BA－Drainage Model＿v19．MDX	Checked by S．Clark

Network Design Table for Storm－SIte Network

PN	Length （m）	$\begin{gathered} \text { Fall } \\ \text { (m) } \end{gathered}$	Slope $(1: X)$	I．Area （ha）	$\begin{aligned} & \text { T.E. } \\ & \text { (mins) } \end{aligned}$	$\begin{gathered} \text { Base } \\ \text { Flow }(1 / s) \end{gathered}$	$\begin{gathered} \mathbf{k} \\ (\mathrm{mm}) \end{gathered}$	$\begin{aligned} & \text { HYD } \\ & \text { SECT } \end{aligned}$	$\begin{aligned} & \text { DIA } \\ & (\mathrm{mm}) \end{aligned}$	Section Type	Auto Design
S27．001	4.650	0.317	14.7	0.026	0.00	0.0	0.600	\bigcirc	150	Pipe／Conduit	8
S23．003	26.900	1.495	18.0	0.005	0.00	0.0	0.600	\bigcirc	150	Pipe／Conduit	－
S28．000	25.600	1.433	17.9	0.000	4.00	0.0	0.600	\bigcirc	150	Pipe／Conduit	寊
S28．001	4.999	0.083	60.2	0.019	0.00	0.0	0.600	\bigcirc	150	Pipe／Conduit	B
S23．004	8.312	0.050	166.2	0.000	0.00	0.0	0.600	\bigcirc	300	Pipe／Conduit	顑
S23．005	7.588	0.050	151.8	0.000	0.00	0.0	0.600	\bigcirc	300	Pipe／Conduit	8
S29．000	12.550	0.209	60.0	0.000	4.00	0.0	0.600	\bigcirc	150	Pipe／Conduit	遌
S30．000	10.050	0.760	13.2	0.000	4.00	0.0	0.600	\bigcirc	150	Pipe／Conduit	咀
S29．001	4.950	0.483	10.2	0.023	0.00	0.0	0.600	\bigcirc	150	Pipe／Conduit	8
S31．000	10.050	0.651	15.4	0.000	4.00	0.0	0.600	\bigcirc	150	Pipe／Conduit	囪
S32．000	12.550	0.263	47.7	0.000	4.00	0.0	0.600	\bigcirc	150	Pipe／Conduit	回
S31．001	6.750	0.113	59.7	0.040	0.00	0.0	0.600	\bigcirc	150	Pipe／Conduit	8
S23．006	7.397	0.050	147.9	0.000	0.00	0.0	0.600	\bigcirc	300	Pipe／Conduit	8
S23．007	6.903	0.125	55.2	0.000	0.00	0.0	0.600	\bigcirc	300	Pipe／Conduit	
S33．000	12.550	0.209	60.0	0.000	4.00	0.0	0.600	\bigcirc	150	Pipe／Conduit	咼

Network Results Table

PN	$\begin{gathered} \text { Rain } \\ (\mathrm{mm} / \mathrm{hr}) \end{gathered}$	$\begin{aligned} & \text { T.C. } \\ & \text { (mins) } \end{aligned}$	$\begin{aligned} & \text { US/IL } \\ & \text { (m) } \end{aligned}$	$\begin{gathered} \Sigma \text { I.Area } \\ \text { (ha) } \end{gathered}$	$\begin{gathered} \Sigma \text { Base } \\ \text { Flow }(1 / s) \end{gathered}$	Foul $(1 / s)$	Add Flow $(1 / s)$	$\begin{aligned} & \mathrm{Vel} \\ & (\mathrm{~m} / \mathrm{s}) \end{aligned}$	Cap $(1 / s)$	$\begin{aligned} & \text { Flow } \\ & (1 / s) \end{aligned}$
S27．001	50.00	4.07	98.767	0.026	0.0	0.0	0.0	2.64	46.7	4.7
S23．003	50.00	4.57	98.450	0.072	0.0	0.0	0.0	2.39	42.2	12.9
S28．000	50.00	4.18	99.126	0.000	0.0	0.0	0.0	2.39	42.3	0.0
S28．001	50.00	4.24	97.693	0.019	0.0	0.0	0.0	1.30	22.9	3.4
S23．004	50.00	4.68	96.805	0.091	0.0	0.0	0.0	1.22	86.0	16.4
S23．005	50.00	4.78	96.755	0.091	0.0	0.0	0.0	1.27	90.1	16.4
S29．000	50.00	4.16	98.372	0.000	0.0	0.0	0.0	1.30	23.0	0.0
S30．000	50.00	4.06	98.923	0.000	0.0	0.0	0.0	2.79	49.2	0.0
S29．001	50.00	4.19	98.163	0.023	0.0	0.0	0.0	3.17	55.9	4.2
S31．000	50.00	4.06	98.312	0.000	0.0	0.0	0.0	2.58	45.5	0.0
S32．000	50.00	4.14	97.924	0.000	0.0	0.0	0.0	1.46	25.8	0.0
S31．001	50.00	4.23	97.661	0.040	0.0	0.0	0.0	1.30	23.0	7.3
S23．006	50.00	4.88	96.705	0.154	0.0	0.0	0.0	1.29	91.2	27.9
S23．007	50.00	4.93	96.655	0.154	0.0	0.0	0.0	2.12	149.9	27.9
S33．000	50.00	4.16	99.001	0.000	0.0	0.0	0.0	1.30	23.0	0.0

Jacobs Engineering Limited		Page 3
\cdot	Bishop Auckland Bus Station and Car Park	
-		
Date 13/12/2022 09:26	Designed by G.Jones File BA-Drainage Model_v19.MDX	Checked by S.Clark

Network Design Table for Storm - SIte Network

Network Results Table

PN	$\begin{gathered} \text { Rain } \\ (\mathrm{mm} / \mathrm{hr}) \end{gathered}$	$\begin{aligned} & \text { T.C. } \\ & \text { (mins) } \end{aligned}$	$\begin{gathered} \text { US/IL } \\ \text { (m) } \end{gathered}$	Σ I.Area (ha)	$\begin{gathered} \Sigma \text { Base } \\ \text { Flow }(1 / s) \end{gathered}$	Foul $(1 / s)$	$\begin{aligned} & \text { Add Flow } \\ & (1 / s) \end{aligned}$	$\begin{gathered} \mathrm{Vel} \\ (\mathrm{~m} / \mathrm{s}) \end{gathered}$	$\begin{gathered} \text { Cap } \\ (1 / s) \end{gathered}$	$\begin{aligned} & \text { Flow } \\ & (1 / s) \end{aligned}$
S34.000	50.00	4.04	99.916	0.000	0.0	0.0	0.0	2.91	51.5	0.0
S33.001	50.00	4.18	98.792	0.020	0.0	0.0	0.0	3.73	65.8	3.6
S35.000	50.00	4.05	99.336	0.000	0.0	0.0	0.0	3.10	54.7	0.0
S36.000	50.00	4.16	98.607	0.000	0.0	0.0	0.0	1.30	23.0	0.0
S35.001	50.00	4.25	98.398	0.038	0.0	0.0	0.0	1.30	22.9	6.9
S33.002	50.00	4.42	98.286	0.058	0.0	0.0	0.0	1.12	19.9	10.4
S33.003	50.00	4.49	98.140	0.058	0.0	0.0	0.0	1.13	19.9	10.4
S33.004	50.00	4.70	98.079	0.058	0.0	0.0	0.0	1.12	19.9	10.4
S23.008	50.00	5.08	96.605	0.212	0.0	0.0	0.0	2.00	79.3	38.3
S37.000	50.00	4.13	96.400	0.000	0.0	0.0	0.0	1.17	82.6	0.0
S37.001	50.00	4.21	96.350	0.000	0.0	0.0	0.0	1.34	94.5	0.0
S38.000	50.00	4.07	97.935	0.000	0.0	0.0	0.0	2.40	42.3	0.0
S39.000	50.00	4.13	97.690	0.000	0.0	0.0	0.0	1.61	28.4	0.0
S38.001	50.00	4.19	97.372	0.022	0.0	0.0	0.0	1.30	23.0	4.0

Jacobs Engineering Limited		Page 4
\cdot	Bishop Auckland	
\cdot	Bus Station and Car Park	
Date 13／12／2022 09：26	Designed by G．Jones File BA－Drainage Model＿v19．MDX	Checked by S．Clark

Network Design Table for Storm－SIte Network

PN	Length （m）	$\begin{gathered} \text { Fall } \\ \text { (m) } \end{gathered}$	Slope (1:X)	I．Area （ha）	$\begin{aligned} & \text { T.E. } \\ & \text { (mins) } \end{aligned}$	$\begin{aligned} & \text { Ba: } \\ & \text { Flow } \end{aligned}$	$(1 / s)$	$\begin{gathered} \mathbf{k} \\ (\mathrm{mm}) \end{gathered}$	$\begin{aligned} & \text { HYD } \\ & \text { SECT } \end{aligned}$	$\begin{aligned} & \text { DIA } \\ & (\mathrm{mm}) \end{aligned}$	Section Type	Auto Design
S40．000	12.550	0.383	32.8	0.000	4.00		0.0	0.600	\bigcirc	150	Pipe／Conduit	－
S41．000	10.050	0.408	24.6	0.000	4.00		0.0	0.600	\bigcirc	150	Pipe／Conduit	－
S40．001	7.150	0.409	17.5	0.034	0.00		0.0	0.600	\bigcirc	150	Pipe／Conduit	臬
S37．002	7.150	0.050	143.0	0.000	0.00		0.0	0.600	\bigcirc	300	Pipe／Conduit	策
S37．003	7.150	0.050	143.0	0.000	0.00		0.0	0.600	\bigcirc	300	Pipe／Conduit	回
S23．009	17.700	0.525	33.7	0.000	0.00		0.0	0.600	\bigcirc	225	Pipe／Conduit	酓
S42．000	33.267	1.865	17.8	0.000	4.00		0.0	0.600	\bigcirc	150	Pipe／Conduit	－
S42．001	4.359	0.073	59.7	0.021	0.00		0.0	0.600	\bigcirc	150	Pipe／Conduit	合
S23．010	7.150	0.050	143.0	0.000	0.00		0.0	0.600	\bigcirc	300	Pipe／Conduit	8
S23．011	7.150	0.050	143.0	0.000	0.00		0.0	0.600	\bigcirc	300	Pipe／Conduit	
S43．000	22.493	1.495	15.0	0.000	4.00		0.0	0.600	\bigcirc	150	Pipe／Conduit	8
S43．001	4.954	0.083	59.7	0.017	0.00		0.0	0.600	\bigcirc	150	Pipe／Conduit	㦹
S43．002	8.607	0.895	9.6	0.000	0.00		0.0	0.600	\bigcirc	150	Pipe／Conduit	畐
S43．003	7.441	0.050	148.8	0.000	0.00		0.0	0.600	\bigcirc	300	Pipe／Conduit	
S43．004	8.459	0.050	169.2	0.000	0.00		0.0	0.600	\bigcirc	300	Pipe／Conduit	昷
S44．000	10.050	0.183	54.9	0.000	4.00		0.0	0.600	\bigcirc	150	Pipe／Conduit	8
S45．000	12.550	0.209	60.0	0.000	4.00		0.0	0.600	\bigcirc	150	Pipe／Conduit	㚗

Network Results Table

PN	$\begin{gathered} \text { Rain } \\ (\mathrm{mm} / \mathrm{hr}) \end{gathered}$	$\begin{aligned} & \text { T.C. } \\ & \text { (mins) } \end{aligned}$	$\begin{aligned} & \text { US/IL } \\ & \text { (m) } \end{aligned}$	$\begin{gathered} \Sigma \text { I.Area } \\ \text { (ha) } \end{gathered}$	$\begin{gathered} \Sigma \text { Base } \\ \text { Flow }(1 / s) \end{gathered}$	Foul $(1 / s)$	$\begin{aligned} & \text { Add Flow } \\ & (1 / s) \end{aligned}$	$\begin{aligned} & \mathrm{Vel} \\ & (\mathrm{~m} / \mathrm{s}) \end{aligned}$	$\begin{gathered} \text { Cap } \\ (1 / s) \end{gathered}$	$\begin{aligned} & \text { Flow } \\ & (1 / s) \end{aligned}$
S40．000	50.00	4.12	97.242	0.000	0.0	0.0	0.0	1.76	31.2	0.0
S41．000	50.00	4.08	97.267	0.000	0.0	0.0	0.0	2.04	36.0	0.0
S40．001	50.00	4.17	96.859	0.034	0.0	0.0	0.0	2.42	42.8	6.1
S37．002	50.00	4.31	96.300	0.056	0.0	0.0	0.0	1.31	92.8	10.1
S37．003	50.00	4.40	96.250	0.056	0.0	0.0	0.0	1.31	92.8	10.1
S23．009	50.00	5.21	96.200	0.268	0.0	0.0	0.0	2.26	89.9	48.4
S42．000	50.00	4.23	98.403	0.000	0.0	0.0	0.0	2.40	42.3	0.0
S42．001	50.00	4.29	96.538	0.021	0.0	0.0	0.0	1.30	23.0	3.8
S23．010	50.00	5.30	95.600	0.289	0.0	0.0	0.0	1.31	92.8	52.1
S23．011	50.00	5.39	95.550	0.289	0.0	0.0	0.0	1.31	92.8	52.1
S43．000	50.00	4.14	98.223	0.000	0.0	0.0	0.0	2.61	46.1	0.0
S43．001	50.00	4.21	96.728	0.017	0.0	0.0	0.0	1.30	23.0	3.0
S43．002	50.00	4.25	96.645	0.017	0.0	0.0	0.0	3.27	57.8	3.0
S43．003	50.00	4.35	95.600	0.017	0.0	0.0	0.0	1.29	90.9	3.0
S43．004	50.00	4.46	95.550	0.017	0.0	0.0	0.0	1.21	85.2	3.0
S44．000	50.00	4.12	96.982	0.000	0.0	0.0	0.0	1.36	24.0	0.0
S45．000	50.00	4.16	97.008	0.000	0.0	0.0	0.0	1.30	23.0	0.0

Jacobs Engineering Limited		Page
－	Bishop Auckland Bus Station and Car Park	
Date 13／12／2022 09：26 File BA－Drainage Model＿v19．MDX	Designed by G．Jones Checked by S．Clark	Drainage

Network Design Table for Storm－SIte Network

PN	Length （m）	$\begin{gathered} \text { Fall } \\ (\mathrm{m}) \end{gathered}$	Slope $(1: X)$	I．Area （ha）	$\begin{aligned} & \text { T.E. } \\ & \text { (mins) } \end{aligned}$	$\begin{gathered} \text { Base } \\ \text { Flow }(1 / s) \end{gathered}$	$\begin{gathered} \mathbf{k} \\ (\mathrm{mm}) \end{gathered}$	$\begin{aligned} & \text { HYD } \\ & \text { SECT } \end{aligned}$	$\begin{aligned} & \text { DIA } \\ & (\mathrm{mm}) \end{aligned}$	Section Type	Auto Design
S44．001	4.350	0.373	11.7	0.024	0.00	0.0	0.600	\bigcirc	150	Pipe／Conduit	畧
S23．012	7.150	0.050	143.0	0.000	0.00	0.0	0.600	\bigcirc	300	Pipe／Conduit	量
S46．000	16.100	0.468	34.4	0.000	4.00	0.0	0.600	\bigcirc	150	Pipe／Conduit	B
S47．000	16.750	0.279	60.0	0.000	4.00	0.0	0.600	\bigcirc	150	Pipe／Conduit	－
S23．013	4.649	0.050	93.0	0.052	0.00	0.0	0.600	\bigcirc	300	Pipe／Conduit	臬
S48．000	9.722	0.162	60.0	0.000	4.00	0.0	0.600	\bigcirc	150	Pipe／Conduit	－
S23．014	9.249	0.642	14.4	0.010	0.00	0.0	0.600	\bigcirc	225	Pipe／Conduit	易
S23．015	15.498	0.050	310.0	0.000	0.00	0.0	0.600	\bigcirc	450	Pipe／Conduit	
S23．016	19.976	0.050	399.5	0.000	0.00	0.0	0.600	\bigcirc	450	Pipe／Conduit	
S49．000	22.165	0.261	84.9	0.028	4.00	0.0	0.600	\bigcirc	225	Pipe／Conduit	
S49．001	13.389	0.423	31.7	0.011	0.00	0.0	0.600	\bigcirc	225	Pipe／Conduit	－
S49．002	13.275	0.191	69.5	0.007	0.00	0.0	0.600	\bigcirc	225	Pipe／Conduit	g
S49．003	16.968	0.160	106.0	0.004	0.00	0.0	0.600	\bigcirc	225	Pipe／Conduit	
S49．004	12.740	0.082	155.4	0.000	0.00	0.0	0.600	\bigcirc	225	Pipe／Conduit	）
S50．000	15.503	0.103	150.5	0.109	4.00	0.0	0.600	\bigcirc	225	Pipe／Conduit	8
S50．001	12.033	0.060	200.6	0.068	0.00	0.0	0.600	\bigcirc	300	Pipe／Conduit	0
S50．002	8.731	0.044	200.0	0.000	0.00	0.0	0.600	\bigcirc	300	Pipe／Conduit	8

Network Results Table

PN	$\underset{(\mathrm{mm} / \mathrm{hr})}{\mathrm{Rain}}$	$\begin{aligned} & \text { T.C. } \\ & \text { (mins) } \end{aligned}$	$\begin{gathered} \text { US /IL } \\ \text { (m) } \end{gathered}$	$\begin{gathered} \Sigma \text { I.Area } \\ \text { (ha) } \end{gathered}$	$\begin{gathered} \Sigma \text { Base } \\ \text { Flow }(1 / s) \end{gathered}$	Foul （1／s）	Add Flow $(1 / s)$	$\begin{gathered} \mathrm{Vel} \\ (\mathrm{~m} / \mathrm{s}) \end{gathered}$	$\begin{aligned} & \text { Cap } \\ & (1 / s) \end{aligned}$	$\begin{aligned} & \text { Flow } \\ & (1 / s) \end{aligned}$
S44．001	50.00	4.19	96.799	0.024	0.0	0.0	0.0	2.97	52.4	4.4
S23．012	50.00	5.48	95.500	0.330	0.0	0.0	0.0	1.31	92.8	59.5
S46．000	50.00	4.16	96.844	0.000	0.0	0.0	0.0	1.72	30.4	0.0
S47．000	50.00	4.21	96.434	0.000	0.0	0.0	0.0	1.30	23.0	0.0
S23．013	50.00	5.53	95.450	0.382	0.0	0.0	0.0	1.63	115.3	69.0
S48．000	50.00	4.12	96.194	0.000	0.0	0.0	0.0	1.30	23.0	0.0
S23．014	50.00	5.57	95.400	0.392	0.0	0.0	0.0	3.47	137.8	70.7
S23．015	50.00	5.80	94.533	0.392	0.0	0.0	0.0	1.15	182.8	70.7
S23．016	50.00	6.13	94.483	0.392	0.0	0.0	0.0	1.01	160.8	70.7
S49．000	50.00	4.26	95.550	0.028	0.0	0.0	0.0	1.42	56.5	5.1
S49．001	50.00	4.36	95.289	0.040	0.0	0.0	0.0	2.33	92.8	7.2
S49．002	50.00	4.50	94.866	0.046	0.0	0.0	0.0	1.57	62.5	8.4
S49．003	50.00	4.72	94.675	0.051	0.0	0.0	0.0	1.27	50.5	9.2
S49．004	50.00	4.92	94.515	0.051	0.0	0.0	0.0	1.05	41.6	9.2
S50．000	50.00	4.24	94.715	0.109	0.0	0.0	0.0	1.06	42.3	19.7
S50．001	50.00	4.42	94.537	0.177	0.0	0.0	0.0	1.11	78.2	32.0
S50．002	50.00	4.56	94.477	0.177	0.0	0.0	0.0	1.11	78.3	32.0

Network Results Table

PN	$\underset{(\mathrm{mm} / \mathrm{hr})}{\mathrm{Rain}}$	$\begin{aligned} & \text { T.C. } \\ & \text { (mins) } \end{aligned}$	$\begin{gathered} \text { US / IL } \\ (\mathrm{m}) \end{gathered}$	Σ I.Area (ha)	$\begin{gathered} \Sigma \text { Base } \\ \text { Flow }(1 / s) \end{gathered}$	$\begin{aligned} & \text { Foul } \\ & (1 / s) \end{aligned}$	Add Flow $(1 / s)$	$\begin{aligned} & \text { Vel } \\ & (\mathrm{m} / \mathrm{s}) \end{aligned}$	$\begin{gathered} \text { Cap } \\ (1 / s) \end{gathered}$	$\begin{aligned} & \text { Flow } \\ & (1 / s) \end{aligned}$
S23.017	50.00	6.22	94.433	0.620	0.0	0.0	0.0	1.01	17.8<	111.9
S23.018	50.00	6.39	94.374	0.620	0.0	0.0	0.0	1.01	17.8<<	111.9
S23.019	50.00	6.49	94.270	0.620	0.0	0.0	0.0	0.86	15.3<<	111.9

Jacobs Engineering Limited		Page
-	Bishop Auckland Bus Station and Car Park	
Date 13/12/2022 09:26 File BA-Drainage Model_v19.MDX	Designed by G.Jones Checked by S.Clark	Drainage

Innovyze

Manhole Schedules for Storm - SIte Network

$\begin{gathered} \text { MH } \\ \text { Name } \end{gathered}$	$\begin{gathered} \mathrm{MH} \\ \mathrm{CL} \quad(\mathrm{~m}) \end{gathered}$		MH Connection	$\underset{\substack{\text { MH } \\(\mathrm{mm})}}{\mathrm{Diam}, \mathrm{~L} \star \mathrm{~W}}$	PN	Pipe Out Invert Level (m)	$\begin{aligned} & \text { Diameter } \\ & (\mathrm{mm}) \end{aligned}$	PN	$\begin{aligned} & \text { Pipes In } \\ & \text { Invert } \\ & \text { Level (m) } \end{aligned}$	$\begin{aligned} & \text { Diameter } \\ & (\mathrm{mm}) \end{aligned}$	Backdrop (mm)
SWP-1	101.310	1.050	Open Manhole	1200	S23.000	100.260	150				
SWP-2	100.271	1.054	Open Manhole	1200	S23.001	99.217	150	S23.000	99.217	150	
SWP-3	100.123	0.606	Junction		S24.000	99.517	150				
SWP-4	100.200	1.050	Open Manhole	1200	S25.000	99.150	150				
SWP-5	100.043	1.056	Open Manhole	1200	S24.001	98.987	150	S24.000	98.987	150	
								S25.000	98.987	150	
SWP-6	99.998	1.300	Open Manhole	1200	S23.002	98.698	150	S23.001	98.698	150	
								S24.001	98.698	150	
SWP-7	100.296	0.650	Junction		S26.000	99.646	150				
SWP-8	99.835	1.300	Open Manhole	600	S26.001	98.535	150	S26.000	98.535	150	
SWP-9	100.015	0.606	Junction		S27.000	99.409	150				
SWP-10	99.917	1.150	Open Manhole	600	S27.001	98.767	150	S27.000	98.767	150	
SWP-11	99.790	1.340	Open Manhole	1200	S23.003	98.450	150	S23.002	98.450	150	
								S26.001	98.450	150	
								S27.001	98.450	150	
SWP-12	99.776	0.650	Junction		S28.000	99.126	150				
SWP-13	98.977	1.284	Open Manhole	600	S28.001	97.693	150	S28.000	97.693	150	
SWP-14	98.879	2.074	Open Manhole	1200	S23.004	96.805	300	S23.003	96.955	150	
								S28.001	97.610	150	655
SWP-TANK 1	98.959	2.204	Junction		S23.005	96.755	300	S23.004	96.755	300	
SWP-16	99.033	0.661	Junction		S29.000	98.372	150				
SWP-17	99.622	0.699	Junction		S30.000	98.923	150				
SWP-18	99.388	1.225	Open Manhole	600	S29.001	98.163	150	S29.000	98.163	150	
								S30.000	98.163	150	
SWP-19	98.989	0.677	Junction		S31.000	98.312	150				
SWP-20	98.586	0.662	Junction		S32.000	97.924	150				
SWP-21	98.819	1.158	Open Manhole	600	S31.001	97.661	150	S31.000	97.661	150	
								S32.000	97.661	150	
SWP-22	99.135	2.430	Open Manhole	1200	S23.006	96.705	300	S23.005	96.705	300	
								S29.001	97.680	150	825
								S31.001	97.548	150	693
SWP-TANK 2	99.299	2.644	Junction		S23.007	96.655	300	S23.006	96.655	300	
SWP-24	99.669	0.668	Junction		S33.000	99.001	150				
SWP-25	100.479	0.563	Junction		S34.000	99.916	150				
SWP-26	100.197	1.405	Open Manhole	600	S33.001	98.792	150	S33.000	98.792	150	
								S34.000	99.292	150	500
SWP-27	99.973	0.637	Junction		S35.000	99.336	150				
SWP-28	99.269	0.662	Junction		S36.000	98.607	150				
SWP-29	99.658	1.260	Open Manhole	600	S35.001	98.398	150	S35.000	98.398	150	
								S36.000	98.398	150	
SWP-30	99.974	1.688	Open Manhole	1200	S33.002	98.286	150	S33.001	98.286	150	
								S35.001	98.286	150	
SWP-31	100.381	2.241	Open Manhole	1200	S33.003	98.140	150	S33.002	98.140	150	
SWP-32	99.994	1.915	Open Manhole	1200	S33.004	98.079	150	S33.003	98.079	150	
				©198	2-2020	Innovyze					

Manhole Schedules for Storm - SIte Network

MH Name	$\underset{\mathrm{CL}}{\mathrm{MH}}(\mathrm{~m})$	MH Depth (m)	MH Connection	$\underset{\substack{\text { Diam. , } \mathrm{L} * \mathrm{~W} \\(\mathrm{~mm})}}{\mathrm{MH}}$	PN	Pipe Out Invert Level (m)	$\underset{(\mathrm{mm})}{\text { Diameter }}$	PN	$\begin{aligned} & \text { Pipes In } \\ & \text { Invert } \\ & \text { Level (} \mathrm{m} \text {) } \end{aligned}$	$\underset{(\mathrm{mm})}{\text { Diameter }}$	$\underset{(\mathrm{mm})}{\text { Backdrop }}$

Jacobs Engineering Limited		Page 9
\cdot	Bishop Auckland Bus Station and Car Park	
Date 13/12/2022 09:26 File BA-Drainage Model_v19.MDX	Designed by G.Jones Checked by S.Clark	Drainage
Innovyze	Network 2020.1.3	

Manhole Schedules for Storm - SIte Network

$\begin{gathered} \text { MH } \\ \text { Name } \end{gathered}$	$$		MH Connection	$\begin{gathered} \mathrm{MH} \\ \text { Diam. , L*W } \\ (\mathrm{mm}) \end{gathered}$	PN	Pipe Out Invert Level (m)	$\begin{aligned} & \text { Diameter } \\ & (\mathrm{mm}) \end{aligned}$	PN	Pipes In Invert Level (m)	$\begin{aligned} & \text { Diameter } \\ & \text { (mm) } \end{aligned}$	$\begin{gathered} \text { Backdrop } \\ (\mathrm{mm}) \end{gathered}$
SWP-TANK 7	96.394	1.911	Junction		S23.016	94.483	450	S23.015	94.483	450	
SWP-65	97.337	1.787	Open Manhole	600	S49.000	95.550	225				
SWP-66	96.750	1.461	Open Manhole	600	S49.001	95.289	225	S49.000	95.289	225	
SWP-67	96.359	1.493	Open Manhole	600	S49.002	94.866	225	S49.001	94.866	225	
SWP-68	96.115	1.440	Open Manhole	600	S49.003	94.675	225	S49.002	94.675	225	
SWP-69	96.532	2.017	Open Manhole	1200	S49.004	94.515	225	S49.003	94.515	225	
SWP-70	96.174	1.459	Open Manhole	1200	S50.000	94.715	225				
SWP-71	95.990	1.453	Open Manhole	1200	S50.001	94.537	300	S50.000	94.612	225	
SWP-72	96.266	1.789	Open Manhole	1200	S50.002	94.477	300	S50.001	94.477	300	
SWP-CC1	96.346	1.913	Open Manhole	2400	S23.017	94.433	150	S23.016	94.433	450	
								S49.004	94.433	225	
								S50.002	94.433	300	
SWP-PI	96.248	1.874	Junction		S23.018	94.374	150	S23.017	94.374	150	
SWP-75	95.960	1.690	Open Manhole	1200	S23.019	94.270	150	S23.018	94.270	150	
SWP-EXTG	95.780	1.545	Open Manhole	0		OUTFALL		S23.019	94.235	150	

MH Name	Manhole Easting (m)	Manhole Northing (m)	Intersection Easting (m)	Intersection Northing (m)	Manhole Access	Layout (North)
SWP -1	420798.397	529957.316	420798.397	529957.316	Required	
SWP-2	420816.281	529966.851	420816.281	529966.851	Required	
SWP-3	420821.559	529962.703			No Entry	
SWP-4	420829.751	529959.702	420829.751	529959.702	Required	
SWP - 5	420829.376	529963.479	420829.376	529963.479	Required	
SWP-6	420828.916	529968.106	420828.916	529968.106	Required	
SWP-7	420821.224	529972.317			No Entry	
SWP-8	420838.688	529974.052	420838.688	529974.052	Required	
SWP-9	420833.015	529963.841			No Entry	
SWP-10	420840.832	529964.617	420840.832	529964.617	Required	
©1982-2020 Innovyze						

Jacobs Engineering Limited	Page 10	
\cdot	Bishop Auckland •	Bus Station and Car Park
•	Designed by G.Jones Fate 13/12/2022 09:26 File BA-Drainage Model_v19.MDX	Network 2020.1.3

$\begin{gathered} \text { MH } \\ \text { Name } \end{gathered}$	Manhole Easting (m)	Manhole Northing (m)	Intersection Easting (m)	Intersection Northing (m)	Manhole Access	Layout (North)
SWP-11	420840.372	529969.245	420840.372	529969.245	Required	
SWP-12	420841.873	529974.368			No Entry	
SWP-13	420867.347	529976.899	420867.347	529976.899	Required	
SWP-14	420867.140	529971.904	420867.140	529971.904	Required	
SWP-TANK 1	420867.962	529963.632			No Entry	
SWP-16	420862.546	529968.081			No Entry	
SWP-17	420864.780	529945.592			No Entry	
SWP-18	420863.786	529955.593	420863.786	529955.593	Required	
SWP-19	420876.423	529946.749			No Entry	
SWP-20	420874.188	529969.238			No Entry	
SWP-21	420875.429	529956.749	420875.429	529956.749	Required	
SWP-22	420868.712	529956.082	420868.712	529956.082	Required	
SWP-TANK 2	420869.443	529948.721			No Entry	
SWP-24	420845.927	529966.430			No Entry	
SWP-25	420847.915	529946.429			No Entry	
SWP-26	420847.168	529953.942	420847.168	529953.942	Required	
SWP-27	420858.610	529944.979			No Entry	
SWP-28	420856.376	529967.468			No Entry	
SWP-29	420857.617	529954.979	420857.617	529954.979	Required	
		©1982	2020 Innov	yze		

Jacobs Engineering Limited		Page 11
\cdot	Bishop Auckland Bus Station and Car Park	
.	Designed by G.Jones Checked by S.clark	Micro
Fate 13/12/2022 09:26 BA-Drainage Model_v19.MDX	Network 2020.1.3	
Innovyze		

Jacobs Engineering Limited	Page 12	
\cdot	Bishop Auckland •	Bus Station and Car Park
•	Designed by G.Jones Fate 13/12/2022 09:26 File BA-Drainage Model_v19.MDX	Network 2020.1.3

Jacobs Engineering Limited	Page 13	
\cdot	Bishop Auckland •	Bus Station and Car Park
•	Designed by G.Jones Fate 13/12/2022 09:26 File BA-Drainage Model_v19.MDX	Network 2020.1.3

MH Name	Manhole Easting (m)	Manhole Northing (m)	Intersection Easting (m)	Intersection Northing (m)	Manhole Access	Layout (North)
SWP-68	420963.161	529991.824	420963.161	529991.824	Required	
SWP-69	420966.272	529975.144	420966.272	529975.144	Required	
SWP-70	420954.479	529951.395	420954.479	529951.395	Required	
SWP-71	420969.906	529952.927	420969.906	529952.927	Required	
SWP-72	420968.716	529964.902	420968.716	529964.902	Required	
SWP-CC1	420960.028	529964.039	420960.028	529964.039	Required	
SWP-PI	420960.608	529958.199			No Entry	
SWP-75	420961.632	529947.898	420961.632	529947.898	Required	
SWP-EXTG	420960.014	529943.461			No Entry	

Jacobs Engineering Limited		Page 14
\cdot	Bishop Auckland •	Bus Station and Car Park
Date 13/12/2022 09:26	Designed by G.Jones File BA-Drainage Model_v19.MDX	Checked by S.clark

Area Summary for Storm - SIte Network

Pipe	PIMP	PIMP	PIMP	Gross	Imp.	e Total (ha)
Number	Type	Name	(\%)	Area (ha)	Area (ha)	
23.000	Classification	Soft Landscape	50	0.008	0.004	0.004
	Classification	Soft Landscape	50	0.013	0.007	0.011
	Classification	Hard Landscape	100	0.007	0.007	0.018
23.001	Classification	Roof	100	0.006	0.006	0.006
	Classification	Soft Landscape	50	0.005	0.002	0.009
	Classification	Soft Landscape	50	0.003	0.002	0.010
24.000	-	-	100	0.000	0.000	0.000
25.000	-	-	100	0.000	0.000	0.000
24.001	-	-	100	0.000	0.000	0.000
23.002	-	-	100	0.000	0.000	0.000
26.000	-	-	100	0.000	0.000	0.000
26.001	Classification	Soft Landscape	50	0.009	0.005	0.005
	Classification	Permeable Paving	100	0.009	0.009	0.013
27.000	-	-	100	0.000	0.000	0.000
27.001	Classification	Permeable Paving	100	0.011	0.011	0.011
	Classification	Soft Landscape	50	0.005	0.003	0.013
	Classification	Road	100	0.013	0.013	0.026
23.003	Classification	Hard Landscape	100	0.005	0.005	0.005
28.000	-	-	100	0.000	0.000	0.000
28.001	Classification	Permeable Paving	100	0.014	0.014	0.014
	Classification	Soft Landscape	50	0.009	0.005	0.019
23.004	-	-	100	0.000	0.000	0.000
23.005	-	-	100	0.000	0.000	0.000
29.000	-	-	100	0.000	0.000	0.000
30.000	-	-	100	0.000	0.000	0.000
29.001	Classification	Permeable Paving	100	0.013	0.013	0.013
	Classification	Soft Landscape	50	0.003	0.002	0.014
	Classification	Road	100	0.005	0.005	0.019
	Classification	Road	100	0.005	0.005	0.023
31.000	-	-	100	0.000	0.000	0.000
32.000	-	-	100	0.000	0.000	0.000
31.001	Classification	Permeable Paving	100	0.012	0.012	0.012
	Classification	Road	100	0.028	0.028	0.040
23.006	-	-	100	0.000	0.000	0.000
23.007	-	-	100	0.000	0.000	0.000
33.000	-	-	100	0.000	0.000	0.000
34.000	-	-	100	0.000	0.000	0.000
33.001	Classification	Permeable Paving	100	0.011	0.011	0.011
	Classification	Soft Landscape	50	0.010	0.005	0.016
	Classification	Road	100	0.004	0.004	0.020
35.000	-	-	100	0.000	0.000	0.000
36.000	-	-	100	0.000	0.000	0.000
35.001	Classification	Permeable Paving	100	0.012	0.012	0.012
	Classification	Road	100	0.025	0.025	0.038
33.002	-	-	100	0.000	0.000	0.000
33.003	-	-	100	0.000	0.000	0.000
33.004	-	-	100	0.000	0.000	0.000
23.008	-	-	100	0.000	0.000	0.000
37.000	-	-	100	0.000	0.000	0.000
37.001	-	-	100	0.000	0.000	0.000
38.000	-	-	100	0.000	0.000	0.000
39.000	-	-	100	0.000	0.000	0.000
38.001	Classification	Permeable Paving	100	0.013	0.013	0.013
	Classification	Soft Landscape	50	0.003	0.001	0.014
	Classification	Road	100	0.004	0.004	0.018
	Classification	Road	100	0.004	0.004	0.022
40.000	-	-	100	0.000	0.000	0.000
41.000	-	-	100	0.000	0.000	0.000
40.001	Classification	Permeable Paving	100	0.010	0.010	0.010

Jacobs Engineering Limited		Page 15
	Bishop Auckland Bus Station and Car Park	
Date 13/12/2022 09:26 File BA-Drainage Model_v19.MDX	Designed by G.Jones Checked by S.Clark	Drainage

Area Summary for Storm - SIte Network

Pipe Number	PIMP Type	PIMP Name	PIMP (\%)	Gross Area (ha)	$\begin{gathered} \text { Imp. } \\ \text { Area (ha) } \end{gathered}$	$\begin{gathered} \text { Pipe Total } \\ \text { (ha) } \end{gathered}$
	Classification	Road	100	0.024	0.024	0.034
37.002	-	-	100	0.000	0.000	0.000
37.003	-	-	100	0.000	0.000	0.000
23.009	-	-	100	0.000	0.000	0.000
42.000	-	-	100	0.000	0.000	0.000
42.001	Classification	Permeable Paving	100	0.019	0.019	0.019
	Classification	Soft Landscape	50	0.004	0.002	0.021
23.010	-	-	100	0.000	0.000	0.000
23.011	-	-	100	0.000	0.000	0.000
43.000	-	-	100	0.000	0.000	0.000
43.001	Classification	Permeable Paving	100	0.012	0.012	0.012
	Classification	Soft Landscape	50	0.009	0.004	0.017
43.002	-	-	100	0.000	0.000	0.000
43.003	-	-	100	0.000	0.000	0.000
43.004	-	-	100	0.000	0.000	0.000
44.000	-	-	100	0.000	0.000	0.000
45.000	-	-	100	0.000	0.000	0.000
44.001	Classification	Permeable Paving	100	0.010	0.010	0.010
	Classification	Soft Landscape	50	0.002	0.001	0.011
	Classification	Road	100	0.009	0.009	0.020
	Classification	Road	100	0.004	0.004	0.024
23.012	-	-	100	0.000	0.000	0.000
46.000	-	-	100	0.000	0.000	0.000
47.000	-	-	100	0.000	0.000	0.000
23.013	Classification	Permeable Paving	100	0.017	0.017	0.017
	Classification	Soft Landscape	50	0.003	0.002	0.018
	Classification	Road	100	0.034	0.034	0.052
48.000	-	-	100	0.000	0.000	0.000
23.014	Classification	Hard Landscape	100	0.006	0.006	0.006
	Classification	Hard Landscape	100	0.003	0.003	0.010
23.015	-	Hard	100	0.000	0.000	0.000
23.016	-	-	100	0.000	0.000	0.000
49.000	Classification	Roof	100	0.015	0.015	0.015
	Classification	Hard Landscape	100	0.013	0.013	0.028
49.001	Classification	Hard Landscape	100	0.010	0.010	0.010
	Classification	Soft Landscape	50	0.004	0.002	0.011
49.002	Classification	Hard Landscape	100	0.005	0.005	0.005
	Classification	Soft Landscape	50	0.002	0.001	0.007
49.003	Classification	Hard Landscape	100	0.003	0.003	0.003
	Classification	Soft Landscape	50	0.002	0.001	0.004
49.004	-	-	100	0.000	0.000	0.000
50.000	Classification	Road	100	0.109	0.109	0.109
50.001	Classification	Road	100	0.068	0.068	0.068
50.002	-	-	100	0.000	0.000	0.000
23.017	-	-	100	0.000	0.000	0.000
23.018	-	-	100	0.000	0.000	0.000
23.019	-	-	100	0.000	0.000	0.000
				Total	Total	Total
				0.667	0.620	0.620

Jacobs Engineering Limited		Page 16
\cdot	Bishop Auckland Bus Station and Car Park	
•		
Date 13/12/2022 09:26	Designed by G.Jones File BA-Drainage Model_v19.mDx	Checked by S.Clark

Network Classifications for Storm - SIte Network

PN	USMH Name	Pipe Dia (mm)	Min Cover Depth (m)	Max Cover Depth (m)	Pipe Type	MH Dia (mm)		MH Ring Depth (m)	MH Type
S23.000	SWP-1	150	0.715	0.904	Unclassified	1200	0	0.900	Unclassified
S23.001	SWP-2	150	0.904	1.150	Unclassified	1200	0	0.904	Unclassified
S24.000	SWP-3	150	0.456	0.906	Unclassified				Junction
S25.000	SWP-4	150	0.851	0.906	Unclassified	1200	0	0.900	Unclassified
S24.001	SWP-5	150	0.906	1.150	Unclassified	1200	0	0.906	Unclassified
S23.002	SWP-6	150	1.150	1.200	Unclassified	1200	0	1.150	Unclassified
S26.000	SWP-7	150	0.500	1.150	Unclassified				Junction
S26.001	SWP-8	150	1.150	1.190	Unclassified	600	0	1.150	Unclassified
S27.000	SWP-9	150	0.456	1.000	Unclassified				Junction
S27.001	SWP-10	150	1.000	1.190	Unclassified	600	0	1.000	Unclassified
S23.003	SWP-11	150	1.190	1.774	Unclassified	1200	0	1.190	Unclassified
S28.000	SWP-12	150	0.500	1.134	Unclassified				Junction
S28.001	SWP-13	150	1.119	1.134	Unclassified	600	0	1.134	Unclassified
S23.004	SWP-14	300	1.738	1.904	Unclassified	1200	0	1.774	Unclassified
S23.005	SWP-TANK 1	300	1.904	2.130	Unclassified				Junction
S29.000	SWP-16	150	0.511	1.075	Unclassified				Junction
S30.000	SWP-17	150	0.549	1.075	Unclassified				Junction
S29.001	SWP-18	150	1.075	1.305	Unclassified	600	0	1.075	Unclassified
S31.000	SWP-19	150	0.527	1.008	Unclassified				Junction
S32.000	SWP-20	150	0.512	1.008	Unclassified				Junction
S31.001	SWP-21	150	1.008	1.437	Unclassified	600	0	1.008	Unclassified
S23.006	SWP-22	300	2.130	2.344	Unclassified	1200	0	2.130	Unclassified
S23.007	SWP-TANK 2	300	2.344	2.480	Unclassified				Junction
S33.000	SWP-24	150	0.518	1.255	Unclassified				Junction
S34.000	SWP-25	150	0.413	0.755	Unclassified				Junction
S33.001	SWP-26	150	1.255	1.538	Unclassified	600	0	1.255	Unclassified
S35.000	SWP-27	150	0.487	1.110	Unclassified				Junction
S36.000	SWP-28	150	0.512	1.110	Unclassified				Junction
S35.001	SWP-29	150	1.110	1.538	Unclassified	600	0	1.110	Unclassified
S33.002	SWP-30	150	1.538	2.091	Unclassified	1200	0	1.538	Unclassified
S33.003	SWP-31	150	1.765	2.091	Unclassified	1200	0	2.091	Unclassified
S33.004	SWP-32	150	1.140	1.765	Unclassified	1200	0	1.765	Unclassified
S23.008	SWP-HB1	225	1.901	2.366	Unclassified	1500	0	2.366	Unclassified
S37.000	SWP-34	300	1.482	1.589	Unclassified	1200	0	1.521	Unclassified
S37.001	SWP-TANK 3	300	1.589	1.689	Unclassified				Junction
S38.000	SWP-36	150	0.549	0.999	Unclassified				Junction
S39.000	SWP-37	150	0.507	0.999	Unclassified				Junction
S38.001	SWP-38	150	0.843	0.999	Unclassified	600	0	0.999	Unclassified
S40.000	SWP-39	150	0.504	0.956	Unclassified				Junction
S41.000	SWP-40	150	0.584	0.956	Unclassified				Junction
S40.001	SWP-41	150	0.956	1.689	Unclassified	600	0	0.956	Unclassified
S37.002	SWP-42	300	1.689	1.810	Unclassified	1200	0	1.689	Unclassified
S37.003	SWP-TANK 4	300	1.810	1.872	Unclassified				Junction
S23.009	SWP-HB2	225	1.539	1.901	Unclassified	1500	0	1.901	Unclassified
S42.000	SWP-45	150	0.558	0.889	Unclassified				Junction
S42.001	SWP-46	150	0.824	0.889	Unclassified	600	0	0.889	Unclassified
S23.010	SWP-47	300	1.528	1.575	Unclassified	1200	0	1.539	Unclassified
S23.011	SWP-TANK 6	300	1.575	1.672	Unclassified				Junction
S43.000	SWP-49	150	0.495	1.135	Unclassified				Junction
S43.001	SWP-50	150	1.084	1.135	Unclassified	600	0	1.135	Unclassified
S43.002	SWP-51	150	1.084	1.653	Unclassified	1200	0	1.084	Unclassified
S43.003	SWP-52	300	1.612	1.653	Unclassified	1200	0	1.653	Unclassified
S43.004	SWP-TANK 5	300	1.627	1.672	Unclassified				Junction
S44.000	SWP-54	150	0.521	0.784	Unclassified				Junction
S45.000	SWP-55	150	0.504	0.784	Unclassified				Junction
S44.001	SWP-56	150	0.784	0.896	Unclassified	600	0	0.784	Unclassified
S23.012	SWP-57	300	1.354	1.672	Unclassified	1200	0	1.672	Unclassified

Network Classifications for Storm - SIte Network

PN	USMH Name	Pipe Dia (mm)	Min Cover Depth (m)	Max Cover Depth (m)	Pipe Type	$\begin{aligned} & \text { MH } \\ & \text { Dia } \\ & (\mathrm{mm}) \end{aligned}$		MH Ring Depth (m)	MH Type
S46.000	SWP-58	150	0.364	0.578	Unclassified				Junction
S47.000	SWP-59	150	0.514	0.799	Unclassified				Junction
S23.013	SWP-60	300	1.354	1.505	Unclassified	1200	0	1.354	Unclassified
S48.000	SWP-61	150	0.880	0.930	Unclassified	600	0	0.920	Unclassified
S23.014	SWP-HB3	225	1.487	1.705	Unclassified	1500	0	1.487	Unclassified
S23.015	SWP-63	450	1.461	1.705	Unclassified	1500	0	1.705	Unclassified
S23.016	SWP-TANK 7	450	1.455	1.468	Unclassified				Junction
S49.000	SWP-65	225	1.236	1.562	Unclassified	600	0	1.562	Unclassified
S49.001	SWP-66	225	1.236	1.421	Unclassified	600	0	1.236	Unclassified
S49.002	SWP-67	225	1.215	1.440	Unclassified	600	0	1.268	Unclassified
S49.003	SWP-68	225	1.215	1.792	Unclassified	600	0	1.215	Unclassified
S49.004	SWP-69	225	1.688	1.792	Unclassified	1200	0	1.792	Unclassified
S50.000	SWP-70	225	1.153	1.234	Unclassified	1200	0	1.234	Unclassified
S50.001	SWP-71	300	1.153	1.489	Unclassified	1200	0	1.153	Unclassified
S50.002	SWP-72	300	1.489	1.654	Unclassified	1200	0	1.489	Unclassified
S23.017	SWP-CC1	150	1.724	1.763	Unclassified	2400	0	1.763	Unclassified
S23.018	SWP-PI	150	1.540	1.724	Unclassified				Junction
S23.019	SWP-75	150	1.395	1.673	Unclassified	1200	0	1.540	Unclassified

Free Flowing Outfall Details for Storm - SIte Network

Volumetric Runoff Coeff 1.000 Additional Flow - \% of Total Flow 0.000
Areal Reduction Factor 1.000 MADD Factor * $10 \mathrm{~m}^{3} /$ ha Storage 2.000 Hot Start (mins) 0 Inlet Coeffiecient 0.800
Hot Start Level (mm) 0 Flow per Person per Day (l/per/day) 0.000
Manhole Headloss Coeff (Global) $0.500 \quad$ Run Time (mins) 60 Foul Sewage per hectare (l/s) $0.000 \quad$ Output Interval (mins) 1

Number of Input Hydrographs 0 Number of Offline Controls 0 Number of Time/Area Diagrams 3 Number of Online Controls 4 Number of Storage Structures 20 Number of Real Time Controls 0

Synthetic Rainfall Details

Rainfall Model	FSR	Profile Type	Summer
Return Period (years)	100	$C v$ (Summer)	1.000
Region England and Wales	Cv (Winter)	0.840	
M5-60 (mm)	17.000	Storm Duration (mins)	30
Ratio R	0.336		

Jacobs Engineering Limited		Page 18
	Bishop Auckland Bus Station and Car Park	
Date 13/12/2022 09:26 File BA-Drainage Model_v19.MDX	Designed by G.Jones Checked by S.Clark	Drainage
Innovyze	Network 2020.1.3	

Hydro-Brake® Optimum Manhole: SWP-HB1, DS/PN: S23.008, Volume (m ${ }^{3}$): 5.2

Unit Reference MD-SHE-0097-4500-1250-4500	
Design Head (m)	1.250
Design Flow (l/s)	4.5
Flush-Flo	Calculated
Objective	Minimise upstream storage
Application	Surface
Sump Available	Yes
Diameter (mm)	97
Invert Level (m)	96.605
Pipe Diameter (mm)	150
Dianhole Diameter (mm)	1200

The hydrological calculations have been based on the Head/Discharge relationship for the Hydro-Brake® Optimum as specified. Should another type of control device other than a Hydro-Brake Optimum® be utilised then these storage routing calculations will be invalidated

Depth (m)	Flow (l/s)									
0.100	3.1	0.800		3.7	2.000	5.6	4.000	7.8	7.000	10.1
0.200	4.2	1.000	4.1	2.200	5.9	4.500	8.2	7.500	10.4	
0.300	4.5	1.200	4.4	2.400	6.1	5.000	8.6	8.000	10.8	
0.400	4.5	1.400	4.7	2.600	6.3	5.500	9.0	8.500	11.1	
0.500	4.4	1.600	5.0	3.000	6.8	6.000	9.4	9.000	11.4	
0.600	4.3	1.800	5.3	3.500	7.3	6.500	9.8	9.500	11.7	

Hydro-Brake® Optimum Manhole: SWP-HB2, DS/PN: S23.009, Volume (m³): 4.8

Unit Reference	MD-SHE-0097-4000-0850-4000
Design Head (m)	0.850
Design Flow (l/s)	4.0
Flush-Flo	Calculated
Objective	Minimise upstream storage
Application	Surface
Sump Available	Yes
Diameter (mm)	97
Invert Level (m)	96.200
Minimum Outlet Pipe Diameter (mm)	150
Suggested Manhole Diameter (mm)	1200

The hydrological calculations have been based on the Head/Discharge relationship for the Hydro-Brakeß Optimum as specified. Should another type of control device other than a Hydro-Brake Optimum® be utilised then these storage routing calculations will be invalidated

Depth (m) Flow (l/s) Depth (m) Flow (l/s)| Depth (m) Flow (1/s)|Depth (m) Flow (l/s) Depth (m) Flow (l/s)
0.100

4.0	0.500
3.9	0.600

3.6	0.800
3.4	1.000

3.9
4.3
1.200
1.400

| 0.200 | 4.0 | 0.400 | 3.9 | 0.600 | 3.4 | 1.000 | 4.3 | 1.400 | 5.0 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

Jacobs Engineering Limited					Page 19	
-		Bishop Auckland Bus Station and Car Park			Micro Drainage	
Date 13/12/2022 09:26File BA-Drainage Model_v19.MDX		Designed by G.Jones Checked by S.Clark				
Innovyze Network 2020.1.3						
Hydro-Brake® Optimum Manhole: SWP-HB2, DS/PN: S23.009, Volume (m³): 4.8						
Depth (m) Flow (1/s)	Depth (m)	m) Flow	(1/s)			
1.600 5.4	$2.400 \quad 6.5$	4.0008 .2	6.00010 .0	8.000		11.5
1.800 5.7	$2.600 \quad 6.7$	4.5008 .7	$6.500 \quad 10.4$	8.500		11.8
$2.000 \quad 6.0$	$3.000 \quad 7.2$	$5.000 \quad 9.2$	7.00010 .8	9.000		12.1
$2.200 \quad 6.2$	$3.500 \quad 7.7$	$5.500 \quad 9.6$	7.50011 .1	9.500		12.4

Hydro-Brake® Optimum Manhole: SWP-HB3, DS/PN: S23.014, Volume (m³): 3.4

Unit Reference	MD-SHE-0107-5000-0900-5000
Design Head (m)	0.900
Design Flow (l/s)	5.0
Flush-Flo	Calculated
Objective	Minimise upstream storage
Application	Surface
Sump Available	Yes
Diameter (mm)	107
Invert Level (m)	95.400
Minimum Outlet Pipe Diameter (mm)	150
Suggested Manhole Diameter (mm)	

The hydrological calculations have been based on the Head/Discharge relationship for the Hydro-Brake® Optimum as specified. Should another type of control device other than a Hydro-Brake Optimum® be utilised then these storage routing calculations will be invalidated

Depth (m)	Flow (1/s)	Depth (m)	Flow	(1/s)						
0.100	3.6	0.800	4.7	2.00	7.2	4.000	10.1	7.000		13.1
0.200	4.9	1.000	5.2	2.20	7.6	4.500	10.6	7.500		13.6
0.300	5.0	1.200	5.7	2.40	7.9	5.000	11.2	8.000		14.0
0.400	4.9	1.400	6.1	2.60	8.2	5.500	11.7	8.500		14.4
0.500	4.6	1.600	6.5	3.00	8.8	6.000	12.2	9.000		14.8
0.600	4.1	1.800	6.9	3.50	9.4	6.500	12.7	9.500		15.2

Complex Manhole: SWP-CC1, DS/PN: S23.017, Volume (m³): 12.6

Hydro-Brake® Optimum

Unit Reference MD-SHE-0090-3000-0500-3000	
Design Head (m)	0.500
Design Flow (l/s)	3.0
Flush-Flo	
Objective	Minimise upstream storage
Application	Calculated
Sump Available	Surface
Diameter (mm)	Yes
Invert Level (m)	90
Minimum Outlet Pipe Diameter (mm)	94.433
Suggested Manhole Diameter (mm)	150

| Control Points | Head (m) Flow (1/s) | Control Points Head (m) Flow (1/s) | | |
| :---: | ---: | ---: | ---: | ---: | ---: | ---: |
| Design Point (Calculated) | 0.500 | 3.0 | Flush-Flo | |
| TM | 0.157 | 3.0 | | |

The hydrological calculations have been based on the Head/Discharge relationship for the Hydro-Brake® Optimum as specified. Should another type of control device other than a Hydro-Brake Optimum® be utilised then these storage routing calculations will be invalidated

Depth (m) Flow (l/s)	Depth (m)	Flow (l/s)								
0.100	2.8	0.800		3.7	2.000	5.7	4.000	7.9	7.000	10.4
0.200	3.0	1.000	4.1	2.200	6.0	4.500	8.4	7.500	10.7	
0.300	2.8	1.200	4.5	2.400	6.2	5.000	8.8	8.000	11.1	
0.400	2.7	1.400	4.8	2.600	6.4	5.500	9.2	8.500	11.4	
0.500	3.0	1.600	5.1	3.000	6.9	6.000	9.6	9.000	11.8	
0.600	3.3	1.800	5.4	3.500	7.4	6.500	10.0	9.500	12.1	

Orifice

Diameter (m) 0.054 Discharge Coefficient 0.600 Invert Level (m) 94.933

Jacobs Engineering Limited		Page 21
	Bishop Auckland Bus Station and Car Park	
Date 13/12/2022 09:26 File BA-Drainage Model_v19.MDX	Designed by G.Jones Checked by S.Clark	Drainage
Innovyze	Network 2020.1.3	

Porous Car Park Manhole: SWP-18, DS/PN: S29.001

| Infiltration Coefficient Base (m/hr) | 0.00000 | Width (m) | 5.0 |
| ---: | ---: | ---: | ---: | ---: |
| Membrane Percolation (mm/hr) | 1000 | Length (m) | 25.0 |
| Max Percolation (l/s) | 34.7 | Slope (1:X) | 58.8 |
| Safety Factor | 2.0 | Depression Storage (mm) | 5 |
| Porosity | 0.30 | Evaporation (mm/day) | 3 |
| Invert Level (m) | 98.912 | Cap Volume Depth (m) | 0.200 |

Porous Car Park Manhole: SWP-21, DS/PN: S31.001

| Infiltration Coefficient Base (m/hr) | 0.00000 | Width (m) | 5.0 |
| ---: | ---: | ---: | ---: | ---: |
| Membrane Percolation (mm/hr) | 1000 | Length (m) | 25.0 |
| Max Percolation (l/s) | 34.7 | Slope (1:X) | 36.2 |
| Safety Factor | 2.0 | Depression Storage (mm) | 5 |
| Porosity | 0.30 | Evaporation (mm/day) | 3 |
| Invert Level (m) | 98.381 | Cap Volume Depth (m) | 0.200 |

Jacobs Engineering Limited		Page 22
	Bishop Auckland Bus Station and Car Park	
Date 13/12/2022 09:26 File BA-Drainage Model_v19.MDX	Designed by G.Jones Checked by S.Clark	Drainage
Innovyze	Network 2020.1.3	

Cellular Storage Manhole: SWP-TANK 2, DS/PN: S23.007

| Invert Level (m) | 96.655 | Safety Factor | 2.0 |
| ---: | ---: | ---: | ---: | ---: |
| Infiltration Coefficient Base (m/hr) | 0.00000 | Porosity | 0.95 |
| Infiltration Coefficient Side (m/hr) | 0.00000 | | |

Depth (m)	Area (m^{2})	Inf. Area (m²)	Depth (m)	Area (m^{2})	Inf. Area (m²)	Depth (m)	Area	$\left(\mathrm{m}^{2}\right)$	Inf. Area	$\left(\mathrm{m}^{2}\right)$
0.000	40.0	40.0	1.200	40.0	73.6	1.201		0.0		73.6

Porous Car Park Manhole: SWP-26, DS/PN: S33.001

| Infiltration Coefficient Base (m/hr) | 0.0000 | Width (m) | 5.0 |
| ---: | ---: | ---: | ---: | ---: |
| Membrane Percolation (mm/hr) | 1000 | Length (m) | 22.5 |
| Max Percolation (l/s) | 31.3 | Slope (1:X) | 34.4 |
| Safety Factor | 2.0 | Depression Storage (mm) | 5 |
| Porosity | 0.30 | Evaporation (mm/day) | 3 |
| Invert Level (m) | 99.601 | Cap Volume Depth (m) | 0.200 |

Porous Car Park Manhole: SWP-29, DS/PN: S35.001

| Infiltration Coefficient Base (m/hr) | 0.0000 | Width (m) | 5.0 |
| ---: | ---: | ---: | ---: | ---: |
| Membrane Percolation (mm/hr) | 1000 | Length (m) | 25.0 |
| Max Percolation (l/s) | 34.7 | Slope (1:X) | 38.8 |
| Safety Factor | 2.0 | Depression Storage (mm) | 5 |
| Porosity | 0.30 | Evaporation (mm/day) | 3 |
| Invert Level (m) | 99.166 | Cap Volume Depth (m) | 0.200 |

Cellular Storage Manhole: SWP-TANK 3, DS/PN: S37.001

Invert Level (m) 96.350 Safety Factor 2.0
Infiltration Coefficient Base (m/hr) 0.00000 Porosity 0.95
Infiltration Coefficient Side (m/hr) 0.00000

Porous Car Park Manhole: SWP-38, DS/PN: S38.001

$$
\begin{aligned}
& \text { Infiltration Coefficient Base (m/hr) } 0.00000 \text { Width (m) } 5.0 \\
& \text { Membrane Percolation (mm/hr) } 1000 \text { Length (m) } 25.0 \\
& \text { Max Percolation (l/s) } 34.7 \quad \text { Slope (1:X) } 24.7 \\
& \text { Safety Factor } 2.0 \text { Depression Storage (mm) } 5 \\
& \text { Porosity } 0.30 \text { Evaporation (mm/day) } 3 \\
& \text { Invert Level (m) } 98.092 \text { Cap Volume Depth (m) } 0.200 \\
& \text { Porous Car Park Manhole: SWP-41, DS/PN: S40.001 } \\
& \text { Infiltration Coefficient Base (m/hr) } 0.00000 \\
& \text { Membrane Percolation (mm/hr) } 1000 \\
& 1000 \quad \text { Width (m) } \quad 5.0 \\
& \text { Max Percolation (l/s) } 27.8 \\
& \text { Safety Factor } 2.0 \text { Depression Storage (mm) } 5 \\
& \text { Porosity } 0.30 \text { Evaporation (mm/day) } 3 \\
& \text { Invert Level (m) } 97.579 \text { Cap Volume Depth (m) } 0.200
\end{aligned}
$$

Jacobs Engineering Limited		Page 23
\cdot	Bishop Auckland Bus Station and Car Park	
.	Designed by G.Jones Checked by S.Clark	Micra
File BA-Drainage Model_v19.MDX	Network 2020.1.3	
Innovyze		

Cellular Storage Manhole: SWP-TANK 4, DS/PN: S37.003

Invert Level (m)	96.250	Safety Factor	2.0	
Infiltration Coefficient Base (m/hr)	0.00000	Porosity	0.95	
Infiltration Coefficient Side	$(\mathrm{m} / \mathrm{hr})$	0.00000		

Porous Car Park Manhole: SWP-46, DS/PN: S42.001

| Infiltration Coefficient Base (m/hr) | 0.0000 | Width (m) | 5.0 |
| ---: | ---: | ---: | ---: | ---: |
| Membrane Percolation (mm/hr) | 1000 | Length (m) | 35.0 |
| Max Percolation (l/s) | 48.6 | Slope (1:X) | 18.8 |
| Safety Factor | 2.0 | Depression Storage (mm) | 5 |
| Porosity | 0.30 | Evaporation (mm/day) | 3 |
| Invert Level (m) | 97.258 | Cap Volume Depth (m) | 0.200 |

Cellular Storaqe Manhole: SWP-TANK 6, DS/PN: S23.011

| Invert Level (m) | 95.550 | Safety Factor | 2.0 |
| ---: | ---: | ---: | ---: | ---: |
| Infiltration Coefficient Base $(\mathrm{m} / \mathrm{hr})$ | 0.00000 | Porosity | 0.95 |
| Infiltration Coefficient Side $(\mathrm{m} / \mathrm{hr})$ | 0.00000 | | |

Depth (m) Area (m^{2}) Inf. Area (m^{2}) Depth (m) Area (m^{2}) Inf. Area (m^{2}) Depth (m) Area (m^{2}) Inf. Area (m^{2})

| 0.000 | 40.0 | 40.0 | 0.800 | 40.0 | 62.4 | 0.801 | 0.0 | 62.4 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

Porous Car Park Manhole: SWP-50, DS/PN: S43.001

| Infiltration Coefficient Base (m/hr) | 0.00000 | Width (m) | 5.0 |
| ---: | ---: | ---: | ---: | ---: | ---: |
| Membrane Percolation (mm/hr) | 1000 | Length (m) | 32.0 |
| Max Percolation (l/s) | 44.4 | Slope (1:X) | 31.8 |
| Safety Factor | 2.0 | Depression Storage (mm) | 5 |
| Sorosity | 0.30 | Evaporation (mm/day) | 3 |
| Invert Level (m) | 97.690 | Cap Volume Depth (m) | 0.200 |

Cellular Storage Manhole: SWP-TANK 5, DS/PN: S43.004

| Invert Level (m) | 95.550 | Safety Factor | 2.0 |
| ---: | ---: | ---: | ---: | ---: |
| Infiltration Coefficient Base (m/hr) | 0.00000 | Porosity 0.95 | |

Infiltration Coefficient Side (m/hr) 0.00000
Depth (m) Area (m^{2}) Inf. Area (m^{2}) Depth (m) Area (m^{2}) Inf. Area (m^{2}) Depth (m) Area (m^{2}) Inf. Area (m^{2})

| 0.000 | 48.0 | 48.0 | 0.800 | 48.0 | 73.6 | 0.801 | 0.0 | 73.6 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

Porous Car Park Manhole: SWP-56, DS/PN: S44.001

| Infiltration Coefficient Base (m/hr) | 0.00000 | Width (m) | 5.0 |
| ---: | ---: | ---: | ---: | ---: |
| Membrane Percolation (mm/hr) | 1000 | Length (m) | 20.0 |
| Max Percolation (l/s) | 27.8 | Slope (1:X) | 35.7 |
| Safety Factor | 2.0 | Depression Storage (mm) | 5 |
| Porosity | 0.30 | Evaporation (mm/day) | 3 |
| Invert Level (m) | 97.364 | Cap Volume Depth (m) | 0.200 |

Jacobs Engineering Limited	Page 24	
\cdot	Bishop Auckland •	Bus Station and Car Park
.	Designed by G.Jones Checked by S.Clark	Micra
File BA-Drainage Model_v19.MDX	Network 2020.1.3	
Innovyze		

Porous Car Park Manhole: SWP-60, DS/PN: S23.013

| Infiltration Coefficient Base (m/hr) | 0.00000 | Width (m) | 5.0 |
| ---: | ---: | ---: | ---: | ---: | ---: |
| Membrane Percolation (mm/hr) | 1000 | Length (m) | 34.2 |
| Max Percolation (l/s) | 47.5 | Slope (1:X) | 33.1 |
| Safety Factor | 2.0 | Depression Storage (mm) | 5 |
| Porosity | 0.30 | Evaporation (mm/day) | 3 |
| Invert Level (m) | 96.772 | Membrane Depth (mm) | 0 |

Cellular Storage Manhole: SWP-TANK 7, DS/PN: S23.016

Invert Level (m) 94.483 Safety Factor 2.0
Infiltration Coefficient Base (m/hr) 0.00000 Porosity 0.95 Infiltration Coefficient Side (m/hr) 0.00000

Depth (m)	Area (m²)	Inf. Area (m²)	Depth (m)	Area (m²)	Inf. Area (m²)	Depth (m)	Area (m²)	Inf.	Area	$\left(m^{2}\right)$
0.000	312.0	312.0	0.800	312.0	371.2	0.801	0.0			371.2

Jacobs Engineering Limited		Page 1
	Bishop Auckland Bus Station and Car Park	
Date 13/12/2022 09:28 File BA-Drainage Model_v19.MDX	Designed by G.Jones Checked by S.Clark	Drainage
Innovyze	Network 2020.1.3	
1 year Return Period Summary	ical Results by Maximum L SIte Network	for storm -

Simulation Criteria
Areal Reduction Factor 1.000 Additional Flow - of Total Flow 0.000 Hot Start (mins) $0 \quad$ MADD Factor * $10 \mathrm{~m}^{3} /$ ha Storage 2.000 Hot Start Level (mm) Inlet Coeffiecient 0.800 Manhole Headloss Coeff (Global) 0.500 Flow per Person per Day (l/per/day) 0.000 Foul Sewage per hectare (l/s) 0.000

Number of Input Hydrographs 0 Number of Offline Controls 0 Number of Time/Area Diagrams 3 Number of Online Controls 4 Number of Storage Structures 20 Number of Real Time Controls 0

Synthetic Rainfall Details
Rainfall Model FSR M5-60 (mm) 17.000 Cv (Summer) 1.000
Region England and Wales Ratio R 0.336 Cv (Winter) 1.000

Margin for Flood Risk Warning (mm) 300.0
Analysis Timestep 2.5 Second Increment (Extended)
DTS Status ON
DVD Status ON
Inertia Status ON
Profile(s)
Duration(s) (mins) 15, 30, 60, 120, 240, 360, 480, 960, 1440
Return Period(s) (years)
Climate Change (\%)

US/MH Name		Storm	Return Period	Climate Change	First (X) Surcharge	$\begin{gathered} \text { First (Y) } \\ \text { Flood } \end{gathered}$	First (Z) Overflow	Overflow Act.	Water Level (m)	Surcharged Depth (m)
SWP-1	15	Summer	1	+45\%					100.293	-0.117
SWP-2	15	Summer	1	+45\%					99.259	-0.108
SWP-3	15	Summer	1	+45\%					99.517	-0.150
SWP-4	15	Summer	1	+45\%					99.150	-0.150
SWP-5	15	Summer	1	+45\%					98.987	-0.150
SWP-6	15	Summer	1	+45\%	100/15 Summer				98.749	-0.099
SWP-7	15	Summer	1	+45\%					99.646	-0.150
SWP-8	15	Summer	1	+45\%	100/15 Summer				98.575	-0.110
SWP-9	15	Summer	1	+45\%					99.409	-0.150
SWP-10	15	Summer	1	+45\%	100/15 Summer				98.803	-0.114
SWP-11	15	Summer	1	+45\%	100/15 Summer				98.508	-0.092
SWP-12	15	Summer	1	+45\%					99.126	-0.150
SWP-13	15	Summer	1	+45\%	100/240 Summer				97.741	-0.102
SWP-14	120	Summer	1	+45\%	30/15 Summer				96.933	-0.172
SP-TANK 1	120	Summer	1	+45\%	30/15 Summer				96.932	-0.123
SWP-16	15	Summer	1	+45\%					98.372	-0.150
SWP-17	15	Summer	1	+45\%					98.923	-0.150
SWP-18	15	Summer	1	+45\%					98.195	-0.118
SWP-19	15	Summer	1	+45\%					98.312	-0.150
SWP-20	15	Summer	1	+45\%					97.924	-0.150
SWP-21	15	Summer	1	+45\%	30/15 Summer				97.723	-0.088
SWP-22	120	Summer	1	+45\%	30/15 Summer				96.931	-0.074
SPP-TANK 2	120	Summer	1	+45\%	30/15 Summer				96.929	-0.026
SWP-24	15	Summer	1	+45\%					99.001	-0.150
SWP-25	15	Summer	1	+45\%					99.916	-0.150
SWP-26	15	Summer	1	+45\%	100/15 Summer				98.823	-0.119
SWP-27	15	Summer	1	+45\%					99.336	-0.150
SWP-28	15	Summer	1	+45\%					98.607	-0.150
SWP-29	15	Summer	1	+45\%	30/15 Summer				98.458	-0.090

©1982-2020 Innovyze

PN	US/MH Name	Flooded Volume (m^{3})	$\begin{gathered} \text { Flow / } \\ \text { Cap. } \end{gathered}$	Overflow (1/s)	Half Drain Time (mins)	Pipe Flow (1/s)	Status	Level Exceeded
S23.000	SWP-1	0.000	0.11			4.1	OK	
S23.001	SWP-2	0.000	0.18			5.9	OK	
S24.000	SWP-3	0.000	0.00			0.0	OK*	
S25.000	SWP-4	0.000	0.00			0.0	OK	
S24.001	SWP -5	0.000	0.00			0.0	OK	
S23.002	SWP-6	0.000	0.25			5.9	OK	
S26.000	SWP-7	0.000	0.00			0.0	OK*	
S26.001	SWP-8	0.000	0.12		7	2.2	OK	
S27.000	SWP-9	0.000	0.00			0.0	OK*	
S27.001	SWP-10	0.000	0.13		9	4.5	OK	
S23.003	SWP-11	0.000	0.32			12.9	OK	
S28.000	SWP-12	0.000	0.00			0.0	OK*	
S28.001	SWP-13	0.000	0.18		7	3.2	OK	
S23.004	SWP-14	0.000	0.15			9.0	OK	
S23.005	SWP-TANK 1	0.000	0.07		55	4.5	OK*	
S29.000	SWP-16	0.000	0.00			0.0	OK*	
S30.000	SWP-17	0.000	0.00			0.0	OK*	
S29.001	SWP-18	0.000	0.09		8	4.1	OK	
S31.000	SWP-19	0.000	0.00			0.0	OK*	
S32.000	SWP-20	0.000	0.00			0.0	OK*	
S31.001	SWP-21	0.000	0.36		8	7.0	OK	
S23.006	SWP-22	0.000	0.16			10.0	OK	
S23.007	SWP-TANK 2	0.000	0.05		73	4.4	OK*	
S33.000	SWP-24	0.000	0.00			0.0	OK*	
S34.000	SWP-25	0.000	0.00			0.0	OK*	
S33.001	SWP-26	0.000	0.08		8	3.4	OK	
S35.000	SWP-27	0.000	0.00			0.0	OK*	
S36.000	SWP-28	0.000	0.00			0.0	OK*	
S35.001	SWP-29	0.000	0.34		8	6.6	OK	

PN	US/MH Name	Storm	Return Period	Climate Change	First (X) Surcharge	$\begin{gathered} \text { First (Y) } \\ \text { Flood } \end{gathered}$	First (Z) Overflow	Overflow Act.	Water Level (m)	Surcharged Depth (m)
S33.002	SWP-30	15 Summer	1	+45\%	30/15 Summer				98.367	-0.069
S33.003	SWP-31	15 Summer	1	+45\%	30/15 Summer				98.230	-0.060
S33.004	SWP-32	15 Summer	1	+45\%	30/15 Summer				98.160	-0.069
S23.008	SWP-HB1	120 Summer	1	+45\%	1/15 Summer				96.936	0.106
S37.000	SWP-34	360 Summer	1	+45\%	$30 / 240$ Summer				96.483	-0.217
S37.001	SWP-TANK 3	360 Summer	1	+45\%	$30 / 240$ Summer				96.483	-0.167
S38.000	SWP-36	15 Summer	1	+45\%					97.935	-0.150
S39.000	SWP-37	15 Summer	1	+45\%					97.690	-0.150
S38.001	SWP-38	15 Summer	1	+45\%					97.422	-0.100
S40.000	SWP-39	15 Summer	1	+45\%					97.242	-0.150
S41.000	SWP-40	15 Summer	1	+45\%					97.267	-0.150
S40.001	SWP-41	15 Summer	1	+45\%	100/960 Summer				96.899	-0.110
S37.002	SWP-42	360 Summer	1	+45\%	30/120 Winter				96.483	-0.117
S37.003	SWP-TANK 4	360 Summer	1	+45\%	$30 / 120$ Summer				96.483	-0.067
S23.009	SWP-HB2	360 Summer	1	+45\%	1/120 Summer				96.483	0.058
S42.000	SWP-45	15 Summer	1	+45\%					98.403	-0.150
S42.001	SWP-46	30 Summer	1	+45\%					96.584	-0.104
S23.010	SWP-47	360 Summer	1	+45\%	30/60 Summer				95.724	-0.176
S23.011	SWP-TANK 6	360 Summer	1	+45\%	30/30 Winter				95.722	-0.128
S43.000	SWP-49	15 Summer	1	+45\%					98.223	-0.150
S43.001	SWP-50	30 Summer	1	+45\%					96.771	-0.107
S43.002	SWP-51	30 Summer	1	+45\%					96.667	-0.128
S43.003	SWP-52	360 Summer	1	+45\%	30/60 Summer				95.718	-0.182
S43.004	SWP-TANK 5	360 Summer	1	+45\%	30/60 Summer				95.718	-0.132
S44.000	SWP-54	15 Summer	1	+45\%					96.982	-0.150
S45.000	SWP-55	15 Summer	1	+45\%					97.008	-0.150
S44.001	SWP-56	15 Summer	1	+45\%					96.832	-0.117
S23.012	SWP-57	360 Summer	1	+45\%	30/15 Summer				95.723	-0.077
S46.000	SWP-58	15 Summer	1	+45\%					96.844	-0.150
S47.000	SWP-59	15 Summer	1	+45\%					96.434	-0.150
S23.013	SWP-60	360 Summer	1	+45\%	30/15 Summer				95.726	-0.024
S48.000	SWP-61	15 Summer	1	+45\%	100/240 Summer				96.194	-0.150
S23.014	SWP-HB3	360 Summer	1	+45\%	1/15 Summer				95.726	0.101
S23.015	SWP-63	960 Summer	1	+45\%	$30 / 360$ Summer				94.860	-0.123
S23.016	SWP-TANK 7	960 Summer	1	+45\%	30/240 Summer				94.859	-0.074
S49.000	SWP-65	60 Summer	1	+45\%					95.569	-0.206
S49.001	SWP-66	60 Summer	1	+45\%					95.312	-0.202
S49.002	SWP-67	60 Summer	1	+45\%	30/960 Winter				94.899	-0.192
S49.003	SWP-68	960 Summer	1	+45\%	30/15 Summer				94.859	-0.041
S49.004	SWP-69	960 Summer	1	+45\%	1/240 Summer				94.857	0.117
S50.000	SWP-70	960 Summer	1	+45\%	30/15 Summer				94.859	-0.081
S50.001	SWP-71	960 Summer	1	+45\%	1/960 Summer				94.858	0.021
S50.002	SWP-72	960 Summer	1	+45\%	1/360 Summer				94.857	0.080
S23.017	SWP-CC1	960 Summer	1	+45\%	1/15 Summer				94.857	0.274
S23.018	SWP-PI	1440 Winter	1	+45\%					94.415	-0.109
S23.019	SWP-75	1440 Summer	1	+45\%					94.321	-0.099

Jacobs Engineering Limited		Page 4
	Bishop Auckland Bus Station and Car Park	Micro Drainage
Date 13/12/2022 09:28 File BA-Drainage Model_v19.MDX	Designed by G.Jones Checked by S.Clark	
Innovyze	Network 2020.1.3	
1 year Return Period Summary	ical Results by Maximum Lever	for Storm -

PN	Flooded				Half Drain	Pipe		
	US/MH Name	Volume $\left(\mathrm{m}^{3}\right)$	Flow / Cap.	$\begin{aligned} & \text { Overflow } \\ & (1 / s) \end{aligned}$		$\begin{aligned} & \text { Flow } \\ & (1 / s) \end{aligned}$	Status	Level Exceeded
S37.000	SWP-34	0.000	0.00			0.0	OK	
S37.001	SWP-TANK 3	0.000	0.03		58	1.6	OK*	
S38.000	SWP-36	0.000	0.00			0.0	OK*	
S39.000	SWP-37	0.000	0.00			0.0	OK*	
S38.001	SWP-38	0.000	0.22		8	3.8	OK	
S40.000	SWP-39	0.000	0.00			0.0	OK*	
S41.000	SWP-40	0.000	0.00			0.0	OK*	
S40.001	SWP-41	0.000	0.16		7	5.8	OK	
S37.002	SWP-42	0.000	0.04			2.5	OK	
S37.003	SWP-TANK 4	0.000	0.05		77	3.3	OK*	
S23.009	SWP-HB2	0.000	0.05			3.9	SURCHARGED	
S42.000	SWP-45	0.000	0.00			0.0	OK*	
S42.001	SWP-46	0.000	0.20		8	3.5	OK	
S23.010	SWP-47	0.000	0.08			4.9	OK	
S23.011	SWP-TANK 6	0.000	0.10		178	6.2	OK*	
S43.000	SWP-49	0.000	0.00			0.0	OK*	
S43.001	SWP-50	0.000	0.15		8	2.8	OK	
S43.002	SWP-51	0.000	0.05			2.7	OK	
S43.003	SWP-52	0.000	0.01			0.8	OK	
S43.004	SWP-TANK 5	0.000	0.04		179	2.6	OK*	
S44.000	SWP-54	0.000	0.00			0.0	OK*	
S45.000	SWP-55	0.000	0.00			0.0	OK*	
S44.001	SWP-56	0.000	0.11		7	4.2	OK	
S23.012	SWP-57	0.000	0.11			6.8	OK	
S46.000	SWP-58	0.000	0.00			0.0	OK*	
S47.000	SWP-59	0.000	0.00			0.0	OK*	
S23.013	SWP-60	0.000	0.09		164	5.8	OK	
S48.000	SWP-61	0.000	0.00			0.0	OK	
S23.014	SWP-HB3	0.000	0.04			5.0	SURCHARGED	
S23.015	SWP-63	0.000	0.04			5.0	OK	
S23.016	SWP-TANK 7	0.000	0.03		516	4.5	OK*	
S49.000	SWP-65	0.000	0.02			0.9	OK	
S49.001	SWP-66	0.000	0.02			1.8	OK	
S49.002	SWP-67	0.000	0.05			2.7	OK	
S49.003	SWP-68	0.000	0.03			1.2	OK	
S49.004	SWP-69	0.000	0.03			1.1	SURCHARGED	
S50.000	SWP-70	0.000	0.08			2.9	OK	
S50.001	SWP-71	0.000	0.08			4.7	SURCHARGED	
S50.002	SWP-72	0.000	0.08			4.6	SURCHARGED	
S23.017	SWP-CC1	0.000	0.20			3.0	SURCHARGED	
S23.018	SWP-PI	0.000	0.17			3.0	OK*	
S23.019	SWP-75	0.000	0.26			3.0	OK	

Jacobs Engineering Limited		Page 5
\cdot	Bishop Auckland Bus Station and Car Park	
Date 13/12/2022 09:28 File BA-Drainage Model_v19.MDX	Designed by G.Jones Checked by S.Clark	Drainage
Innovyze	Network 2020.1.3	
30 year Return Period Summary of Critical Results by Maximum Level (Rank 1) for Storm -		
	SIte Network	

Simulation Criteria
Areal Reduction Factor 1.000 Additional Flow - \% of Total Flow 0.000 Hot Start (mins) $0 \quad$ MADD Factor * $10 \mathrm{~m}^{3} /$ ha Storage 2.000 Hot Start Level (mm) Inlet Coeffiecient 0.800 Manhole Headloss Coeff (Global) 0.500 Flow per Person per Day (l/per/day) 0.000 Foul Sewage per hectare (l/s) 0.000

Number of Input Hydrographs 0 Number of Offline Controls 0 Number of Time/Area Diagrams 3 Number of Online Controls 4 Number of Storage Structures 20 Number of Real Time Controls 0

Synthetic Rainfall Details
Rainfall Model FSR M5-60 (mm) 17.000 CV (Summer) 1.000
Region England and Wales Ratio R 0.336 Cv (Winter) 1.000

Margin for Flood Risk Warning (mm) 300.0
Analysis Timestep 2.5 Second Increment (Extended)
DTS Status ON
DVD Status ON
Inertia Status ON
Profile(s)
Duration(s) (mins) 15, 30, 60, 120, 240, 360, 480, 960,1440
Return Period(s) (years)
Climate Change (\%)

US/MH Name	Storm	Return Period	Climate Change	First (X) Surcharge	$\begin{gathered} \text { First (Y) } \\ \text { Flood } \end{gathered}$	First (Z) Overflow	Overflow Act.	Water Level (m)	Surcharged Depth (m)
SWP-1	15 Summer	30	+45\%					100.312	-0.098
SWP-2	15 Summer	30	+45\%					99.290	-0.077
SWP-3	15 Summer	30	+45\%					99.517	-0.150
SWP-4	15 Summer	30	+45\%					99.150	-0.150
SWP-5	15 Summer	30	+45\%					98.987	-0.150
SWP-6	15 Summer	30	+45\%	100/15 Summer				98.789	-0.059
SWP-7	15 Summer	30	+45\%					99.646	-0.150
SWP-8	15 Summer	30	+45\%	100/15 Summer				98.602	-0.083
SWP-9	15 Summer	30	+45\%					99.409	-0.150
SWP-10	15 Summer	30	+45\%	100/15 Summer				98.834	-0.083
SWP-11	15 Summer	30	+45\%	100/15 Summer				98.574	-0.026
SWP-12	15 Summer	30	+45\%					99.126	-0.150
SWP-13	15 Summer	30	+45\%	100/240 Summer				97.776	-0.067
SWP-14	240 Summer	30	+45\%	30/15 Summer				97.513	0.408
WP-TANK 1	240 Summer	30	+45\%	30/15 Summer				97.512	0.457
SWP-16	15 Summer	30	+45\%					98.372	-0.150
SWP-17	15 Summer	30	+45\%					98.923	-0.150
SWP-18	15 Summer	30	+45\%					98.219	-0.094
SWP-19	15 Summer	30	+45\%					98.312	-0.150
SWP-20	15 Summer	30	+45\%					97.924	-0.150
SWP-21	15 Summer	30	+45\%	30/15 Summer				97.844	0.033
SWP-22	240 Summer	30	+45\%	30/15 Summer				97.512	0.507
WP-TANK 2	240 Summer	30	+45\%	30/15 Summer				97.510	0.555
SWP-24	15 Summer	30	+45\%					99.001	-0.150
SWP-25	15 Summer	30	+45\%					99.916	-0.150
SWP-26	15 Summer	30	+45\%	100/15 Summer				98.843	-0.099
SWP-27	15 Summer	30	+45\%					99.336	-0.150
SWP-28	15 Summer	30	+45\%					98.757	0.000
SWP-29	15 Summer	30	+45\%	30/15 Summer				98.881	0.333

©1982-2020 Innovyze

Jacobs Engineering Limited		Page 6
	Bishop Auckland Bus Station and Car Park	Micro Drainage
Date 13/12/2022 09:28 File BA-Drainage Model_v19.MDX	Designed by G.Jones Checked by S.Clark	
Innovyze	Network 2020.1.3	
30 year Return Period Summary	ical Results by Maximum	for Storm

PN	US/MH Name	Flooded Volume (m ${ }^{3}$)	$\begin{gathered} \text { Flow / } \\ \text { Cap. } \end{gathered}$	$\begin{aligned} & \text { Overflow } \\ & \text { (1/s) } \end{aligned}$	Half Drain Time (mins)	Pipe Flow (l/s)	Status	Level Exceeded
S23.000	SWP-1	0.000	0.26			10.0	OK	
S23.001	SWP-2	0.000	0.48			15.7	OK	
S24.000	SWP-3	0.000	0.00			0.0	OK*	
S25.000	SWP-4	0.000	0.00			0.0	OK	
S24.001	SWP-5	0.000	0.00			0.0	OK	
S23.002	SWP-6	0.000	0.67			15.8	OK	
S26.000	SWP-7	0.000	0.00			0.0	OK*	
S26.001	SWP-8	0.000	0.41		4	7.5	OK	
S27.000	SWP-9	0.000	0.00			0.0	OK*	
S27.001	SWP-10	0.000	0.41		4	14.5	OK	
S23.003	SWP-11	0.000	1.00			40.1	OK	
S28.000	SWP-12	0.000	0.00			0.0	OK*	
S28.001	SWP-13	0.000	0.59		4	10.6	OK	
S23.004	SWP-14	0.000	0.23			13.9	SURCHARGED	
S23.005	SWP-TANK 1	0.000	0.05		179	2.8	SURCHARGED*	
S29.000	SWP-16	0.000	0.00			0.0	OK*	
S30.000	SWP-17	0.000	0.00			0.0	OK*	
S29.001	SWP-18	0.000	0.30		4	13.1	OK	
S31.000	SWP-19	0.000	0.00			0.0	OK*	
S32.000	SWP-20	0.000	0.00			0.0	OK*	
S31.001	SWP-21	0.000	1.14		3	22.4	SURCHARGED	
S23.006	SWP-22	0.000	0.15			9.2	SURCHARGED	
S23.007	SWP-TANK 2	0.000	0.05		191	4.6	SURCHARGED*	
S33.000	SWP-24	0.000	0.00			0.0	OK*	
S34.000	SWP-25	0.000	0.00			0.0	OK*	
S33.001	SWP-26	0.000	0.25		4	11.1	OK	
S35.000	SWP-27	0.000	0.00			0.0	OK*	
S36.000	SWP-28	0.000	0.10			2.4	SURCHARGED*	
S35.001	SWP-29	0.000	0.83		3	16.2	SURCHARGED	

PN	US/MH Name	Storm	Return Period	Climate Change	First (X) Surcharge	$\begin{gathered} \text { First (Y) } \\ \text { Flood } \end{gathered}$	$\begin{gathered} \text { First (Z) } \\ \text { Overflow } \end{gathered}$	Overflow Act.	Water Level (m)	Surcharged Depth (m)
S33.002	SWP-30	15 Summer	30	+45\%	30/15 Summer				98.800	0.364
S33.003	SWP-31	15 Summer	30	+45\%	30/15 Summer				98.518	0.228
S33.004	SWP-32	15 Summer	30	+45\%	30/15 Summer				98.363	0.134
S23.008	SWP-HB1	240 Summer	30	+45\%	1/15 Summer				97.513	0.683
S37.000	SWP-34	960 Summer	30	+45\%	$30 / 240$ Summer				96.869	0.169
S37.001	SWP-TANK 3	960 Summer	30	+45\%	$30 / 240$ Summer				96.869	0.219
S38.000	SWP-36	15 Summer	30	+45\%					97.935	-0.150
S39.000	SWP-37	15 Summer	30	+45\%					97.690	-0.150
S38.001	SWP-38	15 Summer	30	+45\%					97.467	-0.055
S40.000	SWP-39	15 Summer	30	+45\%					97.242	-0.150
S41.000	SWP-40	15 Summer	30	+45\%					97.267	-0.150
S40.001	SWP-41	15 Summer	30	+45\%	100/960 Summer				96.935	-0.074
S37.002	SWP-42	960 Summer	30	+45\%	30/120 Winter				96.869	0.269
S37.003	SWP-TANK 4	960 Summer	30	+45\%	$30 / 120$ Summer				96.869	0.319
S23.009	SWP-HB2	960 Summer	30	+45\%	1/120 Summer				96.869	0.444
S42.000	SWP-45	15 Summer	30	+45\%					98.403	-0.150
S42.001	SWP-46	15 Summer	30	+45\%					96.630	-0.058
S23.010	SWP-47	360 Summer	30	+45\%	30/60 Summer				96.157	0.257
S23.011	SWP-TANK 6	360 Summer	30	+45\%	30/30 Winter				96.155	0.305
S43.000	SWP-49	15 Summer	30	+45\%					98.223	-0.150
S43.001	SWP-50	15 Summer	30	+45\%					96.805	-0.073
S43.002	SWP-51	15 Summer	30	+45\%					96.688	-0.107
S43.003	SWP-52	360 Summer	30	+45\%	30/60 Summer				96.152	0.252
S43.004	SWP-TANK 5	360 Summer	30	+45\%	30/60 Summer				96.152	0.302
S44.000	SWP-54	15 Summer	30	+45\%					96.982	-0.150
S45.000	SWP-55	15 Summer	30	+45\%					97.008	-0.150
S44.001	SWP-56	15 Summer	30	+45\%					96.861	-0.088
S23.012	SWP-57	360 Summer	30	+45\%	30/15 Summer				96.160	0.360
S46.000	SWP-58	15 Summer	30	+45\%					96.844	-0.150
S47.000	SWP-59	15 Summer	30	+45\%					96.434	-0.150
S23.013	SWP-60	360 Summer	30	+45\%	30/15 Summer				96.172	0.422
S48.000	SWP-61	15 Summer	30	+45\%	100/240 Summer				96.194	-0.150
S23.014	SWP-HB3	360 Summer	30	+45\%	1/15 Summer				96.172	0.547
S23.015	SWP-63	1440 Winter	30	+45\%	30/360 Summer				95.113	0.130
S23.016	SWP-TANK 7	1440 Winter	30	+45\%	30/240 Summer				95.111	0.178
S49.000	SWP-65	30 Summer	30	+45\%					95.580	-0.195
S49.001	SWP-66	60 Summer	30	+45\%					95.323	-0.191
S49.002	SWP-67	1440 Winter	30	+45\%	30/960 Winter				95.116	0.025
S49.003	SWP-68	1440 Winter	30	+45\%	30/15 Summer				95.117	0.217
S49.004	SWP-69	1440 Winter	30	+45\%	1/240 Summer				95.122	0.382
S50.000	SWP-70	15 Summer	30	+45\%	30/15 Summer				95.462	0.522
S50.001	SWP-71	15 Summer	30	+45\%	1/960 Summer				95.226	0.389
S50.002	SWP-72	1440 Winter	30	+45\%	1/360 Summer				95.121	0.344
S23.017	SWP-CC1	1440 Winter	30	+45\%	1/15 Summer				95.123	0.540
S23.018	SWP-PI	1440 Winter	30	+45\%					94.433	-0.091
S23.019	SWP-75	1440 Winter	30	+45\%					94.345	-0.075

Jacobs Engineering Limited		Page 8
	Bishop Auckland Bus Station and Car Park	
Date 13/12/2022 09:28 File BA-Drainage Model_v19.MDX	Designed by G.Jones Checked by S.Clark	Drainage
Innovyze	Network 2020.1.3	
30 vear Return Period Summary	cal Results by Maximum I	for Storm -

PN	US/MH Name	Flooded Volume (m ${ }^{3}$)	$\begin{gathered} \text { Flow / } \\ \text { Cap. } \end{gathered}$	$\begin{aligned} & \text { Overflow } \\ & (1 / s) \end{aligned}$	Half Drain Time (mins)	Pipe Flow (l/s)	Status	Level Exceeded
S37.000	SWP-34	0.000	0.00			0.0	SURCHARGED	
S37.001	SWP-TANK 3	0.000	0.03		315	2.0	SURCHARGED*	
S38.000	SWP-36	0.000	0.00			0.0	OK*	
S39.000	SWP-37	0.000	0.00			0.0	OK*	
S38.001	SWP-38	0.000	0.72		4	12.5	OK	
S40.000	SWP-39	0.000	0.00			0.0	OK*	
S41.000	SWP-40	0.000	0.00			0.0	OK*	
S40.001	SWP-41	0.000	0.52		4	18.9	OK	
S37.002	SWP-42	0.000	0.03			2.1	SURCHARGED	
S37.003	SWP-TANK 4	0.000	0.06		341	3.7	SURCHARGED*	
S23.009	SWP-HB2	0.000	0.05			4.0	SURCHARGED	
S42.000	SWP-45	0.000	0.00			0.0	OK*	
S42.001	SWP-46	0.000	0.69		4	11.7	OK	
S23.010	SWP-47	0.000	0.10			5.9	SURCHARGED	
S23.011	SWP-TANK 6	0.000	0.11			6.6	SURCHARGED*	
S43.000	SWP-49	0.000	0.00			0.0	OK*	
S43.001	SWP-50	0.000	0.52		4	9.4	OK	
S43.002	SWP-51	0.000	0.19			9.4	OK	
S43.003	SWP-52	0.000	0.03			1.8	SURCHARGED	
S43.004	SWP-TANK 5	0.000	0.04			2.5	SURCHARGED*	
S44.000	SWP-54	0.000	0.00			0.0	OK*	
S45.000	SWP-55	0.000	0.00			0.0	OK*	
S44.001	SWP-56	0.000	0.36		4	13.6	OK	
S23.012	SWP-57	0.000	0.14			8.3	SURCHARGED	
S46.000	SWP-58	0.000	0.00			0.0	OK*	
S47.000	SWP-59	0.000	0.00			0.0	OK*	
S23.013	SWP-60	0.000	0.11			6.5	SURCHARGED	
S48.000	SWP-61	0.000	0.00			0.0	OK	
S23.014	SWP-HB3	0.000	0.04			5.0	SURCHARGED	
S23.015	SWP-63	0.000	0.04			5.0	SURCHARGED	
S23.016	SWP-TANK 7	0.000	0.04		970	6.6	SURCHARGED*	
S49.000	SWP-65	0.000	0.04			2.2	OK	
S49.001	SWP-66	0.000	0.06			4.6	OK	
S49.002	SWP-67	0.000	0.02			1.2	SURCHARGED	
S49.003	SWP-68	0.000	0.03			1.3	SURCHARGED	
S49.004	SWP-69	0.000	0.04			1.3	SURCHARGED	
S50.000	SWP-70	0.000	1.46			54.5	SURCHARGED	
S50.001	SWP-71	0.000	1.44			88.3	SURCHARGED	
S50.002	SWP-72	0.000	0.08			4.6	SURCHARGED	
S23.017	SWP-CC1	0.000	0.39			5.8	SURCHARGED	
S23.018	SWP-PI	0.000	0.33			5.8	OK*	
S23.019	SWP-75	0.000	0.49			5.8	OK	

Number of Input Hydrographs 0 Number of Offline Controls 0 Number of Time/Area Diagrams 3 Number of Online Controls 4 Number of Storage Structures 20 Number of Real Time Controls 0

Synthetic Rainfall Details
Rainfall Model FSR M5-60 (mm) 17.000 CV (Summer) 1.000
Region England and Wales Ratio R 0.336 Cv (Winter) 1.000

Margin for Flood Risk Warning (mm) 300.0
Analysis Timestep 2.5 Second Increment (Extended)
DTS Status ON
DVD Status ON
Inertia Status ON
Profile(s)
Duration(s) (mins) 15, 30, 60, 120, 240, 360, 480, 960, 1440
Return Period(s) (years)
Climate Change (\%)

US/MH Name	Storm	Return Period	Climate Change	First (X) Surcharge	$\begin{gathered} \text { First (Y) } \\ \text { Flood } \end{gathered}$	First (Z) Overflow	Overflow Act.	Water Level (m)	Surcharged Depth (m)
SWP-1	15 Summer	100	+45\%					100.320	-0.090
SWP-2	15 Summer	100	+45\%					99.302	-0.065
SWP-3	15 Summer	100	+45\%					99.517	-0.150
SWP-4	15 Summer	100	+45\%					99.150	-0.150
SWP -5	15 Summer	100	+45\%					98.989	-0.148
SWP-6	15 Summer	100	+45\%	100/15 Summer				98.991	0.143
SWP-7	15 Summer	100	+45\%					99.646	-0.150
SWP-8	15 Summer	100	+45\%	100/15 Summer				98.877	0.192
SWP-9	15 Summer	100	+45\%					99.409	-0.150
SWP-10	15 Summer	100	+45\%	100/15 Summer				98.921	0.004
SWP-11	15 Summer	100	+45\%	100/15 Summer				98.860	0.260
SWP-12	15 Summer	100	+45\%					99.126	-0.150
SWP-13	240 Winter	100	+45\%	100/240 Summer				97.880	0.037
SWP-14	240 Winter	100	+45\%	30/15 Summer				97.879	0.774
P-TANK 1	240 Winter	100	+45\%	30/15 Summer				97.877	0.822
SWP-16	15 Summer	100	+45\%					98.372	-0.150
SWP-17	15 Summer	100	+45\%					98.923	-0.150
SWP-18	15 Summer	100	+45\%					98.228	-0.085
SWP-19	15 Summer	100	+45\%					98.312	-0.150
SWP-20	15 Summer	100	+45\%					97.931	-0.143
SWP-21	15 Summer	100	+45\%	30/15 Summer				97.942	0.131
SWP-22	240 Winter	100	+45\%	30/15 Summer				97.884	0.879
WP-TANK 2	240 Winter	100	+45\%	30/15 Summer				97.856	0.901
SWP-24	15 Summer	100	+45\%					99.035	-0.116
SWP-25	15 Summer	100	+45\%					99.916	-0.150
SWP-26	15 Summer	100	+45\%	100/15 Summer				99.080	0.138
SWP-27	15 Summer	100	+45\%					99.336	-0.150
SWP-28	15 Summer	100	+45\%					98.757	0.000
SWP-29	15 Summer	100	+45\%	30/15 Summer				99.182	0.634

©1982-2020 Innovyze

Jacobs Engineering Limited		Page 10
\cdot	Bishop Auckland Bus Station and Car Park	
•		
Date 13/12/2022 09:28		
File BA-Drainage Model_v19.MDX	Designed by G.Jones Checked by S.Clark	
Innovyze	Network 2020.1.3	
100 year Return Period Summary of Critical Results by Maximum Level (Rank 1) for Storm -		

SIte Network

PN	US/MH Name	Flooded Volume (m^{3})	$\begin{gathered} \text { Flow / } \\ \text { Cap. } \end{gathered}$	Overflow (1/s)	$\begin{gathered} \text { Half Drain } \\ \text { Time } \\ \text { (mins) } \end{gathered}$	Pipe Flow (1/s)	Status	Level Exceeded
S23.000	SWP-1	0.000	0.34			12.9	OK	
S23.001	SWP-2	0.000	0.62			20.3	OK	
S24.000	SWP-3	0.000	0.00			0.0	OK*	
S25.000	SWP-4	0.000	0.00			0.0	OK	
S24.001	SWP-5	0.000	0.00			0.0	OK	
S23.002	SWP-6	0.000	0.75			17.7	SURCHARGED	
S26.000	SWP-7	0.000	0.00			0.0	OK*	
S26.001	SWP-8	0.000	0.44		2	8.1	SURCHARGED	
S27.000	SWP-9	0.000	0.00			0.0	OK*	
S27.001	SWP-10	0.000	0.51		2	18.1	SURCHARGED	
S23.003	SWP-11	0.000	1.08			43.5	SURCHARGED	
S28.000	SWP-12	0.000	0.00			0.0	OK*	
S28.001	SWP-13	0.000	0.14		32	2.5	SURCHARGED	
S23.004	SWP-14	0.000	0.19			11.7	SURCHARGED	
S23.005	SWP-TANK 1	0.000	0.07		212	4.5	SURCHARGED*	
S29.000	SWP-16	0.000	0.00			0.0	OK*	
S30.000	SWP-17	0.000	0.00			0.0	OK*	
S29.001	SWP-18	0.000	0.39		4	16.9	OK	
S31.000	SWP-19	0.000	0.00			0.0	OK*	
S32.000	SWP-20	0.000	0.00			0.0	OK*	
S31.001	SWP-21	0.000	1.47		3	28.8	SURCHARGED	
S23.006	SWP-22	0.000	0.13			8.1	SURCHARGED	
S23.007	SWP-TANK 2	0.000	0.05		230	4.6	SURCHARGED*	
S33.000	SWP-24	0.000	0.02			0.4	OK*	
S34.000	SWP-25	0.000	0.00			0.0	OK*	
S33.001	SWP-26	0.000	0.30		3	13.5	SURCHARGED	
S35.000	SWP-27	0.000	0.00			0.0	OK*	
S36.000	SWP-28	0.000	0.14			3.2	SURCHARGED*	
S35.001	SWP-29	0.000	1.06		5	20.7	SURCHARGED	

PN	US/MH Name	Storm	Return Period	Climate Change	First (X) Surcharge	$\begin{gathered} \text { First (Y) } \\ \text { Flood } \end{gathered}$	$\begin{gathered} \text { First (Z) } \\ \text { Overflow } \end{gathered}$	Overflow Act.	Water Level (m)	Surcharged Depth (m)
S33.002	SWP-30	15 Summer	100	+45\%	30/15 Summer				99.063	0.627
S33.003	SWP-31	15 Summer	100	+45\%	30/15 Summer				98.670	0.380
S33.004	SWP-32	15 Summer	100	+45\%	30/15 Summer				98.474	0.245
S23.008	SWP-HB1	240 Winter	100	+45\%	1/15 Summer				97.896	1.066
S37.000	SWP-34	960 Winter	100	+45\%	$30 / 240$ Summer				97.079	0.379
S37.001	SWP-TANK 3	960 Winter	100	+45\%	$30 / 240$ Summer				97.078	0.428
S38.000	SWP-36	15 Summer	100	+45\%					97.935	-0.150
S39.000	SWP-37	15 Summer	100	+45\%					97.690	-0.150
S38.001	SWP-38	15 Summer	100	+45\%					97.486	-0.036
S40.000	SWP-39	15 Summer	100	+45\%					97.242	-0.150
S41.000	SWP-40	15 Summer	100	+45\%					97.267	-0.150
S40.001	SWP-41	960 Winter	100	+45\%	100/960 Summer				97.088	0.079
S37.002	SWP-42	960 Winter	100	+45\%	30/120 Winter				97.091	0.491
S37.003	SWP-TANK 4	960 Winter	100	+45\%	$30 / 120$ Summer				97.051	0.501
S23.009	SWP-HB2	960 Winter	100	+45\%	1/120 Summer				97.114	0.689
S42.000	SWP-45	15 Summer	100	+45\%					98.403	-0.150
S42.001	SWP-46	15 Summer	100	+45\%					96.648	-0.040
S23.010	SWP-47	360 Winter	100	+45\%	30/60 Summer				96.527	0.627
S23.011	SWP-TANK 6	480 Winter	100	+45\%	30/30 Winter				96.351	0.501
S43.000	SWP-49	15 Summer	100	+45\%					98.223	-0.150
S43.001	SWP-50	15 Summer	100	+45\%					96.818	-0.060
S43.002	SWP-51	15 Summer	100	+45\%					96.695	-0.100
S43.003	SWP-52	360 Winter	100	+45\%	30/60 Summer				96.523	0.623
S43.004	SWP-TANK 5	480 Winter	100	+45\%	30/60 Summer				96.351	0.501
S44.000	SWP-54	15 Summer	100	+45\%					96.982	-0.150
S45.000	SWP-55	15 Summer	100	+45\%					97.008	-0.150
S44.001	SWP-56	15 Summer	100	+45\%					96.870	-0.079
S23.012	SWP-57	360 Winter	100	+45\%	30/15 Summer				96.523	0.723
S46.000	SWP-58	15 Summer	100	+45\%					96.844	-0.150
S47.000	SWP-59	360 Winter	100	+45\%					96.520	-0.064
S23.013	SWP-60	360 Winter	100	+45\%	30/15 Summer				96.520	0.770
S48.000	SWP-61	360 Winter	100	+45\%	100/240 Summer				96.518	0.174
S23.014	SWP-HB3	360 Winter	100	+45\%	1/15 Summer				96.518	0.893
S23.015	SWP-63	1440 Winter	100	+45\%	30/360 Summer				95.229	0.246
S23.016	SWP-TANK 7	1440 Winter	100	+45\%	30/240 Summer				95.227	0.294
S49.000	SWP-65	60 Summer	100	+45\%					95.585	-0.190
S49.001	SWP-66	60 Summer	100	+45\%					95.329	-0.185
S49.002	SWP-67	1440 Winter	100	+45\%	30/960 Winter				95.231	0.140
S49.003	SWP-68	1440 Winter	100	+45\%	30/15 Summer				95.233	0.333
S49.004	SWP-69	1440 Winter	100	+45\%	1/240 Summer				95.238	0.498
S50.000	SWP-70	15 Summer	100	+45\%	30/15 Summer				95.821	0.881
S50.001	SWP-71	15 Summer	100	+45\%	1/960 Summer				95.447	0.610
S50.002	SWP-72	1440 Winter	100	+45\%	1/360 Summer				95.237	0.460
S23.017	SWP-CC1	1440 Winter	100	+45\%	1/15 Summer				95.238	0.655
S23.018	SWP-PI	1440 Winter	100	+45\%					94.438	-0.086
S23.019	SWP-75	1440 Winter	100	+45\%					94.352	-0.068

PN	US/MH Name	Flooded Volume (m^{3})	$\begin{gathered} \text { Flow / } \\ \text { Cap. } \end{gathered}$	$\begin{aligned} & \text { Overflow } \\ & (1 / s) \end{aligned}$	Half Drain Time (mins)	Pipe Flow (1/s)	Status	Level Exceeded
S33.002	SWP-30	0.000	1.63			29.3	SURCHARGED	
S33.003	SWP-31	0.000	1.85			28.6	SURCHARGED	
S33.004	SWP-32	0.000	1.55			28.3	SURCHARGED	
S23.008	SWP-HB1	0.000	0.06			4.5	SURCHARGED	

Jacobs Engineering Limited		Page 12
	Bishop Auckland Bus Station and Car Park	
Date 13/12/2022 09:28 File BA-Drainage Model_v19.MDX	Designed by G.Jones Checked by S.Clark	Drainage
Innovyze	Network 2020.1.3	
100 year Return Period Summary	ical Results by Maximum	for Storm -

PN	US/MH Name	Flooded Volume (m^{3})	$\begin{gathered} \text { Flow / } \\ \text { Cap. } \end{gathered}$	$\begin{aligned} & \text { Overflow } \\ & (1 / s) \end{aligned}$	$\begin{gathered} \text { Half Drain } \\ \text { Time } \\ \text { (mins) } \end{gathered}$	Pipe Flow (1/s)	Status	Level Exceeded
S37.000	SWP-34	0.000	0.00			0.1	SURCHARGED	
S37.001	SWP-TANK 3	0.000	0.04		391	2.5	SURCHARGED*	
S38.000	SWP-36	0.000	0.00			0.0	OK*	
S39.000	SWP-37	0.000	0.00			0.0	OK*	
S38.001	SWP-38	0.000	0.93		5	16.1	OK	
S40.000	SWP-39	0.000	0.00			0.0	OK*	
S41.000	SWP-40	0.000	0.00			0.0	OK*	
S40.001	SWP-41	0.000	0.04		132	1.6	SURCHARGED	
S37.002	SWP-42	0.000	0.05			3.0	SURCHARGED	
S37.003	SWP-TANK 4	0.000	0.06		434	3.8	SURCHARGED*	
S23.009	SWP-HB2	0.000	0.05			4.0	SURCHARGED	
S42.000	SWP-45	0.000	0.00			0.0	OK*	
S42.001	SWP-46	0.000	0.89		4	15.1	OK	
S23.010	SWP-47	0.000	0.09			5.6	SURCHARGED	
S23.011	SWP-TANK 6	0.000	0.10			6.2	SURCHARGED*	
S43.000	SWP-49	0.000	0.00			0.0	OK*	
S43.001	SWP-50	0.000	0.67		4	12.1	OK	
S43.002	SWP-51	0.000	0.24			12.1	OK	
S43.003	SWP-52	0.000	0.02			1.5	SURCHARGED	
S43.004	SWP-TANK 5	0.000	0.04			2.3	SURCHARGED*	
S44.000	SWP-54	0.000	0.00			0.0	OK*	
S45.000	SWP-55	0.000	0.00			0.0	OK*	
S44.001	SWP-56	0.000	0.46		4	17.5	OK	
S23.012	SWP-57	0.000	0.12			7.6	SURCHARGED	
S46.000	SWP-58	0.000	0.00			0.0	OK*	
S47.000	SWP-59	0.000	0.01			0.1	OK*	
S23.013	SWP-60	0.000	0.10			6.4	SURCHARGED	
S48.000	SWP-61	0.000	0.01			0.1	SURCHARGED	
S23.014	SWP-HB3	0.000	0.05			5.5	SURCHARGED	
S23.015	SWP-63	0.000	0.04			5.0	SURCHARGED	
S23.016	SWP-TANK 7	0.000	0.05		1113	7.5	SURCHARGED*	
S49.000	SWP-65	0.000	0.06			3.0	OK	
S49.001	SWP-66	0.000	0.07			6.0	OK	
S49.002	SWP-67	0.000	0.03			1.5	SURCHARGED	
S49.003	SWP-68	0.000	0.04			1.7	SURCHARGED	
S49.004	SWP-69	0.000	0.04			1.6	SURCHARGED	
S50.000	SWP-70	0.000	1.92			71.5	SURCHARGED	
S50.001	SWP-71	0.000	1.87			115.0	SURCHARGED	
S50.002	SWP-72	0.000	0.10			6.0	SURCHARGED	
S23.017	SWP-CC1	0.000	0.46			6.8	SURCHARGED	
S23.018	SWP-PI	0.000	0.38			6.8	OK*	
S23.019	SWP-75	0.000	0.58			6.8	OK	

Appendix F. AquaTreat Interceptor Certificates

Klargester

Stormwater Treatment Device Performance Declaration

Stormwater Treatment Devices compliant with Chapter 26 of the CIRIA SuDS manual

Testing carried out according to DIBt Stormwater Treatment Systems Approval Requirements Part 1: "Systems for connection of motor vehicle circulation areas with a surface of max. $2000 \mathrm{~m}^{2}$ for subsequent infiltration into ground and water course"

Treatment Device Tested: AquaTreat SWT010 stormwater treatment device

General description: A device for the collection and retention of hydrocarbons, particulate and metals.

E nvisaged application: Surface water runoff for trafficked areas for subsequent infiltration into ground and water course.

Pollutant(s) captured: Hydrocarbons, particulate, zinc and copper

P arameter	Value
Treatment device capacity:	2,450 I
Particulate storage capacity:	1,000 I
Hydrocarbons storage capacity:	100 I
Treatment flow rate:	$10 \mathrm{I} / \mathrm{s}$
Connectable area:	$1,000 \mathrm{~m} 2$
Hydrocarbon retention	99.65%
Particulate retention efficiency	85.5%
Zinc retention efficiency*	64%
Copper retention efficiency*	64%

*R eduction of heavy metals by collecting and retaining suspended solids is assumed as 75%.

Certificate

Kingspan Environmental Ltd.

College Rd North, Aston Clinton, Aylesbury Bucks, HP225EW, Great Britian
Approval principles of DIBt
„Zulassungsgrundsätze für Niederschlagswasserbehandlungsanlagen Teil ${ }^{\text {" }}$
Version November 2017
AquaTreat SWT010
Connected surface area: $1,000 \mathrm{~m}^{2}$
PIA2020-NW-1911-1066

Particle retention (Millisil W4) $\quad 85.50 \%$

Hydro carbon retention 99.65%

Performance tested by:
PIA - Prüfinstitut für Abwassertechnik GmbH
Hergenrather Weg 30
52074 Aachen
Germany

This document does not replace the test report.

Appendix G. Topo Survey

Appendix H. Scheme Drawings

PRIVATE SURFACE WATER Network											
Manhole Name	$\begin{array}{\|c} \text { Cover Level } \\ (\mathrm{m}) \end{array}$	$\underset{\substack{\text { MH Deprt } \\(m)}}{\substack{\text { m }}}$	Manhole Dia (mm)	Chamber Tye	Pipe Out Invert Level (m)	$\begin{array}{\|c} \substack{\text { Pipe out } \\ \text { Diamenter } \\ (m m)} \end{array}$		$\begin{gathered} \text { Pipes in } \\ \text { Ivert Level } \\ \left(\begin{array}{l} m \end{array}\right) \end{gathered}$		$\begin{gathered} \text { Pipesing } \\ \substack{\text { Bacachlop } \\ \text { (nmm) }} \end{gathered}$	cover Grade col
SwP-1	101.31	1.05	1200	${ }^{\text {PCCRING }}$	100.26	${ }^{150}$	19.4				D400
swP-2	100271	1.054	1200	pecring	99.217	${ }^{150}$	24.5	99.217	150		0400
swp 3	${ }^{100.123}$	0.606	150	Roodmg eve	99.517	150	14.8				
swP4	100.2	1.05	1200	pering	99.15	${ }^{150}$	${ }^{23,3}$				D4400
swe. 5	100.033	${ }_{1} 1.056$	1200	${ }_{\text {PCCRING }}$	98.887	${ }^{150}$	16.1	98.887	150		D400
								98.88	150		
swp. 6	99.988	1.3	1200	PCRING	98.688	150	${ }^{46.4}$	98.68	150		0400
								98.988	150		
sw.7	100296	0.65	150	Roodmg eve	99.646	150	15.8				
sw. 8	99.835	${ }^{1.3}$	600	PPIC	98.335	${ }^{150}$	59.9	98.535	150		0400
sw. 9	1000.015	0.606	150	Rooding eve	99,09	${ }_{150}$	${ }^{12.2}$				
SwP-10	99.97	1.15	600	PPIC	98.767	${ }^{150}$	${ }^{14.7}$	98.767	150		D4400
SwP-11	99.79	${ }^{1.34}$	1200	${ }^{\text {PCCRING }}$	98.45	150	18	98.45	150		D4400
								98.45	150		
								98.45	150		
${ }_{\text {swp }}$-12	99.776	0.65	150	Rooding ye	99.126	${ }_{150}$	17.9				
swp-13	98.97	1.284	600	Palc	97.93	150	60.2	97.63	150		D400
SwP-14	98.879	2.074	1200	${ }^{\text {PCR RING }}$	96.805	300	16.2	96.95	150		0400
								97.61	150	655	
SwP-TANK 1	98.59	2204		crates	96.75	300	151.8	96.75	300		
swp.16	99.033	0.661	150	Roodme eve	98.372	150	60				
SWP-17	99.62	0.699	150	Rooding ye	98.93	150	13.2				
swp-18	99.388	1.225	600	PPIC	98.163	150	10.2	98.163	150		040
								98.163	150		
SwP-19	98.889	0.677	150	Roodme eve	98.312	150	15.4				
SWP-20	98.586	0.662	150	Rooding eve	97.24	150	47.7				
SwP-21	98.819	1.158	600	PPIC	97.661	150	59.7	97.661	150		D400
								97.61	${ }^{150}$		
swp-22	99.135	2.43	1200	${ }^{\text {PC R RNG }}$	96.75	300	147.9	96.75	300		0400
								97.68	150	825	
								97.548	150	693	
SwneTaNK 2	99.29	2.644		CRates	96.655	300	55.2	96.655	300		
swp 24	99.669	0.668	150	Roodmg eve	99.001	150	60				
SWP-25	100479	0.563	150	Rooding eve	99.96	${ }^{150}$	${ }^{12.1}$				
${ }_{\text {swp-26 }}$	100.197	1.405	600	P9IC	98.792	150	7.4	98.792	150		0400
								99.292	150	500	
SwP-27	99.973	0.637	${ }^{150}$	Roodmg eve	99.336	${ }^{150}$	10.7				
swp 28	99.26	0.662	150	Roodng eve	98.67	150	60.1				
SwP-29	99.55	1.26	600	PPIC	98.388	150	60.3	98.388	150		0400
								98.388	${ }^{150}$		
swr-30	99.94	1.688	1200	PC RING	98.286	150	80	98.286	150		0400
								98.286	150		
swp-31	100381	2.241	1200	${ }^{\text {PC R ING }}$	98.14	150	${ }^{79.6}$	98.14	150		D400
swp 32	99.94	1.915	1200	${ }^{\text {PCCRING }}$	98.09	150	80	98.09	150		D400
SWP-HE1	99.196	2.666	1500	PC RING	96.605	225	${ }^{43.2}$	99.53	300		D400
								97.06	150	${ }^{1226}$	
SwP 34	98.168	1.818	1200	PC Ring	96.35	300	180				0400
SWP-TANK 3	98.239	1.939		Crates	96.35	300	138	96.3	300		
swp-36	98.63	0.69	150	Rooonge eve	97.35	150	17.9				
swp-37	98.377	0.557	150	Rooong eve	97.69	150	39.5				
SWP-38	98.521	1.149	600	PPIC	97.372	150	59.9	97.372	150		D4400
								97.32	150		
swe-39	97.896	0.554	150	Roodmg eve	97.242	150	32.8				
SwP-40	98.01	0.734	150	Roodime ye	97.267	150	24.6				
SwP-41	97.95	1.106	600	PPIC	96.859	150	17.5	96.859	150		0400
								96.859	150		
SwP-42	98,289	1.989	1200	${ }^{\text {PCRING }}$	96.3	300	${ }^{143}$	${ }_{\text {96,3 }} 9$	300 150		D400
								${ }_{96,45}^{97.26}$	$\begin{aligned} & 150 \\ & \hline 150 \end{aligned}$	${ }^{846}$	
SWP-TANK 4	9836	2.11		${ }^{\text {crates }}$	96.25	300	${ }_{143}$	96,45 96.25	150 300		
SWP-HB2	${ }_{98,366}$	${ }^{2.126}$	1500	${ }^{\text {ç }}$ Ring	96.2	${ }^{325}$	${ }_{3,7}$	96.2	${ }^{325}$		D400
								96.2	300		
SwP-45	99.13	0.727	150	Roodmg eve	98.403	${ }^{150}$	17.8				
swp-46	97.57	1.039	600	PPIC	96.538	150	59.7	96.538	150		D400
SwP-47	97.439	1.839	1200	PCRING	95.6	300	143	95.675	225		${ }^{2000}$
								96.455	150	715	
SWPTANK 6	97.42	1.875		Crates	95.55	300	${ }^{143}$	95.55	300		
swp-49	98.868	0.645	150	Roodng eve	${ }_{98223}$	150	15				
swe-50	98.013	1.285	600	P9FIC	96.72	150	59.7	96.728	150		D400

PRIVATE FOUL WATER NETWORK											
Manhol Name	$\begin{aligned} & \text { Cover Level } \\ & \text { (m) } \end{aligned}$	MH Depth (m)	Manhole Dia (mm)	Chamber Tye	Pipe Out Invert Level (m)	$\underset{\substack{\text { Pipe out } \\ \text { Dimener } \\(m m)}}{ }$	$\begin{gathered} \text { Pipe out } \\ \substack{\text { Pandien } \\ \text { nain }} \end{gathered}$	$\begin{array}{\|c} \substack{\text { Pipes in } \\ \text { nvene tevel } \\ (\mathrm{m})} \end{array}$	$\begin{array}{\|c\|c\|c\|c\|c\|c\|c\|} \substack{\text { Diamester } \\ (m m)} \end{array}$	$\begin{gathered} \text { Pipes In } \\ \substack{\text { Backichop } \\ \text { (nmm }} \end{gathered}$	cover $\begin{gathered}\text { corade } \\ \text { crat }\end{gathered}$
fwP-1	97.317	1.982	1200	${ }^{\text {PCR RING }}$	95.185	150	80.1				0400
fw-2	98.058	1.008	600	PPIC	96.9	${ }^{150}$	59.9				0400
fwe. 3	97.65	${ }^{2.48}$	1200	PC RIMG	95.02	${ }^{150}$	80.8	95.02	${ }^{150}$		0400
								${ }^{96.685}$	${ }^{150}$	1665	0400
fw-4	97.313	2.263	1200	PCRING	94.9	${ }^{150}$	${ }_{80}$	94.9	150		0400
fw. 5	96.726	твс	1200	${ }^{\text {PCCRING }}$	ourfall	${ }^{150}$	твС	тв	${ }^{150}$		0400

ADOPTED SURFACE WATER NETWORK											
Manhole Name	${ }_{\substack{\text { Cover } \\ \text { (} \mathrm{m})}}^{\text {evel }}$	$\begin{aligned} & \text { MH Depth } \\ & \text { (m) } \end{aligned}$	Manhole Dia	Chamber Type	$\begin{gathered} \text { Pipe Out Invert } \\ \text { Level (m) } \end{gathered}$		$\begin{gathered} \text { Pipe Out } \\ \text { Gradient } \\ \text { (1 in } X) \end{gathered}$	$\begin{aligned} & \text { Pipes In } \\ & \text { Invert Level } \\ & (\mathrm{m}) \end{aligned}$	$\begin{aligned} & \text { Pipes In } \\ & \text { Diameter } \\ & (\mathrm{mm}) \end{aligned}$	$\begin{aligned} & \text { Pipes In } \\ & \text { Backdrop } \\ & (\mathrm{mm}) \end{aligned}$	couer Grade
HW-MH-1	101372	1.397	1200	${ }^{\text {PCCRING }}$	99.150	225	20.9	99.150	150		0400
HWMH-2	99.25	1.425	1200	pering	98.25	225	${ }_{25} 25$	97.825	225		0400
HW-MH.3	96.98	1.343	1200	PC RING	97.825	225	16.2	95.575	225		0400

PRIVATE SURFACE WATER NETWORK - flow controls				
Manhole Name	Fow Rate	Design Head	Storm Event	Control T yee
SWP-H61	4.5//s	${ }^{1.250 m}$	100\%rat 4 \%ec	Vortex
swp-H182	4.01/5	${ }^{0.850 m}$	100\%rats\%ect	vortex
swp-H33	5.01/	0.900 m	100yras\%ec	vortex
sw. CC1	3/5	0.500 m		Vortex
	7/s	0.800m	100vrat 5 \%ec	Orifice

TYPICAL MANHOLE DETAIL
Depth from cover level to soffit of pipe $1.5 \mathrm{~m}-3.0 \mathrm{~m}$

PERMEABLE PAVING STORAGE
PARKING BAY TYPICAL SECTION
 PERMEABLE PAVING STORAGE
COLLECTOR DRAIN TYPICAL SECTION
 BLOO0034-JAC-ZZ-ZZ-DR-C-10004

Appendix I. Maintenance Schedule

The following maintenance schedules are based on the recommended guidance for operation and maintenance of drainage assets in accordance with The Suds Manual - CIRIA C753, 2015.

Drainage Channels and Gullies

Maintenance Schedule	Required Action	Typical Frequency
Monitoring (to be undertaken more regularly within the first year of operation and adjusted as required).	Initial Inspection including channel outlet boxes.	Half yearly and after large storms.
Regular Maintenance/Inspection	Litter and debris removal	Monthly or as required.
	Check and remove large vegetation growth near channel runs.	Monthly or as required
	Inspect for evidence of poor operation and/or weed growth. If required, take remedial action. Inspect silt accumulation rates and establish appropriate brushing frequencies. Silt can also be caused by adjacent landscaping areas which should be re-profiled to provide a flat area or berm adjacent to the paving.	3-monthly, 48 hours after large storms.
Remedial Action	Inspect access/outlet boxes and rod through poorly performing channels and outlets as initial remediation.	As required.

Pipes and Manholes

Maintenance Schedule	Required Action	Typical Frequency
Monitoring (to be undertaken more regularly withhin the first year of operation and adjusted as required)	lnitial inspection should be provided as post construction CCTV survey.	Once, upon completion of development
	Inspect for evidence of poor operation via water level in chambers. If required take remedial action.	3-monthly, 48 hours after large storms.
Occasional Maintenance	Check and remove large vegetation growth near pipe runs.	6 monthly
Remedial actions	Rod through poorly performing runs as initial remediation.	As required
	If continued poor performance jet and CCTV survey poorly performing runs.	As required
	Seek advice as to remediation techniques suitable for the type of performance issue and location.	As required If above does not improve performance.

Green Roofs

Maintenance Schedule	Required Action	Typical Frequency
Regular inspections	Inspect all components including soil substrate, vegetation, drains, irrigation systems (if applicable), membranes and roof structure for proper operation, integrity of waterproofing and structural stability	Annually and after severe storms
	Inspect soil substrate for evidence of erosion channels and identify any sediment sources	Annually and after severe storms
	Inspect drain inlets to ensure unrestricted runoff from the drainage layer to the conveyance or roof drain system	Annually and after severe storms
	Inspect underside of roof for evidence of leakage	Annually and after severe storms
Regular maintenance	Remove debris and litter to prevent clogging of inlet drains and interference with plant growth	Six monthly and annually or as required
	During establishment (ie year one), replace dead plants as required	Monthly (but usually responsibility of manufacturer)
	Post establishment, replace dead plants as required (where $>5 \%$ of coverage)	Annually (in autumn)
	Remove fallen leaves and debris from deciduous plant foliage	Six monthly or as required
	Remove nuisance and invasive vegetation, including weeds	Six monthly or as required
	Mow grasses, prune shrubs and manage other planting (if appropriate) as required clippings should be removed and not allowed to accumulate	Six monthly or as required
Remedial actions	If erosion channels are evident, these should be stabilised with extra soil substrate similar to the original material, and sources of erosion damage should be identified and controlled	As required
	If drain inlet has settled, cracked or moved, investigate and repair as appropriate	As required

Rainwater Harvesting System

Maintenance Schedule	Required Action	Typical Frequency
Regular maintenance	Inspection of the tank for debris and sediment build-up, inlets/outlets / withdrawal devices, overflow areas, pumps, filters	Annually (and following poor performance)
	Cleaning of tank, inlets, outlets, gutters, withdrawal devices and roof drain filters of silts and other debris	Annually (and following poor performance)
Occasional maintenance	Cleaning and/or replacement of any filters	Three monthly (or as required)
Remedial actions	Repair of overflow erosion damage or damage to tank	As required
Pump repairs	As required	

Attenuation Tanks

Maintenance Schedule	Required Action	Typical Frequency
Regular maintenance	Inspect and identify any areas that are not operating correctly. If required, take remedial action	Monthly for 3 months, then annually
	Remove debris from the catchment surface (where it may cause risks to performance)	Monthly
	Remove sediment from pre- treatment structures and/or internal forebays	Annually, or as required
Remedial actions	Repair/ rehabilitate inlets, outlet, overflows and vents	As required
Monitoring	Inspect/ check all inlets, outlets, vents and overflows to ensure that they are in good condition and operating as designed	Annually
	Suvey inside of tank for sediment build-up and remove if necessary	Every 5 years or as required

Permeable Concrete Block Paving

Maintenance Schedule	Required Action	Typical Frequency
Regular maintenance	Brushing and vacuuming (standard cosmetic sweep over whole surface)	Once a year, after autumn leaf fall, or reduced frequency as required, based on site-specific observations of clogging or manufacturer's recommendations - pay particular attention to areas where water runs onto pervious surface from adjacent impermeable areas as this area is most likely to collect the most sediment
Occasional maintenance	Stabilise and mow contributing and adjacent areas	As required
	Removal of weeds or management using glyphospate applied directly into the weeds by an applicator rather than spraying	As required - once per year on less frequently used pavements
Remedial Actions	Remediate any landscaping which, through vegetation maintenance or soil slip, has been raised to within 50 mm of the level of the paving	As required
	Remedial work to any depressions, rutting and cracked or broken blocks considered detrimental to the structural performance or a hazard to users, and replace lost jointing material	As required
	Rehabilitation of surface and upper substructure by remedial sweeping	Every 10 to 15 years or as required (if infiltration performance is reduced due to significant clogging)
Monitoring	Initial inspection	Monthly for three months after installation
	Inspect for evidence of poor operation and/ or weed growth - if required, take remedial action	Three-monthly, 48h after large storms in first six months
	Inspect silt accumulation rates and establish appropriate brushing frequencies	Annually
	Monitor inspection chambers	Annually

Flow Control Chambers

Maintenance Schedule	Required Action	Typical Frequency
Monitoring (to be undertaken more regularly within the first year of operation and adjusted as required).	Inspect inlets for blockages, and clear if required. If faults persist jetting and CCTV survey may be required.	Monthly and after large storms.
Regular maintenance \inspection	Inspect and identify any areas that are not operating correctly. If required, take remedial action.	Monthly for 3 months, then six monthly.
	Debris removal from catchment surface (where may cause blockage/risk to performance)	Monthly
	Remove sediment from pre- treatment structures and flow control chambers.	Annually (or as required after heavy rainfall events)
Remedial Actions	Repair/rehabilitation of inlets.	As required.

Oil/Petrol Separator

Maintenance Schedule	Required Action	Typical Frequency
Routine maintenance	Remove litter and debris and inspect for sediment, oil and grease accumulation	Six monthly
	Change the filter media	As recommended by manufacturer
	Remove sediment, oil, grease and floatables	As necessary - indicated by system inspections or immediately following significant spill
Remedial actions	Replace malfunctioning parts or structures	As required
Monitoring Inspect for evidence of poor operation Inspect filter media and establish appropriate replacement frequencies	Six monthly	
	Inspect sediment accumulation rates and establish appropriate removal frequencies	Monthly during first half year of operation, then every six months

Raingardens

Maintenance Schedule	Required Action	Typical Frequency
Regular inspections	Inspect infiltration surfaces for silting and ponding, record dewatering time of the facility and assess standing water levels in underdrain (if appropriate) to determine if maintenance is necessary	Quarterly
	Check operation of underdrains by inspection of flows after rain	Annually
	Assess plants for disease infection, poor growth, invasive species etc and replace as necessary	Quarterly
	Inspect inlets and outlets for blockage	Quarterly
Regular maintenance	Remove litter and surface debris and weeds	Quarterly (or more frequently for tidiness or aesthetic reasons)
	Replace any plants, to maintain planting density	As required
	Remove sediment, litter and debris build-up from around inlets or from forebays	Quarterly to biannually
Occasional maintenance	Infill any holes or scour in the filter medium, improve erosion protection if required	As required
	Repair minor accumulations of silt by raking away surface mulch, scarifying surface of medium and replacing mulch	As required
Remedial actions	Remove and replace filter medium and vegetation above	As required but likely to be >20 years

[^0]: © Environment Agency copyright and / or database rights 2022. All rights reserved. © Crown Copyright and database right 2022. Ordnance Survey licence number 100024198.

