

# **15 WILLOW GROVE**

# SOUTH CERNEY

# **Structural Calculations**

Document reference: 22.132-CR01

Revision: B

Barsby Structural Consultants Ltd Mike Barsby M.Eng (Hons), CEng, MIStructE



# Calculation Report Ref. 22.132-CR01

# **Contents**

| Introduction              | 2 |
|---------------------------|---|
| Designers Risk Assessment | 3 |

# Appendices

Appendix A – Drawings

Appendix B – Calculations

The contents of this document are intended solely for Mr & Mrs Carter, or their agents use in relation to 15 Willow Grove, South Cerney. The issue of this document to third parties not involved in the proposed development at 15 Willow Grove, South Cerney is not permitted without prior written consent from Barsby Structural Consultants Ltd. Barsby Structural Consultant assumes no responsibility to any other party in respect of or arising out of or in connection with this document and its contents.

For enquiries please contact:

Barsby Structural Consultants Ltd, 4 Elizabeth Gardens, Meysey Hampton, Gloucestershire GL7 5LP | 07787 322 633



# Introduction

Barsby Structural Consultants have been appointed by Mr & Mrs Carter to carry out structural calculations and drawings suitable for construction and building regulations approval for 15 Willow Grove, South Cerney.

The scope of works is to design trimming steelwork and timber to support the existing dormer bungalow structure and permit a number of ground floor wall removals and bi-fold openings. In addition, a single storey flat roof extension to be designed to the rear of the existing with corner glazing and steel post (post positions is to be agreed with the Architect).



# Designers Risk Assessment

A risk assessment for this project has been carried out in accordance with CDM regulations 2015, to identify unusual hazards associated with the design; those are risks that are not standard risks associated with construction projects. Standard construction risks are not assessed, as Barsby Structural Consultants Ltd assumes a competent contractor is appointed to carry out the works. The Unusual risks have been assessed for severity and probability, and mitigating measures are described in the measures taken column. Where residual risks are greater than a low rating, these are highlighted on the project drawings.

| Description     | Severity | Likelihood | Risk<br>Rating | Measures taken | Residual<br>Risk Rating |
|-----------------|----------|------------|----------------|----------------|-------------------------|
| None identified |          |            |                |                |                         |
|                 |          |            |                |                |                         |



Appendix A - Drawings



|                                      |                                                            | 1 00       | neral notes.                                                                                                                                              |
|--------------------------------------|------------------------------------------------------------|------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|
| Legend                               |                                                            |            |                                                                                                                                                           |
| -===                                 | - Steel beam (size as noted in key)                        | 1.         | Do not scale from the drawing; all dimensions an<br>either be confirmed by the Architect or by measure                                                    |
|                                      | _ Crank in steel beam (full strength butt<br>weld)         | 2.         | The copyright in this drawing belongs to Barsby<br>Consultants Ltd; the details contained within this<br>not be used for any other project other than the |
| I                                    | Steel column (size as noted in key)                        |            | the title block.                                                                                                                                          |
|                                      | Timber beam (size as noted in key)                         | 3.         | It is the responsibility of the contractor to review<br>and notify the Structural Engineer of any discrer                                                 |
| $\left  \longleftrightarrow \right.$ | <ul> <li>Rafter (size as noted on key)</li> </ul>          |            | commencing works.                                                                                                                                         |
| 1                                    | <ul> <li>Flat roof joist (size as noted on key)</li> </ul> | 4.         | All dimensions are in mm u.n.o.                                                                                                                           |
| 2                                    | <ul> <li>Floor joist (size as noted on plan)</li> </ul>    | 5.         | This drawing may be subject to planning, buildir application, party wall agreement. Should this be                                                        |
| $\ll \gg$                            | <ul> <li>Trussed rafters by supplier</li> </ul>            |            | works carried out prior to approval are at the conrisk.                                                                                                   |
| $\square$                            | Timber post (size as noted in key)                         | <u>Ste</u> | elwork notes:                                                                                                                                             |
|                                      | Blockwork inner skin                                       | 1.         | These are <u>not</u> setting out drawings - steelwork s determined by the fabricator from site measurer                                                   |
|                                      | Brickwork                                                  |            | Architects drawings.                                                                                                                                      |
|                                      | Stone/ recon stone                                         | 2.         | No holes are to be drilled through the steelwork with the Structural Engineer.                                                                            |
|                                      | Non load-bearing partitions by others                      | 3.         | All steelwork to be CE marked in accordance wi                                                                                                            |
| M                                    | Studwork wall (size and spacing as noted in member key)    |            | 1090-1 & 2. All steelwork to be Execution Class                                                                                                           |
|                                      | Dre-stressed lintel with min 150mm                         | 4.         | All open sections to be grade S275JR in accord EN10025-2                                                                                                  |
|                                      | bearings (size as noted on member key)                     | 5.         | All hollow sections to be grade S355JOH in acc                                                                                                            |
|                                      | Padstone (size as noted on member key)                     |            | BS EN10210-1                                                                                                                                              |
| 1                                    |                                                            |            |                                                                                                                                                           |

- J1 195 x 45 C16 joists at max 600mm centres

- B4 120 x 120 SHS 5 + 6mm bottom plate (see typical

- B7 152 x 89 UB16 downstand below ceiling level

- P1 Steel to bear 300mm onto 440 x 100 x 215dp
- P2 Steel to bear 225mm onto masonry, including bottom plate onto outer skin (see typical detail).

# General Notes

- and setting out to suring on site.
- / Structural s drawing can project stated in
- / the drawing pancies prior to
- ng regulations be the case, all ontractors/clients
- setting out to be ment or the
- cunless agreed
- ith BS EN
- dance with BS
- cordance with
- 6. All bolts to be m20 grade 8.8; sheradized for internal use, or hot spun galvanised for external use.
- 7. All fillet welds to be 8mm full profile fillet welds u.n.o
- 8. Corrosion protection.
- 8.1. Hidden steelwork; to Corus system B3, with shop applied zinc phosphate epoxy primer 80 $\mu$ m. If in contact with external masonry and additional 2 coats of high build bituminous paint to be applied
- 8.2. External steelwork; to Corus system B12 hot dip galvanised to BE EN ISO 1461 to 85 $\mu$ m

# Timber notes:

- All softwood timber to be fsC certified stamped grade C16, All hardwood timber to be fsC certified stamped grade D30 to BS 5268 u.n.o, with maximum moisture content of 20% internal use and 40% external use.
- 2. All fixings into softwood to be galvanised
- All fixings into hardwood to be stainless steel
- 4. All nails to be in accordance with BS 1202-1. pre drilling to be maximum of 0.8 x nail diameter
- All screws to be in accordance with BS 1202. pre drilled holes to be maximum of 0.5 x screw shank diameter
- 6. All bolts to be grade 4.6 with oversized washers. Toothed plate connectors to be used between adjoining timber surfaces.
- 7. All notches and holes within timbers to be in accordance with the Building Regulations current version

# Masonry notes:

- 1. All masonry to be in accordance with BS EN 5628-1 and 3.
- 2. Brickwork to be minimum compressive strength of 20N/mm<sup>2</sup>, with frogs facing upwards.
- 3. Blockwork to be minimum compressive strength 7.3n/mm<sup>2</sup> u.n.o.
- 4. Engineering brickwork to be minimum compressive strength 50N/mm² u.n.o.
- 5. Below DPC mortar to be designation class (ii).
- 6. Above DPC mortar to be designation class (iii).
- 7. Internal blockwork to have movement joints in accordance with the suppliers specification but at a maximum of 6m, unless shrinkage cracking is deemed acceptable.

Foundation notes:

- 1. All excavations to be inspection by the Building Control Officer (BCO) prior to pouring concrete
- 3. Assumed bearing pressure 80kPa, to be approved by BCO for site soil conditions
- 4. Concrete to be poured on the same day of excavation. If this is not possible, the base of the excavation is to be reduced 200mm immediately prior to pouring concrete the following day. The contractor is responsible for making sure excavations are not left open overnight.
- 5. Excavations to be clear and free of debris prior to pouring concrete.
- 6. All below ground mass fill concrete to be FND3 u.n.o
- 7. All below ground reinforced concrete to be RC32/40 u.n.o





email; mike@barsbystructuralconsultants.co.uk

Drawing Status:

**ISSUED FOR CONSTRUCTION** 

Project:

# 15 WILLOW GROVE SOUTH CERNEY

| e and competent.                                          |
|-----------------------------------------------------------|
| I hazards expected with the work covered by this drawing, |
| ual risks have been highlighted risk through assessment.  |
| planned and executed to account for these risks during    |
| ation,maintenance, decommissioning and demolition         |
|                                                           |

| Scale:          | Date:    | Drawn:   |
|-----------------|----------|----------|
| as shown at A1  | 16/11/22 | MPB      |
|                 |          |          |
| Drawing Number: |          | Revison: |
| 22.1            | 32-1000  | В        |
|                 |          |          |

GENERAL ARRANGEMENT AND DETAILS

Title:



Appendix B - Calculations

| Title: | 15 WILLOW GROVE, SOUTH CERNEY |        |       |            |
|--------|-------------------------------|--------|-------|------------|
| Ref.   | 22.132                        | By: MB | Date: | 20/10/2022 |



|         | Loading sheet 1                                                      |            |
|---------|----------------------------------------------------------------------|------------|
|         | ROOF (40 DEG)                                                        |            |
| 1No     | Interlocking Concrete Tiles                                          | 0.55       |
| 1No     | Felt + Battens                                                       | 0.05       |
| 145mm   | Timber @ 400c/c                                                      | 0.11       |
| 40Pitch | Imposed,R2 - Pitch between 30-60 degrees = 0.75[(60-a)/30] (Small ro | 0.50       |
|         | Total GK (Pitch Corrected)                                           | 0.93 kN/m2 |
|         | Total Qk                                                             | 0.5 kN/m2  |
|         | ATTIC                                                                |            |
| 300mm   | Insulation                                                           | 0.12       |
| 150mm   | Timber @ 400c/c                                                      | 0.12       |
| 1No     | 12thk Plasterboard/Skim                                              | 0.12       |
| 1No     | Imposed,RS2 - Roof Space with access                                 | 0.25       |
|         | Total Gk                                                             | 0.35 kN/m2 |
|         | Total Qk                                                             | 0.25 kN/m2 |
|         | ROOF(30 DEG)                                                         |            |
| 1No     | Interlocking Concrete Tiles                                          | 0.55       |
| 1No     | Felt + Battens                                                       | 0.05       |
| 145mm   | Timber @ 400c/c                                                      | 0.11       |
| 30Pitch | Imposed,R2 - Pitch between 30-60 degrees = 0.75[(60-a)/30] (Small ro | 0.75       |
|         | Total GK (Pitch Corrected)                                           | 0.82 kN/m2 |
|         | Total Qk                                                             | 0.75 kN/m2 |
|         | FLOOR                                                                |            |
| 1No     | Carpet & Underlay                                                    | 0.05       |
| 22mm    | Chipboard/OSB board                                                  | 0.16       |
| 170mm   | Timber @ 400c/c                                                      | 0.13       |
| 1No     | 12thk Plasterboard/Skim                                              | 0.12       |
| 1No     | Imposed,A1 - All usages within self-contained single family dwelling | 1.50       |
|         | Total Gk                                                             | 0.46 kN/m2 |
|         | Total Qk                                                             | 1.5 kN/m2  |
|         | BLOCKWORK                                                            |            |
| 100mm   | Block (Medium)                                                       | 1.40       |
|         | Total Gk                                                             | 1.4 kN/m2  |
|         | Total Qk                                                             | 0 kN/m2    |
|         | BRADSTONE                                                            |            |
| 100mm   | Stone (Sandstone)                                                    | 2.40       |
|         | Total Gk                                                             | 2.4 kN/m2  |
|         | Total Qk                                                             | 0 kN/m2    |
|         |                                                                      |            |

| Title: | 15 WILLOW GROVE, SOUTH CERNEY |        |       |            |
|--------|-------------------------------|--------|-------|------------|
| Ref.   | 22.132                        | By: MB | Date: | 20/10/2022 |



|        | Loading sheet 1                                      |            |
|--------|------------------------------------------------------|------------|
|        | FLAT ROOF                                            |            |
| 1No    | Felt + Chippings                                     | 0.35       |
| 19mm   | Chipboard/OSB board                                  | 0.14       |
| 1No    | Felt + Battens                                       | 0.05       |
| 195mm  | Timber @ 400c/c                                      | 0.15       |
| 170mm  | Insulation                                           | 0.07       |
| 1No    | 12thk Plasterboard/Skim                              | 0.12       |
| 0Pitch | Imposed,R1 - Pitch less than 30 degrees (small roof) | 0.75       |
|        | Total Gk                                             | 0.87 kN/m2 |
|        | Total Qk                                             | 0.75 kN/m2 |
|        |                                                      |            |

| Title: | 15 WILLOW GROVE, SOUTH CERNEY |        |                  |
|--------|-------------------------------|--------|------------------|
| Ref.   | 22.132                        | By: MB | Date: 16/11/2022 |



| <u>Beam ref</u> | Beam Load Rui                        | <u>kN/m (SLS)</u>      |           |
|-----------------|--------------------------------------|------------------------|-----------|
|                 | UDL = Uniformly distrubute           |                        |           |
|                 | DL = Partially Distributed lo        |                        |           |
|                 | PL = Point Load                      |                        |           |
| <u>PURLIN</u>   |                                      |                        |           |
|                 | 2600mm x ROOF (40 DEG)               |                        |           |
|                 | 2600mm x ROOF (40 DEG)               |                        |           |
|                 | 1600mm x ATTIC                       |                        |           |
|                 | 1600mm x ATTIC                       |                        |           |
| UDL             | Total Gk/Qk                          |                        | 2.99/1.7  |
| EXTG BEAM       |                                      |                        |           |
|                 | 2500mm x BLOCKWORK                   |                        |           |
| 0               | Total Gk/Qk                          |                        | 3.5/0     |
| PURLIN          | 4.7kN/m - Distributed                |                        |           |
| PURLIN          | 2.7kN/m - Distributed                |                        |           |
| DL              | Total Gk/Qk                          | From 0mm for 2200mm    | 4.7/2.7   |
| PL              | From B7 Gk = 4.3kN at 1570 mm        |                        |           |
| PL              | From B7 Qk = 6.1kN at 1570 mm        |                        |           |
| <u>B1</u>       |                                      |                        |           |
|                 | 3500mm x FLOOR                       |                        |           |
|                 | 3500mm x FLOOR                       |                        |           |
| DL              | Total Gk/Qk                          | From 0mm for 2800mm    | 1.61/5.25 |
| PL              | From EXTG BEAM Gk = 9.1kN at 2800 mm |                        |           |
| PL              | From EXTG BEAM Qk = 4.5kN at 2800 mm |                        |           |
|                 | 2750mm x FLOOR                       |                        |           |
|                 | 2750mm x FLOOR                       |                        | _         |
| DL              | Total Gk/Qk                          | From 2800mm for 2850mm | 1.27/4.12 |
| B2 INNER        |                                      |                        |           |
|                 | 3400mm x ROOF(30 DEG)                |                        |           |
|                 | 3400mm x ROOF(30 DEG)                |                        |           |
|                 | 2000mm x ATTIC                       |                        |           |
|                 | 2000mm x ATTIC                       |                        |           |
|                 | 1800mm x BLOCKWORK                   |                        | /         |
| UDL             | Total Gk/Qk                          |                        | 6.04/3.05 |
| B2 OUTER        |                                      |                        |           |
|                 | 2000mm x BRADSTONE                   |                        |           |
| UDL             | Total Gk/Qk                          |                        | 4.8/0     |
| B3 INNER        |                                      |                        |           |
| MAX             | 1650mm x FLOOR                       |                        |           |

| Title: | 15 WILLOW GROVE, SOUTH CERNEY |        |                  |
|--------|-------------------------------|--------|------------------|
| Ref.   | 22.132                        | By: MB | Date: 16/11/2022 |



| <u>Beam ref</u> | Beam Load Rundown                  | <u>kN/m (SLS)</u> |
|-----------------|------------------------------------|-------------------|
|                 | UDL = Uniformly distrubuted load   |                   |
|                 | DL = Partially Distributed load    |                   |
|                 | PL = Point Load                    |                   |
|                 | 1650mm x FLOOR                     |                   |
|                 | 3450mm x BLOCKWORK                 |                   |
| UDL             | Total Gk/Qk                        | 5.59/2.47         |
| PL              | From EXTG BEAM Gk = 8kN at 2900 mm |                   |
| B3 INNER        |                                    |                   |
| MIN             | 1650mm x FLOOR                     |                   |
|                 | 1650mm x FLOOR                     |                   |
|                 | 1800mm x BLOCKWORK                 |                   |
| UDL             | Total Gk/Qk                        | 3.28/2.47         |
|                 |                                    |                   |
| MAX             | 3450mm x BRADSTONF                 |                   |
|                 | 1650mm x ELAT ROOF                 |                   |
|                 | 1650mm x ELAT ROOF                 |                   |
| וחע             |                                    | 9 73/1 23         |
| UDL             |                                    | 5.75/1.25         |
| <u>B3 OUTER</u> |                                    |                   |
| MIN             | 1800mm x BRADSTONE                 |                   |
|                 | 1650mm x FLAT ROOF                 |                   |
|                 | 1650mm x FLAT ROOF                 |                   |
| UDL             | Total Gk/Qk                        | 5.77/1.23         |
| <b>B4 INNER</b> |                                    |                   |
|                 | 900mm x BLOCKWORK                  |                   |
| UDL             | Total Gk/Qk                        | 1.26/0            |
|                 |                                    |                   |
| <u>B4 OUTER</u> |                                    |                   |
|                 | 1050mm x BRADSTONE                 |                   |
| UDL             | I otal Gk/Qk                       | 2.52/0            |
| <u>B5 INNER</u> |                                    |                   |
|                 | 1650mm x FLAT ROOF                 |                   |
|                 | 1650mm x FLAT ROOF                 |                   |
|                 | 900mm x BLOCKWORK                  |                   |
| UDL             | Total Gk/Qk                        | 2.71/1.23         |
|                 |                                    |                   |
|                 | 1050mm x BRADSTONE                 |                   |
| וחוו            | Total Gk/Ok                        | 2 52/0            |
|                 |                                    | 2.32/0            |

| Title: |        | 15 WILLOW GROVE, SOL | JTH CERNEY       |
|--------|--------|----------------------|------------------|
| Ref.   | 22.132 | By: MB               | Date: 16/11/2022 |



| <u>Beam ref</u> | Beam Load Rundown                  | <u>kN/m (SLS)</u> |
|-----------------|------------------------------------|-------------------|
|                 | UDL = Uniformly distrubuted load   |                   |
|                 | DL = Partially Distributed load    |                   |
|                 | PL = Point Load                    |                   |
| <u>T1</u>       |                                    |                   |
|                 | 1100mm x FLAT ROOF                 |                   |
|                 | 1100mm x FLAT ROOF                 |                   |
| UDL             | Total Gk/Qk                        | 0.96/0.82         |
| <u>T2</u>       |                                    |                   |
|                 | 600mm x FLAT ROOF                  |                   |
|                 | 600mm x FLAT ROOF                  |                   |
| UDL             | Total Gk/Qk                        | 0.52/0.44         |
| PL              | From T1 Gk = 1.2kN at 1000 mm      |                   |
| PL              | From T1 Qk = 1.1kN at 1000 mm      |                   |
| PL              | From T1 Gk = 1.2kN at 2200 mm      |                   |
| PL              | From T1 Qk = 1.1kN at 2200 mm      |                   |
| <u>B5</u>       |                                    |                   |
|                 | 4000mm x FLOOR                     |                   |
|                 | 4000mm x FLOOR                     |                   |
| UDL             | Total Gk/Qk                        | 1.85/6            |
| B6              |                                    |                   |
| PL              | From CHIMNEY Gk = 18.9kN at 300 mm |                   |
|                 | 1750mm x FLOOR                     |                   |
|                 | 1750mm x FLOOR                     |                   |
| UDL             | Total Gk/Qk                        | 0.80/2.62         |
| B7              |                                    |                   |
|                 | 2400mm x FLOOR                     |                   |
|                 | 2400mm x FLOOR                     |                   |
| UDL             | Total Gk/Qk                        | 1.11/3.6          |
| PL              | From CHIMNEY = kN at mm            |                   |
|                 | 1                                  | I                 |

|                                   | Project   | Job no.    |            |              |                  |               |
|-----------------------------------|-----------|------------|------------|--------------|------------------|---------------|
| `للما`                            | 15        | 22         | .132       |              |                  |               |
|                                   | Calcs for |            |            |              | Start page no./R | evision       |
|                                   |           |            |            |              |                  | 1             |
| BARSBY STRUCTURAL<br>CONSULTANTS  | Calcs by  | Calcs date | Checked by | Checked date | Approved by      | Approved date |
| Barsby Structural Consultants Ltd | MB        | 16/11/2022 |            |              |                  |               |



Dead × 1.40

|                                     | Project           | Job no.                         |                              |                       |                  |              |
|-------------------------------------|-------------------|---------------------------------|------------------------------|-----------------------|------------------|--------------|
| (لتما)                              | 15 W              | 22.132                          |                              |                       |                  |              |
| BSC                                 | Calcs for         |                                 | Start page no./Revision<br>2 |                       |                  |              |
| BARSBY STRUCTURAL                   | Calcs by          | Calcs date                      | Checked by                   | Checked date          | Approved by      | Approved dat |
| CONSULTANTS                         | MB                | 16/11/2022                      |                              |                       | , approvod by    |              |
|                                     |                   |                                 |                              |                       |                  |              |
|                                     |                   |                                 |                              | Impose                | d × 1.60         |              |
|                                     |                   | Support B                       |                              | Dead ×                | 1.40             |              |
|                                     |                   |                                 |                              | Impose                | d × 1.60         |              |
| Analysis results                    |                   |                                 |                              |                       |                  |              |
| Maximum moment                      |                   | Mmax = 33.1                     | kNm                          | Mmin = 0              | <b>)</b> kNm     |              |
| Maximum shear                       |                   | Vmax = <b>33.7</b>              | kN                           | Vmin = -              | 19.9 kN          |              |
| Deflection                          |                   | δ <sub>max</sub> = <b>6.2</b> n | nm                           | $\delta min = 0$      | mm               |              |
| Maximum reaction at support A       |                   | RA_max = <b>33</b>              | <b>.7</b> kN                 | RA_min =              | <b>33.7</b> kN   |              |
| Unfactored dead load reaction at    | t support A       | RA_Dead = 1                     | 5.4 kN                       |                       |                  |              |
| Unfactored imposed load reaction    | n at support A    | RA_Imposed =                    | <b>7.6</b> kN                |                       |                  |              |
| Maximum reaction at support B       |                   | RB_max = 19                     | <b>.9</b> kN                 | RB_min =              | = <b>19.9</b> kN |              |
| Unfactored dead load reaction a     | t support B       | $R_{B_{Dead}} = 9.$             | <b>1</b> kN                  |                       |                  |              |
| Unfactored imposed load reaction    | n at support B    | $R_{B_{Imposed}} =$             | <b>4.5</b> kN                |                       |                  |              |
| Section details                     |                   |                                 |                              |                       |                  |              |
| Section type                        |                   | UKB 203x1                       | 102x23 (Tata S               | Steel Advance)        |                  |              |
| Steel grade                         |                   | S275                            |                              |                       |                  |              |
| From table 9: Design strength       | ру                |                                 |                              |                       |                  |              |
| Thickness of element                |                   | max(T, t) =                     | 9.3 mm                       |                       |                  |              |
| Design strength                     |                   | py = <b>275</b> N/              | mm²                          |                       |                  |              |
| Modulus of elasticity               |                   | E = <b>205000</b>               | N/mm <sup>2</sup>            |                       |                  |              |
|                                     | -<br>-<br>-       |                                 |                              |                       |                  |              |
|                                     | ▲<br>●   ★-9.3    |                                 | 5.4                          |                       |                  |              |
| Lateral restraint                   |                   | Cran 4 b                        | latoral restration           | at at auronante anti- | ,                |              |
|                                     |                   | Span T has                      | ateral restrail              | nt at supports only   | /                |              |
| Effective length factors            |                   |                                 |                              |                       |                  |              |
| Effective length factor in major a  | XIS               | K <sub>x</sub> = 1.00           |                              |                       |                  |              |
| Effective length factor in minor a  | XIS               | $K_y = 1.00$                    |                              |                       |                  |              |
| Enective length factor for lateral- |                   | y = 1.00                        |                              |                       |                  |              |
|                                     | <b>•</b> •• • • • | NLI.B = 1.00                    | ,                            |                       |                  |              |
| Classification of cross section     | s - Section 3.5   |                                 |                              |                       |                  |              |

|                                     | Project             | Job no.<br>15 WILLOW GROVE, SOUTH CERNEY 22.132 |                                                                                                |                                       |                                             |                      |  |  |  |
|-------------------------------------|---------------------|-------------------------------------------------|------------------------------------------------------------------------------------------------|---------------------------------------|---------------------------------------------|----------------------|--|--|--|
|                                     | Calcs for           |                                                 | _,                                                                                             |                                       | Start page no /R                            | evision              |  |  |  |
| BSC                                 |                     |                                                 |                                                                                                |                                       | etan page neur                              | 3                    |  |  |  |
| BARSBY STRUCTURAL<br>CONSULTANTS    | Calcs by            | Calcs date                                      | Checked by                                                                                     | Checked date                          | Approved by                                 | Approved date        |  |  |  |
| Barsby Structural Consultants Ltd   | MB                  | 16/11/2022                                      |                                                                                                |                                       |                                             |                      |  |  |  |
|                                     |                     |                                                 |                                                                                                |                                       |                                             |                      |  |  |  |
| Internal compression parts -        | Table 11            |                                                 |                                                                                                |                                       |                                             |                      |  |  |  |
| Depth of section                    |                     | d = <b>169.4</b> n                              | nm                                                                                             |                                       |                                             |                      |  |  |  |
|                                     |                     | d / t = 31.4                                    | $3 \times 6  = 3 \times \epsilon$                                                              | Class 1                               | plastic                                     |                      |  |  |  |
| Outstand flanges - Table 11         |                     |                                                 |                                                                                                |                                       |                                             |                      |  |  |  |
| Width of section                    |                     | b = B / 2 =                                     | <b>50.9</b> mm                                                                                 |                                       |                                             |                      |  |  |  |
|                                     |                     | b / T = 5.5                                     | $ \epsilon \approx 0 \approx \epsilon \approx 3 \times \epsilon $                              | Class 1                               | plastic                                     |                      |  |  |  |
|                                     |                     |                                                 |                                                                                                |                                       | Section is cl                               | ass 1 plastic        |  |  |  |
| Shear capacity - Section 4.2.3      | 3                   |                                                 |                                                                                                |                                       |                                             |                      |  |  |  |
| Design shear force                  |                     | F <sub>v</sub> = max(a                          | bs(V <sub>max</sub> ), abs(V <sub>m</sub>                                                      | nin)) = <b>33.7</b> kN                |                                             |                      |  |  |  |
|                                     |                     | d / t < 70 ×                                    | 3                                                                                              |                                       |                                             |                      |  |  |  |
|                                     |                     |                                                 | Web does n                                                                                     | ot need to be cl                      | hecked for sh                               | ear buckling         |  |  |  |
| Shear area                          |                     | $A_v = t \times D =$                            | = <b>1097</b> mm <sup>2</sup>                                                                  |                                       |                                             |                      |  |  |  |
| Design shear resistance             |                     | $P_v = 0.6 \times p$                            | by × Av = <b>181.1</b> k                                                                       | N                                     |                                             |                      |  |  |  |
|                                     |                     | PAS                                             | S - Design shea                                                                                | ar resistance ex                      | ceeds desigr                                | n shear force        |  |  |  |
| Moment capacity - Section 4.        | 2.5                 |                                                 |                                                                                                |                                       |                                             |                      |  |  |  |
| Design bending moment               |                     | M = max(al                                      | os(M <sub>s1_max</sub> ), abs(                                                                 | Ms1_min)) = <b>33.1</b>               | kNm                                         |                      |  |  |  |
| Moment capacity low shear - cl      | .4.2.5.2            | $M_c = min(p)$                                  | $_{/} \times S_{xx}$ , 1.2 × py >                                                              | < Z <sub>xx</sub> ) = <b>64.4</b> kNn | n                                           |                      |  |  |  |
| Effective length for lateral-to     | rsional buckling    | g - Section 4.3.5                               |                                                                                                |                                       |                                             |                      |  |  |  |
| Effective length for lateral torsic | onal buckling       | $L_E = 1.0 \times L_E$                          | _s1 <b>= 3600</b> mm                                                                           |                                       |                                             |                      |  |  |  |
| Slenderness ratio                   |                     | $\lambda = LE / r_{yy}$ =                       | = 152.482                                                                                      |                                       |                                             |                      |  |  |  |
| Equivalent slenderness - Sec        | tion 4.3.6.7        |                                                 |                                                                                                |                                       |                                             |                      |  |  |  |
| Buckling parameter                  |                     | u = <b>0.888</b>                                |                                                                                                |                                       |                                             |                      |  |  |  |
| Torsional index                     |                     | x = <b>22.460</b>                               |                                                                                                |                                       |                                             |                      |  |  |  |
| Slenderness factor                  |                     | v = 1 / [1 +                                    | $0.05 \times (\lambda / x)^2]^{0.2}$                                                           | <sup>25</sup> = <b>0.742</b>          |                                             |                      |  |  |  |
| Ratio - cl.4.3.6.9                  |                     | βw = <b>1.000</b>                               |                                                                                                |                                       |                                             |                      |  |  |  |
| Equivalent slenderness - cl.4.3     | .6.7                | $\lambda_{LT} = \mathbf{U} \times \mathbf{V}$   | $\lambda_{LT} = \mathbf{u} \times \mathbf{v} \times \lambda \times \sqrt{[\beta w]} = 100.432$ |                                       |                                             |                      |  |  |  |
| Limiting slenderness - Annex B      | .2.2                | $\lambda$ LO = 0.4 ×                            | $\lambda_{L0} = 0.4 \times (\pi^2 \times E / p_y)^{0.5} = 34.310$                              |                                       |                                             |                      |  |  |  |
|                                     |                     | $\lambda_{LT} > \lambda_{L0} - \lambda_{L0}$    | Allowance shou                                                                                 | uld be made for                       | lateral-torsic                              | onal buckling        |  |  |  |
| Bending strength - Section 4        | .3.6.5              |                                                 |                                                                                                |                                       |                                             |                      |  |  |  |
| Robertson constant                  |                     | αlt = <b>7.0</b>                                |                                                                                                |                                       |                                             |                      |  |  |  |
| Perry factor                        |                     | η∟⊤ = max(α                                     | χιτ × (λιτ - λιο) /                                                                            | 1000, 0) = <b>0.46</b> 3              | 3                                           |                      |  |  |  |
| Euler stress                        |                     | $p_E = \pi^2 \times E$                          | $p_E = \pi^2 \times E / \lambda_{LT^2} = 200.6 \text{ N/mm}^2$                                 |                                       |                                             |                      |  |  |  |
|                                     |                     | ф∟т <b>= (р</b> у <b>+</b> (                    | [ηιτ + 1) × рε) / 2                                                                            | 2 = <b>284.2</b> N/mm <sup>2</sup>    | !                                           |                      |  |  |  |
| Bending strength - Annex B.2.1      |                     | $p_b = p_E \times p_y$                          | / (фіт <b>+</b> (фіт <sup>2</sup> - рі                                                         | $x = (x + p_y)^{0.5}$ = <b>124.</b>   | <b>2</b> N/mm <sup>2</sup>                  |                      |  |  |  |
| Equivalent uniform moment f         | actor - Section     | 4.3.6.6                                         |                                                                                                |                                       |                                             |                      |  |  |  |
| Moment at quarter point of seg      | ment                | M2 = <b>23.8</b> k                              | Nm                                                                                             |                                       |                                             |                      |  |  |  |
| Moment at centre-line of segme      | ent                 | M3 = <b>31</b> kN                               | m                                                                                              |                                       |                                             |                      |  |  |  |
| Moment at three quarter point of    | of segment          | M4 = <b>16.4</b> k                              | Nm                                                                                             |                                       |                                             |                      |  |  |  |
| Maximum moment in segment           |                     | Mabs = <b>33.1</b>                              | kNm                                                                                            |                                       |                                             |                      |  |  |  |
| Maximum moment governing b          | uckling resistand   | Ce M∟⊤ = Mabs :                                 | = <b>33.1</b> kNm                                                                              |                                       |                                             |                      |  |  |  |
| Equivalent uniform moment fac       | tor for lateral-tor | sional buckling                                 | ))) () 45 M                                                                                    | 105 - 14 - 04                         | 5 × NA) / NA .                              | 0 44) - 0 950        |  |  |  |
|                                     | _                   | m⊾⊤ = max(U                                     | ער א (U. 15 × IVI2). ב.ל                                                                       | τ υ.υ × IVI3 + υ.1                    | $\mathbf{O} \times \mathbf{IVI4}$ / IVIabs, | 0.44) = <b>0.830</b> |  |  |  |
| Buckling resistance moment          | - Section 4.3.6.    | 4                                               |                                                                                                |                                       |                                             |                      |  |  |  |
| Buckling resistance moment          |                     | $M_b = p_b \times S$                            | xx = <b>29.1</b> kNm                                                                           |                                       |                                             |                      |  |  |  |

|                                   | Project   | Job no.                 |            |              |             |               |
|-----------------------------------|-----------|-------------------------|------------|--------------|-------------|---------------|
| (نگما)                            | 15 \      | 22.                     | 132        |              |             |               |
|                                   | Calcs for | Start page no./Revision |            |              |             |               |
|                                   |           |                         |            |              | 4           |               |
| BARSBY STRUCTURAL<br>CONSULTANTS  | Calcs by  | Calcs date              | Checked by | Checked date | Approved by | Approved date |
| Barsby Structural Consultants Ltd | MB        | 16/11/2022              |            |              |             |               |

# Mb / mlt = **34.2** kNm

PASS - Buckling resistance moment exceeds design bending moment

# Check vertical deflection - Section 2.5.2

Consider deflection due to dead and imposed loads Limiting deflection

 $\delta_{\text{lim}} = L_{\text{s1}} \ / \ 360 = \textbf{10} \ mm$ 

Maximum deflection span 1

$$\label{eq:def-state} \begin{split} \delta &= max(abs(\delta_{max}), \, abs(\delta_{min})) = \textbf{6.191} \mbox{ mm} \\ \mbox{PASS - Maximum deflection does not exceed deflection limit} \end{split}$$

|                                   | Project     | Job no.    |            |              |             |                         |  |
|-----------------------------------|-------------|------------|------------|--------------|-------------|-------------------------|--|
| النصآ (                           | 15          | 22         | .132       |              |             |                         |  |
|                                   | Calcs for S |            |            |              |             | Start page no./Revision |  |
|                                   |             | E          | 31         |              |             | 1                       |  |
| BARSBY STRUCTURAL<br>CONSULTANTS  | Calcs by    | Calcs date | Checked by | Checked date | Approved by | Approved date           |  |
| Barsby Structural Consultants Ltd | MB          | 16/11/2022 |            |              |             |                         |  |



Load combinations Load combination 1

Support A

 $\begin{array}{l} \text{Dead} \times 1.40 \\ \text{Imposed} \times 1.60 \\ \text{Dead} \times 1.40 \end{array}$ 

|                                                  | Project                          |                                |                |                    | Job no.                         | 0 100            |
|--------------------------------------------------|----------------------------------|--------------------------------|----------------|--------------------|---------------------------------|------------------|
|                                                  |                                  |                                | E, 300111 CE   |                    | Ctart ran and l                 | 2.132            |
| HS(                                              | Calcs for                        | E                              | 31             |                    | Start page no./                 | 2                |
| BARSBY STRUCTURAL                                | Calcs by                         | Calcs date                     | Checked by     | Checked date       | Approved by                     | Approved date    |
| CONSULTANTS<br>Bareby Structural Consultants Ltd | MB                               | 16/11/2022                     |                |                    |                                 |                  |
|                                                  |                                  |                                |                |                    |                                 |                  |
|                                                  |                                  |                                |                | Impos              | ed × 1.60                       |                  |
|                                                  |                                  | Support B                      |                | Dead               | × 1.40                          |                  |
|                                                  |                                  |                                |                | Impos              | ed × 1.60                       |                  |
| Analysis results                                 |                                  |                                |                |                    |                                 |                  |
| Maximum moment                                   |                                  | Mmax = 68.5                    | <b>5</b> kNm   | Mmin =             | <b>0</b> kNm                    |                  |
| Maximum shear                                    |                                  | Vmax = <b>40.2</b>             | kN             | Vmin =             | <b>-36.8</b> kN                 |                  |
| Deflection                                       |                                  | $\delta_{max} = 10.3$          | mm             | δmin =             | <b>0</b> mm                     |                  |
| Maximum reaction at support A                    |                                  | RA_max = <b>40</b>             | <b>.2</b> kN   | RA_min             | = <b>40.2</b> kN                |                  |
| Unfactored dead load reaction a                  | at support A                     | $R_{A_{Dead}} = 10$            | 0.1 kN         |                    |                                 |                  |
| Unfactored imposed load reacti                   | on at support A                  | RA_Imposed =                   | 16.3 kN        |                    |                                 |                  |
| Maximum reaction at support B                    |                                  | R <sub>B_max</sub> = <b>36</b> | 5 <b>.8</b> kN | R <sub>B_min</sub> | = <b>36.8</b> kN                |                  |
| Unfactored dead load reaction a                  | at support B                     | $R_{B_{Dead}} = 9$ .           | .5 kN          |                    |                                 |                  |
| Unfactored imposed load reacti                   | on at support B                  | $R_{B_{Imposed}} =$            | 14.7 kN        |                    |                                 |                  |
| Section details                                  |                                  |                                |                |                    |                                 |                  |
| Section type                                     | UKB 254x146x                     | 43 (Tata Steel A               | Advance)       |                    | Steel grade                     | S275             |
|                                                  | -12.7                            |                                |                |                    |                                 |                  |
|                                                  | Ţ.Ţ                              |                                |                |                    |                                 |                  |
|                                                  | T                                | 11                             |                |                    |                                 |                  |
|                                                  |                                  |                                |                |                    |                                 |                  |
|                                                  |                                  |                                |                |                    |                                 |                  |
|                                                  |                                  |                                |                |                    |                                 |                  |
|                                                  | 259.6-                           |                                | 7.2            |                    |                                 |                  |
|                                                  |                                  |                                |                |                    |                                 |                  |
|                                                  |                                  |                                |                |                    |                                 |                  |
|                                                  |                                  |                                |                |                    |                                 |                  |
|                                                  | 12.7                             |                                |                |                    |                                 |                  |
|                                                  |                                  |                                |                |                    |                                 |                  |
|                                                  | - <del>†</del>                   |                                |                |                    |                                 |                  |
|                                                  |                                  | <b>4</b> 147.3                 | <b>→</b>       |                    |                                 |                  |
|                                                  |                                  |                                |                |                    |                                 |                  |
| Classification of cross sectio                   | ns - Section 3.5                 | 5                              |                |                    |                                 |                  |
| Tensile strain coefficient                       | ε <b>= 1.00</b>                  |                                | Section class  | ification          | Plastic                         |                  |
| Shear capacity - Section 4.2.3                   | 3                                |                                |                |                    |                                 |                  |
| Design shear force                               | F <sub>v</sub> = <b>40.2</b> kN  |                                | Design shear   | resistance         | P <sub>v</sub> = <b>308.4</b> k | N                |
|                                                  |                                  | PAS                            | S - Design sh  | ear resistance e   | exceeds desig                   | yn shear force   |
| Moment capacity - Section 4.2                    | 2.5                              |                                |                |                    |                                 |                  |
| Design bending moment                            | M = <b>68.5</b> kNm              |                                | Moment capa    | city low shear     | Mc = <b>155.7</b> k             | Nm               |
| Buckling resistance moment                       | - Section 4.3.6.4                | 4                              |                |                    |                                 |                  |
| Buckling resistance moment                       | M <sub>b</sub> = <b>68.9</b> kNm |                                | Мь / т_т = 77. | . <b>2</b> kNm     |                                 |                  |
| -                                                |                                  | PASS - Bucklin                 | ng resistance  | moment excee       | ds design ber                   | nding moment     |
| Check vertical deflection - Se                   | ction 2.5.2                      |                                |                |                    |                                 |                  |
| Consider deflection due to dead                  | and imposed lo                   | bads                           |                |                    |                                 |                  |
| Limiting deflection                              | δlim = <b>15.694</b> mr          | m                              | Maximum def    | lection            | δ = <b>10.285</b> m             | nm               |
|                                                  |                                  | PAS                            | S - Maximum    | deflection does    | not exceed d                    | leflection limit |
|                                                  |                                  |                                |                |                    |                                 |                  |
|                                                  |                                  |                                |                |                    |                                 |                  |

|                                   | Project     |            |            |              | Job no.     |                         |  |
|-----------------------------------|-------------|------------|------------|--------------|-------------|-------------------------|--|
| النصآ ا                           | 15          | 22         | 2.132      |              |             |                         |  |
|                                   | Calcs for S |            |            |              |             | Start page no./Revision |  |
|                                   |             | E          | 32         |              | 1           |                         |  |
| BARSBY STRUCTURAL<br>CONSULTANTS  | Calcs by    | Calcs date | Checked by | Checked date | Approved by | Approved date           |  |
| Barsby Structural Consultants Ltd | MB          | 21/10/2022 |            |              |             |                         |  |

## STEEL MASONRY SUPPORT In accordance with BS5950-1:2000 incorporating Corrigendum No.1 Tedds calculation version 1.0.05 -100-50100 -95 ┢ Steel member details Torsion beam SHS 150x150x6.3 Masonry support angle plate Steel grade of support angle Design strength support angle pysb = 355 N/mm<sup>2</sup> User E = 205000 N/mm<sup>2</sup> ε = **0.880** Modulus of elasticity Constant Length of plate beyond beam lh = **135** mm Total length of plate Iplate = 275 mm Bmb = 150 mm Thickness of plate $t_{sb} = 6 \text{ mm}$ Width of main beam Area of plate Asbu = 1650.0 mm<sup>2</sup> Cyysb = -3 mm Dist weld position to CoG Supported materials detail Density mas. main beam $\rho_{m,mb} = 21.0 \text{ kN/m}^3$ Width masonry main beam bmmb = **100** mm Height masonry main beam hmmb = **1900** mm Ecc. of main beam material emb = 50 mm Add dead force main beam Add live force main beam PQaddmb = 3.1 kN/m PGaddmb = 3.5 kN/m b<sub>msb</sub> = **100** mm Density mas. support beam $\rho_{m,sb} = 24.0 \text{ kN/m}^3$ Width masonry support beam Height masonry support beam $h_{msb} = 2100 \text{ mm}$ Add dead force support beam PGaddsb = 0.0 kN/m Add live force support beam $P_{Qaddsb} = 2.0 \text{ kN/m}$ Geometry Cavity width c = 100 mm Supported width of masonry dm = **85** mm Biaxial stress effects in the plate (SCI-P-110) Max overall bending moment Mx = 27.6 kNm Dist to NA combined section ye,all = 25 mm Second moment of area Ixx,all = 1910 cm4 Elastic section modulus Zxx,all = 338.82 cm<sup>3</sup> $Z_{xx,plate} = 6.00 \text{ cm}^{3}/\text{m}$ e1 = 95 mm Section modulus of plate Eccentricity on support beam P1 = **10.3** kN/m Force on support plate Bending at heel $M_{x,plate} = 1.0 \text{ kNm/m}$

 $M_c = 2.6 \text{ kNm/m}$ 

Moment capacity of plate

|                                         | Project                               | Job no.               | Job no.<br>22.132           |                          |                                  |                           |  |
|-----------------------------------------|---------------------------------------|-----------------------|-----------------------------|--------------------------|----------------------------------|---------------------------|--|
|                                         | Calcs for                             |                       |                             |                          | Start page po /P                 | Start page no /Revision   |  |
| BSC                                     |                                       |                       | B2                          |                          | Start page 10./10                | 2                         |  |
| BARSBY STRUCTURAL<br>CONSULTANTS        | Calcs by<br>MB                        | Calcs date 21/10/2022 | Checked by                  | Checked date             | Approved by                      | Approved date             |  |
| Barsby Structural Consultants Ltd       |                                       |                       |                             |                          |                                  |                           |  |
|                                         |                                       |                       | PASS                        | - Design stren           | igth exceeds s                   | stress at heel            |  |
| Long stress overall bending             | σ1 = <b>81.4</b> N/mm                 | 2                     | Von Mises curv              | e constant               | Cfp = 695.9 N/                   | mm²                       |  |
| Trans bending stress ratio limit        | αts = <b>0.967</b>                    |                       | Trans bending               | stress ratio             | αls = <b>0.381</b>               |                           |  |
| 5                                       |                                       | PASS -                | Transverse ben              | ding stress rat          | io less than al                  | lowable limit             |  |
| Deflection at toe                       |                                       |                       |                             | -                        |                                  |                           |  |
| Unfact force on plate                   | $P_{1SLS} = 7.0 \text{ kN/m}$         | n                     | Distance from v             | veld to load             | a <sub>m</sub> = <b>95</b> mm    |                           |  |
| Load resultant to edge of plate         | b <sub>m</sub> = <b>40</b> mm         | -                     | Weld to load po             | os as ratio              | a = <b>0.704</b>                 |                           |  |
| Effect second mnt of inertia            | leff def <b>= 18000</b> m             | nm⁴/m                 | Deflection at to            | e                        | δ = <b>0.89</b> mm               |                           |  |
| Deflection limit                        | δlim = <b>1.85</b> mm                 |                       |                             |                          |                                  |                           |  |
|                                         |                                       |                       | PA                          | SS - Deflection          | is within spe                    | cified criteria           |  |
| Weld details - assume a full le         | ength weld and                        | that the plate        | acts as a propp             | ed cantilever w          | ith the prop a                   | t the weld                |  |
| position and the fixed end at           | the centre of the                     | e torsion bean        | n                           |                          |                                  |                           |  |
| Leg length of weld                      | sweld = 4 mm                          |                       | Throat size of w            | veld                     | aweld = 2.8 mm                   | า                         |  |
| Shear force at weld position            | R <sub>A</sub> = <b>29.7</b> kN/m     |                       | Max possible for            | orce in plate            | Rp = 607.1 kN                    | l                         |  |
| Long shear beam/plate                   | Rı = <b>418.7</b> kN/m                | I                     | Horizontal shea             | ar beam/plate            | Rh = <b>194.9</b> kN             | l/m                       |  |
| Resultant weld force                    | Rweld = <b>0.463</b> kN               | l/mm                  | Strength of weld (Table 37) |                          | pweld = 220.0                    | N/mm²                     |  |
| Capacity of full length weld            | pc,weld = <b>0.622</b> kl             | N/mm                  |                             |                          |                                  | $1/\sqrt{2} \times Sweld$ |  |
| Torsional loading ULS                   |                                       |                       |                             |                          |                                  |                           |  |
| Loading support beam                    | W1ULS = 10.26 k                       | N/m                   | Loading of mair             | n beam                   | W2ULS = 15.41                    | kN/m                      |  |
| Self weight of support beam             | W3ULS = 0.18 kN/                      | /m                    | 5                           |                          |                                  |                           |  |
| Torsional loading SI S                  |                                       |                       |                             |                          |                                  |                           |  |
| Loading support beam                    | W15LS = 7.04 kN/                      | ′m                    | Loading of mair             | n beam                   | W25LS = 10.57                    | kN/m                      |  |
| Self weight of support beam             | W3SLS = 0.13 kN/                      | /m                    | g =                         |                          |                                  |                           |  |
| Eccontricities                          |                                       |                       |                             |                          |                                  |                           |  |
| Distance of shear centre                | $e_{0mb} = 0 mm$                      |                       | Ecc of support l            | beam masonry             | e1mb = <b>175</b> mr             | n                         |  |
| Ecc of main beam masonry                | e <sub>2mb</sub> = -25 mm             |                       | Ecc of support beam         |                          | $e_{3mb} = 73 \text{ mm}$        |                           |  |
| Torsional offocts                       |                                       |                       | P                           |                          |                                  |                           |  |
| Applied torque                          | Tauls – <b>1 42</b> kNr               | m/m                   | Torsional mom               | ent (LILS)               | T <sub>a</sub> – <b>4 13</b> kNn | n                         |  |
| Applied torque (SLS)                    | $T_{qSLS} = 0.98 \text{ kNr}$         | n/m                   | Torsional mome              | ent (SLS)                | $T_{qu} = 2.83 \text{ kN}$       | m                         |  |
| · • • • • • • • • • • • • • • • • • • • | .4020                                 |                       |                             | (0_0)                    | .40                              |                           |  |
| STEEL BEAM TORSION DESI                 | GN                                    |                       |                             |                          |                                  |                           |  |
| In accordance with BS5950-1             | :2000 incorpora                       | ting Corrigen         | dum No.1                    |                          |                                  |                           |  |
| Section details                         |                                       |                       |                             |                          | Tedds calculat                   | tion version 2.0.03       |  |
| Section type                            | SHS 150x150x6                         | 33                    | Steel grade                 |                          | S355                             |                           |  |
| Design stength                          | $D_{yw} = D_y = 355 \text{ N}$        | //mm <sup>2</sup>     | Constant                    |                          | ε = <b>0.880</b>                 |                           |  |
|                                         | e e e e e e e e e e e e e e e e e e e | l torolonal hu        |                             |                          |                                  |                           |  |
| Effective span                          | = 2900  mm                            | li-torsional bu       | cking between               | supports.                |                                  |                           |  |
| Length of segment LTB                   | L = 2900 mm                           |                       | Effective length            | for LTB                  | l ∈ ⊥⊤ = 2030 r                  | nm                        |  |
|                                         |                                       | ull longth unit       | formly distribute           |                          |                                  |                           |  |
|                                         |                                       |                       |                             | eu ivau(s)               |                                  |                           |  |
| Internal forces & moments or            | n member under                        | tactored load         | ing for uls desig           | gn<br>Ian an an an an t- | NA - NA - 07                     | EQ LALIE                  |  |
| Applied Snear Torce                     | $\Gamma vy = 38.0 \text{ KN}$         |                       | Minor ovic here             | ling moment              | $ V  _T =  V _x = 27$            | <b>.38</b> KINM           |  |
| Applied torque                          | Iq = 4.13  KNM                        |                       | WITTOF AXIS DENC            | ang moment               | iviy = 0 kinm                    |                           |  |
| Compression force                       |                                       |                       |                             |                          |                                  |                           |  |

|                                                          | Project                                         | WILLOW GROV       | E, SOUTH CER      | NEY               | Job no.<br>22.                         | 132            |
|----------------------------------------------------------|-------------------------------------------------|-------------------|-------------------|-------------------|----------------------------------------|----------------|
| BSC                                                      | Calcs for                                       |                   | 32                |                   | Start page no./Re                      | evision<br>3   |
| BARSBY STRUCTURAL<br>CONSULTANTS                         | Calcs by                                        | Calcs date        | Checked by        | Checked date      | Approved by                            | Approved date  |
| Barsby Structural Consultants Lt                         | d MB                                            | 21/10/2022        |                   |                   |                                        |                |
| Equivalent uniform momen<br>EUM factor (Cl.4.3.6.6 & T18 | t factors<br>:) m∟⊤ = 1.000                     |                   |                   |                   |                                        |                |
| Torsional deflection analys                              | i <b>is</b><br>and (as defined i                | n SCI-P-057 ser   | tion 2 1 6)       |                   |                                        |                |
| Max torque (at supports)                                 | $T_0 = 2.06 \text{ kNm}$                        |                   | Ava torque supr   | oort & Cl         | T <sub>av</sub> = <b>1 03</b> kNr      | n              |
| Max angle of twist (midspan                              | $\phi = 0.001$ rads                             |                   | Avg torque supp   |                   |                                        |                |
|                                                          | φ - <b>στοστ</b> ταασ                           |                   |                   |                   |                                        |                |
| Section classification                                   | h / t 20.0                                      |                   |                   |                   | d / t 20.9                             |                |
|                                                          | $D_x / l = 20.8$                                |                   |                   |                   | $d_x / l = 20.8$                       |                |
|                                                          | Dy / t = 20.0                                   |                   |                   |                   | $d_y / t = 20.8$                       |                |
|                                                          | $r_{2c} = 0.000$                                |                   |                   |                   | 11sy - 0.000                           |                |
|                                                          | 125 - 0.000                                     |                   |                   | Sect              | ion classificati                       | ion is plastic |
| Shear capacity (parallel to                              | y-axis)                                         |                   |                   |                   |                                        |                |
| Design shear force                                       | F <sub>vy</sub> = <b>38.0</b> kN                |                   | Design shear re   | esist (cl. 4.2.3) | P <sub>vy</sub> = <b>381.1</b> kN      | J              |
|                                                          |                                                 |                   | -                 |                   |                                        | Pass - Shear   |
| Moment capacity (x-axis)                                 |                                                 |                   |                   |                   |                                        |                |
| Design bending moment                                    | Mx = <b>27.6</b> kNm                            |                   | Mnt cap low she   | ear (cl. 4.2.5.1) | Mcx = <b>68.1</b> kNi                  | m              |
|                                                          |                                                 | Pa                | ass - Moment ca   | apacity exceed    | ls design bend                         | ling moment    |
| Lateral torsional buckling                               |                                                 |                   |                   |                   |                                        |                |
| LT buckling check not require                            | ed for this section (                           | cl. 4.6.3.1)      |                   |                   |                                        |                |
| Buckling resistance moment                               | ·                                               | $M_b = M_{cx} =$  | <b>68.1</b> kNm   |                   |                                        |                |
|                                                          |                                                 |                   | LT bud            | ckling check n    | ot required for                        | this section   |
| Buckling under combined                                  | bending & torsion                               | - SCI-P-057 se    | ction 2.3         |                   |                                        |                |
| For simplicity, a conservative                           | check is applied u                              | ising the maxim   | um stresses due   | to each of the s  | separate load et                       | ffects, even   |
| though these do not necessa                              | rily all occur at the                           | same section a    | ong the member    | r.                |                                        |                |
| Max angle of twist                                       | φ = <b>0.001</b> rads                           |                   | Induced minor a   | axis moment       | M <sub>yt</sub> = <b>0.03</b> kNr      | n              |
| Norm stress corner due to M                              | yt $\sigma_{byt} = 0 \text{ N/mm}^2$            |                   | Interaction index | x                 | ib = <b>0.41</b>                       |                |
|                                                          |                                                 |                   | Pass - Comb       | ined bending a    | and torsion ch                         | eck satisfied  |
| Local capacity under comb                                | ined bending & to                               | orsion            |                   |                   |                                        |                |
| For simplicity, a conservative                           | check is applied u                              | ising the maxim   | um stresses due   | to each of the s  | separate load et                       | ffects, even   |
| though these do not necessa                              | rily all occur at the                           | same section a    | ong the member    | r.                |                                        |                |
| Max. direct stress due to Mx                             | $\sigma_{bx} = M_x / Z_x = 1$                   | 1 <b>69</b> N/mm² |                   |                   |                                        |                |
| Combined stress - eqn 2.22                               | σbx + σbyt = <b>169</b>                         | N/mm <sup>2</sup> | Design strength   |                   | py = <b>355</b> N/mm                   | n <sup>2</sup> |
|                                                          |                                                 |                   |                   |                   | Pass - Lo                              | ocal capacity  |
| Combined shear stresses S                                | SCI-P-057 section                               | 2.3               |                   |                   |                                        |                |
| For simplicity, a conservative                           | check is applied u                              | ising the maxim   | um shear stresse  | es due to each o  | of the separate                        | load effects,  |
| even though these do not ne                              | cessarily all occur                             | at the same sec   | tion along the me | ember.            |                                        |                |
| Max. shear stress bending                                | τ <sub>bw</sub> = <b>24</b> N/mm <sup>2</sup>   | 1                 | Max. shear stre   | sses torsion      | $\tau_t = 9 \text{ N/mm}^2$            |                |
| Amplified shear stress torsion                           | n τ <sub>vt</sub> = <b>10</b> N/mm <sup>2</sup> |                   | Combined shea     | r bend & tors     | τ = <b>34</b> N/mm <sup>2</sup>        |                |
| Shear strength                                           | p <sub>v</sub> = <b>213</b> N/mm                | 2                 |                   |                   |                                        |                |
|                                                          |                                                 |                   |                   | Pass              | - Combined sh                          | ear stresses   |
| Twist check                                              |                                                 |                   |                   |                   |                                        |                |
| Total applied torque (unfact)                            | T <sub>qu</sub> = <b>2.83</b> kNm               |                   |                   |                   |                                        |                |
| Max twist under sls loading                              | $\phi_{sls} = 0.04 \text{ degs}$                | i                 | Lever arm for de  | efl due to twist  | h₀ = <b>200</b> mm                     |                |
| Deflection due to twist                                  | $\delta_{\text{h.sis}} = 0.1 \text{ mm}$        |                   | Deflection limit  |                   | $\delta_{\text{h.lim}} = 1 \text{ mm}$ |                |
| L                                                        |                                                 |                   |                   |                   |                                        |                |

|                                   | Project                       |            |                         |              | Job no.     |               |
|-----------------------------------|-------------------------------|------------|-------------------------|--------------|-------------|---------------|
| (تما)                             | 15 WILLOW GROVE, SOUTH CERNEY |            |                         |              | 22.132      |               |
|                                   | Calcs for                     |            | Start page no./Revision |              |             |               |
|                                   |                               | 4          |                         |              |             |               |
| BARSBY STRUCTURAL<br>CONSULTANTS  | Calcs by                      | Calcs date | Checked by              | Checked date | Approved by | Approved date |
| Barsby Structural Consultants Ltd | MB                            | 21/10/2022 |                         |              |             |               |

Pass - Deflection due to twist

# Deflection

Maximum y-axis deflection  $\delta_{y_max} = 6.6 \text{ mm}$ 

Deflection limit - cl. 2.5.2  $\delta \text{lim} = 8.1 \text{ mm}$ Pass - Deflection within specified limit

|                                                                       | Project        | 5 WILLOW GROV         | Job no.<br>22 | Job no.<br>22.132 |                  |               |
|-----------------------------------------------------------------------|----------------|-----------------------|---------------|-------------------|------------------|---------------|
| BSC                                                                   | Calcs for      | (                     | C1            |                   | Start page no./R | Revision<br>1 |
| BARSBY STRUCTURAL<br>CONSULTANTS<br>Barsby Structural Consultants Ltd | Calcs by<br>MB | Calcs date 21/10/2022 | Checked by    | Checked date      | Approved by      | Approved date |
| STEEL MEMBER DESIGN (BS                                               | 5950)          |                       |               |                   |                  |               |

# In accordance with BS5950-1:2000 incorporating Corrigendum No.1

## Section details

Section type

SHS 100x100x5.0 (Tata Steel Celsius (Gr355 Gr420 Gr460)) Steel grade S355

**TEDDS** calculation version 3.0.07

\_100. **Classification of cross sections - Section 3.5** Tensile strain coefficient ε **= 0.88** Section classification Semi-compact Moment capacity - Section 4.2.5 Design bending moment M = **10** kNm Moment capacity low shear Mc = **23.6** kNm Buckling resistance moment - Section 4.3.6.4 Bending strength pb = **355** N/mm<sup>2</sup> Buckling resistance moment Mb = 23.6 kNm PASS - Moment capacity exceeds design bending moment

# Compression members - Section 4.7

| Design compression force | $F_c = 107 \text{ Kin}$ | PA |
|--------------------------|-------------------------|----|
| Design compression force | Fc <b>= 107</b> kN      |    |

# Compression resistancePex = 415.3 kNPASS - Compression resistance exceeds design compression force<br/>Compression resistancePey = 415.3 kNPASS - Compression resistance exceeds design compression force

# Compression members with moments - Section 4.8.3Comp.and bending check $F_c / (A \times p_y) + M / M_c = 0.585$

PASS - Combined bending and compression check is satisfied

# Member buckling resistance - cl.4.8.3.3.3

Buckling resistance checks  $F_c / P_{cx} + m_x \times M / M_c \times (1 + 0.5 \times F_c / P_{cx}) = 0.737$  $F_c / P_{cy} + 0.5 \times m_{LT} \times M_{LT} / M_{cx} = 0.385$ 

PASS - Member buckling resistance checks are satisfied

|                                   | Project   |                               | Job no.                 |              |             |               |  |
|-----------------------------------|-----------|-------------------------------|-------------------------|--------------|-------------|---------------|--|
| الثما (                           | 15        | 15 WILLOW GROVE, SOUTH CERNEY |                         |              |             | 22.132        |  |
|                                   | Calcs for |                               | Start page no./Revision |              |             |               |  |
|                                   | B3 INNER  |                               |                         |              | 1           |               |  |
| BARSBY STRUCTURAL<br>CONSULTANTS  | Calcs by  | Calcs date                    | Checked by              | Checked date | Approved by | Approved date |  |
| Barsby Structural Consultants Ltd | MB        | 21/10/2022                    |                         |              |             |               |  |



|                                                                                          | Project Job no.                                                       |                                |                                |                            |                             |                    |
|------------------------------------------------------------------------------------------|-----------------------------------------------------------------------|--------------------------------|--------------------------------|----------------------------|-----------------------------|--------------------|
| <u>והי</u>                                                                               | 15 \                                                                  | 22                             | 22.132                         |                            |                             |                    |
| BSC                                                                                      | Calcs for                                                             | B3 II                          | NNER                           |                            | Start page no./R            | evision<br>2       |
| BARSBY STRUCTURAL<br>CONSULTANTS                                                         | Calcs by                                                              | Calcs date                     | Checked by                     | Checked date               | Approved by                 | Approved date      |
| rsby Structural Consultants Ltd                                                          | MB                                                                    | 21/10/2022                     |                                |                            |                             |                    |
| Analysis results                                                                         |                                                                       |                                |                                | Impose                     | d × 1.60                    |                    |
| Maximum moment                                                                           |                                                                       | Mmax = <b>57.9</b>             | kNm                            | Mmin = 0                   | kNm                         |                    |
| Maximum shear                                                                            |                                                                       | V <sub>max</sub> = <b>34.9</b> | kN                             | Vmin = -                   | 35.1 kN                     |                    |
| Deflection                                                                               |                                                                       | δmax = <b>10.4</b>             | mm                             | $\delta \min = 0$          | mm                          |                    |
| Maximum reaction at support A                                                            |                                                                       | RA_max = <b>34</b>             | <b>.9</b> kN                   | RA_min =                   | 34.9 kN                     |                    |
| Unfactored dead load reaction a                                                          | at support A                                                          | RA_Dead = 17                   | 7 <b>.1</b> kN                 |                            |                             |                    |
| Unfactored imposed load reacti                                                           | on at support A                                                       | $R_{A\_Imposed} =$             | <b>6.8</b> kN                  |                            |                             |                    |
| Maximum reaction at support B                                                            |                                                                       | R <sub>B_max</sub> = 35        | .1 kN                          | RB_min =                   | <b>35.1</b> kN              |                    |
| Unfactored dead load reaction a                                                          | at support B                                                          | RB_Dead = 17                   | 7 <b>.3</b> kN                 |                            |                             |                    |
| Unfactored imposed load reacti                                                           | on at support B                                                       | $R_{B_{Imposed}} =$            | 6.8 kN                         |                            |                             |                    |
| Section details                                                                          |                                                                       |                                |                                |                            |                             |                    |
| Section type                                                                             | UKB 254x146x                                                          | 37 (Tata Steel A               | dvance)                        |                            | Steel grade                 | S275               |
|                                                                                          | -10.9                                                                 |                                |                                |                            |                             |                    |
|                                                                                          | <b>↑ ★</b>                                                            |                                |                                |                            |                             |                    |
|                                                                                          | 1                                                                     | Т I                            |                                |                            |                             |                    |
|                                                                                          |                                                                       |                                |                                |                            |                             |                    |
|                                                                                          |                                                                       |                                |                                |                            |                             |                    |
|                                                                                          |                                                                       |                                |                                |                            |                             |                    |
|                                                                                          | 256—                                                                  |                                | 3.3                            |                            |                             |                    |
|                                                                                          |                                                                       |                                |                                |                            |                             |                    |
|                                                                                          |                                                                       |                                |                                |                            |                             |                    |
|                                                                                          |                                                                       |                                |                                |                            |                             |                    |
|                                                                                          | 6.0                                                                   |                                |                                |                            |                             |                    |
|                                                                                          | ↓ ±                                                                   |                                |                                |                            |                             |                    |
|                                                                                          | - Ŧ                                                                   |                                |                                |                            |                             |                    |
|                                                                                          |                                                                       | <b>₄</b> 148.4_                |                                |                            |                             |                    |
| Classification of cross sectio                                                           | ns - Section 3.5                                                      | i                              | Section classifi               | cation                     | Plastic                     |                    |
|                                                                                          | c – 1.00                                                              |                                | Occion classin                 | cation                     | i lastic                    |                    |
| Shear capacity - Section 4.2.3                                                           | 5                                                                     |                                |                                | · .                        | D 000 4 1 1                 |                    |
| Design shear force                                                                       | F <sub>v</sub> = <b>35.1</b> kN                                       | DAG                            | Design shear r                 | esistance                  | $P_v = 266.1 \text{ kN}$    |                    |
|                                                                                          |                                                                       | PAS                            | S - Design she                 | ar resistance ex           | (ceeas aesigi               | n shear ford       |
| Moment capacity - Section 4.2                                                            | 2.5                                                                   |                                |                                |                            |                             |                    |
| Design bending moment                                                                    | M = <b>57.9</b> kNm                                                   |                                | Moment capac                   | ity low shear              | Mc = <b>132.9</b> kM        | lm                 |
| Buckling resistance moment                                                               | - Section 4.3.6.4                                                     | 4                              |                                |                            |                             |                    |
| Buckling resistance moment                                                               | Mb = <b>55.6</b> kNm                                                  |                                | Mb / mLT = 61.8                | kNm                        |                             |                    |
|                                                                                          |                                                                       | PASS - Bucklir                 | ng resistance r                | noment exceed              | s design ben                | ding momer         |
|                                                                                          |                                                                       |                                |                                |                            |                             |                    |
| Check vertical deflection - Se                                                           | ction 2.5.2                                                           |                                |                                |                            |                             |                    |
| Check vertical deflection - Se<br>Consider deflection due to dead                        | ction 2.5.2<br>d and imposed lo                                       | ads                            |                                |                            |                             |                    |
| Check vertical deflection - Se<br>Consider deflection due to dead<br>Limiting deflection | ction 2.5.2<br>d and imposed lo<br>$\delta_{lim} = 15.278 \text{ mr}$ | ads<br>n                       | Maximum defle                  | ection                     | δ = <b>10.428</b> m         | m                  |
| Check vertical deflection - Se<br>Consider deflection due to dead<br>Limiting deflection | ction 2.5.2<br>d and imposed lo<br>διim = <b>15.278</b> mr            | ads<br>n<br>PASS               | Maximum defle<br>S - Maximum d | ection<br>eflection does r | $\delta = 10.428 \text{ m}$ | n<br>eflection lim |

|                                   | Project   |                               | Job no.                 |              |             |               |  |
|-----------------------------------|-----------|-------------------------------|-------------------------|--------------|-------------|---------------|--|
| النصآ (                           | 15 \      | 15 WILLOW GROVE, SOUTH CERNEY |                         |              |             | 22.132        |  |
|                                   | Calcs for |                               | Start page no./Revision |              |             |               |  |
|                                   | B3 OUTER  |                               |                         |              | 1           |               |  |
| BARSBY STRUCTURAL<br>CONSULTANTS  | Calcs by  | Calcs date                    | Checked by              | Checked date | Approved by | Approved date |  |
| Barsby Structural Consultants Ltd | MB        | 21/10/2022                    |                         |              |             |               |  |



|                                    | Project                         | Project Job no.<br>15 WILLOW GROVE, SOUTH CERNEY |                        |                    |                                  |                 |  |
|------------------------------------|---------------------------------|--------------------------------------------------|------------------------|--------------------|----------------------------------|-----------------|--|
| R <u>S</u> C                       | Calcs for                       | R3 O                                             | UTER                   |                    | Start page no./R                 | evision<br>2    |  |
| BARSBY STRUCTURAL<br>CONSULTANTS   | Calcs by                        | Calcs date                                       | Checked by             | Checked date       | Approved by                      | Approved date   |  |
| rsby Structural Consultants Ltd    | IVIB                            | 21/10/2022                                       |                        |                    |                                  |                 |  |
| Analysis results<br>Maximum moment |                                 | M <sub>max</sub> = <b>53.9</b>                   | kNm                    | Mmin =             | <b>0</b> kNm                     |                 |  |
| Maximum shear                      |                                 | V <sub>max</sub> = <b>36.6</b>                   | kN                     | Vmin = -           | <b>36.6</b> kN                   |                 |  |
| Deflection                         |                                 | $\delta_{max} = 10.4$                            | mm                     | $\delta_{min} = 0$ | mm                               |                 |  |
| Maximum reaction at support A      | N N                             | RA_max = <b>36</b>                               | . <b>6</b> kN          | RA_min =           | = <b>36.6</b> kN                 |                 |  |
| Unfactored dead load reaction      | at support A                    | RA_Dead = 22                                     | 2 <b>.3</b> kN         |                    |                                  |                 |  |
| Unfactored imposed load react      | ion at support A                | $R_{A\_Imposed} =$                               | <b>3.4</b> kN          |                    |                                  |                 |  |
| Maximum reaction at support E      | 3                               | R <sub>B_max</sub> = <b>36</b>                   | . <b>6</b> kN          | RB_min =           | = <b>36.6</b> kN                 |                 |  |
| Unfactored dead load reaction      | d reaction at support B         |                                                  | 2 <b>.3</b> kN         |                    |                                  |                 |  |
| Unfactored imposed load react      | ion at support B                | $R_{B_{Imposed}} =$                              | <b>3.4</b> kN          |                    |                                  |                 |  |
| Section details                    |                                 |                                                  |                        |                    |                                  |                 |  |
| Section type                       | UKB 254x146x                    | 37 (Tata Steel A                                 | dvance)                |                    | Steel grade                      | S275            |  |
|                                    | -10.9                           |                                                  |                        |                    |                                  |                 |  |
|                                    | <b>₹</b>                        |                                                  |                        |                    |                                  |                 |  |
|                                    | †                               | ) I                                              |                        |                    |                                  |                 |  |
|                                    |                                 |                                                  |                        |                    |                                  |                 |  |
|                                    |                                 |                                                  |                        |                    |                                  |                 |  |
|                                    |                                 |                                                  |                        |                    |                                  |                 |  |
|                                    | 28                              |                                                  | 13                     |                    |                                  |                 |  |
|                                    | - 24                            |                                                  |                        |                    |                                  |                 |  |
|                                    |                                 |                                                  |                        |                    |                                  |                 |  |
|                                    |                                 |                                                  |                        |                    |                                  |                 |  |
|                                    | <u>م</u>                        |                                                  |                        |                    |                                  |                 |  |
|                                    | ÷                               | ا                                                |                        |                    |                                  |                 |  |
|                                    | ± + +                           |                                                  |                        |                    |                                  |                 |  |
|                                    |                                 | 4146.4                                           |                        |                    |                                  |                 |  |
|                                    |                                 | ·                                                |                        |                    |                                  |                 |  |
| Classification of cross section    | ons - Section 3 5               |                                                  |                        |                    |                                  |                 |  |
| Tensile strain coefficient         | s = 1 00                        |                                                  | Section classifi       | cation             | Plastic                          |                 |  |
|                                    | e – 1.00                        |                                                  | Occupit classifi       | cation             | i lastic                         |                 |  |
| Shear capacity - Section 4.2.      | 3                               |                                                  | <b>_</b> · ·           | • .                |                                  |                 |  |
| Design shear force                 | F <sub>v</sub> = <b>36.6</b> kN |                                                  | Design shear r         | esistance          | P <sub>v</sub> = <b>266.1</b> kN |                 |  |
|                                    |                                 | PAS                                              | S - Design she         | ear resistance e   | xceeds desigi                    | n shear force   |  |
| Moment capacity - Section 4        | 2.5                             |                                                  |                        |                    |                                  |                 |  |
| Design bending moment              | M = <b>53.9</b> kNm             |                                                  | Moment capac           | ity low shear      | Mc = <b>132.9</b> kN             | ١m              |  |
| Buckling resistance moment         | - Section 4.3.6.4               | 4                                                |                        |                    |                                  |                 |  |
| Buckling resistance moment         | Mb = <b>55.6</b> kNm            |                                                  | Mb / mlt = <b>60.5</b> | kNm                |                                  |                 |  |
|                                    |                                 | PASS - Bucklir                                   | ng resistance r        | moment exceed      | ls design bend                   | ding moment     |  |
| Check vertical deflection - Se     | ection 2.5.2                    |                                                  |                        |                    |                                  |                 |  |
| Consider deflection due to dea     | d and imposed lo                | ads                                              |                        |                    |                                  |                 |  |
| Limiting deflection                | δlim = <b>15.278</b> mr         | m                                                | Maximum defle          | ection             | δ = <b>10.39</b> mm              |                 |  |
|                                    |                                 | PAS                                              | S - Maximum d          | leflection does    | not exceed de                    | eflection limit |  |
|                                    |                                 | 17.3                                             |                        |                    |                                  |                 |  |
|                                    |                                 |                                                  |                        |                    |                                  |                 |  |
|                                    |                                 |                                                  |                        |                    |                                  |                 |  |
|                                    |                                 |                                                  |                        |                    |                                  |                 |  |
|                                    |                                 |                                                  |                        |                    |                                  |                 |  |

|                                   | Project   |             | Job no.                 |              |             |               |
|-----------------------------------|-----------|-------------|-------------------------|--------------|-------------|---------------|
| التما ا                           | 15 \      | WILLOW GROV | 22.132                  |              |             |               |
|                                   | Calcs for |             | Start page no./Revision |              |             |               |
|                                   |           | 1           |                         |              |             |               |
| BARSBY STRUCTURAL<br>CONSULTANTS  | Calcs by  | Calcs date  | Checked by              | Checked date | Approved by | Approved date |
| Barsby Structural Consultants Ltd | MB        | 24/10/2022  |                         |              |             |               |



PASS - Design strength exceeds stress at heel

|                                   | Project                                          |                    | NEY                         | Job no.<br>22.132 |                                      |                 |
|-----------------------------------|--------------------------------------------------|--------------------|-----------------------------|-------------------|--------------------------------------|-----------------|
|                                   | Calco for                                        |                    | ,                           |                   | Start page po /P                     | ovision         |
| BSC                               |                                                  |                    | B4                          |                   | Start page 10./K                     | 2               |
| BARSBY STRUCTURAL<br>CONSULTANTS  | Calcs by                                         | Calcs date         | Checked by                  | Checked date      | Approved by                          | Approved date   |
| Barsby Structural Consultants Ltd | MB                                               | 24/10/2022         |                             |                   |                                      |                 |
| Long stress overall bending       | σ1 <b>= 30.0</b> N/mm                            | 2                  | Von Mises curv              | e constant        | Cfp = <b>708.1</b> N/mm <sup>2</sup> |                 |
| Trans bending stress ratio limit  | αts = <b>0.996</b>                               |                    | Trans bending s             | stress ratio      | als = <b>0.002</b>                   |                 |
|                                   |                                                  | PASS -             | Transverse ben              | ding stress rat   | io less than al                      | lowable limit   |
| Deflection at toe                 |                                                  |                    |                             | -                 |                                      |                 |
| Unfact force on plate             | $P_{1S S} = 4.5 \text{ kN/n}$                    | n                  | Distance from w             | eld to load       | a <sub>m</sub> = <b>1</b> mm         |                 |
| L oad resultant to edge of plate  | b <sub>m</sub> = <b>174</b> mm                   |                    | Weld to load po             | s as ratio        | a = 0.006                            |                 |
| Effect second mnt of inertia      | leff def = 18000 m                               | um <sup>4</sup> /m | Deflection at toe           |                   | $\delta = 0.00 \text{ mm}$           |                 |
|                                   | $\delta_{\rm lim} = 1.56 \rm{mm}$                | ,                  | Deneotion at lot            |                   |                                      |                 |
| Denection limit                   | 0mm – 1.30 mm                                    |                    | DA                          | SS Deflection     | is within sno                        | cified criteria |
|                                   |                                                  |                    | F As                        | 55 - Denection    |                                      | cined cintena   |
| Construction stage biaxial st     | ress effects in t                                | ne plate           | _                           |                   | _                                    |                 |
| Eccentricity on support beam      | Eccentricity on support beam e1c = <b>155</b> mm |                    | Force on suppo              | rt plate          | P <sub>1c</sub> = <b>4.0</b> kN/r    | n               |
| Bending at heel                   | Mx,platec = <b>0.6</b> kN                        | m/m                | 5400                        |                   |                                      |                 |
|                                   |                                                  |                    | PASS                        | - Design strer    | ngth exceeds s                       | stress at heel  |
| Trans bending stress ratio        | $\alpha_{\rm lsc} = 0.245$                       |                    |                             |                   |                                      |                 |
|                                   |                                                  | PASS -             | Transverse ben              | ding stress rat   | io less than al                      | lowable limit   |
| Construction stage deflection     | n at toe                                         |                    |                             |                   |                                      |                 |
| Unfact force on plate             | P1cSLS = 2.9 kN/m                                |                    | Dist from weld t            | o load pos        | a <sub>mc</sub> = <b>155</b> mm      | ı               |
| Load resultant to edge of plate   | bmc = <b>20</b> mm                               |                    | Weld to load po             | s as ratio        | alc = <b>0.886</b>                   |                 |
| Deflection at toe                 | $\delta c = 1.16 \text{ mm}$                     |                    |                             |                   |                                      |                 |
|                                   |                                                  |                    | PAS                         | SS - Deflectior   | n is within spe                      | cified criteria |
| Weld details - assume a full le   | ength weld and                                   | that the plate a   | acts as a proppe            | ed cantilever w   | ith the prop a                       | t the weld      |
| position and the fixed end at     | the centre of the                                | e torsion beam     | 1                           |                   |                                      |                 |
| Leg length of weld                | Sweld = 5 mm                                     |                    | Throat size of w            | veld              | aweld = <b>3.5</b> mn                | า               |
| Shear force at weld position      | Ra = <b>8.9</b> kN/m                             |                    | Max possible fo             | rce in plate      | Rp = <b>628.4</b> kN                 | 1               |
| Long shear beam/plate             | RI = <b>483.3</b> kN/m                           |                    | Horizontal shear beam/plate |                   | Rh = <b>1.2</b> kN/m                 | ı               |
| Resultant weld force              | Rweld = <b>0.483</b> kN                          | /mm                | Strength of weld (Table 37) |                   | pweld = 220.0 l                      | N/mm²           |
| Capacity of full length weld      | pc,weld = 0.778 ki                               | N/mm               |                             |                   |                                      |                 |
|                                   |                                                  |                    |                             |                   |                                      | 1/1⁄(2) × Sweld |
| Torsional loading ULS             |                                                  |                    |                             |                   |                                      |                 |
| Loading support beam              | W1ULS = 6.33 kN                                  | ′m                 | Loading of mair             | beam              | W2ULS = 1.13                         | kN/m            |
| Self weight of support beam       | W3ULS = 0.18 kN                                  | ′m                 | C C                         |                   |                                      |                 |
| Torsional loading SLS             |                                                  |                    |                             |                   |                                      |                 |
| Loading support beam              | $W_{1SLS} = 4.52 \text{ kN}$                     | ′m                 | Loading of main             | heam              | W2515 = 0.81 k                       | N/m             |
| Self weight of support beam       | $W_{1SLS} = 4.32 \text{ kN/III}$                 |                    | Loading of mall beam        |                   |                                      |                 |
|                                   |                                                  |                    |                             |                   |                                      |                 |
| Eccentricities                    | 0 <b>(</b>                                       |                    | Eas of support h            | 0000 000000       | 0                                    | ~               |
|                                   |                                                  |                    |                             |                   |                                      | TI              |
| Ecc of main beam masonry          |                                                  |                    |                             | Jean              | e <sub>3mb</sub> = <b>98</b> mm      |                 |
| Torsional effects                 |                                                  |                    |                             |                   |                                      |                 |
| Applied torque                    | T <sub>qULS</sub> = <b>1.37</b> kNr              | m/m                | Torsional mome              | ent (ULS)         | T <sub>q</sub> = <b>3.55</b> kNn     | n               |
| Applied torque (SLS)              | T <sub>qSLS</sub> = <b>0.98</b> kNr              | n/m                | Torsional mome              | ent (SLS)         | T <sub>qu</sub> = <b>2.54</b> kN     | m               |
|                                   |                                                  |                    |                             |                   |                                      |                 |

# STEEL BEAM TORSION DESIGN

In accordance with BS5950-1:2000 incorporating Corrigendum No.1

Tedds calculation version 2.0.03

| <u> </u>                          | Project                                                        |                            |                    |                   | Job no.                           |                 |
|-----------------------------------|----------------------------------------------------------------|----------------------------|--------------------|-------------------|-----------------------------------|-----------------|
| `لما`                             | 15 V                                                           | WILLOW GRO                 | /E, SOUTH CER      | NEY               | 22                                | .132            |
| BSC                               | Calcs for                                                      |                            | B4                 |                   | Start page no./R                  | evision<br>3    |
| BARSBY STRUCTURAL<br>CONSULTANTS  | Calcs by<br>MB                                                 | Calcs date 24/10/2022      | Checked by         | Checked date      | Approved by                       | Approved date   |
| Barsby Structural Consultants Ltd |                                                                |                            |                    |                   |                                   |                 |
| Section details                   |                                                                |                            |                    |                   |                                   |                 |
| Section type                      | SUS 120v120v6                                                  | - 0                        | Stool grade        |                   | <b>9075</b>                       |                 |
| Decimentary with                  |                                                                | ).U                        | Steel grade        |                   | 3275                              |                 |
| Design stengtn                    | $p_{yw} = p_y = 275$ N                                         | I/mm²                      | Constant           |                   | ε = 1.000                         |                 |
| Geometry - Beam unrestraine       | ed against latera                                              | al-torsional bu            | ckling between     | supports.         |                                   |                 |
| Effective span                    | L = <b>2600</b> mm                                             |                            |                    |                   |                                   |                 |
| Length of segment LTB             | Llt = <b>2600</b> mm                                           |                            | Effective length   | for LTB           | Le_lt = <b>2600</b> r             | nm              |
| Loading - Torsional loading of    | ading comprises only full-length uniformly distributed load(s) |                            |                    |                   |                                   |                 |
| Internal forces & moments or      | n member under                                                 | r factored load            | ling for uls desig | gn                |                                   |                 |
| Applied shear force               | F <sub>vy</sub> = <b>10.3</b> kN                               |                            | Maximum bend       | ing moment        | MLT = Mx = <b>6.0</b>             | 67 kNm          |
| Applied torque                    | T <sub>q</sub> = <b>3.55</b> kNm                               |                            | Minor axis bend    | ling moment       | $M_y = 0 \text{ kNm}$             |                 |
| Compression force                 | $F_c = 0 \text{ kN}$                                           |                            |                    | 0                 | 2                                 |                 |
| Equivalant uniform moment         | faatara                                                        |                            |                    |                   |                                   |                 |
| EUM factor (Cl.4.3.6.6 & T18)     | mLT = <b>1.000</b>                                             |                            |                    |                   |                                   |                 |
| Torsional deflection analysis     | ;                                                              |                            |                    |                   |                                   |                 |
| Beam is torsion fixed at each e   | nd. (as defined ir                                             | n SCI-P-057 see            | ction 2.1.6)       |                   |                                   |                 |
| Max torque (at supports)          | T₀ = <b>1.78</b> kNm                                           |                            | Avg torque sup     | port & CL         | Tav = <b>0.89</b> kN              | m               |
| Max. angle of twist (midspan)     | φ = <b>0.002</b> rads                                          |                            | • • • •            |                   |                                   |                 |
| Section classification            | •                                                              |                            |                    |                   |                                   |                 |
|                                   | $b_{x}/t = 21.0$                                               |                            |                    |                   | $d_x / t = 21.0$                  |                 |
|                                   | $b_x/t = 21.0$                                                 |                            |                    |                   | $d_x/t = 21.0$                    |                 |
|                                   | $r_{4} = 0.000$                                                |                            |                    |                   | $r_{4} = 0.000$                   |                 |
|                                   | $r_{2a} = 0.000$                                               |                            |                    |                   | 11sy <b>– 0.000</b>               |                 |
|                                   | 123 – 01000                                                    |                            |                    | Sect              | tion classificat                  | ion is plastic  |
|                                   | !->                                                            |                            |                    |                   |                                   | ion io piaono   |
| Snear capacity (parallel to y-    | axis)                                                          |                            | Desing shares      |                   | D 407 5 1                         |                 |
| Design snear force                | $F_{vy} = 10.3 \text{ KN}$                                     |                            | Design shear re    | esist (cl. 4.2.3) | P <sub>vy</sub> = <b>187.5</b> Ki | N<br>Daga Chaor |
|                                   |                                                                |                            |                    |                   |                                   | Pass - Snear    |
| Moment capacity (x-axis)          |                                                                |                            |                    |                   |                                   |                 |
| Design bending moment             | M <sub>x</sub> = <b>6.7</b> kNm                                |                            | Mnt cap low she    | ear (cl. 4.2.5.1) | Mcx = <b>26.8</b> kN              | m               |
|                                   |                                                                | P                          | ass - Moment c     | apacity exceed    | ds design ben                     | ding moment     |
| Lateral torsional buckling        |                                                                |                            |                    |                   |                                   |                 |
| LT buckling check not required    | for this section (                                             | cl. 4.6.3.1)               |                    |                   |                                   |                 |
| Buckling resistance moment        |                                                                | $M_b = M_{cx} =$           | <b>26.8</b> kNm    |                   |                                   |                 |
|                                   |                                                                |                            | LT bu              | ckling check n    | not required for                  | r this section  |
| Buckling under combined be        | nding & torsion                                                | - SCI-P-057 se             | ection 2.3         |                   |                                   |                 |
| For simplicity, a conservative c  | heck is applied u                                              | sing the maxim             | um stresses due    | to each of the    | separate load e                   | ffects, even    |
| though these do not necessaril    | v all occur at the                                             | same section a             | long the membe     | r.                |                                   |                 |
| Max angle of twist                | $\phi = 0.002$ rads                                            |                            | Induced minor :    | axis moment       | M <sub>vt</sub> = <b>0.01</b> kN  | m               |
| Norm stross corpor due to M       | $\varphi = 0.002$ rade                                         |                            | Interaction inde   | v                 | i 0.25                            |                 |
|                                   |                                                                |                            |                    | x<br>inod bonding | D = 0.23                          | ock caticfied   |
|                                   |                                                                | _                          | rass - Cump        | med bending a     | and to SION Ch                    | CUN SAUSHEO     |
| Local capacity under combin       | ed bending & to                                                | orsion                     |                    |                   |                                   |                 |
| For simplicity, a conservative c  | heck is applied us                                             | sing the maxim             | um stresses due    | to each of the    | separate load e                   | ffects, even    |
| though these do not necessaril    | y all occur at the                                             | same section a             | long the membe     | r.                |                                   |                 |
| Max. direct stress due to $M_{x}$ | $\sigma_{\text{bx}} = M_x / Z_x = 8$                           | <b>0</b> N/mm <sup>2</sup> |                    |                   |                                   |                 |
| Combined stress - eqn 2.22        | σ <sub>bx</sub> + σ <sub>byt</sub> = <b>81</b> N               | l/mm²                      | Design strength    | ı                 | py = <b>275</b> N/mr              | m²              |
|                                   |                                                                |                            |                    |                   |                                   |                 |

|                                   | Project                                       |                 |                             |                   | Job no.                          |                         |  |
|-----------------------------------|-----------------------------------------------|-----------------|-----------------------------|-------------------|----------------------------------|-------------------------|--|
| (הכ)                              | 15 \                                          | WILLOW GROV     | 'E, SOUTH CE                | RNEY              | 22                               | .132                    |  |
|                                   | Calcs for                                     |                 |                             |                   | Start page no./R                 | Start page no./Revision |  |
| DSC                               |                                               |                 | B4                          |                   |                                  | 4                       |  |
| BARSBY STRUCTURAL<br>CONSULTANTS  | Calcs by                                      | Calcs date      | Checked by                  | Checked date      | Approved by                      | Approved date           |  |
| Barsby Structural Consultants Ltd | MB                                            | 24/10/2022      |                             |                   |                                  |                         |  |
|                                   |                                               |                 |                             |                   | Dace L                           |                         |  |
|                                   |                                               |                 |                             |                   | F 455 - L                        | ocal capacity           |  |
| Combined shear stresses SC        | I-P-057 section                               | 2.3             |                             |                   |                                  |                         |  |
| For simplicity, a conservative cl | neck is applied u                             | sing the maxim  | um shear stres              | ses due to each o | of the separate                  | load effects,           |  |
| even though these do not nece     | ssarily all occur a                           | at the same sec | tion along the r            | nember.           |                                  |                         |  |
| Max. shear stress bending         | τ <sub>bw</sub> = <b>10</b> N/mm <sup>2</sup> |                 | Max. shear stresses torsion |                   | τt = <b>15</b> N/mm <sup>2</sup> | 2                       |  |
| Amplified shear stress torsion    | $\tau_{vt}$ = 16 N/mm <sup>2</sup>            |                 | Combined she                | ear bend & tors   | τ = <b>26</b> N/mm <sup>2</sup>  |                         |  |
| Shear strength                    | p <sub>v</sub> = <b>165</b> N/mm <sup>2</sup> | 2               |                             |                   |                                  |                         |  |
|                                   |                                               |                 |                             | Pass              | - Combined sł                    | near stresses           |  |
| Twist check                       |                                               |                 |                             |                   |                                  |                         |  |
| Total applied torque (unfact)     | T <sub>qu</sub> = <b>2.54</b> kNm             |                 |                             |                   |                                  |                         |  |
| Max twist under sls loading       | φsis = <b>0.08</b> degs                       |                 | Lever arm for               | defl due to twist | hδ = <b>225</b> mm               |                         |  |
| Deflection due to twist           | δh.sls <b>= 0.3</b> mm                        |                 | Deflection lim              | it                | $\delta$ h.lim = 2 mm            |                         |  |
|                                   |                                               |                 |                             | Pa                | ss - Deflectior                  | n due to twist          |  |
| Deflection                        |                                               |                 |                             |                   |                                  |                         |  |
| Maximum y-axis deflection         | δ <sub>y_max</sub> = <b>3.3</b> mm            | I               | Deflection lim              | it - cl. 2.5.2    | δlim = <b>10.4</b> mn            | n                       |  |
|                                   |                                               |                 |                             | Pass - Defle      | ection within s                  | pecified limit          |  |

|                                   | Project   |             | Job no.                 |              |             |               |
|-----------------------------------|-----------|-------------|-------------------------|--------------|-------------|---------------|
| التما ا                           | 15 \      | WILLOW GROV | 22.132                  |              |             |               |
|                                   | Calcs for |             | Start page no./Revision |              |             |               |
|                                   |           | 1           |                         |              |             |               |
| BARSBY STRUCTURAL<br>CONSULTANTS  | Calcs by  | Calcs date  | Checked by              | Checked date | Approved by | Approved date |
| Barsby Structural Consultants Ltd | MB        | 21/10/2022  |                         |              |             |               |

Tedds calculation version 1.0.05

# STEEL MASONRY SUPPORT

In accordance with BS5950-1:2000 incorporating Corrigendum No.1



## Steel member details

| Torsion beam                    | RHS 200x150x8.0                                        | Masonry support angle         | plate                                               |
|---------------------------------|--------------------------------------------------------|-------------------------------|-----------------------------------------------------|
| Steel grade of support angle    | User                                                   | Design strength support angle | pysb = <b>355</b> N/mm <sup>2</sup>                 |
| Modulus of elasticity           | E = 205000 N/mm <sup>2</sup>                           | Constant                      | ε = <b>0.880</b>                                    |
| Length of plate beyond beam     | lh = <b>150</b> mm                                     | Total length of plate         | I <sub>plate</sub> = <b>275</b> mm                  |
| Thickness of plate              | t <sub>sb</sub> = <b>6</b> mm                          | Width of main beam            | B <sub>mb</sub> = <b>150</b> mm                     |
| Area of plate                   | Asbu = 1650.0 mm <sup>2</sup>                          | Dist weld position to CoG     | Cyysb = <b>12</b> mm                                |
| Supported materials detail      |                                                        |                               |                                                     |
| Density mas. main beam          | ρ <sub>m,mb</sub> = <b>9.0</b> kN/m <sup>3</sup>       | Width masonry main beam       | bmmb = <b>100</b> mm                                |
| Height masonry main beam        | h <sub>mmb</sub> = <b>900</b> mm                       |                               |                                                     |
| Ecc. of main beam material      | e <sub>mb</sub> = <b>50</b> mm                         |                               |                                                     |
| Add dead force main beam        | PGaddmb = 1.5 kN/m                                     | Add live force main beam      | PQaddmb = 1.2 kN/m                                  |
| Density mas. support beam       | ρ <sub>m,sb</sub> = <b>24.0</b> kN/m <sup>3</sup>      | Width masonry support beam    | b <sub>msb</sub> = <b>100</b> mm                    |
| Height masonry support beam     | h <sub>msb</sub> = <b>1050</b> mm                      |                               |                                                     |
| Add dead force support beam     | PGaddsb = <b>2.0</b> kN/m                              | Add live force support beam   | $P_{Qaddsb} = 0.0 \text{ kN/m}$                     |
| Geometry                        |                                                        |                               |                                                     |
| Cavity width                    | c = <b>125</b> mm                                      | Supported width of masonry    | d <sub>m</sub> = <b>75</b> mm                       |
| Biaxial stress effects in the p | late (SCI-P-110)                                       |                               |                                                     |
| Max overall bending moment      | M <sub>x</sub> = <b>41.4</b> kNm                       | Dist to NA combined section   | y <sub>e,all</sub> = <b>25</b> mm                   |
| Second moment of area           | I <sub>xx,all</sub> = <b>4305</b> cm <sup>4</sup>      | Elastic section modulus       | Z <sub>xx,all</sub> = <b>528.45</b> cm <sup>3</sup> |
| Section modulus of plate        | Z <sub>xx,plate</sub> = <b>6.00</b> cm <sup>3</sup> /m | Eccentricity on support beam  | e1 = <b>1</b> mm                                    |
| Force on support plate          | P1 = <b>6.3</b> kN/m                                   | Bending at heel               | $M_{x,plate} = 0.0 \text{ kNm/m}$                   |
| Moment capacity of plate        | Mc = <b>2.6</b> kNm/m                                  |                               |                                                     |

| ~~~                               | Project Job no.                       |                  |                             |                 |                                       |                       |  |
|-----------------------------------|---------------------------------------|------------------|-----------------------------|-----------------|---------------------------------------|-----------------------|--|
| (تحما)                            | 15 V                                  | VILLOW GRO       | /E, SOUTH CER               | NEY             | 22.                                   | 132                   |  |
|                                   | Calcs for                             |                  |                             |                 | Start page no./Revision               |                       |  |
| DSC                               |                                       |                  | B5                          |                 |                                       | 2                     |  |
| BARSBY STRUCTURAL<br>CONSULTANTS  | Calcs by                              | Calcs date       | Checked by                  | Checked date    | Approved by                           | Approved date         |  |
| Barsby Structural Consultants Ltd | MB                                    | 21/10/2022       |                             |                 |                                       |                       |  |
|                                   | ·                                     |                  |                             |                 | · · · · · · · · · · · · · · · · · · · |                       |  |
|                                   |                                       |                  | PASS                        | - Design strer  | ngth exceeds s                        | tress at heel         |  |
| Long stress overall bending       | σ1 = <b>78.3</b> N/mm                 | 2                | Von Mises curve             | e constant      | Cfp = <b>696.9</b> N/r                | nm²                   |  |
| Trans bending stress ratio limit  | αts = <b>0.969</b>                    |                  | Trans bending s             | stress ratio    | als = <b>0.002</b>                    |                       |  |
|                                   |                                       | PASS -           | Transverse bend             | ding stress rat | io less than al                       | owable limit          |  |
| Deflection at toe                 |                                       |                  |                             |                 |                                       |                       |  |
| Unfact force on plate             | P1SLS = 4.5 kN/m                      | n                | Distance from w             | eld to load     | a <sub>m</sub> = <b>1</b> mm          |                       |  |
| Load resultant to edge of plate   | bm = <b>149</b> mm                    |                  | Weld to load po             | s as ratio      | aı = <b>0.007</b>                     |                       |  |
| Effect second mnt of inertia      | l <sub>eff_def</sub> = <b>18000</b> m | nm⁴/m            | Deflection at toe           | e               | $\delta = 0.00 \text{ mm}$            |                       |  |
| Deflection limit                  | $\delta \text{lim} = 1.60 \text{ mm}$ |                  |                             |                 |                                       |                       |  |
|                                   |                                       |                  | PAS                         | SS - Deflectior | n is within spec                      | cified criteria       |  |
| Construction stage biaxial st     | ress effects in th                    | he plate         |                             |                 |                                       |                       |  |
| Eccentricity on support beam      | e <sub>1c</sub> = <b>125</b> mm       | io plato         | Force on suppo              | rt plate        | P <sub>1c</sub> = <b>4.0</b> kN/m     | ı                     |  |
| Bending at heel                   | $M_{x,platec} = 0.5 \text{ kN}$       | m/m              |                             |                 |                                       |                       |  |
|                                   |                                       |                  | PASS                        | - Design strer  | ngth exceeds s                        | tress at heel         |  |
| Trans bending stress ratio        | αlsc = <b>0.197</b>                   |                  |                             | 5               | 5                                     |                       |  |
| 5                                 |                                       | PASS -           | Transverse bend             | ding stress rat | io less than al                       | owable limit          |  |
| Construction stage deflection     | at too                                |                  |                             | 0               |                                       |                       |  |
| Linfact force on plate            | $P_{4-0 0} = 20 kN/r$                 | m                | Dist from weld t            |                 | a <b>- 125</b> mm                     |                       |  |
| Load resultant to edge of plate   | hma - 25 mm                           | 11               | Wold to load pos            |                 | $a_{mc} = 123$ [1][1]                 |                       |  |
| Deflection at toe                 | $\delta_{\rm r} = 0.66 \text{ mm}$    |                  | weid to load po             | 5 85 1810       | alc = <b>0.033</b>                    |                       |  |
| Denection at the                  | 00 - 0.00 mm                          |                  | D۵                          | SS - Deflection | n is within snor                      | ified criteria        |  |
|                                   |                                       |                  |                             | - Jenection     | ns within spec                        |                       |  |
| Weld details - assume a full le   | ength weld and                        | that the plate a | acts as a proppe            | ed cantilever v | with the prop at                      | the weld              |  |
| position and the fixed end at     | the centre of the                     | e torsion bean   | Threat size of w            |                 | o 3 5 mm                              |                       |  |
| Leg length of weld                |                                       |                  | Max passible fo             | rea in plata    |                                       |                       |  |
| Long shoar boam/plate             | $R_A = 0.9 \text{ km/m}$              |                  | Max possible force in plate |                 | $R_p = 639.0 \text{ KN}$              |                       |  |
| Popultant wold force              | R = 243.6  km/m                       | /                | Horizontal shear beam/plate |                 | $R_h = 1.2 \text{ KiV/III}$           | l/mm²                 |  |
| Capacity of full length weld      | $R_{weid} = 0.240 R_{Weid}$           | N/mm             | Strength of well            |                 |                                       | N/111111 <sup>-</sup> |  |
| Capacity of full length weld      |                                       | N/IIIII          |                             |                 |                                       | 1/1/2) × Swold        |  |
|                                   |                                       |                  |                             |                 |                                       | Tr (Z) × Sweiu        |  |
| Torsional loading ULS             |                                       |                  |                             |                 |                                       |                       |  |
| Loading support beam              | W1ULS = 6.33 kN/                      | /m               | Loading of main             | beam            | W2ULS <b>= 5.15</b> k                 | N/m                   |  |
| Self weight of support beam       | W3ULS = 0.18 kN/                      | /m               |                             |                 |                                       |                       |  |
| Torsional loading SLS             |                                       |                  |                             |                 |                                       |                       |  |
| Loading support beam              | W1SLS = 4.52 kN/                      | ′m               | Loading of main             | beam            | W2SLS = <b>3.50</b> k                 | N/m                   |  |
| Self weight of support beam       | W3SLS = 0.13 kN/                      | /m               |                             |                 |                                       |                       |  |
| Eccentricities                    |                                       |                  |                             |                 |                                       |                       |  |
| Distance of shear centre          | eomb = <b>0</b> mm                    |                  | Ecc of support b            | beam masonry    | e1mb = 200 mn                         | า                     |  |
| Ecc of main beam masonry          | e <sub>2mb</sub> = -25 mm             |                  | Ecc of support b            | beam            | e3mb = <b>87</b> mm                   |                       |  |
| Torsional effects                 |                                       |                  |                             |                 |                                       |                       |  |
| Applied torque                    | T <sub>qULS</sub> = <b>1.15</b> kNr   | m/m              | Torsional mome              | ent (ULS)       | T <sub>9</sub> = <b>5.99</b> kNm      | 1                     |  |
| Applied torque (SLS)              | T <sub>qSLS</sub> = <b>0.83</b> kNr   | n/m              | Torsional mome              | ent (SLS)       | T <sub>qu</sub> = <b>4.30</b> kNr     | n                     |  |
|                                   |                                       |                  |                             |                 |                                       |                       |  |
| STEEL BEAM TORSION DESI           | GN                                    |                  |                             |                 |                                       |                       |  |

In accordance with BS5950-1:2000 incorporating Corrigendum No.1

Tedds calculation version 2.0.03

|                                                  | Project                                         | VILLOW GRO                  | Job no.<br>22.132 |                   |                                  |                 |
|--------------------------------------------------|-------------------------------------------------|-----------------------------|-------------------|-------------------|----------------------------------|-----------------|
|                                                  | Calcs for                                       |                             |                   |                   | Start page no./F                 | Revision        |
| BARSBY STRUCTURAL                                |                                                 |                             | B5                |                   |                                  | 3               |
| CONSULTANTS<br>Barsby Structural Consultants Ltd | MB                                              | 21/10/2022                  | Checked by        | Checked date      | Approved by                      | Approved date   |
|                                                  |                                                 |                             |                   |                   |                                  |                 |
| Section details                                  |                                                 |                             |                   |                   |                                  |                 |
| Section type                                     | RHS 200x150x8                                   | 3.0                         | Steel grade       |                   | S275                             |                 |
| Design stength                                   | p <sub>yw</sub> = p <sub>y</sub> = <b>275</b> N | l/mm²                       | Constant          |                   | ε <b>= 1.000</b>                 |                 |
| Geometry - Beam unrestraine                      | ed against latera                               | ll-torsional bu             | uckling between   | supports.         |                                  |                 |
| Effective span                                   | L = <b>5200</b> mm                              |                             |                   |                   |                                  |                 |
| Length of segment LTB                            | Llt = <b>5200</b> mm                            |                             | Effective length  | n for LTB         | Le_lt <b>= 5200</b>              | mm              |
| Loading - Torsional loading o                    | omprises only f                                 | full-length un              | iformly distribut | ed load(s)        |                                  |                 |
| Internal forces & moments or                     | n member under                                  | factored loa                | ding for uls desi | gn                |                                  |                 |
| Applied shear force                              | F <sub>vy</sub> = <b>31.8</b> kN                |                             | Maximum bend      | ding moment       | $M_{LT} = M_x = 4^{\circ}$       | <b>1.36</b> kNm |
| Applied torque                                   | T <sub>q</sub> = <b>5.99</b> kNm                |                             | Minor axis ben    | ding moment       | $M_y = 0 \text{ kNm}$            |                 |
| Compression force                                | $F_c = 0 \ kN$                                  |                             |                   |                   |                                  |                 |
| Equivalent uniform moment f                      | actors                                          |                             |                   |                   |                                  |                 |
| EUM factor (CI.4.3.6.6 & T18)                    | mlt = <b>1.000</b>                              |                             |                   |                   |                                  |                 |
| Torsional deflection analysis                    |                                                 |                             |                   |                   |                                  |                 |
| Beam is torsion fixed at each e                  | nd. (as defined in                              | SCI-P-057 se                | ection 2.1.6)     |                   |                                  |                 |
| Max torque (at supports)                         | T <sub>o</sub> = <b>3.00</b> kNm                |                             | Avg torque sup    | port & CL         | Tav = <b>1.50</b> kN             | lm              |
| Max. angle of twist (midspan)                    | φ = <b>0.001</b> rads                           |                             |                   |                   |                                  |                 |
| Section classification                           |                                                 |                             |                   |                   |                                  |                 |
|                                                  | b <sub>x</sub> / t = <b>15.8</b>                |                             |                   |                   | d <sub>x</sub> / t = <b>22.0</b> |                 |
|                                                  | $b_v / t = 22.0$                                |                             |                   |                   | d <sub>v</sub> / t = <b>15.8</b> |                 |
|                                                  | r <sub>1sx</sub> = <b>0.000</b>                 |                             |                   |                   | r <sub>1sy</sub> = <b>0.000</b>  |                 |
|                                                  | r <sub>2s</sub> = <b>0.000</b>                  |                             |                   |                   |                                  |                 |
|                                                  |                                                 |                             |                   | Sect              | tion classifica                  | tion is plastic |
| Shear capacity (parallel to y-a                  | axis)                                           |                             |                   |                   |                                  |                 |
| Design shear force                               | F <sub>vy</sub> = <b>31.8</b> kN                |                             | Design shear r    | esist (cl. 4.2.3) | P <sub>vy</sub> = <b>497.4</b> k | N               |
|                                                  |                                                 |                             |                   |                   |                                  | Pass - Shear    |
| Moment capacity (x-axis)                         |                                                 |                             |                   |                   |                                  |                 |
| Design bending moment                            | Mx = <b>41.4</b> kNm                            |                             | Mnt cap low sh    | ear (cl. 4.2.5.1) | Mcx = <b>98.1</b> kN             | ١m              |
|                                                  |                                                 | I                           | Pass - Moment c   | capacity exceed   | ds design ben                    | ding moment     |
| Lateral torsional buckling                       |                                                 |                             |                   |                   |                                  |                 |
| Effective length for LTB                         | LE_LT <b>= 5200</b> mn                          | n                           |                   |                   |                                  |                 |
| Slenderness ratio - cl 4.3.6.5                   | $\lambda = 87$                                  |                             |                   |                   | D / B = <b>1.3</b>               |                 |
|                                                  |                                                 |                             |                   |                   | LTB check                        | < not required  |
| Buckling resistance mnt                          | $M_b = M_{cx} = \textbf{98.1}$                  | kNm                         |                   |                   |                                  |                 |
| Buckling under combined be                       | nding & torsion                                 | - SCI-P-057 s               | ection 2.3        |                   |                                  |                 |
| For simplicity, a conservative cl                | heck is applied us                              | sing the maxin              | num stresses due  | to each of the    | separate load                    | effects, even   |
| though these do not necessarily                  | y all occur at the                              | same section                | along the membe   | er.               |                                  |                 |
| Max angle of twist                               | $\phi = 0.001 \text{ rads}$                     |                             | Induced minor     | axis moment       | $M_{yt} = 0.06 \text{ kN}$       | lm              |
| Norm stress corner due to $M_{yt}$               | $\sigma_{byt} = 0 \text{ N/mm}^2$               |                             | Interaction inde  | ex                | ib = <b>0.42</b>                 |                 |
|                                                  |                                                 |                             | Pass - Comb       | bined bending     | and torsion cl                   | neck satisfied  |
| Local capacity under combin                      | ed bending & to                                 | orsion                      |                   |                   |                                  |                 |
| For simplicity, a conservative cl                | heck is applied us                              | sing the maxin              | num stresses due  | e to each of the  | separate load                    | effects, even   |
| though these do not necessarily                  | y all occur at the                              | same section                | along the membe   | er.               |                                  |                 |
| Max. direct stress due to $M_{\text{x}}$         | $\sigma_{bx} = M_x / Z_x = 1$                   | <b>39</b> N/mm <sup>2</sup> |                   |                   |                                  |                 |
|                                                  |                                                 |                             |                   |                   |                                  |                 |

|                                   | Project                                          |                   |                         |                  | Job no.                                |                |
|-----------------------------------|--------------------------------------------------|-------------------|-------------------------|------------------|----------------------------------------|----------------|
|                                   | 15 \                                             | WILLOW GROV       | 22.132                  |                  |                                        |                |
|                                   | Calcs for                                        |                   | Start page no./Revision |                  |                                        |                |
| DSC                               |                                                  | l                 | B5                      |                  |                                        | 4              |
| BARSBY STRUCTURAL                 | Calcs by                                         | Calcs date        | Checked by              | Checked date     | Approved by                            | Approved date  |
| Barsby Structural Consultants Ltd | MB                                               | 21/10/2022        |                         |                  |                                        |                |
|                                   |                                                  |                   |                         |                  |                                        |                |
| Combined stress - eqn 2.22        | $\sigma_{\text{bx}} + \sigma_{\text{byt}} = 139$ | N/mm <sup>2</sup> | Design strength         | ו                | py = <b>275</b> N/mr                   | n²             |
|                                   |                                                  |                   |                         |                  | Pass - Lo                              | ocal capacity  |
| Combined shear stresses SC        | I-P-057 section                                  | 2.3               |                         |                  |                                        |                |
| For simplicity, a conservative ch | neck is applied u                                | sing the maxim    | um shear stresse        | es due to each c | of the separate                        | load effects,  |
| even though these do not neces    | ssarily all occur a                              | at the same sec   | tion along the m        | ember.           |                                        |                |
| Max. shear stress bending         | $\tau_{bw} = 12 \text{ N/mm}^2$                  |                   | Max. shear stre         | esses torsion    | $\tau_t = 8 \text{ N/mm}^2$            |                |
| Amplified shear stress torsion    | $\tau_{vt} = 9 \text{ N/mm}^2$                   |                   | Combined shea           | ar bend & tors   | τ <b>= 21</b> N/mm <sup>2</sup>        |                |
| Shear strength                    | pv = <b>165</b> N/mm <sup>2</sup>                | 2                 |                         |                  |                                        |                |
|                                   |                                                  |                   |                         | Pass -           | Combined sh                            | near stresses  |
| Twist check                       |                                                  |                   |                         |                  |                                        |                |
| Total applied torque (unfact)     | T <sub>qu</sub> = <b>4.30</b> kNm                |                   |                         |                  |                                        |                |
| Max twist under sls loading       | $\phi_{sls} = 0.06 \text{ degs}$                 |                   | Lever arm for d         | efl due to twist | h <sub>δ</sub> = <b>225</b> mm         |                |
| Deflection due to twist           | $\delta_{\text{h.sls}} = 0.2 \text{ mm}$         |                   | Deflection limit        |                  | $\delta_{\text{h.lim}} = 2 \text{ mm}$ |                |
|                                   |                                                  |                   |                         | Pa               | ss - Deflectior                        | n due to twist |
| Deflection                        |                                                  |                   |                         |                  |                                        |                |
| Maximum y-axis deflection         | δ <sub>y_max</sub> = <b>13.4</b> mr              | n                 | Deflection limit        | - cl. 2.5.2      | δlim = <b>14.0</b> mm                  | n              |
|                                   |                                                  |                   |                         | Pass - Defle     | ction within s                         | pecified limit |

|                                                                                                                                                                                                                                                                                                                            | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 5 WILLOW GROV                                                                                                                                           | 22.132                                                                                                                                                                                          |                                                                                                                                                                    |                                                                                                                                                                                            |                                                                                 |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------|
| RSC                                                                                                                                                                                                                                                                                                                        | Calcs for                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Calcs for                                                                                                                                               |                                                                                                                                                                                                 |                                                                                                                                                                    |                                                                                                                                                                                            |                                                                                 |
|                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                         |                                                                                                                                                                                                 |                                                                                                                                                                    |                                                                                                                                                                                            | 1                                                                               |
| CONSULTANTS                                                                                                                                                                                                                                                                                                                | Calcs by                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Calcs date                                                                                                                                              | Checked by                                                                                                                                                                                      | Checked date                                                                                                                                                       | Approved by                                                                                                                                                                                | Approved                                                                        |
| rsby Structural Consultants Lto                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 24/10/2022                                                                                                                                              |                                                                                                                                                                                                 |                                                                                                                                                                    |                                                                                                                                                                                            |                                                                                 |
| STEEL MEMBER DESIGN (E                                                                                                                                                                                                                                                                                                     | 3S5950 <u>)</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                         |                                                                                                                                                                                                 |                                                                                                                                                                    |                                                                                                                                                                                            |                                                                                 |
| In accordance with BS5950                                                                                                                                                                                                                                                                                                  | -1:2000 incorpo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | orating Corrigend                                                                                                                                       | lum No.1                                                                                                                                                                                        |                                                                                                                                                                    |                                                                                                                                                                                            | ation version                                                                   |
| Section details                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                         |                                                                                                                                                                                                 |                                                                                                                                                                    |                                                                                                                                                                                            |                                                                                 |
| Section type                                                                                                                                                                                                                                                                                                               | CHS 88.9x5.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ) (Tata Steel Cels                                                                                                                                      | sius (Gr355 Gr                                                                                                                                                                                  | 420 Gr460))                                                                                                                                                        | Steel grade                                                                                                                                                                                | S355                                                                            |
|                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 88.9                                                                                                                                                    |                                                                                                                                                                                                 | *                                                                                                                                                                  |                                                                                                                                                                                            |                                                                                 |
| Classification of cross sect                                                                                                                                                                                                                                                                                               | ions - Section 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 15                                                                                                                                                      |                                                                                                                                                                                                 |                                                                                                                                                                    |                                                                                                                                                                                            |                                                                                 |
| <b>Classification of cross sect</b><br>Tensile strain coefficient                                                                                                                                                                                                                                                          | ions - Section 3<br>ε = 0.88                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 5.5                                                                                                                                                     | Section classi                                                                                                                                                                                  | ification                                                                                                                                                          | Semi-compa                                                                                                                                                                                 | act                                                                             |
| <b>Classification of cross sect</b><br>Tensile strain coefficient<br><b>Moment capacity - Section</b>                                                                                                                                                                                                                      | ions - Section 3<br>ε = 0.88<br>4.2.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 9.5                                                                                                                                                     | Section classi                                                                                                                                                                                  | ification                                                                                                                                                          | Semi-compa                                                                                                                                                                                 | act                                                                             |
| <b>Classification of cross sect</b><br>Tensile strain coefficient<br><b>Moment capacity - Section</b><br>Design bending moment                                                                                                                                                                                             | ions - Section 3<br>ε = 0.88<br>4.2.5<br>M = 4 kNm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 9.5<br>PA                                                                                                                                               | Section classi<br>Moment capa<br>ASS - Moment                                                                                                                                                   | ification<br>city low shear<br>capacity excee                                                                                                                      | <b>Semi-compa</b><br>Mc <b>= 11.2</b> kN<br>ds design ber                                                                                                                                  | act<br>Im<br>nding mor                                                          |
| Classification of cross sect<br>Tensile strain coefficient<br>Moment capacity - Section 4<br>Design bending moment<br>Compression members - Sec                                                                                                                                                                            | ions - Section 3<br>ε = 0.88<br>4.2.5<br>M = 4 kNm<br>ection 4.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 9.5<br>PA                                                                                                                                               | Section classi<br>Moment capa<br>ASS - Moment                                                                                                                                                   | ification<br>city low shear<br>capacity excee                                                                                                                      | <b>Semi-compa</b><br>M₀ <b>= 11.2</b> kN<br>ds design ber                                                                                                                                  | <b>act</b><br>Im<br>nding mor                                                   |
| Classification of cross sect<br>Tensile strain coefficient<br>Moment capacity - Section of<br>Design bending moment<br>Compression members - Se<br>Design compression force                                                                                                                                                | ions - Section 3<br>$\varepsilon = 0.88$<br>4.2.5<br>M = 4 kNm<br>ection 4.7<br>Fc = 33 kN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 9.5<br>PA                                                                                                                                               | Section classi<br>Moment capa<br>ASS - Moment<br>Compression                                                                                                                                    | ification<br>city low shear<br>capacity excee<br>resistance                                                                                                        | <b>Semi-compa</b><br>Mc = <b>11.2</b> kN<br>ds design ber<br>Pcx = <b>161.4</b> k                                                                                                          | act<br>Im<br>nding mor                                                          |
| Classification of cross sect<br>Tensile strain coefficient<br>Moment capacity - Section 4<br>Design bending moment<br>Compression members - Se<br>Design compression force                                                                                                                                                 | ions - Section 3<br>$\varepsilon = 0.88$<br>4.2.5<br>M = 4  kNm<br>ection 4.7<br>$F_c = 33 \text{ kN}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 9.5<br>PASS - Corr                                                                                                                                      | Section classi<br>Moment capa<br>ASS - Moment<br>Compression<br>pression resi                                                                                                                   | ification<br>city low shear<br>capacity excee<br>resistance<br>istance exceeds                                                                                     | Semi-compa<br>Mc = 11.2 kN<br>ds design ber<br>Pcx = 161.4 k<br>s design comp                                                                                                              | act<br>Im<br>Inding mor<br>N                                                    |
| Classification of cross sect<br>Tensile strain coefficient<br>Moment capacity - Section of<br>Design bending moment<br>Compression members - Sec<br>Design compression force                                                                                                                                               | ions - Section 3<br>ε = 0.88<br>4.2.5<br>M = 4 kNm<br>ection 4.7<br>Fc = 33 kN<br>Fc = 33 kN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | PASS - Com                                                                                                                                              | Section classi<br>Moment capa<br>ASS - Moment<br>Compression<br>pression resi<br>Compression                                                                                                    | ification<br>city low shear<br>capacity excee<br>resistance<br>istance exceeds<br>resistance                                                                       | Semi-compa<br>Mc = 11.2 kN<br>ds design ben<br>Pcx = 161.4 k<br>s design comp<br>Pcy = 161.4 k                                                                                             | act<br>Im<br>Inding mor<br>N<br>SN<br>SrN                                       |
| Classification of cross sect<br>Tensile strain coefficient<br>Moment capacity - Section 4<br>Design bending moment<br>Compression members - Se<br>Design compression force<br>Design compression force                                                                                                                     | ions - Section 3<br>ε = 0.88<br>4.2.5<br>M = 4 kNm<br>ection 4.7<br>Fc = 33 kN<br>Fc = 33 kN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 9.5<br>PASS - Com<br>PASS - Com                                                                                                                         | Section classi<br>Moment capa<br>ASS - Moment<br>Compression<br>pression resi<br>Compression<br>pression resi                                                                                   | ification<br>city low shear<br>capacity excee<br>resistance<br>istance exceeds<br>resistance<br>istance exceeds                                                    | Semi-compa<br>Mc = 11.2 kN<br>ds design ber<br>Pcx = 161.4 k<br>s design comp<br>Pcy = 161.4 k<br>s design comp                                                                            | act<br>Im<br>Inding mor<br>N<br>Pression for<br>N                               |
| Classification of cross sect<br>Tensile strain coefficient<br>Moment capacity - Section of<br>Design bending moment<br>Compression members - Sec<br>Design compression force<br>Design compression force<br>Compression members with                                                                                       | ions - Section 3<br>$\varepsilon = 0.88$<br>4.2.5<br>M = 4  kNm<br>ection 4.7<br>$F_c = 33 \text{ kN}$<br>$F_c = 33 \text{ kN}$<br>on moments - Se                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | PASS - Com<br>PASS - Com<br>PASS - Com                                                                                                                  | Section classi<br>Moment capa<br>ASS - Moment<br>Compression<br>pression resi<br>Compression<br>pression resi                                                                                   | ification<br>city low shear<br>capacity excee<br>resistance<br>istance exceeds<br>resistance<br>istance exceeds                                                    | Semi-compa<br>Mc = 11.2 kN<br>ds design ber<br>Pcx = 161.4 k<br>s design comp<br>Pcy = 161.4 k<br>s design comp                                                                            | act<br>Im<br>nding mor<br>N<br>pression fi<br>N<br>pression fi                  |
| Classification of cross sect<br>Tensile strain coefficient<br>Moment capacity - Section of<br>Design bending moment<br>Compression members - Sec<br>Design compression force<br>Design compression force<br>Compression members with<br>Comp.and bending check                                                             | ions - Section 3<br>$\varepsilon = 0.88$<br>4.2.5<br>M = 4  kNm<br>ection 4.7<br>$F_c = 33 \text{ kN}$<br>$F_c = 33 \text{ kN}$<br>$F_c = 33 \text{ kN}$<br>$F_c = 33 \text{ kN}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | PASS - Com<br>PASS - Com<br>PASS - Com<br><b>ction 4.8.3</b><br>M / M₀ = <b>0.429</b>                                                                   | Section classi<br>Moment capa<br>ASS - Moment<br>Compression<br>pression resi<br>Compression<br>pression resi                                                                                   | ification<br>city low shear<br>capacity excee<br>resistance<br>istance exceeds<br>resistance<br>istance exceeds                                                    | Semi-compa<br>Mc = 11.2 kN<br>ds design ber<br>Pcx = 161.4 k<br>s design comp<br>Pcy = 161.4 k<br>s design comp                                                                            | act<br>Im<br>Inding mor<br>SN<br>Soression fr<br>SN<br>Soression fr             |
| Classification of cross sect<br>Tensile strain coefficient<br>Moment capacity - Section 4<br>Design bending moment<br>Compression members - Se<br>Design compression force<br>Design compression force<br>Compression members with<br>Comp.and bending check                                                               | ions - Section 3<br>$\epsilon = 0.88$<br>4.2.5<br>M = 4  kNm<br>ection 4.7<br>$F_c = 33 \text{ kN}$<br>$F_c = 33 \text{ kN}$<br>in moments - Second Sec                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | PASS - Com<br>PASS - Com<br>PASS - Com<br>ction 4.8.3<br>M / Mc = 0.429<br>PASS -                                                                       | Section classi<br>Moment capa<br>ASS - Moment<br>Compression<br>pression resi<br>Compression<br>pression resi                                                                                   | ification<br>city low shear<br>capacity excee<br>resistance<br>istance exceeds<br>resistance<br>istance exceeds                                                    | Semi-compa<br>Mc = 11.2 kN<br>ds design ben<br>Pcx = 161.4 k<br>s design comp<br>Pcy = 161.4 k<br>s design comp                                                                            | act<br>Im<br>nding mor<br>SN<br>pression fo<br>SN<br>pression fo<br>ck is satis |
| Classification of cross sect<br>Tensile strain coefficient<br>Moment capacity - Section of<br>Design bending moment<br>Compression members - Sec<br>Design compression force<br>Design compression force<br>Compression members with<br>Comp.and bending check                                                             | ions - Section 3<br>$\epsilon = 0.88$<br>4.2.5<br>M = 4  kNm<br>ection 4.7<br>$F_c = 33 \text{ kN}$<br>$F_c = 33 \text{ kN}$<br>$F_c = 33 \text{ kN}$<br>$F_c = 33 \text{ kN}$<br>$F_c = -33 \text{ kN}$<br>$F_c = -21 \text{ kN}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | PASS - Com<br>PASS - Com<br>PASS - Com<br>ction 4.8.3<br>M / Mc = 0.429<br>PASS -                                                                       | Section classi<br>Moment capa<br>ASS - Moment<br>Compression<br>pression resi<br>Compression<br>pression resi                                                                                   | ification<br>city low shear<br>capacity excee<br>resistance<br>istance exceeds<br>resistance<br>istance exceeds<br>istance exceeds                                 | Semi-compa<br>$M_c = 11.2 \text{ kN}$<br>ds design ben<br>$P_{cx} = 161.4 \text{ k}$<br>s design comp<br>$P_{cy} = 161.4 \text{ k}$<br>s design comp<br>hpression chea                     | act<br>Im<br>Inding mor<br>(N<br>pression for<br>pression for<br>ck is satis    |
| Classification of cross sect<br>Tensile strain coefficient<br>Moment capacity - Section 4<br>Design bending moment<br>Compression members - Se<br>Design compression force<br>Design compression force<br>Compression members with<br>Comp.and bending check<br>Member buckling resistance<br>Buckling resistance checks   | ions - Section 3<br>$\varepsilon = 0.88$<br>4.2.5<br>M = 4  kNm<br>ection 4.7<br>$F_c = 33 \text{ kN}$<br>$F_c = 33 \text{ kN}$<br>$F_c = 33 \text{ kN}$<br>$F_c = (A \times py) + ($ | PASS - Com<br>PASS - Com<br>PASS - Com<br>ction 4.8.3<br>M / Mc = 0.429<br>PASS -<br>S M / Mc × (1 + 0.5                                                | Section classi<br>Moment capa<br>ASS - Moment<br>Compression<br>pression resi<br>Compression resi<br>Compression resi<br>- Combined be<br>$\times F_c / P_{cx}) = 0.$                           | ification<br>city low shear<br>capacity excee<br>resistance<br>istance exceeds<br>resistance<br>istance exceeds<br>ending and com                                  | Semi-compa<br>Mc = 11.2 kN<br>ds design ber<br>Pcx = 161.4 k<br>s design comp<br>Pcy = 161.4 k<br>s design comp                                                                            | act<br>Im<br>ading mor<br>SN<br>pression fo<br>pression fo<br>ck is satis       |
| Classification of cross sect<br>Tensile strain coefficient<br>Moment capacity - Section 4<br>Design bending moment<br>Compression members - Se<br>Design compression force<br>Design compression force<br>Compression members with<br>Comp.and bending check<br>Member buckling resistance<br>Buckling resistance checks   | ions - Section 3<br>$\epsilon = 0.88$<br>4.2.5<br>M = 4  kNm<br>ection 4.7<br>$F_c = 33 \text{ kN}$<br>$F_c = 33 \text{ kN}$<br>in moments - Second Ferror (A × py) +<br>e - cl.4.8.3.3.3<br>$F_c / P_{cx} + m_x × F_c / P_{cy} + 0.5$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | PASS - Com<br>PASS - Com<br>PASS - Com<br>Ction 4.8.3<br>M / Mc = 0.429<br>PASS -<br>PASS -<br>Com<br>Ction 4.8.3                                       | Section classi<br>Moment capa<br>ASS - Moment<br>Compression resi<br>Compression resi<br>Compression resi<br>- Combined be<br>$\times F_c / P_{cx}) = 0.$                                       | ification<br>city low shear<br>capacity excee<br>resistance<br>istance exceeds<br>resistance<br>istance exceeds<br>ending and com                                  | Semi-compa<br>Mc = 11.2 kN<br>ds design ber<br>Pcx = 161.4 k<br>s design comp<br>Pcy = 161.4 k<br>s design comp                                                                            | act<br>Im<br>nding mor<br>N<br>pression fo<br>N<br>pression fo<br>ck is satis   |
| Classification of cross sect<br>Tensile strain coefficient<br>Moment capacity - Section of<br>Design bending moment<br>Compression members - Sec<br>Design compression force<br>Design compression force<br>Compression members with<br>Comp.and bending check<br>Member buckling resistance<br>Buckling resistance checks | ions - Section 3<br>$\epsilon = 0.88$<br>4.2.5<br>M = 4  kNm<br>ection 4.7<br>$F_c = 33 \text{ kN}$<br>$F_c = 33 \text{ kN}$<br>$F_c = 33 \text{ kN}$<br>$F_c = (A \times Py) + ($    | PASS - Com<br>PASS - Com<br>PASS - Com<br>ction 4.8.3<br>M / Mc = 0.429<br>PASS -<br>Com<br>Com<br>Com<br>Com<br>Com<br>Com<br>Com<br>Com<br>Com<br>Com | Section classi<br>Moment capa<br>ASS - Moment<br>Compression<br>pression resi<br>Compression resi<br>Compression resi<br>- Combined be<br>$\times$ Fc / Pcx) = 0.<br>= 0.312<br>PASS - Memb     | ification<br>city low shear<br>capacity excee<br>resistance<br>istance exceeds<br>istance exceeds<br>istance exceeds<br>ending and com<br>.600                     | Semi-compa<br>$M_c = 11.2 \text{ kN}$<br>ds design ben<br>$P_{cx} = 161.4 \text{ k}$<br>s design comp<br>$P_{cy} = 161.4 \text{ k}$<br>s design comp<br>hpression checks                   | act<br>Im<br>Inding mor<br>N<br>pression for<br>ck is satis                     |
| Classification of cross sect<br>Tensile strain coefficient<br>Moment capacity - Section 4<br>Design bending moment<br>Compression members - Se<br>Design compression force<br>Design compression force<br>Compression members with<br>Comp.and bending check<br>Member buckling resistance<br>Buckling resistance checks   | ions - Section 3<br>$\epsilon = 0.88$<br>4.2.5<br>M = 4  kNm<br>ection 4.7<br>$F_c = 33 \text{ kN}$<br>$F_c = 33 \text{ kN}$<br>n moments - Se<br>$F_c / (A \times p_y) +$<br>e - cl.4.8.3.3.3<br>$F_c / P_{cx} + m_x \times$<br>$F_c / P_{cy} + 0.5 \pm$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | PASS - Com<br>PASS - Com<br>PASS - Com<br>Ction 4.8.3<br>M / Mc = 0.429<br>PASS -<br>A M / Mc × (1 + 0.5<br>× mLT × MLT / Mcx =                         | Section classi<br>Moment capa<br>ASS - Moment<br>Compression<br>pression resi<br>Compression resi<br>Compression resi<br>- Combined be<br>$\times F_c / P_{cx}) = 0.$<br>= 0.312<br>PASS - Memb | ification<br>city low shear<br>capacity excee<br>resistance<br>istance exceeds<br>resistance<br>istance exceeds<br>ending and com<br>.600<br>er buckling resi      | Semi-compa<br>$M_c = 11.2 \text{ kN}$<br>ds design ben<br>$P_{cx} = 161.4 \text{ k}$<br>s design comp<br>$P_{cy} = 161.4 \text{ k}$<br>s design comp<br>hpression checks                   | act<br>Im<br>ading mor<br>SN<br>pression fo<br>ck is satis                      |
| Classification of cross sect<br>Tensile strain coefficient<br>Moment capacity - Section 4<br>Design bending moment<br>Compression members - Se<br>Design compression force<br>Design compression force<br>Compression members with<br>Comp.and bending check<br>Member buckling resistance<br>Buckling resistance checks   | ions - Section 3<br>$\epsilon = 0.88$<br>4.2.5<br>M = 4  kNm<br>ection 4.7<br>$F_c = 33 \text{ kN}$<br>$F_c = 33 \text{ kN}$<br>in moments - Second Ferror (A × py) +<br>e - cl.4.8.3.3.3<br>$F_c / P_{cx} + m_x × F_c / P_{cy} + 0.5 =$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | PASS - Com<br>PASS - Com<br>PASS - Com<br>Ction 4.8.3<br>M / Mc = 0.429<br>PASS -<br>PASS -<br>Com<br>Ction 4.8.3                                       | Section classi<br>Moment capa<br>ASS - Moment<br>Compression<br>pression resi<br>Compression resi<br>Compression resi<br>- Combined be<br>$\times F_c / P_{cx}) = 0.$<br>= 0.312<br>PASS - Memb | ification<br>city low shear<br>capacity excee<br>resistance<br>istance exceeds<br>resistance<br>istance exceeds<br>ending and com<br>.600<br>er buckling resi      | Semi-compa<br>$M_c = 11.2 \text{ kN}$<br>ds design ben<br>$P_{cx} = 161.4 \text{ k}$<br>s design comp<br>$P_{cy} = 161.4 \text{ k}$<br>s design comp<br>hpression checks                   | act<br>Im<br>Inding mor<br>N<br>Pression for<br>ck is satis                     |
| Classification of cross sect<br>Tensile strain coefficient<br>Moment capacity - Section of<br>Design bending moment<br>Compression members - Sec<br>Design compression force<br>Design compression force<br>Compression members with<br>Comp.and bending check<br>Member buckling resistance<br>Buckling resistance checks | ions - Section 3<br>$\epsilon = 0.88$<br>4.2.5<br>M = 4  kNm<br>ection 4.7<br>$F_c = 33 \text{ kN}$<br>$F_c = 33 \text{ kN}$<br>h moments - Se<br>$F_c / (A \times p_y) +$<br>e - cl.4.8.3.3.3<br>$F_c / P_{cx} + m_x \times$<br>$F_c / P_{cy} + 0.5 \times$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | PASS - Com<br>PASS - Com<br>PASS - Com<br>Ction 4.8.3<br>M / Mc = 0.429<br>PASS -<br>M / Mc × (1 + 0.5<br>× mLT × MLT / Mcx =                           | Section classi<br>Moment capa<br>ASS - Moment<br>Compression<br>pression resi<br>Compression resi<br>Compression resi<br>- Combined be<br>$\times F_c / P_{cx}) = 0.$<br>= 0.312<br>PASS - Memb | ification<br>city low shear<br>capacity excee<br>resistance<br>istance exceeds<br>istance exceeds<br>istance exceeds<br>ending and com<br>.600<br>er buckling resi | Semi-compa<br>$M_c = 11.2 \text{ kN}$<br>ds design ben<br>$P_{cx} = 161.4 \text{ k}$<br>s design comp<br>$P_{cy} = 161.4 \text{ k}$<br>s design comp<br>hpression checks<br>istance checks | act<br>Im<br>Inding mor<br>(N<br>pression for<br>oression for<br>ck is satis    |
| Classification of cross sect<br>Tensile strain coefficient<br>Moment capacity - Section 4<br>Design bending moment<br>Compression members - Sec<br>Design compression force<br>Design compression force<br>Compression members with<br>Comp.and bending check<br>Member buckling resistance<br>Buckling resistance checks  | ions - Section 3<br>$\epsilon = 0.88$<br>4.2.5<br>M = 4  kNm<br>ection 4.7<br>$F_c = 33 \text{ kN}$<br>$F_c = 33 \text{ kN}$<br>in moments - Second<br>$F_c / (A \times p_y) + 3$<br>$ext{e} - cl.4.8.3.3.3$<br>$F_c / P_{cx} + m_x \times 3$<br>$F_c / P_{cy} + 0.5 \times 3$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | PASS - Com<br>PASS - Com<br>PASS - Com<br>ction 4.8.3<br>M / Mc = 0.429<br>PASS -<br>A M / Mc × (1 + 0.5<br>× mLT × MLT / Mcx =                         | Section classi<br>Moment capa<br>ASS - Moment<br>Compression<br>pression resi<br>Compression resi<br>Compression resi<br>- Combined be<br>$\times$ Fc / Pcx) = 0.<br>= 0.312<br>PASS - Memb     | ification<br>city low shear<br>capacity excee<br>resistance<br>istance exceeds<br>resistance<br>istance exceeds<br>ending and com<br>.600<br>er buckling resi      | Semi-compa<br>$M_c = 11.2 \text{ kN}$<br>ds design ben<br>$P_{cx} = 161.4 \text{ k}$<br>s design comp<br>$P_{cy} = 161.4 \text{ k}$<br>s design comp<br>hpression checks<br>istance checks | act<br>Im<br>ading mor<br>SN<br>pression fo<br>ck is satis                      |

|                                   | Project     |             |            |              | Job no.     |                         |  |
|-----------------------------------|-------------|-------------|------------|--------------|-------------|-------------------------|--|
| الثما ٢                           | 15          | WILLOW GROV | 22         | .132         |             |                         |  |
|                                   | Calcs for S |             |            |              |             | Start page no./Revision |  |
|                                   |             | I           | P1         |              | 1           |                         |  |
| BARSBY STRUCTURAL<br>CONSULTANTS  | Calcs by    | Calcs date  | Checked by | Checked date | Approved by | Approved date           |  |
| Barsby Structural Consultants Ltd | MB          | 21/10/2022  |            |              |             |                         |  |

TEDDS calculation version 1.0.08

# Masonry details

Masonry type Compressive strength Least horiz dim of units Masonry units Partial safety factor Leaf thickness Wall height

# Autoclaved aerated concrete blocks

| Mortar designation       | iii                                                                                                                                              |
|--------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------|
| Height of units          | hunit = <b>215</b> mm                                                                                                                            |
| Construction control     | Normal                                                                                                                                           |
| Characteristic strength  | fk = <b>3.5</b> N/mm <sup>2</sup>                                                                                                                |
| Effective wall thickness | tef = <b>133</b> mm                                                                                                                              |
| Effective height of wall | $h_{\text{ef}}=\textbf{2400} \text{ mm}$                                                                                                         |
|                          | Mortar designation<br>Height of units<br>Construction control<br>Characteristic strength<br>Effective wall thickness<br>Effective height of wall |



# **Bearing details**

| Beam spanning in plane of wal | 1                                                |                              |                                  |
|-------------------------------|--------------------------------------------------|------------------------------|----------------------------------|
| Width of bearing              | B = <b>100</b> mm                                | Length of bearing            | l <sub>b</sub> = <b>300</b> mm   |
| Loading details               |                                                  |                              |                                  |
| Concentrated dead load        | G <sub>k</sub> = <b>13</b> kN                    | Concentrated imposed load    | Q <sub>k</sub> = <b>16</b> kN    |
| Design concentrated load      | F = <b>43.8</b> kN                               |                              |                                  |
| Distributed dead load         | g <sub>k</sub> = <b>0.0</b> kN/m                 | Distributed imposed load     | q <sub>k</sub> = <b>0.0</b> kN/m |
| Design distributed load       | f = <b>0.0</b> kN/m                              |                              |                                  |
| Masonry bearing type          |                                                  |                              |                                  |
| Bearing type                  | Туре 1                                           | Bearing safety factor        | γbear = <b>1.25</b>              |
| Check design bearing without  | ut a spreader                                    |                              |                                  |
| Design bearing stress         | f <sub>ca</sub> = <b>1.460</b> N/mm <sup>2</sup> | Allowable bearing stress     | fcp = 1.250 N/mm <sup>2</sup>    |
|                               | FAIL - Design bearing                            | stress exceeds allowable bea | ring stress, use a spreader      |
| Spreader details              |                                                  |                              |                                  |
| Length of spreader            | ls = <b>440</b> mm                               | Depth of spreader            | hs <b>= 215</b> mm               |
| Edge distance                 | Sedge = 0 mm                                     |                              |                                  |
|                               |                                                  |                              |                                  |

|                                   | Project                               |                                     |                  |                  | Job no.                           |                 |
|-----------------------------------|---------------------------------------|-------------------------------------|------------------|------------------|-----------------------------------|-----------------|
|                                   | 15 \                                  | WILLOW GROV                         | E, SOUTH CER     | NEY              | 22                                | .132            |
| BSC                               | Calcs for                             | F                                   | 21               |                  | Start page no./F                  | Revision<br>2   |
| BARSBY STRUCTURAL<br>CONSULTANTS  | Calcs by<br>MB                        | Calcs date 21/10/2022               | Checked by       | Checked date     | Approved by                       | Approved date   |
| Barsby Structural Consultants Ltd |                                       |                                     |                  |                  |                                   |                 |
| Spreader bearing type             |                                       |                                     |                  |                  |                                   |                 |
| Bearing type                      | Туре 3                                |                                     | Bearing safety f | actor            | γbear <b>= 2.00</b>               |                 |
| Check design bearing with a s     | <b>spreader</b><br>h middle third – t | triangular stress                   | distribution     |                  |                                   |                 |
| Design bearing stress             | fca = <b>1.946</b> N/mr               | m²                                  | Allowable beari  | ng stress        | f <sub>cp</sub> = <b>2.000</b> N/ | ′mm²            |
|                                   |                                       | PASS - A                            | Allowable beari  | ng stress exce   | eeds design b                     | earing stress   |
| Check design bearing at 0.4 >     | h below the be                        | earing level                        |                  |                  | ( 0.005 N                         | 2               |
| Design bearing stress             | tca = 0.348 N/mr                      | M <sup>2</sup><br>indistross at 0 / | Allowable beari  | ng stress        | t <sub>cp</sub> = <b>0.835</b> N/ | mm <sup>2</sup> |
| FA33 -                            | Allowable beall                       | ing siless at 0.4                   |                  | ining level exce | eeus desigii b                    | earing siless   |
|                                   |                                       |                                     |                  |                  |                                   |                 |
|                                   |                                       |                                     |                  |                  |                                   |                 |
|                                   |                                       |                                     |                  |                  |                                   |                 |
|                                   |                                       |                                     |                  |                  |                                   |                 |
|                                   |                                       |                                     |                  |                  |                                   |                 |
|                                   |                                       |                                     |                  |                  |                                   |                 |
|                                   |                                       |                                     |                  |                  |                                   |                 |
|                                   |                                       |                                     |                  |                  |                                   |                 |
|                                   |                                       |                                     |                  |                  |                                   |                 |
|                                   |                                       |                                     |                  |                  |                                   |                 |
|                                   |                                       |                                     |                  |                  |                                   |                 |
|                                   |                                       |                                     |                  |                  |                                   |                 |
|                                   |                                       |                                     |                  |                  |                                   |                 |
|                                   |                                       |                                     |                  |                  |                                   |                 |
|                                   |                                       |                                     |                  |                  |                                   |                 |
|                                   |                                       |                                     |                  |                  |                                   |                 |
|                                   |                                       |                                     |                  |                  |                                   |                 |
|                                   |                                       |                                     |                  |                  |                                   |                 |
|                                   |                                       |                                     |                  |                  |                                   |                 |
|                                   |                                       |                                     |                  |                  |                                   |                 |
|                                   |                                       |                                     |                  |                  |                                   |                 |
|                                   |                                       |                                     |                  |                  |                                   |                 |
|                                   |                                       |                                     |                  |                  |                                   |                 |
|                                   |                                       |                                     |                  |                  |                                   |                 |
|                                   |                                       |                                     |                  |                  |                                   |                 |
|                                   |                                       |                                     |                  |                  |                                   |                 |
|                                   |                                       |                                     |                  |                  |                                   |                 |
|                                   |                                       |                                     |                  |                  |                                   |                 |
|                                   |                                       |                                     |                  |                  |                                   |                 |
|                                   |                                       |                                     |                  |                  |                                   |                 |

|                                   | Project                        |                 | Job no. 22.132          |                    |                                  |                      |
|-----------------------------------|--------------------------------|-----------------|-------------------------|--------------------|----------------------------------|----------------------|
|                                   | Cales for                      |                 | _,                      |                    | Start nage no /F                 | Revision             |
| BSC                               |                                | WIND L          | OADING                  |                    | 1                                |                      |
| BARSBY STRUCTURAL<br>CONSULTANTS  | Calcs by                       | Calcs date      | Checked by Checked date |                    | Approved by                      | Approved date        |
| Barsby Structural Consultants Ltd | MB                             | 21/10/2022      |                         |                    |                                  |                      |
|                                   | 1                              | 1               | 1                       |                    | -1                               | - <b>I</b>           |
| WIND LOADING (BS6399)             |                                |                 |                         |                    |                                  |                      |
| In accordance with BS6399         |                                |                 |                         |                    |                                  |                      |
|                                   |                                |                 |                         | ~                  | Tedds calcula                    | ation version 3.0.18 |
| T                                 |                                |                 |                         | $\$                | Ţ                                |                      |
|                                   |                                |                 |                         |                    | $ \ge $                          |                      |
|                                   |                                |                 |                         |                    | 63                               |                      |
| 89                                |                                |                 |                         |                    | - 66                             |                      |
|                                   |                                |                 |                         |                    |                                  |                      |
|                                   |                                |                 |                         |                    |                                  |                      |
| <u> </u>                          | 15000                          |                 |                         | 6800               | ↓ ⊻                              |                      |
| <b>-</b>                          | Plan                           |                 |                         | Elevation          | •1                               |                      |
|                                   |                                |                 |                         |                    |                                  |                      |
| Building data                     |                                |                 |                         |                    |                                  |                      |
| Type of roof                      | Duopitch                       |                 |                         |                    |                                  |                      |
| Length of building                | L = <b>15000</b> mm            |                 | Width of buildi         | ng                 | W = <b>6800</b> mr               | n                    |
| Pitch of roof                     | αο = <b>30.0</b> deg           |                 |                         |                    |                                  |                      |
| Reference height                  | Hr = <b>6663</b> mm            |                 |                         |                    |                                  |                      |
| Dynamic classification            |                                |                 |                         |                    |                                  |                      |
| Building type factor (table 1)    | Kb = <b>0.5</b>                |                 | Dynamic augn            | nentation factor ( | 1.6.1) Cr = <b>(</b>             | 0.01                 |
| Site wind speed                   |                                |                 |                         |                    |                                  |                      |
| Location                          | Oxford                         |                 | Basic wind spe          | eed                | Vb = <b>19.7</b> m/s             | 6                    |
| Site altitude                     | ∆s <b>= 90</b> m               |                 | Upwind dist fro         | om sea to site     | d <sub>sea</sub> = <b>110</b> km | ı                    |
| Direction factor                  | Sd = <b>0.85</b>               |                 | Seasonal facto          | or                 | Ss = 1.00                        |                      |
| Probability factor                | Sp = <b>1.00</b>               |                 | Critical gap be         | tween buidlings    | g = <b>5000</b> mm               | 1                    |
| Altitude fector                   | 6 1 00                         |                 | Cite wind on a          | a d                | \/ <b>19.2</b> m/s               |                      |
| Terrain category                  | $S_a = 1.09$                   |                 | Site wind spee          | eu                 | vs = 10.3 11/5                   | >                    |
| Displacement height               | $H_d = 0$ mm                   |                 |                         |                    |                                  |                      |
| The velocity pressure for the     | windward faco                  | of the building | with a 0 door           | oo wind is to bo   | considered a                     | e 1 part ac          |
| the height h is less than b (cl   | .2.2.3.2)                      | or the building | with a v degree         |                    | considered a                     | s i part as          |
| Dynamic pressure - windwar        | d wall - Wind 0                | deq             |                         |                    |                                  |                      |
| Reference height                  | He = <b>4700</b> mm            | 5               |                         |                    |                                  |                      |
| Fetch factor (Table 22)           | Sc = <b>0.866</b>              |                 | Turbulence fac          | ctor (Table 22)    | St = 0.194                       |                      |
| Gust peak factor                  | gt = <b>3.44</b>               |                 | Terrain and bu          | uilding factor     | Sb = 1.44                        |                      |
| Effective wind speed              | Ve = <b>26.4</b> m/s           |                 | Dynamic press           | sure               | qs = <b>0.426</b> kN             | J/m <sup>2</sup>     |
| Dynamic pressure - roof           |                                |                 |                         |                    |                                  |                      |
| Reference height                  | He = <b>6663</b> mm            |                 |                         |                    |                                  |                      |
| Fetch factor (Table 22)           | Sc = <b>0.921</b>              |                 | Turbulence fac          | ctor (Table 22)    | St = <b>0.187</b>                |                      |
| Gust peak factor                  | $g_t = 3.44$                   |                 | I errain and bu         | uilding factor     | Sb = 1.51                        | 1/100 2              |
| Effective wind speed              | Ve = 27.7 m/s                  |                 | Dynamic press           | sure               | qs = <b>0.469</b> kN             | v/m²                 |
| Size effect factors               |                                |                 | _                       |                    | _                                |                      |
| Diag dim for gablewall            | a <sub>eg</sub> = <b>8.3</b> m |                 | Exte size effect        | ct factor          | Caeg = <b>0.962</b>              |                      |
| Diag dim for side wall            | aes = <b>15.7</b> m            |                 | Exte size effec         | ct factor          | Caes = <b>0.914</b>              |                      |
| Valuma for int size offect        | der = 15.5  M                  |                 | Exte size effec         |                    | Caer = 0.915                     |                      |
| volume for int size effect        | Vi <b>= U.1</b> M <sup>3</sup> |                 | Diag dim for in         | it size effect     | ai <b>= 5.0</b> M                |                      |

|                                                                  | \$ <u>`</u>                                          | Project Job no. 15 WILLOW GROVE, SOUTH CERNEY 22.132      |                            |                   |                                            |            | 2.132                            |                                   |  |
|------------------------------------------------------------------|------------------------------------------------------|-----------------------------------------------------------|----------------------------|-------------------|--------------------------------------------|------------|----------------------------------|-----------------------------------|--|
| RC                                                               | $\mathbf{C}$                                         | Calcs for                                                 | Calcs for                  |                   |                                            |            |                                  | Start page no./Revision           |  |
|                                                                  |                                                      |                                                           | WIND LOADING               |                   |                                            |            |                                  | 2                                 |  |
| Barsby Structural                                                | I Consultants Ltd                                    | Calcs by<br>MB                                            | Calcs date 21/10/2022      | Checked b         | by Check                                   | ed date    | Approved by                      | Approved date                     |  |
| Internal size e                                                  | effect factor                                        | Cai = <b>1.000</b>                                        |                            |                   |                                            |            |                                  |                                   |  |
| Pressures ar                                                     | nd forces                                            |                                                           |                            |                   |                                            |            |                                  |                                   |  |
| Net pressure                                                     |                                                      |                                                           | $p = q_s \times c_{pe}$    | $\times$ Cae - q  | s × Cpi × Cai                              |            |                                  |                                   |  |
| Net force                                                        |                                                      |                                                           | $F_w = p \times A_{re}$    | əf                |                                            |            |                                  |                                   |  |
| Roof load ca                                                     | se 1 - Wind 0, Cpi                                   | 0.20, -Cpe                                                |                            |                   |                                            |            |                                  |                                   |  |
| Zone                                                             | Ext pressure coefficient, cpe                        | Dynamic<br>pressure, q₅<br>(kN/m²)                        | External siz<br>factor, Ca | Ze                | Net<br>Pressure,<br>p (kN/m²)              | Ar<br>Aref | ea,<br>(m²)                      | Net force,<br>F <sub>w</sub> (kN) |  |
| A (-ve)                                                          | -0.50                                                | 0.47                                                      | 0.915                      |                   | -0.31                                      | 20         | .51                              | -6.32                             |  |
| B (-ve)                                                          | -0.50                                                | 0.47                                                      | 0.915                      |                   | -0.31                                      | 2.         | 58                               | -0.79                             |  |
| C (-ve)                                                          | -0.20                                                | 0.47                                                      | 0.915                      |                   | -0.18                                      | 35         | .81                              | -6.43                             |  |
| E (-ve)                                                          | -0.90                                                | 0.47                                                      | 0.915                      |                   | -0.48                                      | 20         | .51                              | -9.83                             |  |
| F (-ve)                                                          | -0.50                                                | 0.47                                                      | 0.915                      |                   | -0.31                                      | 2.         | 58                               | -0.79                             |  |
| G (-ve)                                                          | -0.50                                                | 0.47                                                      | 0.915                      |                   | -0.31                                      | 35         | .81                              | -11.03                            |  |
| Total vertical                                                   | net force                                            | F <sub>w,v</sub> = <b>-30.48</b> kN                       |                            | Total hor         | rizontal net fo                            | rce        | F <sub>w,h</sub> = <b>4.06</b> k | N                                 |  |
| Walls load ca                                                    | ase 1 - Wind 0, cp                                   | i <b>0.20, -C</b> pe                                      | _                          |                   |                                            |            |                                  |                                   |  |
| Zone                                                             | Ext pressure coefficient, cpe                        | Dynamic<br>pressure, q₅<br>(kN/m²)                        | External siz<br>factor, Ca | Z <b>E</b><br>le  | Net<br>Pressure,<br>p (kN/m <sup>2</sup> ) | Ar<br>Aref | ea,<br>(m²)                      | Net force,<br>F <sub>w</sub> (kN) |  |
| A                                                                | -1.45                                                | 0.47                                                      | 0.962                      |                   | -0.75                                      | 14         | .58                              | -10.90                            |  |
| В                                                                | -0.85                                                | 0.47                                                      | 0.962                      |                   | -0.48                                      | 24         | .06                              | -11.48                            |  |
| w                                                                | 0.81                                                 | 0.43                                                      | 0.914                      |                   | 0.23                                       | 70         | .50                              | 16.31                             |  |
| I                                                                | -0.50                                                | 0.43                                                      | 0.914                      |                   | -0.28                                      | 70         | .50                              | -19.74                            |  |
| Overall loadi<br>Leeward force<br>Overall loadin<br>Roof load ca | ing<br>e overall<br>ng overall<br>se 2 - Wind 0. c⋼i | Fı = -19.7 kN<br>F <sub>w.w</sub> = 34.4 kN<br>-0.3. +Cpe |                            | Windwar           | rd force overa                             | II         | F <sub>w</sub> = <b>16.3</b> kN  | I                                 |  |
|                                                                  |                                                      | Dynamic                                                   |                            |                   | Net                                        |            |                                  |                                   |  |
| Zone                                                             | Ext pressure<br>coefficient, cpe                     | pressure, qs<br>(kN/m²)                                   | External siz               | Z <b>E</b><br>IIE | Pressure,<br>p (kN/m <sup>2</sup> )        | Ar<br>Aref | ea,<br>(m²)                      | Net force,<br>F <sub>w</sub> (kN) |  |
| A (+ve)                                                          | 0.80                                                 | 0.47                                                      | 0.915                      |                   | 0.48                                       | 20         | .51                              | 9.91                              |  |
| B (+ve)                                                          | 0.50                                                 | 0.47                                                      | 0.915                      |                   | 0.35                                       | 2.         | 58                               | 0.91                              |  |
| C (+ve)                                                          | 0.40                                                 | 0.47                                                      | 0.915                      |                   | 0.31                                       | 35         | .81                              | 11.17                             |  |
| E (+ve)                                                          | -0.90                                                | 0.47                                                      | 0.915                      |                   | -0.25                                      | 20         | .51                              | -5.03                             |  |
| F (+ve)                                                          | -0.50                                                | 0.47                                                      | 0.915                      |                   | -0.07                                      | 2.         | 58                               | -0.19                             |  |
| G (+ve)                                                          | -0.50                                                | 0.47                                                      | 0.915                      |                   | -0.07                                      | 35         | .81                              | -2.64                             |  |
| Total vertical<br>Walls load ca                                  | net force<br>ase 2 - Wind 0, c <sub>P</sub> i        | F <sub>w,v</sub> = 12.25 kN<br>i -0.3, +C <sub>Pe</sub>   |                            | Total hor         | rizontal net fo                            | rce        | F <sub>w,h</sub> = 14.93         | kN                                |  |



|                                   | Project   |            |            |              | Job no.                 |               |
|-----------------------------------|-----------|------------|------------|--------------|-------------------------|---------------|
| النصآ (                           | 15 \      | 22.132     |            |              |                         |               |
|                                   | Calcs for |            |            |              | Start page no./Revision |               |
|                                   | В         | 1          |            |              |                         |               |
| BARSBY STRUCTURAL<br>CONSULTANTS  | Calcs by  | Calcs date | Checked by | Checked date | Approved by             | Approved date |
| Barsby Structural Consultants Ltd | MB        | 21/10/2022 |            |              |                         |               |

Tedds calculation version 1.0.37

# ANALYSIS

Geometry



# Materials

| Name           | Density | Youngs Modulus     | Shear Modulus | Thermal Coefficient |
|----------------|---------|--------------------|---------------|---------------------|
|                | (kg/m³) | kN/mm <sup>2</sup> | kN/mm²        | °C <sup>-1</sup>    |
| Steel (BS5950) | 7850    | 205                | 78.8          | 0.000012            |

# Sections

| Name          | Area  | Moment | of inertia | Shear area parallel to |       |  |
|---------------|-------|--------|------------|------------------------|-------|--|
|               |       | Major  | Minor      | Minor                  | Major |  |
|               | (cm²) | (cm⁴)  | (cm⁴)      | (cm²)                  | (cm²) |  |
| UB 254x146x37 | 47.2  | 5536.8 | 570.6      | 16.1                   | 28.7  |  |
| UB 178x102x19 | 24.3  | 1356   | 136.7      | 8.5                    | 14.4  |  |

# Nodes

| Node | Co-orc | linates | Freedom |       |      | Coordinate system |       | Spring |        |       |
|------|--------|---------|---------|-------|------|-------------------|-------|--------|--------|-------|
|      | Х      | Z       | Х       | Z     | Rot. | Name              | Angle | Х      | Z      | Rot.  |
|      | (m)    | (m)     |         |       |      |                   | (°)   | (kN/m) | (kN/m) | kNm/° |
| 1    | 0      | 0       | Fixed   | Fixed | Free |                   | 0     | 0      | 0      | 0     |
| 2    | 5.6    | 0       | Fixed   | Fixed | Free |                   | 0     | 0      | 0      | 0     |
| 3    | 0      | 2.5     | Free    | Free  | Free |                   | 0     | 0      | 0      | 0     |
| 4    | 5.6    | 2.5     | Free    | Free  | Free |                   | 0     | 0      | 0      | 0     |

# Elements

| Element | Length | Nodes |     | Section       | Material       | Releases |        | Rotated |  |
|---------|--------|-------|-----|---------------|----------------|----------|--------|---------|--|
|         | (m)    | Start | End |               |                | Start    | End    | Axial   |  |
|         |        |       |     |               |                | moment   | moment |         |  |
| 1       | 2.5    | 1     | 3   | UB 178x102x19 | Steel (BS5950) | Fixed    | Fixed  | Fixed   |  |
| 2       | 2.5    | 2     | 4   | UB 178x102x19 | Steel (BS5950) | Fixed    | Fixed  | Fixed   |  |
| 3       | 5.6    | 3     | 4   | UB 254x146x37 | Steel (BS5950) | Fixed    | Fixed  | Fixed   |  |

# Members

| Name    | Elements |     |  |  |  |
|---------|----------|-----|--|--|--|
|         | Start    | End |  |  |  |
| Member1 | 1        | 1   |  |  |  |

|                                   | Project                     |            |            |              | Job no.                 |               |
|-----------------------------------|-----------------------------|------------|------------|--------------|-------------------------|---------------|
| اللما (                           | 15                          | 22.132     |            |              |                         |               |
|                                   | Calcs for                   |            |            |              | Start page no./Revision |               |
|                                   | B3 + C3 SWAY FRAME ANALYSIS |            |            |              |                         | 2             |
| BARSBY STRUCTURAL<br>CONSULTANTS  | Calcs by                    | Calcs date | Checked by | Checked date | Approved by             | Approved date |
| Barsby Structural Consultants Ltd | MB                          | 21/10/2022 |            |              |                         |               |

| Name    | Elements |     |  |  |
|---------|----------|-----|--|--|
|         | Start    | End |  |  |
| Member2 | 2        | 2   |  |  |
| Member3 | 3        | 3   |  |  |

Loading

Self weight included





Member2

| LUAU CUMPINALIUM JACIUS |
|-------------------------|
|-------------------------|

Member

₩X

| Load combination                      | Self Weight | Permanent | Imposed | Wind |
|---------------------------------------|-------------|-----------|---------|------|
| 1.4D + 1.6I + 1.6RI (Strength)        | 1.40        | 1.40      | 1.60    |      |
| 1.0D + 1.0I + 1.0RI (Service)         | 1.00        | 1.00      | 1.00    |      |
| 1.2D + 1.2I + 1.2RI + 1.2W (Strength) | 1.20        | 1.20      | 1.20    | 1.20 |
| 1.0D + 1.0I + 1.0RI + 1.0W (Service)  | 1.00        | 1.00      | 1.00    | 1.00 |
| 1.0D + 1.4W (Strength)                | 1.00        | 1.00      |         | 1.40 |

# Node loads

| Node | Load case | Fo   | Moment |       |
|------|-----------|------|--------|-------|
|      |           | x    | Z      |       |
|      |           | (kN) | (kN)   | (kNm) |
| 3    | Wind      | 6    | 0      | 0     |

## Member Loads

| Member  | Load case | Load Type | Orientation | Description                             |
|---------|-----------|-----------|-------------|-----------------------------------------|
| Member3 | Permanent | VDL       | GlobalZ     | 3.28 kN/m at 0 m to 5.6 kN/m at 2.8 m   |
| Member3 | Permanent | VDL       | GlobalZ     | 5.6 kN/m at 2.8 m to 3.28 kN/m at 5.6 m |
| Member3 | Imposed   | UDL       | GlobalZ     | 2.48 kN/m                               |





|                                   | Project                       |            |            |              | Job no.           |               |
|-----------------------------------|-------------------------------|------------|------------|--------------|-------------------|---------------|
| النصآ (                           | 15 WILLOW GROVE, SOUTH CERNEY |            |            |              | 22.132            |               |
|                                   | Calcs for                     |            |            |              | Start page no./Re | vision        |
|                                   | B3 + C3 SWAY FRAME ANALYSIS   |            |            |              | 6                 |               |
| BARSBY STRUCTURAL<br>CONSULTANTS  | Calcs by                      | Calcs date | Checked by | Checked date | Approved by       | Approved date |
| Barsby Structural Consultants Ltd | MB                            | 21/10/2022 |            |              |                   |               |



1.2D + 1.2I + 1.2RI + 1.2W (Strength) - Local node reactions - Node: (Horiz (kN), Vert (kN), Mom (kNm))



1.0D + 1.0I + 1.0RI + 1.0W (Service) - Local node reactions - Node: (Horiz (kN), Vert (kN), Mom (kNm))













|                                   | Project<br>15 V                         | VILLOW GRO  | Job no. 22.132                                     |                                                       |                                                   |                   |  |  |
|-----------------------------------|-----------------------------------------|-------------|----------------------------------------------------|-------------------------------------------------------|---------------------------------------------------|-------------------|--|--|
|                                   | Calcs for                               |             | Start page no./R                                   | Start page no./Revision                               |                                                   |                   |  |  |
|                                   |                                         |             | J1                                                 |                                                       | 2                                                 |                   |  |  |
|                                   | Calcs by                                | Calcs date  | Checked by Checked date                            |                                                       | Approved by Approved date                         |                   |  |  |
|                                   | MB                                      | 21/10/2022  |                                                    |                                                       | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,           |                   |  |  |
| Barsby Structural Consultants Ltd |                                         |             |                                                    |                                                       |                                                   |                   |  |  |
|                                   |                                         |             |                                                    |                                                       |                                                   |                   |  |  |
| Check shear stress                |                                         |             |                                                    |                                                       |                                                   |                   |  |  |
| Permissible shear stress          | $\tau_{adm} = 0.921 \text{ N/m}$        | nm²         | Applied shear s                                    | tress                                                 | τmax = <b>0.287</b> N                             | l/mm²             |  |  |
|                                   |                                         |             | PASS - Applied shear stres                         |                                                       | s within permissible limits                       |                   |  |  |
| Chack bearing stress              |                                         |             |                                                    |                                                       |                                                   |                   |  |  |
|                                   | 2 025 N                                 | 1/100 100 2 | Anniedhearing                                      |                                                       |                                                   |                   |  |  |
| Permissible bearing stress        | $\sigma_{c_{adm}} = 3.025 \text{ N}$    | I/mm²       | Applied bearing                                    | stress                                                | $\sigma_{c_{max}} = 0.746 \text{ N/mm}^2$         |                   |  |  |
|                                   |                                         |             | PASS - Applied bearing stres                       |                                                       | s within permissible limits                       |                   |  |  |
| Check deflection                  |                                         |             |                                                    |                                                       |                                                   |                   |  |  |
| Permissible deflection            | δ <sub>adm</sub> = <b>9.900</b> mm      |             | Actual deflectio                                   | n                                                     | δ = <b>6.760</b> mm                               |                   |  |  |
|                                   |                                         |             | PASS - A                                           | Actual deflectio                                      | n within permissible limits                       |                   |  |  |
|                                   |                                         |             | 17100 7                                            |                                                       | in within point                                   |                   |  |  |
| Consider short term loads         |                                         |             |                                                    |                                                       |                                                   |                   |  |  |
| Design bending moment             | M = <b>1.514</b> kNm                    |             | Design shear force                                 |                                                       | V = <b>1.835</b> kN                               |                   |  |  |
| Design support reaction           | R = <b>1.835</b> kN                     |             | Design deflection                                  |                                                       | δ = <b>6.706</b> mm                               |                   |  |  |
| Check bending stress              |                                         |             |                                                    |                                                       |                                                   |                   |  |  |
| Dermissible handing stress        | - 0.460 M                               | 1/20.002    | Applied bonding                                    | a atraca                                              | - 5 200                                           | N/mm <sup>2</sup> |  |  |
| Permissible bending stress        | Om_adm = 9.109 1                        | N/111112    | Applied bending stress                             |                                                       | Gm_max = <b>5.306</b> N/IIII1 <sup>2</sup>        |                   |  |  |
|                                   |                                         |             | PASS - Applied                                     | >> - Applied bending stress within permissible limits |                                                   |                   |  |  |
| Check shear stress                |                                         |             |                                                    |                                                       |                                                   |                   |  |  |
| Permissible shear stress          | τadm = <b>1.106</b> N/n                 | nm²         | Applied shear stress                               |                                                       | τ <sub>max</sub> = <b>0.314</b> N/mm <sup>2</sup> |                   |  |  |
|                                   |                                         |             | PASS - Applied shear stress within permissible lin |                                                       |                                                   | issible limits    |  |  |
|                                   |                                         |             |                                                    |                                                       |                                                   |                   |  |  |
| Check bearing stress              |                                         |             |                                                    |                                                       |                                                   |                   |  |  |
| Permissible bearing stress        | $\sigma_{c_adm} = 3.630 \text{ N/mm}^2$ |             | Applied bearing stress                             |                                                       | σc_max = <b>0.816</b> N/mm <sup>2</sup>           |                   |  |  |
|                                   |                                         |             | PASS - Applied bearing stres                       |                                                       | ess within permissible limits                     |                   |  |  |
| Check deflection                  |                                         |             |                                                    |                                                       |                                                   |                   |  |  |
| Permissible deflection            | δ <sub>adm</sub> = <b>9.900</b> mm      | า           | Actual deflection                                  |                                                       | δ = <b>6.706</b> mm                               |                   |  |  |
|                                   |                                         |             | PASS - Actual deflection                           |                                                       | n within permissible limits                       |                   |  |  |
|                                   |                                         |             | 17.00 7                                            |                                                       |                                                   |                   |  |  |











3300

mm





|                                 | Project                             |                       |                                     |                         | Job no.                        |                   |
|---------------------------------|-------------------------------------|-----------------------|-------------------------------------|-------------------------|--------------------------------|-------------------|
|                                 | 15 W                                | /ILLOW GROV           | E, SOUTH CER                        | NEY                     | 22.                            | 132               |
|                                 | Calcs for                           | -                     | Г2                                  |                         | Start page no./Re              | evision<br>2      |
| rsby Structural Consultants Ltd | Calcs by<br>MB                      | Calcs date 21/10/2022 | Checked by                          | Checked date            | Approved by                    | Approved date     |
| Total load on beam              | W <sub>tot</sub> = <b>8.172</b> kN  |                       |                                     |                         | •                              | •                 |
| Reactions at support A          | Ra_max = <b>4.156</b> k             | N                     | R <sub>A_min</sub> = <b>4.156</b> k | N                       |                                |                   |
| Unfactored dead load reaction   | at support A                        | $R_{A_{Dead}} = 2$    | .280 kN                             |                         |                                |                   |
| Unfactored imposed load react   | ion at support A                    | RA_Imposed =          | 1.876 kN                            |                         |                                |                   |
| Reactions at support B          | R <sub>B_max</sub> = <b>4.016</b> k | N                     | R <sub>B_min</sub> = <b>4.016</b> k | N                       |                                |                   |
| Unfactored dead load reaction   | at support B                        | $R_{B_{Dead}} = 2$    | .207 kN                             |                         |                                |                   |
| Unfactored imposed load react   | ion at support B                    | $R_{B_{mposed}} =$    | 1.809 kN                            |                         |                                |                   |
|                                 | → 50 ←                              |                       |                                     |                         |                                |                   |
| Timber section details          |                                     |                       |                                     |                         |                                |                   |
| Breadth of section              | b = <b>70</b> mm                    |                       | Depth of section                    | ۱                       | h = <b>195</b> mm              |                   |
| Number of sections              | N = <b>2</b>                        |                       | Breadth of bear                     | n                       | bb = <b>140</b> mm             |                   |
| Timber strength class           | C24                                 |                       |                                     |                         |                                |                   |
| Member details                  |                                     |                       |                                     |                         |                                |                   |
| Service class of timber         | 2                                   |                       | Load duration                       |                         | Medium term                    |                   |
| Length of span                  | L <sub>s1</sub> = <b>3300</b> mm    |                       |                                     |                         |                                |                   |
| Length of bearing               | L <sub>b</sub> = <b>50</b> mm       |                       |                                     |                         |                                |                   |
| Lateral support - cl.2.10.8     |                                     |                       |                                     |                         |                                |                   |
| Permiss.depth-to-breadth ratio  | 4.00                                |                       | Actual depth-to-                    | breadth ratio           | 1.39                           |                   |
|                                 |                                     |                       |                                     | PASS - I                | _ateral suppor                 | t is adequate     |
| Check bearing stress            |                                     |                       |                                     |                         |                                |                   |
| Permissihle hearing stress      | σ. adm - 3 300 NI                   | mm <sup>2</sup>       | Applied bearing                     | stress                  | σc a – <b>Ο 504</b> Ν          | l/mm <sup>2</sup> |
| DAC                             | S - Applied comp                    | ressive stress        | s is less than ne                   | oncoo<br>Armissihla con | nressive stree                 | s at hearing      |
| FAS.                            |                                     |                       |                                     |                         | 101033100 31103                | s at bearing      |
| Bending parallel to grain       |                                     |                       |                                     |                         |                                |                   |
| Permissible bending stress      | σm_adm = <b>10.813</b>              | N/mm <sup>2</sup>     | Applied bending                     | g stress                | σm_a = <b>4.385</b> Ν          | N/mm <sup>2</sup> |
|                                 | F                                   | ASS - Applied         | I bending stress                    | s is less than p        | permissible be                 | nding stress      |
| Shear parallel to grain         |                                     |                       |                                     |                         |                                |                   |
| Permissible shear stress        | $\tau_{adm} = 0.976 \text{ N/m}$    | m <sup>2</sup>        | Applied shear s                     | tress                   | $\tau_{a} = 0.228 \text{ N/n}$ | nm²               |
|                                 |                                     | PASS - Ap             | oplied shear str                    | ess is less tha         | in permissible                 | shear stress      |
| Deflection                      |                                     |                       |                                     |                         |                                |                   |
| Permissible deflection          | δ <sub>adm</sub> = <b>9.900</b> mm  |                       | Total deflection                    |                         | δa = <b>6.688</b> mm           | ı                 |
| -                               |                                     | PA                    | ASS - Total defle                   | ection is less t        | han permissib                  | le deflection     |
|                                 |                                     |                       |                                     |                         | ,                              |                   |
|                                 |                                     |                       |                                     |                         |                                |                   |
|                                 |                                     |                       |                                     |                         |                                |                   |
|                                 |                                     |                       |                                     |                         |                                |                   |
|                                 |                                     |                       |                                     |                         |                                |                   |

|                                   | Project                       |            | Job no.    |              |                         |               |
|-----------------------------------|-------------------------------|------------|------------|--------------|-------------------------|---------------|
| النصار ا                          | 15 WILLOW GROVE, SOUTH CERNEY |            |            |              | 22.132                  |               |
|                                   | Calcs for                     |            |            |              | Start page no./Revision |               |
|                                   |                               | E          | 1          |              |                         |               |
| BARSBY STRUCTURAL<br>CONSULTANTS  | Calcs by                      | Calcs date | Checked by | Checked date | Approved by             | Approved date |
| Barsby Structural Consultants Ltd | MB                            | 16/11/2022 |            |              |                         |               |



|                                                                  | Project<br>15 V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | WILLOW GROV                     | E, SOUTH CEF           | RNEY                              | Job no.<br>22                   | Job no.<br>22.132 |  |
|------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------|------------------------|-----------------------------------|---------------------------------|-------------------|--|
| BSC                                                              | Calcs for                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | E                               | 36                     |                                   | Start page no./R                | evision<br>2      |  |
| BARSBY STRUCTURAL<br>CONSULTANTS                                 | Calcs by<br>MB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Calcs date 16/11/2022           | Checked by             | Checked date                      | Approved by                     | Approved date     |  |
|                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | <u> </u>                        |                        |                                   |                                 |                   |  |
| Maximum moment                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Mmax = <b>8.2</b>               | ٨Nm                    | Mmin =                            | <b>0</b> kNm                    |                   |  |
| Maximum shear                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Vmax = <b>28.2</b>              | kN                     | V <sub>min</sub> = <b>-9.5</b> kN |                                 |                   |  |
| Deflection                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | δ <sub>max</sub> = <b>2.4</b> n | nm                     | $\delta min = 0$                  | ) mm                            |                   |  |
| Maximum reaction at support A                                    | A Contraction of the second seco | RA_max = <b>28</b>              | . <b>2</b> kN          | RA_min =                          | = <b>28.2</b> kN                |                   |  |
| Unfactored dead load reaction                                    | at support A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | RA_Dead = 17                    | <b>7.1</b> kN          |                                   |                                 |                   |  |
| Unfactored imposed load react                                    | ion at support A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $R_{A_{Imposed}} =$             | <b>2.7</b> kN          |                                   |                                 |                   |  |
| Maximum reaction at support E                                    | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | RB_max = 9.5                    | i kN                   | RB_min =                          | = <b>9.5</b> kN                 |                   |  |
| Unfactored dead load reaction                                    | at support B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $R_{B_{Dead}} = 3.$             | <b>7</b> kN            |                                   |                                 |                   |  |
| Unfactored imposed load react                                    | ion at support B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $R_{B_{Imposed}} =$             | <b>2.7</b> kN          |                                   |                                 |                   |  |
| Section details                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                 |                        |                                   |                                 |                   |  |
| Section type                                                     | UKB 127x76x13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 3 (Tata Steel Ac                | lvance)                |                                   | Steel grade                     | S275              |  |
| Classification of cross section<br>Tensile strain coefficient    | ons - Section 3.5<br>$\varepsilon = 1.00$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                 | →I<br>Section classif  | cation                            | Plastic                         |                   |  |
| Shear capacity - Section 4.2.                                    | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                 |                        |                                   |                                 |                   |  |
| Design shear force                                               | F <sub>v</sub> = <b>28.2</b> kN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                 | Design shear r         | esistance                         | P <sub>v</sub> = <b>83.8</b> kN |                   |  |
|                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | PAS                             | S - Design she         | ear resistance e                  | xceeds desig                    | n shear force     |  |
| Moment capacity - Section 4                                      | .2.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                 |                        |                                   |                                 |                   |  |
| Design bending moment                                            | M = <b>8.2</b> kNm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                 | Moment capac           | ity low shear                     | Mc = <b>23.1</b> kNr            | n                 |  |
| Buckling resistance moment                                       | - Section 4.3.6.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1                               |                        |                                   |                                 |                   |  |
| Buckling resistance moment                                       | Mb = <b>15.1</b> kNm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                 | Mb / MLT = <b>17.9</b> | ) kNm                             |                                 |                   |  |
|                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | PASS - Bucklir                  | ng resistance          | moment exceed                     | ls design ben                   | ding momen        |  |
| Check vertical deflection - Se<br>Consider deflection due to dea | ection 2.5.2<br>d and imposed lo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ads                             |                        |                                   |                                 |                   |  |
| Limiting deflection                                              | διim = <b>5.694</b> mm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                 | Maximum defle          | ection                            | δ = <b>2.365</b> mm             | 1                 |  |
| č                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | PAS                             | S - Maximum d          | leflection does                   | not exceed de                   | eflection limi    |  |
|                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                 |                        |                                   |                                 |                   |  |

|                                   | Project                       |            | Job no.                 |              |             |               |
|-----------------------------------|-------------------------------|------------|-------------------------|--------------|-------------|---------------|
| النصار ا                          | 15 WILLOW GROVE, SOUTH CERNEY |            |                         |              | 22.132      |               |
|                                   | Calcs for                     |            | Start page no./Revision |              |             |               |
|                                   |                               | 1          |                         |              |             |               |
| BARSBY STRUCTURAL<br>CONSULTANTS  | Calcs by                      | Calcs date | Checked by              | Checked date | Approved by | Approved date |
| Barsby Structural Consultants Ltd | MB                            | 16/11/2022 |                         |              |             |               |



|                                  |                                 |                                |                |                                       | 1                                |                 |  |
|----------------------------------|---------------------------------|--------------------------------|----------------|---------------------------------------|----------------------------------|-----------------|--|
|                                  | Project                         |                                |                | RNEY                                  | 22.132                           |                 |  |
|                                  | Cales for                       |                                | 2,00002        |                                       | Start page po /E                 | Povision        |  |
| HSC.                             |                                 | E                              | 37             |                                       | Start page 110./F                | 2               |  |
| BARSBY STRUCTURAL                | Calco by                        | Calco data                     | Chackad by     | Chockod data                          | Approved by                      |                 |  |
| CONSULTANTS                      | MB                              | 16/11/2022                     | Checked by     | Checked date                          | Approved by                      | Approved date   |  |
| arsby Structural Consultants Ltd |                                 |                                |                |                                       |                                  |                 |  |
| Analysis results                 |                                 |                                |                |                                       |                                  |                 |  |
| Maximum moment                   |                                 | Mmax - 16 3                    | kNm            | M <sub>min</sub> —                    | <b>0</b> kNm                     |                 |  |
| Maximum shear                    |                                 | Vmax - 36.8                    | kN             | Vmin =                                | -15 7 kN                         |                 |  |
| Deflection                       |                                 | $\delta_{max} = 7.8 \text{ r}$ | nm             | $\delta_{\min} = 0$                   | ) mm                             |                 |  |
| Maximum reaction at support A    |                                 | RA max - 36                    | 8 kN           |                                       | – 36 8 kN                        |                 |  |
| Unfactored dead load reaction a  | at support A                    | $R_A Dead = 1$                 | 9.3 kN         | · · · · · · · · · · · · · · · · · · · |                                  |                 |  |
| Unfactored imposed load reacti   | on at support A                 | RA Imposed =                   | 6.1 kN         |                                       |                                  |                 |  |
| Maximum reaction at support B    |                                 | RB max = 15                    | .7 kN          | RB min :                              | = <b>15.7</b> kN                 |                 |  |
| Unfactored dead load reaction a  | at support B                    | $R_B D_{ead} = 4$              | . <b>3</b> kN  | _                                     |                                  |                 |  |
| Unfactored imposed load reacti   | on at support B                 | RB_Imposed =                   | 6.1 kN         |                                       |                                  |                 |  |
| Section details                  |                                 |                                |                |                                       |                                  |                 |  |
| Section type                     | UKB 152x89x1                    | 6 (Tata Steel A                | dvance)        |                                       | Steel grade                      | S275            |  |
|                                  | 1.7                             | - (                            | ,              |                                       | g                                |                 |  |
|                                  | <b>→ ★</b>                      |                                |                |                                       |                                  |                 |  |
|                                  | 1                               |                                |                |                                       |                                  |                 |  |
|                                  |                                 |                                |                |                                       |                                  |                 |  |
|                                  |                                 |                                |                |                                       |                                  |                 |  |
|                                  |                                 |                                |                |                                       |                                  |                 |  |
|                                  | 1                               |                                |                |                                       |                                  |                 |  |
|                                  | - 152                           |                                | 4.5            |                                       |                                  |                 |  |
|                                  |                                 |                                |                |                                       |                                  |                 |  |
|                                  |                                 |                                |                |                                       |                                  |                 |  |
|                                  |                                 |                                |                |                                       |                                  |                 |  |
|                                  | -1.7                            | 一一人                            |                |                                       |                                  |                 |  |
|                                  | ± ±                             |                                |                |                                       |                                  |                 |  |
|                                  | Т                               | 00.7                           | .1             |                                       |                                  |                 |  |
|                                  |                                 | 4 58.7                         | •              |                                       |                                  |                 |  |
|                                  |                                 |                                |                |                                       |                                  |                 |  |
| Classification of cross sectio   | ns - Section 3.5                |                                |                |                                       |                                  |                 |  |
| Tensile strain coefficient       | ε <b>= 1.00</b>                 |                                | Section classi | ification                             | Plastic                          |                 |  |
| Shear capacity - Section 4.2.3   | 3                               |                                |                |                                       |                                  |                 |  |
| Design shear force               | F <sub>v</sub> = <b>36.8</b> kN |                                | Design shear   | resistance                            | P <sub>v</sub> = <b>113.2</b> kM | N               |  |
|                                  |                                 | PAS                            | S - Design sh  | ear resistance e                      | exceeds desig                    | n shear force   |  |
| Moment capacity - Section 4.     | 2.5                             |                                |                |                                       |                                  |                 |  |
| Design bending moment            | M = <b>16.2</b> kNm             |                                | Moment capa    | city low shear                        | Mc = <b>33.9</b> kN              | m               |  |
| Buckling resistance moment       | - Section 136                   | 1                              |                | ,                                     |                                  |                 |  |
| Buckling resistance moment       | - Section 4.3.0                 | •                              | Mb / mt - 16   | 8 kNm                                 |                                  |                 |  |
| Bucking resistance moment        |                                 | PASS - Buckli                  | na resistance  | moment exceed                         | ts design ben                    | dina moment     |  |
|                                  |                                 |                                | ig i colorance |                                       | as acsign bell                   |                 |  |
| Check vertical deflection - Se   | ction 2.5.2                     | a da                           |                |                                       |                                  |                 |  |
| Consider deflection due to dead  | and imposed lo                  | ads                            |                |                                       |                                  |                 |  |
| Limiting deflection              | ðlim <b>= 9.444</b> mm          |                                | Maximum def    | lection                               | $\delta = 7.842 \text{ mm}$      |                 |  |
|                                  |                                 | PAS                            | S - Maximum    | deflection does                       | not exceed d                     | eflection limit |  |
|                                  |                                 |                                |                |                                       |                                  |                 |  |
|                                  |                                 |                                |                |                                       |                                  |                 |  |
|                                  |                                 |                                |                |                                       |                                  |                 |  |