

STRUCTURAL CALCULATIONS

Project Name: Woodlands Farm

Roof Truss & Purlin Design

Date: June 2023

Job Number: MAS 1543

Revision:

07482 194381 / 01206 675110 Hadleigh, Suffolk

Contract:Woodlands FarmJob Ref:-MAS 1543Date:-June 2023

Designer:

M.A.Shutt

HJSE brief is to undertake the truss design & support only.

All Timber to be C24

<u>Please note:- After installation some deflection may occur. This is perfectly normal and is not</u> <u>a structural defect. Some re-decoration may be required</u>

Client / Architect to ensure that all members derived fit within required allowable structural zones prior to construction

<u>Notes</u>

- 1. The structural calculation herein relates only to the <u>truss design</u> as described above.
- 2. The Design is based on the information received from Whymark & Moulton Drg's + HJSE's Site Visit
- 3. The works MUST BE carried out by a competent Building Contractor in accordance with the Building Regulations, relevant British Standards and to generally accepted standards and methods of building construction.
- 4. No allowance has been made for inspecting the works on site. However, should any detail differ from the calculations or sketches the engineer must be informed.
- 5. All drawings shall be read in conjunction with all relevant Civil / Structural Engineers drawings, the project specification and Architects, Services Engineers & Landscape Architects drawings.
- 6. The Contractor shall verify all site and setting out dimensions before putting work in hand. Where dimensions are shown on the Engineers drawings, any discrepancies shall be reported to him. All dimensions are in millimeters unless otherwise noted. Dimensions must not be scaled from the Engineers drawings.
- 7. Inspections made by the Local Authority, NHBC or other Statutory bodies, shall be arranged by the Contractor to suit his programme. Any costs arising out of failing to carry out the work to the satisfaction of the Checking Authority will be the sole responsibility of the Contractor.
- 8. All information provided by others is taken in good faith as being accurate, but HJ Structural Engineers cannot, and does not, accept any liability for the detailed accuracy, errors or omissions in such information.

Contract:	Woodlands Farm
Job Ref:-	MAS 1543
Date:-	June 2023

GENERAL NOTES

- 1. The works MUST BE carried out by a competent Building Contractor in accordance with the Building Regulations, relevant British Standards and to generally accepted standards and methods of building construction.
- 2. No allowance has been made for inspecting the works on site. However, should any detail differ from the calculations or sketches the engineer must be informed.
- 3. All drawings shall be read in conjunction with all relevant Civil / Structural Engineers drawings, the project specification and Architects, Services Engineers & Landscape Architects drawings.
- 4. The Contractor shall verify all site and setting out dimensions before putting work in hand. Where dimensions are shown on the Engineers drawings, any discrepancies shall be reported to him. All dimensions are in millimeters unless otherwise noted. Dimensions must not be scaled from the Engineers drawings.
- 5. Inspections made by the Local Authority, NHBC or other Statutory bodies, shall be arranged by the Contractor to suit his programme. Any costs arising out of failing to carry out the work to the satisfaction of the Checking Authority will be the sole responsibility of the Contractor.
- 6. All information provided by others is taken in good faith as being accurate, but HJ Structural Engineers cannot, and does not, accept any liability for the detailed accuracy, errors or omissions in such information.
- 7. The drawings, design and all information contained therein are the Copyright of HJ Structural Engineers Ltd and reproduction in any form is forbidden unless permission is obtained in writing.
- 8. No holes, chases, cut-outs or the like may be formed in any beam, column, or load bearing wall unless written permission is obtained from the Engineer.
- 9. For size and location of all services refer to the Service Engineer's and Architect's drawings.
- 10. Non-structural fixings are generally not shown on the Engineer's drawings and if any such detail is indicated it must be confirmed by cross-reference to other specialists before construction.

07482 194381 / 01206 675110 Hadleigh, Suffolk

Contract:	Woodlands Farm
Job Ref:-	MAS 1543
Date:-	June 2023

ROOFING CONSTRUCTION NOTES

- 1. Timber wall plates will not be less than 50x100mm in cross section unless otherwise noted. These should be fixed inline with the latest building regulation specifications or as stated on HJSE drawings.
- 2. Wall plates should be strapped down to masonry walls at not more 1.25m centres with galvanised 30x2.5mm straps having a size of not less than 100x900mm.
- 3. All members supported on proprietary hangers must be accurately cut to provide a full contact with the base of the hanger and shall be fixed in accordance with the hanger manufacturer's instructions.
- 4. All loose timber rafters, ceiling joists, prefabricated trussed rafters and the like shall be fixed to timber wall plates, purlins etc. with suitable proprietary galvanised truss clips.

Strutting between joists is required at:-

- Joist span of 2.5m to 4.5m: one row at centre of span.
- Joist span over 4.5m: two rows equally spaced
- 5. Gable walls, Party Walls and internal partitions extending into the roof space shall be restrained at the top of ceiling joists and underside of rafter level at no more than 2.0m centres with galvanised 30x5.0mm straps having a size of not less than 100x900mm. Noggins not less than 75mm deep and timber blocking adjacent to walls shall be fixed between members at all strap locations. Straps shall be fixed between members at all strap locations. Straps shall be fixed to members/noggins with not less than 4No. 32x3.5mm galvanised or sherardised square twisted nails.
- 6. Timber members must not penetrate fire stop walls in roofs. Provide suitable galvanised metal hangers to support trusses, rafters etc., as required to avoid such penetrations.
- 7. Prefabricated trussed rafters shall be Contractor designed to the approval of the Engineer. Calculations, truss profiles and layout drawings shall be submitted for comment and no fabrication work shall commence until comments are received from the Engineer. (Allow 3 working days for comments). Please note the truss supplier shall specify all loose timber/fixings unless otherwise specified by the structural engineer. The truss designer/supplier shall design all roof trusses in line with all current building standards.
- The supplier shall be solely responsible for the design of the trussed rafters <u>including all temporary and permanent bracing</u> <u>timbers</u> except where otherwise detailed on the drawings. The main Contractor is responsible and liable for ensuring the overall stability of the works
- 9. Note that the Engineer is not responsible for setting out information other than where shown on the drawings.
- 10. All roof timbers to be preservative treated in accordance with: BS:5268:pt3 and BS:5268:pt5.
- 11. Trusses shall be stored on site in accordance with the manufacturer's recommendations.

07482 194381 01206 675110 www.hjse.co.uk

07482 194381 01206 675110 www.hjse.co.uk

Project: Woodwas FARM Element: Saumun Oksika	Date: June 2023 Sheet:
$\frac{R1}{R1} MBDC SARN = \frac{1.9m}{1.9m} UDL = (1.5+0.85) \times 0.4 = 0.000$	94 mm SLS
Timber Beam Design Input Output Span of Timber 19 m UDL Load 0.94 kN/m Timber Grade 5.76 N/mm ⁺ Short/Med/Long Term Loading C24 Timbers at 600mm ctrs or less? Actual Stress Number of Timbers >4	<u>x 97's C 400 Gre's</u>
Tremmon To Darande Max Span = 1.9m $UDL = [CIS+0.8S] \times 0.4+] + [I]$ Imput USE USE Imput rots of loss? CIA_{Long} CIA_{Long} CIA_{Long} USE USE Number of Timbers I	x1,5] <u>= 245 m/msss</u> 2 <u>3 No C24 47 x 97's</u>
$\frac{1}{97} \text{ mm} = \frac{47}{97} \text{ mm}$ $\frac{1}{97} $	1)] = 461u/m sis

	Project Woodlands Farm - Truss				Job no.	
HJ Structural Engineers Ltd 5 Millers Close Hadlegh Suffolk, IP7 6GG	Calcs for Truss supported off purlins - Tie height = 1.45m				Start page no./Revision 1	
	Calcs by MAS	Calcs date 13/06/2023	Checked by	Checked date	Approved by	Approved date

TIMBER MEMBER ANALYSIS & DESIGN (EN1995-1-1:2004)

In accordance with EN1995-1-1:2004 + A2:2014 incorporating corrigendum June 2006 and the UK national annex

			-	Tedds calcu	lation version 2.2.17
All results summary	Unit	Capacity	Maximum	Utilisation	Result
Compressive stress	N/mm ²	11.3	0.2	0.022	PASS
Bending stress	N/mm ²	12.9	1.4	0.110	PASS
Shear stress	N/mm ²	2.2	0.2	0.080	PASS
Bending and axial force				0.110	PASS
Column stability check				0.125	PASS
Beam stability check				0.025	PASS
Deflection	mm	8.6	1.3	0.150	PASS
Member2 results summary	Unit	Capacity	Maximum	Utilisation	Result
Compressive stress	N/mm ²	11.3	0.2	0.022	PASS
Bending stress	N/mm ²	12.9	1.4	0.110	PASS
Shear stress	N/mm ²	2.2	0.2	0.080	PASS
Bending and axial force				0.110	PASS
Column stability check				0.125	PASS
Beam stability check				0.025	PASS
Deflection	mm	8.6	1.2	0.144	PASS

ANALYSIS

Tedds calculation version 1.0.37

Results

Total deflection

Node deflections

Load combination: All (Strength)

Figure 12 Cose HJ Structural Engineers Ltd 5 Millers Close Hadlegh Suffolk, IP7 6GG	Project	Woodlands	Farm - Truss		Job no.	
	Calcs for Truss supported off purlins - Tie height = 1.45m				Start page no./Revision 2	
	Calcs by MAS	Calcs date 13/06/2023	Checked by	Checked date	Approved by	Approved date

Node	Deflection		Rotation	Co-ordinate system
	X	Z		
	(mm)	(mm)	(°)	
1	0	0	0	
2	0	0.1	0	
3	0	0	0	

Total base reactions

Load case/combination	Fo	rce
	FX	FZ
	(kN)	(kN)
All (Strength)	0	4.2

Element end forces

Load combination: All (Strength)

Element	Length (m)	Nodes Start/End	Axial force (kN)	Shear force (kN)	Moment (kNm)
1	2.154	1	-2.2	-0.7	0
		2	0.6	-0.7	0
2	2.154	2	-0.6	-0.7	0
		3	2.2	-0.7	0
3	2.768	1	0.9	0	0
		3	-0.9	0	0

Forces

Strength combinations - Moment envelope (kNm)

Member results

Envelope - Strength combinations

Member	She	ar force	Moment			
	Pos	Max abs	s Pos Max		Pos	Min
	(m)	(kN)	(m)	(kNm)	(m)	(kNm)
All	0	0.7	1.077	0.4 (max)	0	0 (min)
Member2	2.154	-0.7 (max abs)	1.077	0.4 (max)	2.154	0 (min)

All - Span 1

Partial factor for material properties and resistances					
Partial factor for material properties - Table 2.3	γ _M = 1.300				
Member details					
Load duration - cl.2.3.1.2	Long-term				
Service class - cl.2.3.1.3	1				
Timber section details					
Number of timber sections in member	N = 1				
Breadth of sections	b = 50 mm				
Depth of sections	h = 175 mm				

Tekla Tedds	Project	Woodlands		Job no.				
HJ Structural Engineers Ltd		woodanus			a			
5 Millers Close	Calcs for Truss s	upported off pur	lins - Tie height	= 1.45m	Start page no./Re	4		
	Calce by	Calcs date	Checked by	Checked date	Approved by	Approved date		
	MAS	13/06/2023	Checked by	Checked date	Approved by	Approved date		
		1	•	•	1	•		
← 50 →								
	50x*	175 timber section	-					
175	Sect Sect Secc Radi Radi Chai Chai Chai Chai Chai Chai Chai Cha	racteristic compression strength in modulus, W_y , 2520 ion modulus, W_z , 72917 ond moment of area, I_y , ond moment of area, I_y , ond moment of area, I_y , us of gyration, I_y , 50.5 m us of gyration, I_y , 14.4 m cor strength class C24 racteristic bending stren racteristic shear strengt racteristic compression racteristic compression racteristic tension strengt n modulus of elasticity,	50 mm ³ 7 mm ³ 22330729 mm ⁴ 1822917 mm ⁴ nm nm h t trength, f _{mk} , 24 N/mm ² strength parallel to grai strength perpendicular gth parallel to grain, f _{0.k} $F_{0.mean}$, 11000 N/mm ²	in, _{£o.k} , 21 N/mm² to grain, _{£90.k} , 2.5 N/mm , 14.5 N/mm²	2			
<u>↓</u> /	Fifth	percentile modulus of e	elasticity, Ę _{0.05} , 7400 N/r G 690 N/mm ²	nm²				
	Chai	racteristic density, ρ_k , 35	50 kg/m ³					
	Mea	n density, p _{mean} , 420 kg/	ille.					
Span details								
Bearing length		L _b = 100 m	m					
	strengtn <u>)</u>							
Modification factors	ntent - Table 3	1 k - 07						
Deformation factor - Table 3.2		$k_{dof} = 0.6$						
Bending stress re-distribution fac	tor - cl.6.1.6(2)	$k_{\rm m} = 0.7$						
Crack factor for shear resistance	- cl.6.1.7(2)	k _{cr} = 0.67						
Check compression parallel to	the grain - cl.(6.1.4						
Design axial compression	0	P _d = 2.163	kN					
Design compressive stress		$\sigma_{c,0,d} = P_d /$	A = 0.247 N/mm	1 ²				
Design compressive strength		$f_{c,0,d} = k_{mod}$	$f_{c,0,d} = k_{mod} \times f_{c.0.k} / \gamma_M = 11.308 \text{ N/mm}^2$					
		$\sigma_{c,0,d}$ / $f_{c,0,d}$:	= 0.022					
PASS	S - Design para	allel compressi	on strength exc	ceeds design pa	arallel compre	ession stress		
Check design at start of span								
Check shear force - Section 6.1	1.7							
Design shear force		F _{y,d} = 0.671	kN					
Design shear stress - exp.6.60		$\tau_{y,d} = 1.5 \times$	$F_{y,d} / (k_{cr} \times b \times h)$) = 0.172 N/mm ²				
Design shear strength	$f_{vvd} = k_{mod} \times f_{vk} / \gamma_M = 2.154 \text{ N/mm}^2$							
		$\tau_{v,d} / f_{v,v,d} = 0$	0.080					
		PA	SS - Design sh	ear strength ex	ceeds design	shear stress		
Check columns subjected to eit	ther compress	sion or combine	ed compression	n and bending -	cl.6.3.2			
Effective length for v-axis bending	a a	$L_{ev} = 0.9 \times$	2154 mm = 19 3	39 mm				
Slenderness ratio	0	$\lambda_v = L_{e,v} / i_v$	= 38.374					
Relative slenderness ratio - exp	6 21	$\lambda_{rel y} = \lambda_{y} / \pi$	x √(fcok / E005)	= 0.651				
Effective length for z-axis bending	a — .	$L_{ez} = 0 \text{ mm}$	(13.0.K / L 0.00)	*•				
Slenderness ratio	0	$\lambda_z = L_{e_z} / i_z$	= 0					
Relative slenderness ratio - exp	6.22	$\lambda_{rel 7} = \lambda_7 / \tau$	τ×√(f _{0.0 k} / F _{0.05})	= 0				
			λ	v > 0.3 column	stability cher	k is required		
			20161	,,				

Tekla Tedds	Project	Project Job no.						
HJ Structural Engineers Ltd	Color for	wooularius	railli - Tiuss		Stort page po /E	lovision		
5 Millers Close	Truss supported off purlins - Tie height = 1.45m				Start page 10./h	5		
Suffolk, IP7 6GG	Calcs by	Calcs date	Checked by	Checked date	Approved by	Approved date		
	MAS	13/06/2023						
Straightness factor		β _c = 0.2						
Instability factors - exp.6.25, 6.	26, 6.27 & 6.28	$k_y = 0.5 \times ($	1 + $\beta_{c} imes (\lambda_{rel,y}$ -	0.3) + $\lambda_{rel,y}^2$) = 0.	747			
		$k_z = 0.5 \times ($	1 + $\beta_c \times (\lambda_{rel,z}$ -	$(0.3) + \lambda_{rel,z}^2) = 0.$.470			
		$k_{c,y} = 1 / (k_y)$	$(+\sqrt{(k_y^2 - \lambda_{rel,y}^2)})$) = 0.898				
		$k_{c,z} = 1 / (k_z)$	$k_z + \sqrt{(k_z^2 - \lambda_{rel,z}^2)}$)) = 1.064				
Column stability checks - exp.6	6.23 & 6.24	$\sigma_{ m c,0,d}$ / (k _{c,y} :	× f _{c,0,d}) = 0.024					
		$\sigma_{ m c,0,d}$ / (k _{c,z} :	× f _{c,0,d}) = 0.021					
				PASS - Col	umn stability	is acceptable		
Check design 1077 mm along	g span							
Check bending moment - Sec	 ction 6.1.6							
Design bending moment		M _{v,d} = 0.36 ⁴	1 kNm					
Design bending stress		$\sigma_{m,y,d} = M_{y,d}$	/ W _v = 1.416 N	√mm²				
Design bending strength		$f_{m,v,d} = k_{mod}$	× f _{m.k} / γ _M = 12.	. 923 N/mm²				
		σ _{m,y,d} / f _{m,y,d}	= 0.11					
		PASS -	Design bendin	ng strength exce	eds design b	ending stress		
Check combined bending an	d axial compres	sion - Section 6	6.2.4					
Combined loading checks - ex	p.6.19 & 6.20	(_{σc,0,d} / f _{c,0,d}) ² + σ _{m,y,d} / f _{m,y,d}	i = 0.110				
		$(\sigma_{c,0,d} / f_{c,0,d})^2$ + k _m × $\sigma_{m,y,d} / f_{m,y,d}$ = 0.077						
	PA	SS - Combined	bending and a	axial compressi	on utilisation	is acceptable		
Check columns subjected to	either compress	sion or combine	ed compressio	on and bending	- cl.6.3.2			
Effective length for y-axis bend	ling	$L_{e,y} = 0.9 \times$	2154 mm = 1 9	939 mm				
Slenderness ratio		$\lambda_y = L_{e,y} / i_y$	= 38.374					
Relative slenderness ratio - ex	p. 6.21	$\lambda_{rel,y} = \lambda_y / \pi \times \sqrt{(f_{c.0.k} / E_{0.05})} = 0.651$						
Effective length for z-axis benc	ling	L _{e,z} = 0 mm						
Slenderness ratio		$\lambda_z = L_{e,z} / i_z = 0$						
Relative slenderness ratio - ex	p. 6.22	$\lambda_{rel,z} = \lambda_z / \pi$	τ × √(f _{c.0.k} / E _{0.05}	5) = 0				
			λ_r	_{rel,y} > 0.3 column	stability che	ck is required		
Straightness factor		$\beta_{c} = 0.2$						
Instability factors - exp.6.25, 6.	26, 6.27 & 6.28	$k_y = 0.5 \times ($	1 + $\beta_{c} \times (\lambda_{rel,y} -$	$(0.3) + \lambda_{rel,y}^2) = 0.$	747			
		$k_z = 0.5 \times ($	1 + $\beta_c \times (\lambda_{rel,z} -$	$(0.3) + \lambda_{rel,z^2}) = 0.$.470			
		$k_{c,y} = 1 / (k_y)$	$(+\sqrt{(k_y^2 - \lambda_{rel,y}^2)})$) = 0.898				
		$k_{c,z} = 1 / (k_z)$	$k_z + \sqrt{(k_z^2 - \lambda_{rel,z}^2)}$)) = 1.064				
Column stability checks - exp.6	6.23 & 6.24	σ _{c,0,d} / (k _{c,y} :	\times f _{c,0,d}) + $\sigma_{m,y,d}$ /	f _{m,y,d} = 0.134				
		$\sigma_{c,0,d}$ / (k _{c,z} :	\times f _{c,0,d}) + k _m \times σ	ī _{m,y,d} / f _{m,y,d} = 0.09	7			
				PASS - Col	umn stability	is acceptable		
Check beams subjected to ei	ther bending or	combined ben	ding and comp	pression - cl.6.3	.3			
Lateral buckling factor - exp.6.	34 -	$k_{crit} = 1.000$	f \\2.		0.000			
Beam stability check - exp.6.3	0	(ơ _{m,y,d} / (K _{cri}	$(t \times T_{m,y,d}))^2 + \sigma_{c,0}$	$D,d / (K_{c,z} \times T_{c,0,d}) =$: U.U33 Poom otobility	ia accontable		
				FA33 - B	eani Stavinty	is acceptable		
Check design 1093 mm along	g span							
Check y-y axis deflection - Se	ection 7.2							
Instantaneous deflection		δ _y = 0.8 mn	n					

Tekla Tedds	Project Job no.					
HJ Structural Engineers Ltd	Calcs for				Start page no./Re	evision
5 Millers Close Hadlegh	Truss supported off purlins - Tie height = 1.45m			it = 1.45m		6
Suffolk, IP7 6GG	Calcs by MAS	Calcs date 13/06/2023	Checked by	Checked date	Approved by	Approved date
Quasi-permanent variable load t	factor	$w_2 = 0.3$				
Final deflection with creep		$\psi_2 = 0.0$ $\delta_{v \text{ Final}} = \delta_{v} \times$	$(1 + k_{def}) = 1.3$	3 mm		
Allowable deflection		$\delta_{v,Allowable} =$	$L_{m1 s1} / 250 = 8$	3.6 mm		
		δy,Final / δy,All	owable = 0.15			
		<i></i>	PASS - All	lowable deflectio	n exceeds fin	al deflection
Member2 - Span 1						
Partial factor for material pror	portios and rosi	stances				
Partial factor for material proper	ties - Table 2.3	ν _M = 1.300				
Nember details		, M				
Load duration - cl 2 3 1 2		l ong-term				
Service class - $cl_2 3 1.3$		1				
		•				
Number of timber sections in me	ember	N = 1				
Breadth of sections	ember	b = 50 mm				
Depth of sections	h = 175 mm					
Timber strength class - EN 338:	2016 Table 1	C24				
	Cros Sect Sect Secc Radi Radi Timt Char Char Char Char Char Shea Char Meal Fifth	is-sectional area, A, 87 ion modulus, W _y , 2552(ion modulus, W _y , 2552(ion modulus, W _y , 72917 and moment of area, I _y , us of gyration, I _y , 14.4 r ber strength class C24 racteristic bending strer racteristic shear strengt racteristic compression racteristic compression racteristic compression racteristic compression racteristic compression racteristic compression racteristic compression racteristic compression racteristic compression racteristic density, precentile modulus of ar modulus of elasticity, racteristic density, p _{rmean} , 420 kg	50 mm ² D8.3 mm ³ 7 mm ³ 22330729 mm ⁴ 1822917 mm ⁴ nm nm t th, f_{k} , 24 N/mm ² strength parallel to gr strength parallel to g	rain, _{£0.k} , 21 N/mm² ar to grain, _{£90.k} , 2.5 N/mm _{0.k} , 14.5 N/mm² V/mm²	2	
Span details Bearing length		l ⊳ = 100 m	m			
Consider Combination 1 - All ((Strength)					
Modification fasters	orenguij					
Modification factors Duration of load and moisture of Deformation factor - Table 3.2 Bending stress re-distribution fa Crack factor for shear resistance	ontent - Table 3. ctor - cl.6.1.6(2) e - cl.6.1.7(2)	1 $k_{mod} = 0.7$ $k_{def} = 0.6$ $k_m = 0.7$ $k_{cr} = 0.67$				
Check compression parallel to	o the grain - cl.6	6.1.4				
Design axial compression	-	P _d = 0.563	kN			
Design compressive stress		$\sigma_{c,0,d}$ = P _d /	A = 0.064 N/m	m²		
Design compressive strength		$f_{c,0,d} = k_{mod}$	× f _{c.0.k} / γ _M = 11	.308 N/mm²		
		$\sigma_{c,0,d}$ / $f_{c,0,d}$:	= 0.006			

Tekla Tedds	Project				Job no.		
HJ Structural Engineers Ltd	Woodlands Farm - Truss						
5 Millers Close Hadlegh	Calcs for Truss	supported off pur	rlins - Tie heigh	it = 1.45m	Start page no./Re	evision 7	
Suffolk, IP7 6GG	Calcs by MAS	Calcs date 13/06/2023	Checked by	Checked date	Approved by	Approved date	
PA	SS - Design pa	rallel compressi	ion strength ex	kceeds design p	parallel compre	ession stress	
Check design at start of span							
Check shear force - Section 6	.1.7						
Design shear force		F _{y,d} = 0.671	l kN				
Design shear stress - exp.6.60		$\tau_{y,d}$ = 1.5 $ imes$	$F_{y,d}$ / ($k_{cr} \times b \times b$	h) = 0.172 N/mm	2		
Design shear strength		$f_{v,y,d} = k_{mod}$	× f _{v.k} / γ _M = 2.15	4 N/mm²			
		$\tau_{y,d}$ / $f_{v,y,d}$ =	0.080				
		PA	SS - Design s	hear strength e	xceeds design	shear stress	
Check columns subjected to	either compres	ssion or combin	ed compressio	on and bending	- cl.6.3.2		
Effective length for y-axis bend	ng ·	$L_{e,v} = 0.9 \times$	2154 mm = 1 9	939 mm			
Slenderness ratio	5	$\lambda_{\rm Y} = 1 {\rm ev} / {\rm iv}$	= 38.374				
Relative slenderness ratio - exr	6.21	$\lambda_{roly} = \lambda_y / \tau$	T×√(fcok / Eoo	s) = 0 651			
Effective length for z-axis bend	ina	$L_{o,7} = 0 \text{ mm}$					
Slenderness ratio		$\lambda_{7} = 1 \text{ or } / 1 \text{ ir}$	= 0				
Relative slenderness ratio - exr	6.22	$\lambda_{22} = \lambda_{22} / \lambda_{22}$	τ× \/(f- o μ / Eo o	-) = 0			
	. 0.22	701ei,2 — 702 7 7	α ∧ η(10.0.κ / ⊏0.0. 1 .	,, = 0 > 0 3 columr	n stahility cher	k is required	
Straightness factor		ß. = 0 2	70			in io required	
Instability factors - eyp 6 25 . 6	06 6 27 & 6 28	μ = 0.2	$1 + \beta_1 \times (\lambda_{1})$	$(0,3) + \lambda_{11} + \lambda_{2} = 0$	747		
			1 + β _c × (λrei,y -	$(0.3) + \lambda + 2) = 0$	470		
		$R_z = 0.3 \times ($	$1 + p_c \wedge (\Lambda_{rel,z} - \chi_{rel,z})$	$(0.3) + \lambda_{rel,z} = 0.$.470		
		$K_{c,y} = 1 / (K_y)$	$f \neq V(Ky^2 - \Lambda_{rel,y^2})$) - 0.090			
	00.8.0.04	$K_{c,z} = 1 / (K_z)$	$z + \mathcal{N}(K_z^2 - \Lambda_{rel,z^2})$)) = 1.064			
Column stability checks - exp.o	.23 & 0.24	$\sigma_{c,0,d} / (K_{c,y} \times I_{c,0,d}) = 0.006$					
		σ _{c,0,d} / (K _{c,z})	× I _{c,0,d}) – 0.005	PASS - CO	lumn stahilitu	is accontablo	
Check design 1077 mm along	span			1400 00			
Check bending moment - Sec							
Design bending moment		$M_{vd} = 0.36$	1 kNm				
Design bending stress		$\sigma_{m,vd} = M_{vd}$	/ W _v = 1.416 N	J/mm ²			
Design bending strength		$f_{m,y,d} = k_{m,y,d}$	$\times f_{mk} / \gamma_M = 12$	923 N/mm ²			
Dooigh bonaing chongan		Grand / frand	= 0.11	02010			
		PASS -	– 0.11 Desian bendir	na strenath exce	eds desian h	ondina stress	
Check combined banding and	l avial compro	naion Soction (2 0 0 A	ig ou ongut on o	ioue ucergii io	inding ou ooo	
	6 10 & 6 20		$)^2 + \sigma = 1/f$	- 0 110			
Combined loading checks - exp	.0.19 & 0.20	$(\sigma, \sigma, \sigma, f, f, \sigma, \sigma)$	$)^2 + k \times \sigma$	f = 0.110			
	P	(Oc,0,d / Ic,0,d ASS - Combined) - + Km × Om,y,d /	axial compressi	on utilisation	is accontablo	
	either compres		ed compressio	on and bending	- CI.6.3.2		
	ng	L _{e,y} – 0.9 ×	2154 mm - 1	339 mm			
Slenderness ratio		$\lambda_y = L_{e,y} / I_y$	= 38.374				
Relative slenderness ratio - exp	0. 6.21	$\lambda_{rel,y} = \lambda_y / \tau$	τ × ν(f c.0.k / E0.05	5) = 0.651			
Effective length for z-axis bend	ing	L _{e,z} = 0 mm	1				
Sienderness ratio		$\lambda_z = L_{e,z} / i_z$	= 0				
Relative slenderness ratio - exp	0. 6.22	$\lambda_{\rm rel,z} = \lambda_z / z$	$\pi \times \sqrt{f_{c.0.k}} / E_{0.05}$	5) = 0			
			λ,	_{rel,y} > 0.3 column	n stability cheo	k is required	

Tekla, Tedds	Project Woodlands Farm - Truss				Job no.			
	Calcs for				Start page no./	Start page no./Revision		
Hadlegh	Truss s	upported off pur	lins - Tie heig	ht = 1.45m		8		
Suffolk, IP7 6GG	Calcs by MAS	Calcs date 13/06/2023	Checked by	Checked date	Approved by	Approved date		
Straightness factor		$\beta_c = 0.2$						
Instability factors - exp.6.25, 6.2	26, 6.27 & 6.28	$k_y = 0.5 \times (2)$	1 + $\beta_{c} \times (\lambda_{rel,y} -$	$(0.3) + \lambda_{rel,y^2} = 0$.747			
		$k_z = 0.5 \times (10^{-1})$	1 + $\beta_c \times (\lambda_{rel,z} -$	$-0.3) + \lambda_{rel,z^2} = 0$.470			
		$k_{c,v} = 1 / (k_v + \sqrt{(k_v^2 - \lambda_{rel,v}^2)}) = 0.898$						
		k _{c,z} = 1 / (k _z	+ $\sqrt{(k_z^2 - \lambda_{rel,z^2})}$	²)) = 1.064				
Column stability checks - exp.6	.23 & 6.24	3 & 6.24 $\sigma_{c,0,d} / (k_{c,y} \times f_{c,0,d}) + \sigma_{m,y,d} / f_{m,y,d} = 0.116$						
		$\sigma_{c,0,d} / (k_{c,z} \times f_{c,0,d}) + k_m \times \sigma_{m,y,d} / f_{m,y,d} = 0.082$						
		PASS - Column stability is acceptable						
Check beams subjected to eit	her bending or	combined bend	ding and com	pression - cl.6.3	3.3			
Lateral buckling factor - exp.6.3	4	k _{crit} = 1.000						
Beam stability check - exp.6.35		$(\sigma_{m,y,d} / (k_{crit} \times f_{m,y,d}))^2 + \sigma_{c,0,d} / (k_{c,z} \times f_{c,0,d}) = 0.017$						
				PASS - I	Beam stability	is acceptable		
Check design 1061 mm along	span							
Check y-y axis deflection - Se	ction 7.2							
Instantaneous deflection	δ _y = 0.8 mm							
Quasi-permanent variable load	bad factor $\psi_2 = 0.3$							
Final deflection with creep		$\delta_{y,Final} = \delta_y \times$	(1 + k _{def}) = 1 .	2 mm				
Allowable deflection		$\delta_{y,Allowable} =$	L _{m2_s1} / 250 =	8.6 mm				
	$\delta_{y,Final} / \delta_{y,Allowable} = 0.144$							

PASS - Allowable deflection exceeds final deflection

Tekla Tedds	Project Job no. Woodlands Farm							
HJ Structural Engineers Ltd	Calcs for				Start page no./F	Revision		
5 Millers Close Hadlegh	P1 - Purlin					2		
Suffolk, IP7 6GG	Calcs by MAS	Calcs date 13/06/2023	Checked by	Checked date	Approved by	Approved date		
Reactions at support A Unfactored dead load reaction a Unfactored imposed load reacti Reactions at support B	at support A on at support A	R _{A_max} = 13 R _{A_Dead} = 8 R _{A_Imposed} = R _{B_max} = 13	.342 kN 922 kN 4.420 kN .342 kN	R _{A_min} = R _{B_min} =	= 13.342 kN = 13.342 kN			
Unfactored dead load reaction a	at support B	$R_{B_{Dead}} = 8$.922 kN					
Unfactored imposed load reacti	on at support B	R _{B_Imposed} =	4.420 kN					
	+ + +		+	+				
Timber section details Breadth of timber sections Depth of timber sections Number of timber sections in m	ember	b = 50 mm h = 200 mr N = 3	n					
Timber strength class		C24						
Steel section details								
Breadth of steel plate		b _s = 10 mm	ı					
Depth of steel plate		h _s = 200 m	m					
Number of steel plates in beam		N _s = 2						
Steel stress		p _y = 230 N/	mm ²					
Boit diameter		φ _b = 8 mm						
Member details		4						
Load duration		l ong term						
Length of span		L _{s1} = 5200	Long term L _{s1} = 5200 mm					
Length of bearing		L _b = 100 m	m					
Section properties								
Cross sectional area of beam		$A = N \times b \times$	ch = 30000 mn	1 ²				
Timber section modulus		$Z_{xt} = N \times b$	× h² / 6 = 1000	000 mm³				
Steel section modulus		$Z_{xs} = N_s \times k$	Z_{xs} = N _s × b _s × h _s ² / 6 = 133333 mm ³					
Second moment of area of time	Second moment of area of timber		I_{xt} = N × b × h ³ / 12 = 100000000 mm ⁴					
Second moment of area of stee	Second moment of area of steel		I_{xs} = N _s × b _s × h _s ³ / 12 = 13333333 mm ⁴					
Load proportions								
Instant deflection under permar Instant deflection under principa	nent actions al variable action	U _{instG} = 8.50 U _{instQ1} = 4.2 k _{def} = 0.6	67 mm 244 mm					
		$\psi_2 = 0.3$						
Final minimum modulus of elas	ticity		\ / /			- 4000 N// 0		
Droportion of confidential in the	$E_{\min, fin} = E_{\min}$	× $(U_{instG} + U_{instQ1})$	ı) / (U _{instG} + U _{inst}	Q1 + K _{def} × (U _{instG} +	- ψ ₂ × U _{instQ1}))	= 4929 N/mm ²		
Proportion of applied load in the	iber	$K_t = \bigsqcup_{mean} \times$	ixt / (⊏mean × Ixt	$+ \Box_{S5950} \times I_{xs} = 0$.200 () - 0.020			
Froportion of applied load in Ste		rs − 1.1 × E	-55950 × Ixs / (⊏m	ın,īin ∧ ixt ⊤ ⊏S5950 >	• ixs) - U.332			

२ Tekla Tedds	Project Je Woodlands Farm							
HJ Structural Engineers Ltd	Calcs for				Start page no./Re	evision		
5 Millers Close Hadlegh		P1 - Purlin				3		
Suffolk, IP7 6GG	Calcs by	Calcs date	Checked by	Checked date	Approved by	Approved date		
	MAS	13/06/2023						
Modification factors								
Duration of loading - Table 17		K ₃ = 1.00						
Bearing stress - Table 18	^	K ₄ = 1.00						
l otal depth of member - cl.2.10	.6	K ₇ = (300 n	$nm / h)^{0.11} = 1.05$)				
Load sharing - cl.2.9		$\kappa_8 = 1.00$						
Lateral support - cl.2.10.8								
No lateral support								
Permissible depth-to-breadth ra	lio - Table 19	2.00						
Actual depth-to-breadth ratio		n / (N × b +	$N_s \times D_s) = 1.18$		- 4 1	tio odoruvoto		
				PA55 - La	ateral suppor	t is adequate		
Compression perpendicular to	o grain							
Permissible bearing stress (no v	vane)	$\sigma_{c_{adm}} = \sigma_{cp}$	$_1 \times K_3 \times K_4 \times K_8 =$	= 2.400 N/mm ²				
Applied bearing stress		$\sigma_{c_a} = R_{A_m}$	$_{ax} / (N \times b \times L_{b}) =$	• 0.889 N/mm ²				
		σ_{c_a} / σ_{c_adm}	= 0.371					
PAS	S - Applied com	npressive stres	s is less than pe	ermissible com	pressive stre	ss at bearing		
Bending parallel to grain								
Permissible bending stress		$\sigma_{m_{adm}} = \sigma_{m}$	$1 \times K_3 \times K_7 \times K_8 =$	7.842 N/mm ²				
Applied timber bending stress	Applied timber bending stress			/mm²				
		$\sigma_{m a} / \sigma_{m a d}$	m = 0.626					
	PASS	- Timber bendi	ng stress is les	s than permiss	ible timber be	ending stress		
Applied steel bending stress		$\sigma_{m a s} = k_{s}$	× M / Z _{xs} = 121.2	32 N/mm ²		-		
		 σ _{mas} /p _v =	0.527					
	PA	ASS - Steel ben	ding stress is le	ess than permis	sible steel be	ending stress		
Check beam in shear								
Permissible shear stress		$\tau_{adm} = \tau \times \mathbf{k}$		710 N/mm ²				
		$\tau_{-} = 3 \times k_{+}$	$\tau_a = 3 \times k_t \times F / (2 \times A) = 0.189 \text{ N/mm}^2$					
Applied shear stress		$\tau_a = 0 \times R_i$	$\tau_a / \tau_{adm} = 0.266$					
		ta/tadm - C	.200 PAS	S - Shoar stros	s within norm	issihla limits		
			7.40	o - oncur strest				
Deflection Modulus of electicity for deflecti		 -	10900 N/mm ²					
Pormissible deflection		E - Emean -	0.551 in 0.003 v	() – 13 005 m	m			
Pending deflection		Oadm - 11111(0.551 III, 0.003 ×	< L _{s1}) – 13.335 II				
Bending deflection		$Ob_{s1} - 12.0$	9 mm					
		0 _{v_s1} = 1.02	8 mm					
l otal deflection		$\delta_a = \delta_{b_s1} +$	o _{v_s1} = 13.839 m	m				
		$\delta_a / \delta_{adm} = 0$).989 100 Totalati		,			
		P	455 - Total defi	ection is less tr	ian permissik	ole deflection		
Flitch plate bolting requirement	nts							
Total load on beam		$W_{tot} = 26.6$	84 kN					
Total load taken by steel		$W_s = k_s \times V$	V _{tot} = 24.868 kN					
Basic bolt shear load - Table 77	ole 77 v ₉₀ = 1.066 kN							
Number of interfaces	$N_{int} = (N + N_s) - 1 = 4$							
Number of bolts required at sup	ports	N _{be} = max($K_s \times R_{A_{max}} / (N_{int})$	× v ₉₀), 2) = 2.91	6			
Limiting bolt spacing		S _{limit} = min(2.5 × h, 600 mm	i) = 500 mm				
Maximum bolt spacing		S _{max} = 300 mm						

	Project Woodlands Farm				Job no.	
5 Millers Close Hadlegh	Calcs for P1 - Purlin			Start page no./Re	vision 4	
Suffolk, IP7 6GG	Calcs by MAS	Calcs date 13/06/2023	Checked by	Checked date	Approved by	Approved date

Minimum number of bolts along length of beam

$N_{bl} = W_s / (N_{int} \times v_{90}) = 5.831$

- Provide a minimum of 3 No.8 mm diameter bolts at each support

- Provide 8 mm diameter bolts at maximum 300 mm centres staggered 50 mm alternately above and below the centre line

Minimum bolt spacings

Minimum end spacing	S_{end} = 4 × ϕ_b = 32 mm
Minimum edge spacing	$S_{\text{edge}} = 4 \times \varphi_{\text{b}} = \textbf{32} \text{ mm}$
Minimum bolt spacing	$S_{\text{bolt}} = 4 \times \varphi_{\text{b}} = \textbf{32} \text{ mm}$
Minimum washer diameter	$\varphi_w = 3 \times \varphi_b = \textbf{24} mm$
Minimum washer thickness	$t_w = 0.25 \times \phi_b = \textbf{2} \text{ mm}$

Tekla Tedds	Project Job no. Woodlands Farm						
HJ Structural Engineers Ltd	Calcs for				Start page no./Revision		
5 Millers Close Hadlegh	P2 - Purlin					2	
Suffolk, IP7 6GG	Calcs by MAS	Calcs date 13/06/2023	Checked by	Checked date	Approved by	Approved date	
Reactions at support A Unfactored dead load reaction a Unfactored imposed load reaction Reactions at support B Unfactored dead load reaction a Unfactored imposed load reaction $\int_{\mathbb{R}}^{\mathbb{R}}$	t support A on at support A it support B on at support B	R _{A_max} = 10 R _{A_Dead} = 6. R _{A_Imposed} = R _{B_max} = 10 R _{B_Dead} = 6. R _{B_Imposed} =	.366 kN 796 kN 3.570 kN .366 kN 796 kN 3.570 kN	R _{A_min} =	= 10.366 kN = 10.366 kN		
Timber section details Breadth of timber sections Depth of timber sections Number of timber sections in me Timber strength class	ember	b = 50 mm h = 200 mr N = 2 C24	n				
Steel section details Breadth of steel plate Depth of steel plate Number of steel plates in beam Steel stress Bolt diameter	Steel section details Breadth of steel plate Depth of steel plate Number of steel plates in beam Steel stress		$b_{s} = 10 \text{ mm}$ $h_{s} = 200 \text{ mm}$ $N_{s} = 1$ $p_{y} = 230 \text{ N/mm}^{2}$ $\phi_{b} = 8 \text{ mm}$				
Member details Service class of timber Load duration Length of span Length of bearing	Boit diameter Member details Service class of timber Load duration Length of span Length of bearing		1 Long term L _{s1} = 4200 mm L _b = 100 mm				
Section properties							
Cross sectional area of beam Timber section modulus		$A = N \times b \times Z_{xt} = N \times b$	h = 20000 mm × $h^2 / 6 = 6666$	n ² 67 mm ³			
Steel section modulus		$Z_{xs} = N_s \times b_s \times h_s^2 / 6 = 66667 \text{ mm}^3$					
Second moment of area of timber		$I_{xt} = N \times b \times h^3 / 12 = 66666667 \text{ mm}^4$					
		$I_{XS} = I_{NS} \wedge D_S$	s ~ 11s / 12 – 00				
Load proportions Instant deflection under perman Instant deflection under principa	ent actions I variable action	$u_{instG} = 6.28$ $u_{instQ1} = 3.3$ $k_{def} = 0.6$ $\psi_2 = 0.3$	34 mm 301 mm				
Final minimum modulus of elast	icity	·					
	$E_{min,fin} = E_{min}$	× (UinstG + UinstQ1	ı) / (U _{instG} + U _{inst}	$_{Q1}$ + $k_{def} \times (U_{instG} -$	+ $\psi_2 \times U_{instQ1})$	= 4947 N/mm ²	
Proportion of applied load in tim Proportion of applied load in ste	ber el	k _t = E _{mean} × k _s = 1.1 × E	I _{xt} / (E _{mean} × I _{xt} S ₅₉₅₀ × I _{xs} / (E _m	+ $E_{S5950} \times I_{xs}$) = 0 in,fin × I_{xt} + E_{S5950} >).345 ≺ I _{xs}) = 0.886		

Ə Tekla Tedds	Project	Project Job no. Woodlands Farm							
HJ Structural Engineers Ltd	Cales for				Start page no /Re	vision			
5 Millers Close Hadlegh		P2 - Purlin			otart page no./rte	3			
Suffolk, IP7 6GG	Calcs by MAS	Calcs date 13/06/2023	Checked by	Checked date	Approved by	Approved date			
Madification fratem									
Modification factors		K 4.00							
Duration of loading - Table 17		$K_3 = 1.00$							
Total dopth of mombar of 2 10	6	$K_4 = 1.00$	h = 100						
Load sharing - cl.2.9	.0	K ₇ = (300 fl K ₈ = 1.00	iiii / ii) – 1.05						
Lateral support - cl.2.10.8									
No lateral support									
Permissible depth-to-breadth ra	tio - Table 19	2.00							
Actual depth-to-breadth ratio		h / (N × b +	N _s × b _s) = 1.82						
				PASS - La	ateral suppor	t is adequate			
Compression perpendicular to	o grain								
Permissible bearing stress (no	wane)	$\sigma_{c_{adm}} = \sigma_{cp}$	$_1 imes K_3 imes K_4 imes K_8$ =	= 2.400 N/mm ²					
Applied bearing stress		$\sigma_{c_a} = R_{B_m}$	$_{ax}$ / (N × b × L _b) =	1.037 N/mm ²					
		σ _{ca} /σ _{cadm}	= 0.432						
PAS	S - Applied con	npressive stres	s is less than pe	ermissible com	pressive stre	ss at bearing			
Bending parallel to grain						-			
Permissible bending stress		G_m adm = G_m	× K3 × K7 × K9 =	7 842 N/mm ²					
Applied timber bending stress	$\sigma_{\rm max} = k_{\rm h} \times 1$	σ _{m a} = k _t × M / Z _{xt} = 5.634 N/mm ²							
Applied timber behaving stress		$\sigma_{m_a} = \kappa \times 1$	- 0 719	//////					
	DASS	- Timber bond	m – U.7 IO Ing stross is los	s than normiss	ihla timbor ha	ndina stross			
Applied steel heading stress	FA33		$\frac{119}{2} = 444.6$	\mathbf{S} unan perimosi \mathbf{S}		ending stress			
Applied steel bendling stress		Om_a_s - Ks	$\sigma_{mas} = 0.620$						
		σ _{m_a_s} / p _y =	· U.629		-:				
	PA	133 - Steel Den	aing stress is le	ess than permis	SIDIE STEEL DE	enaing stress			
Check beam in shear									
Permissible shear stress		$\tau_{adm} = \tau \times k$	$\tau_{adm} = \tau \times K_{2s} \times K_3 \times K_8 = 0.710 \text{ N/mm}^2$						
Applied shear stress		$\tau_a = 3 \times k_t >$	$\tau_a = 3 \times k_t \times F / (2 \times A) = 0.268 \text{ N/mm}^2$						
		τ_a / τ_{adm} = (.378						
			PAS	S - Shear stress	s within perm	issible limits			
Deflection									
Modulus of elasticity for deflecti	on	E = E _{mean} =	10800 N/mm ²						
Permissible deflection		$\delta_{adm} = min($	0.551 in, 0.003 ×	: L _{s1}) = 12.600 m	ım				
Bending deflection		δ _{b_s1} = 9.58	5 mm						
Shear deflection		δ _{v_s1} = 0.96	8 mm						
Total deflection		$\delta_{a} = \delta_{b \ s1} + \delta_{v \ s1} = 10.552 \text{ mm}$							
		$\delta_a / \delta_{adm} = 0$	0.837						
		P	ASS - Total defle	ection is less th	nan permissik	le deflection			
Flitch plate bolting requireme	nts								
Total load on beam		$W_{tot} = 20.7$	33 kN						
Total load taken by steel		$W_s = k_s \times V$	V _{tot} = 18.372 kN						
Basic bolt shear load - Table 71		V90 = 1.269	kN						
Number of interfaces	$N_{int} = (N + N_s) - 1 = 2$								
Number of bolts required at sup	ports	N _{be} = max(, Ks × RΒ max / (Nint	× v ₉₀), 2) = 3.61	9				
Limiting bolt spacing	-	S _{limit} = min(2.5 × h, 600 mm) = 500 mm					
Maximum bolt spacing		S _{limit} = min(2.5 × n, 600 mm) = 500 mm S _{max} = 300 mm							

Tekla Tedds	Project Woodlands Farm				Job no.	
5 Millers Close Hadlegh	Calcs for P2 - Purlin			Start page no./Revision 4		
Suffolk, IP7 6GG	Calcs by MAS	Calcs date 13/06/2023	Checked by	Checked date	Approved by	Approved date

Minimum number of bolts along length of beam

 $N_{bl} = W_s / (N_{int} \times v_{90}) = 7.238$

- Provide a minimum of 4 No.8 mm diameter bolts at each support

- Provide 8 mm diameter bolts at maximum 300 mm centres staggered 50 mm alternately above and below the centre line

Minimum bolt spacings

Minimum end spacing	S_{end} = 4 × ϕ_b = 32 mm
Minimum edge spacing	$S_{\text{edge}} = 4 \times \varphi_{\text{b}} = \textbf{32} \text{ mm}$
Minimum bolt spacing	$S_{\text{bolt}} = 4 \times \varphi_{\text{b}} = \textbf{32} \text{ mm}$
Minimum washer diameter	$\phi_w = 3 \times \phi_b = 24 \text{ mm}$
Minimum washer thickness	$t_w = 0.25 \times \phi_b = \textbf{2} \text{ mm}$

Figure 12 Cose HJ Structural Engineers Ltd 5 Millers Close Hadlegh Suffolk, IP7 6GG	Project Woodlands Farm				Job no.	
	Calcs for TSW - MS				Start page no./Revision 1	
	Calcs by MAS	Calcs date 13/06/2023	Checked by	Checked date	Approved by	Approved date

TIMBER STUD DESIGN (BS5268-2:2002)

TEDDS calculation version 1.0.05

Stud details

Stud details						
Stud breadth	b = 50 mm					
Stud depth	h = 100 mm					
Number of studs	Ns = 3					
Strength class C16 timber (Table 8 BS5268:Pt 2:	2002)					
Section properties						
Cross sectional area	A = N _s × b × h = 15000 mm ²					
Section modulus	$Z = N_s \times b \times h^2 / 6 = 250000 \text{ mm}^3$					
Moment of inertia in the major axis	I_x = $N_s \times b \times h^3$ / 12 = 12500000 mm ⁴					
Moment of inertia in the minor axis	I_y = N _s \times h \times b ³ / 12 = 3125000 mm ⁴					
Radius of gyration in the major axis	r _x = √(I _x / A) = 28.9 mm					
Radius of gyration in the minor axis	r _y = √(I _y / A) = 14.4 mm					
Panel details - Studs restrained by sheathing in the plane of the panel						
Panel height	L = 2600 mm					
Stud length	L _s = L – (2 × b) = 2500 mm					
Standard stud spacing	s _s = 400 mm					
Panel opening	O = 0 mm					
Loaded panel length	s = max(s _s , (O + s _s) / 2) = 400 mm					
Effective length in the major axis	L _{ex} = 0.85 × L _s = 2125 mm					
Slenderness ratio	$\lambda = L_{ex} / r_x = 73.61$					

Vertical loading details	Dead loads	Imposed loads
Wall UDL	U _{w_d} = 3.00 kN/m	
Roof UDL	U _{r_d} = 1.50 kN/m	U _{r_i} = 0.85 kN/m

Tekla Tedds	Project Job no.							
HJ Structural Engineers Ltd	Cales for St			Start nage no /R	Start page no /Revision			
5 Millers Close Hadlegh		TSW	′ - MS	2				
Suffolk, IP7 6GG	Calcs by MAS	Calcs date 13/06/2023	Checked by	Checked date	Approved by	Approved date		
Roof point loads		P _{r_d} = 7.00	kN	P _{r_i} = 7.	00 kN			
Lateral loading details								
Wind loading		W = 0.50 k	N/m ²					
Wind load duration		Very short	term					
Modification factors								
Section depth factor		K ₇ = (300 m	nm / h) ^{0.11} = 1.13					
Load sharing factor		K ₈ = 1.10						
Consider combined axial com	pression and b	ending under v	ery short term	loads				
Load duration factor		K ₃ = 1.75	K ₃ = 1.75					
Vertical loading		F = (U _{w_d} +	$U_{r_d} + U_{r_i} \times s +$	P _{r_d} + P _{r_i} = 16 .	14 kN			
Check bending stress								
Bending parallel to grain		σ _m = 5.300	N/mm ²					
Permissible bending stress		$\sigma_{\rm m}$ adm = $\sigma_{\rm m}$	\times K ₃ \times K ₇ \times K ₈ =	• 11.513 N/mm ²				
Bending moment		$M_{max} = W \times$	$M_{max} = W \times s \times l^2 / 8 = 0.169 \text{ kNm}$					
Applied bending stress		$\sigma_{m max} = M$	$\sigma_{m,max} = M_{max} / 7 = 0.676 \text{ N/mm}^2$					
	PASS - Applied	bending stress	under very sho	ort term loads i	s within pern	nissible limits		
Check compressive stress or	n stud	-	-					
Compression member factor		K ₁₂ = 0.43						
Compression parallel to grain		σ _c = 6.800	N/mm ²					
Permissible compressive stress		$\sigma_{c adm} = \sigma_{c}$	\times K ₃ \times K ₈ \times K ₁₂ =	5.609 N/mm ²				
Applied compressive stress		$\sigma_{c max} = F /$	σ_{c_max} = F / (N _s × b × h) = 1.076 N/mm ²					
PASS	S - Applied com	pressive stress	under very sho	ort term loads i	s within pern	nissible limits		
Check compressive stress or	n rail							
Bearing stress modification fact	tor	K ₄ = 1.00	K ₄ = 1.00					
Compression perpendicular to g	grain (no wane)	σ _{cp1} = 2.200 N/mm ²						
Permissible compressive stress	6	$\sigma_{cp1_adm} = \sigma_{cp1} \times K_3 \times K_4 = 3.850 \text{ N/mm}^2$						
Applied compressive stress		$\sigma_{cp1_max} = F / (N_s \times b \times h) = 1.076 \text{ N/mm}^2$						
PASS	S - Applied com	pressive stress	under very sho	ort term loads i	s within pern	nissible limits		
Check combined axial compre	ession and ben	ding						
Euler critical stress		$\sigma_e = (\pi^2 \times E)$	min) / λ² = 10.56 4	4 N/mm²				
Euler coefficient		K _{eu} = 1 – (1	$.5 \times \sigma_{c max} \times K_{12}$	/ σ _e) = 0.935				
Combined axial compression a	nd bending value	$k = \sigma_{m max}$	΄ (σ _{madm} × K _{eu}) +	$\sigma_{c max} / \sigma_{c adm} =$	0.255 < 1			
PASS - Combined compressive and bending stresses under very short term loads are within permissible limits								
Check stud deflection								
Euler critical stress		$\sigma_{e} = (\pi^{2} \times E)$	$(min) / \lambda^2 = 10.564$	4 N/mm ²				
Maximum deflection		δ _{adm} = min(7.5 mm, 0.003 × (L - 2 × b)) = 7.500 mm						
Bending deflection	$\delta_{max} = 5 \times V$	$\delta_{max} = 5 \times W \times s \times L_s^4 / (384 \times E_{mean} \times I_x) = 0.925 \text{ mm}$						
5		PASS - Defl	ection due to w	vind loading is	less than per	missible limit		
Consider axial compression v	vithout bending	under medium	term loads					
Load duration factor	Load duration factor		$K_3 = 1.25$					
Vertical loading		F = (U _{w d} + U _{r d} + U _{r i}) × s + P _{r d} + P _{r i} = 16.14 kN						
Check compressive stress or	n stud	· _	/					
Compression member factor	Juu	K12 = 0.51						

Tekla Tedds	Project Woodlands Farm				Job no.				
5 Millers Close	Calcs for TSW - MS				Start page no./F	Start page no./Revision			
Hadlegh					3				
Suffolk, IP7 6GG	Calcs by MAS	Calcs date 13/06/2023	Checked by	Checked date	Approved by	Approved date			
Compression parallel to grain		σ _c = 6.800	N/mm ²						
Permissible compressive stress		$\sigma_{c_{adm}} = \sigma_{c}$	$\sigma_{c_adm} = \sigma_{c} \times K_{3} \times K_{8} \times K_{12} = 4.773 \text{ N/mm}^{2}$						
Applied compressive stress	Applied compressive stress			 σ _{c_max} = F / (N _s × b × h) = 1.076 N/mm²					
PASS - Applied compressive stress under medium term loads is within permissible limits									
Check compressive stress on	rail								
Bearing stress modification fact	Bearing stress modification factor		K ₄ = 1.00						
Compression perpendicular to grain (no wane)		σ _{cp1} = 2.200 N/mm ²							
Permissible compressive stress	Permissible compressive stress			$\sigma_{cp1_adm} = \sigma_{cp1} \times K_3 \times K_4 = 2.750 \text{ N/mm}^2$					
Applied compressive stress	Applied compressive stress			$\sigma_{cp1_max} = F / (N_s \times b \times h) = 1.076 \text{ N/mm}^2$					
PA	SS - Applied co	mpressive stre	ss under med	dium term loads	is within perr	nissible limits			
Consider axial compression v	vithout bending	under long ter	m loads						
Load duration factor $K_3 = 1.00$									
Vertical loading	$F = (U_{w_d} + U_{r_d}) \times s + P_{r_d} = 8.80 \text{ kN}$								
Check compressive stress on	stud								
Compression member factor		K ₁₂ = 0.56							
Compression parallel to grain		$\sigma_{\rm c}$ = 6.800 N/mm ²							
Permissible compressive stress		σ_{c_adm} = $\sigma_{c} \times K_{3} \times K_{8} \times K_{12}$ = 4.165 N/mm ²							
Applied compressive stress	Applied compressive stress		$\sigma_{c_{max}} = F / (N_s \times b \times h) = 0.587 \text{ N/mm}^2$						
PASS - Applied compressive stress under long term loads is within permissible limits									
Check compressive stress on rail									
Bearing stress modification fact	or	K ₄ = 1.00							
Compression perpendicular to g	Compression perpendicular to grain (no wane)			σ _{cp1} = 2.200 N/mm ²					
Permissible compressive stress	Permissible compressive stress			$\sigma_{cp1_adm} = \sigma_{cp1} \times K_3 \times K_4 = 2.200 \text{ N/mm}^2$					
Applied compressive stress	Applied compressive stress $\sigma_{cp1 max} = F / (N_s \times b \times h) = 0.587 \text{ N/mm}^2$								
PASS - Applied compressive stress under long term loads is within permissible limits									