- Structural Engineers

HJ Structural Engineers Ltd

STRUCTURAL CALCULATIONS

Project Name: Woodlands Farm
Roof Truss \& Purlin Design
Date: June 2023
Job Number: MAS 1543
Revision:

Contract:	Woodlands Farm
Job Ref:-	MAS 1543
Date:-	June 2023

All Timber to be C24

Please note:- After installation some deflection may occur. This is perfectly normal and is not a structural defect. Some re-decoration may be required

Client / Architect to ensure that all members derived fit within required allowable structural zones prior to construction

Notes

1. The structural calculation herein relates only to the truss design as described above.
2. The Design is based on the information received from Whymark \& Moulton Drg's + HJSE's Site Visit
3. The works MUST BE carried out by a competent Building Contractor in accordance with the Building Regulations, relevant British Standards and to generally accepted standards and methods of building construction.
4. No allowance has been made for inspecting the works on site. However, should any detail differ from the calculations or sketches the engineer must be informed.
5. All drawings shall be read in conjunction with all relevant Civil / Structural Engineers drawings, the project specification and Architects, Services Engineers \& Landscape Architects drawings.
6. The Contractor shall verify all site and setting out dimensions before putting work in hand. Where dimensions are shown on the Engineers drawings, any discrepancies shall be reported to him. All dimensions are in millimeters unless otherwise noted. Dimensions must not be scaled from the Engineers drawings.
7. Inspections made by the Local Authority, NHBC or other Statutory bodies, shall be arranged by the Contractor to suit his programme. Any costs arising out of failing to carry out the work to the satisfaction of the Checking Authority will be the sole responsibility of the Contractor.
8. All information provided by others is taken in good faith as being accurate, but HJ Structural Engineers cannot, and does not, accept any liability for the detailed accuracy, errors or omissions in such information.

Contract:	Woodlands Farm
Job Ref:-	MAS 1543
Date:-	June 2023

GENERAL NOTES

1. The works MUST BE carried out by a competent Building Contractor in accordance with the Building Regulations, relevant British Standards and to generally accepted standards and methods of building construction.
2. No allowance has been made for inspecting the works on site. However, should any detail differ from the calculations or sketches the engineer must be informed.
3. All drawings shall be read in conjunction with all relevant Civil / Structural Engineers drawings, the project specification and Architects, Services Engineers \& Landscape Architects drawings.
4. The Contractor shall verify all site and setting out dimensions before putting work in hand. Where dimensions are shown on the Engineers drawings, any discrepancies shall be reported to him. All dimensions are in millimeters unless otherwise noted. Dimensions must not be scaled from the Engineers drawings.
5. Inspections made by the Local Authority, NHBC or other Statutory bodies, shall be arranged by the Contractor to suit his programme. Any costs arising out of failing to carry out the work to the satisfaction of the Checking Authority will be the sole responsibility of the Contractor.
6. All information provided by others is taken in good faith as being accurate, but HJ Structural Engineers cannot, and does not, accept any liability for the detailed accuracy, errors or omissions in such information.
7. The drawings, design and all information contained therein are the Copyright of HJ Structural Engineers Ltd and reproduction in any form is forbidden unless permission is obtained in writing.
8. No holes, chases, cut-outs or the like may be formed in any beam, column, or load bearing wall unless written permission is obtained from the Engineer.
9. For size and location of all services refer to the Service Engineer's and Architect's drawings.
10. Non-structural fixings are generally not shown on the Engineer's drawings and if any such detail is indicated it must be confirmed by cross-reference to other specialists before construction.

Contract:	Woodlands Farm
Job Ref:-	MAS 1543
Date:-	June 2023

ROOFING CONSTRUCTION NOTES

1. Timber wall plates will not be less than $50 \times 100 \mathrm{~mm}$ in cross section unless otherwise noted. These should be fixed inline with the latest building regulation specifications or as stated on HJSE drawings.
2. Wall plates should be strapped down to masonry walls at not more 1.25 m centres with galvanised $30 \times 2.5 \mathrm{~mm}$ straps having a size of not less than $100 \times 900 \mathrm{~mm}$.
3. All members supported on proprietary hangers must be accurately cut to provide a full contact with the base of the hanger and shall be fixed in accordance with the hanger manufacturer's instructions.
4. All loose timber rafters, ceiling joists, prefabricated trussed rafters and the like shall be fixed to timber wall plates, purlins etc. with suitable proprietary galvanised truss clips.

Strutting between joists is required at:-

- Joist span of 2.5 m to 4.5 m : - one row at centre of span.
- Joist span over 4.5 m : - two rows equally spaced

5. Gable walls, Party Walls and internal partitions extending into the roof space shall be restrained at the top of ceiling joists and underside of rafter level at no more than 2.0 m centres with galvanised $30 \times 5.0 \mathrm{~mm}$ straps having a size of not less than $100 \times 900 \mathrm{~mm}$. Noggins not less than 75 mm deep and timber blocking adjacent to walls shall be fixed between members at all strap locations. Straps shall be fixed between members at all strap locations. Straps shall be fixed to members/noggins with not less than 4 No. $32 \times 3.5 \mathrm{~mm}$ galvanised or sherardised square twisted nails.
6. Timber members must not penetrate fire stop walls in roofs. Provide suitable galvanised metal hangers to support trusses, rafters etc., as required to avoid such penetrations.
7. Prefabricated trussed rafters shall be Contractor designed to the approval of the Engineer. Calculations, truss profiles and layout drawings shall be submitted for comment and no fabrication work shall commence until comments are received from the Engineer. (Allow 3 working days for comments). Please note the truss supplier shall specify all loose timber/fixings unless otherwise specified by the structural engineer. The truss designer/supplier shall design all roof trusses in line with all current building standards.
8. The supplier shall be solely responsible for the design of the trussed rafters including all temporary and permanent bracing timbers except where otherwise detailed on the drawings. The main Contractor is responsible and liable for ensuring the overall stability of the works
9. Note that the Engineer is not responsible for setting out information other than where shown on the drawings.
10. All roof timbers to be preservative treated in accordance with: $\mathrm{BS}: 5268: \mathrm{pt} 3$ and $\mathrm{BS}: 5268: \mathrm{pt} 5$.
11. Trusses shall be stored on site in accordance with the manufacturer's recommendations.

Project: Wooovios Firan	Date: June ZO23
Element: Shootuna DGesin	Sheet:

Stworut lasowes
Roof: $O L=1,50 \mathrm{im} / \mathrm{m}^{2}$

$$
L . L=0,85 \mathrm{~m} / \mathrm{m}^{2}
$$

KEH

$$
\left.\begin{array}{rl}
T=\text { TEUSS }-\frac{\text { RAFTVRS }}{\text { TIE }} & =C 2447 \times 175^{\prime} \text { Se } 400 \text { GR'S, } \\
= & C 2447 \times 147 \text { e } 400 \text { GRS' }
\end{array}\right\} \text { MIN SIZES }
$$

$P I=$ Futan BGAM
3 No C24 47×197 's +2 NO 10 mm PUTES (S275) WITH BOLTS M8 e 300 mm

$P_{2}=$ Vitar Bom
2 NO C24 47×197's + 1 NO 10 mm PRTE (S275) WITH M8 BOUSC 300 mm Uuntianu Staggara gr's, 3 ro boas Res'de ends - See Aitacuien

R1 MACCSPRN $=1,9 \mathrm{~m} \quad U D L=(1,5+0,85) \times 0,4=0,94 \mathrm{k} / \mathrm{m} \mathrm{SCS}$

MNI

Tremmento Darencr

$$
\text { Mox SPas }=1,9 \mathrm{~m} \quad \text { UDL }=[(1,5+0,85) \times 0,4]+[1 \times 1,5]=2,45 \mathrm{k} / \mathrm{m} \Omega \mathrm{~S}
$$

$$
\text { USE MNO 3NOC24 } 47 \times 97^{\prime} \text { S }
$$

Prouus - p1

$$
M_{\text {MOC S SPAN }}=5,2 \mathrm{~m} \quad U D L=(1,5+0,85) \times[(5,2 / 2-0,65)]=461 \mathrm{w} / \mathrm{m} 525
$$

Aloos, Too Greot (Just) Far Multiple Timbsers $\$$ See Atranes tor hitan Desigu.

Δ Tekla* Tedds	Project Woodlands Farm - Trus				Job no.	
5 Millers Close Hadlegh	Truss supported off purlins - Tie height $=1.45 \mathrm{~m}$	Calcs for			Start page no./Revision 1	
Suffolk, IP7 6GG	Calcs by MAS	$\begin{aligned} & \text { Calcs date } \\ & 13 / 06 / 2023 \end{aligned}$	Checked by	Checked date	Approved by	Approved date

TIMBER MEMBER ANALYSIS \& DESIGN (EN1995-1-1:2004)
In accordance with EN1995-1-1:2004 + A2:2014 incorporating corrigendum June 2006 and the UK national annex
Tedds calculation version 2.2.17

All results summary	Unit	Capacity	Maximum	Utilisation	Result
Compressive stress	$\mathrm{N} / \mathrm{mm}^{2}$	11.3	0.2	0.022	PASS
Bending stress	$\mathrm{N} / \mathrm{mm}^{2}$	12.9	1.4	0.110	PASS
Shear stress	$\mathrm{N} / \mathrm{mm}^{2}$	2.2	0.2	0.080	PASS
Bending and axial force				0.110	PASS
Column stability check				0.125	PASS
Beam stability check				0.025	PASS
Deflection	mm	8.6	1.3	0.150	UASS
Member2 results summary	Unit	Capacity	Maximum	Utilisation	Result
Compressive stress	$\mathrm{N} / \mathrm{mm}^{2}$	11.3	0.2	0.022	PASS
Bending stress	$\mathrm{N} / \mathrm{mm}^{2}$	12.9	1.4	0.110	PASS
Shear stress	$\mathrm{N} / \mathrm{mm}^{2}$	2.2	0.2	0.080	PASS
Bending and axial force				0.110	PASS
Column stability check				0.125	PASS
Beam stability check				0.025	PASS
Deflection	mm	8.6	0.144	PASS	

ANALYSIS

Results

Total deflection

Node deflections

Load combination: All (Strength)

Tekla.Tedds HJ Structural Engineers Ltd 5 Millers Close Hadlegh Suffolk, IP7 6GG	Project Woodlands Farm - Tr				Job no. Start page no./Revision 2	
	Calcs for Truss supported off purlins - Tie height $=1.45 \mathrm{~m}$					
	Calcs by MAS	Calcs date 13/06/2023	Checked by	Checked date	Approved by	Approved date

Node	Deflection		Rotation	Co-ordinate system
	\mathbf{X} $(\mathbf{m m})$	\mathbf{Z} $(\mathbf{m m})$	$\left({ }^{\circ}\right)$	
1	0	0	0	
2	0	0.1	0	
3	0	0	0	

Total base reactions

Load case/combination	Force	
	FX	FZ
	(kN)	(kN)
All (Strength)	0	4.2

Element end forces
Load combination: All (Strength)

Element	Length $\mathbf{(m)}$	Nodes Start/End	Axial force $\mathbf{(k N})$	Shear force $\mathbf{(k N)}$	Moment $(\mathbf{k N m})$
1	2.154	1	-2.2	-0.7	0
		2	0.6	-0.7	0
2	2.154	2	-0.6	-0.7	0
		3	2.2	-0.7	0
3	2.768	1	0.9	0	0
		3	-0.9	0	0

Forces
Strength combinations - Moment envelope (kNm)

Tekla.Tedds HJ Structural Engineers Ltd 5 Millers Close Hadlegh Suffolk, IP7 6GG	Project Woodlands Farm - Truss				Job no.	
	Calcs for Truss supported off purlins - Tie height $=1.45 \mathrm{~m}$				Start page no./Revision 3	
	Calcs by MAS	$\begin{aligned} & \text { Calcs date } \\ & 13 / 06 / 2023 \end{aligned}$	Checked by	Checked date	Approved by	Approved date

Strength combinations - Shear envelope (kN)

Member results

Envelope - Strength combinations

Member	Shear force		Moment			
	Pos (\mathbf{m})	Max abs $(\mathbf{k N})$	Pos (\mathbf{m})	Max $(\mathbf{k N m})$	Pos (\mathbf{m})	Min $(\mathbf{k N m})$
All	0	0.7	1.077	$0.4(\max)$	0	$0(\mathrm{~min})$
Member2	2.154	$-0.7($ max abs $)$	1.077	$0.4(\max)$	2.154	$0(\mathrm{~min})$

All - Span 1

Partial factor for material properties and resistances
Partial factor for material properties - Table $2.3 \quad \gamma_{M}=1.300$
Member details
Load duration - cl.2.3.1.2 Long-term
Service class - cl.2.3.1.3 1
Timber section details
Number of timber sections in member
Breadth of sections
$\mathrm{N}=1$

Depth of sections
b $=50 \mathrm{~mm}$

Timber strength class - EN 338:2016 Table 1
$\mathrm{h}=175 \mathrm{~mm}$
C24

- Tekla.Tedds	Project	Woodlands	Farm - Trus		Job no.	
HJ Structural Engineers Ltd 5 Millers Close Hadlegh	Truss supported off purlins - Tie height $=1.45 \mathrm{~m}$				Start page no./Revision 4	
Suffolk, IP7 6GG	Calcs by MAS	Calcs date 13/06/2023	Checked by	Checked date	Approved by	Approved date

50x175 timber section

Cross-sectional area, A, 8750 mm
Section modulus, $W_{y}, 255208.3 \mathrm{~mm}^{3}$
Section modulus, $\mathrm{W}_{\mathrm{z}}, 72917 \mathrm{~mm}$
Second moment of area, !., $22330729 \mathrm{~mm}^{4}$ Second moment of area, $\frac{1}{z}, 1822917 \mathrm{~mm}^{4}$ Radius of gyration, i, 50.5 mm Radius of gyration, $\mathrm{i}_{\mathrm{z}}, 14.4 \mathrm{~mm}$ Timber strength class C24 Characteristic bending strength, $\mathrm{f}_{\mathrm{m} . \mathrm{k}}, 24 \mathrm{~N} / \mathrm{mm}^{2}$ Characteristic shear strength, $\mathrm{f}_{. \mathrm{k}}, 4 \mathrm{~N} / \mathrm{mm}^{2}$ Characteristic compression strength parallel to grain, $\mathrm{f}_{\mathrm{ik}}, 21 \mathrm{~N} / \mathrm{mm}^{2}$ Characteristic compression strength perpendicular to grain, $\mathrm{f}_{\mathrm{c} .90 . \mathrm{k}}, 2.5 \mathrm{~N} / \mathrm{mm}^{2}$ Characteristic tension strength parallel to grain, $\mathrm{f}_{0 . \mathrm{k}}, 14.5 \mathrm{~N} / \mathrm{mm}^{2}$
Mean modulus of elasticity, $E_{\text {omean }}, 11000 \mathrm{~N} / \mathrm{mm}^{2}$
Fifth percentile modulus of elasticity, $\mathrm{E}_{0.05}, 7400 \mathrm{~N} / \mathrm{mm}^{2}$
Shear modulus of elasticity, $G_{\text {mean }}, 690 \mathrm{~N} / \mathrm{mm}^{2}$
Characteristic density, $\rho_{\mathrm{k}}, 350 \mathrm{~kg} / \mathrm{m}^{3}$
Mean density, $\rho_{\text {mean }}, 420 \mathrm{~kg} / \mathrm{m}^{3}$

Span details

Bearing length

$$
L_{b}=100 \mathrm{~mm}
$$

Consider Combination 1 - All (Strength)

Modification factors

Duration of load and moisture content - Table 3.1

Deformation factor - Table 3.2
Bending stress re-distribution factor - cl.6.1.6(2)
Crack factor for shear resistance - cl.6.1.7(2)
Check compression parallel to the grain - cl.6.1.4
Design axial compression
Design compressive stress
Design compressive strength
$P_{d}=2.163 \mathrm{kN}$
$\sigma_{\mathrm{c}, 0, \mathrm{~d}}=\mathrm{P}_{\mathrm{d}} / \mathrm{A}=0.247 \mathrm{~N} / \mathrm{mm}^{2}$
$f_{c, 0, \mathrm{~d}}=\mathrm{k}_{\bmod } \times \mathrm{f}_{\mathrm{c} .0 \mathrm{o}} / \gamma_{\mathrm{M}}=11.308 \mathrm{~N} / \mathrm{mm}^{2}$
$\sigma_{\mathrm{c}, \mathrm{d}, \mathrm{d}} / \mathrm{f}_{\mathrm{c}, 0, \mathrm{~d}}=\mathbf{0 . 0 2 2}$

PASS - Design parallel compression strength exceeds design parallel compression stress

Check design at start of span

Check shear force - Section 6.1.7
Design shear force
$F_{y, d}=0.671 \mathrm{kN}$
Design shear stress - exp.6.60
$\tau_{\mathrm{y}, \mathrm{d}}=1.5 \times \mathrm{F}_{\mathrm{y}, \mathrm{d}} /\left(\mathrm{k}_{\mathrm{cr}} \times \mathrm{b} \times \mathrm{h}\right)=\mathbf{0 . 1 7 2} \mathrm{N} / \mathrm{mm}^{2}$
Design shear strength
$f_{v, y, d}=k_{\bmod } \times f_{v . k} / \gamma_{M}=2.154 N / m^{2}$
$\tau_{\mathrm{y}, \mathrm{d}} / \mathrm{f}_{\mathrm{v}, \mathrm{y}, \mathrm{d}}=0.080$
PASS - Design shear strength exceeds design shear stress
Check columns subjected to either compression or combined compression and bending - cl.6.3.2

Effective length for y-axis bending
Slenderness ratio
Relative slenderness ratio - exp. 6.21
Effective length for z-axis bending
Slenderness ratio
Relative slenderness ratio - exp. 6.22
$L_{e, y}=0.9 \times 2154 \mathrm{~mm}=1939 \mathrm{~mm}$
$\lambda_{y}=L_{e, y} / \mathrm{i}_{y}=38.374$
$\lambda_{\text {rel, }, \mathrm{y}}=\lambda_{\mathrm{y}} / \pi \times \sqrt{ }\left(\mathrm{f}_{\mathrm{c} .0 \mathrm{k}} / \mathrm{E}_{0.05}\right)=\mathbf{0 . 6 5 1}$
$\mathrm{L}_{\mathrm{e}, \mathrm{z}}=\mathbf{0} \mathrm{mm}$
$\lambda_{z}=L_{e, z} / i_{z}=0$
$\lambda_{\text {rel }, z}=\lambda_{z} / \pi \times \sqrt{ }\left(f_{\mathrm{c} .0 . \mathrm{k}} / \mathrm{E}_{0.05}\right)=0$
$\lambda_{\text {rel, }, ~}>0.3$ column stability check is required

- Tekla.Tedds	Project	Woodlands Farm - Truss			Job no.	
5 Millers Close Hadlegh	Truss supported off purlins - Tie height $=1.45 \mathrm{~m}$				Start page no./Revision 5	
Suffolk, IP7 6GG	Calcs by MAS	Calcs date 13/06/2023	Checked by	Checked date	Approved by	Approved date

Straightness factor
Instability factors - exp.6.25, 6.26, 6.27 \& 6.28

Column stability checks $-\exp .6 .23$ \& 6.24
$\beta_{c}=0.2$
$\mathrm{k}_{\mathrm{y}}=0.5 \times\left(1+\beta_{\mathrm{c}} \times\left(\lambda_{\text {rel, }, \mathrm{y}}-0.3\right)+\lambda_{\text {rel, },}{ }^{2}\right)=\mathbf{0 . 7 4 7}$
$\mathrm{k}_{\mathrm{z}}=0.5 \times\left(1+\beta_{\mathrm{c}} \times\left(\lambda_{\text {rel }, z}-0.3\right)+\lambda_{\text {rel, }, 2}{ }^{2}\right)=\mathbf{0 . 4 7 0}$
$\mathrm{k}_{\mathrm{c}, \mathrm{y}}=1 /\left(\mathrm{k}_{\mathrm{y}}+\sqrt{ }\left(\mathrm{ky}^{2}-\lambda_{\text {rel }, y^{2}}{ }^{2}\right)\right)=\mathbf{0 . 8 9 8}$
$\mathrm{k}_{\mathrm{c}, \mathrm{z}}=1 /\left(\mathrm{k}_{\mathrm{z}}+\sqrt{ }\left(\mathrm{k}_{\mathrm{z}}{ }^{2}-\lambda_{\text {rel, }, 2}{ }^{2}\right)\right)=1.064$
$\sigma_{c, 0, \mathrm{~d}} /\left(\mathrm{k}_{\mathrm{c}, \mathrm{y}} \times \mathrm{f}_{\mathrm{c}, 0, \mathrm{~d}}\right)=\mathbf{0 . 0 2 4}$
$\sigma_{c, 0, \mathrm{~d}} /\left(\mathrm{k}_{\mathrm{c}, \mathrm{z}} \times \mathrm{f}_{\mathrm{c}, 0, \mathrm{~d}}\right)=\mathbf{0 . 0 2 1}$
PASS - Column stability is acceptable

Check design 1077 mm along span

Check bending moment - Section 6.1.6
Design bending moment
Design bending stress
Design bending strength
$\mathrm{M}_{\mathrm{y}, \mathrm{d}}=\mathbf{0 . 3 6 1} \mathrm{kNm}$
$\sigma_{\mathrm{m}, \mathrm{y}, \mathrm{d}}=\mathrm{M}_{\mathrm{y}, \mathrm{d}} / \mathrm{W}_{\mathrm{y}}=1.416 \mathrm{~N} / \mathrm{mm}^{2}$
$f_{m, y, d}=k_{\bmod } \times f_{m . k} / \gamma_{M}=12.923 \mathrm{~N} / \mathrm{mm}^{2}$
$\sigma_{m, y, d} / f_{m, y, d}=0.11$
PASS - Design bending strength exceeds design bending stress
Check combined bending and axial compression - Section 6.2.4
Combined loading checks - exp. 6.19 \& 6.20

$$
\begin{aligned}
& \left(\sigma_{\mathrm{c}, 0, \mathrm{~d}} / \mathrm{f}_{\mathrm{c}, \mathrm{0}, \mathrm{~d})^{2}+\sigma_{\mathrm{m}, \mathrm{y}, \mathrm{~d}} / \mathrm{f}_{\mathrm{m}, \mathrm{y}, \mathrm{~d}}=\mathbf{0 . 1 1 0}}^{\left(\sigma_{\mathrm{c}, \mathrm{o}, \mathrm{~d}} / f_{\mathrm{c}, 0, \mathrm{~d}}\right)^{2}+\mathrm{k}_{\mathrm{m}} \times \sigma_{\mathrm{m}, \mathrm{y}, \mathrm{~d}} / \mathrm{f}_{\mathrm{m}, \mathrm{y}, \mathrm{~d}}=\mathbf{0 . 0 7 7}}\right.
\end{aligned}
$$

PASS - Combined bending and axial compression utilisation is acceptable
Check columns subjected to either compression or combined compression and bending - cl.6.3.2

Effective length for y-axis bending
Slenderness ratio
Relative slenderness ratio - exp. 6.21
Effective length for z-axis bending
Slenderness ratio
Relative slenderness ratio - exp. 6.22

Straightness factor
Instability factors - exp.6.25, 6.26, 6.27 \& 6.28

Column stability checks $-\exp .6 .23$ \& 6.24
$L_{e, y}=0.9 \times 2154 \mathrm{~mm}=1939 \mathrm{~mm}$
$\lambda_{y}=L_{e, y} / i_{y}=38.374$
$\lambda_{\text {rel, }, ~}=\lambda_{y} / \pi \times \sqrt{ }\left(\mathrm{f}_{\mathrm{c} .0 \mathrm{k}} / \mathrm{E}_{0.05}\right)=\mathbf{0 . 6 5 1}$
$\mathrm{L}_{\mathrm{e}, \mathrm{z}}=\mathbf{0} \mathrm{mm}$
$\lambda_{z}=L_{e, z} / i_{z}=\mathbf{0}$
$\lambda_{\text {rel, }, z}=\lambda_{z} / \pi \times \sqrt{ }\left(\mathrm{f}_{\mathrm{c} .0 . \mathrm{k}} / \mathrm{E}_{0.05}\right)=\mathbf{0}$
$\lambda_{\text {rel, }, ~}>0.3$ column stability check is required
$\beta_{c}=0.2$
$\mathrm{k}_{\mathrm{y}}=0.5 \times\left(1+\beta_{\mathrm{c}} \times\left(\lambda_{\text {rel, }, \mathrm{y}}-0.3\right)+\lambda_{\text {rel, },{ }^{2}}\right)=\mathbf{0 . 7 4 7}$
$\mathrm{k}_{\mathrm{z}}=0.5 \times\left(1+\beta_{\mathrm{c}} \times\left(\lambda_{\text {rel }, z}-0.3\right)+\lambda_{\text {rel }, z^{2}}\right)=\mathbf{0 . 4 7 0}$
$k_{c, y}=1 /\left(k_{y}+\sqrt{ }\left(k_{y}{ }^{2}-\lambda_{\text {rel }, y^{2}}\right)\right)=0.898$
$k_{c, z}=1 /\left(k_{z}+\sqrt{ }\left(k_{z}{ }^{2}-\lambda_{\text {rel }, z^{2}}{ }^{2}\right)\right)=1.064$
$\sigma_{\mathrm{c}, 0, \mathrm{~d}} /\left(\mathrm{k}_{\mathrm{c}, \mathrm{y}} \times \mathrm{f}_{\mathrm{c}, 0, \mathrm{~d}}\right)+\sigma_{\mathrm{m}, \mathrm{y}, \mathrm{d}} / \mathrm{f}_{\mathrm{m}, \mathrm{y}, \mathrm{d}}=\mathbf{0 . 1 3 4}$
$\sigma_{c, 0, \mathrm{~d}} /\left(\mathrm{k}_{\mathrm{c}, \mathrm{z}} \times \mathrm{f}_{\mathrm{c}, 0, \mathrm{~d}}\right)+\mathrm{k}_{\mathrm{m}} \times \sigma_{\mathrm{m}, \mathrm{y}, \mathrm{d}} / \mathrm{f}_{\mathrm{m}, \mathrm{y}, \mathrm{d}}=0.097$
PASS - Column stability is acceptable
Check beams subjected to either bending or combined bending and compression - cl.6.3.3

Lateral buckling factor - exp.6.34
Beam stability check - exp.6.35

Check design 1093 mm along span

Check y-y axis deflection - Section 7.2

Instantaneous deflection
$\mathrm{k}_{\text {crit }}=1.000$
$\left(\sigma_{\mathrm{m}, \mathrm{y}, \mathrm{d}} /\left(\mathrm{k}_{\text {crit }} \times \mathrm{f}_{\mathrm{m}, \mathrm{y}, \mathrm{d}}\right)\right)^{2}+\sigma_{\mathrm{c}, 0, \mathrm{~d}} /\left(\mathrm{k}_{\mathrm{c}, \mathrm{z}} \times \mathrm{f}_{\mathrm{c}, 0, \mathrm{~d}}\right)=0.033$
PASS - Beam stability is acceptable

\triangle Tekla.Tedds	Project Woodlands Farm - Trus				Job no.	
HJ Structural Engineers Ltd 5 Millers Close Hadlegh	Truss supported off purlins - Tie height $=1.45 \mathrm{~m}$				Start page no./Revision	
Suffolk, IP7 6GG	Calcs by MAS	$\begin{array}{\|l\|} \hline \text { Calcs date } \\ 13 / 06 / 2023 \\ \hline \end{array}$	Checked by	Checked date	Approved by	Approved date

Quasi-permanent variable load factor
Final deflection with creep
Allowable deflection
$\psi_{2}=0.3$
$\delta_{y, \text { Final }}=\delta_{y} \times\left(1+k_{\text {def }}\right)=1.3 \mathrm{~mm}$
$\delta_{\text {y,Allowable }}=L_{m 1 _ \text {s } 1} / 250=8.6 \mathrm{~mm}$
$\delta_{y, \text { Final }} / \delta_{y \text {,Allowable }}=\mathbf{0 . 1 5}$
PASS - Allowable deflection exceeds final deflection

Member2 - Span 1

Partial factor for material properties and resistances
Partial factor for material properties - Table $2.3 \quad \gamma_{M}=\mathbf{1 . 3 0 0}$

Member details

Load duration - cl.2.3.1.2

Long-term

Service class - cl.2.3.1.3
1

Timber section details

Number of timber sections in member
$\mathrm{N}=1$
Breadth of sections
$\mathrm{b}=\mathbf{5 0} \mathrm{mm}$
Depth of sections
$\mathrm{h}=175 \mathrm{~mm}$
Timber strength class - EN 338:2016 Table 1
C24

50x175 timber section
Cross-sectional area, A, $8750 \mathrm{~mm}^{2}$ Section modulus, $\mathrm{W}_{\mathrm{y}}, 255208.3 \mathrm{~mm}^{3}$ Section modulus, $W_{z}, 72917 \mathrm{~mm}^{3}$ Second moment of area, $\downarrow, 22330729 \mathrm{~mm}^{4}$
Second moment of area, $\mathrm{L}, 1822917 \mathrm{~mm}^{4}$ Radius of gyration, $i_{y}, 50.5 \mathrm{~mm}$ Radius of gyration, $\mathrm{i}, 14.4 \mathrm{~mm}$
Timber strength class C24
Characteristic bending strength, $\mathrm{f}_{\mathrm{m} . \mathrm{k}}, 24 \mathrm{~N} / \mathrm{mm}^{2}$
Characteristic shear strength, $f_{k}, 4 \mathrm{~N} / \mathrm{mm}^{2}$
Characteristic compression strength parallel to grain, $\mathrm{f}_{0.0 \mathrm{k}}, 21 \mathrm{~N} / \mathrm{mm}^{2}$
Characteristic compression strength perpendicular to grain, $\mathrm{f}_{90 \mathrm{k}}, 2.5 \mathrm{~N} / \mathrm{mm}^{2}$
Characteristic tension strength parallel to grain, $\mathrm{f}_{0 . \mathrm{k}}, 14.5 \mathrm{~N} / \mathrm{mm}^{2}$
Mean modulus of elasticity, $E_{0 \text { mean }}, 11000 \mathrm{~N} / \mathrm{mm}^{2}$
Fifth percentile modulus of elasticity, $\mathrm{E}_{0.05}, 7400 \mathrm{~N} / \mathrm{mm}^{2}$
Shear modulus of elasticity, $G_{\text {mean }}, 690 \mathrm{~N} / \mathrm{mm}^{2}$
Characteristic density, $\rho_{\mathrm{k}}, 350 \mathrm{~kg} / \mathrm{m}^{3}$
Mean density, $\rho_{\text {mean }}, 420 \mathrm{~kg} / \mathrm{m}^{3}$

Span details

Bearing length

$$
L_{b}=100 \mathrm{~mm}
$$

Consider Combination 1 - All (Strength)

Modification factors

Duration of load and moisture content - Table $3.1 \mathrm{k}_{\bmod }=\mathbf{0 . 7}$
Deformation factor - Table 3.2
$\mathrm{k}_{\text {def }}=0.6$
Bending stress re-distribution factor - cl.6.1.6(2)
$\mathrm{k}_{\mathrm{m}}=0.7$
Crack factor for shear resistance - cl.6.1.7(2) $\quad k_{c r}=\mathbf{0 . 6 7}$
Check compression parallel to the grain - cl.6.1.4
Design axial compression
$\mathrm{P}_{\mathrm{d}}=0.563 \mathrm{kN}$
Design compressive stress
$\sigma_{\mathrm{c}, \mathrm{o}, \mathrm{d}}=\mathrm{P}_{\mathrm{d}} / \mathrm{A}=0.064 \mathrm{~N} / \mathrm{mm}^{2}$
Design compressive strength
$f_{c, 0, \mathrm{~d}}=\mathrm{k}_{\bmod } \times \mathrm{f}_{\mathrm{c} .0 \mathrm{k}} / \gamma_{\mathrm{M}}=11.308 \mathrm{~N} / \mathrm{mm}^{2}$
$\sigma_{c, 0, \mathrm{~d}} / \mathrm{f}_{\mathrm{c}, 0, \mathrm{~d}}=\mathbf{0 . 0 0 6}$

- Tekla.Tedds	Project	Woodlands	Farm - Trus		Job no.	
HJ Structural Engineers Ltd 5 Millers Close Hadlegh	Truss supported off purlins - Tie height $=1.45 \mathrm{~m}$				7	
Suffolk, IP7 6GG	Calcs by MAS	$\begin{aligned} & \text { Calcs date } \\ & 13 / 06 / 2023 \end{aligned}$	Checked by	Checked date	Approved by	Approved date

PASS - Design parallel compression strength exceeds design parallel compression stress

Check design at start of span

Check shear force - Section 6.1.7

Design shear force

$$
\begin{aligned}
& \mathrm{F}_{\mathrm{y}, \mathrm{~d}}=0.671 \mathrm{kN} \\
& \tau_{\mathrm{y}, \mathrm{~d}}=1.5 \times \mathrm{F}_{\mathrm{y}, \mathrm{~d}} /\left(\mathrm{k}_{\mathrm{cr}} \times \mathrm{b} \times \mathrm{h}\right)=0.172 \mathrm{~N} / \mathrm{mm}^{2} \\
& \mathrm{f}_{\mathrm{v}, \mathrm{y}, \mathrm{~d}}=\mathrm{k}_{\mathrm{mod}} \times \mathrm{f}_{\mathrm{v} . \mathrm{k}} / \gamma_{\mathrm{M}}=2.154 \mathrm{~N} / \mathrm{mm}^{2} \\
& \tau_{\mathrm{y}, \mathrm{~d}} / \mathrm{f}_{\mathrm{v}, \mathrm{y}, \mathrm{~d}}=0.080
\end{aligned}
$$

Design shear stress - exp.6.60
Design shear strength

PASS - Design shear strength exceeds design shear stress
Check columns subjected to either compression or combined compression and bending - cl.6.3.2
Effective length for y-axis bending
Slenderness ratio
Relative slenderness ratio - exp. 6.21
Effective length for z-axis bending
Slenderness ratio
Relative slenderness ratio - exp. 6.22

$$
\lambda_{r e l, y}>0.3 \text { column stability check is required }
$$

Straightness factor
Instability factors - exp.6.25, 6.26, 6.27 \& 6.28

Column stability checks $-\exp .6 .23$ \& 6.24

Colunn stabily check - exp.6.23\&6.24

PASS - Column stability is acceptable

Check design 1077 mm along span

Check bending moment - Section 6.1.6
Design bending moment

$$
\begin{aligned}
& M_{y, d}=0.361 \mathrm{kNm} \\
& \sigma_{m, y, d}=M_{y, d} / W_{y}=1.416 \mathrm{~N} / \mathrm{mm}^{2} \\
& f_{m, y, d}=k_{m o d} \times f_{m . k} / \gamma_{M}=12.923 \mathrm{~N} / \mathrm{mm}^{2} \\
& \sigma_{m, y, d} / f_{m, y, d}=0.11
\end{aligned}
$$

PASS - Design bending strength exceeds design bending stress
Check combined bending and axial compression - Section 6.2.4
Combined loading checks - exp. 6.19 \& 6.20

$$
\begin{aligned}
& \left(\sigma_{\mathrm{c}, 0, \mathrm{~d}} / \mathrm{f}_{\mathrm{c}, 0, \mathrm{~d}}\right)^{2}+\sigma_{\mathrm{m}, \mathrm{y}, \mathrm{~d}} / \mathrm{f}_{\mathrm{m}, \mathrm{y}, \mathrm{~d}}=\mathbf{0 . 1 1 0} \\
& \left(\sigma_{\mathrm{c}, \mathrm{o}, \mathrm{~d}} / \mathrm{f}_{\mathrm{c}, 0, \mathrm{~d}}\right)^{2}+\mathrm{k}_{\mathrm{m}} \times \sigma_{\mathrm{m}, \mathrm{y}, \mathrm{~d}} / \mathrm{f}_{\mathrm{m}, \mathrm{y}, \mathrm{~d}}=\mathbf{0 . 0 7 7}
\end{aligned}
$$

PASS - Combined bending and axial compression utilisation is acceptable
Check columns subjected to either compression or combined compression and bending - cl.6.3.2

Effective length for y-axis bending
Slenderness ratio
Relative slenderness ratio - exp. 6.21
Effective length for z-axis bending
Slenderness ratio
Relative slenderness ratio - exp. 6.22

$$
\begin{aligned}
& L_{e, y}=0.9 \times 2154 \mathrm{~mm}=1939 \mathrm{~mm} \\
& \lambda_{y}=L_{e, y} / i_{y}=38.374 \\
& \lambda_{\mathrm{rel}, \mathrm{y}}=\lambda_{y} / \pi \times \sqrt{ }\left(\mathrm{f}_{\mathrm{c} .0 \mathrm{k}} / \mathrm{E}_{0.05}\right)=\mathbf{0 . 6 5 1} \\
& \mathrm{L}_{\mathrm{e}, \mathrm{z}}=\mathbf{0} \mathrm{mm} \\
& \lambda_{z}=\mathrm{L}_{\mathrm{e}, \mathrm{z}} / \mathrm{i}_{\mathrm{z}}=\mathbf{0} \\
& \lambda_{\mathrm{rel}, \mathrm{z}}=\lambda_{z} / \pi \times \sqrt{ }\left(\mathrm{f}_{\mathrm{c} .0 . \mathrm{k}} / \mathrm{E}_{0.05}\right)=\mathbf{0}
\end{aligned}
$$

$$
\begin{aligned}
& L_{e, y}=0.9 \times 2154 \mathrm{~mm}=1939 \mathrm{~mm} \\
& \lambda_{y}=L_{e, y} / \mathrm{i}_{y}=38.374 \\
& \lambda_{\text {rel, }, ~}=\lambda_{y} / \pi \times \sqrt{ }\left(\mathrm{f}_{\mathrm{c} .0 \mathrm{k}} / \mathrm{E}_{0.05}\right)=\mathbf{0 . 6 5 1} \\
& \mathrm{L}_{\mathrm{e}, \mathrm{z}}=\mathbf{0} \mathrm{mm} \\
& \lambda_{z}=L_{e, z} / i_{z}=0 \\
& \lambda_{\text {rel, }, z}=\lambda_{z} / \pi \times \sqrt{ }\left(\mathrm{f}_{\mathrm{c} .0 . \mathrm{k}} / \mathrm{E}_{0.05}\right)=\mathbf{0} \\
& \beta_{c}=0.2 \\
& \mathrm{k}_{\mathrm{y}}=0.5 \times\left(1+\beta_{\mathrm{c}} \times\left(\lambda_{\text {rel }, \mathrm{y}}-0.3\right)+\lambda_{\text {rel, }}{ }^{2}\right)=0.747 \\
& \mathrm{k}_{\mathrm{z}}=0.5 \times\left(1+\beta_{\mathrm{c}} \times\left(\lambda_{\text {rel, }, z}-0.3\right)+\lambda_{\text {rel, }, 2}{ }^{2}\right)=\mathbf{0 . 4 7 0} \\
& \mathrm{k}_{\mathrm{c}, \mathrm{y}}=1 /\left(\mathrm{k}_{\mathrm{y}}+\sqrt{ }\left(\mathrm{k}_{\mathrm{y}}{ }^{2}-\lambda_{\text {rel, },{ }^{2}}{ }^{2}\right)\right)=\mathbf{0 . 8 9 8} \\
& \mathrm{k}_{\mathrm{c}, \mathrm{z}}=1 /\left(\mathrm{k}_{\mathrm{z}}+\sqrt{ }\left(\mathrm{k}_{\mathrm{z}}{ }^{2}-\lambda_{\text {rel, },{ }^{2}}{ }^{2}\right)\right)=1.064 \\
& \sigma_{c, 0, \mathrm{~d}} /\left(\mathrm{k}_{\mathrm{c}, \mathrm{y}} \times \mathrm{f}_{\mathrm{c}, 0, \mathrm{~d}}\right)=\mathbf{0 . 0 0 6} \\
& \sigma_{\mathrm{c}, 0, \mathrm{~d}} /\left(\mathbf{k}_{\mathrm{c}, \mathrm{z}} \times \mathrm{f}_{\mathrm{c}, 0, \mathrm{~d}}\right)=\mathbf{0 . 0 0 5}
\end{aligned}
$$

HJ Structural Engineers Ltd

Suffolk, IP7 6GG

Project Woodlands Farm - Truss				Job no.	
Truss supported off purlins - Tie height $=1.45 \mathrm{~m}$				8	
Calcs by MAS	Calcs date 13/06/2023	Checked by	Checked date	Approved by	Approved date

Straightness factor
Instability factors - exp.6.25, 6.26, 6.27 \& 6.28

Column stability checks $-\exp .6 .23$ \& 6.24
$\beta_{c}=0.2$
$k_{y}=0.5 \times\left(1+\beta_{c} \times\left(\lambda_{\text {rel }, y}-0.3\right)+\lambda_{\text {rel, },}{ }^{2}\right)=0.747$
$\mathrm{k}_{\mathrm{z}}=0.5 \times\left(1+\beta_{\mathrm{c}} \times\left(\lambda_{\text {rel, }, \mathrm{z}}-0.3\right)+\lambda_{\text {rel, }, 2}{ }^{2}\right)=\mathbf{0 . 4 7 0}$
$k_{c, y}=1 /\left(k_{y}+\sqrt{ }\left(k_{y}{ }^{2}-\lambda_{\text {rel, },{ }^{2}}\right)\right)=0.898$
$\mathrm{k}_{\mathrm{c}, \mathrm{z}}=1 /\left(\mathrm{k}_{\mathrm{z}}+\sqrt{ }\left(\mathrm{k}_{\mathrm{z}}{ }^{2}-\lambda_{\text {rel, }, z^{2}}{ }^{2}\right)\right)=1.064$
$\sigma_{c, 0, \mathrm{~d}} /\left(\mathrm{k}_{\mathrm{c}, \mathrm{y}} \times \mathrm{f}_{\mathrm{c}, 0, \mathrm{~d}}\right)+\sigma_{\mathrm{m}, \mathrm{y}, \mathrm{d}} / \mathrm{f}_{\mathrm{m}, \mathrm{y}, \mathrm{d}}=\mathbf{0 . 1 1 6}$
$\sigma_{c, 0, \mathrm{~d}} /\left(\mathrm{k}_{\mathrm{c}, \mathrm{z}} \times \mathrm{f}_{\mathrm{c}, 0, \mathrm{~d}}\right)+\mathrm{k}_{\mathrm{m}} \times \sigma_{\mathrm{m}, \mathrm{y}, \mathrm{d}} / \mathrm{f}_{\mathrm{m}, \mathrm{y}, \mathrm{d}}=\mathbf{0 . 0 8 2}$
PASS - Column stability is acceptable

Check beams subjected to either bending or combined bending and compression - cl.6.3.3

Lateral buckling factor - exp.6.34
Beam stability check - exp.6.35

Check design 1061 mm along span

Check y-y axis deflection - Section 7.2

Instantaneous deflection
Quasi-permanent variable load factor
Final deflection with creep
Allowable deflection
$k_{\text {crit }}=1.000$
$\left(\sigma_{m, y, d} /\left(k_{\text {crit }} \times f_{m, y, d}\right)\right)^{2}+\sigma_{c, 0, d} /\left(k_{c, z} \times f_{c, 0, d}\right)=0.017$
PASS - Beam stability is acceptable
$\delta_{y}=0.8 \mathrm{~mm}$
$\psi_{2}=0.3$
$\delta_{y, \text { Final }}=\delta_{y} \times\left(1+k_{\text {def }}\right)=1.2 \mathrm{~mm}$
$\delta_{y, \text { Allowable }}=L_{m 2 _s 1} / 250=8.6 \mathrm{~mm}$
$\delta_{y, \text { Final }} / \delta_{y, \text { Allowable }}=0.144$
PASS - Allowable deflection exceeds final deflection

Tekla.Tedds HJ Structural Engineers Ltd 5 Millers Close Hadlegh Suffolk, IP7 6GG	Project Woodlands Farm				Job no.	
	Calcs for P1-Purlin				Start page no./Revision 1	
	Calcs by MAS	Calcs date 13/06/2023	Checked by	Checked date	Approved by	Approved date

FLITCH BEAM ANALYSIS \& DESIGN TO BS5268-2:2002

Applied loading

Beam loads

	Dead self weight of beam $\times 1$	
Roof	Dead full UDL $3.000 \mathrm{kN} / \mathrm{m}$	
Roof	Imposed full UDL $1.700 \mathrm{kN} / \mathrm{m}$	
Load combinations		Dead $\times 1.00$
Load combination 1	Support A	Imposed $\times 1.00$
	Span 1	Dead $\times 1.00$
		Imposed $\times 1.00$
	Support B	Dead $\times 1.00$
		Imposed $\times 1.00$

Analysis results

Maximum moment
Design moment
Maximum shear
Design shear
Total load on beam
$M_{\text {max }}=17.344 \mathrm{kNm}$
$\mathrm{M}_{\text {min }}=0.000 \mathrm{kNm}$
$M=\max \left(\operatorname{abs}\left(M_{\max }\right), a b s\left(M_{\text {min }}\right)\right)=17.344 \mathrm{kNm}$
$F_{\text {max }}=13.342 \mathrm{kN} \quad F_{\text {min }}=-13.342 \mathrm{kN}$
$\mathrm{F}=\max \left(\mathrm{abs}\left(\mathrm{F}_{\text {max }}\right), \mathrm{abs}\left(\mathrm{F}_{\text {min }}\right)\right)=13.342 \mathrm{kN}$
$W_{\text {tot }}=\mathbf{2 6 . 6 8 4} \mathrm{kN}$

S Tekla.Tedds HJ Structural Engineers Ltd 5 Millers Close Hadlegh Suffolk, IP7 6GG	Project Woodlands Farm				Job no.	
	Calcs for P1-Purlin				Start page no./Revision 2	
	Calcs by MAS	$\begin{array}{\|l\|} \hline \text { Calcs date } \\ 13 / 06 / 2023 \end{array}$	Checked by	Checked date	Approved by	Approved date

Timber section details

Breadth of timber sections
$\mathrm{b}=50 \mathrm{~mm}$
Depth of timber sections
$\mathrm{h}=200 \mathrm{~mm}$
Number of timber sections in member
$\mathrm{N}=3$
Timber strength class
C24
Steel section details
Breadth of steel plate
Depth of steel plate
Number of steel plates in beam
Steel stress
Bolt diameter
$\mathrm{b}_{\mathrm{s}}=10 \mathrm{~mm}$
$\mathrm{h}_{\mathrm{s}}=200 \mathrm{~mm}$
$\mathrm{N}_{\mathrm{s}}=2$
$\mathrm{p}_{\mathrm{y}}=230 \mathrm{~N} / \mathrm{mm}^{2}$
$\phi_{b}=8 \mathrm{~mm}$

Member details

Service class of timber
Load duration
1

Length of span
Length of bearing
g term
$L_{s 1}=5200 \mathrm{~mm}$
$\mathrm{L}_{\mathrm{b}}=\mathbf{1 0 0} \mathrm{mm}$

Section properties

Cross sectional area of beam
Timber section modulus
Steel section modulus
Second moment of area of timber
Second moment of area of steel
$\mathrm{A}=\mathrm{N} \times \mathrm{b} \times \mathrm{h}=\mathbf{3 0 0 0 0} \mathrm{mm}^{2}$
$Z_{x t}=N \times b \times h^{2} / 6=1000000 \mathrm{~mm}^{3}$
$Z_{\mathrm{xs}}=N_{\mathrm{s}} \times \mathrm{b}_{\mathrm{s}} \times \mathrm{h}_{\mathrm{s}}{ }^{2} / 6=133333 \mathrm{~mm}^{3}$
$l_{x t}=N \times b \times h^{3} / 12=100000000 \mathrm{~mm}^{4}$
$\mathrm{I}_{\mathrm{xs}}=\mathrm{N}_{\mathrm{s}} \times \mathrm{b}_{\mathrm{s}} \times \mathrm{h}_{\mathrm{s}}{ }^{3} / 12=13333333 \mathrm{~mm}^{4}$

Load proportions

Instant deflection under permanent actions
Instant deflection under principal variable action
$\mathrm{U}_{\text {inst }}=8.567 \mathrm{~mm}$
$u_{\text {instQ1 }}=4.244 \mathrm{~mm}$
$\mathrm{k}_{\mathrm{def}}=0.6$
$\psi_{2}=0.3$
Final minimum modulus of elasticity

$$
E_{\text {min }, \text { fin }}=E_{\min } \times\left(u_{\text {instG }}+u_{\text {instQ1 } 1}\right) /\left(u_{\text {instG }}+u_{\text {instQ1 }}+k_{\text {def }} \times\left(u_{\text {instG }}+\psi_{2} \times u_{\text {instQ1 } 1}\right)\right)=4929 \mathrm{~N} / \mathrm{mm}^{2}
$$

Proportion of applied load in timber
$\mathrm{k}_{\mathrm{t}}=\mathrm{E}_{\text {mean }} \times \mathrm{I}_{\mathrm{xt}} /\left(\mathrm{E}_{\text {mean }} \times \mathrm{I}_{\mathrm{xt}}+\mathrm{Ess5950} \times \mathrm{I}_{\mathrm{xs}}\right)=\mathbf{0 . 2 8 3}$
Proportion of applied load in steel
$\mathrm{k}_{\mathrm{s}}=1.1 \times \mathrm{E}_{\mathrm{s} 5950} \times \mathrm{I}_{\mathrm{xs}} /\left(\mathrm{E}_{\text {min,fin }} \times \mathrm{I}_{\mathrm{xt}}+\mathrm{E}_{\mathrm{s} 5950} \times \mathrm{I}_{\mathrm{xs}}\right)=\mathbf{0 . 9 3 2}$

A Tekla Tedds	Project Woodlands Farm				Job no.	
HJ Structural Engineers Ltd 5 Millers Close Hadlegh	Calcs for P1-Purlin				Start page no./Revision 3	
Suffolk, IP7 6GG	Calcs by MAS	Calcs date 13/06/2023	Checked by	Checked date	Approved by	Approved date

Modification factors

Duration of loading - Table 17
Bearing stress - Table 18
Total depth of member - cl.2.10.6
Load sharing - cl.2.9
$K_{3}=1.00$
$\mathrm{K}_{4}=1.00$
$\mathrm{K}_{7}=(300 \mathrm{~mm} / \mathrm{h})^{0.11}=1.05$
$\mathrm{K}_{8}=1.00$

Lateral support - cl.2.10.8
No lateral support
Permissible depth-to-breadth ratio - Table 19
2.00

Actual depth-to-breadth ratio
$h /\left(N \times b+N_{s} \times b_{s}\right)=1.18$
PASS - Lateral support is adequate

Compression perpendicular to grain

Permissible bearing stress (no wane)
$\sigma_{c _a d m}=\sigma_{c p 1} \times \mathrm{K}_{3} \times \mathrm{K}_{4} \times \mathrm{K}_{8}=2.400 \mathrm{~N} / \mathrm{mm}^{2}$
Applied bearing stress
$\sigma_{c_{-} a}=R_{A_{_} \max } /\left(\mathrm{N} \times \mathrm{b} \times \mathrm{L}_{\mathrm{b}}\right)=0.889 \mathrm{~N} / \mathrm{mm}^{2}$
$\sigma_{c_{-}} / \sigma_{c_{_} \text {adm }}=0.371$
PASS - Applied compressive stress is less than permissible compressive stress at bearing

Bending parallel to grain

Permissible bending stress
$\sigma_{\mathrm{m} _ \text {adm }}=\sigma_{\mathrm{m}} \times \mathrm{K}_{3} \times \mathrm{K}_{7} \times \mathrm{K}_{8}=7.842 \mathrm{~N} / \mathrm{mm}^{2}$
Applied timber bending stress
$\sigma_{\mathrm{m} _a}=\mathrm{k}_{\mathrm{t}} \times \mathrm{M} / Z_{\mathrm{xt}}=4.912 \mathrm{~N} / \mathrm{mm}^{2}$
$\sigma_{m_{-}} / \sigma_{\mathrm{m} _a d m}=0.626$
PASS - Timber bending stress is less than permissible timber bending stress
Applied steel bending stress

Check beam in shear

Permissible shear stress
Applied shear stress
$\tau_{\mathrm{adm}}=\tau \times \mathrm{K}_{2 \mathrm{~s}} \times \mathrm{K}_{3} \times \mathrm{K}_{8}=0.710 \mathrm{~N} / \mathrm{mm}^{2}$
$\tau_{\mathrm{a}}=3 \times \mathrm{k}_{\mathrm{t}} \times \mathrm{F} /(2 \times \mathrm{A})=0.189 \mathrm{~N} / \mathrm{mm}^{2}$
$\tau_{\mathrm{a}} / \tau_{\text {adm }}=0.266$
PASS - Shear stress within permissible limits

Deflection

Modulus of elasticity for deflection
Permissible deflection
Bending deflection
Shear deflection
Total deflection

Flitch plate bolting requirements
Total load on beam
Total load taken by steel
Basic bolt shear load - Table 77
Number of interfaces
Number of bolts required at supports
Limiting bolt spacing
Maximum bolt spacing
$\mathrm{E}=\mathrm{E}_{\text {mean }}=10800 \mathrm{~N} / \mathrm{mm}^{2}$
$\delta_{\text {adm }}=\min \left(0.551 \mathrm{in}, 0.003 \times \mathrm{L}_{\mathrm{s} 1}\right)=13.995 \mathrm{~mm}$
$\delta_{\text {b_s } 1}=12.811 \mathrm{~mm}$
$\delta_{\mathrm{v} s} 1=1.028 \mathrm{~mm}$
$\delta_{\mathrm{a}}=\delta_{\mathrm{b} \text { _s } 1}+\delta_{\mathrm{v}_{-} 1}=13.839 \mathrm{~mm}$
$\delta_{a} / \delta_{\text {adm }}=0.989$
PASS - Total deflection is less than permissible deflection
$W_{\text {tot }}=\mathbf{2 6 . 6 8 4} \mathrm{kN}$
$W_{s}=k_{s} \times W_{\text {tot }}=\mathbf{2 4 . 8 6 8} \mathrm{kN}$
$\mathrm{V}_{90}=1.066 \mathrm{kN}$
$N_{\text {int }}=\left(N+N_{s}\right)-1=4$
$N_{\text {be }}=\max \left(k_{s} \times R_{\text {A_max }} /\left(N_{\text {int }} \times V_{90}\right), 2\right)=2.916$
$S_{\text {limit }}=\min (2.5 \times h, 600 \mathrm{~mm})=500 \mathrm{~mm}$
$S_{\text {max }}=\mathbf{3 0 0} \mathrm{mm}$

- Tekla.Tedds HJ Structural Engineers Ltd 5 Millers Close Hadlegh Suffolk, IP7 6GG	Project Woodlands Farm				Job no.	
	Calcs for P1 - Purlin				Start page no./Revision 4	
	Calcs by MAS	$\begin{array}{\|l\|} \hline \text { Calcs date } \\ 13 / 06 / 2023 \end{array}$	Checked by	Checked date	Approved by	Approved date

Minimum number of bolts along length of beam $\quad N_{b l}=W_{s} /\left(N_{\text {int }} \times V_{90}\right)=5.831$

- Provide a minimum of 3 No. 8 mm diameter bolts at each support
- Provide 8 mm diameter bolts at maximum 300 mm centres staggered 50 mm alternately above and below the centre line

Minimum bolt spacings

Minimum end spacing
Minimum edge spacing
Minimum bolt spacing
Minimum washer diameter
Minimum washer thickness
$S_{\text {end }}=4 \times \phi b=32 \mathrm{~mm}$
$S_{\text {edge }}=4 \times \phi_{b}=32 \mathrm{~mm}$
$S_{\text {bolt }}=4 \times \phi_{b}=32 \mathrm{~mm}$
$\phi_{\mathrm{w}}=3 \times \phi_{\mathrm{b}}=\mathbf{2 4} \mathrm{mm}$
$\mathrm{t}_{\mathrm{w}}=0.25 \times \phi_{\mathrm{b}}=\mathbf{2} \mathrm{mm}$

- Tekla.Tedds HJ Structural Engineers Ltd 5 Millers Close Hadlegh Suffolk, IP7 6GG	Project Woodlands Farm				Job no.	
	Calcs for	P2-Purlin			1	
	Calcs by MAS	$\begin{array}{\|r\|} \hline \text { Calcs date } \\ 13 / 06 / 2023 \end{array}$	Checked by	Checked date	Approved by	Approved date

FLITCH BEAM ANALYSIS \& DESIGN TO BS5268-2:2002

Applied loading

Beam loads

	Dead self weight of beam $\times 1$	
Roof	Dead full UDL $3.000 \mathrm{kN} / \mathrm{m}$	
Roof	Imposed full UDL $1.700 \mathrm{kN} / \mathrm{m}$	
Load combinations		
Load combination 1	Support A	Dead $\times 1.00$
	Span 1	Dead $\times 1.00$
		Imposed $\times 1.00$
	Support B	Dead $\times 1.00$
		Imposed $\times 1.00$

Analysis results

Maximum moment
Design moment
Maximum shear
Design shear
Total load on beam
$M_{\text {max }}=10.885 \mathrm{kNm}$
$\mathrm{M}_{\text {min }}=0.000 \mathrm{kNm}$
$M=\max \left(a b s\left(M_{\max }\right), a b s\left(M_{\text {min }}\right)\right)=10.885 \mathrm{kNm}$
$F_{\text {max }}=10.366 \mathrm{kN}$
$F_{\text {min }}=-10.366 \mathrm{kN}$
$\mathrm{F}=\max \left(\mathrm{abs}\left(\mathrm{F}_{\text {max }}\right), \mathrm{abs}\left(\mathrm{F}_{\text {min }}\right)\right)=\mathbf{1 0 . 3 6 6 \mathrm { kN }}$
$W_{\text {tot }}=20.733 \mathrm{kN}$

Tekla.Tedds HJ Structural Engineers Ltd 5 Millers Close Hadlegh Suffolk, IP7 6GG	Project Woodlands Farm				Job no.	
	Calcs for P2 - Purlin				Start page no./Revision 2	
	Calcs by MAS	Calcs date 13/06/2023	Checked by	Checked date	Approved by	Approved date

Timber section details

Breadth of timber sections	$\mathrm{b}=\mathbf{5 0} \mathrm{mm}$
Depth of timber sections	$\mathrm{h}=\mathbf{2 0 0} \mathrm{mm}$
Number of timber sections in member	$\mathrm{N}=\mathbf{2}$
Timber strength class	C24

Steel section details

Breadth of steel plate
$\mathrm{b}_{\mathrm{s}}=10 \mathrm{~mm}$
Depth of steel plate
$\mathrm{h}_{\mathrm{s}}=200 \mathrm{~mm}$
Number of steel plates in beam
$\mathrm{N}_{\mathrm{s}}=1$
Steel stress
$p_{y}=230 \mathrm{~N} / \mathrm{mm}^{2}$
Bolt diameter
$\phi_{b}=8 \mathrm{~mm}$

Member details

Service class of timber 1
Load duration
Length of span
Length of bearing
Long term
$L_{s 1}=4200 \mathrm{~mm}$
$L_{b}=100 \mathrm{~mm}$

Section properties

Cross sectional area of beam
$\mathrm{A}=\mathrm{N} \times \mathrm{b} \times \mathrm{h}=20000 \mathrm{~mm}^{2}$
Timber section modulus
$Z_{x t}=N \times b \times h^{2} / 6=666667 \mathrm{~mm}^{3}$
Steel section modulus
$Z_{x s}=N_{s} \times b_{s} \times h_{s}{ }^{2} / 6=66667 \mathrm{~mm}^{3}$
Second moment of area of timber
$\mathrm{I}_{\mathrm{xt}}=\mathrm{N} \times \mathrm{b} \times \mathrm{h}^{3} / 12 \mathbf{= 6 6 6 6 6 6 6 7} \mathrm{~mm}^{4}$
Second moment of area of steel
$\mathrm{I}_{\mathrm{xs}}=\mathrm{N}_{\mathrm{s}} \times \mathrm{b}_{\mathrm{s}} \times \mathrm{h}_{\mathrm{s}}{ }^{3} / 12 \boldsymbol{= 6 6 6 6 6 6 7} \mathrm{~mm}^{4}$
Load proportions
Instant deflection under permanent actions
UinstG $=6.284 \mathrm{~mm}$
Instant deflection under principal variable action
$U_{\text {instQ1 }}=3.301 \mathrm{~mm}$
$\mathrm{k}_{\text {def }}=0.6$
$\psi_{2}=0.3$
Final minimum modulus of elasticity

$$
E_{\text {min,fin }}=E_{\min } \times\left(u_{\text {instG }}+u_{\text {instQ1 } 1}\right) /\left(u_{\text {instG }}+u_{\text {instQ1 }}+k_{\text {def }} \times\left(u_{\text {instG }}+\psi_{2} \times u_{\text {instQ1 } 1}\right)\right)=4947 \mathrm{~N} / \mathrm{mm}^{2}
$$

Proportion of applied load in timber
$\mathrm{k}_{\mathrm{t}}=\mathrm{E}_{\text {mean }} \times \mathrm{I}_{\mathrm{xt}} /\left(\mathrm{E}_{\text {mean }} \times \mathrm{I}_{\mathrm{xt}}+\mathrm{E}_{\mathrm{s} 5950} \times \mathrm{I}_{\mathrm{xs}}\right)=\mathbf{0 . 3 4 5}$
Proportion of applied load in steel
$\mathrm{k}_{\mathrm{s}}=1.1 \times \mathrm{E}_{\mathrm{s} 5950} \times \mathrm{I}_{\mathrm{xs}} /\left(\mathrm{E}_{\mathrm{min}, \mathrm{fin}} \times \mathrm{I}_{\mathrm{xt}}+\mathrm{E}_{\mathrm{s} 5950} \times \mathrm{I}_{\mathrm{xs}}\right)=\mathbf{0 . 8 8 6}$

A Tekla Tedds	Project Woodlands Farm				Job no.	
HJ Structural Engineers Ltd 5 Millers Close Hadlegh	Calcs for P 2 - Purlin				Start page no./Revision 3	
Suffolk, IP7 6GG	Calcs by MAS	Calcs date 13/06/2023	Checked by	Checked date	Approved by	Approved date

Modification factors

Duration of loading - Table 17
Bearing stress - Table 18
Total depth of member - cl.2.10.6
Load sharing - cl.2.9
$K_{3}=1.00$
$\mathrm{K}_{4}=1.00$
$\mathrm{K}_{7}=(300 \mathrm{~mm} / \mathrm{h})^{0.11}=1.05$
$\mathrm{K}_{8}=1.00$

Lateral support - cl.2.10.8
No lateral support
Permissible depth-to-breadth ratio - Table 19
2.00

Actual depth-to-breadth ratio
$h /\left(N \times b+N_{s} \times b_{s}\right)=1.82$
PASS - Lateral support is adequate

Compression perpendicular to grain

Permissible bearing stress (no wane)
$\sigma_{\mathrm{c} _ \text {adm }}=\sigma_{\mathrm{cp} 1} \times \mathrm{K}_{3} \times \mathrm{K}_{4} \times \mathrm{K}_{8}=2.400 \mathrm{~N} / \mathrm{mm}^{2}$
Applied bearing stress
$\sigma_{c_{-} a}=R_{B_{_} \max } /\left(\mathrm{N} \times \mathrm{b} \times \mathrm{L}_{\mathrm{b}}\right)=1.037 \mathrm{~N} / \mathrm{mm}^{2}$
$\sigma_{c_{-}} / \sigma_{c_{_} \text {adm }}=0.432$
PASS - Applied compressive stress is less than permissible compressive stress at bearing

Bending parallel to grain

Permissible bending stress
$\sigma_{\mathrm{m} _ \text {adm }}=\sigma_{\mathrm{m}} \times \mathrm{K}_{3} \times \mathrm{K}_{7} \times \mathrm{K}_{8}=7.842 \mathrm{~N} / \mathrm{mm}^{2}$
Applied timber bending stress
$\sigma_{\mathrm{m} _a}=\mathrm{k}_{\mathrm{t}} \times \mathrm{M} / \mathrm{Z}_{\mathrm{xt}}=5.634 \mathrm{~N} / \mathrm{mm}^{2}$
$\sigma_{\mathrm{m}}{ }^{\mathrm{a}} / \sigma_{\mathrm{m} _a d m}=0.718$
PASS - Timber bending stress is less than permissible timber bending stress
Applied steel bending stress
$\sigma_{\mathrm{m} _ \text {a_s }}=\mathrm{k}_{\mathrm{s}} \times \mathrm{M} / Z_{\mathrm{xs}}=144.681 \mathrm{~N} / \mathrm{mm}^{2}$
$\sigma_{m _a} / p_{y}=0.629$
PASS - Steel bending stress is less than permissible steel bending stress

Check beam in shear

Permissible shear stress
Applied shear stress
$\tau_{\mathrm{adm}}=\tau \times \mathrm{K}_{2 \mathrm{~s}} \times \mathrm{K}_{3} \times \mathrm{K}_{8}=0.710 \mathrm{~N} / \mathrm{mm}^{2}$
$\tau_{\mathrm{a}}=3 \times \mathrm{k}_{\mathrm{t}} \times \mathrm{F} /(2 \times \mathrm{A})=0.268 \mathrm{~N} / \mathrm{mm}^{2}$
$\tau_{\mathrm{a}} / \tau_{\mathrm{adm}}=0.378$
PASS - Shear stress within permissible limits

Deflection

Modulus of elasticity for deflection
Permissible deflection
Bending deflection
Shear deflection
Total deflection

Flitch plate bolting requirements
Total load on beam
Total load taken by steel
Basic bolt shear load - Table 71
Number of interfaces
Number of bolts required at supports
Limiting bolt spacing
Maximum bolt spacing
$\mathrm{E}=\mathrm{E}_{\text {mean }}=10800 \mathrm{~N} / \mathrm{mm}^{2}$
$\delta_{\mathrm{adm}}=\min \left(0.551 \mathrm{in}, 0.003 \times \mathrm{L}_{\mathrm{s} 1}\right)=12.600 \mathrm{~mm}$
$\delta_{\mathrm{b} _1}=9.585 \mathrm{~mm}$
$\delta_{\mathrm{v} s} 1=0.968 \mathrm{~mm}$
$\delta_{\mathrm{a}}=\delta_{\mathrm{b}_{-} 1}+\delta_{\mathrm{v}_{-} 1}=10.552 \mathrm{~mm}$
$\delta_{a} / \delta_{\text {adm }}=0.837$
PASS - Total deflection is less than permissible deflection
$W_{\text {tot }}=20.733 \mathrm{kN}$
$W_{s}=k_{s} \times W_{\text {tot }}=18.372 \mathrm{kN}$
$\mathrm{V}_{90}=1.269 \mathrm{kN}$
$N_{\text {int }}=\left(N+N_{s}\right)-1=2$
$N_{\text {be }}=\max \left(\mathrm{k}_{\mathrm{s}} \times \mathrm{R}_{\mathrm{B} _ \text {max }} /\left(\mathrm{N}_{\text {int }} \times \mathrm{V}_{90}\right), 2\right)=\mathbf{3 . 6 1 9}$
$S_{\text {limit }}=\min (2.5 \times h, 600 \mathrm{~mm})=500 \mathrm{~mm}$
$S_{\text {max }}=\mathbf{3 0 0} \mathrm{mm}$

- Tekla.Tedds HJ Structural Engineers Ltd 5 Millers Close Hadlegh Suffolk, IP7 6GG	Project Woodlands Farm				Job no.	
	Calcs for \quad P2 - Purlin				Start page no./Revision 4	
	Calcs by MAS	$\begin{array}{\|l\|} \hline \text { Calcs date } \\ 13 / 06 / 2023 \end{array}$	Checked by	Checked date	Approved by	Approved date

Minimum number of bolts along length of beam $\quad N_{b l}=W_{s} /\left(N_{\text {int }} \times V_{90}\right)=\mathbf{7 . 2 3 8}$

- Provide a minimum of 4 No .8 mm diameter bolts at each support
- Provide 8 mm diameter bolts at maximum 300 mm centres staggered 50 mm alternately above and below the centre line

Minimum bolt spacings

Minimum end spacing
Minimum edge spacing
Minimum bolt spacing
Minimum washer diameter
Minimum washer thickness
$S_{\text {end }}=4 \times \phi_{b}=32 \mathrm{~mm}$
$S_{\text {edge }}=4 \times \phi_{b}=32 \mathrm{~mm}$
$S_{\text {bolt }}=4 \times \phi_{b}=32 \mathrm{~mm}$
$\phi_{\mathrm{w}}=3 \times \phi_{\mathrm{b}}=\mathbf{2 4} \mathrm{mm}$
$\mathrm{t}_{\mathrm{w}}=0.25 \times \phi_{\mathrm{b}}=\mathbf{2} \mathrm{mm}$

A Tekla Tedds	Project Woodlands Farm				Job no.	
HJ Structural Engineers Ltd 5 Millers Close Hadlegh	Calcs for \quad TSW - MS				Start page no./Revision 1	
Suffolk, IP7 6GG	Calcs by MAS	Calcs date 13/06/2023	Checked by	Checked date	Approved by	Approved date

Stud details

Stud breadth
$\mathrm{b}=50 \mathrm{~mm}$
Stud depth
$\mathrm{h}=100 \mathrm{~mm}$
Number of studs
$\mathrm{N}_{\mathrm{s}}=3$
Strength class C16 timber (Table 8 BS5268:Pt 2:2002)

Section properties

Cross sectional area
$A=N_{s} \times b \times h=15000 \mathrm{~mm}^{2}$
Section modulus
$\mathrm{Z}=\mathrm{N}_{\mathrm{s}} \times \mathrm{b} \times \mathrm{h}^{2} / 6=\mathbf{2 5 0 0 0 0} \mathrm{mm}^{3}$
Moment of inertia in the major axis
$\mathrm{I}_{\mathrm{x}}=\mathrm{N}_{\mathrm{s}} \times \mathrm{b} \times \mathrm{h}^{3} / 12=12500000 \mathrm{~mm}^{4}$
Moment of inertia in the minor axis
$\mathrm{l}_{\mathrm{y}}=\mathrm{N}_{\mathrm{s}} \times \mathrm{h} \times \mathrm{b}^{3} / 12=\mathbf{3 1 2 5 0 0 0} \mathrm{mm}^{4}$
Radius of gyration in the major axis
$r_{x}=\sqrt{ }\left(I_{x} / A\right)=28.9 \mathrm{~mm}$
Radius of gyration in the minor axis
$r_{y}=\sqrt{ }\left(l_{y} / A\right)=14.4 \mathrm{~mm}$
Panel details - Studs restrained by sheathing in the plane of the panel

Panel height
Stud length
Standard stud spacing
Panel opening
Loaded panel length
Effective length in the major axis
Slenderness ratio

Vertical loading details
Wall UDL
Roof UDL
$\mathrm{L}=\mathbf{2 6 0 0} \mathrm{mm}$
$\mathrm{L}_{\mathrm{s}}=\mathrm{L}-(2 \times \mathrm{b})=\mathbf{2 5 0 0} \mathrm{mm}$
$\mathrm{s}_{\mathrm{s}}=400 \mathrm{~mm}$
$\mathrm{O}=\mathbf{0} \mathrm{mm}$
$\mathrm{s}=\max \left(\mathrm{s}_{\mathrm{s}},\left(\mathrm{O}+\mathrm{s}_{\mathrm{s}}\right) / 2\right)=400 \mathrm{~mm}$
$\mathrm{L}_{\text {ex }}=0.85 \times \mathrm{L}_{\mathrm{s}}=\mathbf{2 1 2 5} \mathrm{mm}$
$\lambda=L_{\text {ex }} / r_{x}=73.61$

Dead loads

$\mathrm{U}_{\mathrm{w} _\mathrm{d}}=3.00 \mathrm{kN} / \mathrm{m}$
$\mathrm{U}_{\mathrm{r}_{-} \mathrm{d}}=1.50 \mathrm{kN} / \mathrm{m}$

Imposed loads
$\mathrm{U}_{\mathrm{r}_{-} \mathrm{i}}=0.85 \mathrm{kN} / \mathrm{m}$

A Tekla* Tedds	Project Woodlands Farm				Job no.	
5 Millers Close Hadlegh	Calcs for	TSW - MS			Start page no./Revision 2	
Suffolk, IP7 6GG	Calcs by MAS	Calcs date 13/06/2023	Checked by	Checked date	Approved by	Approved date

Roof point loads
$P_{r_{-} d}=7.00 \mathrm{kN}$
$P_{r_{-} \mathrm{i}}=7.00 \mathrm{kN}$
Lateral loading details
Wind loading
$\mathrm{W}=0.50 \mathrm{kN} / \mathrm{m}^{2}$
Wind load duration
Very short term
Modification factors
Section depth factor
$\mathrm{K}_{7}=(300 \mathrm{~mm} / \mathrm{h})^{0.11}=1.13$
Load sharing factor
$\mathrm{K}_{8}=1.10$
Consider combined axial compression and bending under very short term loads

Load duration factor

$$
\begin{aligned}
& K_{3}=1.75 \\
& F=\left(U_{w_{-} d}+U_{r_{-} d}+U_{r_{-} \mathrm{i}}\right) \times s+P_{r_{-} d}+P_{r_{-}-i}=16.14 \mathrm{kN}
\end{aligned}
$$

Vertical loading
Check bending stress
Bending parallel to grain

$$
\sigma_{\mathrm{m}}=5.300 \mathrm{~N} / \mathrm{mm}^{2}
$$

Permissible bending stress
Bending moment
Applied bending stress
$\sigma_{\mathrm{m} _ \text {adm }}=\sigma_{\mathrm{m}} \times \mathrm{K}_{3} \times \mathrm{K}_{7} \times \mathrm{K}_{8}=11.513 \mathrm{~N} / \mathrm{mm}^{2}$
$\mathrm{M}_{\text {max }}=\mathrm{W} \times \mathrm{s} \times \mathrm{L}^{2} / 8=0.169 \mathrm{kNm}$
$\sigma_{\text {m_max }}=M_{\max } / Z=0.676 \mathrm{~N} / \mathrm{mm}^{2}$

PASS - Applied bending stress under very short term loads is within permissible limits
Check compressive stress on stud
Compression member factor

$$
\begin{aligned}
& \mathrm{K}_{12}=0.43 \\
& \sigma_{\mathrm{c}}=6.800 \mathrm{~N} / \mathrm{mm}^{2} \\
& \sigma_{\mathrm{c} _ \text {adm }}=\sigma_{\mathrm{c}} \times \mathrm{K}_{3} \times \mathrm{K}_{8} \times \mathrm{K}_{12}=\mathbf{5 . 6 0 9} \mathrm{N} / \mathrm{mm}^{2} \\
& \sigma_{\mathrm{c} _\max }=\mathrm{F} /\left(\mathrm{N}_{\mathrm{s}} \times \mathrm{b} \times \mathrm{h}\right)=1.076 \mathrm{~N} / \mathrm{mm}^{2}
\end{aligned}
$$

PASS - Applied compressive stress under very short term loads is within permissible limits
Check compressive stress on rail
Bearing stress modification factor

$$
\begin{aligned}
& \mathrm{K}_{4}=\mathbf{1 . 0 0} \\
& \sigma_{\mathrm{cp} 1}=\mathbf{2 . 2 0 0 ~ N} / \mathrm{mm}^{2} \\
& \sigma_{\mathrm{cp1} 1 \mathrm{adm}}=\sigma_{\mathrm{cp1} 1} \times \mathrm{K}_{3} \times \mathrm{K}_{4}=\mathbf{3 . 8 5 0 ~ N} / \mathrm{mm}^{2} \\
& \sigma_{\mathrm{cp1} 1} \max =\mathrm{F} /\left(\mathrm{N}_{\mathrm{s}} \times \mathrm{b} \times \mathrm{h}\right)=\mathbf{1 . 0 7 6} \mathrm{N} / \mathrm{mm}^{2}
\end{aligned}
$$

Compression perpendicular to grain (no wane)
Permissible compressive stress
Applied compressive stress
PASS - Applied compressive stress under very short term loads is within permissible limits
Check combined axial compression and bending

Euler critical stress	$\sigma_{\mathrm{e}}=\left(\pi^{2} \times \mathrm{E}_{\min }\right) / \lambda^{2}=\mathbf{1 0 . 5 6 4} \mathrm{N} / \mathrm{mm}^{2}$
Euler coefficient	$\mathrm{K}_{\text {eu }}=1-\left(1.5 \times \sigma_{\mathrm{c}_{-} \max } \times \mathrm{K}_{12} / \sigma_{\mathrm{e}}\right)=\mathbf{0 . 9 3 5}$
Combined axial compression and bending value	$\mathrm{K}=\sigma_{\mathrm{m}_{-} \max } /\left(\sigma_{\mathrm{m} _ \text {adm }} \times \mathrm{K}_{\text {eu }}\right)+\sigma_{\mathrm{c} __} / \sigma_{\mathrm{c}_{-} \text {adm }}=\mathbf{0 . 2 5 5 < 1}$

PASS - Combined compressive and bending stresses under very short term loads are within permissible limits

Check stud deflection

Euler critical stress
$\sigma_{\mathrm{e}}=\left(\pi^{2} \times \mathrm{E}_{\text {min }}\right) / \lambda^{2}=10.564 \mathrm{~N} / \mathrm{mm}^{2}$
Maximum deflection
$\delta_{\mathrm{adm}}=\min (7.5 \mathrm{~mm}, 0.003 \times(\mathrm{L}-2 \times \mathrm{b}))=\mathbf{7 . 5 0 0} \mathrm{mm}$
Bending deflection
$\delta_{\text {max }}=5 \times \mathrm{W} \times \mathrm{s} \times \mathrm{L}_{\mathrm{s}}{ }^{4} /\left(384 \times \mathrm{E}_{\text {mean }} \times \mathrm{I}_{\mathrm{x}}\right)=0.925 \mathrm{~mm}$
PASS - Deflection due to wind loading is less than permissible limit
Consider axial compression without bending under medium term loads
Load duration factor
$\mathrm{K}_{3}=1.25$
Vertical loading
$F=\left(U_{w_{-} d}+U_{r_{-} d}+U_{r_{-}}\right) \times s+P_{r_{-} d}+P_{r_{-} i}=16.14 \mathrm{kN}$

Check compressive stress on stud
Compression member factor
$\mathrm{K}_{12}=\mathbf{0 . 5 1}$

N Tekla.Tedds	Project Woodlands Farm				Job no.	
5 Millers Close Hadlegh	Calcs for \quad TSW - MS				Start page no./Revision 3	
Suffolk, IP7 6GG	Calcs by MAS	$\begin{aligned} & \hline \text { Calcs date } \\ & 13 / 06 / 2023 \end{aligned}$	Checked by	Checked date	Approved by	Approved date

Compression parallel to grain	$\sigma_{c}=6.800 \mathrm{~N} / \mathrm{mm}^{2}$
Permissible compressive stress	$\sigma_{c_{_} \text {adm }}=\sigma_{c} \times \mathrm{K}_{3} \times \mathrm{K}_{8} \times \mathrm{K}_{12}=4.773 \mathrm{~N} / \mathrm{mm}^{2}$
Applied compressive stress	$\sigma_{c_{-} \max }=\mathrm{F} /\left(\mathrm{N}_{\mathrm{s}} \times \mathrm{b} \times \mathrm{h}\right)=1.076 \mathrm{~N} / \mathrm{mm}^{2}$

PASS - Applied compressive stress under medium term loads is within permissible limits
Check compressive stress on rail
Bearing stress modification factor

$$
\begin{aligned}
& \mathrm{K}_{4}=1.00 \\
& \sigma_{\mathrm{cp} 1}=\mathbf{2 . 2 0 0 ~ N} / \mathrm{mm}^{2} \\
& \sigma_{\mathrm{cp1} 1 \mathrm{adm}}=\sigma_{\mathrm{cp} 1} \times \mathrm{K}_{3} \times \mathrm{K}_{4}=2.750 \mathrm{~N} / \mathrm{mm}^{2} \\
& \sigma_{\mathrm{cp} 1 _\max }=\mathrm{F} /\left(\mathrm{N}_{\mathrm{s}} \times \mathrm{b} \times \mathrm{h}\right)=1.076 \mathrm{~N} / \mathrm{mm}^{2}
\end{aligned}
$$

Compression perpendicular to grain (no wane)
Permissible compressive stress
Appled compresive stess
Applied compressive stress

PASS - Applied compressive stress under medium term loads is within permissible limits

Consider axial compression without bending under long term loads
Load duration factor

$$
\begin{aligned}
& K_{3}=1.00 \\
& F=\left(U_{w_{-} d}+U_{r_{-} d}\right) \times s+P_{r_{-} d}=8.80 \mathrm{kN}
\end{aligned}
$$

Vertical loading
Check compressive stress on stud
Compression member factor
$\mathrm{K}_{12}=\mathbf{0 . 5 6}$
Compression parallel to grain

$$
\sigma_{c}=6.800 \mathrm{~N} / \mathrm{mm}^{2}
$$

Permissible compressive stress
$\sigma_{\mathrm{c} _ \text {adm }}=\sigma_{\mathrm{c}} \times \mathrm{K}_{3} \times \mathrm{K}_{8} \times \mathrm{K}_{12}=4.165 \mathrm{~N} / \mathrm{mm}^{2}$
Applied compressive stress

$$
\sigma_{c^{\prime} \max }=\mathrm{F} /\left(\mathrm{N}_{\mathrm{s}} \times \mathrm{b} \times \mathrm{h}\right)=0.587 \mathrm{~N} / \mathrm{mm}^{2}
$$

PASS - Applied compressive stress under long term loads is within permissible limits
Check compressive stress on rail
Bearing stress modification factor

$$
\begin{aligned}
& \mathrm{K}_{4}=1.00 \\
& \sigma_{\mathrm{cp1} 1}=\mathbf{2 . 2 0 0} \mathrm{N} / \mathrm{mm}^{2} \\
& \sigma_{\mathrm{cp} 1} \text { _adm }=\sigma_{\mathrm{cp} 1} \times \mathrm{K}_{3} \times \mathrm{K}_{4}=\mathbf{2 . 2 0 0} \mathrm{N} / \mathrm{mm}^{2}
\end{aligned}
$$

Compression perpendicular to grain (no wane)
Permissible compressive stress
Applied compressive stress

