

Appendix 5

Site Photographs and Notes

Header

Borehole No.



| Details                                        |                     |           |
|------------------------------------------------|---------------------|-----------|
| Project Number                                 | Date                | Hole Туре |
| C3485/23/E                                     | 04/05/2023          | ТР        |
| Site Location                                  | Client Name         |           |
| Draughton Quarry                               | R Howson            |           |
| Lead Operative                                 | Assistant Operative |           |
| Rig Make and Model     Other       Other     . | ]                   |           |
| what3words                                     |                     |           |
| Trial Pit                                      |                     |           |
| Excavator Make and Model                       |                     |           |





















Header



### Position No. TP01A-1,-2,-3

| Details                                        |                              |
|------------------------------------------------|------------------------------|
| Project Number<br>C3485/23/E                   | Date Hole Type 04/05/2023 TP |
| Site Location Draughton                        | Client Name<br>R Howson      |
| Lead Operative<br>Rob                          | Assistant Operative<br>Toby  |
| Rig Make and Model     Other       Other     . |                              |
| what3words                                     |                              |
| Trial Pit                                      |                              |
| Excavator Make and Model                       |                              |















## Borehole Log v5

Header

Borehole No. TP2A



| Details                  |                     |           |
|--------------------------|---------------------|-----------|
| Project Number           | Date                | Hole Type |
| C3485/23/E               | 04/05/2023          | ТР        |
| Site Location            | Client Name         |           |
| Draughton Quarry         | R Howson            |           |
| Lead Operative           | Assistant Operative |           |
| Rob                      | Toby                |           |
| Rig Make and Model Other |                     |           |
| Other .                  |                     |           |
|                          |                     |           |
| what3words               |                     |           |
|                          |                     |           |
| Trial Pit                |                     |           |
| Excavator Make and Model |                     |           |
|                          |                     |           |





Header

Position No. TP03A



#### **Details** Project Number Date Hole Type 04/05/2023 C3485 TΡ Site Location **Client Name** Draughton Quarry R Howson Lead Operative Assistant Operative Toby Rob Rig Make and Model Other Other 14T Doosan what3words **Trial Pit**

Excavator Make and Model





Header

Position No. TP4A



#### **Details** Project Number Date Hole Type 04/05/2023 C3485/23/E TΡ Site Location **Client Name** Draughton R Howson Lead Operative Assistant Operative Toby Rob Rig Make and Model Other Other 14T what3words **Trial Pit** Excavator Make and Model





Header



### Position No. SA1

| Details                                        |                                                        |
|------------------------------------------------|--------------------------------------------------------|
| Project Number<br>C3485                        | Date         Hole Type           04/05/2023         TP |
| Site Location Draughton                        | Client Name<br>R Howson                                |
| Lead Operative<br>Rob                          | Assistant Operative<br>Toby                            |
| Rig Make and Model     Other       Other     . |                                                        |
| what3words<br>Evolves.sensible.grief           |                                                        |
| Trial Pit                                      |                                                        |
| Excavator Make and Model                       |                                                        |



Header

Position No. SA2



#### **Details** Project Number Date Hole Type 04/05/2023 C3485 TΡ Site Location **Client Name** Draughton R Howson Lead Operative Assistant Operative Toby Rob Rig Make and Model Other Other 14T what3words forgets.discusses.drawn **Trial Pit**

Excavator Make and Model









Appendix 6

Laboratory Testing


date

Environmental Geotechnical Specialists

# LABORATORY REPORT

C/3485/23/E/5292

site address Former Quarry,

iob number

Low Lane,

Draughton, Skipton,

North Yorkshire, BD23 6EA

H J Letch





Constructionline



# **Blank Page**















8948

#### Schedule of UKAS Accredited Laboratory Tests



| 1. CLASSIFICATION OF SOIL                                                         | BS 1377-2:1990       | BS EN ISO 17892                      | Accredited (A) | Unaccredited (U)                      |
|-----------------------------------------------------------------------------------|----------------------|--------------------------------------|----------------|---------------------------------------|
| 1.1 Moisture / Water content determ                                               | ination              |                                      |                |                                       |
| i. Oven drying                                                                    | Pt 2 : 3.2           | Pt 1 : 2014 Pt 12 : 2018 : 5.3 / 5.5 | A              |                                       |
| 1.2 Index Properties                                                              | PL2:3.3              |                                      |                |                                       |
| i Liquid limit – cone penetrometer                                                | Pt 2 · 4 3           |                                      |                |                                       |
| ii. Plastic limit                                                                 | Pt 2 : 5.3           |                                      | A              |                                       |
| iii. Shrinkage limit                                                              | Pt 2 : 6.3           |                                      |                | U                                     |
| iv. Linear shrinkage                                                              | Pt 2 : 6.5           |                                      | A              |                                       |
| 1.3 Particle Density                                                              |                      |                                      |                |                                       |
| i. Gas jar                                                                        | Pt 2 : 8.2           |                                      | A              |                                       |
| II. Large pyknometer                                                              | Pt 2:8.3             | $D_{1}^{+}$ 2 · 2015 · 5 1           |                |                                       |
| 1.4 Density Tests                                                                 | Fl2.0.4              | FL3.2013.3.1                         |                |                                       |
| i. Linear measurement                                                             | Pt 2 : 7.2           | Pt 2 : 2014 : 5.1                    | A              |                                       |
| ii. Immersion in water                                                            | Pt 2 : 7.3           | Pt 2 : 2014 : 5.2                    |                | U                                     |
| iii. Fluid / Water displacement                                                   | Pt 2 : 7.4           | Pt 2 : 2014 : 5.3                    |                | U                                     |
| iv. Sand replacement                                                              | Pt 9 : 2.1, 2.2      |                                      |                | U                                     |
| v. Core cutter                                                                    | Pt 9 : 2.4           |                                      |                | U                                     |
| 1.5 Particle Size Distribution                                                    |                      |                                      |                |                                       |
| I. Dry Sieve                                                                      | Pt 2 : 9.2           | Pt 4 : 2016 : 5.2                    | A              |                                       |
| iii. Sedimentation by pipette                                                     | Pt 2 · 9 4           | $Pt 4 \cdot 2010 \cdot 5.3 / 5.4$    | A              |                                       |
| iv. Sedimentation by hydrometer                                                   | Pt 2 : 9.5           | 1114.2010.0.070.4                    |                | U                                     |
| 2. CHEMICAL TESTS                                                                 | BS 1377-3:2018       |                                      |                |                                       |
| ii. Mass loss on ignition                                                         | Pt 3 : 4             |                                      |                | U                                     |
| 3. COMPACTION RELATED TESTS                                                       | BS 1377-4:1990       |                                      |                |                                       |
| 3.1 Dry density/moisture relationship                                             |                      |                                      |                |                                       |
| i. 2.5kg rammer – 1 litre mould                                                   | Pt 4 : 3             |                                      | Α              |                                       |
| - CBR mould                                                                       | Pt 4 : 3             |                                      | A              |                                       |
| ii. 4.5kg rammer – 1 litre mould                                                  | Pt 4 : 3             |                                      | A              |                                       |
| 3.2 Moisture Condition Value                                                      | F14.5                |                                      |                |                                       |
| i. Single point test                                                              | Pt 4 : 5.4           |                                      |                | <br>U                                 |
| ii. MCV/moisture content relationship                                             | Pt 4 : 5.5           |                                      |                | U                                     |
| 3.3 California Bearing Ratio                                                      |                      |                                      |                |                                       |
| i. Undisturbed sample                                                             | Pt 5 : 7             |                                      | A              |                                       |
| ii. Recompacted sample                                                            | Pt 5 : 7             |                                      | A              |                                       |
| iii. Soaked, inc measurement of swell                                             | Pt 5 : 7             |                                      | A              |                                       |
| 4. COMPRESSIBILITY OF SOIL                                                        | BS 1377-5:1990       |                                      |                |                                       |
| <ol> <li>One dimensional consolidation</li> <li>Swelling pressure test</li> </ol> | Pt 5 : 3<br>Pt 5 : 3 |                                      | A              | U                                     |
| 5. SHEAR STRENGTH OF SOIL                                                         | BS 1377-7:1990       |                                      |                |                                       |
| i. Hand shear vane                                                                | Makers instructions  |                                      |                | U                                     |
| ii. Shear box (100mm square sample)                                               | BS 1377 : Pt 7 : 4   |                                      |                |                                       |
|                                                                                   | DS 13/7 . PL7 : 0, 9 |                                      | A              |                                       |
| i Falling head                                                                    | K H Head Vol 2       |                                      |                | 11                                    |
| ii. Constant head                                                                 | BS 1377 : Pt 6 : 6   |                                      |                | · · · · · · · · · · · · · · · · · · · |
| iii Triaxial cell                                                                 | BS 1377 : Pt 6 : 6   |                                      |                | U                                     |
| 7. ROCK TESTS                                                                     |                      |                                      |                |                                       |
| 7.1 Classification Tests                                                          |                      |                                      |                |                                       |
| i. Natural moisture content                                                       | -                    |                                      |                | U                                     |
| ii. Saturated moisture content                                                    | -                    |                                      |                | U                                     |
| III. Natural density                                                              |                      |                                      |                | U                                     |
| IV. FUIDSILY                                                                      |                      |                                      |                | · · · · · · · · · · · · · · · · · · · |
| i Point load index                                                                | ISRM '85             |                                      |                |                                       |
| ii. Uniaxial compression test                                                     | ISRM '81             |                                      |                | · · · · · · · · · · · · · · · · · · · |





# Disclaimer

# The results reported herein relate only to the material supplied to the laboratory.















# GEOTECHNICAL TESTING RESULTS



Please consider the environment before printing this report.







# **Blank Page**













|                         | RGS                                  |                                   |          |                                   | Summ                                                                     | ary c               | of C             | lassi  | ficati   | on T | est      | Re   | sults |                    |                      |            |
|-------------------------|--------------------------------------|-----------------------------------|----------|-----------------------------------|--------------------------------------------------------------------------|---------------------|------------------|--------|----------|------|----------|------|-------|--------------------|----------------------|------------|
| Project No.<br>C3485    | /23/E/5                              | 292                               | Project  | Name                              |                                                                          |                     | [                | Draugh | ton Qua  | rry  |          |      |       |                    |                      |            |
|                         |                                      | Sa                                | mple     | 1                                 | Cail Description                                                         | w                   | Passing<br>425µm | LL     | PL       | PI   | Particle | Cone | Water | Dete               |                      |            |
| Hole No.                | Ref                                  | Тор                               | Base     | Туре                              | Soli Description                                                         | Mg/                 | m3               | %      | %        | %    | %        | %    | Mg/m3 | 80g/30°<br>60g/60° | Increase<br>Decrease | Date       |
| TP03A                   | 1                                    | 0.50                              | 1.00     | В                                 | Dark grey very clayey silty very<br>sandy GRAVEL. Low cobble<br>content. |                     |                  | 18.0   |          |      |          |      |       |                    |                      | 30-May     |
| TP04A                   | B1                                   | 1.00                              | 1.50     | В                                 | Dark grey very clayey silty very<br>sandy GRAVEL. Low cobble<br>content. |                     |                  | 9.8    |          |      |          |      |       |                    |                      | 30-May     |
|                         |                                      |                                   |          |                                   |                                                                          |                     |                  |        |          |      |          |      |       |                    |                      |            |
|                         |                                      |                                   |          |                                   |                                                                          |                     |                  |        |          |      |          |      |       |                    |                      |            |
|                         |                                      |                                   |          |                                   |                                                                          |                     |                  |        |          |      |          |      |       |                    |                      |            |
|                         |                                      |                                   |          |                                   |                                                                          |                     |                  |        |          |      |          |      |       |                    |                      |            |
|                         |                                      |                                   |          |                                   |                                                                          |                     |                  |        |          |      |          |      |       |                    |                      |            |
|                         |                                      |                                   |          |                                   |                                                                          |                     |                  |        |          |      |          |      |       |                    |                      |            |
|                         |                                      |                                   |          |                                   |                                                                          |                     |                  |        |          |      |          |      |       |                    |                      |            |
|                         |                                      |                                   |          |                                   |                                                                          |                     |                  |        |          |      |          |      |       |                    |                      |            |
|                         |                                      |                                   |          |                                   |                                                                          |                     |                  |        |          |      |          |      |       |                    |                      |            |
|                         |                                      |                                   |          |                                   |                                                                          |                     |                  |        |          |      |          |      |       |                    |                      |            |
|                         |                                      |                                   |          |                                   |                                                                          |                     |                  |        |          |      |          |      |       |                    |                      |            |
|                         |                                      |                                   |          |                                   |                                                                          |                     |                  |        |          |      |          |      |       |                    |                      |            |
|                         |                                      |                                   |          |                                   |                                                                          |                     |                  |        |          |      |          |      |       |                    |                      |            |
|                         |                                      |                                   |          |                                   |                                                                          |                     |                  |        |          |      |          |      |       |                    |                      |            |
|                         |                                      |                                   |          |                                   |                                                                          |                     |                  |        |          |      |          |      |       |                    |                      |            |
|                         |                                      |                                   |          |                                   |                                                                          |                     |                  |        |          |      |          |      |       |                    |                      |            |
|                         |                                      |                                   |          |                                   |                                                                          |                     |                  |        |          |      |          |      |       |                    |                      |            |
|                         |                                      |                                   |          |                                   |                                                                          |                     |                  |        |          |      |          |      |       |                    |                      |            |
|                         |                                      |                                   |          |                                   |                                                                          |                     |                  |        |          |      |          |      |       |                    |                      |            |
|                         |                                      |                                   |          |                                   |                                                                          |                     |                  |        |          |      |          |      |       |                    |                      |            |
|                         |                                      |                                   |          |                                   |                                                                          |                     |                  |        |          |      |          |      |       |                    |                      |            |
|                         |                                      |                                   |          |                                   |                                                                          |                     |                  |        |          |      |          |      |       |                    |                      |            |
|                         |                                      |                                   |          |                                   |                                                                          |                     |                  |        |          |      |          |      |       |                    |                      |            |
|                         |                                      |                                   |          |                                   |                                                                          |                     |                  |        |          |      |          |      |       |                    |                      |            |
| All tests pe            | rformed                              | l in acco                         | rdance v | vith BS                           | EN ISO 17892 unless spe                                                  | ecified o           | otherw           | vise   |          |      |          |      |       |                    |                      |            |
| Key<br>Densi            | ty test                              |                                   |          | Liquid L                          | imit Partic                                                              | le density          |                  | Date F | Printed  |      | Appr     | oved | Ву    |                    |                      | Table<br>1 |
| Linear<br>wd-w<br>wi-in | r measure<br>vater displ<br>mmersion | ment unles<br>acement<br>in water | is :     | 4pt cone<br>cas - Ca<br>1pt - sin | e unless : sp - si<br>isagrande method gj - ga<br>gle point test         | mall pykn<br>as jar | ometer           | 3      | 1/05/202 | 23   |          |      | Har   | rv                 |                      | sheet<br>1 |





|                                                           |                                                  |                        |                                                           | DE                                         | L<br>TERMINATI<br>Tested           | ON OF PAR      | RTIFICF<br>RTICLE SIZ<br>e with: BS 13 | <b>A I E</b><br><b>ZE DISTRIBUTION</b><br>377-2: 1990 | i2 Analytical L<br>Unit 8 Harrow<br>Brackmills Inc<br>Northampton | td<br>den Road<br>lustrial Estat<br>NN4 7EB                | analytical                      | 2     |
|-----------------------------------------------------------|--------------------------------------------------|------------------------|-----------------------------------------------------------|--------------------------------------------|------------------------------------|----------------|----------------------------------------|-------------------------------------------------------|-------------------------------------------------------------------|------------------------------------------------------------|---------------------------------|-------|
| 041                                                       |                                                  |                        |                                                           |                                            |                                    |                |                                        |                                                       |                                                                   |                                                            | Environmenta                    | Scier |
| Client:<br>Client A                                       | ddress:                                          |                        | Rogers Geote<br>Offices 1&2 B<br>Huddersfield,<br>HD8 8LU | chnical Ser<br>arncliffe Bus<br>West Yorks | vices Ltd<br>siness Pk, N<br>hire, | ear Bank, S    | helley,                                |                                                       | Client Refe<br>Job N<br>Date Sa<br>Date Re                        | erence: C34<br>umber: 23-3<br>mpled: Not (<br>ceived: 09/0 | 35<br>3700-1<br>Given<br>5/2023 |       |
| Contact<br>Site Add<br>Testing                            | ::<br>dress:<br><i>carried</i> (                 | out at i2              | Harry Letch<br>Draughton Qu<br>Analytical Lim             | arry<br>iited, ul. Pio                     | nierow, 41-7                       | '11 Ruda Sla   | aska, Polar                            | nd                                                    | Date <sup>-</sup><br>Samp                                         | Fested: 22/0                                               | 5/2023<br>Given                 |       |
| Test R<br>Laborate<br>Hole No<br>Sample<br>Sample         | esults:<br>ory Refe<br>).:<br>Referen<br>Descrip | rence:<br>ce:<br>tion: | 2678694<br>TP01A<br>Not Given<br>Greyish browr            | n clayey GR                                | AVEL with c                        | obbles         |                                        |                                                       | Depth T<br>Depth Ba<br>Sample                                     | op [m]: 0.50<br>se [m]: 1.00<br>e Type: B                  |                                 |       |
| Sample                                                    | Prepara                                          | tion:                  | Sample was o                                              | uartered, ov                               | ven dried at                       | 106.0 °C an    | d broken de                            | own by hand.                                          |                                                                   |                                                            |                                 | _     |
|                                                           | CLAY                                             | Fine                   | SILT<br>Medium                                            | Coarse                                     | Fine                               | SAND<br>Medium | Coarse                                 | GRAV<br>Fine Mediu                                    | EL<br>m Coarse                                                    | COBBLES                                                    | BOULDERS                        | - ,   |
| 100<br>90<br>80<br>70<br>80<br>60<br>40<br>30<br>20<br>10 |                                                  |                        |                                                           |                                            |                                    |                |                                        |                                                       |                                                                   |                                                            |                                 |       |
| 0                                                         | 0.001                                            |                        | 0.01                                                      |                                            | 0.1                                | Partie         | cle Size n                             | nm 10                                                 |                                                                   | 100                                                        | 100                             | )0    |
|                                                           |                                                  | Sie                    | ving                                                      |                                            | Sedimen                            | tation         | 7 [                                    | Sample Pro                                            | oportions                                                         | %                                                          | dry mass                        |       |

| Slev             | /ing      | Sedime           | Intation  |
|------------------|-----------|------------------|-----------|
| Particle Size mm | % Passing | Particle Size mm | % Passing |
| 500              | 100       | 0.0550           | 19        |
| 300              | 100       | 0.0393           | 18        |
| 150              | 100       | 0.0283           | 18        |
| 125              | 100       | 0.0204           | 17        |
| 90               | 100       | 0.0149           | 16        |
| 75               | 99        | 0.0112           | 15        |
| 63               | 89        | 0.0015           | 7         |
| 50               | 77        |                  |           |
| 37.5             | 73        |                  |           |
| 28               | 63        |                  |           |
| 20               | 57        |                  |           |
| 14               | 54        |                  |           |
| 10               | 49        |                  |           |
| 6.3              | 44        |                  |           |
| 5                | 43        |                  |           |
| 3.35             | 40        | Particle density | (assumed) |
| 2                | 36        | 2.65             | Mg/m3     |
| 1.18             | 32        |                  |           |
| 0.6              | 28        |                  |           |
| 0.425            | 26        |                  |           |
| 0.3              | 24        |                  |           |
| 0.212            | 23        |                  |           |
| 0.15             | 22        | ]                |           |
|                  | 40        | 7                |           |

| Very coarse | 11 |
|-------------|----|
| Gravel      | 53 |
| Sand        | 17 |
| Silt        | 11 |
| Clay        | 8  |
|             |    |
|             |    |

| Grading Analysis       |    |         |
|------------------------|----|---------|
| D100                   | mm | 90      |
| D60                    | mm | 23.5    |
| D30                    | mm | 0.92    |
| D10                    | mm | 0.00321 |
| Uniformity Coefficient |    | 7300    |
| Curvature Coefficient  |    | 11      |

Uniformity and Curvature Coefficient calculated in accordance with BS EN ISO 14688-2:2018

Remarks:

Opinions and interpretations expressed herein are outside of the scope of the UKAS Accreditation. This report may not be reproduced other than in full without the prior written approval of the issuing laboratory. The results included within the report relate only to the sample(s) submitted for testing.



Katarzyna Koziel Reporting Specialist for and on behalf of i2 Analytical Ltd

| STING  | 5                   |             |       |      |            |             |            |       |              | DE       | TE    | RN   | Test  | ed ir | n Ac   | OF F<br>cord | PAF  | RTIO<br>ce wi | CLE<br>th: E | 5 <b>SIZ</b><br>3S 13 | <b>E D</b><br>377-2 | ISTF<br>: 199 | 0<br>0   | TION     | Br   | ackn  | nills I<br>mpto | ndu<br>n N | stria<br>N4 7 | l Estat<br>EB | e             |       | Analyti | 2        |
|--------|---------------------|-------------|-------|------|------------|-------------|------------|-------|--------------|----------|-------|------|-------|-------|--------|--------------|------|---------------|--------------|-----------------------|---------------------|---------------|----------|----------|------|-------|-----------------|------------|---------------|---------------|---------------|-------|---------|----------|
| 041    |                     |             |       |      |            |             |            |       |              |          |       |      |       |       |        |              |      |               |              |                       |                     |               |          |          |      |       |                 |            |               |               |               | Envir | onnie   | ntal Sci |
| Clien  | it:                 |             |       | R    | oge        | ers (       | Geote      | chni  | ical         | Ser      | rvice | əs I | Ltd   |       |        |              |      |               |              |                       |                     |               |          |          |      | Clie  | ent R           | efer       | ence          | e: C34        | 85            |       |         |          |
| Clien  | t Addre             | ess:        |       | 0    | ffic       | es 1        | &2 Ba      | arnc  | liffe        | Bu       | isine | ess  | Pk,   | Ne    | ar E   | Bank         | (, S | Shel          | ley,         |                       |                     |               |          |          |      |       | Job             | Nu         | mbe           | r: 23-3       | 3700          | 0-1   |         |          |
|        |                     |             |       | Н    | udc        | ders        | field, \   | Wes   | st Yo        | orks     | shire | Э,   |       |       |        |              |      |               |              |                       |                     |               |          |          |      | 0     | Date \$         | Sam        | npled         | d: Not        | Give          | n     |         |          |
|        |                     |             |       | Н    | D8         | 8LL         | J          |       |              |          |       |      |       |       |        |              |      |               |              |                       |                     |               |          |          |      | D     | ate F           | Rece       | eiveo         | d: 09/0       | 5/20          | 23    |         |          |
| Conta  | act:                |             |       | H    | arry       | / Le        | tch        |       |              |          |       |      |       |       |        |              |      |               |              |                       |                     |               |          |          |      |       | Date            | е Те       | estec         | d: 22/0       | 5/20          | 23    |         |          |
| Site / | Address             | s:          |       | D    | rau        | ghte        | on Qu      | arry  | ·            |          |       |      |       |       |        |              | _    |               |              |                       |                     |               |          |          |      |       | San             | nple       | ed By         | /: Not        | Give          | n     |         |          |
| Festi  | ing carri           | ied ol      | ut at | i2 A | nal        | ytica       | al Lim     | ited, | , ul.        | Pio      | onie  | rov  | v, 41 | -71   | 1 R    | uda          | Sla  | aska          | a, P         | Polan                 | nd                  |               |          |          |      |       |                 |            |               |               |               |       |         |          |
| est    | Resu                | lts:        |       | ~    |            |             |            |       |              |          |       |      |       |       |        |              |      |               |              |                       |                     |               |          |          |      | _     |                 | _          | _             |               |               |       |         |          |
| .abo   | ratory F            | Refere      | ence  | : 26 | 578<br>Doc | 695         | )          |       |              |          |       |      |       |       |        |              |      |               |              |                       |                     |               |          |          |      | 1     | Depth           |            | p [m          | ]: 0.30       | 1             |       |         |          |
| lole   | NO.:                |             |       |      | PU2        | 2A<br>211/0 | n          |       |              |          |       |      |       |       |        |              |      |               |              |                       |                     |               |          |          |      | De    | epth I          | Bas        | e [m<br>      | ј: 1.00<br>р  | 1             |       |         |          |
| Sam    | pie Refe            | erenc       | e:    | G    |            | JIVE        | n<br>hrown |       |              | GE       | >^//  | EI   |       |       |        |              |      |               |              |                       |                     |               |          |          |      |       | Sam             | pie        | туре          | ); D          |               |       |         |          |
| Sami   | pie Des<br>nie Prer | narati      | ion.  | S    | ami        | nle         | was d      | uart  | yey<br>Ierer | n b      | iven  | u dr | ied a | at 1( | 07 (   | າ∘ດ          | an   | nd b          | roke         | en de                 | own                 | hv h          | and      |          |      |       |                 |            |               |               |               |       |         |          |
| Jun    | pic <u>i re</u>     | <u>puiu</u> | 1011. |      |            | S           | ILT        |       |              | ., .     |       |      |       |       | S/     | AND          | u    |               |              |                       |                     | ~ ,           | (        | GRAV     | 'EL  |       |                 |            |               |               |               |       | -       |          |
|        |                     |             | F     | ne   |            | Me          | dium       | (     | Coar         | se       |       | F    | ine   |       | Ме     | diun         | n    | C             | Coars        | se                    |                     | Fine          |          | Mediu    | ım   | Сс    | arse            |            |               | LES           | BO            | ULDE  | 85      | <u>.</u> |
| 1      | 00                  |             |       |      |            |             |            |       | Τ            |          | :     |      |       | 1     |        | :            |      |               | :            |                       |                     | :             | : :      |          | 1    |       | 1               | 1          |               |               |               |       |         |          |
|        | 90                  | -           |       |      |            |             |            | -     | +-           | $\vdash$ | ÷     |      |       | ÷     | -      | -            | H    | ++-           | 1:           |                       |                     | :             |          |          | ÷    |       |                 | /          | •             |               | -             |       |         |          |
|        | 80                  |             | _     |      |            |             |            |       | _            | $\vdash$ | ++-   |      | ;     | -     |        | _            | H    |               | + :          |                       |                     | :             |          |          | -    |       | -/              |            |               |               |               | _     |         |          |
|        | 70                  |             |       |      |            |             |            |       |              |          | :     |      |       | -     |        | :            |      |               | 1:           |                       |                     |               | :        |          | :    |       | /               |            | :             | ::            |               |       |         |          |
|        |                     |             |       |      |            |             |            |       |              |          |       |      | 1     |       | H      |              |      |               |              |                       |                     |               |          |          | 1    | Ż     |                 |            |               |               | -             |       |         |          |
| )      | 60                  |             |       |      |            |             |            |       |              |          |       |      | :     |       |        | :            |      |               | 1            |                       |                     | :             |          |          | ÷    |       | :               |            | :             |               |               |       |         |          |
|        | 50                  |             |       |      |            |             |            | -     | +            | $\vdash$ |       |      | - :   | -     | $\neg$ |              |      |               | ÷            |                       |                     | ÷             | ÷        |          |      |       |                 | ÷          | : .           |               | $\rightarrow$ |       |         |          |
|        | 40                  |             |       | _    |            |             |            | -     | _            | $\vdash$ | ++    |      |       | -     | _      | ÷            | H    |               |              |                       |                     |               | <u>:</u> | <b>1</b> |      |       |                 |            | ÷             |               |               | _     |         |          |
|        | 30                  |             |       |      |            |             |            |       |              |          | E     |      | ;     |       |        | :            |      |               | 1            |                       |                     |               |          |          | -    | 1     |                 | :          |               |               |               |       |         |          |
|        | 30                  |             |       |      |            |             |            |       |              |          |       |      |       | 1     |        |              |      |               |              | /                     | _                   | -             |          |          | 1    |       | 1               |            |               | 11            |               |       |         |          |
| 5      | 20                  |             |       |      |            |             |            |       | _            |          | +     |      |       | -     | -      | -            |      |               | 1:           |                       |                     | :             |          |          | ÷    | 1     | :               |            | :             | ::            | 1             |       |         |          |
|        | 10                  | _           |       | +    | +          |             |            | -     | _            | ++       | ÷     |      |       | ÷     | -      |              | ┼┼   |               |              |                       |                     |               |          |          | ÷    |       |                 |            |               | · · ·         | -             |       |         |          |
|        | 0                   | -           |       |      |            |             |            |       |              |          | :     |      |       |       |        | :            |      |               | ·            |                       |                     | ŀ             | : :      |          | 1    | : :   |                 | ŀ          | :             | 11            |               |       |         |          |
|        | 0.001               |             |       |      |            | 0.0         | 01         |       |              |          |       | 0.   | 1     |       |        | Pa           | arti | cle           | 1<br>Size    | ə n                   | nm                  |               |          | 10       |      |       |                 |            | 10            | 0             |               |       |         | 1000     |
|        | <b></b>             |             | S     | evir | na         |             |            |       |              |          | 9     | Sec  | dime  | enta  | atio   | n            |      |               | ٦            | ſ                     |                     | S             | amp      | e Pr     | opol | rtion | s               |            |               | %             | drv           | mas   | 35      |          |

| Ulev             | ing       | ocume            | intation  |
|------------------|-----------|------------------|-----------|
| Particle Size mm | % Passing | Particle Size mm | % Passing |
| 500              | 100       | 0.0624           | 15        |
| 300              | 100       | 0.0445           | 14        |
| 150              | 100       | 0.0317           | 14        |
| 125              | 100       | 0.0226           | 14        |
| 90               | 100       | 0.0162           | 13        |
| 75               | 100       | 0.0121           | 12        |
| 63               | 96        | 0.0016           | 6         |
| 50               | 84        |                  |           |
| 37.5             | 74        |                  |           |
| 28               | 64        |                  |           |
| 20               | 54        |                  |           |
| 14               | 47        |                  |           |
| 10               | 40        |                  |           |
| 6.3              | 34        |                  |           |
| 5                | 33        |                  |           |
| 3.35             | 30        | Particle density | (assumed) |
| 2                | 27        | 2.65             | Mg/m3     |
| 1.18             | 24        |                  |           |
| 0.6              | 21        |                  |           |
| 0.425            | 19        |                  |           |
| 0.3              | 18        |                  |           |
| 0.212            | 17        |                  |           |
| 0.15             | 16        |                  |           |
| _                |           |                  |           |

| Sample Proportions | % dry mass |
|--------------------|------------|
| Very coarse        | 4          |
| Gravel             | 69         |
| Sand               | 12         |
| Silt               | 9          |
| Clay               | 6          |

i2 Analytical Ltd

| Grading Analysis       |    |         |
|------------------------|----|---------|
| D100                   | mm | 75      |
| D60                    | mm | 24.3    |
| D30                    | mm | 3.33    |
| D10                    | mm | 0.00667 |
| Uniformity Coefficient |    | 3600    |
| Curvature Coefficient  |    | 68      |

Uniformity and Curvature Coefficient calculated in accordance with BS EN ISO 14688-2:2018

Remarks:

Opinions and interpretations expressed herein are outside of the scope of the UKAS Accreditation. This report may not be reproduced other than in full without the prior written approval of the issuing laboratory. The results included within the report relate only to the sample(s) submitted for testing.

GF 100.22

Page 1 of 1

Signed:







|                                                                                                        | IEST CERTIFICATE         DETERMINATION OF DRY DENSITY/MOISTURE         CONTENT RELATIONSHIP METHOD USING         4.5 KG RAMMER         Tested in Accordance with: BS 1377-4: 1990 | i2 Analytical Ltd<br>Unit 8 Harrowden Road<br>Brackmills Industrial Estate<br>Northampton NN4 7EB |
|--------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|
| Client:<br>Client Address:                                                                             | Rogers Geotechnical Services Ltd<br>Offices 1&2 Barncliffe Business Pk. Near Bank, Shelley,                                                                                       | Client Reference: C3485<br>Job Number: 23-33700-1                                                 |
|                                                                                                        | Huddersfield, West Yorkshire,<br>HD8 8LU                                                                                                                                          | Date Sampled: Not Given<br>Date Received: 09/05/2023                                              |
| Contact:<br>Site Address:                                                                              | Harry Letch<br>Draughton Quarry                                                                                                                                                   | Date Tested: 13/06/2023<br>Sampled By: Not Given                                                  |
| Testing carried out at i                                                                               | 2 Analytical Limited, ul. Pionierow 39, 41-711 Ruda Slaska, Poland                                                                                                                |                                                                                                   |
| <b>Test Results:</b><br>Laboratory Reference:<br>Hole No.:<br>Sample Reference:<br>Sample Description: | 2678694<br>TP01A<br>Not Given<br>Greyish brown clayey GRAVEL with cobbles                                                                                                         | Depth Top [m]: 0.50<br>Depth Base [m]: 1.00<br>Sample Type: B                                     |
| Sample Preparation:                                                                                    | Sample was quartered and broken down by hand. Material used was natural.                                                                                                          |                                                                                                   |
| 2.10                                                                                                   |                                                                                                                                                                                   | 0 % Air Voids<br>5 % Air Voids<br>10 % Air Voids                                                  |
| £ш./б<br>М, żisu<br>2.00                                                                               |                                                                                                                                                                                   |                                                                                                   |
| 1.95                                                                                                   |                                                                                                                                                                                   |                                                                                                   |
| 1.90                                                                                                   |                                                                                                                                                                                   |                                                                                                   |
| 4                                                                                                      | 6 8 10 12<br>Moisture Content, %                                                                                                                                                  | 14 16                                                                                             |

| Compaction Point No. |        | 1    | 2    | 3    | 4    | 5    |
|----------------------|--------|------|------|------|------|------|
| Moisture Content     | %      | 5.3  | 6.8  | 9.1  | 12   | 14   |
| Dry Density N        | ∕lg/m³ | 1.99 | 2.05 | 2.06 | 2.01 | 1.94 |

| Mould Type                         |                   | CBR                       |
|------------------------------------|-------------------|---------------------------|
| Samples Used                       |                   | Separate specimens tested |
| Material Retained on 37.5 mm Sieve | %                 | 27                        |
| Material Retained on 20.0 mm Sieve | %                 | 43                        |
| Particle Density - Assumed         | Mg/m <sup>3</sup> | 2.70                      |
| As received Moisture Content       | %                 | 8.9                       |
| Maximum Dry Density                | Mg/m <sup>3</sup> | 2.07                      |
|                                    |                   |                           |
| Optimum Moisture Content           | %                 | 8.5                       |

Note: Tested in Accordance with BS 1377-4: 1990: Clause 3.6 using 4.5kg [heavy] Rammer

Zone X - test carried out with clients consent Remarks:

Signed:

Katarzyna Koziel Reporting Specialist for and on behalf of i2 Analytical Ltd

Opinions and interpretations expressed herein are outside of the scope of the UKAS Accreditation. This report may not be reproduced other than in full without the prior written approval of the issuing laboratory. The results included within the report relate only to the sample(s) submitted for testing.

Science



DETERMINATION OF SHEAR STRENGTH BY DIRECT SHEAR (LARGE SHEARBOX APPARATUS)

Tested in Accordance with:BS 1377-7:1990: Clause 5.5.4

i2 Analytical Ltd Unit 8 Harrowden Road Brackmills Industrial Estate Northampton NN4 7EB



| Client:             | Rogers Geotechnical Services Ltd                                       | Client Reference: C3485   |
|---------------------|------------------------------------------------------------------------|---------------------------|
| Client Address:     | Offices 1&2 Barncliffe Business Pk, Near Bank, Shelley,                | Job Number: 23-33700-1    |
|                     | Huddersfield, West Yorkshire,                                          | Date Sampled: Not Given   |
|                     | HD8 8LU                                                                | Date Received: 09/05/2023 |
| Contact:            | Harry Letch                                                            | Date Tested: 19/06/2023   |
| Site Address:       | Draughton Quarry                                                       | Sampled By: Not Given     |
| Testing carried out | at i2 Analytical Limited, ul. Pionierow 39, 41-711 Ruda Slaska, Poland |                           |
|                     |                                                                        |                           |

Depth Top [m]: 0.50 Depth Base [m]: 1.00 Sample Type: B

#### Test Results:

| Laboratory Reference: | 2678694                                  |
|-----------------------|------------------------------------------|
| Hole No.:             | TP01A                                    |
| Sample Reference:     | Not Given                                |
| Sample Description:   | Greyish brown clayey GRAVEL with cobbles |

#### **Preparation Details**

| Spec | imen De                          | etails   |                   |             |             | Test No.                        | 1            | 2            | 3                            |               |                 |                                          |                   |
|------|----------------------------------|----------|-------------------|-------------|-------------|---------------------------------|--------------|--------------|------------------------------|---------------|-----------------|------------------------------------------|-------------------|
|      |                                  |          | Height            |             |             |                                 | 140.0        | 140.0        | 140.0                        |               |                 |                                          | mm                |
|      |                                  |          | Length            |             |             |                                 | 300.0        | 300.0        | 300.0                        |               |                 |                                          | mm                |
|      |                                  |          | Breadth           |             |             |                                 | 300.0        | 300.0        | 300.0                        |               |                 |                                          | mm                |
|      |                                  |          | Particle Densit   | ty - (assur | ned)        |                                 | 2.65         | 2.65         | 2.65                         |               |                 |                                          | Mg/m <sup>3</sup> |
|      | Initia                           | al       | Bulk Density      |             |             |                                 | 2.08         | 2.08         | 2.08                         |               |                 |                                          | Mg/m <sup>3</sup> |
|      |                                  |          | Moisture Conte    | ent         |             |                                 | 9.0          | 9.0          | 9.0                          |               |                 |                                          | %                 |
|      |                                  |          | Dry density       |             |             |                                 | 1.91         | 1.91         | 1.91                         |               |                 |                                          | Mg/m³             |
|      |                                  |          | Voids ratio       |             |             |                                 | 0.387        | 0.387        | 0.387                        |               |                 |                                          |                   |
|      |                                  |          | Degree of Satu    | uration     |             |                                 | 62           | 62           | 62                           |               |                 |                                          | %                 |
|      |                                  |          | Consolidation     | / Normal    | Stress ap   | plied                           | 30           | 60           | 120                          |               |                 |                                          |                   |
| (    | Consolid                         | lation   | Change in heig    | ght during  | consolid    | ation                           | 5.487        | 9.706        | 15.618                       |               |                 |                                          | mm                |
|      |                                  |          | Voids ratio afte  | er consoli  | dation      |                                 | 0.333        | 0.291        | 0.232                        |               |                 |                                          |                   |
|      | After t                          | est      | Final Moisture    | Content     |             |                                 | 21.0         | 18.9         | 17.6                         |               | %               |                                          |                   |
| Shea | ring sta                         | ige(s)   |                   |             |             |                                 | -            |              | -                            |               |                 |                                          |                   |
| Rate | of disp                          | lacement | Peak              |             |             |                                 | 0.10800      | 0.10800      | 0.10800                      |               |                 |                                          | mm/min            |
| Maid |                                  | accinent | Residual          |             |             |                                 |              |              |                              |               |                 |                                          | mm/min            |
|      |                                  |          | Relative horizo   | ontal displ | acement     |                                 | 42.02        | 44.99        | 44.99                        |               |                 |                                          | mm                |
| Pe   | eak valu                         | ies, (o) | Shear stress      |             |             |                                 | 35.2         | 55.5         | 92.5                         |               |                 |                                          | kPa               |
|      |                                  |          | Vertical Mover    | ment at pe  | eak shear   | stress                          | 1.41         | 3.36         | 2.38                         |               |                 |                                          | mm                |
|      |                                  |          | No. of traverse   | es ( includ | ing peak    | run)                            | 1            | 1            | 1                            |               |                 |                                          |                   |
| Res  | Relative horizontal displacement |          |                   |             |             |                                 |              |              |                              | mm            |                 |                                          |                   |
|      |                                  | , ()     | Shear stress      |             |             |                                 |              |              |                              |               |                 |                                          | kPa               |
|      |                                  |          | Vertical mover    | ment at re  | sidual sh   | ear stress                      |              |              |                              |               |                 |                                          | mm                |
|      | <sup>120</sup> T                 |          |                   |             |             |                                 |              |              |                              | Total         | test time       | L. L | days              |
|      |                                  |          |                   |             |             |                                 |              |              |                              | Chao          | r Ctronath      | Deremetere                               |                   |
|      |                                  |          |                   |             |             |                                 |              |              |                              | Snea          | r Strength      | Parameters                               | Manual            |
|      | 100 -                            |          |                   |             |             |                                 |              |              |                              | reak :        | sileligili, (0) | Regression                               | Ivianuai          |
|      |                                  |          |                   |             |             |                                 |              |              |                              | c '           | kPa             | 17                                       | -                 |
|      | 80                               |          |                   |             |             |                                 |              |              |                              |               |                 |                                          |                   |
| a    | °U –                             |          |                   |             |             |                                 |              |              |                              | Ø'            | degrees         | 32.5                                     | -                 |
| Σ    |                                  |          |                   |             |             |                                 |              |              |                              |               |                 |                                          |                   |
| ess  | 60                               |          |                   |             |             |                                 |              |              |                              | Resid         | lual streng     | h. (x)                                   |                   |
| str  |                                  |          |                   | 8           |             |                                 |              |              |                              |               |                 | not                                      |                   |
| ear  |                                  |          |                   |             |             |                                 |              |              |                              | CR            | кРа             | assessed                                 | -                 |
| Sh   | 40 -                             |          |                   |             |             |                                 |              |              |                              | <u>a</u> .    |                 | not                                      |                   |
|      |                                  |          |                   |             |             |                                 |              |              |                              | ØR            | degrees         | assessed                                 | -                 |
|      |                                  |          |                   |             |             |                                 |              |              |                              |               |                 |                                          |                   |
|      | 20                               |          |                   |             |             |                                 |              |              |                              |               |                 |                                          |                   |
|      |                                  |          |                   |             |             |                                 |              |              |                              |               |                 |                                          |                   |
|      |                                  |          |                   |             |             |                                 |              |              |                              |               |                 |                                          |                   |
|      | 0 +                              |          | -×                | *           | +           | +                               | 140          | 160 44       |                              |               |                 |                                          |                   |
|      | 0                                | 20       | 40                | 00          | Normal st   | ress kPa                        | 140          | 100 10       | 200                          |               |                 |                                          |                   |
|      |                                  |          |                   |             |             |                                 |              |              |                              |               |                 |                                          |                   |
|      |                                  | Toot     | ممر مرجع المعاسمة |             |             |                                 | m Donoitu 1  | 0C 4 0C M-   | 1 O T                        | N A . 1 . C . | na Cantan       | 0.0/ 0                                   | immoreed          |
| Rem  | arks.                            | 1651     | carried out on m  | naterial pa | issing 20   | mm; Target D                    | ry Density I | .86-1.95 Mg  | /m3; Target                  | NOIST         | ire Conten      | 9 %; Sample                              | Immersed          |
| Rem  | narks:                           | for at   | least 24 h, cons  | solidated   | for at leas | mm; Target D<br>st 24 h and she | eared as per | Specificatio | /m3; Target<br>on for Highwa | ay Wo         | rks Series      | 9 %; Sample<br>600 Clause 63             | inimersed<br>36.  |

Opinions and interpretations expressed herein are outside of the scope of the UKAS Accreditation. This fata cynece report may not be reproduced other than in full without the prior written approval of the issuing laboratory. The results included within the report relate only to the sample(s) submitted for testing.



Katarzyna Koziel Reporting Specialist for and on behalf of i2 Analytical Ltd

Date Reported: 26/06/2023

GF 402.8



Signed:

Opinions and interpretations expressed herein are outside of the scope of the UKAS Accreditation. This report may not be reproduced other than in full without the prior written approval of the issuing laboratory. The results included within the report relate only to the sample(s) submitted for testing.

#### Katarzyna Koziel Reporting Specialist for and on behalf of i2 Analytical Ltd

Katapyna



# End of Lab Report















Appendix 7

## **Previous RGS Slope Assessment Report**

# **Environmental** Geotechnical **Specialists**

## job number site address J3571/16/E Draughton House . . . . . . . . . .

|               | Low Lane,          |
|---------------|--------------------|
|               | Darughton, Skipton |
| J. Farnsworth | BD23 6EA           |
| I. Sakoor     | J.Farnsworth       |

. . . . . . . . . . . . . Rogers Geotechnical Services Ltd Telephone 0843 50 666 87 Fax 0843 51 599 30 Email enquiries@rogersgeotech.co.uk www.rogersgeotech.co.uk Offices 1 & 2, Barncliffe Business Park, Near Bank, Shelley, Huddersfield, West Yorkshire HD8 8LU.



date

. . . . . . . . . . written by

. . . . . . . checked by

OHSAS 18001

REGISTERED



RGS



|    |       | Contents                               |      |
|----|-------|----------------------------------------|------|
|    |       |                                        | Page |
| 1. |       | Introduction                           | 2    |
| 2. |       | Limitations                            | 2    |
| 3. |       | Discussion of Ground Conditions –      |      |
|    |       | Geotechnical                           | 2    |
|    | 3.1   | Analyses                               | 3    |
|    | 3.2   | Discussion                             | 4    |
|    | 3.3   | Remediation                            | 5    |
|    | 3.3.1 | Slope re-grading from the lower level  | 5    |
|    | 3.3.2 | Slope re-grading from the higher level | 5    |
|    | 3.3.3 | Soil Nails                             | 6    |
|    | 3.3.4 | Comments                               | 7    |
| 4. |       | Recommendations For Further Work       | 7    |

| Appendices |                                 |  |  |  |  |  |
|------------|---------------------------------|--|--|--|--|--|
| 1.         | Site Plan                       |  |  |  |  |  |
| 2.         | Stability Analysis Calculations |  |  |  |  |  |

# Rogers Geotechnical Services Ltd Telephone 0843 50 666 87 Fax 0843 51 599 30 Email enquiries@rogersgeotech.co.uk www.rogersgeotech.co.uk



| F            | Report on a Slope Stability                               | Assessm      | nent       |
|--------------|-----------------------------------------------------------|--------------|------------|
| Location:    | Draughton House,<br>Low Lane, Draughton, Skipton BD23 6EA |              |            |
| For:         | Mr and Mrs Hargreaves                                     |              |            |
| Consultants: | Peter Harrison Architects                                 |              |            |
| Report No.   | J3571/16/E                                                | Report Date: | March 2017 |

For and on behalf of Rogers Geotechnical Services Ltd

James Farnsworth BEng FGS Senior Geo-environmental Engineer **Steve Rogers** CEng, CGeol, MICE, MCIHT, FGS Technical Director

| Report Summary <sup>1</sup> |                                                                                                                                                                                                                                                                                                                                                                                                |                                |  |  |  |  |  |
|-----------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------|--|--|--|--|--|
| Item                        | Comments                                                                                                                                                                                                                                                                                                                                                                                       | Section                        |  |  |  |  |  |
| Development                 | Two detached domestic dwellings.                                                                                                                                                                                                                                                                                                                                                               | 1.                             |  |  |  |  |  |
| Geology                     | No superficial deposits over Worston Shale Group.                                                                                                                                                                                                                                                                                                                                              | See<br>Geotechnical<br>Report. |  |  |  |  |  |
| Strata Conditions           | <ul> <li>Limited thickness of topsoil over predominantly made ground.</li> <li>Plot 1, made ground over soft becoming firm slightly gravelly clay and weak mudstone.</li> <li>Plot 2, made ground with presumed rockhead at ≈1.8m to 2.5m.</li> <li>Slopes, made ground generally comprising soft slightly gravelly clay with cobbles (probable reworked/accumlated local geology).</li> </ul> | See<br>Geotechnical<br>Report. |  |  |  |  |  |
| Groundwater                 | None recorded.                                                                                                                                                                                                                                                                                                                                                                                 | See<br>Geotechnical<br>Report. |  |  |  |  |  |
| Slope Stability             | The current slope profiles at the site have been found to have factors of safety against instability of less than 1, suggesting that the slopes are unlikely to remain stable. In order to prevent instability, a maximum slope angle of 30° or soil nails should be employed at the site.                                                                                                     | 3.                             |  |  |  |  |  |

<sup>&</sup>lt;sup>1</sup> This summary should not be relied upon to provide a comprehensive review. All of the information contained in this document should be considered.



#### 1. Introduction

Mr and Mrs Hargreaves propose to develop the old quarry adjacent to Draughton House, Low Lane, Draughton, Skipton BD23 6EA by the construction of two new detached domestic dwellings. Consequently, a site investigation was carried out by Rogers Geotechnical Services, which was presented as J3571/16/E, a *Report on a Geotechnical Investigation*, in August 2016. It should be appreciated that within this report, and following an inspection of the slopes at the site during the investigation, a concern in regard to the stability of the slopes was reported and it was recommended that stability analyses be carried out.

This report presents the stability analysis and discusses the slopes at the in relation to the proposed development.

#### 2. Limitations

The recommendations made and opinions expressed in this report are based on the ground conditions revealed by the site works, together with an assessment of the site and of the laboratory test results. Whilst opinions may be expressed relating to sub-soil conditions in parts of the site not investigated, for example between borehole positions, these are for guidance only and no liability can be accepted for their accuracy.

This report has been prepared in accordance with our understanding of current best practice. However, new information or legislation, or changes to best practice may necessitate revision of the report after the date of issue.

#### 3. Discussion of Ground Conditions - Geotechnical

The current site proposals indicated that two dwellings will be constructed at the site, which is the location of a former quarry. Whilst, the precise structural details are not currently known and thus the discussion below is of a generalised nature, it is apparent that there are a number of slopes present at the site which are associated with the previous site use. The slopes in and around the quarry were inspected during the site investigation and the results are annotated on the site plan included in the geotechnical report, which is also presented as Appendix 1 to this report. Moreover, the details provided by the previous geotechnical report have been used extensively in order to obtain approximate levels and profiles for the slopes at the site.

Plans indicated that Plot 1 will be constructed to the north of the site and will be situated on the higher ground with slopes grading down to the lower level. The level change is least to the north of the plot but increases through the western flank where, to the south of the plot, the level change is at its greatest. It may be appreciated that the lower ground level around Plot 1 represents the route of the access road which joins the main access that runs between the site entrance and Plot 2. Conversely to Plot 1, Plot 2 is situated to the south of the site and is situated at the lower level of the site in what would appear to



be the former quarry base. As such, Plot 2 is surrounded to the north, east and south by slopes which grade down from the higher level.

In general terms, the previous investigation noted that there was evidence of active slope movement in the form of terracing, bent and inclined trees and shrubs, piling up of soil behind exposed boulders and vegetation (trees and shrubs) and uneven slope faces (possible local failure now grassed over). Furthermore, some upper slopes were considered to be formed at relatively high angles (approaching 52°), whilst lower slopes were generally, but not exclusively, formed at shallower angles.

#### 3.1 Analyses

Slope stability analyses have been undertaken and the results are presented in Appendix 2. These analyses were undertaken using the idealised soil parameters presented in the following table. For the purpose of the design, it has been assumed that the strata underlying the site are in a similar condition throughout.

| Table 1: Summary of Geotechnical Parameters |                                        |           |                                  |                                                                                                          |  |  |  |  |
|---------------------------------------------|----------------------------------------|-----------|----------------------------------|----------------------------------------------------------------------------------------------------------|--|--|--|--|
| Property                                    | Range                                  | of values |                                  | Comments                                                                                                 |  |  |  |  |
|                                             | Cohesive<br>Made Ground<br>(on slopes) | Cu        | -<br>35°<br>18kN/m <sup>3</sup>  | Based on dynamic probes, laboratory testing results, engineer inspection and typical established values. |  |  |  |  |
| Assumed effective stress parameters         | Mudstone                               | Cu        | -<br>27°*<br>23kN/m <sup>3</sup> | Based on engineer inspection and typical established values.                                             |  |  |  |  |
|                                             | Limestone                              | Cu        | -<br>33°*<br>23kN/m <sup>3</sup> | Based on engineer inspection and typical established values.                                             |  |  |  |  |

\*It should be appreciated that the effective friction angle within rock will be governed by the rock mass stability i.e. the friction angle on the discontinuities (bedding, joints etc) within the rock. As a consequence, the arrangement of discontinuities will govern the ultimate stability. However, the value presented in the above table is based on a typical value for a wet plane within a rock mass.

The effective friction angle provided above for the mudstone and limestone may be considered in regard to potential mass stability performance. However, in order to establish the stability of the soil present in front of the anticipated rock face, it was necessary to employ as high angle of friction as possible such that the effect of the rock on slope stability were minimised. Due to this, a friction angle of 50°, the maximum allowed by the software, has been employed in the attached calculations.

Due to the variable slope angles at the site, two analysis types have been carried out. The first type considered the most onerous slope profile at the site and attempted to establish whether this section of slope indicated that stability would be an issue for the development. Following this, a second type of analysis was carried out whereby an idealised slope was employed and various slope angles were iterated in order to ascertain a safe slope angle. It may be noted that once a slope angle with a reasonable factor of safety was established, a water profile was introduced and slope angles were then re-evaluated to determine suitable stability conditions.



Furthermore, it may be noted that the proposals for Plot 1 suggest that the dwelling will not be close enough to the crest of any slopes such that surcharge of any critical failure planes is likely, particularly as foundations are likely to be at depths of 1m to 2m below ground level. Notwithstanding this, a 10kN/m<sup>2</sup> surcharge was considered in the analyses to evaluate the effect on the factor of safety for stability.

The results of the analyses are summarised below.

Analysis 1 – Most onerous slope (i.e. slope immediately south of Plot 2). N.B. minor slip planes in the slope face discounted.

- $\circ$  (Analysis 1) With slip planes daylighting at the base, FoS = 0.69
- (Analysis 1-2) With slip planes daylighting at the change in gradient halfway up the slope i.e. failure within the upper section of the slope, FoS = 0.42
- The effects of the 10kN/m<sup>2</sup> surcharge were found to be negligible due to the likely presence of rockhead at shallow depths below the high level.

Analysis 2 – Idealised 10m high slope at varying slope angles with slip planes daylighting at the base N.B. minor slip planes in the slope face discounted.

- (Analysis 2-1) Slope angle of  $32^{\circ}$ ; FoS = 1.20, with water profile; FoS = 1.08
- (Analysis 2-2) Slope angle of  $30^\circ$ ; FoS = 1.35, with water profile; FoS = 1.10
- The effects of the 10kN/m<sup>2</sup> surcharge were found to be limited typically reducing the factor of safety by 0.01.

It may be noted that although the current stability of these slopes may be dependent on other effects, for instance cohesion and the action of vegetation roots, such properties cannot be relied upon in the long-term.

#### 3.2 Discussion

From the analyses it can be seen that the most onerous slope at the site (10m high slope, lower section angle of 42°, higher section angle of 52°) has a factor of safety against instability of less than 1 (Analysis 1). The even lower factor of safety determined for the upper, steeper, section of the slope (Analysis 1-2), suggests that the upper section is less likely to maintain stability than compared to the lower gradient. In either case, this would suggest that the soil material in front of the rock faces at the site is unlikely to remain stable.

Whilst these slip planes are relatively shallow within this material, a failure within this soil would present a risk of a potentially significant mass of soil encroaching into the area around Plot 2 and the access road. Moreover, the failure of material from the slopes could encroach into the area around Plot 1, although there would appear to be significant distance from the proposed location of Plot 1 and the crest of the slopes. As such, failure of the soil on the slopes may not present an immediate issue to the stability of Plot 1. However, should the failure of soils on the slope expose the underlying rock, rock mass instability may present a secondary risk.

The second set of analyses has established that the soils present within the slopes around the site are likely to maintain stability, with a suitable amount factor of safety, if they are present at angles of no greater than 32° (Analysis 2-1). However, from the further analyses, it can be seen that the factor of safety drops to concerning values if a water profile is considered. Notwithstanding this, when a slope



angle of 30° is evaluated (Analysis 2-2), a comfortable factor of safety is calculated and while the presence of a water profile still reduces the safety factor, it does rise slightly.

Although the groundwater profile of the site is not fully established, there is a potential for groundwater to ingress the slope over the life time of the structures. Therefore, it is recommended that slope angles of 30° or less are adopted at the site. This however does come with some acceptance that the presence of water may reduce the factor of safety for the slopes to low levels, albeit that the slopes should remain stable.

#### 3.3 Remediation

In light of the above, it is recommended in the first instance that a maximum angle for the soil slopes at the site of 30° is considered. However, through the use of reinforcement within the slopes, it may be possible to maintain the current angles. These options are discussed further below.

#### 3.3.1 Slope re-grading from the lower level

A 30° angle for the slopes at the site could be achieved by re-grading the existing slope from the toe, thus removing the soils from the upper levels of any buried rock faces. This action would of course leave any buried rock faces exposed and therefore some caution will be necessary to ensure that the stability of the rock mass is maintained. This is particularly pertinent for any slopes which face approximately to the south given that the dip of the bedding, a potential plane of sliding, is likely to be toward this direction. Moreover, the mass stability will also be governed by the presence of discontinuity sets within the rock, which will be at various angles to the bedding and could form unstable blocks or wedges within the rock mass. It will not be possible to establish the nature of the potential failures within the rock mass until a survey can be carried out, which in turn will not be possible until rock faces are exposed.

In light of the above, should this approach be adopted, it is recommended that the soil from the slopes is excavated carefully from the top downward with regular inspection by a suitably qualified engineer, along with rock mass stability assessment. It would also be prudent to ensure that any digging equipment is suitably armoured to protect the machine operator and pedestrian access to the slopes is restricted to properly briefed, authorised, personnel. It should be appreciated that should assessment of the rock mass reveal that unstable materials could present a risk to the dwellings, it may be necessary to install rock netting or rock bolts to ensure either the retardation or prevention of rock falls.

#### 3.3.2 Slope re-grading from the higher level

As an alternative to the above, it would also be possible to re-grade the slopes at the site to 30° by taking an angle from the crest of the slope at the higher level. It may be noted that given sufficient land take, it may be possible in some areas to maintain a 30° slope from the higher to the lower level, although this would of course reduce the current useable area.



Where there is insufficient space for such a slope, it would be possible to incorporating a retaining wall at the base of the slope at the lower site level. The height of the retaining walls would be governed by the necessity to maintain the 30° slope angle and would therefore vary throughout the site.

There are a number of retaining wall construction methods that could be employed, although gravity walls, such as gabion baskets, crib or mass concrete, or cantilever walls, such as a reinforced concrete panel, are likely to be the most cost effective. The stability of retaining walls at the site should consider the recommendations given in Section 8.1 – *Foundations* of the geotechnical report and earth pressures should be determined from the material properties given in Table 1: *Summary of Geotechnical Parameters* above. Where buried concrete is to be employed as part of the retaining wall construction, Section 8.5 – *Effect of Sulphates* of the geotechnical report should also be considered.

Given that the analyses carried out in this report have demonstrated that the stability of the slopes at this site is particularly sensitive to the presence of water, care must be taken to ensure that adequate drainage is provide to the back of any retaining walls. It may be necessary to establish a maintenance regime for the walls to ensure that suitable drainage is provided throughout the life of the structures. Moreover, the egress of water from the slopes should be appropriately channelled to ensure that water does not undermine the stability of the retaining walls and slopes, and flooding of Plot 2 does not take place.

#### 3.3.3 Soil Nails

Should the re-grading of the existing slopes be considered unfavourable, it may also be possible to maintain stability with the use of soil nails. Such a system requires the insertion of reinforcing elements into slopes on a grid spacing such that the sliding resistance of failure planes within the soil is increased. Care must be taken to ensure that soil nails are installed to beyond the potential failure slip circle, which in this case may possibly be only a few metres into the surface.

It should be appreciated that the advice of specialist contractors will be required in order to determine the length and spacing of the soil nails. However, it should be noted that rock may be present at shallow depths near the top of the slopes and care will need to be taken to ensure that the installation technique will achieve sufficient penetration.

It may be possible to install the soil nails from the lower level at the site, depending on the reach of the equipment. Alternatively, an over-reaching machine could be employed to install nails from the higher level. In either case, it will be necessary to ensure that the stability of the machinery is maintained when working near the slopes. Moreover, in view of the relatively weak near surface soils it will be necessary to construct a working platform for any plant required during the works. Such a design should be undertaken in accordance with the procedures given in the BRE publication entitled *Working platforms for tracked plant*.

In order to ensure that the ground is adequately supported between nail positons, it will also be necessary to provide a facing element. Whilst reinforced shotcrete may be considered unsightly for such a site, the use of flexible mesh and erosion control fabrics are likely to be more appropriate for the site setting. Care must be taken to make sure that the efficacy of the facing element is maintained throughout the life of the structures and this may require protection from any potential damage due to wildlife. Moreover, following the slope improvement works, it is recommended that access to the slope



is restricted as it will present a steep and potentially dangerous hazard to end-users and in particular, children.

#### 3.3.4 Comments

The recommendations given above are likely to require the removal of vegetation currently present on the slopes. This vegetation is likely to be assisting the stability of the over-steep existing slopes, therefore, where vegetation has been removed, inspection of the slope should take place routinely to ensure that the safety of site operatives is not compromised.

#### 4. Recommendations For Further Work

.....

This report should be forwarded to the relevant authorities as soon as practicable to ensure they have sufficient time to review and discuss any issues.

Discussions with ground-works contractors regarding appropriate methods of re-grading the slopes at the site.

Discussions with retaining wall constructors to determine suitable techniques for supporting any elevated slopes.

Discussions with suitably qualified engineers to establish proposals for rock mass stability assessment.

Discussions with soil nail contractors in relation to possible slope improvement schemes. Discussions with ground work contractors in relation to the requirement for testing of materials to be disposed off-site (i.e., Waste Acceptance Criteria) and the suitability of imported materials,

if required.

Detailed design of the scheme.



......

# Appendix 1

. . . . . . . . .

### Site Plan

Rogers Geotechnical Services Ltd Telephone 0843 50 666 87 Fax 0843 51 599 30 Email enquiries@rogersgeotech.co.uk www.rogersgeotech.co.uk





. . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . .

# Appendix 2 Stability Analysis Calculations

Rogers Geotechnical Services Ltd Telephone 0843 50 666 87 Fax 0843 51 599 30 Email enquiries@rogersgeotech.co.uk www.rogersgeotech.co.uk

. . . . . . . . . . . . . . . .

| Rogers Geotechnical Se                                                                                                                                                                                         | rvices Ltd                                                                                                                                                   |                                                              |                      | Page No 1<br>Analysis 1               |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------|----------------------|---------------------------------------|
| CADS ReSlope, Version<br>Slope stability analysis a                                                                                                                                                            | Project J3571/16/E<br>File Name section 1.rsp                                                                                                                |                                                              |                      |                                       |
| Draughton House, Low L<br>Most onerous slope cond                                                                                                                                                              | ane, Skipton BD<br>lition                                                                                                                                    | 23 6EA                                                       |                      | Engineer JRF<br>Date 08/03/2017       |
|                                                                                                                                                                                                                |                                                                                                                                                              |                                                              |                      |                                       |
| Partial factors<br>Ramifications of failin<br>Soil self weight<br>Imposed loads<br>Soil tan(phi)values<br>Soil cohesion values<br>Reinforcing material<br>Sliding on reinforcem<br>Reinforcement pull-o        | rre fn<br>ffs<br>fq<br>fms<br>fms<br>strength fm<br>ent fs<br>ut fp                                                                                          | 1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00 |                      |                                       |
| Soils input data                                                                                                                                                                                               | Density                                                                                                                                                      | Phi                                                          | Cohesion             | Ru Suction                            |
| VS gravelly CLAY<br>Rock                                                                                                                                                                                       | kN/m3<br>18.0<br>23.0                                                                                                                                        | deg.<br>35<br>50                                             | kN/m2<br>0<br>0      | ratio m (max)<br>0.00 0.0<br>0.00 0.0 |
| Soil strata surface point<br>VS gravelly CLAY                                                                                                                                                                  | s X m<br>0.00<br>1.00<br>6.60<br>9.50<br>40.00                                                                                                               | Y m<br>0.00<br>5.00<br>10.00<br>10.00                        |                      |                                       |
| Rock                                                                                                                                                                                                           | 0.00<br>7.74<br>9.50<br>40.00                                                                                                                                | 0.00<br>0.00<br>10.00<br>10.00                               |                      |                                       |
| Water input data                                                                                                                                                                                               | Densi                                                                                                                                                        | ty 9.81                                                      | kN/m3                |                                       |
| <b>Loading input data</b><br>Load type<br>Surcharge                                                                                                                                                            | Magnitude<br>10.0 kN/m2                                                                                                                                      | X Min r<br>9.5                                               | m X Max m<br>0 40.00 | Y m<br>Surface                        |
| No soil reinforcement w                                                                                                                                                                                        | as specified                                                                                                                                                 |                                                              |                      |                                       |
| Slip circle definition<br>Method of analysis us<br>Minimum number of s<br>Depth of water filled t<br>Grid of centres of circ<br>X Minimum va<br>X Maximum v<br>Y Increment v<br>Y Increment v<br>Y Increment v | sed is Bishop sin<br>slices within slip<br>ension crack is (<br>cles<br>alue -5.8 m<br>alue -5.8 m<br>alue -5.8 m<br>alue 14.5 m<br>alue 14.5 m<br>alue .3 m | nplified (N<br>is 10<br>).0 m                                | 1oment equilibriur   | n)                                    |
| The radius of circles                                                                                                                                                                                          | is determined by                                                                                                                                             | passing t                                                    | hrough a commo       | n point                               |

The common point coordinates are X = Y = Y1.00 m 0.00 m

| Rogers Geotech                                                                                                                         | nical Servic              | Page No<br>Analysis  | 2<br>1                        |                  |        |                                    |                   |  |
|----------------------------------------------------------------------------------------------------------------------------------------|---------------------------|----------------------|-------------------------------|------------------|--------|------------------------------------|-------------------|--|
| CADS ReSlope,<br>Slope stability ar                                                                                                    | Version 1.2<br>alysis and | Project<br>File Name | J3571/16/E<br>e section 1.rsp |                  |        |                                    |                   |  |
| Draughton House, Low Lane, Skipton BD23 6EA<br>Most onerous slope condition                                                            |                           |                      |                               |                  |        |                                    | JRF<br>08/03/2017 |  |
| Tabular printout of circular slips       Restore         X       Y       Radius       Disturb       Soil                               |                           |                      |                               |                  |        | Restore Stability<br>RForce Factor |                   |  |
| -5.80                                                                                                                                  | 14.50                     | 16.02                | 1264                          | KINI/////<br>877 | KINIII | 0 (                                | -<br>D.69         |  |
| Critical circle (m<br>Circle centre<br>Circle centre<br>Circle radius<br>Disturbing m<br>Restoring m<br>Restoring m<br>Stability facto |                           |                      |                               |                  |        |                                    |                   |  |

| Rogers Geotechnical Services Ltd                              | Page No 3<br>Analysis 1 |
|---------------------------------------------------------------|-------------------------|
| CADS ReSlope, Version 1.20                                    | Project J3571/16/E      |
| Slope stability analysis and design of reinforced soil slopes | File Name section 1.rsp |
| Draughton House, Low Lane, Skipton BD23 6EA                   | Engineer JRF            |
| Most onerous slope condition                                  | Date 08/03/2017         |

#### Diagram showing all circles



| Rogers Geotechnical Se                           | ervices Ltd                              |                      |                    | Page No 1<br>Analysis 1-2                      |  |
|--------------------------------------------------|------------------------------------------|----------------------|--------------------|------------------------------------------------|--|
| CADS ReSlope, Version Slope stability analysis a | 1.20<br>and design of reinf              | forced so            | il slopes          | Project J3571/16/E<br>File Name section 1a.rsp |  |
| Draughton House, Low I<br>Most onerous slope con | _ane, Skipton BD2<br>dition (upper slope | 23 6EA<br>e failure) |                    | Engineer JRF<br>Date 08/03/2017                |  |
| Partial factors                                  |                                          |                      |                    |                                                |  |
| Partial lacions                                  | iro fo                                   | 1 00                 |                    |                                                |  |
| Soil colf woight                                 | lie III<br>ffc                           | 1.00                 |                    |                                                |  |
| Jon Sell Weight                                  | fa                                       | 1.00                 |                    |                                                |  |
| Soil tan(phi)values                              | fme                                      | 1.00                 |                    |                                                |  |
| Soil cohesion values                             | fms                                      | 1.00                 |                    |                                                |  |
| Reinforcing material                             | strength fm                              | 1.00                 |                    |                                                |  |
| Sliding on reinforcer                            | nent fe                                  | 1.00                 |                    |                                                |  |
| Reinforcement pull-o                             | iut fo                                   | 1.00                 |                    |                                                |  |
|                                                  |                                          | 1.00                 |                    |                                                |  |
| Soils input data                                 | Density                                  | Phi                  | Cohesion           | Ru Suction                                     |  |
|                                                  | kN/m3                                    | dea.                 | kN/m2              | ratio m (max)                                  |  |
| VS gravelly CLAY                                 | 18.0                                     | 35                   | 0                  | 0.00 0.0                                       |  |
| Rock                                             | 23.0                                     | 50                   | 0                  | 0.00 0.0                                       |  |
|                                                  |                                          |                      | -                  |                                                |  |
| Soil strata surface point                        | t <b>s</b> Xm                            | Υm                   |                    |                                                |  |
| VS gravelly CLAY                                 | 0.00                                     | 0.00                 |                    |                                                |  |
|                                                  | 1.00                                     | 0.00                 |                    |                                                |  |
|                                                  | 6.60                                     | 5.00                 |                    |                                                |  |
|                                                  | 9.50                                     | 10.00                |                    |                                                |  |
|                                                  | 40.00                                    | 10.00                |                    |                                                |  |
| Rock                                             | 0.00                                     | 0.00                 |                    |                                                |  |
|                                                  | 7.74                                     | 0.00                 |                    |                                                |  |
|                                                  | 9.50                                     | 10.00                |                    |                                                |  |
|                                                  | 40.00                                    | 10.00                |                    |                                                |  |
| Water input data                                 | Density                                  | y 9.81               | kN/m3              |                                                |  |
| Loading input data                               |                                          |                      |                    |                                                |  |
| Load type                                        | Magnitude                                | X Min r              | n X. Max m         | Ym                                             |  |
| Surcharge                                        | 10.0 kN/m2                               | 9.5                  | 0 40.00            | Surface                                        |  |
| Caronargo                                        |                                          | 010                  |                    | Canaco                                         |  |
| No soil reinforcement w                          | as specified                             |                      |                    |                                                |  |
| Slip circle definition                           |                                          |                      |                    |                                                |  |
| Method of analysis u                             | sed is Bishop sim                        | plified (M           | loment equilibriur | n)                                             |  |
| Minimum number of                                | slices within slip is                    | s 10 `               | ·                  | ,                                              |  |
| Depth of water filled                            | tension crack is 0                       | .0 m                 |                    |                                                |  |
| Grid of centres of cire                          | cles                                     |                      |                    |                                                |  |
| X Minimum v                                      | alue -4.8 m                              |                      |                    |                                                |  |
| X Maximum v                                      | value -4.8 m                             |                      |                    |                                                |  |
| X Increment                                      | /alue .3 m                               |                      |                    |                                                |  |
| Y Minimum va                                     | alue 15.0 m                              |                      |                    |                                                |  |
| Y Maximum v                                      | alue 15.0 m                              |                      |                    |                                                |  |
| Y Increment v                                    | /alue .3 m                               |                      |                    |                                                |  |
| The radius of circles                            | is determined by                         | passing t            | hrough a commo     | n point                                        |  |
| The common                                       | point coordinates                        | are X                | . = 6.60 m         |                                                |  |
|                                                  |                                          | Y                    | ′ = 5.00 m         |                                                |  |

| Rogers Geotechnical Services Ltd                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |  |                      |                                   | Page No<br>Analysis          | 2<br>1-2 |  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|----------------------|-----------------------------------|------------------------------|----------|--|
| CADS ReSlope, Version 1.20<br>Slope stability analysis and design of reinforced soil slopes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |                      | Project<br>File Name              | J3571/16/E<br>section 1a.rsp |          |  |
| Draughton House, Low Lane, Skipton BD23 6EA<br>Most onerous slope condition (upper slope failure)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |  |                      | Engineer<br>Date                  | JRF<br>08/03/2017            |          |  |
| Tabular printout of circular slips       Restore       Restore       Restore         X       Y       Radius       Disturb       Soil       RF-         m       m       m       kNm/m       kNm/m       kN         -4.80       15.00       15.16       261       110         Critical circle (minimum stability factor) details         Circle centre X coordinate       -4.80 m         Circle centre Y coordinate       15.00 m         Circle radius       15.16 m         Disturbing moment       261 kNm/m         Restoring moment due to soil shear       110 kNm/m         Restoring moment due to reinforcement       0 kNm/m         Stability factor       0.42 |  |  | Restc<br>RFor<br>kNm | ore Stabi<br>ce Fac<br>/m<br>0 0. | llity<br>ctor<br>-<br>.42    |          |  |

| Rogers Geotechnical Services Ltd                              | Page No 3<br>Analysis 1-2 |
|---------------------------------------------------------------|---------------------------|
| CADS ReSlope, Version 1.20                                    | Project J3571/16/E        |
| Slope stability analysis and design of reinforced soil slopes | File Name section 1a.rsp  |
| Draughton House, Low Lane, Skipton BD23 6EA                   | Engineer JRF              |
| Most onerous slope condition (upper slope failure)            | Date 08/03/2017           |

#### Diagram showing all circles


| Rogers Geotechnical Se                                                                      | rvices Ltd                          |                |          | Pa<br>An | ge No<br>alysis | 1<br>2-1                              |
|---------------------------------------------------------------------------------------------|-------------------------------------|----------------|----------|----------|-----------------|---------------------------------------|
| CADS ReSlope, Version 1.20<br>Slope stability analysis and design of reinforced soil slopes |                                     |                |          |          |                 | J3571/16/E<br>establish phi angle.rsp |
| Draughton House, Low L<br>Idealised section to dete                                         | ane, Skipton BD2 rmine safe slope a | 3 6EA<br>angle |          | En<br>Da | gineer<br>te    | JRF<br>08/03/2017                     |
| Partial factors                                                                             |                                     |                |          |          |                 |                                       |
| Ramifications of faili                                                                      | ire fn                              | 1 00           |          |          |                 |                                       |
| Soil self weight                                                                            | ffs                                 | 1.00           |          |          |                 |                                       |
| Imposed loads                                                                               | fa                                  | 1.00           |          |          |                 |                                       |
| Soil tan(phi)values                                                                         | fms                                 | 1.00           |          |          |                 |                                       |
| Soil cohesion values                                                                        | fms                                 | 1.00           |          |          |                 |                                       |
| Reinforcing material                                                                        | strenath fm                         | 1.00           |          |          |                 |                                       |
| Sliding on reinforcem                                                                       | ient fs                             | 1.00           |          |          |                 |                                       |
| Reinforcement pull-o                                                                        | ut fp                               | 1.00           |          |          |                 |                                       |
|                                                                                             | I                                   |                |          |          |                 |                                       |
| Soils input data                                                                            | Density                             | Phi            | Cohesion | Ru       | Suc             | tion                                  |
| ·                                                                                           | kN/m3                               | deg.           | kN/m2    | ratio    | m (m            | nax)                                  |
| VS gravelly CLAY                                                                            | 18.0                                | 35             | 0        | 0.00     | ,               | 0.0                                   |
| Rock                                                                                        | 23.0                                | 50             | 0        | 0.00     |                 | 0.0                                   |
|                                                                                             |                                     |                |          |          |                 |                                       |
| Soil strata surface point                                                                   | s Xm                                | Υm             |          |          |                 |                                       |
| VS gravelly CLAY                                                                            | 0.00                                | 0.00           |          |          |                 |                                       |
|                                                                                             | 1.00                                | 0.00           |          |          |                 |                                       |
|                                                                                             | 17.32                               | 10.00          |          |          |                 |                                       |
|                                                                                             | 40.00                               | 10.00          |          |          |                 |                                       |
| Rock                                                                                        | 0.00                                | 0.00           |          |          |                 |                                       |
|                                                                                             | 40.00                               | 0.00           |          |          |                 |                                       |
| Water input data                                                                            | Density                             | 9.81           | kN/m3    |          |                 |                                       |
| Looding input data                                                                          |                                     |                |          |          |                 |                                       |
|                                                                                             | Magnitudo                           | V Min r        |          |          | Vm              |                                       |
|                                                                                             |                                     |                |          | 0        | T III           |                                       |
| Surcharge                                                                                   | 10.0  KIN/112                       | 17.3           | ∠ 40.00  | 51       | unace           |                                       |
|                                                                                             |                                     |                |          |          |                 |                                       |

#### No soil reinforcement was specified

#### Slip circle definition

Method of analysis used is Bishop simplified (Moment equilibrium) Minimum number of slices within slip is 10 Depth of water filled tension crack is 0.0 m Grid of centres of circles X Minimum value 1.0 m X Maximum value 2.0 m X Increment value 1.0 m Y Minimum value 20.0 m Y Maximum value 25.0 m Y Increment value 1.0 m

The radius of circles is determined by passing through a common point The common point coordinates are

X = 1.00 m Y =

0.00 m

| Rogers Geotechnical Services Ltd                              | Page No<br>Analysis | 2<br>2-1                  |
|---------------------------------------------------------------|---------------------|---------------------------|
| CADS ReSlope, Version 1.20                                    | Project             | J3571/16/E                |
| Slope stability analysis and design of reinforced soil slopes | File Name           | e establish phi angle.rsp |
| Draughton House, Low Lane, Skipton BD23 6EA                   | Engineer            | JRF                       |
| Idealised section to determine safe slope angle               | Date                | 08/03/2017                |

| Tabular printout | of circular | slips  |         | Restore | Restore | Stability |
|------------------|-------------|--------|---------|---------|---------|-----------|
| . х              | Y           | Radius | Disturb | Soil    | RForce  | Factor    |
| m                | m           | m      | kNm/m   | kNm/m   | kNm/m   | -         |
| 1.00             | 20.00       | 20.00  | 7108    | 9544    | 0       | 1.34      |
| 2.00             | 20.00       | 20.02  | 8738    | 12543   | 0       | 1.44      |
| 1.00             | 21.00       | 21.00  | 8104    | 10963   | 0       | 1.35      |
| 2.00             | 21.00       | 21.02  | 9736    | 14123   | 0       | 1.45      |
| 1.00             | 22.00       | 22.00  | 9103    | 12455   | 0       | 1.37      |
| 2.00             | 22.00       | 22.02  | 10733   | 15771   | 0       | 1.47      |
| 1.00             | 23.00       | 23.00  | 10102   | 14019   | 0       | 1.39      |
| 2.00             | 23.00       | 23.02  | 11722   | 17168   | 0       | 1.46      |
| 1.00             | 24.00       | 24.00  | 11099   | 15649   | 0       | 1.41      |
| 2.00             | 24.00       | 24.02  | 12721   | 18950   | 0       | 1.49      |
| 1.00             | 25.00       | 25.00  | 12096   | 17346   | 0       | 1.43      |
| 2.00             | 25.00       | 25.02  | 13720   | 21128   | 0       | 1.54      |

### Critical circle (minimum stability factor) details

| Circle centre X coordinate            | 1.00  | m     |
|---------------------------------------|-------|-------|
| Circle centre Y coordinate            | 20.00 | m     |
| Circle radius                         | 20.00 | m     |
| Disturbing moment                     | 7108  | kNm/m |
| Restoring moment due to soil shear    | 9544  | kNm/m |
| Restoring moment due to reinforcement | 0     | kNm/m |
| Stability factor                      | 1.34  |       |
|                                       |       |       |

| Rogers Geotechnical Services Ltd                              | Page No<br>Analysis | 3<br>2-1                  |
|---------------------------------------------------------------|---------------------|---------------------------|
| CADS ReSlope, Version 1.20                                    | Project             | J3571/16/E                |
| Slope stability analysis and design of reinforced soil slopes | File Name           | e establish phi angle.rsp |
| Draughton House, Low Lane, Skipton BD23 6EA                   | Engineer            | JRF                       |
| Idealised section to determine safe slope angle               | Date                | 08/03/2017                |

### Diagram showing all circles



| Rogers Geotechnical Ser                                                                     | vices Ltd                             |                |          | Page No<br>Analysis  | 1<br>2-2                                    |
|---------------------------------------------------------------------------------------------|---------------------------------------|----------------|----------|----------------------|---------------------------------------------|
| CADS ReSlope, Version 1.20<br>Slope stability analysis and design of reinforced soil slopes |                                       |                |          | Project<br>File Name | J3571/16/E<br>e establish phi angle with wa |
|                                                                                             |                                       |                | 300003   |                      |                                             |
| Draughton House, Low L<br>Idealised section to deter                                        | ane, Skipton BD2<br>mine safe slope a | 3 6EA<br>Ingle |          | Engineer<br>Date     | JRF<br>08/03/2017                           |
| Partial factors                                                                             |                                       |                |          |                      |                                             |
| Ramifications of failiu                                                                     | re fn                                 | 1.00           |          |                      |                                             |
| Soil self weight                                                                            | ffs                                   | 1.00           |          |                      |                                             |
| Imposed loads                                                                               | fq                                    | 1.00           |          |                      |                                             |
| Soil tan(phi)values                                                                         | fms                                   | 1.00           |          |                      |                                             |
| Soil cohesion values                                                                        | fms                                   | 1.00           |          |                      |                                             |
| Reinforcing material s                                                                      | strength fm                           | 1.00           |          |                      |                                             |
| Bainforcement pull of                                                                       | ent is                                | 1.00           |          |                      |                                             |
| Reinforcement puil-ot                                                                       | it ip                                 | 1.00           |          |                      |                                             |
| Soils input data                                                                            | Densitv                               | Phi            | Cohesion | Ru Suo               | tion                                        |
| • • • •                                                                                     | kN/m3                                 | deg.           | kN/m2    | ratio m (n           | nax)                                        |
| VS gravelly CLAY                                                                            | 18.0                                  | 35             | 0        | 0.00                 | 0.Ó                                         |
| Rock                                                                                        | 23.0                                  | 50             | 0        | 0.00                 | 0.0                                         |
| Soil strata surface points                                                                  | X m                                   | Vm             |          |                      |                                             |
|                                                                                             |                                       |                |          |                      |                                             |
|                                                                                             | 1.00                                  | 0.00           |          |                      |                                             |
|                                                                                             | 17.32                                 | 10.00          |          |                      |                                             |
|                                                                                             | 40.00                                 | 10.00          |          |                      |                                             |
| Rock                                                                                        | 0.00                                  | 0.00           |          |                      |                                             |
|                                                                                             | 40.00                                 | 0.00           |          |                      |                                             |
| Water input data                                                                            | Density                               | 9.81 k         | N/m3     |                      |                                             |
| Phreatic surface points                                                                     | X m                                   | Υm             |          |                      |                                             |
| · · · · · · · · · · · · · · · · · · ·                                                       | 1.00                                  | 0.00           |          |                      |                                             |
|                                                                                             | 10.00                                 | 3.00           |          |                      |                                             |
| Loading input data                                                                          |                                       |                |          |                      |                                             |
| Load type                                                                                   | Magnitude                             | X Min m        | X Max m  | Υm                   |                                             |
| Surcharge                                                                                   | 10.0 kN/m2                            | 17.32          | 40.00    | Surface              |                                             |
| No soil reinforcement wa                                                                    | as specified                          |                |          |                      |                                             |
| Slip circle definition                                                                      |                                       |                |          |                      |                                             |

Method of analysis used is Bishop simplified (Moment equilibrium) Minimum number of slices within slip is 10 Depth of water filled tension crack is 0.0 m Grid of centres of circles X Minimum value 1.0 m X Maximum value 2.0 m X Increment value 1.0 m Y Minimum value 20.0 m Y Maximum value 25.0 m Y Increment value 1.0 m The radius of circles is determined by passing through a common point The common point coordinates are X = 1.00 m Y = 0.00 m

| Rogers Geotechnical Services Ltd                              | Page No<br>Analysis | 2<br>2-2                 |    |
|---------------------------------------------------------------|---------------------|--------------------------|----|
| CADS ReSlope, Version 1.20                                    | Project             | J3571/16/E               | wa |
| Slope stability analysis and design of reinforced soil slopes | File Name           | establish phi angle with |    |
| Draughton House, Low Lane, Skipton BD23 6EA                   | Engineer            | JRF                      |    |
| Idealised section to determine safe slope angle               | Date                | 08/03/2017               |    |

| Tabular printout | of circular | slips  |         | Restore | Restore | Stability |
|------------------|-------------|--------|---------|---------|---------|-----------|
| . х              | Y           | Radius | Disturb | Soil    | RForce  | Factor    |
| m                | m           | m      | kNm/m   | kNm/m   | kNm/m   | -         |
| 1.00             | 20.00       | 20.00  | 7120    | 7765    | 0       | 1.09      |
| 2.00             | 20.00       | 20.02  | 8737    | 10081   | 0       | 1.15      |
| 1.00             | 21.00       | 21.00  | 8114    | 8993    | 0       | 1.11      |
| 2.00             | 21.00       | 21.02  | 9736    | 11471   | 0       | 1.18      |
| 1.00             | 22.00       | 22.00  | 9103    | 10286   | 0       | 1.13      |
| 2.00             | 22.00       | 22.02  | 10732   | 12876   | 0       | 1.20      |
| 1.00             | 23.00       | 23.00  | 10102   | 11670   | 0       | 1.16      |
| 2.00             | 23.00       | 23.02  | 11722   | 14127   | 0       | 1.21      |
| 1.00             | 24.00       | 24.00  | 11099   | 13129   | 0       | 1.18      |
| 2.00             | 24.00       | 24.02  | 12736   | 15713   | 0       | 1.23      |
| 1.00             | 25.00       | 25.00  | 12095   | 14637   | 0       | 1.21      |
| 2.00             | 25.00       | 25.02  | 13734   | 17606   | 0       | 1.28      |

#### Critical circle (minimum stability factor) details

| Circle centre X coordinate            | 1.00  | m     |
|---------------------------------------|-------|-------|
| Circle centre Y coordinate            | 20.00 | m     |
| Circle radius                         | 20.00 | m     |
| Disturbing moment                     | 7120  | kNm/m |
| Restoring moment due to soil shear    | 7765  | kNm/m |
| Restoring moment due to reinforcement | 0     | kNm/m |
| Stability factor                      | 1.09  |       |
|                                       |       |       |

| Rogers Geotechnical Services Ltd                              | Page No<br>Analysis | 3<br>2-2                     |
|---------------------------------------------------------------|---------------------|------------------------------|
| CADS ReSlope, Version 1.20                                    | Project             | J3571/16/E                   |
| Slope stability analysis and design of reinforced soil slopes | File Name           | e establish phi angle with w |
| Draughton House, Low Lane, Skipton BD23 6EA                   | Engineer            | JRF                          |
| Idealised section to determine safe slope angle               | Date                | 08/03/2017                   |

## Diagram showing all circles





# End of Report













Rogers Geotechnical Services Ltd Offices 1 & 2 Barncliffe Business Park, Near Bank, Shelley, Huddersfield, HD8 8LU 01484 604354 Company No. 5130864