Rev: A Date: July 23

Project No : 2020WB/001

Project Title: 34 Hillcrest, North Seaton, Ashington, Northumberland, NE63 9SH

Calculations for: Structural Calculations for Proposed Extension and Internal Alterations to the Above Address

Refs : BS6399 / BS5950 / BS5268 / BS5628 / BS8100 / BS8004

Structural Calculations for the proposed extension and internal alterations to 34 Hillcrest, North Seaton, Ashington

Designs:

Scheme:

Steel Beam Design

Roof Joist Design

Pier Design

Lintel Design

Padstone Design

Design Codes:

BS6399: Loading for Buildings

BS8110: Structural Use of Concrete

BS5950: Structural use of Steelwork in Buildings

BS5268: Structural Use of Timber

BS5628: Code of Practice for the use of Masonry

Design Loads:

Floor Imposed = (FI)

1.5 kN/m2

*Residential Loading in accordance with BS6399

(Fd) Floor Dead : Weyroc =

0.14 kN/m²

Wall Dead: 103mm Brickwork =

<u>2.1</u> kN/m²

loists =

0.14 kN/m²

0.5 kN/m²

(Wd) 103mm Brickwork =

and finishes / insulation

2.2 kN/m²

Partitions = Ceiling = Services =

0.18 kN/m²

0.03 kN/m²

Total =

0.99 kN/m²

Roof Imposed = (RI)

0.64 kN/m²

* Minimum Roof Loading - no access, Roof Area < 200m2 - BS6399

Roof Dead = (Rd)

Tiles =

0.5 kN/m²

Roof Slope = 30 degrees

Battens = Felt =

0.02 kN/m² 0.03 kN/m²

Load on Horizontal = 0.96/cos30 =

1.108 kN/m2

Timber = Ceiling =

0.18 kN/m² 0.18 kN/m²

Load on Horizontal = 0.96/cos20 =

1,021 kN/m²

Insulation = Services =

0.03 kN/m² 0.02 kN/m2

Total =

0.96 kN/m²

Steelwork Design:

(Rc) Roof Cover (r

3000 mm (Main)

2400 mm

Clear Span between supports =

2700 mm

(Fc) Floor Cover = (Wc) Wall Cover

1525 mm 2000 mm

(Windows)

inner Leaf

Outer Leaf

Roof Dead Loading = Roof Live Loading =

Rd x Rc RI x Rc

3.32 kN/m

1.92 kN/m

Roof Dead Loading = Rd x Rc = Roof Live Loading = Rl x Rc =

2.45 kN/m 1.54 kN/m

Dead Floor Loading = Live Floor Loading = Wall Dead Loading =

Fd x Fc FI x Fc Wd x Wc 1.51 kN/m 2.29 kN/m 4.40 kN/m

Wall Dead Loading = Wd x Wc = Dead Floor Loading = Live Floor Loading =

Fd x Fc Fl x Fc

4.20 kN/m 0.00 kN/m 4.40 kN/m

Total Unfactored UDL = Total Factored UDL =

13.44 kN/m 19.66 kN/m Total Unfactored UDL = Total Factored UDL =

12.59 kN/m

Moment = WL/8

18.81 kN/m

w=

36.29 kN

W =

33.98 kN

Moment = WL/8 17.91 kNm

17.14 kNm

Maximum Deflection = L/300 = 1xx Required = $5WL^3/384EDef =$

10.80 mm 420.10 cm⁴ Maximum Deflection = L/300 = Ixx Required = 5WL3/384EDef =

9.82 mm 432.72 cm⁴

Rev : A Date : July 23

Project No : 2020WB/001

Project Title: 34 Hillcrest, North Seaton, Ashington, Northumberland, NE63 9SH

Calculations for : Structural Calculations for Proposed Extension and Internal Alterations to the Above Address

Refs : BS6399 / BS5950 / BS5268 / BS5628 / BS8100 / BS8004

Trv a - 152x89x19UB

lxx = Zxx = 834 cm⁴

Sxx =

123.00 cm³

D/T =

20

109 cm³

Ryy

2.1 cm

Moment Capacity =

29.975 kNm > Required

17.91 kNm

INNER LEAF

Outer Leaf - Unrestrained Leff/Ryy =

102 therefore pb =

160 N/mm²

Bucking Resistance =

Sxx x pb =

19.68 kNm >

17,14 kNm

OUTER LEAF

ADOPT A 2 No - 152x89x16UB's Bolted at 600mm Centers M12 Bolts

End R =

26.54 kN (ult)

Single Beam Inner Worst Case

51.93 kN (ult)

Combined

Concrete Padstone Design: Single Beams

Brickwork (worst case) fk =

6.4 N/mm²

Local Design Strength = 1.25fk/Ym

Ym - Partial Factor of Safety =

3.5

= 2.29 N/mm²

Beam End Reaction =

52.00 kN (ult)

Area Required =

22750.00 mm²

Adopt a 440mm Long x 100mm Wide x 150mm High RC30 Concrete Padstone (to suit width of wall)

Pier Check - BS5628

local design strength existing blocks =

6.4 N/mm²

Heff / Teff =

16.54

54

B =

0.73

Design Vertical Load Resistance =

Bbtfk/Ym =

58 kN >

52.00 kN

0.73*440*100*6.4/3.5*100

Adopt a Minimum 440mm Pier - existing all fully toothed - SEE DETAILS

Ground Bearing Pressure on underside of foundation -

Unfactored Load =

37.24 kN

Factored Load =

54 kN

Load Spread @ 45 degree -

1.5 m based on 750mm foundation depth @ 45degrees

Ground Bearing Pressure =

41.38 kN/m²

Ground Bearing Pressure to be determined onsite with building control > 80kN/m2 - Stiff Clay

Adopt Existing 600mm Wide Foundation - to be agreed with Building Control

Rev : A Date : July 23

Project No : 2020WB/001

Project Title: 34 Hillcrest, North Seaton, Ashington, Northumberland, NE63 9SH

Calculations for : Structural Calculations for Proposed Extension and Internal Alterations to the Above Address

Refs: BS6399 / BS5950 / BS5268 / BS5628 / BS8100 / BS8004

NOTE. These values are for preliminary design purposes only, and may need alteration upwards or downwards. No addition has been made for the depth of embedment of the foundation (see 2.1.2.3.2 and 2.1.2.3.3).

Category	Types of rocks and soils	Presumed allov	vable bearing value	Remarks		
		kN/m²	kgf/cm ² ° tonf/ft ²			
Rocks	Strong igneous and gneissic rocks in sound condition Strong limestones and strong	10 000	100	These values are based on the assumption that the foundations are taken down to		
	sandstones	4 000	40	unweathered rock. For weak,		
	Schists and slates Strong shales, strong mudstones and	3 000	30	weathered and broken rock, see 2.2.2.3.1.12		
	strong siltstones	2 000	20			
Non-cohesive soils	Dense gravel, or dense sand and gravel Medium dense gravel, or medium	>600	>6	Width of foundation not less than 1 m. Groundwater level		
	dense sand and gravel	<200 to 600	<2 to 6	assumed to be a depth not		
	Loose gravel, or loose sand and gravel	<200	<2	less than below the base of		
	Compact sand	>300	>3	the foundation. For effect		
	Medium dense sand	100 to 300	1 to 30	of relative density and		
	Loose sand	<100	<1	groundwater level, see		
	Value depending on deg looseness		ng on degree of	2.2.2.3.2		
Cohesive soils	Very stiff boulder clays and hard clays	300 to 600	3 to 6	Group 3 is susceptible to long-		
	Stiff clays	150 to 300	1.5 to 3	term consolidation settlement		
	Firm clays	75 to 150	0.75 to 1.5	(see 2.1.2.3.3).		
	Soft clays and silts	<75	<0.75	For consistencies of clays, see table 5		
	Very soft clays and silts	Not applicable		The state of		
Peat and organic soils		Not applicable		See 2.2.2.3.4		
Made ground o	or fill	Not applicable		See 2.2.2.3.5		

^{= 107.25} kN/m² = 1.094 kgf/cm² = 1 tonf/ft².

All references within this table refer to the original document.

Rev : A Date: July 23

Project No : 2020WB/001

0 mm

Project Title: 34 Hillcrest, North Seaton, Ashington, Northumberland, NE63 9SH

Calculations for : Structural Calculations for Proposed Extension and Internal Alterations to the Above Address

Refs: BS6399 / BS5950 / BS5268 / BS5628 / BS8100 / BS8004

Steelwork Design: Ridge

(Rc) Roof Cover (r 1600 mm (Main)

Clear Span between supports = 4750 mm (Fc) Floor Cover = 0 mm

(Wc) Wall Cover 0 mm (Windows)

Inner Leaf

1.77 kN/m Roof Dead Loading = Rd x Rc RI x Rc 1.02 kN/m Roof Live Loading = 0.00 kN/m Dead Floor Loading = Fd x Fc Live Floor Loading = FixFc 0.00 kN/m Wall Dead Loading = Wd x Wc 0.00 kN/m

2.80 kN/m Total Unfactored UDL = Total Factored UDL = 4.12 kN/m

W≃ 13.28 kN

Moment = WL/8

11.62 kNm

Maximum Deflection = L/300 = 12.00 mm lxx Required = 5WL3/384EDef = 753.60 cm⁴

Try a - 178x102x19UB

171.00 cm³ D/T = 23 1356 cm4 lxx = Sxx =

153 cm³ 2.37 cm Zxx = Ryy

Moment Capacity = 42.075 kNm > Required 11.62 kNm INNER LEAF

135 N/mm² Outer Leaf Unrestrained Leff/Ryy = 123 therefore pb =

23.085 kNm > 0 kNm Bucking Resistance = Sxx x pb =

ADOPT A 178x102x19UB

9.79 kN (ult) Combined End R = 9.79 kN (ult) Single Beam Inner Worst Case

Concrete Padstone Design: Single Beams

Brickwork (worst case) fk = 6.4 N/mm²

Local Design Strength = 1.25fk/Ym Ym - Partial Factor of Safety = 3.5

2.29 N/mm²

10.00 kN (ult) Beam End Reaction =

4375.00 mm² Area Required =

Adopt a 4215mm Long x 100mm Wide x 150mm High RC30 Concrete Padstone (to suit width of wall)

Rev : A Date : July 23

Project No : 2020WB/001

Project Title: 34 Hillcrest, North Seaton, Ashington, Northumberland, NE63 9SH

Calculations for : Structural Calculations for Proposed Extension and Internal Alterations to the Above Address

Refs: BS6399 / BS5950 / BS5268 / BS5628 / BS8100 / BS8004

Lintels to Increased Opening

Span

2100 mm

 Roof Dead Loading =
 Rd x Rc
 2.00 kN/m

 Roof Live Loading =
 Rl x Rc
 2.00 kN/m

 Dead Floor Loading =
 Fd x Fc
 0.00 kN/m

 Live Floor Loading =
 Fl x Fc
 0.00 kN/m

 Wall Dead Loading =
 Wd x Wc
 3.36 kN/m

Total Unfactored UDL =

7.36 kN/m

W=

15.46 kN

Adopt a Birtley CB90 / CB150 Lintel to each leaf - 150mm End Bearing Minimum SWL = 20kN

* Insultation and Cavity Size suit Architects Insulation Requirements

Not suitable for point leads or concrete floors.

Longth	1050	1200	MCE/C	2100	7400	2550	3000	3900
Lanc								
Wages	5.8	5.9	7.3	8.3	103	10.9	11.8	14.4
Hammi	97	102	102	132	141	157	181	197

AT Last SEC (W) Weight in Enight

CB150 STANDARD DUTY

Not suisable for point loads or concrete

Lungth	750-1500	1650 1650	2100	2750-2700	2850-3300
Lore	20	20	20	25	30
Wages	8.3	10.1	10.4	11.5	14.4
H primi	11.2	117	124	(5)	177

Rev:A Date: July 23

Project No : 2020WB/001

Project Title: 34 Hillcrest, North Seaton, Ashington, Northumberland, NE63 9SH

Calculations for : Structural Calculations for Proposed Extension and Internal Alterations to the Above Address

Refs : BS6399 / BS5950 / BS5268 / BS5628 / BS8100 / BS8004

Main Roof Joist Design

Clear Span=

1600 mm On Plan

Roof Imposed

0.75 kN/m2

Roof Dead

1.02 kN/m²

400 mm

Joist Spacings =

Eload =

1.77 kN/m²

UDL = w=

0.71 kN/m 1.13 kN

b =

d = 150 mm

* Minimum Residential Roof Load - BS6399

50 mm

Zxx = lxx =

187500 14062500

М=

0.23 kNm

M/Z =

1.21 N/mm² <

5.83 N/mm² C16 Grade ok

Try Joist Size 150 x 50 C16

Maximum Deflection = 5WI³/384EI

Adopt =

150x50 C16 @ 400mm c/c

0.49 mm

*or bigger to suit insulation

Main Roof Joist Design - Roof Lights

Clear Span=

1600 mm On Plan

Roof Imposed

0.75 kN/m²

Roof Dead

1.02 kN/m²

* Minimum Residential Roof Load - BS6399

Joist Spacings =

700 mm

Eload =

1.77 kN/m²

Try Joist Size 150 x 50 C16

UDL =

1.24 kN/m

d = b =

150 mm 100 mm

Zxx = lxx =

375000 28125000

W= M = M/Z = 1.98 kN

0.40 kNm

1.06 N/mm² <

5.83 N/mm² C16 Grade ok

Maximum Deflection = 5WI³/384EI

0.43 mm

Adopt =

Double 150x50 C16 either side of velux

*or bigger to suit insulation

Maximum Rooflight 1200mm wide

BIETIET CBGO/CBISO LINTEL
150mm END BEDIUNJ - MINIMUNTO EDLY
END.

34 HILLDEST, NE63 95H

150 x 50 C16 @ 400 de OR BIJJEN TO SUTT INSWATION POVOLED UP TO VEWX.

34 HILLDEST, NE63 954

BINTIET CBGO/CBISO LINTEL KOMM END BESTING-MINITUM TO EACH END.

9500N A-A 1550