Hydrock The Battleaxes, Wraxall Proposed Drainage Strategy and Drainage Maintenance Strategy

For Studio HIVE Properties Ltd

Date: 5 Jar Doc ref: 2629

5 January 2023 26291-HYD-XX-XX-RP-C-7000

DOCUMENT CONTROL SHEET

Issued by	Hydrock Consultants Limited Unit B1 Elmbridge Court Gloucester GL3 1JZ United Kingdom	T +44 (0)1452 783970 E gloucester@hydrock.com www.hydrock.com			
Client	Studio HIVE Properties Ltd				
Project name	The Battleaxes, Wraxall				
Title	Proposed Drainage Strategy and Drainage Maintenance Strategy				
Doc ref	26291-HYD-XX-XX-RP-C-7000				
Project no.	26291				
Status	FINAL				
Date	05/01/2023				

Document Production Record						
Issue Number	03	Name				
Prepared by		Rich Samuel				
Checked by		Jeremy Gough				
Approved by		James Welch				

Document Revision Record							
Issue Number	Status	Date	Revision Details				
01	PRELIMINARY	05.01.2023	PRELIMINARY ISSUE				
02	PRELIMINARY	14.02.2023	Drawing and calcs updated.				
03	FINAL	06.03.2023	FINAL ISSUE				

Hydrock Consultants Limited has prepared this report in accordance with the instructions of the above named client for their sole and specific use. Any third parties who may use the information contained herein do so at their own risk.

The Battleaxes, Wraxall| Studio HIVE Properties Ltd | Proposed Drainage Strategy and Drainage Maintenance Strategy | 26291-HYD-XX-XX-RP-C-7000 | 5 January 2023

CONTENTS

Propos	ed Drainage Strategy	1
1.	EXISTING SITE LOCATION	2
1.1	Site Location Plan	2
1.2	Existing Topography	2
1.3	Existing Drainage	2
1.4	Ground Investigation and Infiltration Testing	3
1.5	Flood Risk	3
2.	PROPOSED STORM WATER DRAINAGE	4
2.1	Sustainable Urban Drainage System (SuDS) Hierarchy	4
2.2	Proposed Discharge Rate and Discharge Location	4
2.3	Proposed Storm Water Network	4
2.4	Pollution Control	5
2.5	Flood Exceedance	5
3.	PROPOSED FOUL WATER DRAINAGE	6
3.1	Foul Water Discharge Location	6
3.2	Proposed Foul Water Network	6
4.	DESIGN STANDARDS	7
Propos	ed Drainage Operations and Maintenance Manual	8
5.	OPERATION AND MAINTENANCE REQUIREMENTS	8
5.1	Drainage General	8
5.2	Cellular Storage	8
5.3	Gullies & Drainage Channels	8
5.4	Third-Party Products	8
APPEN	DIX A - DRAINAGE STRATEGY	9
APPEN	DIX B - WESSEX WATER SEWER MAP	.10
APPEN	DIX C - HISTORIC BOREHOLE LOG	.11
APPEN	DIX D - EA FLOOD MAPPING	.12
APPEN	DIX E - GREENFIELD RUN-OFF RATE	.13
APPEN	DIX F - STORM WATER CALCS	.14

Proposed Drainage Strategy

Hydrock Consultants have been appointed by Studio Hive to complete a drainage strategy and drainage maintenance strategy for the proposed 'The Battleaxes, Wraxall' scheme. The proposed development is. The retention of ancillary bed & breakfast accommodation and part retention of licensed space, change of use of remainder to multi-use business and local community hub, together with rear two-storey extension and 9 new residential dwellings. This report details the proposed storm and foul water strategy for the development and the proposed drainage maintenance strategy. This Report should be read in conjunction with the following Hydrock drawings;

• 26291-HYD-00-ZZ-DR-C-7010 - Proposed Drainage Strategy

A copy of the drawing is shown within **Appendix A** of this report.

1. EXISTING SITE LOCATION

1.1 Site Location Plan

The site is located within the existing Battleaxes site in the village of Wraxall, about 6 miles west of Bristol, and the B3130 runs next to the site as shown on the extract below. The Grove is a lane that borders the site to the west and the south which provides access to a few residential properties.

The site area is approximately 0.451(ha) and consists of a main building (which used to be the Battleaxes at Wraxall), two existing barns/outbuildings, and a tarmacadam carpark. The site has the postcode BS48 1LQ with grid co-ordinates E=349533, N=171490.

1.2 Existing Topography

The site falls along the B3130 (alongside the northern and eastern boarder of the site) towards the south-west corner of the site, with a level difference of 40.300m to 34.300m. The site consistently falls away from the B3130 at general gradient of 1:9.

There is a series of existing retaining walls on site, the first located to the east of the site with a height of 1.23m to 1.90m. The second is to the northeast boundary of the site with a height of 0.44m to 0.69m. The third retaining wall is in the existing car park with a height of 1.38m to 1.57m. The fourth wall is to the south of the existing Battleaxes building with a height of 0.40m and 0.50m. The final retaining wall runs along the southern boundary with a height 0.59m to 0.80m.

1.3 Existing Drainage

There is an existing Wessex Water foul water sewer that crosses the site with 4 chambers located in the site boundary. The 150mm pipe runs from the east to the west of the site and collects foul water from manhole 5407 from Fryth House.

There is a second Wessex Water sewer that drains across the site from the north west to the south west under the existing Battleaxes building. The sewer records are shown within **Appendix B** of this report.

There is an existing combined drainage network that currently serves the main Battleaxes building. This appears to drain towards the south of the site to connect into the existing Wessex water sewer. There is also an existing storm drainage network that serves the two outbuildings. It appears that both networks connect into the existing Wessex Water sewer pipe to be a combined system.

1.4 Ground Investigation and Infiltration Testing

An existing borehole record located 360m to the south of the site shows the substrata to be a reddishbrown mudstone. This borehole log is shown in **Appendix C**. The existing site is generally impermeable and consists of carparks and buildings. The combination of steep slopes across the site, existing buildings and retaining walls means the use of soakaways are unfeasible.

1.5 Flood Risk

The Environment Agency flood risk mapping as shown within **Appendix D** of this report shows the site is located within flood risk zone 1 which is a low probability of flooding.

- » The site is **not** bigger than 1 hectare (ha)
- » The site is **not** in an area with critical drainage problems as notified by the Environment Agency
- » The site is **not** identified as being at increased flood risk in future by the local authority's strategic flood risk assessment
- » The site is **not** at risk from other sources of flooding (such as surface water or reservoirs) and its development would increase the vulnerability of its use (such as constructing an office on an undeveloped site or converting a shop to a dwelling)

The below extract shows there is no surface water risk of flooding on the site.

Based on the above information no further flood risk assessments are required.

2. PROPOSED STORM WATER DRAINAGE

2.1 Sustainable Urban Drainage System (SuDS) Hierarchy

The CIRIA 753 SuDS Manual hierarchy for the discharge of storm water drainage is as follows from Table B4;

- 1. Infiltration to the maximum extent that is practical where it is safe to do so.
- 2. Discharge to surface waters.
- 3. Discharge to surface water sewer.
- 4. Discharge to combined sewer (last resort).

Discharge via infiltration is not suitable due to impermeability of the site. There are no watercourses within the immediate vicinity of the development The site is therefore to discharge via the existing Wessex Water sewer network.

2.2 Proposed Discharge Rate and Discharge Location

The site is generally positively drained and is impermeable in nature. The site should therefore be therefore be restricted to a greenfield site with the existing discharge rate modelled using the MicroDrainage ICP SUDS Mean Annual Flood method. With the site generally impermeable in nature the urban factor has been set at 0.75 (this is lower than the actual factor of 0.82 for the existing site).

The calculations do not allow for the area associated with the existing Battleaxes building as this is to remain as existing with limited above ground and internal changes.

The results of the modelling are shown within **Appendix E** of this report and demonstrate the existing QBAR discharge rate is 6.2(I/s).

2.3 Proposed Storm Water Network

It is proposed to drain the site via gravity and a network of pipes from the southeast to the southwest site access and connect into the combined sewer network to match the existing arrangement. The piped network is oversized to enable the system to be at a flatter gradient and surcharge; this is to enable the attenuation to be located within an area of the site with sufficient available space.

The drainage is to drain via a flow control device restricted to 6.2(I/s) (greenfield runoff rate). The network is to be attenuated within a below ground attenuation crate and discharge to the existing storm water sewer as detailed above.

The network has been modelled using MicroDrainage for all storm events up to and including the 1in100yr+40% climate change storm water event with the results shown within **Appendix F** of this report. The modelling shows very limited flooding (less than 0.2m3 that can be stored within the unmodelled network) for events up to and including the 1in100yr+40%CC with the discharge rate restricted to 6.2(I/s). The attenuation crate volume is 82.1m³ and will be located within the existing carpark.

The site offers a reduction in hardstanding overall and therefore a betterment, decreasing the impermeable area by 213m². The use of swales, ponds, filter drains etc to attenuate the positively drained system is not practical due to the limited space available on site (note the outbuildings and

retaining walls are existing and a fixed location) and the relatively steep topography local to attenuation areas.

The storm water network is subject to Lead Local Flood Authority and Wessex Water approval.

A S185 (sewer diversion), S106 (right to connect) and build close to agreement will be required from Wessex Water.

2.4 Pollution Control

Based on Table 26.2 of the CIRIA 753 SUDs Manual the pollution hazard level for the residential development of this scale is considered to be low with a total suspended solids value of 0.5, metals value of 0.4 and hydrocarbons value of 0.4.

Unfortunately, due to the topography of the site (1:9 slope) it is not possible to utilise the mitigation SuDS components as highlighted in table 26.3 of the CIRIA 753 document. However; the site has a reduction in impermeable area and a significant reduction in external parking impermeable area resulting in a reduced risk from the pre development pollution hazard levels.

2.5 Flood Exceedance

The flood exceedance routes will follow the proposed topography of the site with the higher areas of the development discharging to the south west to the existing road. There is no change to the overland flow routes and no increase in flood risk as a result of the development. The flow routes are shown on the Hydrock

3. PROPOSED FOUL WATER DRAINAGE

3.1 Foul Water Discharge Location

It is proposed to drain the foul water network to the existing Wessex Water foul manhole 4403 located outside the site boundary in The Grove access road, to the southwest of the site. There are two number foul water sewers that cross the site from the north and east to the south east corner. Both sewers will need to be diverted to avoid clashes with the proposed buildings and retaining features.

3.2 Proposed Foul Water Network

The proposed foul water network is to drain via gravity following the existing topography of the site to the southwest and connect to the existing sewer network.

There is an allowance for an additional 9 dwellings. Based on Table 5 of the Approved Building Regulations Document H the anticipated peak foul flow rate is 4.1(l/s).

It is proposed to connect directly to the diverted Wessex Water sewer. There is a significant reduction in the existing storm water discharge rate connecting to the Wessex Water sewer due to the discharge being restricted to the greenfield run-off rate There is therefore sufficient capacity within the proposed network to accommodate the foul water discharge.

4. DESIGN STANDARDS

British Standards / Eurocodes:

• BS EN 752:2017 Drains and Sewer Systems Outside Buildings

Building Regulations

• Building Regulations 2010 Part H – Drainage and Waste Disposal

Statutory Guidance / Regulations

- Sewers Sector Guidance (where applicable).
- Local Water Authority requirements.
- Local Planning Authority (LPA) and Lead Local Flood Authority (LLFA) requirements.

In addition, where applicable the surface water drainage systems will follow the guidelines as set out in:

- CIRIA C753 SuDS Manual.
- CIRIA C156 Infiltration Drainage 'Manual of Good Practice'
- National Planning Policy Framework (NPPF)
- DEFRA Non-Statutory Technical Standards for Sustainable Drainage.
- Environment Agency "Control of Runoff from New Developments Interim Regional Guidance"

Proposed Drainage Operations and Maintenance Manual

Hydrock Consultants Ltd have been appointed by Studio Hive to complete the drainage operations and maintenance manual as below. The intention is for the dwelling occupier/owner to be responsible for the maintenance of the drainage within the dwelling ownership boundary; the wider drainage within shared spaces will be managed by a third-party maintenance team. The contractor will be responsible for the maintenance during the construction phase to ensure the drainage is operational and maintained prior to hand over.

5. OPERATION AND MAINTENANCE REQUIREMENTS

5.1 Drainage General

Manholes are to be inspected for debris and integrity. Any man-entry into manholes should be by trained personnel with adequate personal protective equipment. Approved safety procedures must be followed. To be completed twice a year.

Pipes are to be inspected for integrity and debris by CCTV. To be completed every 10 years.

5.2 Cellular Storage

Inspect and identify any areas that are not operating correctly. To be completed monthly for the first 3 months and then annually. If required remedial action should be taken.

Remove debris from the catchment surface (where it may cause risks to performance). To be completed monthly.

Remove sediment from pre-treatment structures and/or internal forebays. To be completed annually or as required.

Inlets, outlets, overflows and vents are to be repaired and rehabilitated as required.

Inlets, outlets, overflows and vents are to be inspected and checked to ensure that they are in good condition and operating as designed annually.

Inside of tank to be surveyed for sediment build-up and removed if necessary. To be completed every 5 years or as required.

5.3 Gullies & Drainage Channels

Remove litter (including leaf litter) and debris from drain surface devices quarterly or as required.

Inspect drain surface and inlets/outlets pipework for blockages, clogging, standing water and structural damage monthly.

Regular maintenance is required to remove silt and debris as necessary to prevent build up

5.4 Third-Party Products

To be maintained as per manufacturer guidelines.

Appendix A - Drainage Strategy

The Battleaxes, Wraxall | Studio Hive | Proposed Drainage Strategy and Drainage Maintenance Strategy | 26291-HYD-XX-XX-RP-C-7000 | 5 January 2023 9

Appendix B - Wessex Water Sewer Map

The Battleaxes, Wraxall | Studio Hive | Proposed Drainage Strategy and Drainage Maintenance Strategy | 26291-HYD-XX-XX-RP-C-7000 | 5 January 202310

Wessex Water Network Map

Reproduced from the Ordnance Survey map by permission on behalf of the Controller of Her Majesty's Stationery Office Crown Copyright . Licence 100019539

Appendix C - Historic Borehole Log

The Battleaxes, Wraxall | Studio Hive | Proposed Drainage Strategy and Drainage Maintenance Strategy | 26291-HYD-XX-XX-RP-C-7000 | 5 January 202311

BOREHOLE No. 311 <u>562</u> 3606 1 British (Scottigical Survey BOREHOLE LOG 1. 11 11 11 244. NOR. 4940 .714 q JOJ LOCATION No. 3606 BIRMINGHAM TO EXETER MOTORWAY Tickenham, Son. ROSS SPUR JUNCTION TO EAST BRENT ST/475E/9 CARRIED OUT FOR: MINISTRY OF TRANSPORT CONSULTING ENGINEERS : FREEMAN FOX & PARTNERS & R. F. EARLEY TYPE OF BORING: H. .. DIAMETER: 6 INCH DATE: 100 JUN 1961 CHAINAGE: 233+00 20.9 ft. N.D PAVEMENT GROUND LEVEL LEVEL Legend Sample Depth Description m% Test Results & Notes No water encountered Ground Level Oft. Oin TOPCCLT . 1 (015- 14 C 10,300 pt: 137 Reddich rown unlearers LUDS POLL 12 (0 gad -(1-) (Keiper . arl) -079 07 107 atola Hitsh Geological Survey Billish Geological Sever British Geological Suivey British Geological Sunsy

Appendix D - EA Flood Mapping

The Battleaxes, Wraxall| Studio Hive | Proposed Drainage Strategy and Drainage Maintenance Strategy | 26291-HYD-XX-XX-RP-C-7000 | 5 January 202312

Flood map for planning

Your reference **Battleaxes**

Location (easting/northing) 349540/171499

Created **20 Dec 2022 16:58**

Your selected location is in flood zone 1, an area with a low probability of flooding.

You will need to do a flood risk assessment if your site is any of the following:

- bigger that 1 hectare (ha)
- In an area with critical drainage problems as notified by the Environment Agency
- identified as being at increased flood risk in future by the local authority's strategic flood risk assessment
- at risk from other sources of flooding (such as surface water or reservoirs) and its development would increase the vulnerability of its use (such as constructing an office on an undeveloped site or converting a shop to a dwelling)

Notes

The flood map for planning shows river and sea flooding data only. It doesn't include other sources of flooding. It is for use in development planning and flood risk assessments.

This information relates to the selected location and is not specific to any property within it. The map is updated regularly and is correct at the time of printing.

Flood risk data is covered by the Open Government Licence **which** sets out the terms and conditions for using government data. https://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/

Use of the address and mapping data is subject to Ordnance Survey public viewing terms under Crown copyright and database rights 2022 OS 100024198. https://flood-map-for-planning.service.gov.uk/os-terms

© Environment Agency copyright and / or database rights 2022. All rights reserved. © Crown Copyright and database right 2022. Ordnance Survey licence number 100024198.

Appendix E - Greenfield Run-off Rate

The Battleaxes, Wraxall | Studio Hive | Proposed Drainage Strategy and Drainage Maintenance Strategy | 26291-HYD-XX-XX-RP-C-7000 | 5 January 202313

Hydrock Consultants Ltd		Page 1
•		
•		
Date 05/01/2023 08:05	Designed by jameswelch	
File	Checked by	Digitight
Innovyze	Source Control 2020.1.3	
ICP	SUDS Mean Annual Flood	
	Input	
Return Period	(vears) 1 Soil 0.450	
A.	rea (ha) 0.390 Urban 0.750 AAR (mm) 1000 Region Number Region 8	
	Results 1/s	
	QBAR Rural 2.6	
	QBAR Urban 6.2	
	Ql year 4.9	
	Q1 year 4.9	
	Q30 years 9.8 0100 years 10 9	
	giot years io.y	

Appendix F - Storm Water Calcs

The Battleaxes, Wraxall | Studio Hive | Proposed Drainage Strategy and Drainage Maintenance Strategy | 26291-HYD-XX-XX-RP-C-7000 | 5 January 202314

ydroc	k Coi	nsult	tant	ts Lt	d							Pag	ge 1
													~
<u>1</u>	2 / 0 2	(202)	2 1	<u> </u>		D		4	1	1-		M	icro
ate I ilo g	3/UZ, TORM	. 202 / נידי גדעז	5 I (5 D (0:09	MDV	De	esigned by	James	swerc	f1		Dr	ainad
		WAII	ER (SALC.	MDX		tuark 202	0 1 2					
шоvу	ze					INE	ELWOIK 202	0.1.5					
		ST	rorn	1 SEW	ER DESI	GN by	the Modif	ied R	ation	al N	lethod	<u>l</u>	
					<u>Networ</u>	ck Desi	ign Table	for S	<u>torm</u>				
PN	Leng	th Fa	all	Slope	I.Area	T.E.	Base	k	HYD	DIA	Sectio	on Type	a Auto
	(m)	(m)	(1:X)	(ha)	(mins)	Flow (l/s)	(mm)	SECT	(mm)			Desig
1.000	16.5	00 1.	025	16.1	0.043	4.00	0.0	0.600	0	150	Pipe/0	Conduit	: 🔒
1.001	28.1	00 0.	100	281.0	0.037	0.00	0.0	0.600	0	300	Pipe/0	Conduit	: 🔒
1.002	5.6	00 0.	025	224.0	0.008	0.00	0.0	0.600	0	300	Pipe/(Conduit	: 🤶
1.003	9.8	00 0.	050	196.0	0.043	0.00	0.0	0.600	0	300	Pipe/(Conduit	: 🔴
2.000	21.4	00 2.	585	8.3	3 0.028	4.00	0.0	0.600	0	150	Pipe/0	Conduit	: 🔒
1.004	40.4	00 0.	150	269.3	0.062	0.00	0.0	0.600	0	300	Pipe/0	Conduit	:
3.000	9.8	00 1.	050	9.3	0.003	4.00	0.0	0.600	0	150	Pipe/0	Conduit	: 🔒
3.001	2.4	00 0.	450	5.3	3 0.004	0.00	0.0	0.600	0	150	Pipe/0	Conduit	: 🔒
1.005	6.7	00 0.	500	13.4	1 0.000	0.00	0.0	0.600	0	150	Pipe/0	Conduit	: 🔒
					N	etwork	Results 1	<u>[able</u>					
Pl	N 1	Rain	Т	.c.	US/IL E	I.Area	Σ Base	Foul	Add H	low	Vel	Cap	Flow
	(1	m/nr)) (m	ins)	(m)	(ha)	Flow (1/s)	(1/s)	(1)	s)	(m/s)	(1/s)	(1/s)
1.0	00	50.00	C	4.11	34.250	0.043	0.0	0.0		0.0	2.52	44.6	5.8
1.0	01	50.00)	4.61	33.075	0.080	0.0	0.0		0.0	0.93	65.9	10.8
1.0	02	50.00	J	4.70	32.975	0.088	0.0	0.0		0.0	1.05 1.12	74.0	11.9 17 7
1.0	0.5		5	1.00	52.550	0.131	. 0.0	0.0		0.0	1.12	19.1	± / • /
2.0	00	50.00)	4.10	35.635	0.028	0.0	0.0		0.0	3.52	62.3	3.8
1.0	04	50.00	C	5.55	32.900	0.221	0.0	0.0		0.0	0.95	67.4	29.9
3.0 3 0	00 01	50.00))	4.05	34.400 33.350	0.003	0.0	0.0		0.0	3.32	58.6 77 6	0.4
1 0	05	50 00	- 1	5 50	32 750	0 229	0.0	0.0		0 0	2 77	48 9	30 9
1.0	00	50.00		5.53	52.130	0.220	0.0	0.0		0.0	2.11	40.9	50.9

Hydrock Consultants Ltd		Page 2
• • •		
Date 13/02/2023 16:09	Designed by jameswelch	Desinado
File STORM WATER CALC.MDX	Checked by	Diamage
Innovyze	Network 2020.1.3	

<u>Manhole Schedules for Storm</u>

MH Name	MH CL (m)	MH Depth (m)	MH Connection	MH Diam.,L*W (mm)	PN	Pipe Out Invert Level (m)	Diameter (mm)	PN	Pipes In Invert Level (m)	Diameter (mm)	Backdrop (mm)
SW01A	35.600	1.350	Open Manhole	1200	1.000	34.250	150				
SW01	35.800	2.725	Open Manhole	1200	1.001	33.075	300	1.000	33.225	150	
SW02	35.600	2.625	Open Manhole	1200	1.002	32.975	300	1.001	32.975	300	
SW03	35.415	2.465	Open Manhole	1200	1.003	32.950	300	1.002	32.950	300	
SW04	36.985	1.350	Open Manhole	1200	2.000	35.635	150				
SW05	35.050	2.150	Open Manhole	1200	1.004	32.900	300	1.003	32.900	300	
								2.000	33.050	150	
SW06	35.450	1.050	Open Manhole	1200	3.000	34.400	150				
SW07	34.400	1.050	Open Manhole	1200	3.001	33.350	150	3.000	33.350	150	
HB	34.350	1.600	Open Manhole	1200	1.005	32.750	150	1.004	32.750	300	
								3.001	32.900	150	150
	34.000	1.750	Open Manhole	0		OUTFALL		1.005	32.250	150	

No coordinates have been specified, layout information cannot be produced.

	Surtai	ILS LI	td						Page 3
				T					<u>ا</u>
									They are
									Micro
te 13/02/2	2023 1	L6:09		1	Designe	d by ja	meswelch		Desina
le STORM N	WATER	CALC	.MDX		Checked	by			Digitig
novvze				I	Network	2020.1	3		
			PI	PELINE	SCHEDUL	ES for	Storm		
				<u>Ups</u>	tream M	<u>anhole</u>			
DN		Diam		0.7	T T		MIT	MIL DTAM	T +1.7
PN	нуа Soat	Diam (mm)	MH	(m)	(m)	U.Deptn (m)	MH	MH DIAM.,	T*M
	sect	(11111)	Name	(111)	(ш)	(111)	Connection	(11111)	
1.000	0	150 \$	SW01A	35.600	34.250	1.200	Open Manhole		1200
1.001	0	300	SW01	35.800	33.075	2.425	Open Manhole	:	1200
1.002	0	300	SW02	35.600	32.975	2.325	Open Manhole	:	1200
1.003	0	300	SW03	35.415	32.950	2.165	Open Manhole	:	1200
2.000	0	150	SW04	36.985	35.635	1.200	Open Manhole	:	1200
1.004	0	300	SW05	35.050	32.900	1.850	Open Manhole	:	1200
3 000		150	SMU 6	35 450	34 400	0 900	Open Manhele		1200
3 001	0	150	SW00	34 400	33 350	0.900	Open Manhole		1200
5.001	0	100	51107	51.100	55.550	0.000	open namore		1200
1.005	0	150	HB	34.350	32.750	1.450	Open Manhole	:	1200
				<u>Down</u>	stream	Manhole	2		
PN	Length	Slope	e MH	Down C.Level	stream I.Level	Manhole D.Depth	<u>2</u> 1 MH	MH DIAM.	, L*W
PN	Length (m)	Slope (1:X)	e MH Name	Down C.Level (m)	stream I.Level (m)	Manhole D.Depth (m)) MH Connection	MH DIAM. (mm)	, L*W
PN	Length (m)	Slope (1:X)	• MH • Name • SW01	<u>Down</u> C.Level (m)	stream I.Level (m)	Manhole D.Depth (m)	MH Connection	MH DIAM. (mm)	, ⊥*₩ 1200
PN 1.000 1.001	Length (m) 16.500 28.100	Slope (1:X) 16.1 281.0	• MH Name SW01 SW02	<u>Down</u> C.Level (m) 35.800 35.600	stream I.Level (m) 33.225 32.975	Manhole D.Depth (m) 2.425 2.325	Connection Open Manhole Open Manhole	MH DIAM. (mm)	, ⊥*₩ 1200 1200
PN 1.000 1.001 1.002	Length (m) 16.500 28.100 5.600	Slope (1:X) 16.1 281.0 224.0	 MH Name SW01 SW02 SW03 	<u>Down</u> C.Level (m) 35.800 35.600 35.415	stream I.Level (m) 33.225 32.975 32.950	Manhole D.Depth (m) 2.425 2.325 2.165	MH Connection Open Manhole Open Manhole	MH DIAM. (mm)	, L*₩ 1200 1200
PN 1.000 1.001 1.002 1.003	Length (m) 16.500 28.100 5.600 9.800	Slope (1:X) 16.1 281.0 224.0 196.0	 MH Name SW01 SW02 SW03 SW05 	Down C.Level (m) 35.800 35.600 35.415 35.050	stream I.Level (m) 33.225 32.975 32.950 32.900	Manhole D.Depth (m) 2.425 2.325 2.165 1.850	MH Connection Open Manhole Open Manhole Open Manhole Open Manhole	MH DIAM. (mm)	, ⊥*₩ 1200 1200 1200 1200
PN 1.000 1.001 1.002 1.003	Length (m) 16.500 28.100 5.600 9.800	16.1 (1:X) 16.1 281.0 224.0 196.0	 MH Name SW01 SW02 SW03 SW05 	Down C.Level (m) 35.800 35.600 35.415 35.050	stream I.Level (m) 33.225 32.975 32.950 32.900	Manhole D.Depth (m) 2.425 2.325 2.165 1.850	MH Connection Open Manhole Open Manhole Open Manhole Open Manhole	MH DIAM. (mm)	, L*₩ 1200 1200 1200 1200
PN 1.000 1.001 1.002 1.003 2.000	Length (m) 16.500 28.100 5.600 9.800 21.400	Slope (1:X) 16.1 281.0 224.0 196.0 8.3	 MH Name SW01 SW02 SW03 SW05 SW05 	Down C.Level (m) 35.800 35.600 35.415 35.050 35.050	stream I.Level (m) 33.225 32.975 32.950 32.900 33.050	Manhole D.Depth (m) 2.425 2.325 2.165 1.850 1.850	 MH Connection Open Manhole 	MH DIAM. (mm)	, L*₩ 1200 1200 1200 1200 1200 1200
PN 1.000 1.001 1.002 1.003 2.000 1.004	Length (m) 16.500 28.100 5.600 9.800 21.400 40.400	Slope (1:X) 16.1 281.0 224.0 196.0 8.3 269.3	 MH Name SW01 SW02 SW03 SW05 SW05 SW05 HB 	Down C.Level (m) 35.800 35.600 35.415 35.050 35.050 34.350	stream I.Level (m) 33.225 32.975 32.950 32.900 33.050 32.750	Manhole D.Depth (m) 2.425 2.325 2.165 1.850 1.850 1.300	 MH Connection Open Manhole 	MH DIAM. (mm)	, L ★₩ 1200 1200 1200 1200 1200 1200
PN 1.000 1.001 1.002 1.003 2.000 1.004 3.000	Length (m) 16.500 28.100 5.600 9.800 21.400 40.400 9.800	Slope (1:X) 16.1 281.0 224.0 196.0 8.3 269.3	 MH Name SW01 SW02 SW03 SW05 SW05 SW05 HB SW07 	Down C.Level (m) 35.800 35.600 35.415 35.050 35.050 34.350 34.350	stream I.Level (m) 33.225 32.975 32.950 32.900 33.050 32.750 33.350	Manhole D.Depth (m) 2.425 2.325 2.165 1.850 1.850 1.300 0.900	MH Connection Open Manhole Open Manhole Open Manhole Open Manhole Open Manhole	MH DIAM. (mm)	<pre>, L★₩ 1200 1200 1200 1200 1200 1200 1200 120</pre>
PN 1.000 1.001 1.002 1.003 2.000 1.004 3.000 3.001	Length (m) 16.500 28.100 5.600 9.800 21.400 40.400 9.800 2.400	Slope (1:X) 16.1 281.0 224.0 196.0 8.3 269.3 9.3 5.3	 MH Name SW01 SW02 SW03 SW05 SW05 SW05 SW05 SW05 SW07 HB SW07 HB 	Down C.Level (m) 35.800 35.600 35.415 35.050 35.050 34.350 34.350 34.350	stream I.Level (m) 33.225 32.975 32.950 32.900 33.050 32.750 33.350 32.900	Manhole D.Depth (m) 2.425 2.325 2.165 1.850 1.850 1.300 0.900 1.300	 MH Open Manhole 	MH DIAM. (mm)	<pre>, L★₩ 1200 1200 1200 1200 1200 1200 1200 120</pre>
PN 1.000 1.001 1.002 1.003 2.000 1.004 3.000 3.001	Length (m) 16.500 28.100 5.600 9.800 21.400 40.400 9.800 2.400	Slope (1:X) 16.1 281.0 224.0 196.0 8.3 269.3 9.3 5.3	 MH Name SW01 SW02 SW03 SW05 SW05 SW05 SW05 SW05 SW05 SW05 HB SW07 HB 	Down C.Level (m) 35.800 35.600 35.415 35.050 35.050 34.350 34.350	stream I.Level (m) 33.225 32.975 32.950 32.900 33.050 32.750 33.350 32.900	Manhole D.Depth (m) 2.425 2.325 2.165 1.850 1.850 1.300 0.900 1.300	MH Connection Open Manhole Open Manhole Open Manhole Open Manhole Open Manhole Open Manhole Open Manhole	MH DIAM. (mm)	<pre>, L★₩ 1200 1200 1200 1200 1200 1200 1200 120</pre>
PN 1.000 1.001 1.002 1.003 2.000 1.004 3.000 3.001 1.005	Length (m) 16.500 28.100 5.600 9.800 21.400 40.400 9.800 2.400 6.700	 Slope (1:X) 16.1 281.0 224.0 196.0 8.3 269.3 9.3 5.3 13.4 	 MH Name SW01 SW02 SW03 SW05 SW05 SW05 SW05 SW07 HB SW07 HB 	Down C.Level (m) 35.800 35.600 35.415 35.050 35.050 34.350 34.350 34.400 34.350	stream I.Level (m) 33.225 32.975 32.950 32.900 33.050 32.750 33.350 32.900 32.250	Manhole D.Depth (m) 2.425 2.325 2.165 1.850 1.850 1.300 0.900 1.300 1.600	MH Connection Open Manhole Open Manhole Open Manhole Open Manhole Open Manhole Open Manhole Open Manhole Open Manhole Open Manhole	MH DIAM. (mm)	<pre>, L★₩ 1200 1200 1200 1200 1200 1200 1200 120</pre>
PN 1.000 1.001 1.002 1.003 2.000 1.004 3.000 3.001 1.005	Length (m) 16.500 28.100 5.600 9.800 21.400 40.400 9.800 2.400 6.700	 Slope (1:X) 16.1 281.0 224.0 196.0 8.3 269.3 9.3 5.3 13.4 Free 	 MH Name SW01 SW02 SW03 SW05 SW05 SW05 SW05 SW05 HB SW07 HB HB Ee Flo 	Down C.Level (m) 35.800 35.600 35.415 35.050 35.050 34.350 34.350 34.400 34.350 34.000	stream I.Level (m) 33.225 32.975 32.950 32.900 33.050 32.750 33.350 32.900 32.250 utfall	Manhole D.Depth (m) 2.425 2.325 2.165 1.850 1.850 1.300 1.300 1.300 1.600 Details	MH Connection Open Manhole Open Manhole Open Manhole Open Manhole Open Manhole Open Manhole Open Manhole Open Manhole Open Manhole Open Manhole	MH DIAM. (mm)	<pre>, L★₩ 1200 1200 1200 1200 1200 1200 1200 120</pre>
PN 1.000 1.001 1.002 1.003 2.000 1.004 3.000 3.001 1.005	Length (m) 16.500 28.100 5.600 9.800 21.400 40.400 9.800 2.400 6.700	Slope (1:X) 16.1 281.0 224.0 196.0 8.3 269.3 9.3 5.3 13.4 <u>Fre</u> vutfall	MH Name SW01 SW02 SW03 SW05 SW05 SW05 SW05 SW05 B SW07 B B B B B C Cu: Cu:	Down C.Level (m) 35.800 35.600 35.415 35.050 35.050 34.350 34.400 34.350 34.000 0000000000000000000000000000000	stream I.Level (m) 33.225 32.975 32.950 32.900 33.050 32.750 33.350 32.250 utfall Level I	Manhole D.Depth (m) 2.425 2.325 2.165 1.850 1.850 1.300 0.900 1.300 1.600 Details	MH Connection Open Manhole Open Manhole Manhole	MH DIAM. (mm)	<pre>, L*₩ 1200 1200 1200 1200 1200 1200 1200 120</pre>
PN 1.000 1.001 1.002 1.003 2.000 1.004 3.000 3.001 1.005	Length (m) 16.500 28.100 5.600 9.800 21.400 40.400 9.800 2.400 6.700 0 Pip	Slope (1:X) 16.1 281.0 224.0 196.0 8.3 269.3 9.3 5.3 13.4 <u>Fre</u> vutfall e Numb	MH Name SW01 SW02 SW03 SW05 SW05 SW05 SW05 SW05 SW07 SW07 B SW07 B HB B SW07 B SW07 SW07 SW07 SW07 SW05 SW05 SW05 SW05 SW05 SW05 SW05 SW05	Down C.Level (m) 35.800 35.600 35.415 35.050 35.050 34.350 34.350 34.400 34.000 0 0 0 0 0 0 0 0 0 0 0 0	stream I.Level (m) 33.225 32.975 32.950 32.900 33.050 32.750 33.350 32.250 utfall Level I (m)	Manhole D.Depth (m) 2.425 2.325 2.165 1.850 1.850 1.300 0.900 1.300 1.600 Details (m)	MH Connection Open Manhole Open Manhole Open Manhole Open Manhole Open Manhole Open Manhole Open Manhole Open Manhole Open Manhole Open Manhole Min D,L I. Level (mm) (m)	MH DIAM. (mm)	<pre>, L★₩ 1200 1200 1200 1200 1200 1200 1200 120</pre>
PN 1.000 1.001 1.002 1.003 2.000 1.004 3.000 3.001 1.005	Length (m) 16.500 28.100 5.600 9.800 21.400 40.400 9.800 2.400 6.700 0 Pip	<pre>Slope (1:X) 16.1 281.0 224.0 196.0 8.3 269.3 9.3 5.3 13.4 <u>Free vutfall e Numb 1.00</u></pre>	 MH Name SW01 SW02 SW03 SW05 SW05 SW05 SW07 HB SW07 HB SW07 HB SW07 HB SW07 HB SW07 No 	Down C.Level (m) 35.800 35.600 35.415 35.050 34.350 34.350 34.400 34.350 34.000 0000 00000 cowing O tfall C. Iame	stream I.Level (m) 33.225 32.975 32.950 32.900 33.050 32.750 32.250 utfall Level I (m) 34.000	Manhole D.Depth (m) 2.425 2.325 2.165 1.850 1.850 1.300 0.900 1.300 1.600 Details (m) 32.250	MH Connection Open Manhole Open Manhole Copen Manhole Min D,L I. Level (mm) (m)	MH DIAM. (mm)	<pre>, L*₩ 1200 1200 1200 1200 1200 1200 1200 120</pre>

Hydrock Consultants Ltd		Page 4
· · · · · · · · · · · · · · · · · · ·		Micro
Date 13/02/2023 16:09	Designed by jameswelch	Drainage
File STORM WATER CALC.MDX	Checked by	brainage
	Network 2020.1.5	
Simulatio	on Criteria for Storm	
Volumetric Runoff Coeff Areal Reduction Factor Hot Start (mins) Hot Start Level (mm) Manhole Headloss Coeff (Global) Foul Sewage per hectare (1/s) Number of Input Hydrogr	0.750 Additional Flow - % of Total Fl 1.000 MADD Factor * 10m ³ /ha Stora 0 Inlet Coefficcie 0 Flow per Person per Day (1/per/da 0.500 Run Time (min 0.000 Output Interval (min raphs 0 Number of Storage Structures 1	ow 0.000 ge 0.000 nt 0.800 y) 0.000 s) 60 s) 1
Number of Online Cont Number of Offline Cont	crols 1 Number of Time/Area Diagrams 0 crols 0 Number of Real Time Controls 0	
Synthet	<u>ic Rainfall Details</u>	
Rainfall Model Return Period (years) Region Engla M5-60 (mm) Ratio R	FSR Profile Type Sum 1 Cv (Summer) 0.7 and and Wales Cv (Winter) 0.8 21.000 Storm Duration (mins) 0.345	ner 750 340 30

Hydrock Consultants Ltd		Page 5
Date 13/02/2023 16:09	Designed by jameswelch	Micro
File STORM WATER CALC.MDX	Checked by	Diamage
Innovyze	Network 2020.1.3	
Online	Controls for Storm	
<u>Hydro-Brake® Optimum Manho</u>	le: HB, DS/PN: 1.005, Vol	ume (m³): 4.6
Unit Desig Design A Sump Dia Invert Minimum Outlet Pipe Dia Suggested Manhole Dia Suggested Manhole Dia Control Po Design Point (Ca H Mean Flow over H The hydrological calculations have b Hydro-Brake® Optimum as specified. Hydro-Brake Optimum® be utilised the	Reference MD-SHE-0108-6200-16 n Head (m) Flow (1/s) Flush-Flo™ Cal Objective Minimise upstream pplication Available meter (mm) Level (m) meter (mm) meter (mm) ints Head (m) Flow (1/s) Alculated) 1.600 6.2 Flush-Flo™ 0.472 6.2 Kick-Flo® 0.964 4.9 Head Range - 5.4 een based on the Head/Discharg Should another type of control n these storage routing calcul	000-6200 1.600 6.2 culated storage Surface Yes 108 32.750 150 1200 de relationship for the device other than a ations will be
invalidated Depth (m) Flow (1/s) Depth (m) Flow	(1/s) Depth (m) Flow (1/s)	epth (m) Flow (1/s)
0.200 5.5 1.400	5.4 3.000 8.3	7.500 12.4
0.300 5.9 1.600	6.2 4.000 9.5	8.000 13.3
0.400 6.1 1.800	6.6 4.500 10.1	8.500 13.7
0.500 6.1 2.000	6.9 5.000 10.6	9.000 14.0
	7.2 5.500 11.1	9.500 14.4
1.000 5.0 2.600	7.8 6.500 12.0	

Hydrock Consultants Ltd		Page 6
•		Micro
Date 13/02/2023 16:09	Designed by jameswelch	Drainage
File STORM WATER CALC.MDX	Network 2020 1 3	
	Network 2020.1.3	
<u>Storage</u>	Structures for Storm	
Tank or Pond M	anhole: SW02, DS/PN: 1.002	
Inver	rt Level (m) 32.975	
Depth (m) Area (m ²) Dep	oth (m) Area (m ²) Depth (m) Area (m ²)	
0.000 72.0	1.200 72.0 1.201 0.0	
©198	32-2020 Innovyze	

Hydrock	Consu	ltants I	utd						Page 7
•									S
•									
									Micco
Date 13/	02/20	23 16:09)	De	signed 1	oy james	welch		Designation
File STC	RM WA	TER CALC	C.MDX	Ch	.ecked b	V			Diamage
Innovyze	2			Ne	twork 2	020.1.3			
1									
1 vear	Retur	n Period	Summary	of Cr	ritical	Results	by Maxim	um Leve	l (Rank 1)
			-	f	or Storn	1	-		
	_			Simula	<u>ation Cri</u>	<u>teria</u>			0.000
	P	real Redu Hot	Start (min	s)	0 Add1	MADD Fact	ow = ≈ or : or * 10m³/ł	notal fic Na Storad	
		Hot Star	t Level (mr	n)	0	1000	Inlet Coe	effiecien	t 0.800
Manh	nole He	adloss Co	eff (Globa	1) 0.50	00 Flow p	er Person	per Day (1	l/per/day) 0.000
Fc	oul Sew	age per h	ectare (1/s	s) 0.00	00				
	1	Number of	Input Hudr	ograph	s () Numbe	r of stor	age Struct	ures 1	
	1	Number c	of Online C	Control	s 1 Numbe	r of Time	/Area Diag	rams 0	
		Number of	Offline C	ontrol	s 0 Numbe	r of Real	Time Cont	rols O	
			~		D	Det 11			
		Painf	<u>Syr</u> Syr	<u>ithetic</u>	Rainfall	<u>Details</u>	+ 10 P 0 34	5	
		Naliii	Region	Englan	d and Wal	es Cv (Su	mmer) 0.75	0	
		Μ	15-60 (mm)	5	21.0	00 Cv (Wi	nter) 0.84	0	
					<i>,</i> ,				
	Mar	gin for Fl	Lood Risk W	larning	(mm)	Second T	naromont (300.0)
			Allalys	DTS S	tatus	second 1	ncrement (Direction OI) J
				DVD S	tatus			OFI	- - -
			Ine	ertia S	tatus			OF	3
			Profile(s	5)			Summer a	nd Winte:	c
		Duratio	on(s) (mins	s) 15,	30, 60, 1	20, 240,	360, 480,	960, 1440)
	Ret	urn Perioo	d(s) (years	5)			1	, 30, 100)
		Climate	e Change (%	5)				0, 0, 40)
-	US/MH	0 1 1 1	Return Cl	imate	First (X	() Fir	st (Y)	First (Z)	Overflow
PN	Name	Storm	Period Cr	lange	Surcharg	je i	1000	Overiiow	ACT.
1.000	SW01A	15 Winter	1	+0%					
1.001	SW01	15 Winter	1	+0% 3	30/30 Win	ter			
1.002	SW02	60 Winter	1	+0% 3	30/15 Win	ter mer			
2.000	SW03 SW04	15 Winter	1 1	+0%	JU/IJ SUM	WGT			
1.004	SW05	30 Winter	1	+0% 3	30/15 Sum	mer			
3.000	SW06	15 Summer	1	+0%					
3.001	SW07	15 Winter	1	+0% 3	30/15 Sum	mer	20 Minter		
1.005	ΗВ	SU Winter	Ţ	+U%	1/15 Sum	mer 100/1	20 Winter		
		Water S	urcharged	Flooded	1		Half Drain	Pipe	
	US/MH	Level	Depth	Volume	Flow /	Overflow	Time	Flow	
PN	Name	(m)	(m)	(m³)	Cap.	(1/s)	(mins)	(1/s)	Status
1.000	SW01A	34.289	-0.111	0.000	0.16			6.4	OK
1.001	SW01	33.161	-0.214	0.000	0.18			10.7	OK
1.002	SW02	33.090	-0.185	0.000	0.09			4.4	OK
1.003	SWU3	33.123	-0.12/	1000	0.08			5.0	UK
			C	1982-2	2020 Inr	novyze			

Hydrock Consultants Ltd		Page 8
• •		
Date 13/02/2023 16:09	Designed by jameswelch	Desinado
File STORM WATER CALC.MDX	Checked by	Diamage
Innovyze	Network 2020.1.3	

<u>1 year Return Period Summary of Critical Results by Maximum Level (Rank 1)</u> <u>for Storm</u>

PN	US/MH Name	Water Level (m)	Surcharged Depth (m)	Flooded Volume (m³)	Flow / Cap.	Overflow (1/s)	Half Drain Time (mins)	Pipe Flow (l/s)	Status
2.000	SW04	35.661	-0.124	0.000	0.07			4.2	OK
1.004	SW05	33.129	-0.071	0.000	0.19			11.9	OK
3.000	SW06	34.406	-0.144	0.000	0.01			0.4	OK
3.001	SW07	33.365	-0.135	0.000	0.02			0.9	OK
1.005	HB	33.122	0.222	0.000	0.14			6.0	SURCHARGED

US/MH Level PN Name Exceeded	1
1.000 SW01A	
1.001 SW01	
1.002 SW02	
1.003 SW03	
2.000 SW04	
1.004 SW05	
3.000 SW06	
3.001 SW07	
1.005 HB 1	L

Hydrock Consultants Lto	d			Page 9					
· · ·									
·		danad be dance	lah	Micro					
Date 13/02/2023 16:09	Des Des	ignea by jameswe	LCN	Drainage					
TILE STORM WATER CALC.	LUNE CNE	work 2020 1 2							
тшолдае	Net	WULK ZUZU.1.3							
<u>30 year Return Period</u>	30 year Return Period Summary of Critical Results by Maximum Level (Rank 1) for Storm								
Areal Reduct: Hot Start 1 Manhole Headloss Coef Foul Sewage per hect Number of In	<u>Simulat</u> ion Factor 1.000 art (mins) 0 Level (mm) 0 f (Global) 0.500 tare (1/s) 0.000 put Hydrographs	tion Criteria Additional Flow MADD Factor I Flow per Person pe O Number of Storage	- % of Total Flo * 10m³/ha Storag nlet Coeffiecier r Day (l/per/day e Structures 1	ow 0.000 ge 0.000 nt 0.800 7) 0.000					
Number of Number of C	Online Controls offline Controls	1 Number of Time/An 0 Number of Real Ti	ea Diagrams 0 me Controls 0						
Rainfal M5-	Synthetic Rainfall Details Rainfall Model FSR Ratio R 0.345 Region England and Wales Cv (Summer) 0.750 M5-60 (mm) 21.000 Cv (Winter) 0.840								
Margin for Floc	Margin for Flood Risk Warning (mm) 300.0 Analysis Timestep 2.5 Second Increment (Extended) DTS Status ON DVD Status OFF Inertia Status OFF								
E Duration(Return Period(s Climate C	Profile(s) (s) (mins) 15, 3 (years) Change (%)	s 0, 60, 120, 240, 360	Summer and Winte 480, 960, 144 1, 30, 10 0, 0, 4	r 0 0 0					
US/MH F PN Name Storm F	eturn Climate Period Change	First (X) First Surcharge Flo	(Y) First (Z od Overflo	2) Overflow w Act.					
1 000 SW012 15 Winton	- 30 ⊥0s	-							
1.001 SW01 60 Winter	30 +0% 3	0/30 Winter							
1.002 SW02 60 Winter	30 +0% 3	0/15 Winter							
1.003 SW03 120 Winter	30 +0% 3 30 +0%	0/15 Summer							
1.004 SW05 15 Summer	30 +0% 3	0/15 Summer							
3.000 SW06 15 Summer	30 +0%								
3.001 SW07 15 Summer	30 +0% 3	0/15 Summer	Wintor						
T.002 ND TO SUMMER	JU +U6	1/15 Summer 100/120	WITICET						
Water Sur	charged Flooded	Hal	f Drain Pipe						
US/MH Level D PN Name (m)	(m) (m ³)	Flow / Overflow Cap. (1/s)	Time Flow mins) (1/s)	Status					
	(, (m.)	-up. (1/5/ (502045					
1.000 SW01A 34.314	-0.086 0.000	0.38	15.8	OK					
1.001 SW01 33.468 1.002 SW02 33.465	0.093 0.000	0.24	14.5 S 36.6 S	URCHARGED URCHARGED					
1.003 SW03 33.466	0.216 0.000	0.53	32.2 s	URCHARGED					
©1982-2020 Innovyze									

Hydrock Consultants Ltd		Page 10
• •		
Date 13/02/2023 16:09	Designed by jameswelch	Desinado
File STORM WATER CALC.MDX	Checked by	Diamage
Innovyze	Network 2020.1.3	

30 year Return Period Summary of Critical Results by Maximum Level (Rank 1) for Storm

		Water	Surcharged	Flooded			Half Drain	Pipe	
	US/MH	Level	Depth	Volume	Flow /	Overflow	Time	Flow	
PN	Name	(m)	(m)	(m³)	Cap.	(l/s)	(mins)	(l/s)	Status
2.000	SW04	35.677	-0.108	0.000	0.17			10.3	OK
1.004	SW05	33.495	0.295	0.000	0.37			23.4	SURCHARGED
3.000	SW06	34.415	-0.135	0.000	0.02			1.1	OK
3.001	SW07	33.534	0.034	0.000	0.11			4.8	SURCHARGED
1.005	HB	33.538	0.638	0.000	0.14			5.9	SURCHARGED

PN	US/MH Name	Level Exceeded
1.000 1.001 1.002 1.003 2.000 1.004 3.000 3.001	SW01A SW01 SW02 SW03 SW04 SW05 SW06 SW07	
1.005	HB	1

Hydrock	Consu	ltants L	td						Page 11
•	100100								Micro
Date 13/	/02/20	23 16:09	MDY	De	signed	by jame:	swelch		Drainage
File STC	JRM WA	TER CALC	.MDX	Ch	ecked b	У 000 1 0			
Innovyze	9			Ne	twork 2	020.1.3			
<u>100 ye</u>	<u>ar Ret</u> A	real Reduc	od Summ	<u>ary of</u> <u>1)</u> Simula tor 1.00	Critic for Sto ation Cri	<u>al Resul</u> orm teria tional Fl	.ts by Max	<u>imum Le</u> Cotal Flo	wel (Rank
Manł Fc	hole He oul Sew	Hot S Hot Start adloss Coe age per he	tart (mi Level (ff (Glob ctare (1	ns) mm) al) 0.50 /s) 0.00	0 0 00 Flow p 00	MADD Fact	or * 10m³/k Inlet Coe h per Day (1	a Storag effiecien /per/day	e 0.000 t 0.800) 0.000
	ľ	Number of 3 Number 03 Number of	Input Hyd f Online Offline	irograph: Control: Control:	s 0 Numb s 1 Numb s 0 Numb	er of Sto er of Tim er of Rea	rage Struct e/Area Diag l Time Cont	ures 1 rams 0 rols 0	
	Synthetic Rainfall Details Rainfall Model FSR Ratio R 0.345 Region England and Wales Cv (Summer) 0.750 M5-60 (mm) 21.000 Cv (Winter) 0.840								
	Mar	gin for Fl	ood Risk Analy	Warning ysis Tim DTS S DVD S	(mm) estep 2. tatus tatus	5 Second	Increment (300.(Extended) Of OFI	1 1
			II	nertia S	tatus			OFI	7
	Reti	Duratio urn Period Climate	Profile n(s) (min (s) (yea: Change	(s) ns) 15, rs) (%)	30, 60,	120, 240,	Summer a 360, 480, 1	nd Winter 960, 1440 , 30, 100 0, 0, 40	-))
1	US/MH		Return (Climate	First	(X) F:	irst (Y)	First (Z) Overflow
PN	Name	Storm	Period	Change	Surchar	ge	Flood	Overflow	Act.
1.000 1.001 1.002 1.003 2.000 1.004 3.000	SW01A 1 SW01 1 SW02 1 SW03 1 SW04 SW05 1 SW05 1 SW06	20 Winter 20 Winter 20 Winter 20 Winter 15 Winter 20 Winter 15 Winter	100 100 100 100 100 100	+40% +40% +40% +40% +40% +40% +40%	30/30 Wi 30/15 Wi 30/15 Su 30/15 Su	nter nter mmer			
3.001 1.005	SW07 1 HB 1	20 Winter 20 Winter	100 100	+40% +40%	30/15 Su 1/15 Su	mmer mmer 100/	120 Winter		
PN	US/MH Name	Water Su Level (m)	rcharged Depth (m)	Flooded Volume (m³)	f Flow / Cap.	Overflow (l/s)	Half Drain Time (mins)	Pipe Flow (1/s)	Status
1.000 1.001 1.002 1.003	SW01A SW01 SW02 SW02 SW03	34.374 34.368 34.365 34.363	-0.026 0.993 1.090 1.113	0.000 0.000 0.000 0.000	0 0.22 0 0.28 0 0.12 0 0.11			9.3 16.4 ST 6.1 ST 6.9 ST	OK JRCHARGED JRCHARGED JRCHARGED
				©1982-	2020 In	novyze			

Hydrock Consultants Ltd		Page 12
• •		
Date 13/02/2023 16:09	Designed by jameswelch	Drainago
File STORM WATER CALC.MDX	Checked by	Diamage
Innovyze	Network 2020.1.3	

100 year Return Period Summary of Critical Results by Maximum Level (Rank <u>1) for Storm</u>

PN	US/MH Name	Water Level (m)	Surcharged Depth (m)	Flooded Volume (m³)	Flow / Cap.	Overflow (l/s)	Half Drain Time (mins)	Pipe Flow (l/s)	Status
2.000	SW04	35.693	-0.092	0.000	0.32			18.6	OK
1.004	SW05	34.360	1.160	0.000	0.12			7.5	SURCHARGED
3.000	SW06	34.419	-0.131	0.000	0.04			2.0	OK
3.001	SW07	34.350	0.850	0.000	0.03			1.3	FLOOD RISK
1.005	HB	34.350	1.450	0.264	0.15			6.2	FLOOD

US/MH Name	Level Exceeded
SW01A	
SW01	
SW02	
SW03	
SW04	
SW05	
SW06	
SW07	
HB	1
	US/MH Name SW01A SW01 SW02 SW03 SW04 SW05 SW06 SW07 HB

