

GEOTECHNICAL SITE INVESTIGATION REPORT

26 HIGH STREET BURWELL CAMBRIDGESHIRE CB25 0HB

Reference Number 3309/Rpt 1v2 September 2023

> Prepared for Rowe Build C/o Gary Johns Architects

> > Ву

Brown 2 Green Associates Ltd Suite 1, Wenden Court Station Road Wendens Ambo Saffron Walden Essex, CB11 4LB

Tel: 01799 542473 Web address: www.brown2green.co.uk

Client	Rowe Build
	C/o Gary Johns Architects
Report Title	Geotechnical Site Investigation Report: 26 High Street, Burwell
Reference Number	3309/Rpt 1v2
Date	September 2023

Prepared By	Steve Rhodes BSc (Hons) MSc DIC CEng CGeol MIMMM MIEnv Sc FGS
	Director
Approved By	Philip Miles
	BSc, MSc, C Geol
	(Director)

TABLE OF CONTENTS

2.1 Site Descriptions and Observations 2.2 Geology 3 SITE INVESTIGATION 3.1 Exploratory Fieldwork 3.2 Laboratory Analysis 4 RESULTS 4.1 Ground Conditions 4.2 Groundwater Conditions 4.3 Geotechnical Laboratory Results 4.4 Chemical Laboratory Results 4.5 Soakage Tests 4	1 IN	TROD	UCTION	1
2.1 Site Descriptions and Observations 2 2.2 Geology 2 3 SITE INVESTIGATION 3 3.1 Exploratory Fieldwork 3 3.2 Laboratory Analysis 3 4 RESULTS 4 4.1 Ground Conditions 4 4.2 Groundwater Conditions 4 4.3 Geotechnical Laboratory Results 4 4.4 Chemical Laboratory Results 4 4.5 Soakage Tests 4 5 GEOTECHNICAL ASSESSMENT 5 5.1 Proposed Development 5 5.1 Ground Conditions 5 5.2 Site Preparation 5 5.3 Foundations 5 5.4 Ground Floor Slabs 5 5.5 Pavement Construction 5 5.6 Buried Concrete 6 5.7 Excavations 6 5.8 Soakaways 6 Figure 1 Site Location Plan Figure 2 Sample Location Pla	1.2	Prop	osed Development	1
2.2 Geology 2 3 SITE INVESTIGATION 3 3.1 Exploratory Fieldwork 3 3.2 Laboratory Analysis 3 4 RESULTS 4 4.1 Ground Conditions 4 4.2 Groundwater Conditions 4 4.3 Geotechnical Laboratory Results 4 4.4 Chemical Laboratory Results 4 4.5 Soakage Tests 4 5 GEOTECHNICAL ASSESSMENT 5 5.1 Proposed Development 5 5.1 Ground Conditions 5 5.2 Site Preparation 5 5.3 Foundations 5 5.4 Ground Floor Slabs 5 5.5 Pavement Construction 5 5.6 Buried Concrete 6 5.7 Excavations 6 5.8 Soakaways 6 FIGURES	2 SI	TE DE	SCRIPTION	2
3.1 Exploratory Fieldwork 3 3.2 Laboratory Analysis 3 4 RESULTS 4 4.1 Ground Conditions 4 4.2 Groundwater Conditions 4 4.3 Geotechnical Laboratory Results 4 4.4 Chemical Laboratory Results 4 4.5 Soakage Tests 4 5 GEOTECHNICAL ASSESSMENT 5 5.1 Proposed Development 5 5.1 Ground Conditions 5 5.2 Site Preparation 5 5.3 Foundations 5 5.4 Ground Floor Slabs 5 5.5 Pavement Construction 5 5.6 Buried Concrete 6 5.7 Excavations 6 5.8 Soakaways 6 FIGURES			·	
3.2 Laboratory Analysis 3 4 RESULTS 4 4.1 Ground Conditions 4 4.2 Groundwater Conditions 4 4.3 Geotechnical Laboratory Results 4 4.4 Chemical Laboratory Results 4 4.5 Soakage Tests 4 5 GEOTECHNICAL ASSESSMENT 5 5.1 Proposed Development 5 5.1 Ground Conditions 5 5.2 Site Preparation 5 5.3 Foundations 5 5.4 Ground Floor Slabs 5 5.5 Pavement Construction 5 5.6 Buried Concrete 6 5.7 Excavations 6 5.8 Soakaways 6 FIGURES Figure 1 Site Location Plan Figure 2 Sample Location Plan	3 SI	TE IN\	/ESTIGATION	3
4.1 Ground Conditions 4 4.2 Groundwater Conditions 4 4.3 Geotechnical Laboratory Results 4 4.4 Chemical Laboratory Results 4 4.5 Soakage Tests 4 5 GEOTECHNICAL ASSESSMENT 5 5.1 Proposed Development 5 5.1 Ground Conditions 5 5.2 Site Preparation 5 5.3 Foundations 5 5.4 Ground Floor Slabs 5 5.5 Pavement Construction 5 5.6 Buried Concrete 6 5.7 Excavations 6 5.8 Soakaways 6 FIGURES				3 3
4.2 Groundwater Conditions 4 4.3 Geotechnical Laboratory Results 4 4.4 Chemical Laboratory Results 4 4.5 Soakage Tests 4 5 GEOTECHNICAL ASSESSMENT 5 5.1 Proposed Development 5 5.1 Ground Conditions 5 5.2 Site Preparation 5 5.3 Foundations 5 5.4 Ground Floor Slabs 5 5.5 Pavement Construction 5 5.6 Buried Concrete 6 5.7 Excavations 6 5.8 Soakaways 6 FIGURES	4 RI	ESULT	rs ·	4
4.3 Geotechnical Laboratory Results 4 4.4 Chemical Laboratory Results 4 4.5 Soakage Tests 4 5 GEOTECHNICAL ASSESSMENT 5 5.1 Proposed Development 5 5.1 Ground Conditions 5 5.2 Site Preparation 5 5.3 Foundations 5 5.4 Ground Floor Slabs 5 5.5 Pavement Construction 5 5.6 Buried Concrete 6 5.7 Excavations 6 5.8 Soakaways 6 FIGURES				
4.5 Soakage Tests 4 5 GEOTECHNICAL ASSESSMENT 5 5.1 Proposed Development 5 5.1 Ground Conditions 5 5.2 Site Preparation 5 5.3 Foundations 5 5.4 Ground Floor Slabs 5 5.5 Pavement Construction 5 5.6 Buried Concrete 6 5.7 Excavations 6 5.8 Soakaways 6 Figure 1 Site Location Plan Figure 2 Sample Location Plan	4.3	Geot	echnical Laboratory Results	4
5.1 Proposed Development 5.1 Ground Conditions 5.2 Site Preparation 5.3 Foundations 5.4 Ground Floor Slabs 5.5 Pavement Construction 5.6 Buried Concrete 6.7 Excavations 5.8 Soakaways FIGURES Figure 1 Site Location Plan Figure 2 Sample Location Plan	4.4 Chemical Laboratory Results			
5.1 Ground Conditions 5.2 Site Preparation 5.3 Foundations 5.4 Ground Floor Slabs 5.5 Pavement Construction 5.6 Buried Concrete 6.7 Excavations 5.8 Soakaways FIGURES Figure 1 Site Location Plan Figure 2 Sample Location Plan	5 GI	EOTE	CHNICAL ASSESSMENT	5
5.2 Site Preparation 5.3 Foundations 5.4 Ground Floor Slabs 5.5 Pavement Construction 5.6 Buried Concrete 6.7 Excavations 6.8 Soakaways FIGURES Figure 1 Site Location Plan Figure 2 Sample Location Plan				
5.4 Ground Floor Slabs 5.5 Pavement Construction 5.6 Buried Concrete 6.7 Excavations 6.8 Soakaways FIGURES Figure 1 Site Location Plan Figure 2 Sample Location Plan				
5.5 Pavement Construction 5 5.6 Buried Concrete 6 5.7 Excavations 6 5.8 Soakaways 6 FIGURES Figure 1 Site Location Plan Figure 2 Sample Location Plan				5
5.7 Excavations 6 5.8 Soakaways 6 FIGURES Figure 1 Site Location Plan Figure 2 Sample Location Plan	5.5	Pave	ment Construction	5
Figure 1 Site Location Plan Figure 2 Sample Location Plan				
Figure 1 Site Location Plan Figure 2 Sample Location Plan				
Figure 2 Sample Location Plan			FIGURES	
APPENDICES				
			APPENDICES	
Appendix I Limitations and Constraints				
Appendix II Proposed Development Layout Appendix III Geological Logs			•	
Appendix IV Laboratory Reports Appendix V Results of Infiltration Tests	Append	dix IV	Laboratory Reports	

1 INTRODUCTION

1.1 Background

Brown 2 Green Associates Ltd have been commissioned by Gary Johns Architects on behalf of Rowe Build to undertake a geotechnical site investigation of land at 26 High Street, Burwell, CB25 0HB. The site location is presented in Figure 1.

1.2 Proposed Development

It is proposed to redevelop to residential consisting of two dwellings with associated gardens and parking. The proposed development is shown on drawing number 16-417 10 rev D prepared by Gary Johns Architects. The proposed development layout is presented in Appendix II.

1.3 Objectives

The objective of the work is to provide geotechnical recommendations in relation to foundation.

2 SITE DESCRIPTION

2.1 Site Descriptions and Observations

The site is currently vacant, and demolition works have been undertaken to ensure that the necessary on-site contamination investigation works could be conducted. An old partly backfilled soakaway was present on the north-western part of the site.

The topography of the site slopes towards the west.

2.2 Geology

The British Geological Survey website indicates that the site is underlain by the following geology:

Geological Unit	Drift/Solid	Description
None Present	Drift	
Zig Zag Chalk Formation	Solid	Mostly firm, pale grey to off-white blocky chalk with a lower part characterised by rhythmic alternations of marls and marly chalks with firm white chalk. Thin gritty, silty chalk beds act as markers in the sequence.

The data base on the presence of natural cavities held by Stantec records that no natural cavities have been recorded within 500m of the site.

The British Geological Survey database for Natural Hazards indicates that the potential for dissolution of soluble rocks is described as Negligible.

3 SITE INVESTIGATION

3.1 Exploratory Fieldwork

Five boreholes (WS1 to WS5) were drilled using a window sample drilling rig on 13th June 2023 to a maximum depth of 5.45m below surface. Drilling of some of the boreholes was suspended as no further advance could be achieved. During the drilling of the boreholes SPT were completed at 1.0m intervals. In addition, four trial pits (SA1 and SA2 and TP1 and TP2) were also excavated. At SA1, a pit was excavated to a depth of 1.5m below ground level. At location SA2, the pit was excavated to a depth of 1.45m. The pits were filled with water. The time required for the water to infiltrate was monitored. The sampling locations are illustrated in Figure 2.

During the site works recovered soils were geologically logged by an experienced Geoenvironmental Engineer. The geological logs are presented in Appendix III. Disturbed samples for geotechnical testing and chemical analysis were obtained from selected locations.

On completion of the drilling the boreholes were backfilled with recovered soil.

Two soakage tests (SA1 and SA2) were completed in accordance with BRE365 Design of Soakaways. At each location a trail pit was excavated to a maximum depth of 1.5m. Water was then added to the trial pit. Due to the high infiltrations rates of the underlying chalk, water was not accumulating within the pits to allow long term monitoring to be undertaken. Any accumpation of water would infiltrate within 30 seconds.

3.2 Laboratory Analysis

Selected soil samples were submitted to Soil Property Testing Ltd for geotechnical testing. The following tests were completed:

Moisture Content; and Atterberg Limits.

The laboratory results are presented in Appendix IV.

In addition, two soil sample from WS3 and WS5 were submitted to Eurofins/Chemtest Ltd of Newmarket for chemical analysis. Samples were analysed for:

pH; and Soluble Sulphate.

The laboratory results are presented in Appendix IV.

4 RESULTS

4.1 Ground Conditions

The geological logs are presented in Appendix III.

Made Ground

The boreholes indicate that the site is generally underlain by 0.3m of made ground consisting of dark grey slightly gravelly, slightly sandy, silty clay with rare anthropogenic materials. In the north-western corner of the site, in WS4, up to 2.0m of made ground was noted. It is believed that a basement was previously located in the area. A backfilled soakaway was also present within this part of the site.

Zig Zag Chalk Formation

The made ground is underlain by weak light cream structureless marly Chalk (Dc) composed of silty gravel.

Visual and Olfactory Evidence of Contamination

No visual or olfactory evidence of contamination was identified.

Soil Density

The density of the underlying soils has been assessed using CPTs undertaken within window sampler boreholes. This shows the chalk to vary from very weak to weak.

4.2 Groundwater Conditions

No groundwater was identified during the drilling of the window sample holes.

It should be noted that groundwater levels can fluctuate seasonally and therefore, may be encountered at higher or lower elevations than those recorded in this site investigation.

4.3 Geotechnical Laboratory Results

The geotechnical testing of the samples was undertaken by Soil Property Testing Ltd under UKAS accreditation. The test certificates are included in Appendix IV.

4.4 Chemical Laboratory Results

The chemical analysis of the soil samples was undertaken by Eurofins/Chemtest Ltd of Newmarket under UKAS accreditation. The test certificates are included in Appendix V.

4.5 Soakage Tests

The results of the soakage tests are presented in Appendix V and summarised below:

Location	Test Number 1	Test Number 2	Test Number 3
SA1	3.13E-02m/s	1.39E-02 m/s	8.93E-03 m/s
SA2	3.13E-02m/s	1.39E-02 m/s	8.93E-03 m/s

5 GEOTECHNICAL ASSESSMENT

5.1 Proposed Development

It is understood that the proposed development will comprise residential units consisting of two dwellings with associated gardens and parking. Details of the proposed loadings are not known and therefore a line loading of 50kN/m has been assumed for preliminary assessment purposes only.

5.1 Ground Conditions

The ground conditions consist of between 0.3m and 2m of Made Ground over structureless marly chalk. Strength of the marly chalk is variable and is generally firm to stiff but within Borehole WS3 and WS4 was noted to be soft.

Groundwater was not encountered.

5.2 Site Preparation

The site should be cleared and any vegetation below areas of proposed development stripped in accordance with Series 200 of the Specification for Highway Works. This should include:

Roots present below the footprint of proposed structures and infrastructure should be grubbed out and the resulting void infilled with suitable compacted engineered fill;

Redundant services should be sealed off and grubbed out and replaced with suitable compacted engineered fill; and,

Buried structures and old foundations have been encountered on site. These should be excavated from below the proposed development foot print with the resulting void backfilled.

5.3 Foundations

It is considered that conventional strip foundations should be feasible founding in the firm and stiff chalk at a minimum depth of 1.5m bgl. It is likely that foundations will need to be locally deepened where soft chalk and deeper Made Ground are present. A typical bearing capacity of 100kN/m² may be used and settlements are estimated to be less than 25mm.

It is recommended that additional investigation is undertaken around Boreholes WS3 and WS4 to determine the depth of Made Ground and extent of the soft marly chalk encountered as it may be necessary to span this material.

Final foundation design should take account of the presence of existing and proposed trees in accordance with the requirements of NHBC Standards for a soil of low volume change potential.

5.4 Ground Floor Slabs

It is recommended that suspended floor slabs are used.

5.5 Pavement Construction

An assessment of the likely California Bearing Ratio (CBR) for the Made Ground has been assessed from the following sources:

Correlations with undrained shear strength from Black and Lister;

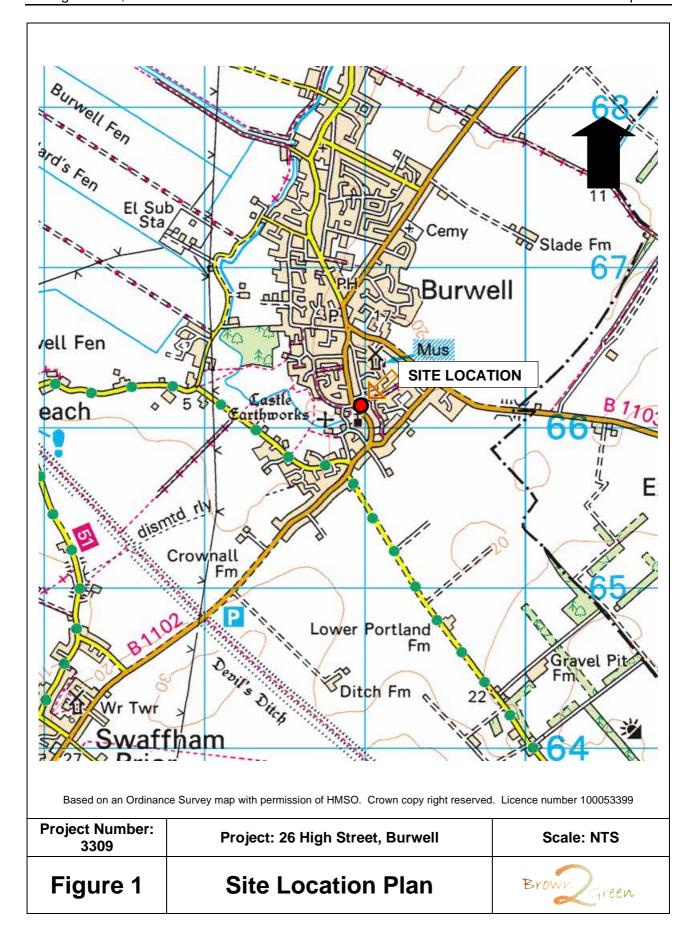
Correlations with plasticity index from HD25/94; and Description of the materials encountered in the exploratory holes.

Based on this it is considered that a CBR of less than 2% may be suitable. Based on the plasticity index the soils are considered frost susceptible in accordance with Road Note 29 soils are not considered frost susceptible.

Following excavation, the sub formation should be proof rolled and any soft material inspected and removed.

5.6 Buried Concrete

Based upon the results of the chemical analyses it is considered that subsurface concrete can be designed in accordance with Design Sulphate Class DS-1, Aggressive Chemical Environment for Concrete Classification (ACEC) AC-1s in accordance with the recommendations provided in BRE Special Digest 1 (2005). It is recommended that piles are designed to Class AC-2s.


5.7 Excavations

Site observations indicated that excavations should be feasible in the near surface with normal plant. No significant dewatering is anticipated.

5.8 Soakaways

The underlying soils are suitable for soakaways. Soakaways should be designed in accordance with CIRIA Guidance C574 Engineering in Chalk.

FIGURES

APPENDIX I LIMITATIONS AND CONSTRAINTS

Brown 2 Green Associates Limited has prepared this report in accordance with our standard Terms and Conditions solely for the use of the Client and those parties with whom a warranty agreement has been executed, or with whom an assignment has been agreed and outlined in the body of the report.

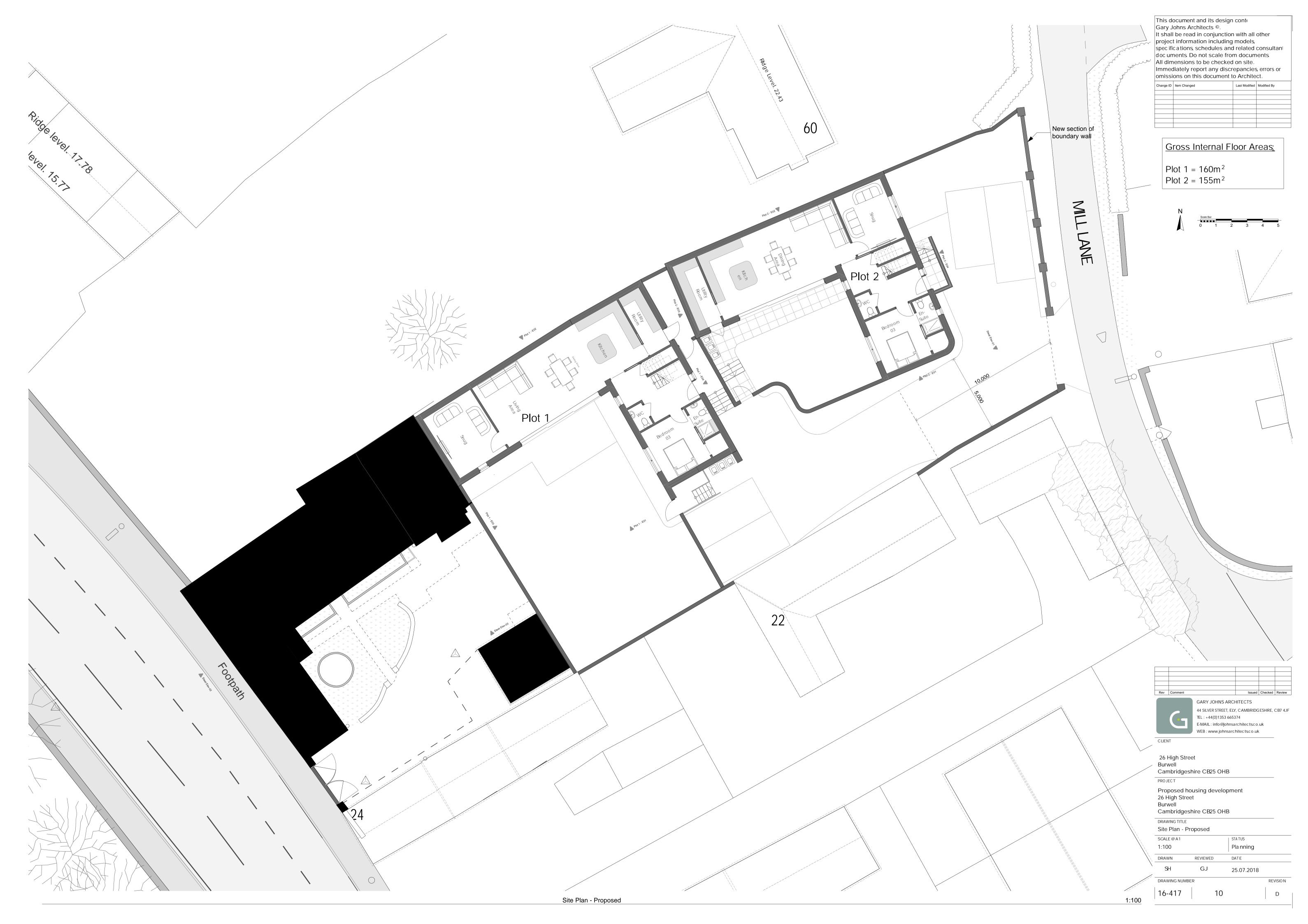
Brown 2 Green Associates Ltd cannot be held responsible for any use of the report or its contents for any purpose other than that for which it was prepared. The client cannot place reliance on the report until full payment has been made. The copyright in this report and other plans and documents prepared by Brown 2 Green Associates Ltd is owned by them and no such plans or documents may be reproduced, published or adapted without written consent. Complete copies of the report may, however, be made and distributed by the client as is expected in dealing with matters related to its commission. Should the client pass copies of the report to other parties for information, the whole report should be copied, but no professional liability or warranties shall be extended to other parties by Brown 2 Green Associates Ltd in this connection without their explicit written agreement thereto by Brown 2 Green Associates Ltd.

For the work, reliance has been placed on publicly available data obtained from the sources identified and data supplied by other parties. The information is not necessarily exhaustive and further information relevant to the site may be available from other sources. When using the information it has been assumed it is correct. No attempt has been made to verify the information. Brown 2 Green Associates Ltd does not warrant work / data undertaken / provided by others.

Due to the short timescales associated with these projects responses may not have been received from all parties. Brown 2 Green Associates Limited cannot be held responsible for any disclosures that are provided post production of our report and will not automatically update our report.


Access considerations, the presence of services and the activities being carried out on the site limited the positions where sampling locations could be installed and the techniques that could be used.

This report presents an interpretation of the geo-environmental information established by excavation, observation and testing. It should be noted that when investigating, or developing land it is important to recognise that sub-surface conditions may vary spatially and also with time. Groundwater conditions are dependent on seasonal and other factors. Consequently there may be conditions present not revealed by this investigation. The absence of certain ground, ground gas, and contamination or groundwater conditions at the positions tested is not a guarantee that such conditions do not exist anywhere across the site. Due to the presence of existing buildings and structures access could not be obtained to all areas. Additional contamination may be identified following the removal of the buildings or hard standing.


The scope of any investigation was basis of the specific development and land use scenario proposed by the Client and may be inappropriate to another form of development or scheme. If the development layout was not known at the time of the investigation the report findings may need revisiting once the development layout is confirmed.

Rather, this investigation has been undertaken to provide a characterisation of the existing subsurface geo-environmental characteristics and make up and the findings of this study are our best interpretation of the data collected, within the scope of work and agreed budget. New information, revised practices or changes in legislation may necessitate the re-interpretation of the report, in whole or in part.

During any development programme Brown 2 Green Associates Limited should be consulted if alternative ground conditions are encountered. It assumes during any site works that the contractor will use their best endeavours to manage and control groundwater and other unforeseen ground

APPENDIX II PROPOSED DEVELOPMENT LAYOUT

APPENDIX III GEOLOGICAL LOGS

Project: Locatio	n: Burw	igh Street /ell bridgeshir		Borehole Number:			WS1	
Client	CB29 No: 3309	5 0HB	o Gary Johns Architects	Start of Drilling: 13-Jul-23 Completion of Drilling: 13-Jul-23 Cary Johns Architects Drilling Method: Window sampling Ground Level (m AOD): N/A				
Sample /	Sample/Tes	Sample				Depth	Thick-	
Test	Result	range	Description		Log		ness (m)	S/pipe
T,J,V		0.0-0.3	MADE GROUND - Dark grey slightly gravelly, slightly sandy, silty CLA' carbonaceous materials. Gravel of fine to coarse, angular to subrounce			0.3	0.3	
			Structureless marly CHALK composed of light cream silty GRAVEL.					
D D		0.5	Gravel of fine to coarse, angular to subrounded weak marly chalk. (Grade Dc)		' ' ' _ ' _ ' _	_		
SPT	15,21,25	1.0-1.1					>0.8	
	N>50		No further advance achieved due to the density of strata. End of boreh	ole.				
Remarks:								
Groundwa	ter: Dry or	completion.				NAMES OF THE PARTY	Brow	reen

Project:	26 High Street		
Location:	Burwell	Borehole Number:	WS2
	Cambridgeshire		
	CB25 0HB	Start of Drilling:	13-Jul-23
Project No:	3309	Completion of Drilling:	13-Jul-23
Client	Rowe Build c/o Gary Johns Architects	Drilling Method:	Window sampling
Logged By:	RMI	Ground Level (m AOD):	N/A

Logged By: RMI Ground Level (m AOD): N/A					1 3			
	Sample/Tes	st						
Sample /		Sample	Description		1	Depth (m)	Thick-	Qlair-
Test	Result	range	Description MADE GROUND - Dark grey slightly gravelly, slightly sandy, silty CLAN	/ with rare bricks and	Log	(m)	ness (m)	S/pipe
			carbonaceous materials. Gravel of fine to coarse, angular to subround					
T,J,V		0.0-0.3	Structureless marly CHALK composed of light cream silty GRAVEL wil	th occasional brown specifies		0.3	0.3	
D		0.5	Gravel of fine to coarse, angular to subrounded weak marly chalk.	th occasional brown speckling.				
T,J,V		0.3-0.6	(Grade Dc)			-		
D		1				1.0		
SPT	1,0,1,0,0	1.0-1.45						
	N=1				!!			
D		1.5						
						F		
D		2			!! !!	2.0		
SPT	11,14,13,25	2.0-2.2			!!			
	N>50		No further orbino cocking and discrete the day of the first to the	ala		2.2	>1.9	
			No further advance achieved due to the density of strata. End of boreh	uie.				
						3.0		
						4.0		
						5.0		
						L		
						6.0		
						L		
						7.0		
Remarks:			<u> </u>			+		<u> </u>
							Brown	reen
Groundwa	ater: Dry or	completion				Lean		
Keys	J - 250 or 500	0ml Jar. T -	Гub, V - Vial or 60ml jar, D - Small Disturbed, B - Large bulk sample, W	- Water sample,		-	Page 1 of	1
-7-	22 3. 000	·	, ,				. ago i Ul	•

Project: 26 High Street
Location: Burwell
Cambridgeshire
CB25 0HB

Logged	By: RMI	- Daile 0/0	o Gary Johns Architects	Ground Level (m AOD):	A	9		
	Sample/Tes	st						
Sample / Test	Result	Sample range	Description		Log	Depth (m)	Thick- ness (m)	S/pipe
	Hoodin	9-	MADE GROUND - Dark grey slightly gravelly, slightly sandy, silty CLA		209	()		ографи
			carbonaceous materials. Gravel of fine to coarse, angular to subround	ed flint, brick and concrete.		0.3	0.3	
			Structureless marly CHALK composed of light cream silty GRAVEL.			0.3	0.3	
D		0.5	Gravel of fine to coarse, angular to subrounded weak marly chalk. (Grade Dc)		_! _!	L		
			(Glade DC)					
D		1				1.0		
SPT	1,1,0,1,0	1.0-1.45				- 1.0		
	N=2				-1,-1,			
D		1.2			!!			
						_		
D		2						
Ь						2.0		
SPT	1,0,0,0,0	2.0-2.45						
	N=0					L		
					-1,-1,			
D		3	with very low recovery below 3.0m.			3.0		
					-'-' -'-'			
SPT	11010	3.0-3.45						
511	1,1,0,1,0 N=2	3.0-3.45						
					''			
						_4.0		
SPT	1,0,0,0,0 N=0	4.0-4.45						
					!!	-		
D		4.0-5.0				5.0		
SPT	1,0,0,0,0	5.0-5.45						
	N=0							
					_''.		5.45	
			End of borehole.			5.45	>5.15	
						6.0		
						-		
						7.0		
Remarks:		<u> </u>	l		1	1		
							Brown	reen
Groundwa	iter: Dry or	n completion				Legal		ACE CENTRAL SECTION SE
Keys	J - 250 or 50	0ml Jar, T -	Tub, V - Vial or 60ml jar, D - Small Disturbed, B - Large bulk sample, W	- Water sample,			Page 1 of	1

26 High Street Project: WS4 Burwell Location: Borehole Number: Cambridgeshire 13-Jul-23 CB25 0HB Start of Drilling: Project No: 3309 13-Jul-23 Completion of Drilling: Rowe Build c/o Gary Johns Architects Window sampling Client Drilling Method: Logged By: RMI N/A Ground Level (m AOD): Sample Thick-Description

MADE GROUND - Dark grey slightly gravelly, slightly sandy, silty CLAY with rare bricks and charcoa Result Loa S/pipe Test range (m) ness (m) Gravel of fine to coarse, angular to subrounded flint, brick and concrete. 0.0-0.6 T,J,V 0.8-1.0 T,J,V SPT 1,0,0,0,0 1.0-1.45 N=0 2.0 tructureless marly CHALK composed of light cream silty GRAVEL D 2.2 Gravel of fine to coarse, angular to subrounded weak marly chalk. SPT 1,0,1,0,0 2.0-2.45 (Grade Dc) N=1 _| _| _| _| SPT 3.0-3.4 2,7,8, >1.4 25/5mm No further advance achieved due to the density of strata. End of borehole. 4.0 5.0 6.0 7.0 Groundwater: Dry on completion.

J - 250 or 500ml Jar, T - Tub, V - Vial or 60ml jar, D - Small Disturbed, B - Large bulk sample, W - Water sample,

Page 1 of 1

Project: 26 High Street
Location: Burwell
Cambridgeshire
CB25 0HB

Project No: 3309
Client Rowe Build c/o Gary Johns Architects
CB25 RM

Rowe Build c/o Gary Johns Architects
CB25 RM

Completion of Drilling: 13-Jul-23
Drilling Method: Window sampling
Ground Level (m AOD): N/A

Logged By: RMI Ground Level (m AOD): N/A								
	Sample/Tes	st						
Sample / Test		Sample range	Baraniani		1	Depth (m)	Thick-	€/mi
Test	Result	range	Description MADE GROUND - Dark grey slightly gravelly, slightly sandy, silty CLA'	Y with rare bricks and	Log	(m)	ness (m)	S/pipe
			carbonaceous materials. Gravel of fine to coarse, angular to subround					
T,J,V		0.0-0.3				0.3	0.3	
			Structureless marly CHALK composed of light cream silty GRAVEL.					
			Gravel of fine to coarse, angular to subrounded very weak marly chalk (Grade Dc)	<u>.</u>		-		
			,					
_								
D SPT	1,1,0,1,1	1 1.0-1.45				_1.0		
	N=3				!!			
					!!			
D		1.5				-		
D		2			!!	2.0		
SPT	2,2,1,3,1	2.0-2.45						
J1 1	2,2,1,3,1 N=7	2.0 2.40						
						L		
D		3				3.0		
					!!	Г		
SPT	3,2,1,2,3	3.0-3.45						
	N=8				- -			
					!!			
					!!			
D		4			!!	4.0		
						-4.0		
SPT	2,2,1,3,3 N=9	4.0-4.45						
	N=9				!!	-		
_		_						
D		5				5.0		
					!!			
SPT	3,4,3,2,3	5.0-5.45						
	N=12				!!			
			End of horoholo			5.45	>5.15	
			End of borehole.					
						1		
						6.0		
						1		
						L		
						ľ		
						7.0		
						Γ		
						<u> </u>		
Remarks:							Brown	
Groundwa	ater: Dry or	n completion	ı			General	Statis, and outs decrees	reen.
	•							
Keys	Keys J - 250 or 500ml Jar, T - Tub, V - Vial or 60ml jar, D - Small Disturbed, B - Large bulk sample, W - Water sample, Page 1 of 1							

Project: Locatior	n: Burwe	gh Street ell ridgeshire		Trial Pit Number:				TP1	
Project I	CB25 No: 3309			Date of Excavation: Type of Machine	13-Jul Mini di				
	Rowe By: RMI	Build c/o	Gary Johns Architects	Co-ordinates Ground Level (m AOD):	N/A N/A				
W									E
		Sample	Description			Log	Depth (m)	Thick- ness	Ground Water (m)
Logged W Sample / Test	By: RMI Sample/Tes Result	Sample range	Description MADE GROUND - Dark grey slightly gravelly, slightly sandy, silty CL/carbonaceous materials. Gravel of fine to coarse, angular to subroun with a wooden beam at 0.5m Made ground stops at 1.9m. Structureless marly CHALK composed of light cream silty GRAVEL. Gravel of fine to coarse, angular to subrounded very weak marly chal (Grade Dc) Chalk was also noted along the eastern side of the pit from 0.6m bgl. End of pit. End of pit.	kY with rare bricks and ded flint, brick and concrete.	N/A		0.6		E Ground Water (m)
Remarks: Dimension: Stability:	s and Orienta		Dry. L=1.5m;w=0.5m. NE-SW.	/ Water comple HSV, hand about		<u> </u>	Br	owy areen	and t

Project: Location				Trial Pit Number:				TP2		
	CB25 No: 3309	0HB		Date of Excavation: Type of Machine						
Client Logged	By: RMI	Bulla C/O	Gary Johns Architects	Co-ordinates Ground Level (m AOD):	N/A N/A					
Sample / Test	Sample/Tes Result	Sample range	Description			Log	Depth (m)	Thick- ness (m)	Ground Water (m)	
			MADE GROUND - Dark grey slightly gravelly, slightly sandy, silty CL/ carbonaceous materials. Gravel of fine to coarse, angular to subrour							
			Structureless marly CHALK composed of light cream silty GRAVEL.				0.6	0.6		
			Gravel of fine to coarse, angular to subrounded very weak marly cha (Grade Dc) End of pit.	lk.		 	0.9	>0.3		
			Ella Vi pii.				1.0			
							=			
							2.0			
							-			
							_3.0			
							-			
							_4.0			
							_			
							_5.0			
							_			
							_6.0			
							_			
							_7.0			
Remarks:			Dry.							
Dimension	s and Orienta	tion:	L=1.5m;w=0.5m. N-S.				Br	own	rdi.	
Stability:	bility:									

					0_0_0						
Project:		26 Hiç	gh Street								
Locatio	n:	Burwe	əll		!	Trial Pit Number:				SA1	
		Camb	ridgeshire	ı	I						
		CB25	0HB		ļ	Date of Excavation:	13-	Jul-23			
Project	No:	3309			I	Type of Machine	Min	i digger			
Client		Rowe	Build c/o	Gary Johns Architects	I	Co-ordinates	N/A				
Logged	By:	RMI			I	Ground Level (m AOD):	N/A				
	Samp	ple/Test	t								
Sample / Test		sult	Sample range		Description			Log	Depth (m)	Thick- ness (m)	Ground Water (m)
				MADE GROUND - Dark grey slightly grave	elly, slightly sandy, silty CLF	AY with rare bricks and					
				carbonaceous materials. Gravel of fine to o	coarse, angular to subroun	nded flint, brick and concrete.				1	
									0.3	0.3	
				Structureless marly CHALK composed of I	light cream silty GRAVEL.						
				Gravel of fine to coarse, angular to subrout	nded very weak marly chal	lk.		!!	_		

Test	Result	range	Description	Log	Depth (m)	(m)	Water (m)
			MADE GROUND - Dark grey slightly gravelly, slightly sandy, silty CLAY with rare bricks and				
			carbonaceous materials. Gravel of fine to coarse, angular to subrounded flint, brick and concrete.				
					0.3	0.3	
			Structureless marly CHALK composed of light cream silty GRAVEL.	_ _			
			Gravel of fine to coarse, angular to subrounded very weak marly chalk.	_! _!	_		
			(Grade Dc)				
				_! _!			
				_1 _1			
					1.0		
				_! _!			
				_! _!			
			Ford of all	!!	1.5	>1.2	
			End of pit.				
					2.0		
					-		
					3.0		
					_		
					4.0		
				[_		
				[5.0		
				l L	_		
					6.0		
				[_		
					7.0		
Remarks:			Dry.				
					Br	owy Green	
Dimension	ns and Orienta	tion:	L=1.2m;w=0.4m. NE-SW.		(APRILALIS	and on the contract Change	
Stability:							
	J - 250 or 500	ml.lar T - T	ub, V - Vial or 60ml jar, D - Small Disturbed, B - Large bulk sample, W - Water sample, HSV - hand shear vane			Page 1 of 1	

Keys J - 250 or 500ml Jar, T - Tub, V - Vial or 60ml jar, D - Small Disturbed, B - Large bulk sample, W - Water sample, HSV - hand shear vane Page 1 of 1

Project: Locatio	n: Burwe			Trial Pit Number:			SA2	
Client	CB25 No: 3309		Gary Johns Architects	Date of Excavation: Type of Machine Co-ordinates Ground Level (m AOD):	13-Jul-23 Mini digger N/A N/A			
Sample / Test	Sample/Tes	Sample range	Description		Log	Depth (m)	Thick- ness (m)	Ground Water (m)
1031	Kesuit	runge	MADE GROUND - Dark grey slightly gravelly, slightly sandy, silty CLA		Log	Deptii (iii)	(111)	water (III)
			carbonaceous materials. Gravel of fine to coarse, angular to subroun	ded flint, brick and concrete.		0.3	0.3	
			Structureless marly CHALK composed of light cream silty GRAVEL.	II.		0.0	0.0	
			Gravel of fine to coarse, angular to subrounded very weak marly chal (Grade Dc)	ĸ.	!!	_		
					_' _'			
						_1.0		
			End of pit.			1.45	>1.15	
						_2.0		
						=		
						3.0		
						_		
						4.0		
						_		
						5.0		
						6.0		
						=		
						7.0		
						-		
Remarks:			Dry.					
						Br	own inten	mās.
Dimensior Stability:	ns and Orientat	ion:	L=1.2m;w=0.4m. NE-SW.					
	J - 250 or 500	ml Jar. T - Ti	ub, V - Vial or 60ml jar, D - Small Disturbed, B - Large bulk sample, W	/ - Water sample, HSV - hand shear v	/ane		Page 1 of 1	

APPENDIX IV LABORATORY REPORTS

DETERMINATION OF LIQUID AND PLASTIC LIMITS

Tested in Accordance with:BS 1377-2:1990:Clause 4.4 and 5

i2 Analytical Ltd Unit 8 Harrowden Road Brackmills Industrial Estate Northampton NN4 7EB

4041

Brown 2 Green Associates Ltd Client:

Client Address: Suite 1, Wenden Court, Station Road,

Wendens Ambo, Walden,

CB11 4LB

Contact: Radu Ilie

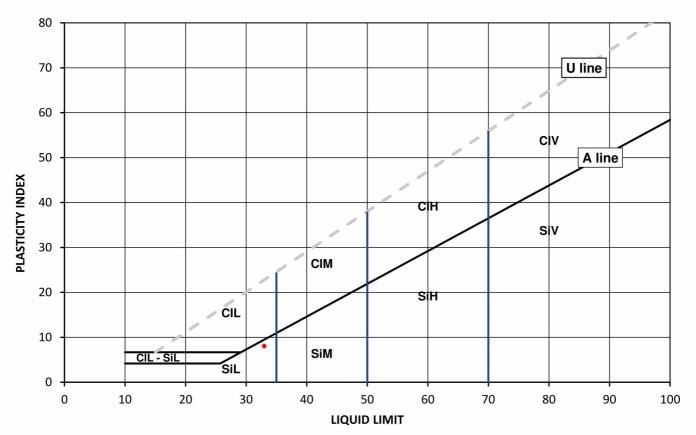
Site Address: 26 High Street, Burwell, Cambridgeshire

Testing carried out at i2 Analytical Limited, ul. Pionierow, 41-711 Ruda Slaska, Poland

Client Reference: 3309 Job Number: 23-45251-1

Date Sampled: Not Given Date Received: 14/07/2023

Date Tested: 25/07/2023 Sampled By: Not Given


Test Results:

Laboratory Reference: 2749677 Depth Top [m]: 1.50 WS2 Depth Base [m]: Not Given Hole No.: Sample Reference: Not Given Sample Type: B

Sample Description: Light grey clayey CHALK

Sample Preparation: Tested in natural condition

As Received Water	Liquid Limit	Plastic Limit	Plasticity Index	% Passing 425μm
Content [W] %	[WL] %	[Wp] %	[lp] %	BS Test Sieve
26	33	25	8	100

Legend, based on BS EN ISO 14688 2:2018 Geotechnical investigation and testing - Identification and classification of soil

Liquid Limit **Plasticity** below 35 CI Clay L Low 35 to 50 Si Silt Μ Medium Н High 50 to 70 ٧ Very high exceeding 70

0 Organic append to classification for organic material (eg CIHO)

Note: Water Content by BS 1377-2: 1990: Clause 3.2

Remarks:

Signed:

Katarzyna Koziel Reporting Specialist

for and on behalf of i2 Analytical Ltd

Page 1 of 1 **Date Reported:** 04/08/2023

Opinions and interpretations expressed herein are outside of the scope of the UKAS Accreditation. This report may not be reproduced other than in full without the prior written approval of the issuing laboratory. The results included within the report relate only to the sample(s) submitted for testing.

DETERMINATION OF LIQUID AND PLASTIC LIMITS

Tested in Accordance with:BS 1377-2:1990:Clause 4.4 and 5

i2 Analytical Ltd Unit 8 Harrowden Road Brackmills Industrial Estate Northampton NN4 7EB

4041

Brown 2 Green Associates Ltd Client:

Client Address: Suite 1, Wenden Court, Station Road,

Wendens Ambo, Walden,

CB11 4LB

Contact: Radu Ilie

Site Address: 26 High Street, Burwell, Cambridgeshire

Testing carried out at i2 Analytical Limited, ul. Pionierow, 41-711 Ruda Slaska, Poland

Client Reference: 3309 Job Number: 23-45251-1

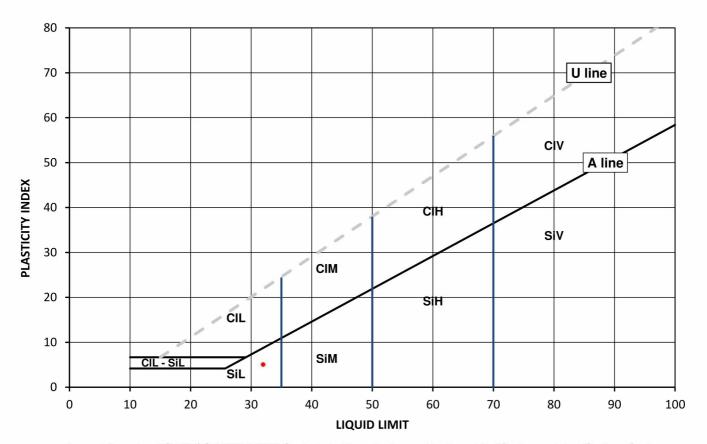
Depth Top [m]: 2.00

Sample Type: B

Depth Base [m]: Not Given

Date Sampled: Not Given D

Test Results:


Laboratory Reference: 2749679 WS3 Hole No.: Sample Reference: Not Given

Sample Description: Light grey clayey CHALK

Sample Preparation: Tested in natural condition

ate campica.	THOI CITYON
ate Received:	14/07/2023
Date Tested:	25/07/2023
Sampled By:	Not Given

As Received Water	Liquid Limit	Plastic Limit	Plasticity Index	% Passing 425μm
Content [W] %	[WL] %	[Wp] %	[lp] %	BS Test Sieve
22	32	27	5	100

Legend, based on BS EN ISO 14688 2:2018 Geotechnical investigation and testing - Identification and classification of soil

Plasticity Liquid Limit below 35 CI Clay L Low 35 to 50 Si Silt Μ Medium Н High 50 to 70 ٧ Very high exceeding 70

> 0 Organic append to classification for organic material (eg CIHO)

Note: Water Content by BS 1377-2: 1990: Clause 3.2

Opinions and interpretations expressed herein are outside of the scope of the UKAS Accreditation. This

report may not be reproduced other than in full without the prior written approval of the issuing

Remarks:

Signed:

Katarzyna Koziel Reporting Specialist

for and on behalf of i2 Analytical Ltd

laboratory. The results included within the report relate only to the sample(s) submitted for testing.

Date Reported: 04/08/2023

DETERMINATION OF LIQUID AND PLASTIC LIMITS

Tested in Accordance with:BS 1377-2:1990:Clause 4.4 and 5

i2 Analytical Ltd Unit 8 Harrowden Road Brackmills Industrial Estate Northampton NN4 7EB

4041

Client: Brown 2 Green Associates Ltd

Client Address: Suite 1, Wenden Court, Station Road,

Wendens Ambo, Walden,

CB11 4LB

Contact: Radu Ilie

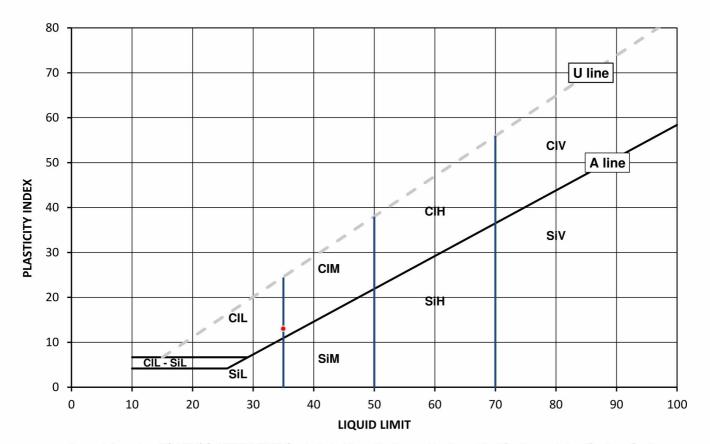
Site Address: 26 High Street, Burwell, Cambridgeshire

Testing carried out at i2 Analytical Limited, ul. Pionierow, 41-711 Ruda Slaska, Poland

Client Reference: 3309 Job Number: 23-45251-1

Date Sampled: Not Given Date Received: 14/07/2023

Date Tested: 25/07/2023 Sampled By: Not Given


Test Results:

Laboratory Reference:2749683Depth Top [m]: 1.50Hole No.:WS5Depth Base [m]: Not GivenSample Reference:Not GivenSample Type: B

Sample Description: Light grey sandy CLAY with fragments of chalk

Sample Preparation: Tested in natural condition

As Received Water	Liquid Limit	Plastic Limit	Plasticity Index	% Passing 425μm
Content [W] %	[WL] %	[Wp] %	[lp] %	BS Test Sieve
27	35	22	13	100

Legend, based on BS EN ISO 14688 2:2018 Geotechnical investigation and testing – Identification and classification of soil

Liquid Limit **Plasticity** below 35 CI Clay L Low 35 to 50 Si Silt M Medium Н High 50 to 70 ٧ Very high exceeding 70

O Organic append to classification for organic material (eg CIHO)

Note: Water Content by BS 1377-2: 1990: Clause 3.2

Remarks:

SUMMARY OF CLASSIFICATION TEST RESULTS

Tested in Accordance with:

Water Content by BS 1377-2:1990: Clause 3.2Atterberg by BS 1377-2: 1990:

Clause 4.3 (4 Point Test), Clause 4.4 (1 Point Test) and 5

i2 Analytical Ltd Unit 8 Harrowden Road Brackmills Industrial Estate Northampton NN4 7EB

4041

Client Address:

Client: Brown 2 Green Associates Ltd

Suite 1, Wenden Court, Station Road,

Wendens Ambo, Walden,

CB11 4LB

Contact: Radu Ilie

Site Address: 26 High Street, Burwell, Cambridgeshire

Testing carried out at i2 Analytical Limited, ul. Pionierow, 41-711 Ruda Slaska, Poland

Client Reference: 3309

Job Number: 23-45251-1

Date Sampled: Not Given Date Received: 14/07/2023

Date Tested: 25/07/2023

Sampled By: Not Given

Test results

			Sample	•				Content 7-2 [W]	ntent .7892-1		Atte	rberg			Density		#	
Laboratory Reference	Hole No.	Reference	Depth Top m	Depth Base m	Туре	Description	Remarks	Water Coni 8 1377-2 [Water Content 8 BS EN ISO 17892- I W I	% Passing 425um %	WL %	Wp %	lp %	bulk Mg/m3	dry Mg/m3	PD Mg/m3	Total % Porosity#	
2749675	WS1	Not Given	1.00	Not Given	В	Light grey CLAY with fragments of chalk		22						<u> </u>				
2749676	WS2	Not Given	1.00	Not Given	В	Light grey CLAY with fragments of chalk		21										
2749677	WS2	Not Given	1.50	Not Given	В	Light grey clayey CHALK	Atterberg 1 Point	26		100	33	25	8					
2749678	WS3	Not Given	1.00	Not Given	В	Light grey CLAY		22										
2749679	WS3	Not Given	2.00	Not Given	В	Light grey clayey CHALK	Atterberg 1 Point	22		100	32	27	5					
2749680	WS3	Not Given	3.00	Not Given	В	Light grey CLAY		18										
2749681	WS4	Not Given	2.20	Not Given	В	Light grey CLAY with fragments of chalk		29										
2749682	WS5	Not Given	1.00	Not Given	В	Light grey silty CLAY		29										
2749683	WS5	Not Given	1.50	Not Given	В	Light grey sandy CLAY with fragments of chalk	Atterberg 1 Point	27		100	35	22	13					
2749684	WS5	Not Given	2.00	Not Given	В	Light grey CLAY with fragments of chalk		28										

Note: # Non accredited; NP - Non plastic

Comments:

Signed:

Katarzyna Koziel Reporting Specialist

for and on behalf of i2 Analytical Ltd

SUMMARY REPORT

DETERMINATION OF WATER CONTENT

Tested in Accordance with: BS 1377-2: 1990: Clause 3.2

i2 Analytical Ltd Unit 8 Harrowden Road Brackmills Industrial Estate Northampton NN4 7EB

GF 099.17

Client Reference: 3309

Job Number: 23-45251-1 Date Sampled: Not Given Date Received: 14/07/2023

Date Tested: 25/07/2023

Sampled By: Not Given

4041

Client: Brown 2 Green Associates Ltd

Client Address: Suite 1, Wenden Court, Station Road,

Wendens Ambo, Walden,

CB11 4LB

Contact: Radu Ilie

Site Address: 26 High Street, Burwell, Cambridgeshire

Testing carried out at i2 Analytical Limited, ul. Pionierow, 41-711 Ruda Slaska, Poland

Test results

			Sample	9							
Laboratory Reference	Hole No.	Reference	Depth Top	Depth Base	Туре	Description	Remarks	wc	Sample preparation / Oven temperature at the time of testing		
			m	m				%			
2749675	WS1	Not Given	1.00	Not Given	В	Light grey CLAY with fragments of chalk		22	Sample was quartered, oven dried at 106.3 °C		
2749676	WS2	Not Given	1.00	Not Given	В	Light grey CLAY with fragments of chalk		21	Sample was quartered, oven dried at 106.3 °C		
2749677	WS2	Not Given	1.50	Not Given	В	Light grey clayey CHALK		26	Sample was quartered, oven dried at 106.3 °C		
2749678	WS3	Not Given	1.00	Not Given	В	Light grey CLAY		22	Sample was quartered, oven dried at 106.3 °C		
2749679	WS3	Not Given	2.00	Not Given	В	Light grey clayey CHALK		22	Sample was quartered, oven dried at 106.3 °C		
2749680	WS3	Not Given	3.00	Not Given	В	Light grey CLAY		18	Sample was quartered, oven dried at 106.3 °C		
2749681	WS4	Not Given	2.20	Not Given	В	Light grey CLAY with fragments of chalk		29	Sample was quartered, oven dried at 106.3 °C		
2749682	WS5	Not Given	1.00	Not Given	В	Light grey silty CLAY		29	Sample was quartered, oven dried at 106.3 °C		
2749683	WS5	Not Given	1.50	Not Given	В	Light grey sandy CLAY with fragments of chalk		27	Sample was quartered, oven dried at 106.3 °C		
2749684	WS5	Not Given	2.00	Not Given	В	Light grey CLAY with fragments of chalk		28	Sample was quartered, oven dried at 106.3 °C		

Comments:

Signed:

Katarzyna Koziel Reporting Specialist for and on behalf of i2 Analytical Ltd

eurofins Chemtest

Eurofins Chemtest Ltd Depot Road Newmarket CB8 0AL

Tel: 01638 606070 Email: info@chemtest.com

Amended Report

Report No.: 23-23739-2

Initial Date of Issue: 19-Jul-2023 Date of Re-Issue: 19-Jul-2023

Re-Issue Details:

This report has been revised and directly

supersedes 23-23739-1 in its entirety

Client Brown 2 Green Associates

Client Address: Suite 1, Wenden Court

Station Road Wendens Ambo Nr. Saffron Walden

Essex CB11 4LB

Contact(s): Philip Miles

Radu Mihai Ilie

Project 3309 - 26 High Street, Burwell,

Cambridgeshire

Quotation No.: Date Received: 13-Jul-2023

Order No.: Date Instructed: 13-Jul-2023

No. of Samples: 8

Turnaround (Wkdays): 5 Results Due: 19-Jul-2023

Date Approved: 19-Jul-2023

Approved By:

Details: Stuart Henderson, Technical

Manager

Client: Brown 2 Green Associates			ntest Jo		23-23739	23-23739	23-23739	23-23739	23-23739	23-23739	23-23739	23-23739
Quotation No.:		Chemte	st Sam	ple ID.:	1673768	1673769	1673770	1673771	1673772	1673773	1673774	1673775
		Sa	ample Lo	ocation:	WS1	WS2	WS2	WS4	WS4	WS5	WS3	WS5
			Sample	е Туре:	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL
			Top Dep	oth (m):	0.00	0.00	0.30	0.00	0.80	0.00	1.20	1.50
		Bot	tom Dep	oth (m):	0.30	0.30	0.60	0.60	1.00	0.30	1.20	1.50
			Date Sa	ampled:	13-Jul-2023	13-Jul-2023	13-Jul-2023	13-Jul-2023	13-Jul-2023	13-Jul-2023	13-Jul-2023	13-Jul-2023
			Asbest	os Lab:	DURHAM	DURHAM	DURHAM	DURHAM	DURHAM	DURHAM		
Determinand	Accred.	SOP	Units	LOD								
ACM Type	U	2192		N/A	-	-	=	-	Fibres/Clumps	-		
Asbestos Identification	U	2192		N/A	No Asbestos Detected	No Asbestos Detected	No Asbestos Detected	No Asbestos Detected	Chrysotile	No Asbestos Detected		
Asbestos by Gravimetry	U	2192	%	0.001					0.004			
Total Asbestos	U	2192	%	0.001					0.004			
Moisture	N	2030	%	0.020	19	21	16	21	20	16	16	21
Soil Colour	N	2040		N/A	Brown	Brown	Brown	Brown	Brown	Brown	-	
Other Material	N	2040		N/A	Stones	Stones	Stones	Stones	Stones	Stones		
Soil Texture	N	2040		N/A	Sand	Sand	Sand	Sand	Sand	Sand		
рН	М	2010		4.0	8.0		8.2			7.8	8.6	7.9
Sulphate (2:1 Water Soluble) as SO4	M	2120	g/l	0.010	< 0.010		< 0.010			0.014	0.024	0.019
Cyanide (Total)	M	2300	mg/kg	0.50	< 0.50	< 0.50		< 0.50		< 0.50	0.02	
Arsenic	M	2455	mg/kg	0.5	2.4	0.5	1.7	7.2	7.5	5.1		
Cadmium	M	2455	mg/kg	0.10	< 0.10	< 0.10	< 0.10	0.25	0.80	0.12		
Chromium	M	2455	mg/kg	0.5	4.0	0.6	4.5	9.3	11	8.0		
Copper	M	2455	mg/kg	0.50	10	2.9	5.1	37	33	19		
Mercury	M	2455	mg/kg	0.05	0.08	< 0.05	< 0.05	0.21	0.17	0.10		
Nickel	M	2455	mg/kg	0.50	6.0	0.88	5.1	13	15	10		
Lead	M	2455	mg/kg	0.50	25	8.4	5.7	120	170	65		
Selenium	M	2455	mg/kg	0.25	0.35	< 0.25	0.33	0.73	0.82	0.56		
Vanadium	U	2455	mg/kg	0.5	6.0	1.1	5.4	13	18	11		
Zinc	M	2455	mg/kg	0.50	38	15	17	120	270	69		
Chromium (Hexavalent)	N	2490	mg/kg	0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50		
Aliphatic VPH >C5-C6	U	2780	mg/kg	0.05	< 0.05	< 0.05	< 0.50	< 0.05	< 0.50	< 0.05		
Aliphatic VPH >C6-C7	U	2780	mg/kg	0.05	< 0.05	< 0.05		< 0.05		< 0.05		
Aliphatic VPH >C0-C7 Aliphatic VPH >C7-C8	U	2780	mg/kg	0.05	< 0.05	< 0.05		< 0.05		< 0.05		
Aliphatic VPH >C6-C8 (Sum)	N	2780	mg/kg	0.03	< 0.05	< 0.05		< 0.05		< 0.05		
Total Aliphatic VPH >C5-C10	U	2780	mg/kg	0.10	< 0.10	< 0.10		< 0.10		< 0.10		
Aliphatic EPH >C10-C12	M	2690		2.00	7.2	6.1		6.3		4.6		
Aliphatic VPH >C8-C10	U	2780	mg/kg mg/kg	0.05	< 0.05	< 0.05		< 0.05		< 0.05		
Aliphatic EPH >C12-C16	M	2690	mg/kg	1.00	4.4	3.2		3.1		3.1		
Aliphatic EPH >C16-C21	M	2690	mg/kg	2.00	< 2.0	< 2.0		< 2.0		< 2.0		
Aliphatic EPH >C21-C35	M	2690	mg/kg	3.00	5.3	20		5.1		6.9		
·	N N	2690		10.00						< 10		
Aliphatic EPH > C35-C40	M	2690	mg/kg		< 10 17	< 10 30		< 10				
Total Aliphatic EPH >C10-C35			mg/kg	5.00		30		15 15		16		
Total Aliphatic EPH >C10-C40	N	2690	mg/kg	10.00	17			15		16		
Aromatic VPH >C5-C7	U	2780	mg/kg	0.05	< 0.05	< 0.05		< 0.05		< 0.05		
Aromatic VPH >C7-C8	U	2780	mg/kg	0.05	< 0.05	< 0.05		< 0.05		< 0.05		

Client: Brown 2 Green Associates			mtest Jo		23-23739	23-23739	23-23739	23-23739	23-23739	23-23739	23-23739	23-23739
Quotation No.:		Chemte	st Sam	ple ID.:	1673768	1673769	1673770	1673771	1673772	1673773	1673774	1673775
		Sa	ample Lo	ocation:	WS1	WS2	WS2	WS4	WS4	WS5	WS3	WS5
			Sampl	е Туре:	SOIL							
			Top De	oth (m):	0.00	0.00	0.30	0.00	0.80	0.00	1.20	1.50
		Bot	tom De	oth (m):	0.30	0.30	0.60	0.60	1.00	0.30	1.20	1.50
			Date Sa	ampled:	13-Jul-2023							
			Asbest	os Lab:	DURHAM	DURHAM	DURHAM	DURHAM	DURHAM	DURHAM		
Determinand	Accred.	SOP	Units	LOD								
Aromatic VPH >C8-C10	U	2780	mg/kg	0.05	< 0.05	< 0.05		< 0.05		< 0.05		
Total Aromatic VPH >C5-C10	U	2780	mg/kg	0.25	< 0.25	< 0.25		< 0.25		< 0.25		
Aromatic EPH >C10-C12	U	2690	mg/kg	1.00	< 1.0	< 1.0		< 1.0		< 1.0		
Aromatic EPH >C12-C16	U	2690	mg/kg	1.00	< 1.0	< 1.0		< 1.0		< 1.0		
Aromatic EPH >C16-C21	U	2690	mg/kg	2.00	3.0	3.9		6.6		13		
Aromatic EPH >C21-C35	U	2690	mg/kg	2.00	9.4	9.0		18		40		
Aromatic EPH >C35-C40	N	2690	mg/kg	1.00	4.3	4.2		2.9		7.7		
Total Aromatic EPH >C10-C35	U	2690	mg/kg	5.00	13	13		25		53		
Total Aromatic EPH >C10-C40	N	2690	mg/kg	10.00	17	17		28		61		
Total VPH >C5-C10	U	2780	mg/kg	0.50	< 0.50	< 0.50		< 0.50		< 0.50		
Total EPH >C10-C35	U	2690	mg/kg	10.00	30	43		40		69		
Total EPH >C10-C40	N	2690	mg/kg	10.00	35	47		43		77		
Organic Matter	М	2625	%	0.40	3.0	9.0	6.7	4.8	4.7	5.6		
Dichlorodifluoromethane	U	2760	μg/kg	1.0	< 1.0	< 1.0		< 1.0		< 1.0		
Chloromethane	М	2760	μg/kg	1.0	< 1.0	< 1.0		< 1.0		< 1.0		
Vinyl Chloride	М	2760	μg/kg	1.0	< 1.0	< 1.0		< 1.0		< 1.0		
Bromomethane	М	2760	μg/kg	20	< 20	< 20		< 20		< 20		
Chloroethane	U	2760	μg/kg	2.0	< 2.0	< 2.0		< 2.0		< 2.0		
Trichlorofluoromethane	М	2760	μg/kg	1.0	< 1.0	< 1.0		< 1.0		< 1.0		
1,1-Dichloroethene	М	2760	μg/kg	1.0	< 1.0	< 1.0		< 1.0		< 1.0		
Dichloromethane	N	2760	μg/kg	50	< 50	< 50		< 50		< 50		
Trans 1,2-Dichloroethene	М	2760	μg/kg	1.0	< 1.0	< 1.0		< 1.0		< 1.0		
1,1-Dichloroethane	М	2760	μg/kg	1.0	< 1.0	< 1.0		< 1.0		< 1.0		
cis 1,2-Dichloroethene	М	2760	μg/kg	1.0	< 1.0	< 1.0		< 1.0		< 1.0		
Bromochloromethane	U	2760	μg/kg	5.0	< 5.0	< 5.0		< 5.0		< 5.0		
Trichloromethane	М	2760	μg/kg	1.0	< 1.0	< 1.0		< 1.0		< 1.0		
1,1,1-Trichloroethane	М	2760	μg/kg	1.0	< 1.0	< 1.0		< 1.0		< 1.0		
Tetrachloromethane	М	2760	μg/kg	1.0	< 1.0	< 1.0		< 1.0		< 1.0		
1,1-Dichloropropene	U	2760	μg/kg	1.0	< 1.0	< 1.0		< 1.0		< 1.0		
Benzene	М	2760	μg/kg	1.0	< 1.0	< 1.0		< 1.0		< 1.0		
1,2-Dichloroethane	M	2760	μg/kg	2.0	< 2.0	< 2.0		< 2.0		< 2.0		
Trichloroethene	N	2760	μg/kg	1.0	< 1.0	< 1.0		< 1.0		< 1.0		
1,2-Dichloropropane	M	2760	μg/kg	1.0	< 1.0	< 1.0		< 1.0		< 1.0		
Dibromomethane	M	2760	μg/kg	1.0	< 1.0	< 1.0		< 1.0		< 1.0		
Bromodichloromethane	M	2760	μg/kg	5.0	< 5.0	< 5.0		< 5.0		< 5.0		
cis-1,3-Dichloropropene	N N	2760	μg/kg	10	< 10	< 10		< 10		< 10		
Toluene	M	2760	μg/kg	1.0	< 1.0	< 1.0		< 1.0		< 1.0		
Trans-1,3-Dichloropropene	N N		μg/kg	10	< 10	< 10		< 10		< 10	<u> </u>	

Client: Brown 2 Green Associates			ntest Jo		23-23739	23-23739	23-23739	23-23739	23-23739	23-23739	23-23739	23-23739
Quotation No.:	(Chemte	st Sam _l	ole ID.:	1673768	1673769	1673770	1673771	1673772	1673773	1673774	1673775
		Sa	mple Lo	cation:	WS1	WS2	WS2	WS4	WS4	WS5	WS3	WS5
			Sample	e Type:	SOIL							
			Top Dep	oth (m):	0.00	0.00	0.30	0.00	0.80	0.00	1.20	1.50
		Bot	tom Dep	oth (m):	0.30	0.30	0.60	0.60	1.00	0.30	1.20	1.50
			Date Sa	mpled:	13-Jul-2023							
			Asbest	os Lab:	DURHAM	DURHAM	DURHAM	DURHAM	DURHAM	DURHAM		
Determinand	Accred.	SOP	Units	LOD								
1,1,2-Trichloroethane	М	2760	μg/kg	10	< 10	< 10		< 10		< 10		
Tetrachloroethene	М	2760	μg/kg	1.0	< 1.0	< 1.0		< 1.0		< 1.0		
1,3-Dichloropropane	U	2760	μg/kg	2.0	< 2.0	< 2.0		< 2.0		< 2.0		
Dibromochloromethane	U	2760	μg/kg	10	< 10	< 10		< 10		< 10		
1,2-Dibromoethane	M	2760	μg/kg	5.0	< 5.0	< 5.0		< 5.0		< 5.0		
Chlorobenzene	М	2760	μg/kg	1.0	< 1.0	< 1.0		< 1.0		< 1.0		
1,1,1,2-Tetrachloroethane	М	2760	μg/kg	2.0	< 2.0	< 2.0		< 2.0		< 2.0		
Ethylbenzene	М	2760	μg/kg	1.0	< 1.0	1.8		< 1.0		< 1.0		
m & p-Xylene	М	2760	μg/kg	1.0	< 1.0	4.0		< 1.0		< 1.0		
o-Xylene	М	2760	μg/kg	1.0	< 1.0	3.2		< 1.0		< 1.0		
Styrene	М	2760	μg/kg	1.0	< 1.0	< 1.0		< 1.0		< 1.0		
Tribromomethane	U	2760	μg/kg	1.0	< 1.0	< 1.0		< 1.0		< 1.0		
Isopropylbenzene	М	2760	μg/kg	1.0	< 1.0	< 1.0		< 1.0		< 1.0		
Bromobenzene	М		μg/kg	1.0	< 1.0	< 1.0		< 1.0		< 1.0		
1,2,3-Trichloropropane	N	2760	μg/kg	50	< 50	< 50		< 50		< 50		
N-Propylbenzene	U	2760	μg/kg	1.0	< 1.0	< 1.0		< 1.0		< 1.0		
2-Chlorotoluene	М	2760	μg/kg	1.0	< 1.0	< 1.0		< 1.0		< 1.0		
1,3,5-Trimethylbenzene	М	2760	μg/kg	1.0	< 1.0	< 1.0		< 1.0		< 1.0		
4-Chlorotoluene	U	2760	μg/kg	1.0	< 1.0	< 1.0		< 1.0		< 1.0		
Tert-Butylbenzene	U	2760	μg/kg	1.0	< 1.0	< 1.0		< 1.0		< 1.0		
1,2,4-Trimethylbenzene	M	2760	μg/kg	1.0	< 1.0	4.2		< 1.0		< 1.0		
Sec-Butylbenzene	U	2760	μg/kg	1.0	< 1.0	< 1.0		< 1.0		< 1.0		
1.3-Dichlorobenzene	М	2760	μg/kg	1.0	< 1.0	< 1.0		< 1.0		< 1.0		
4-Isopropyltoluene	U	2760	μg/kg	1.0	< 1.0	< 1.0		< 1.0		< 1.0		
1,4-Dichlorobenzene	М	2760	μg/kg	1.0	< 1.0	< 1.0		< 1.0		< 1.0		
N-Butylbenzene	U	2760	μg/kg	1.0	< 1.0	< 1.0		< 1.0		< 1.0		
1,2-Dichlorobenzene	M	2760	μg/kg	1.0	< 1.0	< 1.0		< 1.0		< 1.0		
1,2-Dibromo-3-Chloropropane	U		μg/kg	50	< 50	< 50		< 50		< 50		
1,2,4-Trichlorobenzene	M	2760	μg/kg	1.0	< 1.0	< 1.0		< 1.0		< 1.0		
Hexachlorobutadiene	N		μg/kg	1.0	< 1.0	< 1.0		< 1.0		< 1.0		
1,2,3-Trichlorobenzene	U	2760	μg/kg	2.0	< 2.0	< 2.0		< 2.0		< 2.0		
Methyl Tert-Butyl Ether	M	2760	μg/kg	1.0	< 1.0	< 1.0		< 1.0		< 1.0		
Naphthalene	M	2800	mg/kg	0.10	0.47	1.1	< 0.10	0.88	0.72	0.71		
Acenaphthylene	N	2800	mg/kg	0.10	0.14	0.36	< 0.10	0.18	0.41	0.14		
Acenaphthene	M	2800	mg/kg	0.10	0.28	0.49	< 0.10	0.46	0.49	0.31		
Fluorene	M	2800	mg/kg	0.10	0.15	0.43	< 0.10	0.40	0.33	0.18		
Phenanthrene	M	2800	mg/kg	0.10	0.30	0.79	< 0.10	0.57	2.0	0.75		
	I IVI	2000	iiiy/NY	0.10	0.50	0.13	< 0.10	0.57	۷.0	0.75	1	

Client: Brown 2 Green Associates		Che	mtest J	ob No.:	23-23739	23-23739	23-23739	23-23739	23-23739	23-23739	23-23739	23-23739
Quotation No.:	(Chemtest Sample ID.:			1673768	1673769	1673770	1673771	1673772	1673773	1673774	1673775
	Sample Location: Sample Type: Top Depth (m): Bottom Depth (m):			WS1	WS2	WS2	WS4	WS4	WS5	WS3	WS5	
				SOIL	SOIL							
				0.00	0.00	0.30	0.00	0.80	0.00	1.20	1.50	
				0.30	0.30	0.60	0.60	1.00	0.30	1.20	1.50	
	Date Sampled: Asbestos Lab:		13-Jul-2023									
			DURHAM	DURHAM	DURHAM	DURHAM	DURHAM	DURHAM				
Determinand	Accred.	SOP	Units	LOD								
Fluoranthene	M	2800	mg/kg	0.10	0.56	2.0	< 0.10	1.4	4.6	1.5		
Pyrene	M	2800	mg/kg	0.10	0.55	1.8	< 0.10	1.3	3.9	1.3		
Benzo[a]anthracene	М	2800	mg/kg	0.10	0.26	0.98	< 0.10	0.59	2.0	0.65		
Chrysene	М	2800	mg/kg	0.10	0.27	1.0	< 0.10	0.66	2.2	0.72		
Benzo[b]fluoranthene	M	2800	mg/kg	0.10	0.41	1.5	< 0.10	1.1	3.6	0.92		
Benzo[k]fluoranthene	М	2800	mg/kg	0.10	0.19	0.63	< 0.10	0.45	1.5	0.34		
Benzo[a]pyrene	М	2800	mg/kg	0.10	0.36	1.2	< 0.10	0.79	2.8	0.75		
Indeno(1,2,3-c,d)Pyrene	М	2800	mg/kg	0.10	0.22	1.0	< 0.10	0.68	2.1	0.52		
Dibenz(a,h)Anthracene	N	2800	mg/kg	0.10	< 0.10	0.16	< 0.10	0.15	0.56	< 0.10		
Benzo[g,h,i]perylene	М	2800	mg/kg	0.10	0.26	0.95	< 0.10	0.64	2.0	0.55		
Total Of 16 PAH's	N	2800	mg/kg	2.0	4.4	14	< 2.0	10	30	9.6		

Test Methods

SOP	Title	Parameters included	Method summary			
2010	pH Value of Soils	рН	pH Meter			
2030	Moisture and Stone Content of Soils(Requirement of MCERTS)	Moisture content	Determination of moisture content of soil as a percentage of its as received mass obtained at <37°C.			
2040	Soil Description(Requirement of MCERTS)	Soil description	As received soil is described based upon BS5930			
2120	Water Soluble Boron, Sulphate, Magnesium & Chromium	Boron; Sulphate; Magnesium; Chromium	Aqueous extraction / ICP-OES			
2192	Asbestos	Asbestos	Polarised light microscopy / Gravimetry			
2300	Cyanides & Thiocyanate in Soils	Free (or easy liberatable) Cyanide; total Cyanide; complex Cyanide; Thiocyanate	Allkaline extraction followed by colorimetric determination using Automated Flow Injection Analyser.			
2455	Acid Soluble Metals in Soils	Metals, including: Arsenic; Barium; Beryllium; Cadmium; Chromium; Cobalt; Copper; Lead; Manganese; Mercury; Molybdenum; Nickel; Selenium; Vanadium; Zinc	Acid digestion followed by determination of metals in extract by ICP-MS.			
2490	Hexavalent Chromium in Soils	Chromium [VI]	Soil extracts are prepared by extracting dried and ground soil samples into boiling water. Chromium [VI] is determined by 'Aquakem 600' Discrete Analyser using 1,5-diphenylcarbazide.			
2625	Total Organic Carbon in Soils	Total organic Carbon (TOC)	Determined by high temperature combustion under oxygen, using an Eltra elemental analyser.			
2690	EPH A/A Split	Aliphatics: >C10-C12, >C12-C16, >C16-C21, >C21- C35, >C35- C40 Aromatics: >C10-C12, >C12-C16, >C16- C21, >C21- C35, >C35- C40	Acetone/Heptane extraction / GCxGC FID detection			
2760	Volatile Organic Compounds (VOCs) in Soils by Headspace GC-MS	Volatile organic compounds, including BTEX and halogenated Aliphatic/Aromatics.(cf. USEPA Method 8260)*please refer to UKAS schedule	Automated headspace gas chromatographic (GC) analysis of a soil sample, as received, with mass spectrometric (MS) detection of volatile organic compounds.			
2780	VPH A/A Split	Aliphatics: >C5-C6, >C6-C7,>C7-C8,>C8-C10 Aromatics: >C5-C7,>C7-C8,>C8-C10	Water extraction / Headspace GCxGC FID detection			
2800	Speciated Polynuclear Aromatic Hydrocarbons (PAH) in Soil by GC-MS	Acenaphthene*; Acenaphthylene; Anthracene*; Benzo[a]Anthracene*; Benzo[a]Pyrene*; Benzo[b]Fluoranthene*; Benzo[ghi]Perylene*; Benzo[k]Fluoranthene; Chrysene*; Dibenz[ah]Anthracene; Fluoranthene*; Fluorene*; Indeno[123cd]Pyrene*; Naphthalene*; Phenanthrene*; Pyrene*	Dichloromethane extraction / GC-MS			

Report Information

Key **UKAS** accredited MCERTS and UKAS accredited M Unaccredited Ν This analysis has been subcontracted to a UKAS accredited laboratory that is accredited for S this analysis This analysis has been subcontracted to a UKAS accredited laboratory that is not accredited SN for this analysis Т This analysis has been subcontracted to an unaccredited laboratory I/S Insufficient Sample U/S Unsuitable Sample N/E not evaluated "less than" "greater than" > SOP Standard operating procedure LOD Limit of detection

Comments or interpretations are beyond the scope of UKAS accreditation

The results relate only to the items tested

Uncertainty of measurement for the determinands tested are available upon request

None of the results in this report have been recovery corrected

All results are expressed on a dry weight basis

The following tests were analysed on samples as received and the results subsequently corrected to a dry weight basis TPH, BTEX, VOCs, SVOCs, PCBs, Phenols

For all other tests the samples were dried at < 37°C prior to analysis

All Asbestos testing is performed at the indicated laboratory

Issue numbers are sequential starting with 1 all subsequent reports are incremented by 1

Sample Deviation Codes

- A Date of sampling not supplied
- B Sample age exceeds stability time (sampling to extraction)
- C Sample not received in appropriate containers
- D Broken Container
- E Insufficient Sample (Applies to LOI in Trommel Fines Only)

Sample Retention and Disposal

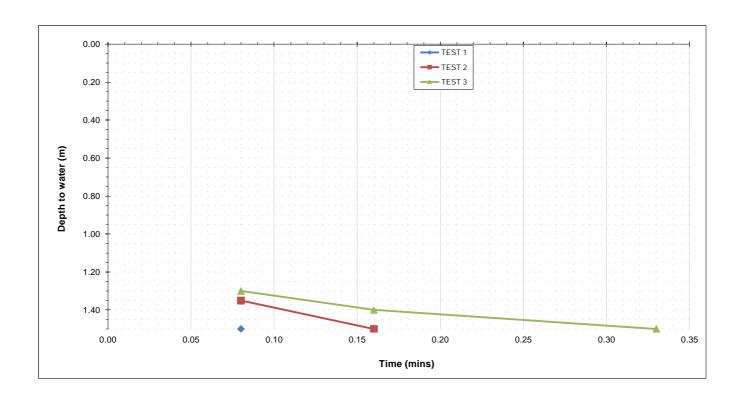
All soil samples will be retained for a period of 30 days from the date of receipt

All water samples will be retained for 14 days from the date of receipt

Charges may apply to extended sample storage

If you require extended retention of samples, please email your requirements to: <u>customerservices@chemtest.com</u>

APPENDIX IV RESULTS OF INFILTRATION TESTS

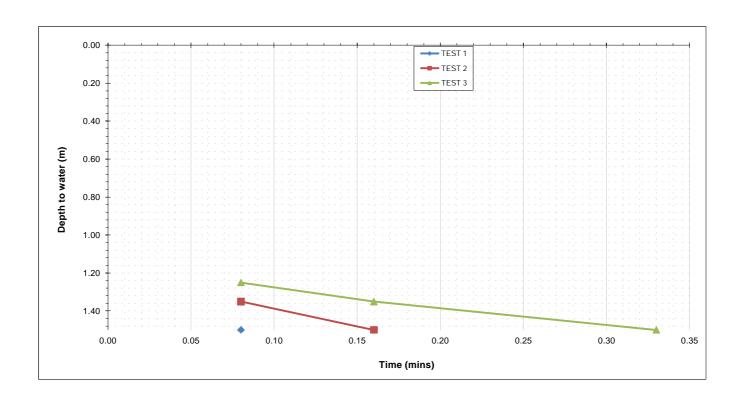


Site 26 High Street, Burwell
Job Number 3309

Date of Test 13/07/2023

Demands	1	TECT 4	1	TEST 2	1	TECT 0
Remarks	Time a (! .)	TEST 1	Time of (mails)		Time of (mails)	TEST 3
	Time(min)	Depth to Water (m)	Time(min)	Depth to Water (m)	Time(min)	Depth to Water (m)
	0	1.20 1.50	0	1.20 1.35	0.00	1.20
	0.08	1.50	0.08		0.08	1.30
			0.16	1.50	0.16	1.40
All three tests completed during the da	y.				0.33	1.50
Strata						
0.00m - 0.30m Made Ground - Dark br grey slightly gravelly, slightly sandy, silt with occasional bricks. 0.30m - 1.50m Structureless light crear	y CLAY m CHALK					
composed of silty sandy GRAVEL. (Gr	ade Dc)					
Effective Storage Depth	m	0.30		0.30		0.30
75% Effective Storage Depth	m	0.23		0.23		0.23
(i.e. depth below GL)	m	1.28		1.28		1.28
25% Effective Storage Depth	m	0.08		0.08		0.08
(i.e. depth below GL)	m	1.43		1.43		1.43
Effective Storage Depth 75%-25%	m	0.15		0.15		0.15
Time to fall to 75% effective depth	mins	0.04		0.06		0.08
Time to fall to 25% effective depth	mins	0.08		0.15		0.22
V (75%-25%)	m3	0.07		0.07		0.07
a (50%)	m2	0.96		0.96		0.96
t (75%-25%)	mins	0.04		0.09		0.14
SOIL INFILTRATION RATE	m/s	3.13E-02		1.39E-02		8.93E-03

DESIGN SOIL INFILTRATION RATE, f 8.93E-03



Site 26 High Street, Burwell
Job Number 3309

Date of Test 13/07/2023

Demostra 1		TEGT 4		TEOT 0	TECT 2		
Remarks		TEST 1	_ , , , ,	TEST 2	<u>-</u> . ,	TEST 3	
	Time(min)	. , ,	Time(min)	Depth to Water (m)	Time(min)	Depth to Water (m)	
	0	1.30	0	1.20	0.00	1.20	
	0.08	1.50	0.08	1.35	0.08	1.25	
			0.16	1.50	0.16	1.35	
					0.33	1.50	
All three tests completed during the day.							
Strata							
0.00m - 0.30m Made Ground - Dark brownish grey slightly gravelly, slightly sandy, silty CLAY with occasional bricks. 0.30m - 1.50m Structureless light cream CHALK composed of silty sandy GRAVEL. (Grade Dc)							
Effective Storage Depth	m	0.15		0.25		0.25	
75% Effective Storage Depth	m	0.11		0.19		0.19	
(i.e. depth below GL)	m	1.34		1.26		1.26	
25% Effective Storage Depth	m	0.04		0.06		0.06	
(i.e. depth below GL)	m	1.41		1.39		1.39	
Effective Storage Depth 75%-25%	m	0.08		0.13		0.13	
Time to fall to 75% effective depth	mins	0.02		0.04		0.09	
Time to fall to 25% effective depth	mins	0.07		0.10		0.21	
V (75%-25%)	m3	0.04		0.06		0.06	
a (50%)	m2	0.72		0.88		0.88	
t (75%-25%)	mins	0.05		0.06		0.12	
SOIL INFILTRATION RATE	m/s	1.67E-02		1.89E-02		9.47E-03	

DESIGN SOIL INFILTRATION RATE, f 9.47E-03

