

Drainage Strategy

Title	Clacton Road, Weeley Heath
Client	LNT Construction
Location	Clacton Road, Weeley Heath, Essex
Project number	23-0452
BIM reference	CRWH-BSP-XX-XX-T-W-0001-P01_Drainage_Strategy
Date	07 SEP 2023

Authorisation Sheet & Revisions Record

Project Number:	23-0452
Project Title:	Clacton Road, Weeley Heath
Client:	LNT Construction
Location:	Clacton Road, Weeley Heath, Essex
Document Reference:	CRWH-BSP-XX-XX-T-W-0001-P01_Drainage_Strategy
Office Address:	BSP Consulting, 12 Oxford Street, Nottingham, NG1 5BG
Telephone No:	0345 413 4000

Rev:	Issue Date:	Description:	Prepared:	Checked:	Authorised:
P01	07/09/2023	Initial issue	TH	TG	TG

ТН	Thomas Hall	
	MA (Hons) MSc	
TG	Tony Goddard	
10	BEng (Hons) CEng MICE	

Contents

1.0	Introdu	uction	5
1.1	Tern	ms of Reference	5
1.2	Site	Details	5
2.0	Definit	tion of Flood Hazard & Probability	6
2.1	Fluv	/ial Flood Risk	6
2.2	Tida	al Flood Risk	6
2.3	Surfa	face Water Flood Risk	6
2.4	Grou	und Water Flood Risk	7
2.5	Floo	od Risk from Sewers & Infrastructure	8
2.6	Clim	nate Change	8
3.0	Sustai	inable Drainage Strategy	9
3.1	Deta	ailed Development Proposals	9
3.2	Exis	sting Constraints	9
3.3	Sust	tainable Urban Drainage Systems	10
3.4	Wate	ter Quality	13
3.5	Mair	ntenance	14
3.6	Foul	I Water Drainage	14
3.7	Site	Development Levels	14
4.0	Off-Site	te Impacts	15
5.0	Recom	nmendations	16
Арре	ndix A	Topographical Survey	
Appe	ndix B	Anglian Water Correspondence & Sewer Records	

Appendix C Proposed Site Plan

Appendix D Proposed Drainage Strategy Plan, Supporting Calculations & Maintenance Schedules

Executive Summary

Introduction	BSP Consulting has been commissioned by LNT Construction to undertake a Drainage
	Strategy for a proposed care home off Clacton Road, Weeley Heath, Essex. This report
	has been prepared in accordance with the Department for Communities and Local
	Government (DCLG) publication 'Technical Guidance to the National Planning Policy
	Framework, published in July 2018 and updated in July 2021.
Existing Site	The site itself comprises brownfield land bordered by trees, with some existing dwellings
Conditions	located towards the north of the site. Existing greenhouses are located to the southwest
	of the site, and a pond is located towards the centre. Site levels are shown to be generally
	flat, with a gradual fall from the north to the south of the site. Existing ground levels on-
	site are indicated to fall from approximately 27.03m AOD in the northern corner of the
	site to approximately 26.78m AOD in the southern corner.
Development	Development proposals are for the construction of an elderly care home, complete with
Description and	car parking, access, supporting infrastructure and landscaping.
Planning Context	
Climate Change	The implications of climate change of up to 40% have been considered in this
	assessment and mitigation measures have been determined accordingly.
Off-Site Impacts	The proposed developments surface water will discharge at reduced rates via the
	provision of attenuation. Therefore, the development will not increase flooding adjacent
	to or downstream of the site for the lifetime of the development.
Recommendations	In accordance with best practice, external ground levels should comprise falls away
	from buildings and towards drainage features. The design of surface water drainage
	features should be such that any surface water flow paths within the site are
	maintained and/or accommodated while ensuring that buildings remain free from
	flooding without increasing risk elsewhere.
	• The proposed surface water drainage system should be designed to accommodate
	the 1 in 30-year rainfall event without any surface water flooding and should be
	capable of retaining the 1 in 100-year plus climate change (40%) storm event on
	site without flooding any buildings.
	• For the purpose of this report it has been assumed that soakaways or similar or
	surface water discharge to an open watercourse will not be viable.
	• It is proposed to restrict surface water runoff to a pumped discharge rate of 1I/s for
	all storms up to and including the 1 in 100-year plus 40% climate change return

periods. In order to achieve this discharge rate an attenuation volume in the order of **234m³** will need to be provided.

- The full required attenuation volume will be achieved by a subsurface attenuation tank located towards the southwest of the site, which will have a half drain down time of less than **12 hours**. Surface water will then need to be pumped towards an existing ditch drain located to the south of the site.
- It is recommended that source control methods should be utilised where possible. These include the use of permeable paving for parking spaces and private pedestrian footways, the creation of bioretention gardens along the curtilage of the primary access road and the use of filter trenches.

1.0 Introduction

1.1 Terms of Reference

1.1.1 This Drainage Strategy has been prepared in accordance with the Department for Communities and Local Government (DCLG) publication 'Technical Guidance to the National Planning Policy Framework, published in July 2018 and updated in July 2021, and according to best practice guidance. For and on behalf of LNT Construction.

1.2 Site Details

1.2.1 The proposed development site is located off the A133 to the southeast of Weeley Heath and to the northwest of Clacton-on-sea, centred on OSNGR 615690E, 220289N. The site, shown by the red boundary in Figure 1.1 below, occupies an approximate area of 0.78 hectares.

Figure 1.1 Clacton Road, Weeley Heath, Essex – Site Location

- 1.2.2 The site is bounded by Clacton Road to the northeast, which runs in a general northwest-southeast direction, existing dwellings to the southeast and west, and greenfield agricultural land to the south.
- 1.2.3 The majority of the site currently comprises gardens bordered by trees, with some existing dwellings located towards the north of the site. Existing greenhouses are located to the southwest of the site, and

an ornamental pond is located towards the centre. A topographical survey of the site has been included in **Appendix A**. Site levels are shown to be generally flat, with a gradual fall from the north to the south of the site. Existing ground levels on-site are indicated to fall from approximately 27.03m AOD in the northern corner of the site to approximately 26.78m AOD in the southern corner.

2.0 Definition of Flood Hazard & Probability

A number of sources of potential flood risk to the site have been assessed in order to provide context to the proposed drainage strategy for the development. Details of the levels of risk to the site from each source are provided below:

2.1 Fluvial Flood Risk

2.1.1 The EA Risk of Flooding from Rivers and Sea mapping indicates that the development site is located in Flood Zone 1, with a less than 1 in 1,000 annual probability (<0.1% AEP) of flooding from Rivers and the Sea. There are no notable watercourses within close proximity to the site.

2.2 Tidal Flood Risk

2.2.1 The site is not within close proximity of any tidal watercourses and is therefore not at risk of tidal flooding.

2.3 Surface Water Flood Risk

- 2.3.1 The site is located in a generally flat area with very gentle falls from north to south. Generally flat areas do not tend to generate any significant amount of sheet runoff and any surface flooding from pluvial sources tends to pond in localised depressions.
- 2.3.2 Figure 2.1 below shows the Risk of Flooding from Surface Water mapping and indicates that the entire site is at very low risk (<0.1% AEP) of surface water flooding.

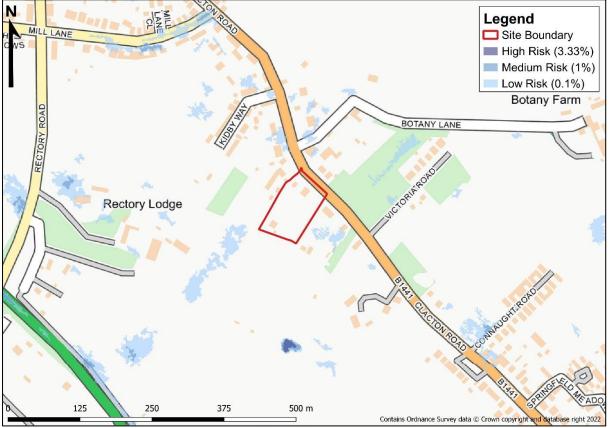


Figure 2.1 Clacton Road, Weeley Heath, Essex – Risk of Flooding from Surface Water (Source: EA)

2.3.3 The site is therefore not at significant risk of flooding from surface water runoff from adjacent land.

2.4 Ground Water Flood Risk

- 2.4.1 The British Geological Survey's Geology of Britain mapping indicates that the site is situated upon bedrock geology consisting of Thames Group – Clay, Silt and Sand, and superficial deposits consisting of Cover Sand – Clay, Silt and Sand. Thames Group is generally classed as rocks with essentially no groundwater.
- 2.4.2 The Environment Agency Aquifer Designation Map identifies the site as being situated on bedrock and superficial drift classed as Unproductive aquifer: these are geological strata with low permeability that have negligible significance for water supply or river base flow.
- 2.4.3 Based on the information from the above sources, the site is considered to be at low risk of flooding from groundwater sources. However, due to the nature of groundwater flooding, any risk associated with this source is likely to be heavily influenced by the local watercourses. Given that the site is not within the natural floodplain of any nearby fluvial watercourses, the risk of groundwater flooding is expected to be minimal on-site.

2.5 Flood Risk from Sewers & Infrastructure

- 2.5.1 The local sewers are operated and maintained by Anglian Water (AW). AW sewer records indicate the location of a 150mm diameter foul sewer to the northeast of the site, flowing in a northwestern direction under Clacton Road. A copy of the sewer record plan is included in **Appendix B**.
- 2.5.2 The EA Flood Risk from Reservoirs mapping confirms that the site does not lie in an area that is at risk of flooding from reservoirs.
- 2.5.3 The site is not within close proximity of any wet process industrial works.
- 2.5.4 The sewers and infrastructure flood risk source can therefore be discounted as a significant source of flood risk to the site.

2.6 Climate Change

- 2.6.1 Climate change is recognised as a factor for consideration in terms of its effects on flood risk. In line with the latest update to the planning practice guidance to the NPPF on Flood Risk and Coastal Change, to assess the effects of climate change, the 2070s epoch has been assessed for peak rainfall intensity.
- 2.6.2 The implications of climate change should be taken into account in relation to surface water drainage. Guidance from the EA advises that the upper end allowances for both the 1 in 30-year (3.3% AEP) and 1 in 100-year (1% AEP) events should be assessed, with the development designed to ensure that there is no increase in flood risk elsewhere and the development will be safe from surface water flooding during the 1 in 100-year event when the upper end allowance for climate change is applied. In this instance, peak rainfall intensity for care home developments within the Combined Essex Management Catchment are estimated to increase by 35% for the 3.3% AEP event and 40% for the 1% AEP event. Therefore, it is recommended that the upper end allowance of 40% is applied to design rainfall intensity to allow for the potential implications of climate change.

3.0 Sustainable Drainage Strategy

3.1 **Detailed Development Proposals**

3.1.1 The development proposals are for the construction of an elderly care home, complete with car parking, access, supporting infrastructure and landscaping. The proposed site plan is included in **Appendix C**.

Sustainable Drainage Systems

- 3.1.2 Part H of the Building Regulations 2010 recommends that surface water run-off shall discharge to one of the following, listed in order of priority:
 - a) an adequate soakaway or some other adequate infiltration system, or where that is not reasonably practicable.
 - b) a watercourse, or, where that is not reasonably practicable.
 - c) a sewer.
- 3.1.3 It is necessary to identify the most appropriate method of controlling and discharging surface water. The design should seek to improve the local run-off profile by using systems that can either attenuate run-off and reduce peak flow rates or positively impact on the existing flood profile.

3.2 Existing Constraints

Infiltration Based Systems

- 3.2.1 The British Geological Survey's Geology of Britain mapping indicates that the site is situated upon bedrock geology consisting of Thames Group Clay, Silt and Sand, and superficial deposits consisting of Cover Sand Clay, Silt and Sand.
- 3.2.2 The Cranfield Soil and Agrifood Institute's Soilscapes mapping indicates the majority of the site to be situated on soils categorised as Soilscape 8: slightly acid loamy and clayey soils with impeded drainage.
- 3.2.3 Based on the above information, it is unlikely that permeable ground conditions are present at the site. We understand that previous infiltration testing was proposed to be undertaken at the site, however it was unable to be completed due to high groundwater encountered, and the use of formal infiltration methods was therefore not deemed to be viable. As a result, the discharge of surface water runoff by infiltrationbased systems has been ruled out.

Open Watercourses

3.2.4 An existing open ditch drain is suitably located to receive a direct surface water discharge from the site and as such, is the proposed surface water outfall from the site.

Sewers

3.2.5 As it is proposed to discharge surface water runoff to an existing drain ditch, it will not be necessary to discharge surface water to a sewer.

3.3 Sustainable Urban Drainage Systems

3.3.1 Sustainable Urban Drainage Systems (SuDS) are designed to reduce the risk of surface water runoff in urbanised areas in an effective manner while offering cost-benefits, reduced maintenance and increased amenity value. A summary of the different types of SuDS options available and their viability in the context of the proposed development are included in Table 3.1 below:

SuDS Category	SuDS Technique	Viability	Explanation		
	Infiltration Trenches	X			
Infiltration	Infiltration Basins	X	Due to the indicated geology on-site formal		
Innitiation	Soakaways	X	infiltration-based systems have been ruled out.		
	Bioretention/Filter Strips	X			
	Bioretention/Rain Gardens	X	Due to the potential to present a trip hazard to potentially susceptible elderly residents, formal		
Filtration	tration are not being proposed. I Filter Strips X remaining as garder landscaping will act in a		features such as bioretention and/or raingardens are not being proposed. However, parts of the site remaining as gardens, and areas of soft landscaping will act in a similar fashion, capturing rainwater at source and enabling limited filtration.		
	Green Roofs	X	As the proposed development comprises pitched roofs, the use of green roofs will not be possible.		
Source Control	Rainwater Harvesting	x	Due to nature of the proposed development, the scope for rainwater harvesting is limited. As such, other SuDS options are more favourable than rainwater harvesting.		
	Pervious ✓		Pervious paving may be utilised for the external ground level car parking spaces and pedestrian		

Table 3.1: Sustainable Urban Drainage Systems Options

			footways. This will serve to increase the rainfall- runoff response time and provide water quality benefits.
	Swales	X	All surface water runoff will flow through a filter
Conveyance	Filter Drains	>	trench before storage in a subsurface attenuation tank. This will serve to increase the rainfall-runoff
	Channels/Rills	×	response time and provide water quality benefits.
	Detention Basin	×	Due to spatial constraints, the proposed
Retention/ Detention	Retention Pond	X	development surface water runoff will need to be attenuated by subsurface storage before a pumped
	Subsurface Storage	~	discharge to an existing ditch drain to the south of the site. All surface water runoff should drain via a
	Wetlands	X	suitable SuDS device prior to the tank.

Runoff Assessment

3.3.2 The ICP SUDS and IH124 (Flood Studies Report) methods have been used to calculate the surface water runoff from a small (<50ha) greenfield site (QBAR_{RURAL}), which are detailed below:

QBAR _{RURAL} = 0.00108 x (0.01 x AREA) ^{0.89} x SAAR ^{1.17} x SPR ^{2.17}	Where	AREA =	Area (ha)
		SAAR =	Standard Average Annual Rainfall (mm, 1941-1970)
		SPR =	Standard Percentage Runoff Coefficient

3.3.3 With a site area of 0.285ha and using Flood Studies Report values for SAAR (550mm) and SPR (0.15), this results in a **QBAR**_{RURAL} rate of **0.11/s** and discharge rates for the following return periods:

Rainfall Event	Runoff Rate (I/s)
1 in 1-year	0.1
1 in 30-year	0.2
1 in 30-year + 35% Climate Change	0.3
1 in 100-year	0.3
1 in 100-year + 40% Climate Change	0.4

3.3.4 Greenfield runoff calculations are provided in **Appendix D**.

Return Period Design

3.3.5 The proposed surface water drainage system should be designed to accommodate the 1 in 30-year rainfall event without any surface water flooding and should be capable of retaining the 1 in 100-year plus climate change (40%) storm event on site without flooding any buildings.

Discharge Rate

3.3.6 In accordance with DEFRA guidance, the peak surface water runoff rate for greenfield developments should be restricted to the pre-development discharge rate where reasonably practicable. The calculated QBAR_{RURAL} rate results in an allowable discharge rate of 0.1l/s. Given that the proposed development surface water runoff will require pumping to an existing ditch drain to the south of the site, a rate of 0.1l/s will be too low. Therefore, it is proposed that a reasonably practicable minimum pumped flow rate of **11/s** is applied.

Drainage Proposals – Main Strategy

- 3.3.7 The proposed development will comprise an impermeable footprint of approximately 0.285ha. In order to maintain the discharge rate of **1I/s** for all storms up to and including the 100-year return period with a 40% allowance for climate change, attenuation is required which provides in the order of **234m**³ of surface water storage. These calculations have been undertaken in MicroDrainage with the use of 2022 FEH rainfall data. As MicroDrainage does not directly support 2022 FEH data, it is instead displayed as 2013 data in **Appendix D**.
- 3.3.8 The required surface water attenuation volume is proposed to be provisioned by a subsurface cellular attenuation tank before a pumped discharge into an existing ditch drain located south of the site. The proposed tank will have a half drain down time of less than **12 hours**.
- 3.3.9 It is recommended that parking spaces and private pedestrian footways are constructed from permeable paving where appropriate and bioretention features, such as raingardens, are utilised where possible. Both above-mentioned source control methods will act to increase the rainfall-runoff response time by intercepting rainfall at source while also providing improvements to water quality.
- 3.3.10 An initial surface water drainage strategy plan and supporting calculations are provided in **Appendix D**.
- 3.3.11 The surface water discharge rate will be subject to agreement with AW and the new public sewer connections will be subject to a Section 106 (Water Industry Act 1991) application to AW.
- 3.3.12 The proposed surface water drainage strategy will be subject to the approval of Essex County Council as Lead Local Flood Authority.

3.4 Water Quality

Simple Index Approach

- 3.4.1 In order to determine whether the proposed SuDS features for the development will be sufficient at removing pollutants from surface water runoff, the CIRIA SuDS Manual (2015) Simple Index Approach has been applied. This approach provides pollution hazard levels and indices to relevant pollutants based upon contributing hardstanding surfaces.
- 3.4.2 Table 4.2 below provides an extract of the land use types and pollutant indices from the CIRIA SuDS Manual which are relevant to the proposed development.

Table 4.2: Pollution hazard indices for different land use classifications (Source: CIRIA SuDS Manual 2015)

Land Use	Pollution Hazard Level	Total Suspended Solids (TSS)	Metals	Hydrocarbons
Residential roofs	Very Low	0.2	0.2	0.05
Residential car parks, low traffic roads and non- residential car parking with infrequent change	Low	0.5	0.4	0.4

3.4.3 Based upon the above, the worst-case indices for the development are 0.5 (Total Suspended Solids), 0.4 (Metals) and 0.4 (Hydrocarbons). Table 4.3 below indicates the mitigation indices for different types of SuDS components, with only those relevant to the development included. Under the Simple Index Approach, in order to suitably mitigate surface water pollutants, the total combined indices for any SuDS components will need to be greater than the worst-case indices above. Where multiple SuDS components are proposed, the primary component is given its full indices, while subsequent component indices are applied with a factor of 50%.

Table 4.3: Indicative SuDS mitigation indices for discharges to surface waters (Source: CIRIA SuDS Manual 2015)

Type of SuDS	Mitigation Indices			
Component	TSS	Metals	Hydrocarbons	
Filter Drain	0.4	0.4	0.5	
Permeable Pavement	0.7	0.6	0.7	
Bioretention System	0.8	0.8	0.8	

3.4.5 Surface water runoff is proposed to flow through either permeable paving before a filter drain, or bioretention before a filter drain. Based upon the above, all surface water runoff will therefore flow through minimum mitigation indices of 0.9 (Total Suspended Solids), 0.8 (Metals) and 0.95 (Hydrocarbons), demonstrating that these components alone will be sufficient in mitigation surface water runoff pollution from the proposed development. Where further SuDS components are included in the development proposals these will offer even greater mitigation against surface water runoff pollution.

3.5 Maintenance

3.5.1 The proposed surface water drainage system will require routine maintenance to ensure it remains fully operational and effective. The proposed methods of drainage will be maintained by site management and should be inspected and maintained in accordance with the proposed maintenance schedule included in **Appendix D**.

3.6 Foul Water Drainage

- 3.6.1 A foul sewer connection will need to be sought for the proposed development, possibly utilising existing connection points. A 150mm diameter foul sewer is suitably located to receive foul flows from the development via gravity, located to the northeast of the site along Clacton Road.
- 3.6.2 New foul public sewer connections will be subject to agreement with AW via a Section 106 (Water Industry Act 1991) application.

3.7 Site Development Levels

3.7.1 The proposed development site levels should be set to ensure that finished floor levels are no lower than the existing ground levels on-site to reduce the risk of any potential internal surface water flooding.

4.0 Off-Site Impacts

4.1.1 The proposed development surface water will discharge at reduced rates via the provision of attenuation. Therefore, the development will bring about improvements to the surface water regime in the area, and hence will not increase flooding adjacent to or downstream of the site for the lifetime of the development.

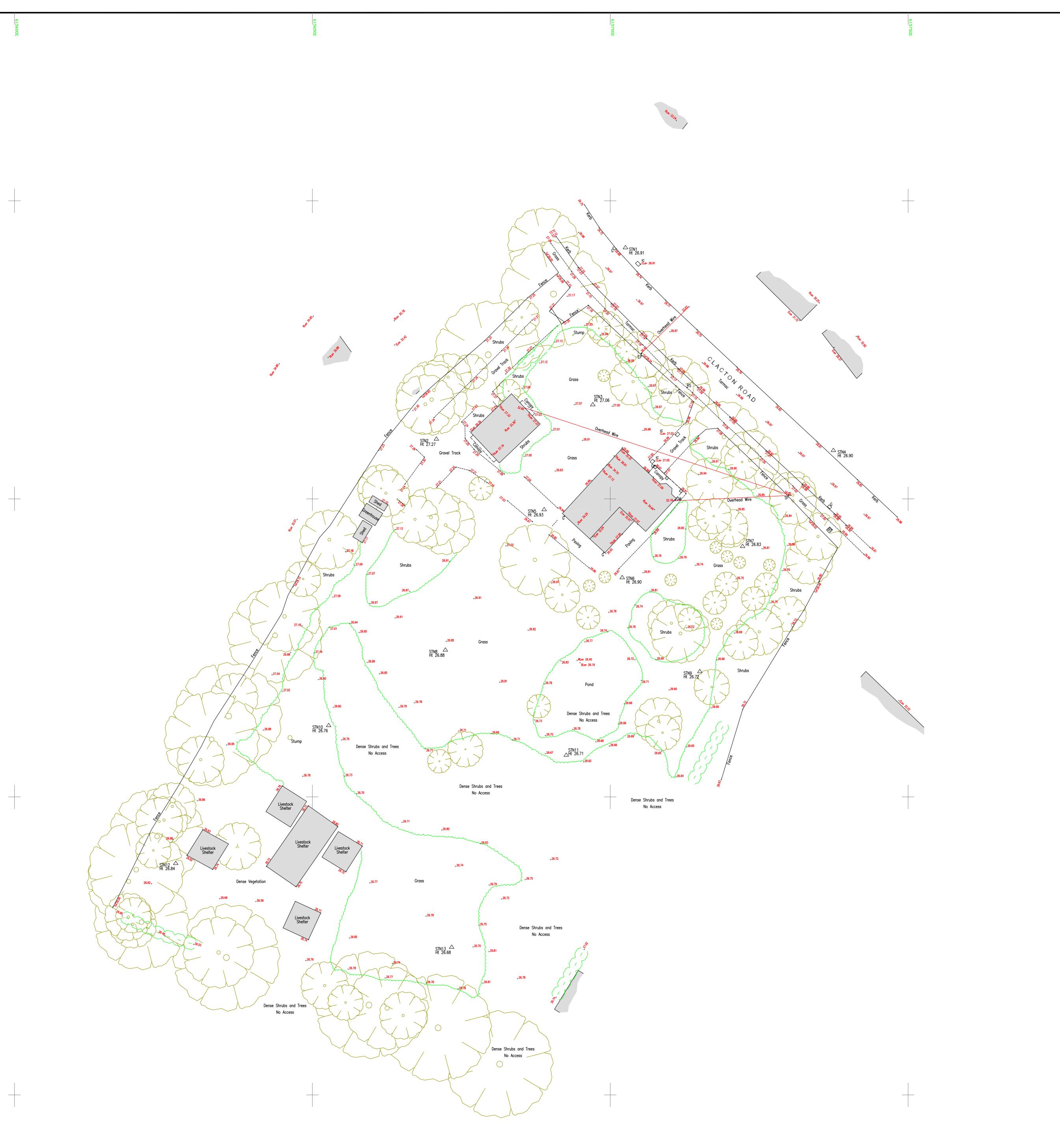
5.0 Recommendations

- 5.1.1 The following recommendations are made to reduce flood risk and promote a sustainable and practicable drainage strategy at the proposed development:
 - In accordance with best practice, external ground levels should comprise falls away from buildings and towards drainage features. The design of surface water drainage features should be such that any surface water flow paths within the site are maintained and/or accommodated while ensuring that buildings remain free form flooding without increasing risk elsewhere.
 - The proposed surface water drainage system should be designed to accommodate the 1 in 30-year rainfall event without any surface water flooding and should be capable of retaining the 1 in 100-year plus climate change (40%) storm event on site without flooding any buildings.
 - For the purpose of this report it has been assumed that soakaways or similar or surface water discharge to an open watercourse will not be viable.
 - It is proposed to restrict surface water runoff to a pumped discharge rate of 11/s for all storms up to and including the 1 in 100-year plus 40% climate change return periods. In order to achieve this discharge rate an attenuation volume in the order of 234m³ will need to be provided.
 - The full required attenuation volume will be achieved by a subsurface attenuation tank located towards the southwest of the site, which will have a half drain down time of less than 12 hours. Surface water will then need to be pumped towards an existing ditch drain located to the south of the site.
 - It is recommended that source control methods should be utilised where possible. These include the use of permeable paving for parking spaces and private pedestrian footways, the creation of bioretention gardens along the curtilage of the primary access road and the use of filter trenches.

Disclaimer

We would note that all comments made in this report are based on the sources stated in Section 1.1. This report and its recommendations are intended for the use of LNT Construction for the above site only.

Appendix A


Topographical Survey

220350N

<u>25</u>0300N

220250N

220200N

Quickdraw Surveys Ltd, 58 Mavis Drive Coppull, Lancashire, PR7 5AF

220300<u>N</u>

220250N

220200N

Notes:

The survey has been related to the Ordnance Survey National Grid and level datum using Leica GPS SmartNet data.

The extent of tree canopies and tree bole sizes are estimated.

Only features that are accessible/visible at the time of survey can be detailed. There are no gaurantees offered on the drainage information supplied.

Before commencing works please check important dimensions on-site.

Should there be any discrepencies, inconsistencies,omissions or queries please contact Quickdraw Surveys Ltd as soon as possible for a resolution.

Post & Rail Post & Wire

FWM Wire Mesh

Hyd Hydrant

KO

Mkr

Р

Safety Barrier

Floodlight

Gully

Gas Valve

Inspection Cover Junction box

Kerb Outlet

Letter Box

PM Parking Meter

Post RE Rodding Eye
RNP Road Name Plate

PLev Parapet Level

RLev Ridge Level SLev Soffit Level

Lamp Post Utility marker

Invert Level

RS Road Sign RWP Rain water pipe

Stop Valve

Cable Stay

TP Telegraph Pole VP Vent Pipe

WM Water Meter WO Water Outlet

UTL Unable to Lift

ThLev Threshold Level

ToW Top of Wall Level

WLev Water Level

ToF Top of Fence Level

Telephone Box Traffic Light

Abbreviations:

Topographical Surveys

	U
BT	British Telecom Cov
Bin	Litter Bin
BS	Bus Stop
BT	British Telecom Cov
CPS	Conc Paving Slabs
CTV	
Elec	Electric Cover
EP	Electric Pole
ER	Earthing Rod
Fence	Mixed Fencing
FBW	Barbed Wire
FCB	Close Board
FCI	Corrugated Iron
FCL	Chain Link
FCP	Conc Panel
F(DIL)	Dilapidated Fence
FIR	Iron Railings
FOB	-
FPC	Post & Chain
ALev	Arch Level
	Bed Level
	Cover Level

ELev Eaves Level

Station Co-ordinates:

Station STN1 STN2 STN3 STN4 STN5 STN6 STN7 STN8 STN7 STN8 STN9 STN10 STN10 STN11 STN12 STN12	Easting 615702.551 615670.817 615697.067 615737.449 615688.903 615702.000 615722.210 615672.320 615672.320 615672.736 615692.613 615692.613 615692.067	Northing 220342.130 220310.018 220315.785 220308.113 220298.188 220286.771 220292.017 220274.631 220274.631 220271.015 220261.965 220256.980 220238.828 220224.770	Level 26. 906 27. 267 27. 058 26. 993 26. 933 26. 825 26. 879 26. 879 26. 722 26. 713 26. 713 26. 845
STN13	615673, 378	220224, 770	26. 685

A0 Plot @ 1:250

Client	LNT Construction Ltd.
Date	May 2023
Project	
	Topographical Survey
	Land at The Towers, Clacton Road,
	Weeley Heath, Clacton, CO16 9EF.
Scale	1:250
Drawing	$\frac{\text{Number}}{\text{DS}/350/1306/\text{TOP}}$

Appendix B

Anglian Water Correspondence & Sewer Records

Pre-Planning Assessment Report

Weeley Heath

InFlow Reference: PPE-0186124

Assessment Type: Used Water

Report published: 11/08/2023

Thank you for submitting a pre-planning enquiry.

This has been produced for LNT CONSTRUCTION.

Your reference number is **PPE-0186124**.

This report can be submitted as a drainage strategy for the development should it seek planning permission.

If you have any questions upon receipt of this report, you can submit a further question via InFlow. Alternatively, please contact the Planning & Capacity team on

Section 1 - Proposed development

The response within this report has been based on the following information which was submitted as part of your application:

List of planned developments					
Type of development	No. Of units				
Non-residential	1				

The anticipated residential build rate is:

Year	Y1
Build rate	1

Development type:	Brownfield
Planning application status:	Unknown
Site grid reference number:	TM1567920276

The comments contained within this report relate to the public water mains and sewers indicated on our records.

Your attention is drawn to the disclaimer in the useful information section of this report.

Section 2 - Assets affected

Our records indicate that there are no public water mains/public sewers or other assets owned by Anglian Water within the boundary of your development site. However, it is highly recommended that you carry out a thorough investigation of your proposed working area to establish whether any unmapped public or private sewers and lateral drains are in existence.

Due to the private sewer transfer in October 2011 many newly adopted public used water assets and their history are not indicated on our records. You also need to be aware that your development site may contain private water mains, drains or other assets not shown on our records. These are private assets and not the responsibility of Anglian Water but that of the landowner.

Section 3 - Water recycling services

In examining the used water system we assess the ability for your site to connect to the public sewerage network without causing a detriment to the operation of the system. We also assess the receiving water recycling centre and determine whether the water recycling centre can cope with the increased flow and effluent quality arising from your development.

Water recycling centre

The foul drainage from the proposed development is in the catchment of Clacton-Holland Haven Water Recycling Centre, which currently does not have capacity to treat the flows from your development site.

Anglian Water are obligated to accept the foul flows from your development with the benefit of planning consent and would therefore take the necessary steps to ensure that there is sufficient treatment capacity should the planning authority grant planning permission.

Used water network

Our assessment has been based on development flows connecting to the nearest foul water sewer of the same size or greater pipe diameter to that required to drain the site. The infrastructure to convey foul water flows to the receiving sewerage network is assumed to be the responsibility of the developer. Conveyance to the connection point is considered as Onsite Work and includes all work carried out upstream from of the point of connection, including making the connection to our existing network. This connection point has been determined in reference to the calculated discharge flow and on this basis, a 150mm internal diameter pipe is required to drain the development site. The nearest practicable connection is to the 150mm diameter sewer at manhole 7301 in Clacton Road at National Grid Reference NGR TM 15723 20325. Anglian water has assessed the impact of gravity flows from the planned development to the public foul sewerage network. We can confirm that this is acceptable as the foul sewerage system, at present, has available capacity for your site. Please note that Anglian Water will request a suitably worded condition at planning application stage to ensure this strategy is implemented to mitigate the risk of flooding.

It is assumed that the developer will provide the necessary infrastructure to convey flows from the site to the network. Consequently, this report does not include any costs for the conveyance of flows.

Surface water disposal

Anglian Water needs to ensure the surface water hierarchy has been followed and we will not agree, even in principle, to a surface water connection into the foul network until all other options have been proven unfeasible. We would require you to liaise with the Lead Local Flood Authority as they are the statutory consultee for surface water management. If they are satisfied that, based upon evidence, no other option is viable then please come back to us and we can discuss this further. Please also bear in mind that any mitigation works required as a consequence of a new surface water connection to an existing public foul (or surface water) sewer are not included within the infrastructure charge. The capital cost of these works will be fully chargeable to the applicant and will need to be paid prior to any design, enabling or construction works can commence. We will be happy to discuss this further, once it has been proven that there is no alternative viable option for disposal of the development's surface water.

As you may be aware, Anglian Water will consider the adoption of SuDs provided that they meet the criteria outline in our SuDs adoption manual. This can be found on our website. We will adopt features located in public open space that are designed and constructed, in conjunction with the Local Authority and Lead Local Flood Authority (LLFA), to the criteria within our SuDs adoption manual. Specifically, developers must be able to demonstrate:

- 1. Effective upstream source control,
- 2. Effective exceedance design, and
- 3. Effective maintenance schedule demonstrating than the assets can be maintained both now and in the future with adequate access.

If you wish to look at the adoption of any SuDs then an expression of interest form can be found on our website

As the proposed method of surface water disposal is not relevant to Anglian Water; we suggest that you contact the relevant Local Authority, Lead Local Flood Authority, the Environment Agency or the Internal Drainage Board, as appropriate.

Trade Effluent

We note that you do not have any trade effluent requirements. Should this be required in the future you will need our written formal consent. This is in accordance with Section 118 of the Water Industry Act (1991).

Used Water Budget Costs

Your development site will be required to pay an Infrastructure charge for each new property connecting to the public water and sewerage network that benefits from Full planning permission. The infrastructure charge replaces the zonal charge as previously identified.

You will be required to pay an infrastructure charge upon connection for each new plot on your development site. The infrastructure charge are types of charges set out in Section 146(2) of the Water Industry Act 1991.

The charge should be paid by anyone who wishes to build or develop a property and is payable upon request of connection.

• The Infrastructure Charge is based on the cost of any reinforcement and upgrades to our existing network ("Network Reinforcements"), whether designed to address strategic or local capacity issues. For more information on our Infrastructure Charge, please see the 'Useful Information' section of this report.

Infrastructure charges are raised on a standard basis of one charge per new connection (one for water and one for sewerage).

The Water Recycling Infrastructure charge for your dwellings is:

Infrastructure charge	Number of units	Total
£ 400	1	To be confirmed at the S106 application to connect stage

Please note that you should also budget for infrastructure charges on non-household premises where applicable and these will be calculated according to the number and type of water fittings in the premises. This is called the "relevant multiplier" method of calculating the charge and the relevant multiplier will be applied to the figures set out in our 2023-24 Developer Charging Arrangements to arrive at the amount payable. Details of the relevant multiplier for each fitting can be found on our website.

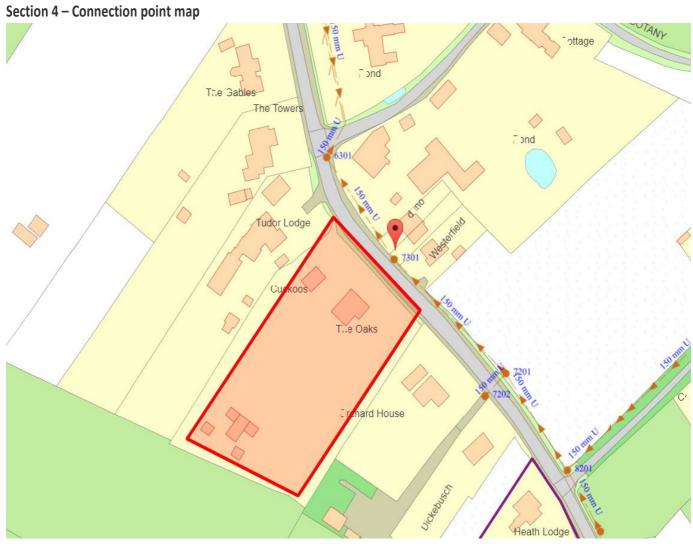


Figure 1: Showing your used water point of connection.

Section 5- Useful information

Water Industry Act - Key used water sections

Section 98:

This provides you with the right to requisition a new public sewer. The new public sewer can be constructed by Anglian Water on your behalf. Alternatively, you can construct the sewer yourself under section 30 of the Anglian Water Authority Act 1977.

Section 102:

This provides you with the right to have an existing sewerage asset vested by us. It is your responsibility to bring the infrastructure to an adoptable condition ahead of the asset being vested.

Section 104:

This provides you with the right to have a design technically vetted and an agreement reached that will see us adopt your assets following their satisfactory construction and connection to the public sewer.

Section 106:

This provides you with the right to have your constructed sewer connected to the public sewer.

Section 185

This provides you with the right to have a public sewerage asset diverted.

Details on how to make a formal application for a new sewer, new connection or diversion are available on our website or via our Development Services team on **0345 60 66 087**.

Sustainable drainage systems

Many existing urban drainage systems can cause problems of flooding, pollution or damage to the environment and are not resilient to climate change in the long term. .

Our preferred method of surface water disposal is through the use of Sustainable Drainage Systems or SuDS.

SuDS are a range of techniques that aim to mimic the way surface water drains in natural systems within urban areas. For more information on SuDS, please visit our website

We recommend that you contact the Local Authority and Lead Local Flood Authority (LLFA) for your site to discuss your application.

Private sewer transfers

Sewers and lateral drains connected to the public sewer on the 1 July 2011 transferred into Water Company ownership on the 1 October 2011. This follows the implementation of the Floods and Water Management Act (FWMA). This included sewers and lateral drains that were subject to an existing Section 104 Adoption Agreement and those that were not. There were exemptions and the main non-transferable assets were as follows:

Surface water sewers and lateral drains that do not discharge to the public sewer, e.g. those that discharged to a watercourse.

Foul sewers and lateral drains that discharged to a privately owned sewage treatment/collection facility.

Pumping stations and rising mains will transfer between 1 October 2011 and 1 October 2016.

The implementation of Section 42 of the FWMA will ensure that future private sewers will not be created. It is anticipated that all new sewer applications will need to have an approved section 104 application ahead of a section 106 connection.

It is anticipated that all new sewer applications will need to have an approved Section104 application ahead of a Section 106 connection

Encroachment

Anglian Water operates a risk based approach to development encroaching close to our used water infrastructure. We assess the issue of encroachment if you are planning to build within 400 metres of a water recycling centre or, within 15 metres to 100 metres of a pumping station. We have more information available on our website

Locating our assets

Maps detailing the location of our water and used water infrastructure including both underground assets and above ground assets such as pumping stations and recycling centres are available from digdat

All requests from members of the public or non-statutory bodies for maps showing the location of our assets will be subject to an appropriate administrative charge.

We have more information on our website

Charging arrangements

Our charging arrangements and summary for this year's water and used water connection and infrastructure charges can be found on our website

Section 6 - Disclaimer

The information provided in this report is based on data currently held by Anglian Water Services Limited ('Anglian Water') or provided by a third party. Accordingly, the information in this report is provided with no guarantee of accuracy, timeliness, completeness and is without indemnity or warranty of any kind (express or implied).

This report should not be considered in isolation and does not nullify the need for the enquirer to make additional appropriate searches, inspections and enquiries. Anglian Water supports the plan led approach to sustainable development that is set out in the National Planning Policy Framework ('NPPF') and any infrastructure needs identified in this report must be considered in the context of current, adopted and/or emerging local plans. Where local plans are absent, silent or have expired these needs should be considered against the definition of sustainability holistically as set out in the NPPF.

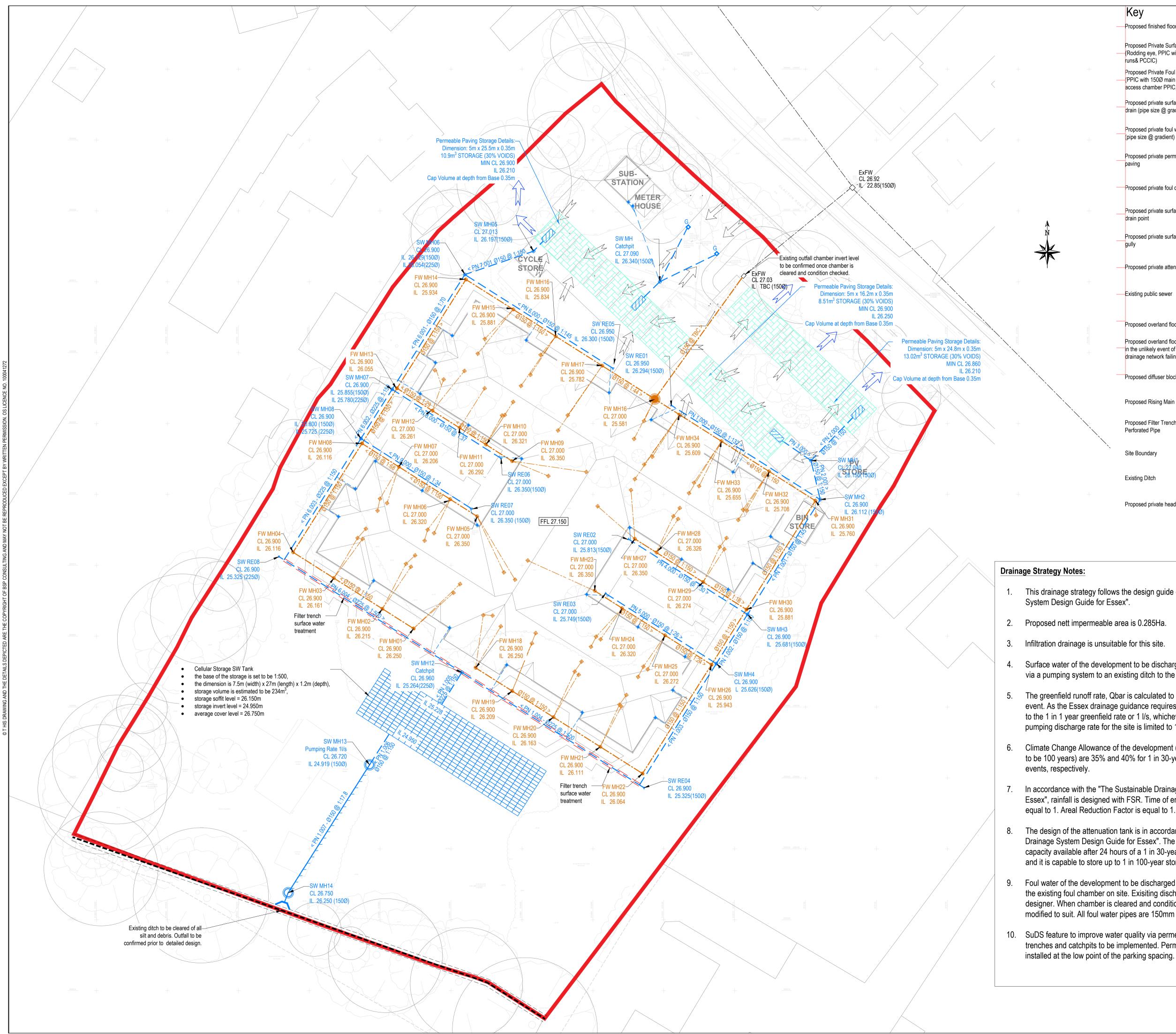
Whilst the information in this report is based on the presumption that proposed development obtains planning permission, nothing in this report confirms that planning permission will be granted or that Anglian Water will be bound to carry out the works/proposals contained within this report.

No liability whatsoever, including liability for negligence is accepted by Anglian Water or its partners, employees or agents, for any error or omission, or for the results obtained from the use of this report and/or its content.

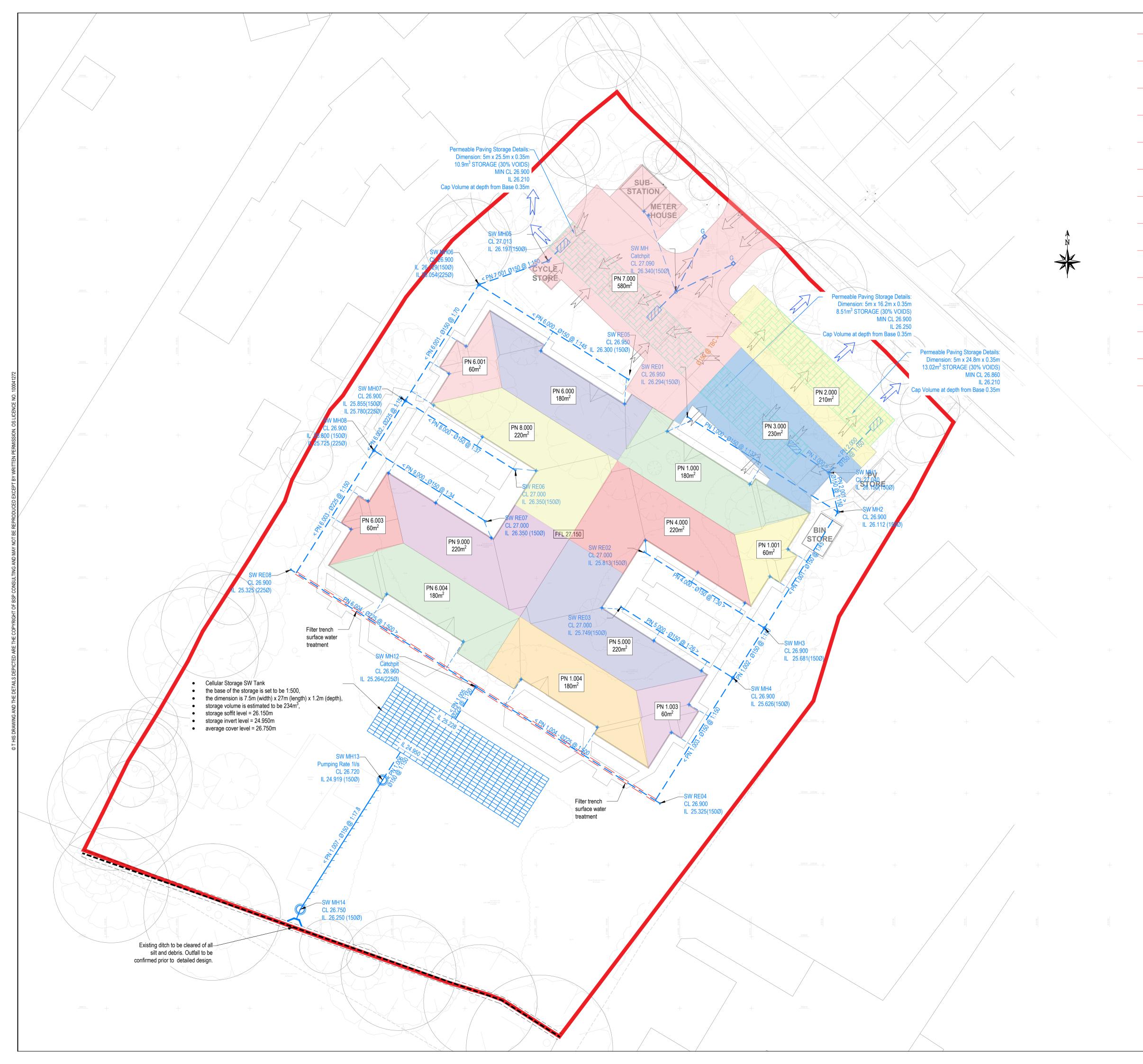
Furthermore, in no event will any of those parties be liable to the applicant or any third party for any decision made or action taken as a result of reliance on this report.

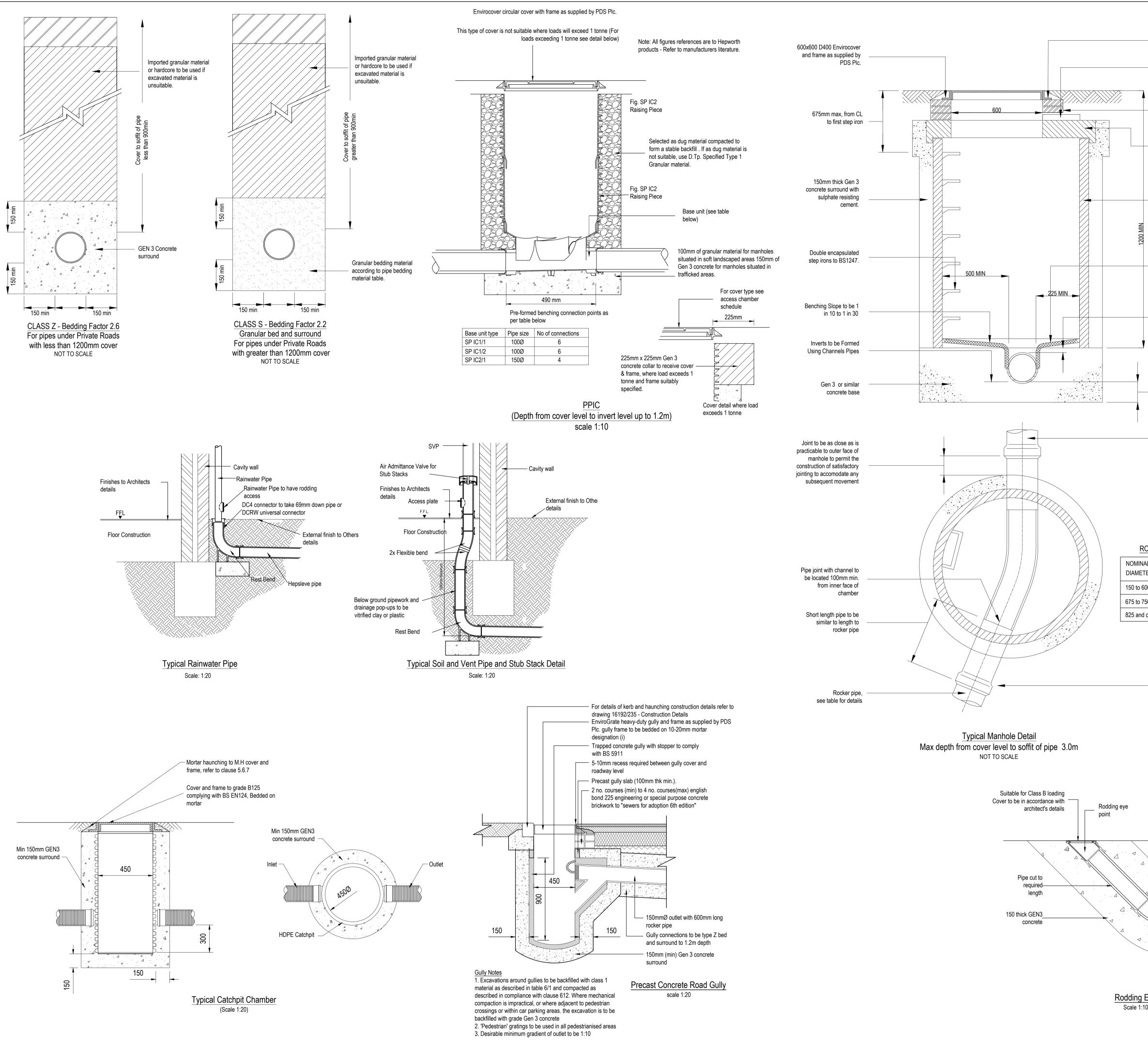
This report is valid from the date issued and the enquirer is advised to resubmit their request for an up to date report should there be a delay in submitting any subsequent application for water supply/sewer connection(s). Our pre-planning reports are valid for 12 months, however please note Anglian Water cannot reserve capacity and available capacity in our network can be reduced at any time due to increased requirements from existing businesses and houses as well as from new housing and new commercial developments.

Appendix C

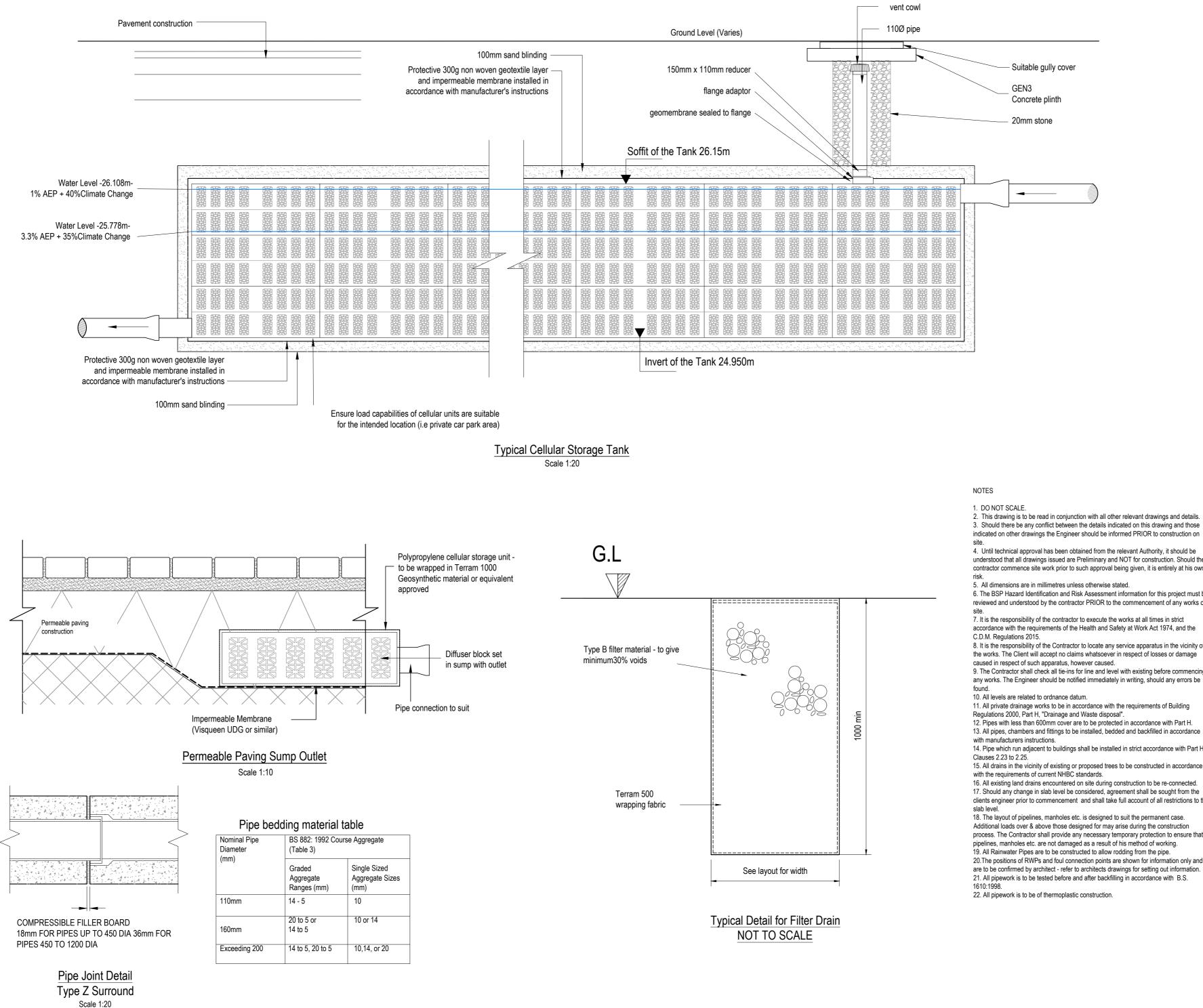

Proposed Site Plan

Appendix D


Proposed Drainage Strategy Plan, Supporting Calculations & Maintenance Schedules


	Key Proposed finished floor level —	FFL 105.660	KEY PLAN
	Proposed Private Surface Water Drain	PPIC150 PCCIC RE	
	(Rodding eye, PPIC with 150Ø main runs& PCCIC)		
	Proposed Private Foul Water Drain (PPIC with 150Ø main runs, reduced- access chamber PPIC, PCCIC)		
	Proposed private surface water drain (pipe size @ gradient)	150Ø @ 1:100	
	Proposed private foul water drain (pipe size @ gradient)	150Ø @ 1:100	
	Proposed private permeable block paving		
	Proposed private foul drain point	- •	
	Proposed private surface water drain point	•	Construction Risks
	Proposed private surface water gully	□G	In addition to the hazard/risks r this drawing take note of the at It is assumed that all works on contractor working, where appr
	Proposed private attenuation tank —		SAFETY HEALT
	Existing public sewer		 DO NOT SCALE. Should there be any cardiocal strength of the strenghost of the strength of the streng
	Proposed overland flood flow route		indicated on other drawing site. 3. Until technical approva understood that all drawin
	Proposed overland flood flow route in the unlikely event of the		contractor commence site risk. 4. All dimensions are in r
	drainage network failing Proposed diffuser block		 The BSP Hazard Ident reviewed and understood site.
	Proposed Rising Main		
	Proposed Filter Trench with		
	Perforated Pipe Site Boundary		
	one boundary		
	Existing Ditch		
	Proposed private headwall		
			Eirst Jaque
s t	he design guide of "The Sus	tainable Drainage	P01 Field Statement FE 30 COMMENT
	к".	, i i i i i i i i i i i i i i i i i i i	REV DRAWN BY D SCALE @ A1 ISSUIN
are	ea is 0.285Ha.		1:250 N
bl	e for this site.		CLIENT APPROVAL A - APPROVED
	ent to be discharged through sting ditch to the south of the		B - APPROVED
	r is calculated to be 0.1 l/s fo		STATUS PURPC
e g ate	uidance requires the dischar e or 1 l/s, whichever is highes site is limited to 1 l/s.	ge rate to be limited	• civil • structural
	he development (building de	sign life is expected	hc
d 4	10% for 1 in 30-year and 1 in	100-year rainfall	
ith	stainable Drainage System I FSR. Time of entry is 5 min ctor is equal to 1. MADD Fac	utes. CV value is	2 Oxford Street Nottingham NG1 5BG
de our	ank is in accordance with the for Essex". The attenuation s of a 1 in 30-year storm eve 1 in 100-year storm event + o	tank with have 50% ent + climate change	PROJECT
nt i sit	to be discharged through a 1 e. Exisiting discharge level is ared and condition checked, ipes are 150mm dia. unless	50mm dia.pipe to s yet unknown to the the design will be	TITLE
er	quality via permeable paving plemented. Permavoid or sir	g parking, filter	

KEY	PLAN						
	Construction R			laintenance/cleaning		Demolition/adaptation	n Risks
this c It is a	drawing take no assumed that al	ote of th	e above. on this drav	associated with the t	ut by a compe	etent	
contr	_			to an appropriate me			
NC	OTES						
	DO NOT SC/ Should there		y conflict h	between the details	indicated c	n this drawing and t	hose
	icated on oth					PRIOR to construction	
und	derstood that	all dra	wings issu	ed are Preliminary	and NOT f	t Authority, it should or construction. Sho ven, it is entirely at h	uld the
risł	κ.			prior to such appro unless otherwise s		ven, it is entirely at h	io UWII
5.	The BSP Ha	zard lo	dentification	n and Risk Assess	ment inform	ation for this project	
rev site		iuerst	JOU DY THE	CONTRACTOR PRIOR	to the comr	nencement of any w	טואס טוו
	First Issue						
P01	FE	r	30/08/23	TG	30/08/23	B TG	30/08/23
REV	DRAWN B	Y	DATE	CHECKED BY	DATE	APPROVED BY	DATE
	LE @ A1 : 250	ISS	UING OFF		PRC	JECT NUMBER 23-0452	
CLIE		/AL					
	A - APF B - APF			COMMENTS			
	C - DO	-	-				
STA	TUS	PUF	RPOSE OF				
 CIV 	S1		L • TRA		GEOTEC		ONMENTAL
		5				QUALITY ASSURED BS EN ISO 9001	
						QUAY-AUDITED	ASCB(E) Accrediting Certifying Bodies
С	ONSU		NG			SI BIM Design a	
	xford Street	36					ction
						KM 718353 BS EN ISO 19	1650
PRC	DJECT						
	Cla	act	on F	Road, W	/eele	y Heath	
TITL	E						
			Drai	inage S	trate	gy	
				-			
CLIE							
	_111	-		Constru			


CRWH-BSP-ZZ-XX-DR-C-SK240 P01

Key		KEY PLAN				
Proposed finished floor level	FFL 105.660					
	PPIC150 PCCIC					
Proposed Private Surface Water Drain (Rodding eye, PPIC with 150Ø main runs& PCCIC)	— RE — ● — ○ — —					
Proposed Private Foul Water Drain (PPIC with 150Ø main runs, reduced access chamber PPIC, PCCIC)	PPIC150s					
Proposed private surface water drain (pipe size @ gradient)	150Ø @ 1:100					
Proposed private foul water drain (pipe size @ gradient)	150Ø @ 1:100					
Proposed private permeable block						
Proposed private foul drain point						
Proposed private surface water drain point	• •	Construction Risks	Maintenance/cleanin	-	Demolition/adaptation	n Risks
Proposed private surface water gully	G	this drawing take note of the It is assumed that all works contractor working, where a	on this drawing will be carried appropriate, to an appropriate r	out by a compet method statemer	tent ht.	
Proposed private attenuation tank —		NOTES	ALTH AND ENVIRONMENT	I AL INFORMA	TION BOX	
Existing public sewer		 DO NOT SCALE. Should there be any indicated on other draw site. 	y conflict between the deta wings the Engineer should	ils indicated or be informed P	n this drawing and t RIOR to constructic	hose on on
Proposed overland flood flow route		3. Until technical appround and a standard a standard and a standard	roval has been obtained fro wings issued are Prelimina site work prior to such app	ary and NOT fo	or construction. Sho	uld the
Proposed overland flood flow route in the unlikely event of the drainage network failing		5. The BSP Hazard Id	in metres unless otherwise Jentification and Risk Asses	ssment informa	ation for this project	t must be
Proposed diffuser block		reviewed and understo site.	ood by the contractor PRIO	R to the comm	nencement of any w	orks on
Proposed Rising Main						
Proposed Filter Trench with Perforated Pipe	<u> </u>					
Site Boundary						
Existing Ditch						
Proposed private headwall						
		First Issue				
		FE COMMENT	05/09/23 TG	05/09/23	TG	05/09/23
		REV DRAWN BY	DATE CHECKED BY	/ DATE	APPROVED BY	DATE
		Ũ				
			NOTTINGHAM		23-0452	
		CLIENT APPROVAL	ĒD			
		B - APPROVE	ED WITH COMMENTS			
		C - DO NOT L	JSE			
		STATUS PUR	RPOSE OF ISSUE			
		S1 • CIVIL • STRUCTURAL		• GEOTECH		ONMENTAL
		ha	n		QUALITY ASSURED BS EN ISO 9001	
		CONSULTI	NG	∕ þ		Certifying Reddes
		12 Oxford Street			Design a Constru KITEMA	ction
		PROJECT			KM 718353 BS EN ISO 19	9650
		Clact	on Road, V	Veele	y Heath	
		TITLE				
			Drainage S	Strate	ду	
		CLIENT				
		LI	NT Constru	uction	Ltd.	
						REV
		CKWH-BS	SP-ZZ-XX-[JK-C-	SK241	P01

600 x	600 eccentric access hole	th								
blocks	or precast concrete cover fr		this	drawing take i	nazard/risks norm note of the above		vith the type of works	detailed on	daptation Risks	
Heavy	duty cover slab bedded on F	PC	cont	ractor working	g, where appropri	ate, to an approp	arried out by a comp riate method statem MENTAL INFORM	ent.		
proprie	etary bitumen or resin mastic		1. 2. 3.	DO NOT S This drawir Should the dicated on o	ng is to be read re be any confl	ict between the	with all other rele details indicated hould be informed	on this drawir	ng and those	
and co	over slab to be bedded with , proprietary bitumen or resir	1	ur cc ris	nderstood tha ontractor con sk.	at all drawings nmence site wo	issued are Pre ork prior to sucl	ed from the releva liminary and NOT n approval being g otherwise stated.	for constructi	on. Should the	
mastic	: sealant. Rings to be pointed	1.	re sit 7.	viewed and te. It is the resp	understood by	the contractor e contractor to	Assessment inform PRIOR to the com execute the works alth and Safety at	mencement o at all times in	of any works on	
topping smootl to all b	g to be brought up to a dense h face neatly shaped and fini pranch connections (20mm		C. 8. th ca 9. ar fo 10 11 R	D.M. Regula It is the resp e works. The aused in resp The Contra- ny works. Th und. D. All levels a L. All private egulations 20	ations 2015. ponsibility of the e Client will acc bect of such ap ctor shall check e Engineer sho are related to or drainage works 000, Part H, "D	e Contractor to ept no claims paratus, howe all tie-ins for l uld be notified dnance datum to be in accor rainage and W	locate any service whatsoever in resp ver caused. ine and level with immediately in wr dance with the ree aste disposal".	e apparatus ir pect of losses existing befor iting, should a quirements of	n the vicinity of or damage e commencing any errors be Building	
		underside	13 wi 14 CI 15	 All pipes, o All pipes, o th manufact Pipe which auses 2.23 t All drains i 	chambers and f urers instructio n run adjacent t to 2.25. n the vicinity of	ittings to be ins ns. o buildings sha existing or pro	b be protected in a stalled, bedded an Ill be installed in s posed trees to be	d backfilled ir trict accordan	accordance ce with Part H,	
into ba	EFFECTIVE (mm) 0.6 1.0 1.0 ar 1.25 Joint to be as close as possible to face of manhole to permit satisfactory joint and subsequent movement. Ground				y change in sla er prior to com	countered on s b level be cons mencement ar	site during constru sidered, agreemen nd shall take full ac	t shall be sou count of all re	ght from the estrictions to the	
Distan unders Gen 3	600 x 600 eccentric access hole bedded on mortar. Class B engineering bricks, concrete blocks or precast concrete cover frame seating rings. Heavy duty cover slab bedded on PC chamber section with mortar, proprietary bitumen or resin mastic sealant. Precast concrete sections to B.S 5911 and cover slab to be bedded with mortar, proprietary bitumen or resin mastic sealant. Rings to be pointed. High strength granolithic concrete topping to be brought up to a dense, smooth face neally shaped and finished to al branch connections (20mm minimum thickness) Distance between top of pipe and underside of precast section to be 50mm. Gen 3 or similar Concrete by 75mm minimum. Gen 3 or similar Concrete surround. Rocker pipe, see table for details. CKER PIPE DETAILS Xerr pipe, see table for details. Joint to be as close as possible to face of manhole to permit satisfactory joint and				 18. The layout of pipelines, manholes etc. is designed to suit the permanent case. Additional loads over & above those designed for may arise during the construction process. The Contractor shall provide any necessary temporary protection to ensure that pipelines, manholes etc. are not damaged as a result of his method of working. 19. All Rainwater Pipes are to be constructed to allow rodding from the pipe. 20. The positions of RWPs and foul connection points are shown for information only and are to be confirmed by architect - refer to architects drawings for setting out information. 21. All pipework is to be tested before and after backfilling in accordance with B.S. 1610:1998. 22. All pipework is to be of thermoplastic construction. 					
Rocke	r pipe, see table for details.		li r c c c c f	nformation epresenta carried out stage and but fully in otherwise for any de drawings u	n indicated of ative of the p t full site sup as such it is accordance by the contr viation to the	on this draw roject const ervision of assumed the with the wo actor. BSP e work carrie	ing is to our kn ruction. BSP C the project duri nat the constru- orking drawings Consulting acc ed out on site, been received i	Consulting I ing the con ction has b s unless no ept no resp from that n	struction been carried bted bonsibility oted on the	
		1								
ER (mm)	LENGTH (m)	-								
50			P01	First Issue FE	05/09	/23 T(G 05/09/2	3 то	G 05/09/23	
over	1.25			DRAWN	BY DATI	OFFICE	PRO		BER	
				S Shown	DVAL	TTINGH	AM	23-(0452	
		f			PPROVED	H COMMENTS	6			
					O NOT USE					
			STA	NTUS S1	PURPOSE	of issue	PRELIMIN	ARY		
Crawed			C 12 C	VIL • STRU	S				ASCB(E) Accrediting	
				DJECT					M 718353 5 EN ISO 19650	
	sit				lacton	Road	, Weele	ey He	ath	
45° be	end Pipe		TIT	LE	Privat		inage D t 1 of 2	Details	5	
<u>Eye</u> º					LNT	Cons	truction	Ltd.		
							el type roli (-DR-C		^{REV} 45 P01	

2. This drawing is to be read in conjunction with all other relevant drawings and details. 3. Should there be any conflict between the details indicated on this drawing and those indicated on other drawings the Engineer should be informed PRIOR to construction on

4. Until technical approval has been obtained from the relevant Authority, it should be understood that all drawings issued are Preliminary and NOT for construction. Should the contractor commence site work prior to such approval being given, it is entirely at his own

6. The BSP Hazard Identification and Risk Assessment information for this project must be reviewed and understood by the contractor PRIOR to the commencement of any works on

7. It is the responsibility of the contractor to execute the works at all times in strict accordance with the requirements of the Health and Safety at Work Act 1974, and the

8. It is the responsibility of the Contractor to locate any service apparatus in the vicinity of the works. The Client will accept no claims whatsoever in respect of losses or damage

9. The Contractor shall check all tie-ins for line and level with existing before commencing any works. The Engineer should be notified immediately in writing, should any errors be

11. All private drainage works to be in accordance with the requirements of Building Regulations 2000, Part H, "Drainage and Waste disposal".

12. Pipes with less than 600mm cover are to be protected in accordance with Part H. 13. All pipes, chambers and fittings to be installed, bedded and backfilled in accordance

14. Pipe which run adjacent to buildings shall be installed in strict accordance with Part H,

15. All drains in the vicinity of existing or proposed trees to be constructed in accordance

16. All existing land drains encountered on site during construction to be re-connected.

clients engineer prior to commencement and shall take full account of all restrictions to the

Additional loads over & above those designed for may arise during the construction process. The Contractor shall provide any necessary temporary protection to ensure that pipelines, manholes etc. are not damaged as a result of his method of working. 19. All Rainwater Pipes are to be constructed to allow rodding from the pipe.

20. The positions of RWPs and foul connection points are shown for information only and are to be confirmed by architect - refer to architects drawings for setting out information. 21. All pipework is to be tested before and after backfilling in accordance with B.S.

KEY PLAN	
Construction Risks Maintenance/cleaning Risks Demolition/adaptation Risks	
In addition to the hazard/risks normally associated with the type of works detailed on this drawing take note of the above. It is assumed that all works on this drawing will be carried out by a competent	
contractor working, where appropriate, to an appropriate method statement.	
SAFETY HEALTH AND ENVIRONMENTAL INFORMATION BOX	
First Issue	
P01 FE 05/09/23 TG 05/09/23 TG 05/09/	23
REV COMMENT DRAWN BY DATE CHECKED BY DATE APPROVED BY DATE	
SCALE @ A2 ISSUING OFFICE PROJECT NUMBER	
As Shown NOTTINGHAM 23-0452	
CLIENT APPROVAL	
A - APPROVED	
B - APPROVED WITH COMMENTS	
C - DO NOT USE STATUS PURPOSE OF ISSUE	
S1 PRELIMINARY	
↓ ● CIVIL ● STRUCTURAL ● TRANSPORTATION ● GEOTECHNICAL ● ENVIRONMENTA	۱L
OUALITY ASSURED	
BS EN ISO 9001 BS EN ISO 9001 QUAY AUDITED	
CONSULTING BIM Design and	\mathbf{v}
12 Oxford Street	
КМ 718353 В5 ЕН ISO 19650	
PROJECT	
Clacton Road, Weeley Heath	
TITLE	
Private Drainage Details	
Sheet 2 of 2	
CLIENT	
LNT Construction Ltd.	
LNT Construction Ltd.	

CRWH-BSP-ZZ-XX-DR-C-SK246 P01

MAINTENANCE MANUAL DATA SHEET

Reference: MM-AT-01

V1 – Nov 2016

Element:

Surface Water Pump

Function Served:

Pumping rainwater, which has been collected from the development site to the existing outfall chamber

Features:

Pump rate 1.0 litre / sec, pump details to be provided by Alton Pumps Service Ltd. or any other similar pump feature to be confirmed by management company / contractor.

Owned:

Management Company

Location:

Refer to drawing CRWH-BSP-ZZ-XX-DR-C-SK240.pdf

General Notes:

Maintenance strategy should be reviewed on a regular basis and performance of the maintenance activities assessed.

Reference should be made to recognised industry standards in undertaking maintenance.

Where activities are required outside ownership permission must be sought from relevant party.

Requirement for reporting of inspections to be confirmed by responsible party. May be required as evidence of activities to prove activity as part of funding arrangements.

Routine Maintenance (typically monthly):

				Frequency
e asset Monthly		Repair / replacement of the		As required
ver due		pump if necessary		
ncern				
	er due	er due	er due pump if necessary	er due pump if necessary

Occasional Maintenance (typically every 6 months):

Resident of the property shall organise the pump service with the pump provider in every 6 months (twice in a year) to ensure the pump maintaining the appropriate working condition in accordance with the manufacturer's standard. For every visit, the pump provider offers the following schedule of works:

- Clean the pump
- Check stator case
- Check motor insulation / resistance / continuity
- Check cable condition and security
- Check oil if contaminated renew mechanical seal / oil
- Check impeller
- Check wear ring
- Check wear place / suction cover
- Check volute
- Run pump and check bearings
- Check control panel / contractor / sequence
- Clean and check level control system
- Check discharge connection for leaks
- Check pump fixings on guide rail
- Run pump and check running amps
- Check high level warning system
- Check earth bonding
- Check lifting chains
- Check valves
- Check telemetry if fitted
- Monitoring equipment
- Check general site security & safety
- Check general site condition

Note;

Pump manufacturer has maintenance guidance. This can be obtained from them and appended to this data-sheet and any recommended actions above and beyond stated here should be included in the maintenance regime.

geotechnical				
	ae	ote	cnn	iicai

Infrequent/Corrective Activities:

Reference: MM-AT-01

V1 – Nov 2016

SUDS Element:

Attenuation Tanks

Function Served:

Acting as attenuation tank

Features:

Crate storage with maintenance access tunnel with catch-pits above and below

Owned: Management Company

Location:

Refer to drawing CRWH-BSP-ZZ-XX-DR-C-SK240.pdf

General Notes:

Maintenance strategy should be reviewed on a regular basis and performance of the maintenance activities assessed.

Reference should be made to recognised industry standards in undertaking maintenance.

Where activities are required outside ownership permission must be sought from relevant party.

Refer to section 22 of CIRIA C697 for discussion on maintenance techniques.

Requirement for reporting of inspections to be confirmed by responsible party. May be required as evidence of activities to prove activity as part of funding arrangements.

Routine Maintenance (typically monthly):

Maintenance Activity	Comments	Frequency
Litter and debris removal		Monthly
Inspect structures for evidence of poor operation		Monthly

Occasional Maintenance (typically every 6 months):

Maintenance Activity	Comments	Frequency
Inspect inlet catch pit and pre-treatment components for silt accumulation	Includes visual inspection of inlet chamber, forebay and inspection of flow control.	6 monthly
Visual inspection catch-pits, linking pipework etc for evidence of physical damage	Visual inspection from surface only, CCTV survey required if evidence present of structural issues.	6 monthly
Check mechanical devices within control chambers	Includes inspection of orifice plate for signs of damage	6 monthly

Annual Activities:

Maintenance Activity	Comments	Frequency
Remove sediment from catch-pits	Remove accumulated silt with suction tanker when 50% full.	Annual/as required

Infrequent/Corrective Activities:

Maintenance Activity	Comments	Frequency
Repair/rehabilitation of inlets and outlets.		As required
Jetting and vacuuming inspection tunnel	Remove accumulated silt with suction tanker when 20% section loss (or 100mm whichever the lesser).	As required

Note;

Attenuation crate manufacturers have suppliers maintenance guidance. This should be obtained from the supplier and appended to this data-sheet and any recommended actions above and beyond stated here should be included in the maintenance regime.

Reference: MM-FT-01

V1 – March 2021

SUDS Element:

Filter Trench

Function Served:

Cleanses surface water runoff and facilitates filtration.

Features:

Stone-filled trench.

Owned: Management Company

Location:

Refer to drawing CRWH-BSP-ZZ-XX-DR-C-SK240.pdf

General Notes:

Maintenance strategy should be reviewed on a regular basis and performance of the maintenance activities assessed.

Reference should be made to recognised industry standards in undertaking maintenance.

Where activities are required outside ownership permission must be sought from relevant party.

Refer to section 22 of CIRIA C697 for discussion on maintenance techniques.

Requirement for reporting of inspections to be confirmed by responsible party. May be required as evidence of activities to prove activity as part of funding arrangements.

Routine Maintenance (typically monthly):

Annual Activities:

Maintenance Activity	Comments	Frequency	Maintenance Activity
Litter and debris removal	Litter and debris (removed prior to any grass cutting activity) to minimise risk of shredding litter	Monthly	Tidy all dead growth before start of growing season
Grass cutting of landscaped areas	All cuttings to be removed from SUDS components	Monthly (during growing season) or as required	Prune and trim nearby tree and remove cuttings
Remove nuisance plants	Invasive species should be removed in accordance with best practice	Monthly (at implementation) then as required.	Remove sediment from catch-pit
Inspect any inlet and outlet structures for evidence of		Monthly	Infrequent/Correcti
poor operation			Maintenance Activity
Safety signage and safety equipment inspection	Generally limited to knee-rail fencing	Monthly	Remove dead vegetation from trench edges
			Repair erosion or other

Occasional Maintenance (typically 6 monthly):

Maintenance Activity	Comments	Frequency
Inspect inlet catch pit and pre-treatment components for silt accumulation	Includes visual inspection of inlet chamber, forebay and inspection of flow control.	6 monthly
Visual inspection catch-pits, linking pipework etc for evidence of physical damage	Visual inspection from surface only, CCTV survey required if evidence present of structural issues.	6 monthly

y all dead growth before rt of growing season ine and trim nearby trees Where d remove cuttings a barri upwar outwa (after establ move sediment from Remo ch-pit suction

frequent/Corrective Activities:

Maintenance Activity	Comments	Frequency
Remove dead vegetation from trench edges		As required
Repair erosion or other damage	Required to maintain the bed at original design level	As required
Repair/rehabilitation of any inlets and outlets.		As required
Rehabilitation following a pollution event		As required
Rehabilitate/replace filter medium	Required when all mechanical elements checked and performance remains inadequate.	As required
Jetting of any linking pipework	Where CCTV survey shows siltation of pipework has occurred	As required

Comments	Frequency
	Annually
Where vegetation is planted as a barrier management of upward growth to encourage outward growth is necessary (after shrub seedlings are established).	As required
Remove accumulated silt with suction tanker when 50% full.	As required

Reference: MM-GS-02

V1 – Nov 2016

Element:

Gullies and Catchpits

Function Served: Gullies are drainage pots with grating cover located at the lower side of the road to collect surface rainwater, and allows the rainwater flow into the main drainage network. Catchpits are manholes with the sump to remove debris from the network

Features:

Internal diameter of 450mm (gully) and 450/600mm (catchpit) with a sump to trap rainwater and rubbish.

Owned:

Management Company

Location:

Refer to drawing CRWH-BSP-ZZ-XX-DR-C-SK240.pdf

General Notes:

Maintenance strategy should be reviewed on a regular basis and performance of the maintenance activities assessed.

Reference should be made to recognised industry standards in undertaking maintenance.

Where activities are required outside ownership permission must be sought from relevant party.

Part A: Routine Maintenance (typically monthly):

Maintenance Activity	Comments	Frequency
Litter and debris removal to prevent blockage		Monthly
Inspect structure for evidence of poor operation		Monthly
Inspect cover for any sign of damage		Monthly

Where Part A activities do not address deficient performance refer to Part B, see General Notes.

Part B: Occasional Maintenance (typically 6 monthly):

Maintenance Activity	Comments	Frequency
Carry out gully/catchpit maintenance by sucking and cleaning the gully/catchpit pot		6 monthly
Visual inspection of gullies/catchpits, linking pipework etc for evidence of physical damage	Visual inspection from surface only, CCTV survey required if evidence present of structural issues.	6 monthly

Annual Activities:

Maintenance Activity	Comments	Frequency
Carry out gully/catchpit maintenance by emptying and cleaning the gully/catchpit pot	Employing gully/catchpit emptiers vehicle to empty the gullies/catchpits.	Once every year

Infrequent/Corrective Activities:

Maintenance Activity	Comments	Frequency
Repair/replace cover		As required
Rehabilitate/replacement of the gully	Required when all mechanical elements checked and performance remains inadequate.	As required
Jetting linking pipework	Where CCTV survey shows blockage of the linked pipework	As required

Reference: MM-GS-02

V1 – Nov 2016

Element:

Inspection Chamber

Function Served:

Accessible chamber with cover located at where the pipes change direction and size.

Features:

Plastic PPIC internal diameter of 450mm, 600mm. Concrete PCCIC internal diameter 1050mm, 1200mm or 1500mm, accessible with steps inside the chamber, for maintenance purposes.

Owned:

Management Company

Location:

Refer to drawing CRWH-BSP-ZZ-XX-DR-C-SK240.pdf

General Notes:

Maintenance strategy should be reviewed on a regular basis and performance of the maintenance activities assessed.

Reference should be made to recognised industry standards in undertaking maintenance.

Where activities are required outside ownership permission must be sought from relevant party.

Part A: Routine Maintenance (typically monthly):

Maintenance Activity	Comments	Frequency
Litter and debris removal to prevent blockage		Monthly
Inspect structure for evidence of poor operation		Monthly
Inspect cover for any sign of damage		Monthly

Where Part A activities do not address deficient performance refer to Part B, see General Notes.

Part B: Occasional Maintenance (typically 6 monthly):

Maintenance Activity	Comments	Frequency
Carry out maintenance by cleaning the internal chamber	Includes visual inspection.	6 monthly
Visual inspection of chamber, linking pipework etc for evidence of physical damage	Visual inspection from surface only, CCTV survey required if evidence present of structural issues.	6 monthly

Annual Activities:

Maintenance Activity	Comments	Frequency
Carry out structural inspection to ensure the asset in good working condition		Once every year

Infrequent/Corrective Activities:

Maintenance Activity	Comments	Frequency
Repair/replace cover		As required
Rehabilitate/replacement of the chamber	Required when all mechanical elements checked and performance remains inadequate.	As required
Jetting linking pipework	Where CCTV survey shows blockage of the linked pipework	As required

Reference: MM-PP-01

V2 – June 2015

SUDS Element:

Permeable Paved Driveway

Function Served:

Permeable paving acting as drainage, conveyance, allowing infiltration and functioning as attenuation.

Features:

60mm permeable block paviour, bedding material over 30% voided stone. Including perforated pipework and catch pits for drain down and conveyance.

Owned:

Management Company

Location:

Refer to drawing CRWH-BSP-ZZ-XX-DR-C-SK240.pdf

General Notes:

As a private owner scope of maintenance requirements are limited to what can reasonably be expected under routine maintenance of property. i.e. Part A.

Where normal maintenance is not sufficient items from Part B. of the schedule should be undertaken by a suitably experienced body

Part A: Routine Maintenance (typically monthly):

Maintenance Activity	Comments	Frequency
Litter and debris removal		Monthly
Inspect structures for evidence of poor operation		Monthly

Occasional Maintenance (typically every 6 months):

Maintenance Activity	Comments Frequency		
Brushing of pavement surface	Joints in paving become silted over time. Inspect visually.	6 monthly or more frequently if required	
	Undertake maintenance where joints are greater than 50% silted.		F
Filling joints between paving blocks with suitable material	Following brushing joints may need to be topped up with suitable material. Specification	6 monthly as required following brushing	
	as follows:		F
	"Jointing material: 2/6.3mm clean crushed stone (no fines)		
	to BS RN 13242:2002 or BS EN 12620"		F

Where Part A activities do not address deficient performance refer to Part B, see General Notes.

Part B: Occasional Maintenance (typically every 6 months):

Maintenance Activity	Comments	Frequency
Inspect inlet catch pit and pre-treatment components for silt accumulation	Includes visual inspection of inlet chamber, forebay and inspection of flow control.	Half yearly
Visual inspection catch-pits, linking pipework etc. for evidence of physical damage	Visual inspection from surface only, CCTV survey required if evidence present of structural issues.	Half yearly

Annual Activities:

Maintenance Activity	Comments	Frequency
Remove sediment from catch-pits	Remove accumulated silt with suction tanker when 50% full.	Annual/as required

Infrequent/Corrective Activities:

Maintenance Activity	Comments	Frequency
Repair damage to paving	Damage may include rutting or local failure of structure	As required
Repair/rehabilitation of inlets and outlets.		As required
Rehabilitation following a pollution event	Pollution includes potential sealants of joints	As required
Repair/replace geotextile base.	If evidence from CCTV suggests a direct source of silt is present intrusive works will be required to the geotextile	As required
Rehabilitate sub-base	If, following brushing, the structure continues to perform below standard structural overhaul may be required. Stone may require reprocessing to reinstate original void ratio.	As required Evidence of similar structures installed around the country suggests rebuilding of the structures may be required typically every 25 years.

geotechnical

bsp

BSP Consulting Ltd		Page 1
12 Oxford Street	23-0452	
Nottingham	Clacton Road, Weeley Heath	
NG1 5BG	Greenfield Runoff Rate	Mirro
Date 05/09/2023	Designed by FE	Drainage
File GREENFIELD RUNOFF.SRCX	Checked by TG	Diamage
Micro Drainage	Source Control 2019.1	

ICP SUDS Mean Annual Flood

Input

Return Period (ye	ars)	1		Soil	0.150
Area	(ha)	0.285		Urban	0.000
SAAR	(mm)	550	Region	Number	Region 6

Results 1/s

QBAR Rural 0.1 QBAR Urban 0.1

Q1 year 0.1

Q	l year	0.1
Q30	years	0.2
Q100	years	0.3

SP Consulting Ltd	Page 1	1
2 Oxford Street	23-0452	
lottingham	Clacton Road, Weeley Heath	
IG1 5BG	Micro	
ate 05/09/2023	Designed by FE	าลด
ile 230901_SURFACE_WATER_CA	. Checked by IG	5
licro Drainage	Network 2019.1	
	I by the Modified Rational Method	
	n Criteria for Storm	
Pipe Sizes S	IANDARD Manhole Sizes STANDARD	
	FEH Rainfall Model	
	iod (years) 100 Tall Version 2013	
	te Location GB 615685 220277 TM 15685 20277	
	Data Type Point	
Maximum Rainf Maximum Time of Concentra		
	ge (l/s/ha) 0.000	
Volumetric Ru		
Add Flow / Climate	PIMP (%) 100	
Minimum Backdrop	-	
Maximum Backdrop	-	
Min Design Depth for Optim Min Vel for Auto Desigr		
Min Slope for Optimis		
	ned with Level Soffits <u>rea Diagram for Storm</u>	
	e Area Time Area Time Area s) (ha) (mins) (ha) (mins) (ha)	
0-4 0.000 4	-8 0.101 8-12 0.184 12-16 0.000	
· · · · · ·	a Contributing (ha) = 0.285	
Total	Pipe Volume (m³) = 7.983	
Network	Design Table for Storm	
« - Indi	cates pipe capacity < flow	
PN Length Fall Slope I.Area I		
(m) (m) (1:X) (ha) (m	ins) Flow (1/s) (mm) SECT (mm) De	esign
1.000 24.865 0.188 132.3 0.018	5.00 0.0 0.600 o 150 Pipe/Conduit	0
Net	work Results Table	
PN Rain T.C. US/IL E I	Area Σ Base Foul Add Flow Vel Cap Flo ha) Flow (l/s) (l/s) (l/s) (m/s) (l/s) (l/s)	
PN Rain T.C. US/IL E I	ha) Flow $(1/s)$ $(1/s)$ $(1/s)$ (m/s) $(1/s)$ $(1/s)$	

	onsulti	-	.d									Pag	e 2
	ford St	reet				3-045			_	_			
lottin IG1 5E	2				C	lacto	n Road	d, Wee	eley	Heat	h		
	5/09/2	023			E	esian	ed bv	FE					clo
File 2	30901	SURFA	CE WA	TER CA.		Designed by FE Checked by TG							
	Draina		_			letwor							
<u>Network Design Table for Storm</u>													
PN	Length (m)	Fall (m)	Slope (1:X)	I.Area (ha)		Ba) Flow	ase (l/s)	k (mm)	HYD SECT		Secti	on Type	Auto Desig
2.000	8.480	0.060	141.3	0.021	5.00	0	0.0	0.600	0	150	Pipe/	Conduit	•
3.000	4.959	0.100	49.6	0.023	5.00	0	0.0	0.600	0	150	Pipe/	Conduit	•
2.001	5.656	0.038	148.8	0.000	0.0	0	0.0	0.600	0	150	Pipe/	Conduit	•
1.001	19.169	0.431	44.5	0.006	0.0	0	0.0	0.600	0	150	Pipe/	Conduit	•
4.000	19.854	0.669	29.7	0.022	5.00	0	0.0	0.600	0	150	Pipe/	Conduit	•
1.002	8.221	0.055	149.5	0.000	0.00	0	0.0	0.600	0	150	Pipe/	Conduit	•
5.000	18.483	0.724	25.5	0.022	5.00	0	0.0	0.600	0	150	Pipe/	Conduit	•
	20.252 30.425				0.00			0.600	0		-	Conduit Conduit	
6.000	24.743	0.171	144.7	0.018	5.00	0	0.0	0.600	0	150	- Pipe/	Conduit	-
	2.001				5.00			0.600	0		-	Conduit	
7.001	10.227	0.068	150.4		0.00			0.600	0	150	Pipe/	Conduit	•
				N	etwor	k Resi	ults 1	<u>Table</u>					
P		in 1 hr) (n		US/IL Σ (m)	I.Are (ha)		Base (1/s)		Add (1/	Flow 's)		Cap (1/s)	Flow (l/s)
2.0	00 50	.00	5.17	26.210	0.02	1	0.0	0.0		0.0	0.84	14.9	2.8
3.0	00 50	.00	5.06	26.250	0.02	3	0.0	0.0		0.0	1.43	25.3	3.1
2.0	01 50	.00	5.28	26.150	0.04	4	0.0	0.0		0.0	0.82	14.5	6.0
1.0	01 50	.00	5.69	26.112	0.06	8	0.0	0.0		0.0	1.51	26.7	9.2
4.0	00 50	.00	5.18	26.350	0.02	2	0.0	0.0		0.0	1.86	32.8	3.0
1.0	02 50	.00	5.85	25.681	0.09	0	0.0	0.0		0.0	0.82	14.5	12.2
5.0	00 50	.00	5.15	26.350	0.02	2	0.0	0.0		0.0	2.00	35.4	3.0
1.0		.00		25.626	0.11		0.0			0.0		14.5«	16.0
1.0	004 50	.00	7.57	25.325	0.13	6	0.0	0.0		0.0	0.39	6.9«	18.4
	00 50	.00	5 40	26.300	0.01	8	0.0	0.0		0.0	0.83	14.7	2.4

0.00.00.00.8114.37.90.00.00.00.8214.47.9

7.00050.005.0426.2100.0587.00150.005.2526.1970.058

2 0		-	Ltd								Pa	ge 3
LZ UX.	ford	Stree	t		23.	-0452						
Jottin	ngham				Cla	acton Road	, Wee	eley 1	Heatl	l		
VG1 51	ЗG										M	icro
Date (05/09	/2023			Dea	signed by	FE					rainaq
File 2	23090	1_SUR	FACE_WA	ATER_CA.	Che	ecked by I	G					anay
Micro	Drai	nage			Ne	twork 2019	.1					
				<u>Networ</u>	k Desi	gn Table f	for St	torm				
PN	Lengt	h Fal	l Slop	e I.Area	T.E.	Base	k	HYD	DIA	Sect	ion Ty	pe Auto
	(m)	(m)) (1:X) (ha)	(mins)	Flow (l/s)	(mm)	SECT	(mm)			Desig
6.001	19.16	59 0.2	.74 70.	0 0.006	0.00	0.0	0.600	0	225	Pipe	/Condu	it 🔒
8.000	18.19	93 0.4	95 36.	8 0.022	5.00	0.0	0.600	0	150	Pipe	/Condu	it 🔒
6.002	8.22	21 0.0	55 149.	5 0.000	0.00	0.0	0.600	0	225	Pipe	/Condu	it 🔒
9.000	18.48	33 0.5	50 33.	6 0.022	5.00	0.0	0.600	0	150	Pipe	/Condu	it 🤒
6.003 6.004	20.25 30.52		.35 150. 61 500.		0.00		0.600 1.500	0 0		-	/Condu /Condu	
1.005			36 148.		0.00		0.600	0			/Condu	
			31 149. 31 -17.		0.00		0.600				/Condu /Condu	-
1.008	1.45							0				
		0.0	10 150.	0 0.000	0.00	0.0	0.600	0	150	Pipe	/Condu	it 🔒
P		Rain mm/hr)	T.C. (mins)	N		0.0 Results T E Base Flow (1/s)	able Foul	O Add E	'low	Pipe Vel (m/s)	Cap	
_	(n	Rain m/hr)	T.C. (mins)	<u>N</u> US/IL E (m)	etwork I.Area	Results T Σ Base	able Foul	Add H	'low	Vel	Cap	it 🔒 Flow (l/s)
6.0	(n 001	Rain mm/hr) 50.00	T.C. (mins) 5.70	<u>Ν</u> US/IL Σ (m) 26.054	etwork I.Area (ha) 0.082	Results T E Base Flow (1/s) 0.0	able Foul (1/s) 0.0	Add H	'low s) 0.0	Vel (m/s) 1.57	Cap (1/s) 62.2	it flow (1/s)
6.((n 001 000	Rain mm/hr) 50.00 50.00	T.C. (mins) 5.70 5.18	<u>Ν</u> US/IL Σ (m) 26.054 26.350	etwork I.Area (ha) 0.082 0.022	Results T E Base Flow (1/s) 0.0 0.0	able Foul (1/s) 0.0 0.0	Add H	'low s) 0.0 0.0	vel (m/s) 1.57 1.67	Cap (1/s) 62.2 29.4	<pre>it</pre>
6.(8.(6.((n 001 000 002	Rain mm/hr) 50.00 50.00 50.00	T.C. (mins) 5.70 5.18 5.83	<u>Ν</u> US/IL Σ (m) 26.054 26.350 25.780	etwork I.Area (ha) 0.082 0.022 0.104	<u>E Base</u> Flow (1/s) 0.0 0.0 0.0	able Foul (1/s) 0.0 0.0 0.0	Add H	'low s) 0.0 0.0	vel (m/s) 1.57 1.67 1.07	Cap (1/s) 62.2 29.4 42.4	<pre>it ● Flow (1/s) 11.1 3.0 14.1</pre>
6.(8.(6.(9.((n 001 000 002 000	Rain m/hr) 50.00 50.00 50.00 50.00	T.C. (mins) 5.70 5.18 5.83 5.18	Ν. US/IL Σ (m) 26.054 26.350 25.780 26.350	etwork I.Area (ha) 0.082 0.022 0.104 0.022	<u>E Base</u> Flow (1/s) 0.0 0.0 0.0 0.0	able Foul (1/s) 0.0 0.0 0.0 0.0	Add H	'low s) 0.0 0.0 0.0	vel (m/s) 1.57 1.67 1.07 1.74	Cap (1/s) 62.2 29.4 42.4 30.8	<pre>it</pre>
6.0 8.0 6.0 9.0	(n 001 000 002	Rain mm/hr) 50.00 50.00 50.00	T.C. (mins) 5.70 5.18 5.83 5.18 6.14	<u>Ν</u> US/IL Σ (m) 26.054 26.350 25.780	etwork I.Area (ha) 0.082 0.022 0.104	<u>E Base</u> Flow (1/s) 0.0 0.0 0.0	able Foul (1/s) 0.0 0.0 0.0	Add H	'low s) 0.0 0.0	vel (m/s) 1.57 1.67 1.07 1.74	Cap (1/s) 62.2 29.4 42.4 30.8 42.4	<pre>it</pre>
6.0 8.0 9.0 6.0 1.0	(n 0001 0000 0002 0000 0003 0004 0005	Rain mm/hr) 50.00 50.00 50.00 50.00 50.00 50.00	T.C. (mins) 5.70 5.18 5.83 5.18 6.14 7.14 7.65	N: US/IL 2 (m) 26.054 26.350 25.780 25.725 25.325 25.264	etwork I.Area (ha) 0.082 0.022 0.104 0.022 0.132 0.149 0.285	Results T Σ Base Flow (1/s) 0.0	able Foul (1/s) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	Add H	'low s) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	vel (m/s) 1.57 1.67 1.07 1.74 1.07 0.51	Cap (1/s) 62.2 29.4 42.4 30.8 42.4 20.3 42.6	<pre>it flow (1/s) 11.1 3.0 14.1 3.0 17.9 20.2 38.6</pre>
6.0 8.0 9.0 6.0 1.0 1.0	(n 0001 0002 0002 0000 0003 0004 0005 0006	Rain m/hr) 50.00 50.00 50.00 50.00 50.00 50.00 50.00	T.C. (mins) 5.70 5.18 5.83 5.18 6.14 7.14 7.65 7.75	N: US/IL 2 (m) 26.054 26.350 25.780 25.725 25.325 25.264 24.950	etwork I.Area (ha) 0.082 0.022 0.104 0.022 0.132 0.149 0.285 0.285	Results T Σ Base Flow (1/s) 0.0	able Foul (1/s) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	Add H	<pre>'low s) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.</pre>	vel (m/s) 1.57 1.67 1.07 1.74 1.07 0.51 1.07 0.82	Cap (1/s) 62.2 29.4 42.4 30.8 42.4 20.3 42.6 14.5%	<pre>it flow (1/s) 11.1 3.0 14.1 3.0 17.9 20.2 38.6 38.6 38.6</pre>
6.0 8.0 9.0 6.0 1.0 1.0 1.0	(n 0001 0002 0002 0000 0003 0004 0005 0006	Rain mm/hr) 50.00 50.00 50.00 50.00 50.00 50.00	T.C. (mins) 5.70 5.18 5.83 5.18 6.14 7.14 7.65	N: US/IL 2 (m) 26.054 26.350 25.780 25.725 25.325 25.264 24.950 24.919	etwork I.Area (ha) 0.082 0.022 0.104 0.022 0.132 0.149 0.285	Results T Σ Base Flow (1/s) 0.0	able Foul (1/s) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	Add H	<pre>'low s) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.</pre>	vel (m/s) 1.57 1.67 1.07 1.74 1.07 0.51 1.07 0.82 0.09	Cap (1/s) 62.2 29.4 42.4 30.8 42.4 20.3 42.6	<pre>it flow (1/s) 11.1 3.0 14.1 3.0 17.9 20.2 38.6 38.6 38.6 38.6</pre>
6.0 8.0 9.0 6.0 1.0 1.0 1.0	(m 0001 0000 0002 0000 0003 0004 0005 0006 0007	Rain mm/hr) 50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00	T.C. (mins) 5.70 5.18 5.83 5.18 6.14 7.14 7.65 7.75 12.01 12.04	N: US/IL E (m) 26.054 26.350 25.780 25.725 25.325 25.264 24.950 24.919 26.250	etwork I.Area (ha) 0.082 0.022 0.104 0.022 0.132 0.149 0.285 0.285 0.285 0.285	Results T Σ Base Flow (1/s) 0.0	able Foul (1/s) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	Add H	<pre>'low s) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.</pre>	vel (m/s) 1.57 1.67 1.07 1.74 1.07 0.51 1.07 0.82 0.09	Cap (1/s) 62.2 29.4 42.4 30.8 42.4 20.3 42.6 14.5« 1.6«	<pre>it flow (1/s) 11.1 3.0 14.1 3.0 17.9 20.2 38.6 38.6 38.6 38.6</pre>
6.0 8.0 9.0 6.0 1.0 1.0 1.0	(m 0001 0000 0002 0000 0003 0004 0005 0006 0007	Rain mm/hr) 50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00	T.C. (mins) 5.70 5.18 5.83 5.18 6.14 7.14 7.65 7.75 12.01 12.04	No US/IL E (m) 26.054 26.350 25.780 25.725 25.325 25.264 24.950 24.919 26.250 ee Flowi	etwork I.Area (ha) 0.082 0.022 0.104 0.022 0.132 0.149 0.285 0.285 0.285 0.285 0.285 0.285	Results T E Base Flow (1/s) 0.0	able Foul (1/s) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1	Add H	<pre>'low s) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.</pre>	vel (m/s) 1.57 1.67 1.07 1.74 1.07 0.51 1.07 0.82 0.09	Cap (1/s) 62.2 29.4 42.4 30.8 42.4 20.3 42.6 14.5« 1.6«	<pre>it flow (1/s) 11.1 3.0 14.1 3.0 17.9 20.2 38.6 38.6 38.6 38.6</pre>
6.0 8.0 9.0 6.0 1.0 1.0 1.0	(m 0001 0000 0002 0000 0003 0004 0005 0006 0007	Rain mm/hr) 50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00	T.C. (mins) 5.70 5.18 5.83 5.18 6.14 7.14 7.65 7.75 12.01 12.04 <u>Free</u>	N: US/IL E (m) 26.054 26.350 25.780 25.725 25.325 25.264 24.950 24.919 26.250 e Flowi Outfa:	etwork I.Area (ha) 0.082 0.022 0.104 0.022 0.132 0.149 0.285 0	Results T Σ Base Flow (1/s) 0.0 <td>able Foul (1/s) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 0.9 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1 1.1</td> <td>Add H (1/</td> <td><pre>'low s) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.</pre></td> <td>Vel (m/s) 1.57 1.67 1.07 1.74 1.07 0.51 1.07 0.82 0.09 0.82</td> <td>Cap (1/s) 62.2 29.4 42.4 30.8 42.4 20.3 42.6 14.5« 1.6«</td> <td><pre>it flow (1/s) 11.1 3.0 14.1 3.0 17.9 20.2 38.6 38.6 38.6 38.6</pre></td>	able Foul (1/s) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 0.9 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1 1.1	Add H (1/	<pre>'low s) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.</pre>	Vel (m/s) 1.57 1.67 1.07 1.74 1.07 0.51 1.07 0.82 0.09 0.82	Cap (1/s) 62.2 29.4 42.4 30.8 42.4 20.3 42.6 14.5« 1.6«	<pre>it flow (1/s) 11.1 3.0 14.1 3.0 17.9 20.2 38.6 38.6 38.6 38.6</pre>

BSP Consulting Ltd		Page 4
12 Oxford Street	23-0452	
Nottingham	Clacton Road, Weeley Heath	
NG1 5BG		— Micro
Date 05/09/2023	Designed by FE	Drainage
File 230901_SURFACE_WATER_CA	Checked by TG	Diamage
Micro Drainage	Network 2019.1	
Simulati	ion Criteria for Storm	
Areal Reduction Factor Hot Start (mins) Hot Start Level (mm) Manhole Headloss Coeff (Global) Foul Sewage per hectare (l/s) Number of Input Hydrog	0 Inlet Coeffie 0 Flow per Person per Day (1/per 0.500 Run Time (corage 0.000 ecient 0.800 (day) 0.000 (mins) 60 (mins) 1 4
Number of Offline Con	trols 0 Number of Real Time Controls	
	<u> </u>	
Rainfall Mod Return Period (yea: FEH Rainfall Vers: Data T Summer Sto: Winter Sto: Cv (Summe Cv (Winter Storm Duration (min	rs) 100 ion 2013 ion GB 615685 220277 TM 15685 20277 ype Point rms Yes rms No er) 1.000 er) 0.840	

BSP Consulting Ltd		Page 5
12 Oxford Street	23-0452	
Nottingham	Clacton Road, Weeley Heath	
NG1 5BG		Micro
Date 05/09/2023	Designed by FE	
File 230901_SURFACE_WATER_CA	Checked by TG	Drainage
Micro Drainage	Network 2019.1	
	DS/PN: 1.006, Volume (m ³): 2.2	
Depth (m) Flow (1/s) Depth (m) Flow	7 (1/s) Depth (m) Flow (1/s) Depth (m)	Flow (l/s)
0.001 1.0000 0.600	1.0000 1.200 1.0000 1.500	1.0000

12 Oxford Street Nottingham NG1 5BG	23-045	52		
	1			
NG1 5BG	Clacto	on Road	d, Weeley Heath	
				Micco
Date 05/09/2023	Design	ned by	FE	- Micro
File 230901 SURFACE WATER CA	-	ed by I		Drainag
Micro Drainage		$\frac{1}{2}$ k 2019		
<u>Storage</u>	Structi	ures fo	<u>or Storm</u>	
<u>Porous Car Park Manho</u>	le: Per	meable	Paving, DS/PN: 2.0	000
Infiltration Coefficient Base	(m/hr) (00000	Width (m	u) 5.0
Membrane Percolation	,		Length (n	,
Max Percolation	,		Slope (1:X	
Safety	Factor	2.0	Depression Storage (mm	n) 5
Pc	prosity	0.30	Evaporation (mm/day	7) 3
Invert Lev	ve⊥ (m)	26.210	Cap Volume Depth (m	n) 0.350
<u>Porous Car Park Manho</u>	le: Per	meable	Paving, DS/PN: 3.0	000
Infiltration Coefficient Base	(m/hr) (0.00000	Width (m	n) 5.0
Membrane Percolation	(mm/hr)	1000	Length (m	n) 16.2
Max Percolation	,		Slope (1:X	
-			Depression Storage (mm	
Po Invert Lev	prosity			
Invert Lev	ver (III)	20.230	cap volume bepch (m	1) 0.330
<u>Porous Car Park Manho</u>	le: Per	meable	Paving, DS/PN: 7.0	000
Infiltration Coefficient Base	(m/hr) (0.00000	Width (n	n) 5.0
Membrane Percolation		1000	Length (m	
Max Percolation	n (l/s)	35.4	Slope (1:>	
Safety	Factor prosity	2.0	Depression Storage (mm	
	-		Evaporation (mm/day Cap Volume Depth (m	
Tank or Pond 1	Manhole:	: TANK,	DS/PN: 1.006	
Inve	ert Level	(m) 24	.950	
Depth (m) Area (m²) De	epth (m)	Area (m	²) Depth (m) Area (m ²)	
0.000 195.0	1.200	195	.0 1.201 0.0)
©19	82-2019	Innov	yze	

BSP Consu	lting Ltd						Page 7
12 Oxford	-		23-04	452			
Nottingha	m		Clact	ton Road	d, Weeley He	eath	
NG1 5BG					· <u> </u>		Micco
Date 05/0	9/2023		Desi	gned by	FE		Micro
	01 SURFACE WAT	TER CA		ked by 1			Drainage
Micro Dra				ork 2019			
MICIO DIA	Illage		Netwo	JIK ZUIS	• • •		
2 vear R	eturn Period S	Summary o	f Crit	ical Re	sults by Max	kimum Lev	el (Rank 1)
				Storm	<u>-</u>		<u> </u>
				on Criter		6 m · 1 m	
		art (mins)			nal Flow - % D Factor * 10		
	Hot Start 1			1111		Coeffiecie	2
	le Headloss Coefi	(Global)	0.500	Flow per			
Foul	l Sewage per hect	care (l/s)	0.000				
	Number of In	put Hvdrog	raphs 0	Number	of Storage Sti	ructures 4	
					of Time/Area I		
	Number of O	ffline Con	trols 0	Number o	of Real Time (Controls 0	
		Sunth	etic Ra	infall De	etails		
	Ra	infall Mod		IIIIAII De	<u>ctarrs</u>	FEH	
	FEH Rain	fall Versi	on			2013	
	S			15685 22	0277 TM 15685		
		Data Ty Cv (Summe	-			Point 1.000	
		Cv (Summe Cv (Winte				1.000	
	Margin for Floc		-		a a a a d	300 t (Eutondo	
		-	TIMEST TS Stat	-	econd Increment		a) ON
			VD Stat				ON
		Inert	ia Stat	us			ON
	Pro	ofile(s)			Sum	mer and Wi	nter
	Duration(s)	(mins)			0, 180, 240,		
			/20	, 960, 14	40, 2160, 288	0, 4320, 5 0, 8640, 1	
I	Return Period(s)	(years)			720	2, 30,	
	Climate Cha	ange (%)				0, 35	, 40
	US/MH				First (X)	First (Y)	First (Z)
PN	Name	Storm	Period	Change	Surcharge	Flood	Overflow
1.000	SW RE01	15 Summer	2	+0%	30/15 Summer		
	Permeable Paving		2		30/15 Summer		
	Permeable Paving		2 2		30/15 Summer		
2.001		30 Summer 30 Summer	2	+0% +0%	30/15 Summer 30/15 Summer		
4.000		15 Summer	2		30/15 Summer		
1.002		30 Summer	2		2/15 Summer		
5.000		15 Summer	2		30/15 Summer		
1.003		30 Summer 30 Summer	2 2	+0% +0%	2/15 Summer 2/15 Summer		
6.000		15 Summer	2		100/15 Summer		
	Permeable Paving		2		30/15 Summer		
7.001	SW MH05	30 Summer	2	+0%	30/15 Summer		
		©] 9	82-201	.9 Innov	vze		
				•	-		

BSP Consult	ing Lta						P	age 8		
12 Oxford S	treet		23-04	452			Г			
Nottingham			Clact	ton Road,	Weeley	Heath				
NG1 5BG							N	Aicco		
Date 05/09/	2023		Desid	gned by FE	1			Micro		
File 230901	-	ked by TG				Drainago				
File 230901_SURFACE_WATER_CA Checked by TG Micro Drainage Network 2019.1										
	uge		neewe	JIK 2019.1	-					
2 vear Bet	urn Period S [.]	ummary o	f Crit:	ical Resul	ltshvi	Mavimur	m T.ovol	(Rank 1		
<u>z year net</u>	uni rerioù 5	uninary O.		<u>Storm</u>		Maximu	п пелет	(nain 1		
			101	SCOTI						
			Water	Surcharged	Flooded			Pipe		
	US/MH	Overflow	Water Level	Surcharged Depth			Overflow	-		
PN	US/MH Name	Overflow Act.		-				v Flow		
	Name		Level (m)	Depth (m)	Volume (m³)	Flow / Cap.	(1/s)	v Flow (1/s)		
1.000	•	Act.	Level	Depth (m) -0.101	Volume (m ³) 0.000	Flow / Cap. 0.23	(1/s)	v Flow		
1.000 2.000 Pe	Name SW RE01 rmeable Paving	Act.	Level (m) 26.349	Depth (m) -0.101	Volume (m ³) 0.000 0.000	Flow / Cap. 0.23 0.16	(1/s)	<pre>v Flow (1/s) 3.3</pre>		
1.000 2.000 Pe	Name SW RE01	Act.	Level (m) 26.349 26.250	Depth (m) -0.101 -0.110 -0.111	Volume (m ³) 0.000 0.000 0.000	Flow / Cap. 0.23 0.16 0.15	(1/s)	<pre>v Flow (1/s) 3.3 2.0</pre>		
1.000 2.000 Pe 3.000 Pe	Name SW RE01 rmeable Paving rmeable Paving	Act.	Level (m) 26.349 26.250 26.289	Depth (m) -0.101 -0.110 -0.111	Volume (m ³) 0.000 0.000 0.000 0.000	Flow / Cap. 0.23 0.16 0.15 0.41	(1/s)	<pre>v Flow (1/s) 3.3 2.0 2.9</pre>		
1.000 2.000 Pe 3.000 Pe 2.001	Name SW RE01 rmeable Paving rmeable Paving SW MH01	Act.	Level (m) 26.349 26.250 26.289 26.217	Depth (m) -0.101 -0.110 -0.111 -0.083	Volume (m ³) 0.000 0.000 0.000 0.000 0.000	Flow / Cap. 0.23 0.16 0.15 0.41 0.33	(1/s)	<pre>v Flow (1/s) 3.3 2.0 2.9 5.0</pre>		
1.000 2.000 Pe 3.000 Pe 2.001 1.001	Name SW RE01 rmeable Paving rmeable Paving SW MH01 SW MH02	Act.	Level (m) 26.349 26.250 26.289 26.217 26.171	Depth (m) -0.101 -0.110 -0.111 -0.083 -0.091	Volume (m ³) 0.000 0.000 0.000 0.000 0.000 0.000	Flow / Cap. 0.23 0.16 0.15 0.41 0.33 0.13	(1/s)	<pre>Flow (1/s) 3.3 2.0 2.9 5.0 8.2</pre>		
1.000 2.000 Pe 3.000 Pe 2.001 1.001 4.000	Name SW RE01 rmeable Paving rmeable Paving SW MH01 SW MH02 SW RE02	Act.	Level (m) 26.349 26.250 26.289 26.217 26.171 26.386	Depth (m) -0.101 -0.110 -0.111 -0.083 -0.091 -0.114	Volume (m ³) 0.000 0.000 0.000 0.000 0.000 0.000 0.000	Flow / Cap. 0.23 0.16 0.15 0.41 0.33 0.13 0.80	(1/s)	Flow (1/s) 3.3 2.0 2.9 5.0 8.2 4.1		
1.000 2.000 Pe 3.000 Pe 2.001 1.001 4.000 1.002	Name SW RE01 rmeable Paving rmeable Paving SW MH01 SW MH02 SW RE02 SW MH03	Act.	Level (m) 26.349 26.250 26.289 26.217 26.171 26.386 25.884	Depth (m) -0.101 -0.110 -0.111 -0.083 -0.091 -0.114 0.053	Volume (m ³) 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	Flow / Cap. 0.23 0.16 0.15 0.41 0.33 0.13 0.80 0.12	(1/s)	<pre>Flow (1/s) 3.3 2.0 2.9 5.0 8.2 4.1 10.1</pre>		
1.000 2.000 Pe 3.000 Pe 2.001 1.001 4.000 1.002 5.000	Name SW RE01 rmeable Paving rmeable Paving SW MH01 SW MH02 SW RE02 SW MH03 SW RE03	Act.	Level (m) 26.349 26.250 26.289 26.217 26.171 26.386 25.884 26.385	Depth (m) -0.101 -0.110 -0.111 -0.083 -0.091 -0.114 0.053 -0.115 0.079	Volume (m ³) 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	Flow / Cap. 0.23 0.16 0.15 0.41 0.33 0.13 0.80 0.12 0.94	(1/s)	<pre>Flow (1/s) 3.3 2.0 2.9 5.0 8.2 4.1 10.1 4.1</pre>		
1.000 2.000 Pe 3.000 Pe 2.001 1.001 4.000 1.002 5.000 1.003	Name SW RE01 rmeable Paving rmeable Paving SW MH01 SW MH02 SW RE02 SW MH03 SW RE03 SW MH04	Act.	Level (m) 26.349 26.250 26.289 26.217 26.171 26.386 25.884 26.385 25.855	Depth (m) -0.101 -0.110 -0.111 -0.083 -0.091 -0.114 0.053 -0.115 0.079 0.271	Volume (m ³) 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	Flow / Cap. 0.23 0.16 0.15 0.41 0.33 0.13 0.80 0.12 0.94 2.11	(1/s)	Flow (1/s) 3.3 2.0 2.9 5.0 8.2 4.1 10.1 4.1 12.8		
1.000 2.000 Pe 3.000 Pe 2.001 1.001 4.000 1.002 5.000 1.003 1.004 6.000	Name SW RE01 rmeable Paving rmeable Paving SW MH01 SW MH02 SW RE02 SW MH03 SW RE03 SW MH04 SW RE04	Act.	Level (m) 26.349 26.250 26.289 26.217 26.171 26.386 25.884 26.385 25.855 25.746	Depth (m) -0.101 -0.110 -0.111 -0.083 -0.091 -0.114 0.053 -0.115 0.079 0.271 -0.100	Volume (m ³) 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	Flow / Cap. 0.23 0.16 0.15 0.41 0.33 0.13 0.80 0.12 0.94 2.11 0.24	(1/s)	<pre>Flow (1/s) 3.3 2.0 2.9 5.0 8.2 4.1 10.1 4.1 12.8 14.1</pre>		

PN	US/MH Name	Status	Level Exceeded
1.000	SW RE01	OK	
2.000	Permeable Paving	OK	
3.000	Permeable Paving	OK	
2.001	SW MH01	OK	
1.001	SW MH02	OK	
4.000	SW RE02	OK	
1.002	SW MH03	SURCHARGED	
5.000	SW RE03	OK	
1.003	SW MH04	SURCHARGED	
1.004	SW RE04	SURCHARGED	
6.000	SW RE05	OK	
7.000	Permeable Paving	OK	
7.001	SW MH05	OK	

	sulting	Ltd							Page 9
2 Oxfo	rd Stre	et		23-0	23-0452				
Notting	ham			Clac	Clacton Road, Weeley Heath				
IG1 5BG									
Date 05	/09/202	3		Desi	gned b	y FE			Micro
File 23	0901 SU	RFACE WAT	ER CA		ked by	-			Drainac
	rainage	_			ork 201				_
IICIO D.	Lainage			INC CW	JIK 20.	1			
2 vear	Return	Period S	ummary (of Crit	ical R	esults	hv Max	imum Level	l (Rank 1
<u>z your</u>	neeurn	101104 0	<u>anniar</u> y		<u>Storm</u>	004100	<u>by man</u>		
	US/MH			Climate) First (Z)	
PN	Name	Storm	Period	Change	Surcl	harge	Flood	Overflow	Act.
6.001	SW MH06	30 Summe	r 2	+0%	30/15	Summer			
8.000	SW RE06	15 Summe	r 2	+0%	100/15	Summer			
6.002	SW MH07	15 Summe	r 2	+0%	30/15	Summer			
9.000	SW RE07	15 Summe	r 2	+0%	100/15	Summer			
6.003	SW MH08	15 Summe	r 2	+0%	30/15	Summer			
C 001	SW RE08	15 Summe	r 2	+0%	30/15	Summer			
6.004	0.1.1.200				00/±0				
	SW MH08	15 Summe	r 2	+0%	/ -	Summer			
					30/15				
1.005 1.006	SW MH08 TANK	15 Summe	r 2	+0%	30/15 2/60	Summer			
1.005 1.006 1.007	SW MH08 TANK	15 Summe 360 Winte	r 2 r 2	+0% +0%	30/15 2/60	Summer Summer			
1.005 1.006 1.007	SW MH08 TANK SW MH09	15 Summe 360 Winte 2880 Summe 960 Summe	r 2 r 2 r 2	+0% +0% +0% +0%	30/15 2/60	Summer Summer	Pipe		
1.005 1.006 1.007	SW MH08 TANK SW MH09	15 Summe 360 Winte 2880 Summe	r 2 r 2 r 2	+0% +0% +0% +0%	30/15 2/60 2/15	Summer Summer	Pipe w Flow		Level
1.005 1.006 1.007	SW MH08 TANK SW MH09 SW MH10	15 Summe 360 Winte 2880 Summe 960 Summe Water Su	r 2 r 2 r 2 rr	+0% +0% +0% +0%	30/15 2/60 2/15	Summer Summer Summer	-	Status	Level Exceeded
1.005 1.006 1.007 1.008	SW MH08 TANK SW MH09 SW MH10	15 Summe 360 Winte 2880 Summe 960 Summe Water Su Level (m)	r 2 r 2 r 2 rcharged Depth	+0% +0% +0% Flooded Volume	30/15 2/60 2/15 Flow /	Summer Summer Summer	w Flow	Status	Exceeded
1.005 1.006 1.007 1.008 PN 6.001	SW MH08 TANK SW MH09 SW MH10 US/MH Name	15 Summe 360 Winte 2880 Summe 960 Summe Water Su Level (m) 26.114	r 2 r 2 r 2 rcharged Depth (m)	+0% +0% +0% +0% Flooded Volume (m ³)	30/15 2/60 2/15 Flow / Cap.	Summer Summer Summer	w Flow (l/s)		Exceeded
1.005 1.006 1.007 1.008 PN 6.001 8.000	SW MH08 TANK SW MH09 SW MH10 US/MH Name SW MH06	15 Summe 360 Winte 2880 Summe 960 Summe Water Su Level (m) 26.114 26.389	r 2 r 2 r 2 rcharged Depth (m) -0.165	+0% +0% +0% +0% Flooded Volume (m ³) 0.000	30/15 2/60 2/15 Flow / Cap. 0.16	Summer Summer Summer	w Flow (1/s) 9.2	OK	Exceeded
1.005 1.006 1.007 1.008 PN 6.001 8.000 6.002	SW MH08 TANK SW MH09 SW MH10 US/MH Name SW MH06 SW RE06	15 Summe 360 Winte 2880 Summe 960 Summe Water Su Level (m) 26.114 26.389 25.877	r 2 r 2 r 2 rcharged Depth (m) -0.165 -0.111	+0% +0% +0% Flooded Volume (m ³) 0.000 0.000	30/15 2/60 2/15 Flow / Cap. 0.16 0.15	Summer Summer Summer	<pre>w Flow (1/s) 9.2 4.1</pre>	OK OK	Exceeded
1.005 1.006 1.007 1.008 PN 6.001 8.000 6.002 9.000	SW MH08 TANK SW MH09 SW MH10 US/MH Name SW MH06 SW RE06 SW MH07	15 Summe 360 Winte 2880 Summe 960 Summe Water Su Level (m) 26.114 26.389 25.877 26.388	r 2 r 2 r 2 r 2 r 2 r 2 r 2 r 2 r 2 r 2	+0% +0% +0% +0% Flooded Volume (m ³) 0.000 0.000 0.000	30/15 2/60 2/15 Flow / Cap. 0.16 0.15 0.38	Summer Summer Summer	<pre>w Flow (l/s) 9.2 4.1 12.6</pre>	OK OK	Exceeded
1.005 1.006 1.007 1.008 PN 6.001 8.000 6.002 9.000 6.003	SW MH08 TANK SW MH09 SW MH10 US/MH Name SW MH06 SW RE06 SW MH07 SW RE07	15 Summe 360 Winte 2880 Summe 960 Summe Water Su Level (m) 26.114 26.389 25.877 26.388 25.831	r 2 r 2 r 2 r 2 r 2 r 2 r 2 r 2 r 2 r 2	+0% +0% +0% +0% Flooded Volume (m ³) 0.000 0.000 0.000 0.000	30/15 2/60 2/15 Flow / Cap. 0.16 0.15 0.38 0.14	Summer Summer Summer	<pre>w Flow (l/s) 9.2 4.1 12.6 4.1</pre>	OK OK	Exceeded
1.005 1.006 1.007 1.008 PN 6.001 8.000 6.002 9.000 6.003 6.004	SW MH08 TANK SW MH09 SW MH10 US/MH Name SW MH06 SW RE06 SW MH07 SW RE07 SW RE07 SW MH08	15 Summe 360 Winte 2880 Summe 960 Summe Water Su Level (m) 26.114 26.389 25.877 26.388 25.831 25.519	r 2 r 2 r 2 rcharged Depth (m) -0.165 -0.111 -0.128 -0.112 -0.119	+0% +0% +0% +0% Flooded Volume (m ³) 0.000 0.000 0.000 0.000 0.000 0.000	30/15 2/60 2/15 Flow / Cap. 0.16 0.15 0.38 0.14 0.45 0.98	Summer Summer Summer	<pre>w Flow (1/s) 9.2 4.1 12.6 4.1 17.1</pre>	OK OK OK	Exceeded
1.005 1.006 1.007 1.008 PN 6.001 8.000 6.002 9.000 6.003 6.004	SW MH08 TANK SW MH09 SW MH10 US/MH Name SW RE06 SW MH06 SW RE06 SW MH07 SW RE07 SW RE08 SW RE08 SW RE08 SW MH08	15 Summe 360 Winte 2880 Summe 960 Summe Water Su Level (m) 26.114 26.389 25.877 26.388 25.831 25.519	r 2 r 2 r 2 r 2 r 2 r 2 r 2 r 2 r 2 r 2	+0% +0% +0% +0% Flooded Volume (m ³) 0.000 0.000 0.000 0.000 0.000 0.000	30/15 2/60 2/15 Flow / Cap. 0.16 0.15 0.38 0.14 0.45 0.98	Summer Summer Summer	<pre>w Flow (1/s) 9.2 4.1 12.6 4.1 17.1 18.9 29.9</pre>	OK OK OK	Exceeded
1.005 1.006 1.007 1.008 PN 6.001 8.000 6.002 9.000 6.003 6.004 1.005 1.006	SW MH08 TANK SW MH09 SW MH10 US/MH Name SW RE06 SW MH06 SW RE06 SW MH07 SW RE07 SW RE08 SW RE08 SW RE08 SW MH08	15 Summe 360 Winte 2880 Summe 960 Summe Water Su Level (m) 26.114 26.389 25.877 26.388 25.831 25.519 25.480 25.225	r 2 r 2 r 2 r 2 r 2 r 2 r 2 r 2 r 2 r 2	+0% +0% +0% +0% Flooded Volume (m ³) 0.000 0.000 0.000 0.000 0.000 0.000 0.000	30/15 2/60 2/15 Flow / Cap. 0.16 0.15 0.38 0.14 0.45 0.98 1.00	Summer Summer Summer	<pre>w Flow (1/s) 9.2 4.1 12.6 4.1 17.1 18.9 29.9 1.0</pre>	OK OK OK OK	Exceeded

12 Oxford Street 23-0452 NotLingham Clacton Road, Weeley Heath NotLingham Clacton Road, Weeley Heath NotS 35G Designed by FE File 230901_SURPACE_WATER_CA Checked by TG Micro Drainage Network 2019.1 30 year Return Feriod Summary of Critical Results by Maximum Level (Rank 1) for Storm for Storm Simulation Criteria Areal Reduction Factor 1.000 Additional Flow - % of Total Flow 0.000 Mache Reduction Factor 1.000 MoD Pactor 1.100*/A Storage 0.000 None For Storm Senders of Global) 0.500 Flow per Person per Day (L/per/Ay) 0.000 Number of Coline Controls 1 Number of Time/Area Diagrams 0 Number of Offine Controls 0 Number of Storage Structures 4 Number of Offine Controls 1 Number of Time/Area Diagrams 0 Number of Offine Controls 0 Number of Real Time Controls 0 Structures 4 Number of Offine Controls 1 Number of Storage Structures 4 None of Controls 0 Number of Offine Controls 1 Number of Storage Structures 4 Not 1000 Number of Start (mins) 200.0 Number of Plond Sik Warning (mm) 200.0 Not Status ON Duraction(s) (mins) 15, 30, 60, 120, 180, 240, 540, 440, 600, 720, 960, 1000, 720, 960, 1400, 2160, 2800, 4820, 600, 720, 960, 100	BSP Cons	ulting Ltd						Page 10
Nottingham Clactor Road, Weeley Heath Not 586 Date 05/09/2023 File 230901_SURFACE_NATER_CA Micro Drainage Network 2019.1 30 year Return Period Summary of Critical Results by Maximum Level (Rank 1) for Start funns) 0 MaD Fator * 10m*/ha Storage 0.000 Not Start funns) 0 MaD Fator * 10m*/ha Storage 0.000 Not Start Level (mm) 0 Inlet Coefficient 0.000 Not Start Level (mm) 0 Inlet Coefficient 0.000 Foul Sewage per hectare (L/s) 0.000 Foul Flow -% of Total Flow -% of Jone Number of Input Hydrographs 0 Number of Storage Structures 4 Number of Online Controls 1 Number of Time/Ates Diagrams 0 Number of Online Controls 1 Number of Real Time Controls 0 Synthetic Rainfall Perals Reinfall Model FEN FEH Rainfall Version GB 015665 220277 TM 15665 20277 Data Type Point CV (Sumer) 1.000 Nargin for Flood Rick Warning (mm) 300.0 Analysis Timestep 2.5 Second Increment (Extended) D73 Status ON Four Status ON Four Status ON Four Status ON Four Status ON Four Status ON Return Period (s) (years) 2.0 slow 60, 1000 Return Period (s) (years) 2.0 +355 30/15 Summer 2.000 Formeable Paving 30 Summer 30 +355 30/15 Summer 2.000 Formeable Paving 30 Summer 30 +355 30/15 Summer 2.001 SW MEDI 15 Summer 30 +355 30/15 Summer 3.000 Permeable Paving 30 Summer 30 +355 30/15 Summer 3.000 SW MEDI 15 Summer 30 +355 30/15 Summer 3.000 SW MEDI		-		23-04	452			
NG1 SEC Designed by FE Date 05/09/2023 Designed by TE File 23001_SURFACE_NATER_CA Checked by TG Micro Drainage Network 2019.1 30 year Return Period Summary of Critical Results by Maximum Level (Rank 1) for Start (wins) 0 Micro Drainage Network 2019.1 Simulation Criteria Areal Reduction Factor 1.000 Additional Flow - % of Total Flow 0.000 Not Start (wins) 0 Manbel Readices Coeff (Global) 0.500 Flow per Person per Day (1/per/day) 0.000 Foul Swage per hectare (1/s) 0.000 Number of Input Hydrographs 0 Number of Storage Structures 4 Number of Offline Controls 0 Number of Storage Structures 4 Number of Offline Controls 0 Number of Twe/Area Diagrams 0 Number of Offline Controls 0 Number of Real Time Controls 0 Cv (Gummer) 2013 Site Location GE Gi5685 220277 TM 15665 20277 Data Type Date Type Pint CV (Summer) 1.000 Margin for Flood Risk Warning (mm) 300.0 Margin for Flood Risk Warning (mm) 300.0 Profile(s) Summer and Winter Duration(s) (mins) 15, 30, 60, 120, 180, 240, 360, 480, 600, 120, 960, 1440, 2160, 2880, 4320, 5760, 0, 35, 40 VS/MB Return Climate First (X) First (Y) First (2) Profile(s) 2., 30, 100 Climate Change (h) 0, 355 30/15 Summer <t< td=""><td></td><td></td><td></td><td></td><td>-</td><td>d. Weelev H</td><td>eath</td><td></td></t<>					-	d. Weelev H	eath	
Date 05/09/2023 Designed by FE Checked by TG File 220301_SURFACE_WATER_CL Network 2019.1 Designed by FE 30 year Return Period Summary of Critical Results by Maximum Level (Rank 1) Intervent 2019.1 30 year Return Period Summary of Critical Results by Maximum Level (Rank 1) Intervent 2019.1 30 year Return Period Summary of Critical Results by Maximum Level (Rank 1) Intervent 2019.1 30 year Return Period Summary of Critical Results by Maximum Level (Rank 1) Intervent 2019.1 30 year Return Period Summary of Critical Results by Maximum Level (Rank 1) Intervent 2019.1 30 year Return Period Summary of Critical Results by Maximum Level (Rank 1) Intervent 2019.1 30 year Return Period Summary of Critical Results by Maximum Level (Rank 1) Intervent 2019.1 30 hot Start (wins) 0 Matter 2019.1 30 hot Start (wins) 0 Matter 2019.1 30 hot Start (wins) 0.000 Number of Intervent 2019.1 30 hot Start (wins) 0.000 Number of Offline Controls 0 Number of Offline Controls 0 Number of Time/Area Diagrams 0 Number of Offline Controls 0 Number of Starts Starts 000 Nalphain Starts Doffline Controls 0 Summer 10000		ant		Ciuc		a, weerey in	cacii	
File 230901_SURFACE_WATER_CA Checked by TG Nitoro Drainage Network 2019.1 30 year Return Period Summary of Critical Results by Maximum Level (Rank 1) for Storm Simulation Criteria Areal Reduction Partor 1.000 Additional Plow - % of Total Flow 0.000 Not Start fervel (mm) 0 MADD Pator * 10m*/ha Storage 0.000 Nonber of Input Nydrographs 0 Number of Storage Structures 4 Number of Office Controls 1 Number of Storage Structures 4 Number of Office Controls 1 Number of Storage Structures 4 Number of Office Controls 1 Number of Storage Structures 4 Number of Office Controls 1 Number of Time/Krae Diagrams 0 Number of Office Controls 1 Number of Storage Structures 4 Number of Office Controls 1 Number of Structures 4 Number of Storage Structures 4 Number of Office Str		09/2023		Desi	med by	 FF		MICIO
Micro Drainage Network 2019.1 30 year Return Period Summary of Critical Results by Maximum Level (Rank 1) for Storm Simulation Criteria Areal Reduction Factor 1.000 Additional Flow - % of Total Flow 0.000 Hot Start Level (mins) 0 MADD Pactor * 10m?/ha Storage 0.000 Hot Start Level (m) 0 Inlet Coefficient 0.800 Manhole Readloss Coeff (Glohal) 0.500 Flow per Person per Day (1/per/day) 0.000 Foul Sewage per hectare (1/s) 0.000 Number of Online Controls 0 Number of Storage Structures 4 Number of Online Controls 0 Number of Real Time Controls 0 Number of Online Controls 0 Number of Real Time Controls 0 Summer and Winter 1 1000 Margin for Flood Risk Warning (mm) 300.0 Analysis Timestep 2.5 Second Increment (Extended) DYS Status 0N Tertia Status 0N Profile(s) Summer and Winter Duration(s) (mins) 15, 30, 60, 120, 180, 240, 360, 480, 600, 720, 8640, 10080 Return Period(s) (years) 20, 960, 1440, 210, 280, 4320, 5760, 7200, 8640, 20080 Return Period(s) (years) 20, 960, 1400, 210, 280, 4320, 5760, 7200, 8640, 20080 Return Period(s) (years) 20, 358 30/15 Summer 2.000 Permeable Paving 30 Summer 30 +358 30/15 Summer 2.001 SW MK01 35 Summer 30 +358 30/15 Summer 3.003 SW MK01 35 Summer 30 +358 30/15 Summer 3.004 SW MK02 15 Summer 30 +358 30/15 Summer 3.005 SW MK03 15 Summer 30 +358 30/15 Summer 3.006 SW RE05 15 Summer 30 +358 30/15								Drainage
30 year Return Period Summary of Critical Results by Maximum Level (Rank 1) for Storm Simulation Criteria Areal Reduction Factor 1.000 Additional Flow - % of Total Flow 0.000 Bot Start (mins) 0 MADD Factor * 10m*/ha Storage 0.000 Mathole Headloss Coeff (Global) 0.500 Flow per Person per Day (1/per/day) 0.000 Foul Sewage per hectare (1/a) 0.000 Number of Input Hydrographs 0 Number of Storage Structures 4 Number of Ofline Controls 1 Number of Time/Area Diagrams 0 Number of Ofline Controls 1 Number of Real Time Controls 0 Synthetic Rainfall Medel Example Field Status 2013 Site Location OB 615685 220277 TM 15685 20277 Data Type Ov (Numer) 1.000 Margin for Flood Risk Warning (mm) Analysis Timestep 2.5 Second Increment (Extended) DIS Status 300.0 Analysis Timestep 2.5 Second Increment (Extended) DIS Status Duration(s) (mins) 15, 30, 60, 120, 180, 240, 360, 480, 600, 720, 960, 1440, 2160, 240, 360, 420, 5760, 7200, 8640, 10000 Return Derid(s) (years) 2, 30, 100 Climate Change (%) 2, 30, 100 C, 35, 40 1.000 SW RED1 15 Summer 30 +35% 30/15 Summer 3.000 Permeable Paving 30 Summer 30 +35% 30/15 Summer 3.000 Permeable Paving 30 Summer 30 +35% 30/15 Summer 3.000 SW RED1 15 Summer 30 +35% 30/15 Summer 3.000 SW RED2 15 Summer 30 +35% 30/15 Summer			LER_CA		_			
For Summer and WinterDescription For Summer and Winter for Storage Structures 4Number of Ingut Hydrographs 0 Number of Storage Structures 4Number of Ingut Hydrographs 0 Number of Storage Structures 4Number of Ingut Hydrographs 0 Number of Storage Structures 4Number of Ingut Hydrographs 0 Number of Storage Structures 4Number of Ingut Hydrographs 0 Number of Storage Structures 4Number of Offline Controls 1 Number of Time/Area Diagrams 0Number of Offline Controls 1 Number of Time/Area Diagrams 0Number of Offline Controls 0 Number of Real Time Controls 0DETER Time Time Time Time Time Time Time Time	Micro Dr	ainage		Netwo	ork 2019	9.1		
Areal Reduction Factor 1.000 Additional Flow - % of Total Flow 0.000 Hot Start (mm) 0 MADD Factor * 100 ⁺ /ha Storage 0.000 Hot Start Level (mm) 0 Inlet Coefficcient 0.800 Manhole Headloss Coeff (Global) 0.500 Flow per Person per Day (1/per/day) 0.000 Foll Sewage per hectare (1/s) 0.000 Number of Input Hydrographs 0 Number of Storage Structures 4 Number of Offline Controls 1 Number of Time/Area Diagrams 0 Number of Offline Controls 1 Number of Tame/Area Diagrams 0 Number of Offline Controls 0 Number of Real Time Controls 0 Synthetic Rainfall Details Rainfall Model FRH Rainfall Details Rainfall Model FRH Rainfall Details Rainfall Nodel FRH Rainfall Controls 0 Margin for Flood Risk Warning (mm) 300.0 Margin for Flood Risk Warning (mm) 300.0 Margin for Flood Risk Warning (mm) 300.0 Number of Number of Starus ON DVD Status ON Inertia Status ON Frofile(s) Summer and Winter Duration(s) (mins) 15, 30, 60, 120, 180, 240, 360, 480, 600, 7200, 960, 1440, 2160, 2880, 4320, 5760, 7200, 960, 1440, 2160, 2880, 4320, 5760, 7200, 9600, 1400, 2160, 2000 Overflow Return Period(s) (years) Climate Change (%) 0, 35, 40 US/MH Return Climate First (X) First (Y) First (Z) FN Name Storm Period Change Surcharge Flood Overflow 1.000 SW RED1 15 Summer 30 +358 30/15 Summer 2.001 SW MHO1 30 Summer 30 +358 30/15 Summer 2.001 SW MHO1 30 Summer 30 +358 30/15 Summer 2.001 SW MHO1 215 Summer 30 +358 2/15 Summer 3.000 Fermeable Paving 30 Summer 30 +358 30/15 Summer 3.000 Fermeable Paving 30 Summer 30 +358 2/15 Summer 3.000 SW REO2 15 Summer 30 +358 2/15 Summer	<u>30 year</u>	<u>Return Period</u>	Summary c			esults by Ma	aximum Lev	el (Rank 1)
Synthetic Rainfall Details FEH Rainfall Model FEH FEH Rainfall Version 2013 Site Location GB 615685 220277 TM 15665 20277 Data Type Data Type Point CV (Summer) 1.000 CV (Summer) 1.000 Margin for Flood Risk Warning (mm) 300.0 Analysis Timestep 2.5 Second Increment (Extended) DTS Status ON DVD Status ON DVD Status ON Duration(s) (mins) 15, 30, 60, 120, 180, 240, 360, 480, 600, 720, 960, 1440, 2160, 2880, 4320, 5760, 720, 960, 1440, 2160, 2880, 4320, 5760, 720, 960, 1440, 2160, 2880, 4320, 5760, 720, 8640, 10080 Return Period(s) (years) 0, 35, 40 Climate Change (%) 0, 35, 40 VS/MH Return Climate First (X) First (Z) FN Name Storm Period Change Summer 1.000 SW REO1 15 Summer 30 + 35% 30/15 Summer Summer 2.001 SW MHO1 30 Summer 30 + 35% 30/15 Summer Summer 2.001 SW MHO1 30 Summer 30 + 35% 30/15 Summer Summer		Hot Start I Hot Start I ole Headloss Coeff ul Sewage per hect Number of In Number of	lon Factor art (mins) Level (mm) E (Global) care (l/s) put Hydrog Online Con	1.000 0 0.500 0.000 raphs 0 trols 1	Additic MAI Flow per Number Number	onal Flow - % DD Factor * 10 Inlet Person per Da of Storage St of Time/Area	Dm³/ha Stora Coeffiecia ay (l/per/da ructures 4 Diagrams 0	age 0.000 ent 0.800
Rainfall Model FEH FEH Rainfall Version 2013 Site Location GB 615665 220277 TM 15685 20277 Data Type Data Type Point Cv (Summer) 1.000 Margin for Flood Risk Warning (mm) 300.0 Analysis Timestep 2.5 Second Increment (Extended) DTS Status DVD Status ON DVD Status ON Duration(s) (mins) 15, 30, 60, 120, 180, 240, 360, 480, 600, 720, 960, 1440, 2160, 2880, 4320, 5760, 720, 960, 1440, 2160, 2880, 4320, 5760, 720, 960, 1440, 2160, 2880, 4320, 5760, 720, 960, 1440, 2160, 2880, 4320, 5760, 720, 960, 1440, 2160, 2880, 4320, 5760, 720, 8640, 10080 Return Period(s) (years) 2, 30, 100 Climate Change (%) 0, 35, 40 VS/MH Return Climate First (X) First (Z) PN Name 30 +35% 30/15 Summer 1.000 SW RED1 15 Summer 30 +35% 30/15 Summer 2.001 SW MH01 30 Summer 30 +35% 30/15 Summer 2.001 SW MH01 30 Summer 30 +35% 30/15 Summer 2.001 SW MH01 15 Summer 30 +35% 30/15 Summer 2.001 SW MH03 15 Summer 30 +35% 30/15 Summer		Number of O	LITTUE CON	CIOIS U	NUMBEL	OI Keai IIMe	CONCLOIS 0	
DVD Status Inertia Status ON ON Profile(s) Duration(s) (mins) Summer and Winter 15, 30, 60, 120, 180, 240, 360, 480, 600, 720, 960, 1440, 2160, 2880, 4320, 5760, 7200, 960, 1440, 2160, 2880, 4320, 5760, 7300 SW REO1 15 Summer 300 +35% 30/15 Summer 300 +35% 30/15 Summer 300 +25% 30/15 Summer 4.000 SW REO2 15 Summer 300 +35% 30/15 Summer 4.000 SW REO2 15 Summer 300 +35% 30/15 Summer 4.000 SW REO3 15 Summer 300 +35% 30/15 Summer 1.001 SW MHO3 15 Summer 300 +35% 30/15 Summer 1.002 SW MHO3 15 Summer 300 +35% 30/15 Summer 300 +35% 30/15 Summer 300 SW REO3 15 Summer 300 +35% 30/15 Summer 300 +35% 30/15 Summer 300 SW REO3 15 Summer 300 +35% 30/15 Summer 300 +35% 30/15 Summer 300 SW REO3 15 Summer 300 +35% 30/15 Summer 300 +35% 30/15 Summer 300 SW REO3 15 Summer 300 +35% 30/15 Summer 300 SW REO3 15 Summer 300 +35% 30/15 Summer		FEH Rain S	infall Mod fall Versi ite Locati Data Ty Cv (Summe Cv (Winte d Risk War Analysis	el on GB 6 pe r) r) ning (m Timest	15685 22 m) ep 2.5 s	0277 TM 15685	2013 20277 Point 1.000 1.000 300 nt (Extende	d)
Duration(s) (mins) 15, 30, 60, 120, 180, 240, 360, 480, 600, 720, 960, 1440, 2160, 2880, 4320, 5760, 720, 8640, 10080 Return Period(s) (years) 2, 30, 100 Climate Change (%) 0, 35, 40 VS/MH Return Climate First (X) First (Y) First (Z) PN Name Storm Period Change Surcharge Flood Overflow 1.000 SW RE01 15 Summer 30 +35% 30/15 Summer 3.000 Permeable Paving 30 Summer 30 +35% 30/15 Summer 3.000 Permeable Paving 30 Summer 30 +35% 30/15 Summer 3.000 Permeable Paving 30 Summer 30 +35% 30/15 Summer 3.000 Permeable Paving 30 Summer 30 +35% 30/15 Summer 3.000 Permeable Taving 30 Summer 30 +35% 30/15 Summer 3.001 SW MH01 10 Summer 30 +35% 30/15 Summer 3.001 SW MH02 15 Summer 30 +35% 30/15 Summer 3.000 SW MH02 15 Summer 30 +35% 2/15 Summer 3.001 SW MH02 15 Summer 30			D	VD Stat	us			ON
Return Period(s) (years) Climate Change (%)2, 30, 100 0, 35, 40US/MH PNReturn Climate Period ChangeFirst (X) SurchargeFirst (Y) FloodFirst (Z) Overflow1.000SW RE01 15 Summer 30 Summer30+35% 30/15 Summer30/15 Summer2.000Permeable Paving 30 Summer 30 Summer30+35% 30/15 Summer30/15 Summer3.000Permeable Paving 30 Summer 30 Summer30+35% 30/15 Summer30/15 Summer1.001SW MH01 30 Summer SW MH02 15 Summer30+35% 30/15 Summer30/15 Summer1.001SW MH03 15 Summer SUMMER30+35% 30/15 Summer30/15 Summer1.002SW MH03 15 Summer 30+35% 30/15 Summer2/15 Summer1.003SW MH04 15 Summer SUMMER30+35% 30/15 Summer1.004SW RE04 15 Summer SUMMER30+35% 30/15 Summer1.004SW RE05 15 Summer SUMMER30+35% 30/15 Summer1.004SW RE05 15 Summer SUMMER30+35% 30/15 Summer7.000Permeable Paving 30 Summer 30+35% 30/15 Summer30/15 Summer7.001SW MH05 15 Summer30+35% 30/15 Summer			. ,			20, 180, 240, 440, 2160, 288	360, 480, 30, 4320, 5	500, 760,
PN Name Storm Period Change Surcharge Flood Overflow 1.000 SW RE01 15 Summer 30 +35% 30/15 Summer 2.000 Permeable Paving 30 Summer 30 +35% 30/15 Summer 3.000 Permeable Paving 30 Summer 30 +35% 30/15 Summer 3.000 Permeable Paving 30 Summer 30 +35% 30/15 Summer 2.001 SW MH01 30 Summer 30 +35% 30/15 Summer 1.001 SW MH02 15 Summer 30 +35% 30/15 Summer 1.002 SW MH03 15 Summer 30 +35% 30/15 Summer 1.003 SW MH04 15 Summer 30 +35% 2/15 Summer 1.004 SW RE05 15 Summer 30 +35% 30/15 Summer			-					
2.000 Permeable Paving 30 summer 30 +35% 30/15 Summer 3.000 Permeable Paving 30 Summer 30 +35% 30/15 Summer 2.001 SW MH01 30 Summer 30 +35% 30/15 Summer 1.001 SW MH02 15 Summer 30 +35% 30/15 Summer 4.000 SW RE02 15 Summer 30 +35% 30/15 Summer 1.002 SW MH03 15 Summer 30 +35% 30/15 Summer 1.002 SW MH03 15 Summer 30 +35% 30/15 Summer 1.003 SW MH04 15 Summer 30 +35% 2/15 Summer 1.004 SW RE04 15 Summer 30 +35% 100/15 Summer 7.000 Permeable Paving 30 Summer 30 +35% 30/15 Summer 7.001 SW MH05 15 Summer 30 +35% 30/15 Summe	PN		Storm					
2.000 Permeable Paving 30 summer 30 +35% 30/15 Summer 3.000 Permeable Paving 30 Summer 30 +35% 30/15 Summer 2.001 SW MH01 30 Summer 30 +35% 30/15 Summer 1.001 SW MH02 15 Summer 30 +35% 30/15 Summer 4.000 SW RE02 15 Summer 30 +35% 30/15 Summer 1.002 SW MH03 15 Summer 30 +35% 30/15 Summer 1.002 SW MH03 15 Summer 30 +35% 30/15 Summer 1.003 SW MH04 15 Summer 30 +35% 2/15 Summer 1.004 SW RE04 15 Summer 30 +35% 100/15 Summer 7.000 Permeable Paving 30 Summer 30 +35% 30/15 Summer 7.001 SW MH05 15 Summer 30 +35% 30/15 Summe	1.000	SW RE01	15 Summer	30	+35%	30/15 Summer	<u></u>	
3.000 Permeable Paving 30 Summer 30 +35% 30/15 Summer 2.001 SW MH01 30 Summer 30 +35% 30/15 Summer 1.001 SW MH02 15 Summer 30 +35% 30/15 Summer 4.000 SW RE02 15 Summer 30 +35% 30/15 Summer 1.002 SW MH03 15 Summer 30 +35% 30/15 Summer 1.002 SW MH03 15 Summer 30 +35% 30/15 Summer 1.003 SW MH04 15 Summer 30 +35% 2/15 Summer 1.004 SW RE04 15 Summer 30 +35% 100/15 Summer 7.000 Permeable Paving 30 Summer 30 +35% 30/15 Summer 7.001 SW MH05 15 Summer 30 +35% 30/15 Summer								
1.001 SW MH02 15 Summer 30 +35% 30/15 Summer 4.000 SW RE02 15 Summer 30 +35% 30/15 Summer 1.002 SW MH03 15 Summer 30 +35% 2/15 Summer 5.000 SW RE03 15 Summer 30 +35% 30/15 Summer 1.003 SW MH04 15 Summer 30 +35% 2/15 Summer 1.004 SW RE04 15 Summer 30 +35% 2/15 Summer 6.000 SW RE05 15 Summer 30 +35% 100/15 Summer 7.000 Permeable Paving 30 Summer 30 +35% 30/15 Summer 7.001 SW MH05 15 Summer 30 +35% 30/15 Summer		5						
4.000 SW RE02 15 Summer 30 +35% 30/15 Summer 1.002 SW MH03 15 Summer 30 +35% 2/15 Summer 5.000 SW RE03 15 Summer 30 +35% 30/15 Summer 1.003 SW MH04 15 Summer 30 +35% 2/15 Summer 1.004 SW RE04 15 Summer 30 +35% 2/15 Summer 6.000 SW RE05 15 Summer 30 +35% 100/15 Summer 7.000 Permeable Paving 30 Summer 30 +35% 30/15 Summer 7.001 SW MH05 15 Summer 30 +35% 30/15 Summer								
1.002 SW MH03 15 Summer 30 +35% 2/15 Summer 5.000 SW RE03 15 Summer 30 +35% 30/15 Summer 1.003 SW MH04 15 Summer 30 +35% 2/15 Summer 1.004 SW RE04 15 Summer 30 +35% 2/15 Summer 6.000 SW RE05 15 Summer 30 +35% 100/15 Summer 7.000 Permeable Paving 30 summer 30 +35% 30/15 Summer 7.001 SW MH05 15 Summer 30 +35% 30/15 Summer								
5.000 SW RE03 15 Summer 30 +35% 30/15 Summer 1.003 SW MH04 15 Summer 30 +35% 2/15 Summer 1.004 SW RE04 15 Summer 30 +35% 2/15 Summer 6.000 SW RE05 15 Summer 30 +35% 100/15 Summer 7.000 Permeable Paving 30 Summer 30 +35% 30/15 Summer 7.001 SW MH05 15 Summer 30 +35% 30/15 Summer								
1.003 SW MH04 15 Summer 30 +35% 2/15 Summer 1.004 SW RE04 15 Summer 30 +35% 2/15 Summer 6.000 SW RE05 15 Summer 30 +35% 100/15 Summer 7.000 Permeable Paving 30 Summer 30 +35% 30/15 Summer 7.001 SW MH05 15 Summer 30 +35% 30/15 Summer								
1.004 SW RE04 15 Summer 30 +35% 2/15 Summer 6.000 SW RE05 15 Summer 30 +35% 100/15 Summer 7.000 Permeable Paving 30 Summer 30 +35% 30/15 Summer 7.001 SW MH05 15 Summer 30 +35% 30/15 Summer								
6.000 SW RE05 15 Summer 30 +35% 100/15 Summer 7.000 Permeable Paving 30 Summer 30 +35% 30/15 Summer 7.001 SW MH05 15 Summer 30 +35% 30/15 Summer								
7.001 SW MH05 15 Summer 30 +35% 30/15 Summer								
©1982-2019 Innovyze	7.001	SW MH05	15 Summer	30	+35%	30/15 Summer	<u>_</u>	
			©19	82-201	.9 Innov	vyze		

BSP Consulting Ltd		Page 11
12 Oxford Street	23-0452	
Nottingham	Clacton Road, Weeley Heath	
NG1 5BG		Micro
Date 05/09/2023	Designed by FE	Drainage
File 230901_SURFACE_WATER_CA	Checked by TG	Diamage
Micro Drainage	Network 2019.1	1

30 year Return Period Summary of Critical Results by Maximum Level (Rank 1) for Storm

PN	US/MH Name	Overflow Act.	Water Level (m)	Surcharged Depth (m)	Flooded Volume (m³)	Flow / Cap.	Overflow (l/s)	Pipe Flow (l/s)
1.000	SW RE01		26.613	0.163	0.000	0.58		8.5
2.000	Permeable Paving		26.447	0.087	0.000	0.64		8.3
3.000	Permeable Paving		26.470	0.070	0.000	0.32		6.3
2.001	SW MH01		26.460	0.160	0.000	1.20		14.4
1.001	SW MH02		26.543	0.281	0.000	0.62		15.4
4.000	SW RE02		26.701	0.201	0.000	0.36		11.0
1.002	SW MH03		26.619	0.788	0.000	1.27		16.0
5.000	SW RE03		26.686	0.186	0.000	0.34		11.1
1.003	SW MH04		26.610	0.834	0.000	1.25		17.0
1.004	SW RE04		26.429	0.954	0.000	3.46		23.1
6.000	SW RE05		26.394	-0.056	0.000	0.70		9.7
7.000	Permeable Paving		26.423	0.063	0.000	1.38		14.9
7.001	SW MH05		26.372	0.025	0.000	1.13		14.5

PN	US/MH Name	Status	Level Exceeded
3.000 2.001 1.001 4.000 1.002 5.000	SW MH03 SW RE03	SURCHARGED SURCHARGED SURCHARGED FLOOD RISK FLOOD RISK SURCHARGED	
1.003 1.004 6.000 7.000 7.001	SW MH04 SW RE04 SW RE05 Permeable Paving SW MH05	OK SURCHARGED	

BSP Con	sulting	Ltd						Page 12	
12 Oxford Street					23-0452				
Nottingham				Clact	Clacton Road, Weeley Heath				
NG1 5BG							7		Misso
	/09/202	3		Desic	ned by	7 FE			Micro
				-					Drainac
	_		ATER_CA		ked by				
Micro D	rainage			Netwo	ork 201	.9.1			
<u>30 year</u>	<u>: Return</u>	<u>1 Period</u>	l Summary			esults	by Max	imum Leve	el (Rank
				<u>for</u>	Storm				
	US/MH		Return	Climate	Firs	t (X)	First (Y) First (Z	2) Overflow
PN	Name	Storm	Period	Change	Surc	harge	Flood	Overflo	w Act.
6 001	SW MH06	15 Sur	nmer 30	+35%	30/15	Summer			
	SW RE06	15 Sun 15 Sun			100/15				
	SW MH07	15 Sun				Summer			
9.000	SW RE07	15 Sur	nmer 30	+35%	100/15	Summer			
6.003	SW MH08	15 Sun	nmer 30	+35%	30/15	Summer			
6.004	SW RE08	15 Sun	nmer 30	+35%	30/15	Summer			
1.005	SW MH08	600 Wir	nter 30	+35%	30/15	Summer			
1.006	TANK	600 Wir	nter 30	+35%	2/60	Summer			
1.007	SW MH09	7200 Sun	nmer 30	+35%	2/15	Summer			
1.008	SW MH10	10080 Wir	nter 30	+35%					
		Wator	Surchargod	Floodod			Pipe		
	US/MH		Surcharged Depth		Flow /	Overflow	Pipe Flow		Level
PN	US/MH Name	Water Level (m)	Surcharged Depth (m)		Flow / Cap.	Overflow (1/s)	-	Status	Level Exceeded
PN	Name	Level (m)	Depth (m)	Volume (m³)	Cap.		Flow (1/s)		Exceeded
PN 6.001	Name SW MH06	Level (m)	Depth (m) 0.030	Volume (m ³) 0.000	Cap .		Flow (1/s) 24.1	Status SURCHARGED OK	Exceeded
PN 6.001 8.000	Name SW MH06 SW RE06	Level (m) 5 26.309 5 26.420	Depth (m) 0.030 -0.080	Volume (m ³) 0.000 0.000	Cap. 0.43 0.44		<pre>Flow (1/s) 24.1 12.1</pre>	SURCHARGED OK	Exceeded
PN 6.001 8.000 6.002	Name SW MH06 SW RE06 SW MH07	Level (m) 5 26.309 5 26.420 7 26.256	Depth (m) 0.030 -0.080 0.251	Volume (m ³) 0.000 0.000 0.000	Cap. 0.43 0.44 0.95		<pre>Flow (1/s) 24.1 12.1</pre>	SURCHARGED	Exceeded
PN 6.001 8.000 6.002 9.000	Name SW MH06 SW RE06	Level (m) 5 26.309 5 26.420 7 26.256 7 26.418	Depth (m) 0.030 -0.080	Volume (m ³) 0.000 0.000	Cap. 0.43 0.44		Flow (1/s) 24.1 12.1 31.4 12.1	SURCHARGED OK SURCHARGED	Exceeded
PN 6.001 8.000 6.002 9.000 6.003	Name SW MH06 SW RE06 SW MH07 SW RE07	Level (m) 5 26.309 5 26.420 7 26.256 7 26.418 8 26.178	Depth (m) 0.030 -0.080 0.251 -0.082	Volume (m ³) 0.000 0.000 0.000 0.000	Cap. 0.43 0.44 0.95 0.42		<pre>Flow (1/s) 24.1 12.1 31.4 12.1 41.0</pre>	SURCHARGED OK SURCHARGED OK	Exceeded
PN 6.001 8.000 6.002 9.000 6.003 6.004	Name SW MH06 SW RE06 SW MH07 SW RE07 SW RE07 SW MH08	Level (m) 5 26.309 5 26.420 7 26.256 7 26.418 8 26.178 8 26.022	Depth (m) 0.030 -0.080 0.251 -0.082 0.228	Volume (m ³) 0.000 0.000 0.000 0.000 0.000	Cap. 0.43 0.44 0.95 0.42 1.07		Flow (1/s) 24.1 12.1 31.4 12.1 41.0 45.1	SURCHARGED OK SURCHARGED OK SURCHARGED	Exceeded
PN 6.001 8.000 6.002 9.000 6.003 6.004	Name SW MH06 SW RE06 SW MH07 SW RE07 SW RE08 SW RE08 SW RE08 SW MH08	Level (m) 5 26.309 5 26.420 7 26.256 7 26.418 8 26.178 8 26.022	Depth (m) 0.030 -0.080 0.251 -0.082 0.228 0.472	Volume (m ³) 0.000 0.000 0.000 0.000 0.000	Cap. 0.43 0.44 0.95 0.42 1.07 2.34		<pre>r Flow (1/s) 24.1 12.1 31.4 12.1 41.0 45.1 14.1</pre>	SURCHARGED OK SURCHARGED OK SURCHARGED SURCHARGED	Exceeded
PN 6.001 8.000 6.002 9.000 6.003 6.004 1.005 1.006	Name SW MH06 SW RE06 SW MH07 SW RE07 SW RE08 SW RE08 SW RE08 SW MH08	Level (m) 5 26.309 5 26.420 7 26.256 7 26.418 8 26.178 8 26.022 8 25.779 5 25.778	Depth (m) 0.030 -0.080 0.251 -0.082 0.228 0.472 0.290	Volume (m³) 0.000 0.000 0.000 0.000 0.000 0.000	Cap. 0.43 0.44 0.95 0.42 1.07 2.34 0.47		<pre>Flow (1/s) 24.1 12.1 31.4 12.1 41.0 45.1 14.1 1.0</pre>	SURCHARGED OK SURCHARGED OK SURCHARGED SURCHARGED	Exceeded

BSP Cons	sulting Ltd						Page 13
12 Oxfor	d Street		23-04	452			
Nottingh	nam		Clact	ton Road	d, Weeley He	eath	
NG1 5BG					_		Micco
Date 05/	09/2023		Desid	gned by	FE		
File 230	901 SURFACE WAT	TER CA		ked by 1			Drainago
Micro Dr				ork 2019			
	ainage			01N 201.	• -		
<u>100 yea</u>	ar Return Perio	<u>d Summary</u>		<u>ritical</u> r Storm	<u>Results by</u>	<u>Maximum I</u>	evel (Rank
	Hot Start I Hot Start I ole Headloss Coef: ul Sewage per hect Number of In Number of	ion Factor art (mins) Level (mm) f (Global) tare (l/s) put Hydrog Online Con	1.000 0 0.500 1 0.000 rraphs 0 trols 1	MAE Flow per Number o Number o	onal Flow - % DD Factor * 10 Inlet Person per Da of Storage St of Time/Area	Om ³ /ha Stora Coeffiecie ay (l/per/da ructures 4 Diagrams 0	age 0.000 ent 0.800
	Ra		<u>netic Ra</u> lel	Number o	of Real Time <u>etails</u>	FEH 2013	
				15685 22	0277 TM 15685		
	~	Data Ty				Point	
		Cv (Summe	~)			1.000	
	Margin for Floc	Cv (Winte	er)	m)		1.000	0
	Margin for Floc	Cv (Winte od Risk War Analysis E E	er) ning (m	ep 2.5 Se us us	econd Increme	1.000 300 nt (Extende	
	-	Cv (Winte od Risk War Analysis E Inert	er) sning (m s Timest DTS Stat DVD Stat sia Stat 15, 30	ep 2.5 So us us us 0, 60, 12	Sur 20, 180, 240, 240, 2160, 288	1.000 300 nt (Extende nmer and Win 360, 480, 0 30, 4320, 5	d) ON ON ON hter 600, 760,
	Pro	Cv (Winte od Risk War Analysis D Inert ofile(s)) (mins) (years)	er) sning (m s Timest DTS Stat DVD Stat sia Stat 15, 30	ep 2.5 So us us us 0, 60, 12	Sur 20, 180, 240, 240, 2160, 288	1.000 300 nt (Extende nmer and Win 360, 480, 0	d) ON ON ON ter 600, 760, 0080 100
PN	Pro Duration(s) Return Period(s)	Cv (Winte od Risk War Analysis D Inert ofile(s)) (mins) (years)	er) sning (m s Timest DTS Stat DVD Stat ia Stat 15, 30 720, Return	ep 2.5 S us us 0, 60, 12 , 960, 14	Sur 20, 180, 240, 240, 2160, 288	1.000 300 nt (Extende 360, 480, 9 30, 4320, 5 00, 8640, 10 2, 30, 0, 35	d) ON ON ON ter 600, 760, 0080 100
	Pro Duration(s) Return Period(s) Climate Cha US/MH Name	Cv (Winte od Risk War Analysis D Inert ofile(s)) (mins) (years) ange (%) Storm	er) sning (m s Timest DTS Stat DVD Stat 15, 30 720, Return Period	ep 2.5 So us us 0, 60, 12 , 960, 14 Climate Change	Sur 20, 180, 240, 240, 2160, 288 720 First (X) Surcharge	1.000 300 nt (Extende 360, 480, 10 30, 4320, 5 00, 8640, 10 2, 30, 0, 35 First (Y) Flood	d) ON ON ON hter 600, 760, 0080 100 , 40 First (Z)
1.000	Pro Duration(s) Return Period(s) Climate Cha US/MH Name	Cv (Winte od Risk War Analysis D Inert ofile(s) (mins) (years) ange (%) Storm 15 Summer	er) sning (m s Timest DTS Stat DVD Stat ia Stat 15, 30 720, Return	ep 2.5 So us us 0, 60, 12 , 960, 14 Climate	Sur 20, 180, 240, 40, 2160, 288 720 First (X)	1.000 300 nt (Extende 360, 480, 10 30, 4320, 5 00, 8640, 10 2, 30, 0, 35 First (Y) Flood	d) ON ON ON hter 600, 760, 0080 100 , 40 First (Z)
1.000 2.000 3.000	Pro Duration(s) Return Period(s) Climate Cha US/MH Name SW RE01 Permeable Paving Permeable Paving	Cv (Winte od Risk War Analysis E Inert ofile(s) (years) ange (%) Storm 15 Summer 30 Summer	er) ening (m s Timest DTS Stat DVD Stat 15, 30 720, Return Period 100 100 100	ep 2.5 So us us 0, 60, 12 , 960, 14 Climate Change +40% +40% +40%	Sur 20, 180, 240, 240, 2160, 288 720 First (X) Surcharge 30/15 Summer 30/15 Summer 30/15 Summer	1.000 300 nt (Extende 360, 480, 10 360, 4320, 5 00, 8640, 10 2, 30, 0, 35 First (Y) Flood	d) ON ON ON hter 600, 760, 0080 100 , 40 First (Z)
1.000 2.000 3.000 2.001	Pro Duration(s) Return Period(s) Climate Cha US/MH Name SW RE01 Permeable Paving Permeable Paving SW MH01	Cv (Winte od Risk War Analysis E Inert ofile(s) (years) ange (%) Storm 15 Summer 30 Summer 30 Summer	er) ening (m s Timest DTS Stat DVD Stat 15, 30 720, Return Period 100 100 100	ep 2.5 So us us 0, 60, 12 , 960, 14 Climate Change +40% +40% +40% +40%	Sur 20, 180, 240, 40, 2160, 288 720 First (X) Surcharge 30/15 Summer 30/15 Summer 30/15 Summer 30/15 Summer	1.000 300 nt (Extende 360, 480, 10 360, 4320, 5 00, 8640, 10 2, 30, 0, 35 First (Y) Flood	d) ON ON ON hter 600, 760, 0080 100 , 40 First (Z)
1.000 2.000 3.000 2.001 1.001	Pro Duration(s) Return Period(s) Climate Cha US/MH Name SW RE01 Permeable Paving Permeable Paving SW MH01 SW MH02	Cv (Winter Analysis E E Inert ofile(s) (years) ange (%) Storm 15 Summer 30 Summer 30 Summer 15 Summer	er) ening (m s Timest DTS Stat DVD Stat 15, 30 720 Return Period 100 100 100 100 100	ep 2.5 So us us 0, 60, 12 , 960, 14 Climate Change +40% +40% +40% +40% +40%	Sur 20, 180, 240, 40, 2160, 288 720 First (X) Surcharge 30/15 Summer 30/15 Summer 30/15 Summer 30/15 Summer 30/15 Summer	1.000 300 nt (Extende 360, 480, 10 30, 4320, 5 00, 8640, 10 2, 30, 0, 35 First (Y) Flood	d) ON ON ON hter 600, 760, 0080 100 , 40 First (Z)
1.000 2.000 3.000 2.001 1.001 4.000	Pro Duration(s) Return Period(s) Climate Cha US/MH Name SW RE01 Permeable Paving Permeable Paving SW MH01 SW MH02 SW RE02	Cv (Winter od Risk War Analysis E Inert ofile(s) (years) ange (%) Storm 15 Summer 30 Summer 30 Summer 15 Summer 15 Summer	er) ening (m s Timest DTS Stat DVD Stat 15, 30 720, Return Period 100 100 100 100 100 100 100	ep 2.5 So us us 0, 60, 12 , 960, 14 Climate Change +40% +40% +40% +40% +40% +40%	Sur 20, 180, 240, 40, 2160, 288 720 First (X) Surcharge 30/15 Summer 30/15 Summer 30/15 Summer 30/15 Summer 30/15 Summer 30/15 Summer	1.000 300 nt (Extende 360, 480, 10 360, 4320, 5 00, 8640, 10 2, 30, 0, 35 First (Y) Flood	d) ON ON ON hter 600, 760, 0080 100 , 40 First (Z)
1.000 2.000 3.000 2.001 1.001	Pro Duration(s) Return Period(s) Climate Cha US/MH Name SW RE01 Permeable Paving Permeable Paving SW MH01 SW MH02 SW RE02 SW MH03	Cv (Winter Analysis E E Inert ofile(s) (years) ange (%) Storm 15 Summer 30 Summer 30 Summer 15 Summer	er) ening (m 5 Timest DTS Stat DVD Stat 15, 30 720, Return Period 100 100 100 100 100 100 100	ep 2.5 So us us 0, 60, 12 , 960, 14 Climate Change +40% +40% +40% +40% +40%	Sur 20, 180, 240, 40, 2160, 288 720 First (X) Surcharge 30/15 Summer 30/15 Summer 30/15 Summer 30/15 Summer 30/15 Summer	1.000 300 nt (Extende 360, 480, 10 30, 4320, 5 00, 8640, 10 2, 30, 0, 35 First (Y) Flood	d) ON ON ON hter 600, 760, 0080 100 , 40 First (Z)
1.000 2.000 3.000 2.001 1.001 4.000 1.002	Pro Duration(s) Return Period(s) Climate Cha US/MH Name SW RE01 Permeable Paving Permeable Paving Permeable Paving SW MH01 SW MH02 SW RE02 SW MH03 SW RE03	Cv (Winter od Risk War Analysis E Inert ofile(s) (years) ange (%) Storm 15 Summer 30 Summer 30 Summer 15 Summer 15 Summer 15 Summer	er) ening (m 5 Timest DTS Stat DVD Stat 15, 30 720 Return Period 100 100 100 100 100 100 100 10	ep 2.5 So us us 0, 60, 12 , 960, 14 Climate Change +40% +40% +40% +40% +40% +40% +40%	Sur 20, 180, 240, 40, 2160, 288 720 First (X) Surcharge 30/15 Summer 30/15 Summer 30/15 Summer 30/15 Summer 30/15 Summer 30/15 Summer 30/15 Summer	1.000 300 nt (Extende 360, 480, 10 30, 4320, 5 00, 8640, 10 2, 30, 0, 35 First (Y) Flood	d) ON ON ON hter 600, 760, 0080 100 , 40 First (Z)
1.000 2.000 3.000 2.001 1.001 4.000 1.002 5.000 1.003 1.004	Pro Duration(s) Return Period(s) Climate Cha US/MH Name SW RE01 Permeable Paving Permeable Paving Permeable Paving SW MH01 SW MH02 SW RE02 SW MH03 SW RE03 SW MH04 SW RE04	Cv (Winter od Risk War Analysis E E Inert ofile(s) (years) ange (%) Storm 15 Summer 30 Summer 30 Summer 15 Summer	er) ening (m 5 Timest DTS Stat DVD Stat 15, 30 720 Return Period 100 100 100 100 100 100 100 10	ep 2.5 Se us us 0, 60, 12 , 960, 14 Climate Change +40% +40% +40% +40% +40% +40% +40% +40%	Sur 20, 180, 240, 40, 2160, 288 720 First (X) Surcharge 30/15 Summer 30/15 Summer 30/15 Summer 30/15 Summer 30/15 Summer 30/15 Summer 2/15 Summer 2/15 Summer 2/15 Summer 2/15 Summer	1.000 300 nt (Extended 1.0000 1.0000 1.000 1.000 1.000 1.000 1.	d) ON ON ON hter 600, 760, 0080 100 , 40 First (Z)
1.000 2.000 3.000 2.001 1.001 4.000 1.002 5.000 1.003 1.004 6.000	Pro Duration(s) Return Period(s) Climate Cha US/MH Name SW RE01 Permeable Paving Permeable Paving Permeable Paving SW MH01 SW RE02 SW RE02 SW MH03 SW RE03 SW RE04 SW RE04 SW RE05	Cv (Winter od Risk War Analysis E E Inert ofile(s) (years) ange (%) Storm 15 Summer 30 Summer 15 Summer	er) ening (m s Timest DTS Stat DVD Stat 15, 30 720, Return Period 100 100 100 100 100 100 100 10	ep 2.5 Se us us us 0, 60, 12 , 960, 14 Climate Change +40% +40% +40% +40% +40% +40% +40% +40%	Sur 20, 180, 240, 40, 2160, 288 720 First (X) Surcharge 30/15 Summer 30/15 Summer 30/15 Summer 30/15 Summer 30/15 Summer 30/15 Summer 2/15 Summer 2/15 Summer 2/15 Summer 2/15 Summer 2/15 Summer	1.000 300 nt (Extended 1.000 nt (Extended 30, 480, 10 2, 30, 0, 35 First (Y) Flood r r r r r r r	d) ON ON ON hter 600, 760, 0080 100 , 40 First (Z)
1.000 2.000 3.000 2.001 1.001 4.000 1.002 5.000 1.003 1.004 6.000	Pro Duration(s) Return Period(s) Climate Cha US/MH Name SW RE01 Permeable Paving Permeable Paving Permeable Paving SW MH01 SW RE02 SW RE03 SW RE03 SW RE04 SW RE04 SW RE05 Permeable Paving	Cv (Winter od Risk War Analysis E E Inert ofile(s) (years) ange (%) Storm 15 Summer 30 Summer 15 Summer	er) ening (m s Timest DTS Stat DVD Stat 15, 30 720, Return Period 100 100 100 100 100 100 100 10	ep 2.5 Se us us us 0, 60, 12 , 960, 14 Climate Change +40% +40% +40% +40% +40% +40% +40% +40%	Sur 20, 180, 240, 40, 2160, 288 720 First (X) Surcharge 30/15 Summer 30/15 Summer 30/15 Summer 30/15 Summer 30/15 Summer 30/15 Summer 2/15 Summer 2/15 Summer 2/15 Summer 2/15 Summer	1.000 300 nt (Extended nmer and Win 360, 480, 10 2, 30, 0, 35 First (Y) Flood r r r r r r r	d) ON ON ON hter 600, 760, 0080 100 , 40 First (Z)

BSP Consulting Ltd		Page 14
12 Oxford Street	23-0452	
Nottingham	Clacton Road, Weeley Heath	
NG1 5BG		Micro
Date 05/09/2023	Designed by FE	Drainage
File 230901_SURFACE_WATER_CA	Checked by TG	Diamage
Micro Drainage	Network 2019.1	

100 year Return Period Summary of Critical Results by Maximum Level (Rank <u>1) for Storm</u>

PN	US/MH Name	Overflow Act.	Water Level (m)	Surcharged Depth (m)		Flow / Cap.	Overflow (1/s)	Pipe Flow (l/s)
1.000	SW RE01		26.821	0.371	0.000	0.74		10.8
2.000	Permeable Paving		26.575	0.215	0.000	0.69		9.0
3.000	Permeable Paving		26.599	0.199	0.000	0.34		6.8
2.001	SW MH01		26.590	0.290	0.000	1.27		15.3
1.001	SW MH02		26.714	0.452	0.000	0.64		16.1
4.000	SW RE02		26.986	0.486	0.000	0.44		13.5
1.002	SW MH03		26.848	1.017	0.000	1.31		16.5
5.000	SW RE03		26.983	0.483	0.000	0.41		13.6
1.003	SW MH04		26.853	1.077	0.000	1.31		17.8
1.004	SW RE04		26.673	1.198	0.000	3.83		25.6
6.000	SW RE05		26.587	0.137	0.000	0.86		12.0
7.000	Permeable Paving		26.556	0.196	0.000	1.79		19.5
7.001	SW MH05		26.519	0.172	0.000	1.53		19.7

PN	US/MH Name	Status	Level Exceeded
1.000	SW RE01	FLOOD RISK	
2.000	Permeable Paving	FLOOD RISK	
3.000	Permeable Paving	SURCHARGED	
2.001	SW MH01	SURCHARGED	
1.001	SW MH02	FLOOD RISK	
4.000	SW RE02	FLOOD RISK	
1.002	SW MH03	FLOOD RISK	
5.000	SW RE03	FLOOD RISK	
1.003	SW MH04	FLOOD RISK	
1.004	SW RE04	FLOOD RISK	
6.000	SW RE05	SURCHARGED	
7.000	Permeable Paving	SURCHARGED	
7.001	SW MH05	SURCHARGED	

BSP Consulting Ltd		Page 15
12 Oxford Street	23-0452	
Nottingham	Clacton Road, Weeley Heath	
NG1 5BG		Micro
Date 05/09/2023	Designed by FE	Drainage
File 230901_SURFACE_WATER_CA	Checked by TG	Diamage
Micro Drainage	Network 2019.1	•

100 year Return Period Summary of Critical Results by Maximum Level (Rank <u>1) for Storm</u>

US/MH PN Name	Storm		Climate Change	First Surcha		First (Y) Flood	First (Z) Overflow	Overflow Act.
6.001 SW MH06	30 Summer	100	+40%	30/15 \$	Summer			
8.000 SW RE06	15 Summer	100	+40%	100/15 \$	Summer			
6.002 SW MH07	30 Summer	100	+40%	30/15 \$	Summer			
9.000 SW RE07	15 Summer	100	+40%	100/15 \$	Summer			
6.003 SW MH08	15 Summer	100	+40%	30/15 \$	Summer			
6.004 SW RE08	15 Summer	100	+40%	30/15 \$	Summer			
1.005 SW MH08	720 Winter	100	+40%	30/15 \$	Summer			
1.006 TANK	720 Winter	100	+40%	2/60 \$	Summer			
1.007 SW MH09	8640 Winter	100	+40%	2/15 \$	Summer			
1.008 SW MH10	2160 Winter	100	+40%					

PN	US/MH Name	Water Level (m)	Surcharged Depth (m)		Flow / Cap.	Overflow (1/s)	Pipe Flow (l/s)	Status	Level Exceeded
6.001	SW MH06	26.484	0.205	0.000	0.50		28.1	SURCHARGED	
8.000	SW RE06	26.582	0.082	0.000	0.55		15.3	SURCHARGED	
6.002	SW MH07	26.449	0.444	0.000	1.02		33.9	SURCHARGED	
9.000	SW RE07	26.504	0.004	0.000	0.55		15.8	SURCHARGED	
6.003	SW MH08	26.375	0.425	0.000	1.17		44.9	SURCHARGED	
6.004	SW RE08	26.213	0.663	0.000	2.68		51.7	SURCHARGED	
1.005	SW MH08	26.109	0.620	0.000	0.53		15.9	SURCHARGED	
1.006	TANK	26.108	1.008	0.000	0.09		1.0	SURCHARGED	
1.007	SW MH09	26.303	1.234	0.000	0.23		1.0	SURCHARGED	
1.008	SW MH10	26.281	-0.119	0.000	0.09		1.0	OK	

Nottingham

12 Oxford Street Nottingham NG1 5BG

Derby

5 Pride Point Drive Pride Park Derby DF24 8BX

Leicester

Floor 4 24 De Montfort St Leicester LE1 7GB

Sheffield

Smithy Wood House Smithy Wood Cres Sheffield S8 0NU

KITEMARKTM KM 718353 B5 EN 150 19650

BIM Design and Construction