

Energy and Sustainability Statement 33 Gypsy Lane, Great Amwell

9th June 2022

Newark (Head) Office: Newark Beacon, Beacon Hill Office Park, Cafferata Way, Newark, Notts, NG24 2TN. Tel: 01636 653 055 London Office: 344-354 Gray's Inn Road, King's Cross, London WCIX 8BP. Tel: 0207 033 3757 Birmingham Office: 2nd Floor Quayside Tower, 252-260 Broad St, Birmingham B1 2HF. Tel: 0121 285 2785

info@mesbuildingsolutions.co.uk | www.mesbuildingsolutions.co.uk

Document version & history

lssue No.	Date	Comment	Author	Signature
1.0	09/06/22	Draft for comment	T Reynolds	

About MES Building Solutions

MES Building Solutions is an established consultancy practice specialising in providing building solutions throughout the UK.

We offer a full range of services for both residential and commercial buildings from small individual properties through to highly complex mixed use developments.

We are an industry leader in delivering a professional, accredited and certified service to a wide range of clients including architects, developers, builders, housing associations, the public sector and private householders.

Employing highly qualified staff, our team comes from a variety of backgrounds within the construction industry with combined knowledge of building design, engineering, assessment, construction, development, research and surveying.

We are renowned for our creative thinking and provide a high quality, honest and diligent service.

MES Building Solutions maintains its position at the forefront of changes in planning, building regulations and neighbourly matters, as well as technological advances. Our clients, large or small are therefore assured of a cost effective, cohesive and fully integrated professional service.

List of contents

- 1. Introduction
 - 1.1 Executive Summary
 - 1.2 Planning Policy
 - 1.3 SAP 10
- 2. Description of Development
 - 2.1 Location
 - 2.2 Details of development
- 3. Energy Statement
 - 3.1 Energy Hierarchy
 - 3.2 Calculating Baseline Energy Demand
 - 3.3 'Be Lean, Be Clean' –Building Fabric Improvements
 - 3.4 'Be Green' $-CO_2$ reduction through the use of renewable or LZC technologies
- 4. Overheating Assessment
- 5. Water Consumption
- Appendix A 'Be Lean, Be Clean' SAP Calculation
- Appendix B 'Be Green' SAP Calculation
- Appendix C GHA Overheating Tool

Appendix D – Water Consumption Calculations

Appendix E – East Herts District Council Sustainability Checklist

Section 1: Introduction

1.1 Executive Summary

MES Building Solutions have been engaged to provide an energy statement to address the requirements of East Herts District Council in relation to the proposed development at 33 Gypsy Lane, Great Amwell. The purpose of this energy statement is to provide an overview of how sustainability will be promoted both during and after construction and to establish the predicted energy requirements for the proposed development. It will illustrate how energy efficiency measures in conjunction with renewable generation can be used to reduce the predicted energy consumption and associated carbon dioxide emissions. It will also address the overheating risk of the development and show how domestic potable water use will be minimised.

The applicable planning policies this report will address are policy CC2 of the East Herts District Plan and the additional guidance contained in the East Herts District Council Sustainability SPD (adopted March 2021).

The energy and carbon reductions detailed in this report have been achieved by following the energy hierarchy, which includes:

Calculation of estimated baseline energy consumption & CO₂ emissions using SAP calculations Implementation of the energy hierarchy (be lean, be clean, be green) Assessment of the viability of connection to existing heat networks and/or the use of CHP Calculation of estimated energy consumption & CO₂ emissions at each stage of energy hierarchy Calculation of estimated final energy consumption & CO₂ emissions Calculation of reduction in emissions achieved Calculation of contribution from renewable, decentralised or low carbon generation, if applicable

In line with the favoured approach of East Herts District Council energy modelling has been undertaken using SAP 2012 to determine the expect energy consumption of the development. SAP10 carbon factors have then been used to calculate the resulting CO_2 emissions from the development.

For the proposed development at 33 Gypsy Lane this has been achieved by the use of;

Improved building fabric over the Part L 2013 baseline requirements

Reducing heat loss through uncontrolled ventilation (air leakage)

The use of an MVHR unit to reduce heat loss through controlled ventilation

Use of a heat pump to provide space and DHW heating

Table 1a, below, shows the modelled performance based on the SAP calculations for each stage of the Energy Hierarchy. Further details can be found in Section 3 and the appendices to this report.

	Energy Consumption	Regulated & unregulated domestic carbon dioxide savings		
	(KWII per annun)	(Tonnes CO ₂ per annum)	(%)	
Baseline	7,930	1.68		
Be Lean, Be Clean	7,648	1.62	4%	
Be Green	4,181	0.97	38%	
Cumulative on site savings	4,181	0.97	42%	

Table 1a: Total reduction in energy use and carbon emissions –SAP10

An overheating assessment has been undertaken by using the Good Homes Alliance overheating tool. This is an early stage assessment tool that uses a checklist of risk and mitigation factors to provide an indication of a development's likelihood of experiencing overheating. This suggests that the proposed development is at a low risk of overheating. For full details see Section 4 and Appendix C of this report.

Water efficient fittings will be specified for this development to ensure the new apartments achieve the Optional Requirement of the Building Regulations –a mains water consumption of 110 litres per person per day (including 5l/person/day allowance for external use. For the full specification and calculation associated with this please see Section 6 and Appendix G to this report.

1.2 Planning Policy

In terms of planning the main policy contained in the East Herts District Plan is CC2, which is reproduced below;

Policy CC2 Climate Change Mitigation

I. All new developments should demonstrate how carbon dioxide emissions will be minimised across the development site, taking account of all levels of the energy hierarchy. Achieving standards above and beyond the requirements of Building Regulations is encouraged.

II. Carbon reduction should be met on-site unless it can be demonstrated that this is not feasible or viable. In such cases effective offsetting measures to reduce on-site carbon emissions will be accepted as allowable solutions.

III. The energy embodied in construction materials should be reduced through re-use and recycling, where possible, of existing materials and the use of sustainable materials and local sourcing.

Policy WAT4 Efficient Use of Water Resources

Development must minimise the use of mains water by:

(a) Incorporating water saving measures and equipment;

(b) Incorporating the recycling of grey water and utilising natural filtration measures where possible;

(c) Designing residential development so that mains water consumption will meet a target of 110 litres or less per head per day.

East Herts District Council have also issued a Sustainability SPD that includes a series of checklists for key aspects of sustainability.

This report will address the following sections of the above document;

Energy Efficiency & Carbon Renewable Energy Water Management

Relevant sections of this report address the aspects of sustainability covered by the checklist, and the completed checklist can be found in Appendix E to this report.

1.4 SAP 10

The following guidance was issued by the GLA, in October 2018, for all new developments;

'Grid electricity has been significantly decarbonised since the last update of Part L in April 2014 and in July 2018 the Government published updated carbon emission factors (SAP 10) demonstrating this. These new

emission factors will however not be incorporated into Part L of the Building Regulations until the Government has consulted on new Building Regulations.

The impact of these new emission factors is significant in that technologies generating on-site electricity (such as gas-engine CHP and solar PV) will not achieve the carbon savings they have to date. It is therefore anticipated that developments will need to utilise alternative or additional technologies to meet the 35 per cent on-site carbon reduction target, including using zero emission or local secondary heat sources.

The GLA has decided that from January 2019 and until central Government updates Part L with the latest carbon emission factors, planning applicants are encouraged to use the SAP 10 emission factors for referable applications when estimating CO_2 emission performance against London Plan policies.

The above is a reflection that the SAP2012 carbon factors are now over 10 years old, and significantly out of date. The use of SAP2012 carbon factors can result in developments targeting specifications that do not achieve the required carbon reductions –for example, significantly less PV generation is required when using SAP2012 carbon factors as when using SAP10 carbon factors.

As a result of the above guidance, and to ensure the accuracy and relevance of the proposed specification, MES have based all calculations within this report on the SAP10 carbon factors –these can be found in Table 2, below.

Emissions kg/CO ₂ / kWh				
Part L 2013 SAP 10				
Mains Gas	0.216	0.210		
Electricity 0.519 0.233				

Table 1b: Part L 2013 and SAP10 emission factors

Section 2: Description of development

2.1 Location

The development site is to located in the village of Great Amwell, which lies between Ware and Hoddesdon. The surrounding area is comprised of a mix of open fields and residential buildings of no more than two storeys in height. The site location can be found in Figure 2.1, below.

Figure 2.1: Aerial Photo

2.2 Details of development

The application is for the construction of a single detached bungalow. Construction is currently proposed as being of masonry construction, with the walls having an insulated cavity, with a timber roof insulated between the joists.

This report is based on the following architectural drawings;

Figure 2.2: Drawing showing the proposed development

Section 3: Energy

3.1 The Energy Hierarchy

In order to address energy efficiency the design team have adopted the energy hierarchy. The energy hierarchy is generally accepted as the most effective way of reducing a buildings' carbon emissions.

- 1. Be lean: use less energy
- 2. Be clean: supply energy efficiently
- 3. Be green: use renewable energy
- 4. Be seen: monitor, verify and report on energy performance

Development proposals should:

Figure 3a: The Energy Hierarchy

Reducing energy demand

The first step in the process of reducing the overall energy used and CO₂ produced by the building is to minimise the energy required to heat it. A well-insulated building envelope and passive design will reduce the energy requirement for heating and ventilating the building.

Energy efficient systems

The second step is to specify services and controls, lighting and appliances that are energy efficient and which result in further reduction in energy requirements.

Making use of Low or zero-carbon (LZC) technologies

When the energy demand has been reduced by implementing the processes of improving the fabric and energy efficiency, then LZC

technologies can be employed to reduce the environmental impact of the remaining energy consumption.

Monitoring and reporting

Ensure comprehensive monitoring and reporting of energy demand and carbon emissions. Major developments in London are required to undertake this process for at least five years.

3.2 Calculating Baseline Energy Demand

The first step is to calculate a Building Regulations Part L 2013 compliant specification in order to establish baseline emissions for the development. For this development energy modelling has been undertaken using SAP 2012. To calculate the associated carbon emissions the energy consumption has been taken from the SAP TER worksheet and SAP10 carbon factors applied. The results are shown in Table 3a below and the SAP worksheet can be found in Appendix A.

	Energy Consumption	Regulated & unregulated domestic carbon dioxide savings		
		(Tonnes CO ₂ per annum)	(%)	
Baseline	7,930	1.68		

Table 3a: Baseline regulated carbon dioxide emissions (SAP10)

It should be noted that as PHPP includes for all energy uses in a building, the above figures include for both regulated and unregulated energy and, therefore, carbon. These figures are, therefore, total operational energy and carbon.

3.3 'Be Lean, Be Clean' – Building Fabric Improvements

The first two steps of the energy hierarchy look at reducing energy consumption in the building through improvements to its fabric and by providing efficient building services. This reduces the energy required to run the building and thus the emissions associated with that energy use.

It can be difficult to achieve further improvements over the fabric & M&E specifications used for the 'Notional Building'. However, some further improvements have been made at this stage by;

Improved building fabric over the Part L 2013 baseline requirements

Reducing heat loss through uncontrolled ventilation (air leakage)

The use of an MVHR unit to reduce heat loss through controlled ventilation

The specification of the building elements used in the SAP model for the 'Be Lean, Be Clean' stage of the energy hierarchy can be found in Table 3b, below;

Element	'Be Lean, Be Clean' Proposed Specification
External Walls	0.18W/m²K
Ground Floor	0.12W/m²K
Roof –insulated in joists	0.10W/m²K
Windows	1.40W/m²K
Doors	1.40W/m²K
Air Permeability	5.00m³/m³/hr
Thermal Bridging	Calculated
Ventilation	System 1
Lighting	Low-E lamps throughout
Space Heating	Mains Gas Boiler
DHW	DHW cylinder heated from main heating system
LZC Technology	none

Table 3b: 'Be Lean, Be Clean' specification

The final 'Be Lean, Be Clean' CO₂ emission and energy consumption figures, as taken from the SAP model (the SAP worksheet can be found in Appendix A), are shown in Table 3c below:

	Energy Consumption	Regulated & unregulated domestic carbon dioxide savings		
		(Tonnes CO ₂ per annum)	(%)	
Baseline	7,930	1.68		
Be Lean, Be Clean	7,648	1.62	4%	

Table 3c: 'Be Lean, Be Clean' regulated carbon dioxide emissions (SAP10)

3.4 'Be Green' – CO₂ reduction through the use of renewable or low carbon technology

This section will examine the available renewable energy generation technologies and determine which is most appropriate for the proposed development.

Available Renewable Generation Technologies

Energy resources accepted as renewable or low carbon technologies are defined by the Department of Energy and Climate Change Low Carbon Buildings Program as:

Solar photovoltaics Wind turbines Small hydro Solar thermal hot water Ground source heat pumps Air source heat pumps Bio-energy Renewable CHP Micro CHP (Combined heat and power)

Solar Photovoltaics

Solar panel electricity systems, also known as solar photovoltaics (PV), capture the sun's energy using photovoltaic cells. These cells do not need direct sunlight to work – they can still generate some electricity on a cloudy day. The cells convert the sunlight into electricity, which can be used to run household appliances and lighting. When

excess power is generated this can be sold back to the grid or stored onsite.

As there is limited roofspace on the proposed development there may not be sufficient space available for this technology to generate enough energy to offset a significant amount of CO₂. As such, this is not considered to be a suitable technology for this development.

Wind Turbines

Wind turbines harness the power of the wind and use it to generate electricity. Forty percent of all the wind energy in Europe blows over the UK, making it an ideal country for domestic turbines. Urban sites such as the location of this development are generally unsuitable for wind

turbine installations due to the interrupted turbulent wind flows caused by surrounding buildings and large obstacles. There are also possible issues with noise and 'flicker' for the neighbouring buildings.

The urban nature of the site and lack of space mean that a wind turbine cannot be recommended as a viable option for this development. There are also general issues surrounding the use of building mounted turbines with the potential for excessive noise and vibration within the building and the effect of flicker on surrounding buildings and amenity spaces.

Table 3d: Average wind speeds for the site				
45m above ground level	6.4m/ s			
25m above ground level	5.8m/ s			
10m above ground level	5.2m/ s			

Small Hydro Generation

Hydroelectricity generation uses running water to generate electricity, whether it is a small stream or a larger river. All streams and rivers flow downhill. Before the water flows down the hill, it has potential energy because of its height. Hydro power systems convert this potential energy into kinetic energy in a turbine, which drives a generator to produce

electricity. Small, or 'micro' hydro generation requires a reliable source of flowing water with a reasonably constant flow velocity. Systems of this nature are normally installed in locations with a natural moving water source such as a river, stream or spring where part of the flow can be diverted through a generator.

There is no such source of flowing water in this case and small hydro generation is not an option for this development.

Solar Water heating

Solar water heating systems use free heat from the sun to warm domestic hot water. Solar hot water heating can generate a large proportion of a buildings annual DHW requirement. The displaced fuel would be mains gas meaning that the CO₂ savings of this type of system would be relatively low due to the low carbon intensity of the displaced fuel. However, this technology would need sufficient space on the roof for the panels –at least one panel would be required for each apartment. As with photovoltaic panels there is not sufficient space –so this technology is not considered suitable for this

development.

Heat Pumps

Heat pumps use similar technology as refrigerators but reversed. A refrigerant liquid is used as a medium to extract heat from a source and convert it into useful heat energy. The heat source used can be generally one of three types; the ground, the air or a body of water. Both ground and water sourced heat pumps use a long

circuitous pipe through which a refrigerant is pumped. In ground sourced heat pumps this can be either a coiled pipe or 'slinky' that is buried in a series of horizontal trenches or a loop inside a vertical bore hole to depths that can be up to 200m or deeper. Water sourced heat pumps generally use a similar system to the 'slinky' used for ground sourced systems but either floated on or submerged in a body of water (either a large pool or running water source). Air source heat pumps have a refrigerant coil mounted outside the building through which is passed air so that heat can be extracted. All three types of heat pump generally use the collected heat from the source to heat water. The heated water can then be used for space heating and DHW. Heat pumps require an input of energy to drive pumps, this is usually electricity and so their renewable generation is the difference between the input and output energy. Most have very good efficiencies; energy produced by heat pumps is typically in the region of 2.5 times that which is required to run them, giving efficiencies of 250% and above.

Heat pumps can be considered as a suitable technology for this development. There is limited space available on the site that would facilitate the use of ground loops for a ground source heat pump, as such an air source heat pump would probably be most suitable.

Bio Energy

The Low Carbon Buildings Program (LCBP) defines biomass as follows:

"Biomass is often called 'bioenergy' or 'biofuels'. These biofuels are produced from organic materials, either directly from plants or indirectly from industrial, commercial, domestic or agricultural products. Biofuels fall into two main categories:

Woody biomass includes forest products, untreated wood products, energy crops, short rotation coppice (SRC), e.g. willow.

Non-woody biomass includes animal waste, industrial and biodegradable municipal products from food processing and high energy crops, e.g. rape, sugar cane, maize."

For small-scale domestic [and small scale commercial] applications of biomass the fuel usually takes the form of wood pellets, wood chips and logs. The LCBP goes on to state:

"There are two main ways of using biomass to heat a domestic property:

Stand-alone stoves providing space heating for a single room. These can be fuelled by logs or pellets but only pellets are suitable for automatic feed. Generally they are 5-11 kW in output, and some models can be fitted with a back boiler to provide water heating.

Boilers connected to central heating and hot water systems. These are suitable for pellets, logs or chips, and are generally larger than 15 kW^{*}

(http://www.lowcarbonbuildings.org.uk/micro/biomass)

This technology is dismissed as the space requirements needed for the boiler and pellet store make this impractical along with complying with the clean air zone requirements.

'Be Green' Modelled Performance

As identified above, heat pumps have been identified as the most suitable technology for this development. For the purposes of this report an ASHP has been modelled –which will generate renewable heat for both space and hot water heating. Should a GSHP be specified it will

only reduce the energy consumption, and therefore carbon emissions, further. The combination of this technology and the fabric specification detailed in the 'Be Lean, Be Clean' step results in a final specification for the scheme as shown in Table 3e, below.

Element	'Be Green' Proposed Specification
External Walls	0.18W/m²K
Ground Floor	0.12W/m²K
Roof –insulated in joists	0.10W/m²K
Windows	1.40W/m²K
Doors	1.40W/m ² K
Air Permeability	5.00m³/m³/hr
Thermal Bridging	Calculated
Ventilation	System 1
Lighting	Low-E lamps throughout
Space Heating	Air Source Heat Pump
DHW	DHW cylinder heated from main heating system
LZC Technology	none

Table 3e: 'Be Green' specification

The final 'Be Green' CO₂ emission and energy consumption figures, as taken from the SAP model (the SAP worksheet can be found in Appendix B), are shown in Table 3f below:

	Energy Consumption	Regulated & unregulated domestic carbon dioxide savings			
	(Kwinper annum)	(Tonnes CO ₂ per annum)	(%)		
Baseline	7,930	1.68			
Be Lean, Be Clean	7,648	1.62	4%		
Be Green	4,181	0.97	38%		
Cumulative on site savings	4,181	0.97	42%		

Table 3f: Total reduction in energy use and carbon emissions –SAP10

Section 4: Overheating

The expected risk of overheating associated with the proposed development has been assessed using the Good Homes Alliance Overheating Risk Tool. The completed tool can be found in Appendix C, but a summary of the key factors likely to increase the likelihood of overheating can be found below;

The site is located in the South East of the England The site is in a rural, rather than urban, location The site does not have any specific characteristics that would require windows to be closed or non-openable (aside from ground floor windows, which will be closed at night for security) The amount of glazing on the east, south and west façades of does not exceed 50% of the total façade area The proposed dwelling is dual aspect with openable windows on opposing façades

Similarly, the counterbalancing factors that reduce the likelihood of overheating can be found in the completed tool, but a summary of those proposed for the development can be found below.

The site is located in a rural location with the majority of the surroundings being green infrastructure Windows will be designed to provide large opening areas to help dissipate heat –the opening areas of these will provide a more than 100% increase in the purge rate openable areas as required by Part F (2010).

The result of this is that the GHA tool estimates a low likelihood of overheating.

Section 5: Water Consumption

Water is a precious commodity even in the UK and with ever increasing demand for clean drinking water measures need to be taken to safeguard future supplies.

Approximately 50% of the water consumed in domestic dwellings is not used for consumption, (the percentage is even higher in many commercial buildings) it is for washing and flushing of toilets etc. Measures to reduce the amount of potable water used for these activities reduce the demand for potable water and make better use of this limited resource.

Water use in the development will be reduced to at least 110l/person/day. This reduction in water use will be achieved through specification of water use fittings that do not exceed the following consumption rates;

Taps(other than kitchen taps)		6.00(litres/min)
Kitchen Taps		10.00(litres/min)
Showers		8.00(litres/min)
Baths (with shower over)		170(litres to overflow)
WCs (Flush Volume)	Full Flush:	4.00(litres)
	Part Flush:	2.60(litres)
Washing Machine		8.17(litres/kg dry load)
Dishwasher		1.25(litres/place setting)

For full details of the consumption of this specification please see Appendix D.

In addition to the above the development will be provided with water butts connected to the downpipes at the rear of the property. This will further reduce water consumption by enabling harvested water to be used for plant watering and other garden uses.

Appendix A

'Be Lean, Be Clean' SAP Calculation

33 Gypsy Lane, Great Amwel

FULL SAP CALCULATION PRINTOUT Calcula**e**on Type: New Build (As Designed)

Property Reference	Gypsy-L			Issued on Date	09/06/2022		
Assessment Be Lean				Prop Type Ref			
Reference							
Property	33a, Gypsy Lane, Great Ar	nwell, Ware, F	lernordshire,	SG12 9SN			
SAP Ra e ng		84 B	DER	17.66	TER	18.26	
Environmental		85 B	% DER <ter< th=""><th></th><th colspan="3">3.28</th></ter<>		3.28		
CO ₂ Emissions (t/year)		1.57	DFEE	49.99	TFEE	59.29	
General Requirements Compliance		Pass	% DFEE <tf< th=""><th>E</th><th colspan="3">15.68</th></tf<>	E	15.68		
Assessor Details Mr. Tom Reynolds, MES Buil		ing Solu O ons,	Tel: 01636 65	3055,	Assessor ID	8440-0005	
tom@mesenergyservices.co.		uk					
Client							

REGULATIONS COMPLIANCE REPORT - Approved Document L1A, 2013 Edieon, England

PECILIATIONS COMPLIANCE PEDORT - Approve	d Document 11A 2013 Edition England			
DWELLING AS DESIGNED				
Detached Bungalow, total floor area 102	m ²			
This report covers items included within It is not a complete report of regulation	n the SAP calculations. ons compliance.			
Ta TER and DER Fuel for main heating:Mains gas Fuel factor:1.00 (mains gas)				
Target Carbon Dioxide Emission Rate (TEI Dwelling Carbon Dioxide Emission Rate (1	R) 18.26 kgCO/m² DER) 17.66 kgCO/m²OK			
1b TFEE and DFEE Target Fabric Energy Efficiency (TFEE)5 Dwelling Fabric Energy Efficiency (DFEE	9.3 kWh/m²/yr)50.0 kWh/m²/yrOK			
2. Eshuis II asluss				
2 Fabric U-values Element Average	Highest			
External wall 0.18 (max. 0.30)	0.18 (max. 0.70) OK			
Floor 0.12 (max. 0.25)	0.12 (max. 0.70) OK			
Roof 0.10 (max. 0.20)	0.10 (max. 0.35) OK			
Openings 1.40 (max. 2.00)	1.40 (max. 3.30) OK			
2a Thermal bridging Thermal bridging calculated using user-	specified y-value of 0.046			
3 Air permeability				
Air permeability at 50 pascals: Maximum	5.00 (design value) 10.0	ок		
A Heating efficiency Main heating system:	Boiler system with radiators or underfloor - Mains	s gas		
the the				
Efficiency: 89% Minimum: 88%	OK			
Secondary heating system:	None			
5 Cylinder insulation Hot water storage	Nominal cylinder loss: 2.01 kWh/day			
Permitted by DBSCG 2.30 Primary pipework insulated:	OK Yes	OK		
6 Controls Space heating controls:	Time and temperature zone control	ок		
Hot water controls:	Cylinderstat	OK		
	Independent timer for DHW	OK		
Boiler interlock	Yes	ок		
7 Low energy lights Percentage of fixed lights with low-ener Minimum	rgy fittings:100% 75%	OK		
8 Mechanical ventilation Not applicable				
9 Summertime temperatura				
Overheating risk (Thames Valley): Based on:	Slight	OK		
Overshading	Average			
Windows facing North:	6.87 m ² , No overhang			
Windows facing West:	נא. אי m [*] , No overhang 2 18 m² No overhang			
Air change rate:	6.00 ach			
Blinds/curtains:	None			
Roof U-value	0.10 W/m ² K			
Floor U-value	0.12 W/m ² K			

elmhurst energy

CALCULATION OF DWELLING EMISSIONS FOR REGULATIONS COMPLIANCE 09 Jan 2014

SAP 2012 WORKSHEET FOR New Build (As Designed) (Version 9.92, January 2014) CALCULATION OF DWELLING EMISSIONS FOR REGULATIONS COMPLIANCE 09 Jan 2014

1. Overall dwelling dimensions						
Ground floor Total floor area TFA = (la)+(lb)+(lc)+(ld)+(le)(ln) Dwelling volume	101.8300	Area (m2) 101.8300 (1b) (3a)+(3b	Stor x)+(3c)	ey height (m) 2.4000 (2b) +(3d)+(3e)(3n	=	Volume (m3) 244.3920 (1b) - (3b) (4) 244.3920 (5)

2	Wontilatio	n rato				

z. ventilation	race												
					main heating		secondary heating		other	tota	1 1	m3 per hour	
Number of chim	neys				0	+	Ō	+	0 =		0 * 40 =	0.0000	(6a)
Number of open	flues				0	+	0	+	0 =		0 * 20 =	0.0000	(6b)
Number of inte	rmittent fa	ns									3 * 10 =	30.0000	(7a)
Number of pass	ive vents										0 * 10 =	0.0000	(7b)
Number of flue	less gas fi	res									0 * 40 =	0.0000	(7c)
											Air chang	es per hour	
Infiltration d	ue to chimn	evs, flues	and fans	= (6a)+(6b)·	+(7a)+(7b)+	(7c) =				30.0000	/ (5) =	0.1228	(8)
Pressure test												Yes	
Measured/desig	n AP50											5.0000	
Infiltration r	ate											0.3728	(18)
Number of side	s sheltered											2	(19)
Shelter factor									(20) = 1 -	[0.075 x	(19)] =	0.8500	(20)
Infiltration r	ate adjuste	d to includ	e shelter f	actor					(2	1) = (18) x	(20) =	0.3168	(21)
	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	
Wind speed	5.1000	5.0000	4.9000	4.4000	4.3000	3.8000	3.8000	3.7000	4.0000	4.3000	4.5000	4.7000	(22)
Wind factor	1.2750	1.2500	1.2250	1.1000	1.0750	0.9500	0.9500	0.9250	1.0000	1.0750	1.1250	1.1750	(22a)

	oan	I CD	THORE	AP1	nay	oun	our	Aug	DCP	OCC	140 4	DCC
Wind speed	5.1000	5.0000	4.9000	4.4000	4.3000	3.8000	3.8000	3.7000	4.0000	4.3000	4.5000	4.7000 (22)
Wind factor	1.2750	1.2500	1.2250	1.1000	1.0750	0.9500	0.9500	0.9250	1.0000	1.0750	1.1250	1.1750 (22a)
Adj infilt rate												
	0.4040	0.3961	0.3881	0.3485	0.3406	0.3010	0.3010	0.2931	0.3168	0.3406	0.3564	0.3723 (22b)
Effective ac	0.5816	0.5784	0.5753	0.5607	0.5580	0.5453	0.5453	0.5429	0.5502	0.5580	0.5635	0.5693 (25)

3. Heat losses	s and heat	loss parame	ter										
Element				Gross	Openings	s Ne	tArea	U-value	АхŨ	J K	-value	АхК	
				m2	m2	2	m2	W/m2K	W/H	c	kJ/m2K	kJ/K	
Door						2	.0000	1.4000	2.8000	C			(26)
Windows (Uw =	1.40)					27	.6400	1.3258	36.6439	9			(27)
Heat Loss Floo	or					101	.8300	0.1200	12.2196	57	5.0000	7637.2500	(28a)
External Wall				111.5900	29.6400) 81	.9500	0.1800	14.7510) 6	0.0000	4917.0000	(29a)
External Roof	1			101.8300		101	.8300	0.1000	10.1830	D	9.0000	916.4700	(30)
Total net area	a of extern	al elements	Aum(A, m2)			315	.2500						(31)
Fabric heat lo	oss, W/K =	Sum (A x U)					(26)(30) + (32) =	76.5975	5			(33)
Internal Wall	1					157	.3000				9.0000	1415.7000	(32c)
Heat capacity Thermal mass p	Cm = Sum(A parameter (x k) TMP = Cm / '	TFA) in kJ/1	m2K	2762)			(28)	.(30) + (32)) + (32a).	(32e) =	14886.4200 146.1889 14 5015	(34) (35) (36)
Total fabric h	neat loss	rinca varac	0.010 00	car enpobed	arca,					(33)	+ (36) =	91.0990	(37)
Ventilation he	eat loss ca	lculated mo:	nthly (38)m	= 0.33 x (25)m x (5)								
	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	
(38)m	46.9054	46.6499	46.3994	45.2229	45.0028	43.9781	43.9781	43.7883	44.3728	45.0028	45.4481	45.9136	(38)
Heat transfer	coeff												
	138.0044	137.7489	137.4984	136.3219	136.1018	135.0771	135.0771	134.8874	135.4718	136.1018	136.5471	137.0126	(39)
Average = Sum	(39)m / 12	=										136.3209	(39)
	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	
HLP	1.3552	1.3527	1.3503	1.3387	1.3366	1.3265	1.3265	1.3246	1.3304	1.3366	1.3409	1.3455	(40)
HLP (average)												1.3387	(40)
Days in month													
	31	28	31	30	31	30	31	31	30	31	30	31	(41)

4. Water heat	ing energy n	requirement:	s (kWh/year)									
Assumed occup	ancy											2.7558	(42)
Average daily	hot water w	use (litres	/day)									99.6510	(43)
	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	
Daily hot wat	er use												
	109.6161	105.6301	101.6441	97.6580	93.6720	89.6859	89.6859	93.6720	97.6580	101.6441	105.6301	109.6161	(44)
Energy conte	162.5576	142.1739	146.7107	127.9060	122.7288	105.9056	98.1371	112.6138	113.9588	132.8079	144.9703	157.4283	(45)
Energy conten	t (annual)									Total = S	um(45)m =	1567.8988	(45)
Distribution	loss (46)m	= 0.15 x (45)m										
	24.3836	21.3261	22.0066	19.1859	18.4093	15.8858	14.7206	16.8921	17.0938	19.9212	21.7455	23.6142	(46)
Water storage	loss:												
Store volume												210.0000	(47)

b) If manufacturer declared loss factor is not known :

CALCULATION OF DWELLING EMISSIONS FOR REGULATIONS COMPLIANCE 09 Jan 2014

Hot water st Volume facto Temperature	torage loss or from Tabl factor from	factor from e 2a 1 Table 2b	n Table 2 ()	wh/litre/da	ay)							0.0115 (0.8298 (0.5400 ((51) (52) (53)
Enter (49) or	(54) in (55	5)										1.0867 ((55)
Total storage	loss												
	33.6864	30.4264	33.6864	32.5997	33.6864	32.5997	33.6864	33.6864	32.5997	33.6864	32.5997	33.6864 ((56)
If cylinder co	ontains dedi	cated solar	storage										
	33.6864	30.4264	33.6864	32.5997	33.6864	32.5997	33.6864	33.6864	32.5997	33.6864	32.5997	33.6864 ((57)
Primary loss	23.2624	21.0112	23.2624	22.5120	23.2624	22.5120	23.2624	23.2624	22.5120	23.2624	22.5120	23.2624 ((59)
Total heat red	quired for w	ater heatir	ng calculate	ed for each	month								
	219.5064	193.6115	203.6595	183.0177	179.6776	161.0174	155.0859	169.5626	169.0705	189.7567	200.0820	214.3771 ((62)
Solar input	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000 ((63)
								Solar inpu	ut (sum of m	months) = Su	1m(63)m =	0.0000 ((63)
Output from w.	/h												
	219.5064	193.6115	203.6595	183.0177	179.6776	161.0174	155.0859	169.5626	169.0705	189.7567	200.0820	214.3771 ((64)
								Total pe	er year (kW	h/year) = Su	1m(64)m =	2238.4249 ((64)
Heat gains fro	om water hea	ting, kWh/r	nonth										
	99.6094	88.4229	94.3403	86.6181	86.3664	79.3030	78.1896	83.0031	81.9807	89.7177	92.2920	97.9040 ((65)

5. Internal gains (see Table 5 and 5a)

 Metabolic gains (Table 5), Watts

 Jan
 Feb
 Mar
 Apr
 May
 Jun
 Jul
 Aug
 Sep
 Oct
 Nov
 Dec

 (66)m
 137.7916
 137.7916
 137.7916
 137.7916
 137.7916
 137.7916
 137.7916
 137.7916
 137.7916
 137.7916
 137.7916
 137.7916
 137.7916
 137.7916
 137.7916
 137.7916
 137.7916
 137.7916
 137.7916
 137.7916
 137.7916
 137.7916
 137.7916
 137.7916
 137.7916
 137.7916
 137.7916
 137.7916
 137.7916
 137.7916
 137.7916
 137.7916
 137.7916
 137.7916
 137.7916
 137.7916
 137.7916
 137.7916
 137.7916
 137.7916
 137.7916
 137.7916
 137.7916
 137.7916
 137.7916
 137.7916
 137.7916
 137.7916
 137.7916
 137.7916
 137.7916
 137.7916
 137.7916
 137.7916
 137.7916
 137.7916
 137.7916
 137.7916
 137.7916
 137.7916
 137.7916
 137.7916
 137.7916
 137.7916
 137.7916
 137.7916
 137.7916
 137.7916
 137.7916
 137.7916

 133.8836
 131.5817
 126.8015
 120.3029
 116.0838
 110.1431
 105.0936
 111.5633
 113.8621
 120.5883
 128.1833
 131.5913
 (72)

 Total internal gains
 483.5864
 481.3905
 465.9975
 441.0108
 415.3823
 390.8474
 375.0013
 381.3651
 394.2766
 419.4910
 448.4954
 470.4976
 (73)

6. Solar gains

[Jan]	Area m2	Solar flux Table 6a W/m2	g Specific data or Table 6b	FF Specific data or Table 6c	Access factor Table 6d	Gains W
North	6.8700	10.6334	0.6300	0.7000	0.7700	22.3255 (74)
South	18.5900	46.7521	0.6300	0.7000	0.7700	265.6146 (78)
West	2.1800	19.6403	0.6300	0.7000	0.7700	13.0851 (80)

 503.2706
 668.7767
 804.2112
 884.8390
 873.1249
 843.8725
 783.4099
 715.0418

 984.6611
 1134.7742
 1245.2220
 1300.2213
 1263.9723
 1218.8738
 1164.7749
 1109.3185
 258.8876 (83) 729.3852 (84) Solar gains 301 0252 550 3577 358 7008 969.8487 807.1962 Total gains 784.6116

Temperature	during heatir	ng periods i	n the livin	g area from	n Table 9, T	'h1 (C)						21.0000	(85)
Utilisation	factor for ga	ins for liv	ving area, n	il,m (see 1	able 9a)								
	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	
tau	29.9637	30.0192	30.0739	30.3335	30.3825	30.6130	30.6130	30.6561	30.5238	30.3825	30.2834	30.1805	
alpha	2.9976	3.0013	3.0049	3.0222	3.0255	3.0409	3.0409	3.0437	3.0349	3.0255	3.0189	3.0120	
util living	area												
	0.9736	0.9494	0.9115	0.8453	0.7414	0.5972	0.4579	0.4930	0.6846	0.8717	0.9551	0.9783	(86)
MIT	18.9960	19.3304	19.7507	20.2203	20.6056	20.8563	20.9525	20.9394	20.7704	20.2550	19.5287	18.9292	(87)
Th 2	19.7978	19.7998	19.8017	19.8106	19.8123	19.8201	19.8201	19.8216	19.8171	19.8123	19.8089	19.8054	(88)
util rest o	f house												
	0.9681	0.9394	0.8939	0.8137	0.6872	0.5117	0.3467	0.3816	0.6056	0.8384	0.9444	0.9738	(89)
MIT 2	17.1705	17.6507	18.2479	18.9035	19.4092	19.7081	19.7964	19.7888	19.6203	18.9687	17.9484	17.0786	(90)
Living area	fraction								fLA =	Living area	. / (4) =	0.4112	(91)
MIT	17.9211	18.3413	18.8658	19.4450	19.9011	20.1802	20.2717	20.2619	20.0932	19.4976	18.5982	17.8395	(92)
Temperature	adjustment											-0.1500	
adjusted MI	т 17.7711	18.1913	18.7158	19.2950	19.7511	20.0302	20.1217	20.1119	19.9432	19.3476	18.4482	17.6895	(93)

8. Space heating requirement

	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
Utilisation	0.9550	0.9216	0.8739	0.7976	0.6841	0.5280	0.3764	0.4105	0.6149	0.8226	0.9279	0.9623 (94)
Useful gains	749.3288	907.4708	991.7340	993.2431	889.4789	667.3198	458.7343	478.0939	682.1234	797.7908	748.9671	701.8901 (95)
Ext temp.	4.3000	4.9000	6.5000	8.9000	11.7000	14.6000	16.6000	16.4000	14.1000	10.6000	7.1000	4.2000 (96)
Heat loss rate	e W											
	1859.0751	1830.8667	1679.6517	1417.0611	1095.7756	733.4964	475.7054	500.6895	791.5917	1190.5677	1549.5647	1848.2344 (97)
Month fracti	1.0000	1.0000	1.0000	1.0000	1.0000	0.0000	0.0000	0.0000	0.0000	1.0000	1.0000	1.0000 (97a)
Space heating	kWh											
	825.6513	620.5220	511.8107	305.1489	153.4847	0.0000	0.0000	0.0000	0.0000	292.2260	576.4302	852.8801 (98)
Space heating												4138.1541 (98)
Space heating	per m2									(98) / (4) =	40.6379 (99)

CALCULATION OF DWELLING EMISSIONS FOR REGULATIONS COMPLIANCE 09 Jan 2014

9a. Energy requirements -	Individua	l heating s	ystems, inc	luding micr	0-CHP							
Fraction of space heat fr Fraction of space heat fr Efficiency of main space Efficiency of secondary/s Space heating requirement	com seconda com main sy heating sy supplementa	ry/suppleme stem(s) stem 1 (in ry heating	ntary syste %) system, %	m (Table 11)						0.0000 1.0000 89.0000 0.0000 4649.6114	(201) (202) (206) (208) (211)
Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	
Space heating requirement 825.6513	620.5220	511.8107	305.1489	153.4847	0.0000	0.0000	0.0000	0.0000	292.2260	576.4302	852.8801	(98)
Space heating efficiency 89.0000	(main heat 89.0000	ing system 89.0000	1) 89.0000	89.0000	0.0000	0.0000	0.0000	0.0000	89.0000	89.0000	89.0000	(210)
Space heating fuel (main 927.6981	heating sy 697.2158	stem) 575.0682	342.8640	172.4548	0.0000	0.0000	0.0000	0.0000	328.3439	647.6744	958.2923	(211)
Water heating requirement 0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	(215)
Watan basting												(===)
Water heating requirement	:											
219.5064 Efficiency of water heate	193.6115 r	203.6595	183.0177	179.6776	161.0174	155.0859	169.5626	169.0705	189.7567	200.0820	214.3771 89.0000	(64) (216)
(217)m 89.0000 Fuel for water beating k	89.0000	89.0000	89.0000	89.0000	89.0000	89.0000	89.0000	89.0000	89.0000	89.0000	89.0000	(217)
246.6364	217.5410	228.8309	205.6379	201.8849	180.9184	174.2539	190.5198	189.9668	213.2098	224.8112	240.8732	(219)
Annual totals kWh/year											2515.0841	(219)
Space heating fuel - main Space heating fuel - seco	n system ondary										4649.6114 0.0000	(211) (215)
Electricity for pumps and central heating pump main heating flue fan Total electricity for the Electricity for lighting Total delivered energy for	d fans: e above, kW (calculate or all uses	h/year d in Append	ix L)								30.0000 45.0000 75.0000 408.1752 7647.8707	(230c) (230e) (231) (232) (238)
12a. Carbon dioxide emiss	ions - Ind	ividual hea	ting system	s including	micro-CHP							
Space heating - main syst Space heating - secondary Water heating (other fuel	em 1 ,						Energy kWh/year 4649.6114 0.0000 2515.0841	Emiss	ion factor kg CO2/kWh 0.2160 0.0000 0.2160	k	Emissions g CO2/year 1004.3161 0.0000 543.2582	(261) (263) (264)
Space and water heating Pumps and fans Energy for lighting Total CO2, kg/year Dwelling Carbon Dioxide F	mission Ra	te (DER)					75.0000 408.1752		0.5190 0.5190		1547.5742 38.9250 211.8429 1798.3421 17.6600	(265) (267) (268) (272) (273)
16 CO2 EMISSIONS ASSOCIAT DER Total Floor Area Assumed number of occupar CO2 emission factor in TE CO2 emissions from applia CO2 emissions from cookin Total CO2 emissions of Additional allowable elect Resulting CO2 emissions of Net CO2 emissions	TED WITH AP hts hble 12 for inces, equa ig, equatio fiset from ttricity ge offset from	PLIANCES AN electricit: tion (L14) n (L16) biofuel CHP neration, k additional	D COOKING A y displaced Wh/m²/year allowable	ND SITE-WID from grid electricity	E ELECTRICI	TY GENERATI	ON TECHNOLO	SIES		TFA N EF	17.6600 101.8300 2.7558 0.5190 15.0867 1.8181 34.5648 0.0000 0.0000 0.0000 34.5648	ZC1 ZC2 ZC3 ZC4 ZC5 ZC6 ZC7 ZC8

FULL SAP CALCULATION PRINTOUT Calculaeon Type: New Build (As Designed)

CALCULATION OF TARGET EMISSIONS 09 Jan 2014

SAP 2012 WORKSHEET FOR New Build (As Designed) (Version 9.92, January 2014) CALCULATION OF TARGET EMISSIONS 09 Jan 2014

1. Overall dwelling dimensions						
Ground floor Total floor area TFA = (la)+(lb)+(lc)+(ld)+(le)(ln) Dwelling volume	101.8300	Area (m2) 101.8300 (lb) (3a)+(3b	Store x ()+(3c)-	ey height (m) 2.4000 (2b) +(3d)+(3e)(3n	=	Volume (m3) 244.3920 (1b) - (3b) (4) 244.3920 (5)

2. Ventilation r	ate												
					main heating	£	econdary heating		other	tota	1 m:	3 per hour	
Number of chimne	ys				0	+	0	+	0 =		0 * 40 =	0.0000 (6a)
Number of open f	lues				0	+	0	+	0 =		0 * 20 =	0.0000 (6b)
Number of interm	ittent far	ıs									4 * 10 =	40.0000 (7a)
Number of passiv	e vents										0 * 10 =	0.0000 (7b)
Number of fluele	ss gas fir	res									0 * 40 =	0.0000 (7c)
											Air changes	s per hour	
Infiltration due	to chimne	eys, flues	and fans	= (6a)+(6b)-	+(7a)+(7b)+	(7c) =				40.0000	/ (5) =	0.1637 (8)	
Pressure test												Yes	
Measured/design	AP50											5.0000	
Infiltration rat	e											0.4137 (18)
Number of sides	sheltered											2 (19)
Shelter factor									(20) = 1 -	[0.075 x	(19)] =	0.8500 (20)
Infiltration rat	e adjusted	d to includ	e shelter f	actor					(2	1) = (18) x	(20) =	0.3516 (21)
	Tem	Rele	Man	2	Maria	Trum	T 1	2		0.=+	Nors	Dee	
Wind apood	Jan 5 1000	Fed F 0000	Mar 4 0000	Apr 4 4000	May 4 2000	Jun 2 0000	2 2000	Aug 2 7000	Sep 4 0000	4 2000	NOV 4 E000	Dec (22	,
Wind faster	1 2750	1 2500	1 2250	1 1000	1.0750	3.8000	0.0500	3.7000	1.0000	1.0750	1 1050	4.7000 (22	/ _\
Wind lactor	1.2/50	1.2500	1.2250	1.1000	1.0750	0.9500	0.9500	0.9250	1.0000	1.0750	1.1250	1.1/50 (220	1)
Muj initil fale	0 4483	0 4395	0 4307	0 3868	0 3780	0 3340	0 3340	0 3252	0 3516	0 3780	0 3956	0 4132 (22)	ь١
Effortivo po	0.4405	0.4395	0 6020	0.5808	0 5714	0.5540	0.3340	0.5252	0.5510	0 5714	0.5950	0.4132 (22)	5)
FILECCIVE aC	0.0005	0.5900	0.3928	0.3/40	0.5/14	0.5556	0.5550	0.5529	0.5010	0.3/14	0.5/62	0.0000 (20	/

3. Heat losses	and heat	loss parame	ter										
Element				Gross	Openings	Ne	tArea	U-value	Ах	U K	-value	АхК	
				m2	m2		m2	W/m2K	W	/K	kJ/m2K	kJ/K	
TER Opaque doo	r					2	.0000	1.0000	2.00	00			(26)
TER Opening Ty	pe (Uw = 1	.40)				23	.4600	1.3258	31.10	23			(27)
Heat Loss Floo	r					101	.8300	0.1300	13.23	79			(28a)
External Wall				111.5900	25.4600	86	.1300	0.1800	15.50	34			(29a)
External Roof	1			101.8300		101	.8300	0.1300	13.23	79			(30)
Total net area	of extern	al elements	Aum(A, m2)			315	.2500						(31)
Fabric heat lo	ss, W/K =	Sum (A x U)					(26)(30) + (32) =	= 75.08	15			(33)
Thermal mass p	arameter (TMP = Cm /	TFA) in kJ/	m2K								250.0000	(35)
Thermal bridge	s (Sum(L x	Psi) calcu	lated using	Appendix K)							13.7674	(36)
Total fabric h	eat loss									(33)	+ (36) =	88.8489	(37)
Ventilation he	at loss ca	lculated mo:	nthly (38)m	= 0.33 x (25)m x (5)								
	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	
(38)m	48.4294	48.1147	47.8062	46.3573	46.0862	44.8242	44.8242	44.5905	45.3103	46.0862	46.6346	47.2080	(38)
Heat transfer	coeff												
	137.2783	136,9636	136.6551	135,2062	134.9351	133.6731	133.6731	133.4394	134.1592	134.9351	135,4835	136.0568	(39)
Average = Sum(39)m / 12	=										135.2049	(39)
	Tan	Fob	Max	102	Mayr	Tum	T., 1	àug.	805	Oat	Nor	Dog	
UID	1 2/01	1 2460	1 2420	1 2270	1 2251	1 2127	1 21 27	1 2104	1 2175	1 2251	1 2205	1 2261	(40)
ULD (DWORDGO)	1.5401	1.3430	1.3420	1.5270	1.5251	1.3127	1.312/	1.5104	1.51/5	1.5251	1.5505	1 2270	(40)
Deve in menth												1.32/0	(40)
Days in month	2.1	2.0	2.1	2.0	2.1	2.0	2.1	21	2.0	2.1	20	21	(41)
	21	20	51	50	31	50	21	21	50	21	50	51	(=1)

4. Water heating energy requirements (kWh/year) Assumed occupancy

Average daily	hot water u	use (litres	/day)									99.6510	(43)
	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	
Daily hot wat	er use												
	109.6161	105.6301	101.6441	97.6580	93.6720	89.6859	89.6859	93.6720	97.6580	101.6441	105.6301	109.6161	(44)
Energy conte	162.5576	142.1739	146.7107	127.9060	122.7288	105.9056	98.1371	112.6138	113.9588	132.8079	144.9703	157.4283	(45)
Energy conten	t (annual)									Total = S	um(45)m =	1567.8988	(45)
Distribution	loss (46)m	= 0.15 x (45)m										
	24.3836	21.3261	22.0066	19.1859	18.4093	15.8858	14.7206	16.8921	17.0938	19.9212	21.7455	23.6142	(46)
Water storage	loss:												
Store volume												210.0000	(47)
a) If manufa	cturer decla	ared loss f	actor is kno	own (kWh/d	ay):							1.7016	(48)
Temperature	factor from	n Table 2b										0.5400	(49)
Enter (49) or	(54) in (55	5)										0.9188	(55)

2.7558 (42)

CALCULATION OF TARGET EMISSIONS 09 Jan 2014

Total storage	loss											
	28.4842	25.7277	28.4842	27.5653	28.4842	27.5653	28.4842	28.4842	27.5653	28.4842	27.5653	28.4842 (56)
If cylinder c	ontains dedi	cated solar	storage									
	28.4842	25.7277	28.4842	27.5653	28.4842	27.5653	28.4842	28.4842	27.5653	28.4842	27.5653	28.4842 (57)
Primary loss	23.2624	21.0112	23.2624	22.5120	23.2624	22.5120	23.2624	23.2624	22.5120	23.2624	22.5120	23.2624 (59)
Total heat re	quired for w	ater heatir	ng calculate	ed for each	month							
	214.3042	188.9127	198.4573	177.9833	174.4754	155.9830	149.8837	164.3604	164.0361	184.5545	195.0476	209.1749 (62)
Solar input	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000 (63)
								Solar inpu	ut (sum of m	nonths) = Su	ım(63)m =	0.0000 (63)
Output from w	/h											
	214.3042	188.9127	198.4573	177.9833	174.4754	155.9830	149.8837	164.3604	164.0361	184.5545	195.0476	209.1749 (64)
								Total pe	er year (kWl	h/year) = Su	1m(64)m =	2177.1731 (64)
Heat gains fr	om water hea	ting, kWh/r	nonth									
	95.4477	84.6639	90.1786	82.5906	82.2046	75.2755	74.0279	78.8414	77.9532	85.5559	88.2645	93.7422 (65)

	_
5. Internal gains (see Table 5 and 5a)	
Metabolic caine (Table 5) Watte	-

needborre garn	D (IGDIC D)	, maceb											
	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	
(66)m	137.7916	137.7916	137.7916	137.7916	137.7916	137.7916	137.7916	137.7916	137.7916	137.7916	137.7916	137.7916 (66)
Lighting gains	(calculate	ed in Append	dix L, equa	tion L9 or	L9a), also	see Table 5							
	23.1126	20.5284	16.6948	12.6390	9.4478	7.9763	8.6186	11.2028	15.0364	19.0922	22.2834	23.7549 (67)
Appliances gai	ns (calcula	ated in Appe	endix L, eq	uation L13	or L13a), a	lso see Tab	le 5						
	259.2527	261.9429	255.1636	240.7313	222.5131	205.3906	193.9516	191.2614	198.0407	212.4730	230.6912	247.8138 (68)
Cooking gains	(calculated	d in Append:	ix L, equat	ion L15 or	L15a), also	see Table	5						
	36.7792	36.7792	36.7792	36.7792	36.7792	36.7792	36.7792	36.7792	36.7792	36.7792	36.7792	36.7792 (69)
Pumps, fans	3.0000	3.0000	3.0000	3.0000	3.0000	3.0000	3.0000	3.0000	3.0000	3.0000	3.0000	3.0000 (70)
Losses e.g. ev	aporation (negative va	alues) (Tab	le 5)									
	-110.2333	-110.2333	-110.2333	-110.2333	-110.2333	-110.2333	-110.2333	-110.2333	-110.2333	-110.2333	-110.2333	-110.2333 (71)
Water heating	gains (Tabl	Le 5)											
	128.2899	125.9879	121.2078	114.7092	110.4901	104.5493	99.4998	105.9696	108.2683	114.9945	122.5896	125.9976 (72)
Total internal	gains												
	477.9926	475.7968	460.4037	435.4170	409.7885	385.2536	369.4076	375.7713	388.6829	413.8972	442.9017	464.9038 (73)

6.	lar gains	

[Jan]			7	m2	Solar flux Table 6a W/m2	s Speci or	g lfic data Table 6b	Specific or Tab	FF data le 6c	Acce fact Table	ss or 6d	Gains W	
North	rth 5.8300		300	10.6334		0.6300	0	.7000	0.77	00	18.9458	(74)	
South			15.7	800	46.7521		0.6300 0.7000		.7000	0.77	00	225.4653	(78)
West			1.8	3500	19.6403	}	0.6300	0	.7000	0.77	0 0	11.1043	(80)
Color going	266 6162	427 1927	E67 6611	600 6006	761 0270	741 0014	716 2640	664 9504	606 0201	467 1494	204 4710	210 7495	(02)
Solar gains	200.0103	427.1027	307.0011	082.0090	/51.03/8	/41.0914	710.2040	004.9304	000.9281	407.1494	304.4710	219.7405	(03)
Total gains	733.5080	902.9794	1028.0648	1118.0266	1160.8262	1126.3451	1082.0710	1040.7217	995.6110	881.0466	747.3727	684.6523	(84)

١.	Mean	internal	temperature	(heating	season)		

Temperature during heating periods in the living area from Table 9, Th1 (C)

Temperature	during heatir	ng periods i	n the livir	ng area from	1 Table 9, 1	Fh1 (C)						21.0000 (85	5)
Utilisation	factor for ga	ins for liv	ing area, r	nil,m (see T	able 9a)								
	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	
tau	51.5123	51.6307	51.7473	52.3018	52.4069	52.9017	52.9017	52.9943	52.7100	52.4069	52.1948	51.9748	
alpha	4.4342	4.4420	4.4498	4.4868	4.4938	4.5268	4.5268	4.5330	4.5140	4.4938	4.4797	4.4650	
util living	area												
	0.9956	0.9887	0.9733	0.9345	0.8483	0.6922	0.5257	0.5664	0.7876	0.9502	0.9903	0.9968 (86	б)
MTT	10 6004	10 0212	20 1259	20 4719	20 7596	20 0221	20 0944	20 0702	20 9722	20 4940	10 0702	10 6600 /07	7)
Th 2	19.8033	19.8057	19.8081	19.8191	19.8212	19.8309	19.8309	19.8327	19.8272	19.8212	19.8170	19.8127 (8)	8)
util rest of	house												
	0.9942	0.9849	0.9640	0.9109	0.7937	0.5915	0.3941	0.4341	0.6998	0.9272	0.9864	0.9957 (89	9)
MIT 2	17.9793	18.3028	18.7280	19.2200	19.5927	19.7876	19.8256	19.8244	19.7333	19.2618	18.5279	17.9280 (90	0)
Living area	fraction								fLA =	Living area	/ (4) =	0.4112 (93	1)
MIT	18.6495	18.9312	19.3028	19.7347	20.0721	20.2582	20.3021	20.2988	20.2021	19.7684	19.1247	18.6030 (92	2)
Temperature	adjustment											0.0000	
adjusted MIT	18.6495	18.9312	19.3028	19.7347	20.0721	20.2582	20.3021	20.2988	20.2021	19.7684	19.1247	18.6030 (93	3)

8.	Space heating requirement

	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	
Utilisation	0.9921	0.9812	0.9590	0.9089	0.8067	0.6306	0.4486	0.4889	0.7307	0.9259	0.9833	0.9940	(94)
Useful gains	727.7172	885.9911	985.9478	1016.1469	936.4192	710.2904	487.0816	508.7832	727.5247	815.7682	734.8691	680.5690	(95)
Ext temp.	4.3000	4.9000	6.5000	8.9000	11.7000	14.6000	16.6000	16.4000	14.1000	10.6000	7.1000	4.2000	(96)
Heat loss rat	e W												
	1969.8806	1921.7655	1749.5691	1464.9202	1129.6893	756.3471	494.8682	520.2597	818.6463	1237.1414	1629.1456	1959.6315	(97)
Month fracti	1.0000	1.0000	1.0000	1.0000	1.0000	0.0000	0.0000	0.0000	0.0000	1.0000	1.0000	1.0000	(97a)
Space heating	kWh												
	924.1696	696.0404	568.1343	323.1168	143.7929	0.0000	0.0000	0.0000	0.0000	313.5017	643.8791	951.6225	(98)
Space heating												4564.2571	(98)
Space heating	per m2									(98) / (4) =	44.8223	(99)

8c. Space cooling requirement

Not applicable

CALCULATION OF TARGET EMISSIONS 09 Jan 2014

9a. Energy re	quirements -	Individua	l heating s	ystems, inc	luding micr	0-CHP							
Fraction of s Fraction of s Efficiency of Efficiency of Space heating	pace heat fr pace heat fr main space secondary/s requirement	om seconda: om main sys heating sys upplementa:	ry/supplementstem(s) stem(s) stem 1 (in stem 1) ry heating st	ntary system %) system, %	m (Table 11)						0.0000 1.0000 93.5000 0.0000 4881.5584	(201) (202) (206) (208) (211)
	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	
space neating	924.1696	696.0404	568.1343	323.1168	143.7929	0.0000	0.0000	0.0000	0.0000	313.5017	643.8791	951.6225	(98)
Space heating	93.5000	(main heat: 93.5000	93.5000	93.5000	93.5000	0.0000	0.0000	0.0000	0.0000	93.5000	93.5000	93.5000	(210)
Space heating	fuel (main) 988.4166	heating sy: 744.4283	stem) 607.6302	345.5794	153.7892	0.0000	0.0000	0.0000	0.0000	335.2959	688.6407	1017.7781	(211)
Water heating	requirement 0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	(215)
Water heating	requirement												
Efficiency of	214.3042	188.9127	198.4573	177.9833	174.4754	155.9830	149.8837	164.3604	164.0361	184.5545	195.0476	209.1749	(64)
(217)m	88.2720	87.9817	87.4639	86.3859	84.3032	79.8000	79.8000	79.8000	79.8000	86.2163	87.7640	88.3649	(217)
Water heating	242.7770 fuel used	214.7183	226.9019	206.0329	206.9617	195.4674	187.8242	205.9654	205.5590	214.0599	222.2410	236.7171	(219) (219)
Annual totals Space heating Space heating	kWh/year fuel - main fuel - seco	system ndarv										4881.5584	(211)
Electricity f central he main heati Total electri Electricity f Total deliver	or pumps and ating pump ng flue fan city for the or lighting ed energy fo	fans: above, kWl (calculated r all uses	h/year d in Append:	ix L)								30.0000 45.0000 75.0000 408.1752 7929.9594	(230c) (230e) (231) (232) (238)
12a. Carbon d	ioxide emiss	ions - Ind	ividual heat	ting system	s including	micro-CHP							
								Energy kWh/year	Emiss	ion factor kg CO2/kWh	k	Emissions g CO2/year	
Space heating Space heating Water heating Space and wat	 main syst secondary (other fuel er heating 	em 1)						4881.5584 0.0000 2565.2258		0.2160 0.0000 0.2160		1054.4166 0.0000 554.0888 1608.5054	(261) (263) (264) (265)
Pumps and fan Energy for li Total CO2, kg Emissions per Fuel factor (s ghting /m2/year m2 for spac mains gas)	e and wate:	r heating					75.0000 408.1752		0.5190 0.5190		38.9250 211.8429 1859.2733 15.7960 1.0000	(267) (268) (272) (272a)
Emissions per Emissions per Target Carbon	m2 for ligh m2 for pump Dioxide Emi	ting s and fans ssion Rate	(TER) = (1	5.7960 * 1.	00) + 2.080	4 + 0.3823,	rounded to	2 d.p.				2.0804 0.3823 18.2600	(272b) (272c) (273)

Appendix B

'Be Green' SAP Calculation

33 Gypsy Lane, Great Amwel

FULL SAP CALCULATION PRINTOUT Calcula**e**on Type: New Build (As Designed)

Property Reference	0005-Herts-Planning-33-0	Sypsy-L			Issued on Date	09/06/2022	
Assessment	Be Green			Prop Type Ref			
Reference							
Property	33a, Gypsy Lane, Great Ar	nwell, Ware, F	lernordshire,	SG12 9SN			
SAP Ra e ng		80 C	DER	21.08	21.08 TER 26.9		
Environmental		82 B	% DER <ter< th=""><th></th><th>21.77</th><th></th></ter<>		21.77		
CO ₂ Emissions (t/year)		1.86	DFEE	49.99	TFEE	59.29	
General Requirements	Compliance	Pass	% DFEE <tfe< th=""><th>E</th><th>15.68</th><th></th></tfe<>	E	15.68		
Assessor Details Mi	r. Tom Reynolds, MES Build	ing Solu O ons,	Tel: 01636 65	3055,	Assessor ID	8440-0005	
to	m@mesenergyservices.co.u	uk					
Client							

REGULATIONS COMPLIANCE REPORT - Approved Document L1A, 2013 Edieon, England

REGULATIONS COMP	LIANCE	REPORT - Approv	red Document L1A, 2013 E	Edition, England	
DWELLING AS DESI	GNED				
Detached Bungalo	ow, tota	l floor area 10	2 m²		
This report cove It is not a comp	ers item plete rep	s included with port of regulat	in the SAP calculations ions compliance.	5.	
la TER and DER Fuel for main he Fuel factor:1.55 Target Carbon Di Dwelling Carbon	ating:E (elect: .oxide E Dioxide	lectricity ricity) mission Rate (I Emission Rate	YER) 26.95 kgCO/m² (DER) 21.08 kgCO/m²OK		
1b TFEE and DFEE Target Fabric En Dwelling Fabric	ergy Ef Energy i	ficiency (TFEE) Efficiency (DFE	59.3 kWh/m²/yr E)50.0 kWh/m²/yrOK		
2 Fabric U-value	s		**/ - b		
Element	Average	0.20)	Hignest	077	
Excernal wall	0.10 (m	ax. 0.30)	0.18 (max. 0.70)	OK	
Roof	0.12 (m	ax 0.20)	0.12 (max. 0.70)	OK	
Openings	1.40 (m	ax. 2.00)	1.40 (max. 3.30)	OK	
2a Thermal bridg Thermal bridging	ging g calcul	ated using user	-specified y-value of ().046	
3 Air permeabili	ty				
Air permeability Maximum	r at 50 j	pascals:	5.00 (design value) 10.0		ок
4 Heating effici Main heating sys Air-to-water hea	ency stem: at pump		Heat pump with radiat	cors or underfloor	- Electric
Secondary heatin	ıg syste	m:	None		
Secondary heatin 5 Cylinder insul Hot water storag	ation	m: 	None Nominal cylinder loss	s: 2.01 kWh/day	
Secondary heatin 5 Cylinder insul Hot water storag Permitted by DBS Primary pipework	ng system ation ge SCG 2.30 t insula	m: 	None Nominal cylinder loss OK Yes	s: 2.01 kWh/day	ОК
Secondary heatin 5 Cylinder insul Hot water storag Permitted by DBS Primary pipework	ng system ation ge SCG 2.30 t insula	m: 	None Nominal cylinder loss OK Yes	5: 2.01 kWh/day	OK
Secondary heatin 5 Cylinder insul Hot water storag Permitted by DBS Primary pipework 6 Controls Space heating cc	ng system ation ge CG 2.30 t insula 	m: 	None Nominal cylinder loss OK Yes Time and temperature	s: 2.01 kWh/day zone control	OK OK
Secondary heatin 5 Cylinder insul Hot water storag Permitted by DBS Primary pipework 	ng system ation ge SCG 2.30 t insulation ontrols:	m: 	None Nominal cylinder loss OK Yes Time and temperature	s: 2.01 kWh/day zone control	ok ok
Secondary heatin 5 Cylinder insul Hot water storag Permitted by DBS Primary pipework 6 Controls Space heating cc Hot water control	ng system 	m: 	None Nominal cylinder loss OK Yes Time and temperature Cylinderstat Independent timer for	s: 2.01 kWh/day zone control : DHW	OK OK OK OK
Secondary heatin 5 Cylinder insul Hot water storag Permitted by DBS Primary pipework 6 Controls Space heating cc Hot water contro	ng system ation ge 3CG 2.30 c insula ontrols: bls:	m: 	None Nominal cylinder loss OK Yes Time and temperature Cylinderstat Independent timer for	s: 2.01 kWh/day zone control : DHW	OK OK OK
Secondary heatin 5 Cylinder insul Hot water storag Permitted by DBS Primary pipework 6 Controls Space heating co Hot water contro 7 Low energy lig	ng system 	m: ted:	None Nominal cylinder loss OK Yes Time and temperature Cylinderstat Independent timer for	s: 2.01 kWh/day zone control c DHW	OK OK OK
Secondary heatin 5 Cylinder insul Hot water storag Permitted by DBS Primary pipework 6 Controls Space heating cc Hot water contro 7 Low energy lig Percentage of fi Minimum	ng system .ation ge GCG 2.30 insula 	m: ted: 	None Nominal cylinder loss OK Yes Time and temperature Cylinderstat Independent timer for uergy fittings:100% 75%	s: 2.01 kWh/day zone control c DHW	OK OK OK OK
Secondary heatin 5 Cylinder insul Hot water storage Permitted by DBS Primary pipework 	ng system ation ge CGG 2.30 : insular ontrols: ols: ols: dhts x.xed ligi	m: ted: 	None Nominal cylinder loss OK Yes Time and temperature Cylinderstat Independent timer for regy fittings:100% 75%	s: 2.01 kWh/day zone control c DHW	OK OK OK OK
Secondary heatin 5 Cylinder insul Hot water storag Permitted by DBS Primary pipework 6 Controls Space heating co Hot water control 7 Low energy lig Percentage of fi Minimum 8 Mechanical ver Not applicable 9 Summertime ten Overheating risk	ng system ation ge GCG 2.30 : insula ontrols: ols: ols: dis: dis: dis: dis: dis: dis: dis: di	m: ted: hts with low-er n s Valley):	None Nominal cylinder loss OK Yes Time and temperature Cylinderstat Independent timer for tergy fittings:100% 75% Slight	s: 2.01 kWh/day zone control : DHW	ОК ОК ОК ОК
Secondary heatin Secondary heatin Hot water storag Permitted by DBS Primary pipework 	ng system ation ge SGG 2.30 insulation ontrols: ols: dynamic and a system with a system trilation operatur: (Thame:	m: ted: hts with low-er n e s Valley):	None Nominal cylinder loss OK Yes Time and temperature Cylinderstat Independent timer for tergy fittings:100% 75%	s: 2.01 kWh/day zone control c DHW	ОК ОК ОК ОК
Secondary heatin 5 Cylinder insul Hot water storag Permitted by DBS Primary pipework 	ng system ation ge GG 2.30 i insula ontrols: ols: hts tilation tilation c (Thame: Anth:	m: 	None Nominal cylinder loss OK Yes Time and temperature Cylinderstat Independent timer for ergy fittings:100% 75% Slight Average 6.87 m². No overbarg	s: 2.01 kWh/day zone control c DHW	ОК ОК ОК ОК ОК
Secondary heatin 5 Cylinder insul Hot water storag Permitted by DBS Primary pipework 6 Controls Space heating co Hot water control 7 Low energy lig Percentage of fi Minimum 8 Mechanical ven Not applicable 9 Summertime ten Overshading: Windows facing N Windows facing N	ng system ation ge GCG 2.30 : insula ontrols: ols: 	m: ted: hts with low-er n e s Valley):	None Nominal cylinder loss OK Yes Time and temperature Cylinderstat Independent timer for rergy fittings:100% 75% Slight Average 6.87 m², No overhang 18.59 m², No overhang	s: 2.01 kWh/day zone control : DHW	OK OK OK OK
Secondary heatin Secondary heatin Hot water storag Permitted by DBS Primary pipework 	ng system ation ge SGG 2.30 : insula ontrols: ols: definition trilation 	m: ted: hts with low-er n e s Valley):	None Nominal cylinder loss OK Yes Time and temperature Cylinderstat Independent timer for tergy fittings:100% 75% Slight Average 6.87 m ² , No overhang 18.59 m ² , No overhang	s: 2.01 kWh/day zone control r DHW	ОК ОК ОК ОК
Secondary heatin 5 Cylinder insul Hot water storag Permitted by DBS Primary pipework 	ng system ation ge GG 2.30 t insula ontrols: ols: ols: ols: outrols: ols: outrols: ols: outrols: ols: outrols:	m: 	None Nominal cylinder loss OK Yes Time and temperature Cylinderstat Independent timer for transformer for transformer for Slight Average 6.87 m², No overhang 18.59 m², No overhang 6.00 ach	s: 2.01 kWh/day zone control c DHW	ОК ОК ОК ОК ОК
Secondary heatin 5 Cylinder insul Hot water storag Permitted by DBS Primary pipework 	ng system ation ge GG 2.30 c insula ontrols: ols: cls: cls: cls: cls: cls: cls: cls: c	m: ted: hts with low-er n e s Valley):	None Nominal cylinder loss OK Yes Time and temperature Cylinderstat Independent timer for tergy fittings:100% 75% Slight Average 6.87 m², No overhang 2.18 m², No overhang 6.00 ach None	s: 2.01 kWh/day zone control c DHW	ОК ОК ОК ОК
Secondary heatin 5 Cylinder insul Hot water storag Permitted by DBS Primary pipework 6 Controls Space heating co Hot water control 7 Low energy lig Percentage of fi Minimum 8 Mechanical ver Not applicable Overheating risk Based on: Overshading: Windows facing S Windows facing S Windows facing S Windows facing S Windows facing S Windows facing S Shino Startes 10 Are for the startes 10 Are	ng system ation pe SGG 2.30 insula ontrols: ontrols: ontrols: tilation tilation itilation orth: South: Best:	m: ted: hts with low-er n e s Valley):	None Nominal cylinder loss OK Yes Time and temperature Cylinderstat Independent timer for rergy fittings:100% 75% Slight Average 6.87 m², No overhang 2.18 m², No overhang 6.00 ach None	s: 2.01 kWh/day zone control : DHW	ОК ОК ОК ОК
Secondary heatin Secondary heatin Hot water storag Permitted by DBS Primary pipework 6 Controls Space heating co Hot water control 7 Low energy lig Percentage of fi Minimum 	ng system ation ge SGG 2.30 : insula ontrols: ols: ols: ols: ols: ols: ols: ols:	m: ted: hts with low-er n e s Valley):	None Nominal cylinder loss OK Yes Time and temperature Cylinderstat Independent timer for transformer for transformer for Slight Average 6.87 m², No overhang 2.18 m², No overhang 6.00 ach None	s: 2.01 kWh/day zone control c DHW	OK OK OK OK OK
Secondary heatin 5 Cylinder insul Hot water storag Permitted by DBS Primary pipework 	ng system ation ge GG 2.30 t insula ontrols: ols: ols: ols: ols: ols: ols: ols:	m: ted: hts with low-er n e s Valley):	None Nominal cylinder loss OK Yes Time and temperature Cylinderstat Independent timer for dergy fittings:100% 75% Slight Average 6.87 m², No overhang 18.59 m², No overhang 6.00 ach None 0.10 W/m²K	s: 2.01 kWh/day zone control c DHW	ОК ОК ОК ОК ОК

CALCULATION OF DWELLING EMISSIONS FOR REGULATIONS COMPLIANCE 09 Jan 2014

SAP 2012 WORKSHEET FOR New Build (As Designed) (Version 9.92, January 2014) CALCULATION OF DWELLING EMISSIONS FOR REGULATIONS COMPLIANCE 09 Jan 2014

1. Overall dwelling dimensions						
Ground floor Total floor area TFA = (la)+(lb)+(lc)+(ld)+(le)(ln) Dwelling volume	101.8300	Area (m2) 101.8300 (1b) (3a)+(3b	Stor x)+(3c)	ey height (m) 2.4000 (2b) +(3d)+(3e)(3n	=	Volume (m3) 244.3920 (1b) - (3b) (4) 244.3920 (5)

2	Wontilatio	n rato				

2. Ventilation	race												
					main heating		secondary heating		other	tota	1 1	m3 per hour	
Number of chim	neys				0	+	Ō	+	0 =		0 * 40 =	0.0000	(6a)
Number of open	flues				0	+	0	+	0 =		0 * 20 =	0.0000	(6b)
Number of inte	rmittent fa	ns									3 * 10 =	30.0000	(7a)
Number of pass	ive vents										0 * 10 =	0.0000	(7b)
Number of flue	less gas fi	res									0 * 40 =	0.0000	(7c)
											Air chang	es per hour	
Infiltration d	ue to chimn	evs, flues	and fans	= (6a)+(6b)·	+(7a)+(7b)+	(7c) =				30.0000	/ (5) =	0.1228	(8)
Pressure test												Yes	
Measured/desig	n AP50											5.0000	
Infiltration r	ate											0.3728	(18)
Number of side	s sheltered											2	(19)
Shelter factor									(20) = 1 -	[0.075 x	(19)] =	0.8500	(20)
Infiltration r	ate adjuste	d to includ	e shelter f	actor					(2	1) = (18) x	(20) =	0.3168	(21)
	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	
Wind speed	5.1000	5.0000	4.9000	4.4000	4.3000	3.8000	3.8000	3.7000	4.0000	4.3000	4.5000	4.7000	(22)
Wind factor	1.2750	1.2500	1.2250	1.1000	1.0750	0.9500	0.9500	0.9250	1.0000	1.0750	1.1250	1.1750	(22a)

	oan	I CD	THORE	AP1	nay	oun	our	Aug	DCP	OCC	140 4	DCC
Wind speed	5.1000	5.0000	4.9000	4.4000	4.3000	3.8000	3.8000	3.7000	4.0000	4.3000	4.5000	4.7000 (22)
Wind factor	1.2750	1.2500	1.2250	1.1000	1.0750	0.9500	0.9500	0.9250	1.0000	1.0750	1.1250	1.1750 (22a)
Adj infilt rate												
	0.4040	0.3961	0.3881	0.3485	0.3406	0.3010	0.3010	0.2931	0.3168	0.3406	0.3564	0.3723 (22b)
Effective ac	0.5816	0.5784	0.5753	0.5607	0.5580	0.5453	0.5453	0.5429	0.5502	0.5580	0.5635	0.5693 (25)

3. Heat losses	s and heat	loss parame	ter										
Element				Gross	Openings	s Ne	tArea	U-value	АхŨ	ј к	-value	АхК	
				m2	m2	2	m2	W/m2K	W/H	c	kJ/m2K	kJ/K	
Door						2	.0000	1.4000	2.8000	C			(26)
Windows (Uw =	1.40)					27	.6400	1.3258	36.6439	9			(27)
Heat Loss Floo	or					101	.8300	0.1200	12.2196	57	5.0000	7637.2500	(28a)
External Wall				111.5900	29.6400) 81	.9500	0.1800	14.7510) 6	0.0000	4917.0000	(29a)
External Roof	1			101.8300		101	.8300	0.1000	10.1830	D	9.0000	916.4700	(30)
Total net area	a of extern	al elements	Aum(A, m2)			315	.2500						(31)
Fabric heat lo	oss, W/K =	Sum (A x U)					(26)(30) + (32) =	76.5975	5			(33)
Internal Wall	1					157	.3000				9.0000	1415.7000	(32c)
Heat capacity Thermal mass p	Cm = Sum(A parameter (x k) TMP = Cm / '	TFA) in kJ/1	m2K	2762)			(28)	.(30) + (32)) + (32a).	(32e) =	14886.4200 146.1889 14 5015	(34) (35) (36)
Total fabric h	neat loss	rinca varac	0.010 00	car enpobed	arca,					(33)	+ (36) =	91.0990	(37)
Ventilation he	eat loss ca	lculated mo:	nthly (38)m	= 0.33 x (25)m x (5)								
	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	
(38)m	46.9054	46.6499	46.3994	45.2229	45.0028	43.9781	43.9781	43.7883	44.3728	45.0028	45.4481	45.9136	(38)
Heat transfer	coeff												
	138.0044	137.7489	137.4984	136.3219	136.1018	135.0771	135.0771	134.8874	135.4718	136.1018	136.5471	137.0126	(39)
Average = Sum	(39)m / 12	=										136.3209	(39)
	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	
HLP	1.3552	1.3527	1.3503	1.3387	1.3366	1.3265	1.3265	1.3246	1.3304	1.3366	1.3409	1.3455	(40)
HLP (average)												1.3387	(40)
Days in month													
	31	28	31	30	31	30	31	31	30	31	30	31	(41)

4. Water heat	ing energy n	requirement:	s (kWh/year)									
Assumed occup	ancy											2.7558	(42)
Average daily	hot water w	use (litres	/day)									99.6510	(43)
	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	
Daily hot wat	er use												
	109.6161	105.6301	101.6441	97.6580	93.6720	89.6859	89.6859	93.6720	97.6580	101.6441	105.6301	109.6161	(44)
Energy conte	162.5576	142.1739	146.7107	127.9060	122.7288	105.9056	98.1371	112.6138	113.9588	132.8079	144.9703	157.4283	(45)
Energy conten	t (annual)									Total = S	um(45)m =	1567.8988	(45)
Distribution	loss (46)m	= 0.15 x (45)m										
	24.3836	21.3261	22.0066	19.1859	18.4093	15.8858	14.7206	16.8921	17.0938	19.9212	21.7455	23.6142	(46)
Water storage	loss:												
Store volume												210.0000	(47)

b) If manufacturer declared loss factor is not known :

CALCULATION OF DWELLING EMISSIONS FOR REGULATIONS COMPLIANCE 09 Jan 2014

Hot water st Volume facto Temperature	torage loss or from Tabl factor from	factor from e 2a 1 Table 2b	n Table 2 ()	wh/litre/da	ay)							0.0115 (0.8298 (0.5400 ((51) (52) (53)
Enter (49) or	(54) in (55	5)										1.0867 ((55)
Total storage	loss												
	33.6864	30.4264	33.6864	32.5997	33.6864	32.5997	33.6864	33.6864	32.5997	33.6864	32.5997	33.6864 ((56)
If cylinder co	ontains dedi	cated solar	storage										
	33.6864	30.4264	33.6864	32.5997	33.6864	32.5997	33.6864	33.6864	32.5997	33.6864	32.5997	33.6864 ((57)
Primary loss	23.2624	21.0112	23.2624	22.5120	23.2624	22.5120	23.2624	23.2624	22.5120	23.2624	22.5120	23.2624 ((59)
Total heat red	quired for w	ater heatir	ng calculate	ed for each	month								
	219.5064	193.6115	203.6595	183.0177	179.6776	161.0174	155.0859	169.5626	169.0705	189.7567	200.0820	214.3771 ((62)
Solar input	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000 ((63)
								Solar inpu	ut (sum of m	months) = Su	1m(63)m =	0.0000 ((63)
Output from w.	/h												
	219.5064	193.6115	203.6595	183.0177	179.6776	161.0174	155.0859	169.5626	169.0705	189.7567	200.0820	214.3771 ((64)
								Total pe	er year (kW	h/year) = Su	1m(64)m =	2238.4249 ((64)
Heat gains fro	om water hea	ting, kWh/r	nonth										
	99.6094	88.4229	94.3403	86.6181	86.3664	79.3030	78.1896	83.0031	81.9807	89.7177	92.2920	97.9040 ((65)

5. Internal gains (see Table 5 and 5a)

 Metabolic gains (Table 5), Watts

 Jan
 Feb
 Mar
 Apr
 May
 Jun
 Jul
 Aug
 Sep
 Oct
 Nov
 Dec

 (66)m
 137.7916
 137.7916
 137.7916
 137.7916
 137.7916
 137.7916
 137.7916
 137.7916
 137.7916
 137.7916
 137.7916
 137.7916
 137.7916
 137.7916
 137.7916
 137.7916
 137.7916
 137.7916
 137.7916
 137.7916
 137.7916
 137.7916
 137.7916
 137.7916
 137.7916
 137.7916
 137.7916
 137.7916
 137.7916
 137.7916
 137.7916
 137.7916
 137.7916
 137.7916
 137.7916
 137.7916
 137.7916
 137.7916
 137.7916
 137.7916
 137.7916
 137.7916
 137.7916
 137.7916
 137.7916
 137.7916
 137.7916
 137.7916
 137.7916
 137.7916
 137.7916
 137.7916
 137.7916
 137.7916
 137.7916
 137.7916
 137.7916
 137.7916
 137.7916
 137.7916
 137.7916
 137.7916
 137.7916
 137.7916
 137.7916
 137.7916
 137.7916
 137.7916
 137.7916
 137.7916

 133.8836
 131.5817
 126.8015
 120.3029
 116.0838
 110.1431
 105.0936
 111.5633
 113.8621
 120.5883
 128.1833
 131.5913
 (72)

 Total internal gains
 483.5864
 481.3905
 465.9975
 441.0108
 415.3823
 390.8474
 375.0013
 381.3651
 394.2766
 419.4910
 448.4954
 470.4976
 (73)

6. Solar gains

[Jan]	Area m2	Solar flux Table 6a W/m2	g Specific data or Table 6b	FF Specific data or Table 6c	Access factor Table 6d	Gains W
North	6.8700	10.6334	0.6300	0.7000	0.7700	22.3255 (74)
South	18.5900	46.7521	0.6300	0.7000	0.7700	265.6146 (78)
West	2.1800	19.6403	0.6300	0.7000	0.7700	13.0851 (80)

 503.2706
 668.7767
 804.2112
 884.8390
 873.1249
 843.8725
 783.4099
 715.0418

 984.6611
 1134.7742
 1245.2220
 1300.2213
 1263.9723
 1218.8738
 1164.7749
 1109.3185
 258.8876 (83) 729.3852 (84) Solar gains 301 0252 550 3577 358 7008 969.8487 807.1962 Total gains 784.6116

Temperature d	uring heatir	a periods i	n the livin	a area from	Table 9 T	'h1 (C)						21 0000	(85)
Utilisation f	actor for ga	ins for liv	ing area, n	il.m (see T	able 9a)	(0)						2110000	(00)
	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	
tau	29.9637	30.0192	30.0739	30.3335	30.3825	30.6130	30.6130	30.6561	30.5238	30.3825	30.2834	30.1805	
alpha	2.9976	3.0013	3.0049	3.0222	3.0255	3.0409	3.0409	3.0437	3.0349	3.0255	3.0189	3.0120	
util living a	rea												
	0.9736	0.9494	0.9115	0.8453	0.7414	0.5972	0.4579	0.4930	0.6846	0.8717	0.9551	0.9783	(86)
MIT	18.9960	19.3304	19.7507	20.2203	20.6056	20.8563	20.9525	20.9394	20.7704	20.2550	19.5287	18.9292	(87)
Th 2	19.7978	19.7998	19.8017	19.8106	19.8123	19.8201	19.8201	19.8216	19.8171	19.8123	19.8089	19.8054	(88)
util rest of	house												
	0.9681	0.9394	0.8939	0.8137	0.6872	0.5117	0.3467	0.3816	0.6056	0.8384	0.9444	0.9738	(89)
MIT 2	17.1705	17.6507	18.2479	18.9035	19.4092	19.7081	19.7964	19.7888	19.6203	18.9687	17.9484	17.0786	(90)
Living area f	raction								fLA =	Living area	u / (4) =	0.4112	(91)
MIT	17.9211	18.3413	18.8658	19.4450	19.9011	20.1802	20.2717	20.2619	20.0932	19.4976	18.5982	17.8395	(92)
Temperature a	djustment											0.0000	
adjusted MIT	17.9211	18.3413	18.8658	19.4450	19.9011	20.1802	20.2717	20.2619	20.0932	19.4976	18.5982	17.8395	(93)

8. Space heating requirement

	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	
Utilisation	0.9562	0.9235	0.8770	0.8025	0.6916	0.5393	0.3908	0.4250	0.6256	0.8279	0.9300	0.9633	(94)
Useful gains	750.2551	909.3599	995.1498	999.2454	899.2865	681.6533	476.3456	495.0564	694.0379	802.9195	750.6644	702.6287	(95)
Ext temp.	4.3000	4.9000	6.5000	8.9000	11.7000	14.6000	16.6000	16.4000	14.1000	10.6000	7.1000	4.2000	(96)
Heat loss rate	e W												
	1879.7758	1851.5290	1700.2765	1437.5094	1116.1909	753.7580	495.9670	520.9226	811.9125	1210.9830	1570.0467	1868.7863	(97)
Month fracti	1.0000	1.0000	1.0000	1.0000	1.0000	0.0000	0.0000	0.0000	0.0000	1.0000	1.0000	1.0000	(97a)
Space heating	kWh												
	840.3634	633.1377	524.6142	315.5500	161.3769	0.0000	0.0000	0.0000	0.0000	303.5993	589.9553	867.6212	(98)
Space heating												4236.2180	(98)
Space heating	per m2									(98) / (4) =	41.6009	(99)

CALCULATION OF DWELLING EMISSIONS FOR REGULATIONS COMPLIANCE 09 Jan 2014

8c. Space cooling requirement

Not applicable

9a. Energy requi	rements -	 Individua	l heating sy	stems, inc	luding micr	0-CHP							
Fraction of space Fraction of space Efficiency of mat Efficiency of see Space heating ree	e heat from e heat from in space h condary/sug quirement	m seconda m main sy eating sy pplementa	ry/supplemer stem(s) stem 1 (in % ry heating s	atary syste	m (Table 11)						0.0000 1.0000 175.1000 0.0000 2419.3135	(201) (202) (206) (208) (211)
	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	
Space heating ree 8	quirement 40.3634	633.1377	524.6142	315.5500	161.3769	0.0000	0.0000	0.0000	0.0000	303.5993	589.9553	867.6212	(98)
Space heating ef:	ficiency (1 75.1000	main heat 175.1000	ing system 1 175.1000	.)	175.1000	0.0000	0.0000	0.0000	0.0000	175.1000	175.1000	175.1000	(210)
Space heating fu	el (main h	eating sy	stem)	100 2112	02 1627	0.0000	0 0000	0.0000	0 0000	172 2062	226 0240	495 5004	(211)
Water heating rea	quirement		233.0084	100.2113	92.102/	0.0000	0.0000	0.0000	0.0000	1/3.3002	330.9240	495.5004	(211)
	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	(215)
Water heating Water heating red 2	quirement 19.5064	193.6115	203.6595	183.0177	179.6776	161.0174	155.0859	169.5626	169.0705	189.7567	200.0820	214.3771	(64)
Efficiency of wat	ter heater 75.1000	175.1000	175.1000	175.1000	175.1000	175.1000	175.1000	175.1000	175.1000	175.1000	175.1000	175.1000	(216)
Fuel for water he 1:	eating, kW 25.3606	h/month 110.5720	116.3104	104.5218	102.6143	91.9574	88.5699	96.8376	96.5565	108.3705	114.2673	122.4312	(219)
Annual totals kWl Space heating fue	h/year el - main :	system										2419.3135	(211)
Space heating fue	el - secon	dary										0.0000	(215)
Electricity for p central heatin Total electricity Electricity for T Total delivered of	pumps and ng pump y for the lighting (energy for	fans: above, kW calculate all uses	h/year d in Appendi	.x L)								30.0000 30.0000 408.1752 4135.8581	(230c) (231) (232) (238)
12a. Carbon diox	ide emissi	ons - Ind	ividual heat	ing system	s including	micro-CHP							
								Energy kWh/year	Emiss	ion factor kg CO2/kWh	k	Emissions q CO2/year	
Space heating - t Space heating - t Water heating (of Space and water) Pumps and fans Energy for light: Total CO2, kg/yes Dwelling Carbon)	main syster secondary ther fuel) heating ing ar Dioxide Em	m 1 ission Ra	te (DER)					2419,3135 0.0000 1278.3694 30.0000 408.1752		0.5190 0.0000 0.5190 0.5190 0.5190		1255.6237 0.0000 663.4737 1919.0975 15.5700 211.8429 2146.5104 21.0800	(261) (263) (264) (265) (267) (268) (272) (273)
16 CO2 EMISSIONS DER Total Floor Area Assumed number o: CO2 emissions fact CO2 emissions frr Total CO2 emissi Additional allow: Residual CO2 emis Net CO2 emission Net CO2 emission	ASSOCIATE f occupant tor in Tab om applian om cooking ons ssions off able elect issions of s	D WITH AP s le 12 for ces, equa , equation set from ricity gen fset from	PLIANCES ANI electricity tion (L14) n (L16) biofuel CHP neration, kW additional) COOKING A / displaced /h/m²/year allowable	ND SITE-WID from grid electricity	E ELECTRICI	IY GENERATI	ON TECHNOLO	JIES		TFA N EF	21.0800 101.8300 2.7558 0.5190 15.0867 1.8181 37.9848 0.0000 0.0000 37.9848	ZC1 ZC2 ZC3 ZC4 ZC5 ZC6 ZC7 ZC8

FULL SAP CALCULATION PRINTOUT Calculaeon Type: New Build (As Designed)

CALCULATION OF TARGET EMISSIONS 09 Jan 2014

SAP 2012 WORKSHEET FOR New Build (As Designed) (Version 9.92, January 2014) CALCULATION OF TARGET EMISSIONS 09 Jan 2014

1. Overall dwelling dimensions						
Ground floor Total floor area TFA = (la)+(lb)+(lc)+(ld)+(le)(ln) Dwelling volume	101.8300	Area (m2) 101.8300 (lb) (3a)+(3b	Store x ()+(3c)-	ey height (m) 2.4000 (2b) +(3d)+(3e)(3n	=	Volume (m3) 244.3920 (1b) - (3b) (4) 244.3920 (5)

2. Ventilation r	ate												
					main heating	£	econdary heating		other	tota	1 m:	3 per hour	
Number of chimne	ys				0	+	0	+	0 =		0 * 40 =	0.0000 (6a)
Number of open f	lues				0	+	0	+	0 =		0 * 20 =	0.0000 (6b)
Number of interm	ittent far	ıs									4 * 10 =	40.0000 (7a)
Number of passiv	e vents										0 * 10 =	0.0000 (7b)
Number of fluele	ss gas fir	res									0 * 40 =	0.0000 (7c)
											Air changes	s per hour	
Infiltration due	to chimne	eys, flues	and fans	= (6a)+(6b)-	+(7a)+(7b)+	(7c) =				40.0000	/ (5) =	0.1637 (8)	
Pressure test												Yes	
Measured/design	AP50											5.0000	
Infiltration rat	e											0.4137 (18)
Number of sides	sheltered											2 (19)
Shelter factor									(20) = 1 -	[0.075 x	(19)] =	0.8500 (20)
Infiltration rat	e adjusted	d to includ	e shelter f	actor					(2	1) = (18) x	(20) =	0.3516 (21)
	Tem	Rele	Man	2	Maria	Trum	T 1	2		0.=+	Nors	Dee	
Wind apood	Jan 5 1000	Fed F 0000	Mar 4 0000	Apr 4 4000	May 4 2000	Jun 2 0000	2 2000	Aug 2 7000	Sep 4 0000	4 2000	NOV 4 E000	Dec (22	,
Wind faster	1 2750	1 2500	1 2250	1 1000	1.0750	3.8000	0.0500	3.7000	1.0000	1.0750	1 1050	4.7000 (22	/ _\
Wind lactor	1.2/50	1.2500	1.2250	1.1000	1.0750	0.9500	0.9500	0.9250	1.0000	1.0750	1.1250	1.1/50 (220	1)
Muj initil fale	0 4483	0 4395	0 4307	0 3868	0 3780	0 3340	0 3340	0 3252	0 3516	0 3780	0 3956	0 4132 (22)	ь١
Effortivo po	0.4405	0.4395	0 6020	0.5808	0 5714	0.5540	0.3340	0.5252	0.5510	0 5714	0.5950	0.4132 (22)	5)
FILECCIVE aC	0.0005	0.5900	0.3928	0.3/40	0.5/14	0.5556	0.5550	0.5529	0.5010	0.3/14	0.5/62	0.0000 (20	/

3. Heat losses	and heat	loss parame	ter										
Element				Gross	Openings	Ne	tArea	U-value	Ах	U K	-value	АхК	
				m2	m2		m2	W/m2K	W	/K	kJ/m2K	kJ/K	
TER Opaque doo	r					2	.0000	1.0000	2.00	00			(26)
TER Opening Ty	pe (Uw = 1	.40)				23	.4600	1.3258	31.10	23			(27)
Heat Loss Floo	r					101	.8300	0.1300	13.23	79			(28a)
External Wall				111.5900	25.4600	86	.1300	0.1800	15.50	34			(29a)
External Roof	1			101.8300		101	.8300	0.1300	13.23	79			(30)
Total net area	of extern	al elements	Aum(A, m2)			315	.2500						(31)
Fabric heat lo	ss, W/K =	Sum (A x U)					(26)(30) + (32) =	= 75.08	15			(33)
Thermal mass p	arameter (TMP = Cm /	TFA) in kJ/	m2K								250.0000	(35)
Thermal bridge	s (Sum(L x	Psi) calcu	lated using	Appendix K)							13.7674	(36)
Total fabric h	eat loss									(33)	+ (36) =	88.8489	(37)
Ventilation he	at loss ca	lculated mo:	nthly (38)m	= 0.33 x (25)m x (5)								
	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	
(38)m	48.4294	48.1147	47.8062	46.3573	46.0862	44.8242	44.8242	44.5905	45.3103	46.0862	46.6346	47.2080	(38)
Heat transfer	coeff												
	137.2783	136.9636	136.6551	135,2062	134.9351	133.6731	133.6731	133.4394	134.1592	134.9351	135,4835	136.0568	(39)
Average = Sum(39)m / 12	=										135.2049	(39)
	Tan	Fob	Max	102	Mayr	Tum	T., 1	àug.	805	Oat	Nor	Dog	
UID	1 2/01	1 2460	1 2420	1 2270	1 2251	1 2127	1 21 27	1 2104	1 2175	1 2251	1 2205	1 2261	(40)
ULD (DWORDGO)	1.5401	1.3430	1.3420	1.5270	1.5251	1.3127	1.312/	1.5104	1.51/5	1.5251	1.5505	1 2270	(40)
Deve in menth												1.32/0	(40)
Days in month	2.1	2.0	2.1	2.0	2.1	2.0	2.1	21	2.0	2.1	20	21	(41)
	21	20	51	50	31	50	21	21	50	21	50	51	(=1)

4. Water heating energy requirements (kWh/year) Assumed occupancy

Average daily hot water use (litres/day) 99.6510														
Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec														
Daily hot wat	er use													
	109.6161	105.6301	101.6441	97.6580	93.6720	89.6859	89.6859	93.6720	97.6580	101.6441	105.6301	109.6161	(44)	
Energy conte	162.5576	142.1739	146.7107	127.9060	122.7288	105.9056	98.1371	112.6138	113.9588	132.8079	144.9703	157.4283	(45)	
Energy conten	t (annual)									Total = S	um(45)m =	1567.8988	(45)	
Distribution	loss (46)m	= 0.15 x (45)m											
	24.3836	21.3261	22.0066	19.1859	18.4093	15.8858	14.7206	16.8921	17.0938	19.9212	21.7455	23.6142	(46)	
Water storage	loss:													
Store volume												210.0000	(47)	
a) If manufa	cturer decla	ared loss f	actor is kno	own (kWh/d	ay):							1.7016	(48)	
Temperature	factor from	n Table 2b										0.5400	(49)	
Enter (49) or	(54) in (55	5)										0.9188	(55)	

2.7558 (42)

CALCULATION OF TARGET EMISSIONS 09 Jan 2014

Total storage	loss											
	28.4842	25.7277	28.4842	27.5653	28.4842	27.5653	28.4842	28.4842	27.5653	28.4842	27.5653	28.4842 (56)
If cylinder c	ontains dedi	cated solar	storage									
	28.4842	25.7277	28.4842	27.5653	28.4842	27.5653	28.4842	28.4842	27.5653	28.4842	27.5653	28.4842 (57)
Primary loss	23.2624	21.0112	23.2624	22.5120	23.2624	22.5120	23.2624	23.2624	22.5120	23.2624	22.5120	23.2624 (59)
Total heat re	quired for w	ater heatir	ng calculate	ed for each	month							
	214.3042	188.9127	198.4573	177.9833	174.4754	155.9830	149.8837	164.3604	164.0361	184.5545	195.0476	209.1749 (62)
Solar input	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000 (63)
								Solar inpu	ut (sum of m	nonths) = Su	ım(63)m =	0.0000 (63)
Output from w	/h											
	214.3042	188.9127	198.4573	177.9833	174.4754	155.9830	149.8837	164.3604	164.0361	184.5545	195.0476	209.1749 (64)
								Total pe	er year (kWl	h/year) = Su	1m(64)m =	2177.1731 (64)
Heat gains fr	om water hea	ting, kWh/r	nonth									
	95.4477	84.6639	90.1786	82.5906	82.2046	75.2755	74.0279	78.8414	77.9532	85.5559	88.2645	93.7422 (65)

	_
5. Internal gains (see Table 5 and 5a)	
Metabolic caine (Table 5) Watte	-

needborre garn	Stabolio Barno (Table S), water													
	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec		
(66)m	137.7916	137.7916	137.7916	137.7916	137.7916	137.7916	137.7916	137.7916	137.7916	137.7916	137.7916	137.7916 (66)	
Lighting gains	(calculate	ed in Append	dix L, equa	tion L9 or	L9a), also	see Table 5								
	23.1126	20.5284	16.6948	12.6390	9.4478	7.9763	8.6186	11.2028	15.0364	19.0922	22.2834	23.7549 (67)	
Appliances gai	ns (calcula	ated in Appe	endix L, eq	uation L13	or L13a), a	lso see Tab	le 5							
	259.2527	261.9429	255.1636	240.7313	222.5131	205.3906	193.9516	191.2614	198.0407	212.4730	230.6912	247.8138 (68)	
Cooking gains	(calculated	d in Append:	ix L, equat	ion L15 or	L15a), also	see Table	5							
	36.7792	36.7792	36.7792	36.7792	36.7792	36.7792	36.7792	36.7792	36.7792	36.7792	36.7792	36.7792 (69)	
Pumps, fans	3.0000	3.0000	3.0000	3.0000	3.0000	3.0000	3.0000	3.0000	3.0000	3.0000	3.0000	3.0000 (70)	
Losses e.g. ev	aporation (negative va	alues) (Tab	le 5)										
	-110.2333	-110.2333	-110.2333	-110.2333	-110.2333	-110.2333	-110.2333	-110.2333	-110.2333	-110.2333	-110.2333	-110.2333 (71)	
Water heating	gains (Tabl	Le 5)												
	128.2899	125.9879	121.2078	114.7092	110.4901	104.5493	99.4998	105.9696	108.2683	114.9945	122.5896	125.9976 (72)	
Total internal	gains													
	477.9926	475.7968	460.4037	435.4170	409.7885	385.2536	369.4076	375.7713	388.6829	413.8972	442.9017	464.9038 (73)	

6.	lar gains	

[Jan]			7	m2	Solar flux Table 6a W/m2	s Speci or	g lfic data Table 6b	Specific or Tab	FF data le 6c	Acce fact Table	ss or 6d	Gains W	
North			5.8	300	10.6334		0.6300	0	.7000	0.77	00	18.9458	(74)
South			15.7	800	46.7521		0.6300	0	.7000	0.77	00	225.4653	(78)
West			1.8	3500	19.6403	}	0.6300	0	.7000	0.77	0 0	11.1043	(80)
Color going	266 6162	427 1927	E67 6611	600 6006	761 0270	741 0014	716 2640	664 9504	606 0201	467 1494	204 4710	210 7495	(02)
Solar gains	200.0103	427.1027	307.0011	082.0090	/51.03/8	/41.0914	710.2040	004.9304	000.9281	407.1494	304.4710	219.7405	(03)
Total gains	733.5080	902.9794	1028.0648	1118.0266	1160.8262	1126.3451	1082.0710	1040.7217	995.6110	881.0466	747.3727	684.6523	(84)

١.	Mean	internal	temperature	(heating	season)		

Temperature during heating periods in the living area from Table 9, Th1 (C)

Temperature	during heatir	ng periods i	n the livir	ng area from	1 Table 9, 1	Fh1 (C)						21.0000 (85	5)
Utilisation	factor for ga	ins for liv	ing area, r	nil,m (see T	able 9a)								
	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	
tau	51.5123	51.6307	51.7473	52.3018	52.4069	52.9017	52.9017	52.9943	52.7100	52.4069	52.1948	51.9748	
alpha	4.4342	4.4420	4.4498	4.4868	4.4938	4.5268	4.5268	4.5330	4.5140	4.4938	4.4797	4.4650	
util living	area												
	0.9956	0.9887	0.9733	0.9345	0.8483	0.6922	0.5257	0.5664	0.7876	0.9502	0.9903	0.9968 (86	б)
MTT	10 6004	10 0212	20 1259	20 4719	20 7596	20 0221	20 0944	20 0702	20 9722	20 4940	10 0702	10 6600 /07	7)
Th 2	19.8033	19.8057	19.8081	19.8191	19.8212	19.8309	19.8309	19.8327	19.8272	19.8212	19.8170	19.8127 (8)	8)
util rest of	house												
	0.9942	0.9849	0.9640	0.9109	0.7937	0.5915	0.3941	0.4341	0.6998	0.9272	0.9864	0.9957 (89	9)
MIT 2	17.9793	18.3028	18.7280	19.2200	19.5927	19.7876	19.8256	19.8244	19.7333	19.2618	18.5279	17.9280 (90	0)
Living area	fraction								fLA =	Living area	/ (4) =	0.4112 (93	1)
MIT	18.6495	18.9312	19.3028	19.7347	20.0721	20.2582	20.3021	20.2988	20.2021	19.7684	19.1247	18.6030 (92	2)
Temperature	adjustment											0.0000	
adjusted MIT	18.6495	18.9312	19.3028	19.7347	20.0721	20.2582	20.3021	20.2988	20.2021	19.7684	19.1247	18.6030 (93	3)

8.	Space heating requirement

	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	
Utilisation	0.9921	0.9812	0.9590	0.9089	0.8067	0.6306	0.4486	0.4889	0.7307	0.9259	0.9833	0.9940	(94)
Useful gains	727.7172	885.9911	985.9478	1016.1469	936.4192	710.2904	487.0816	508.7832	727.5247	815.7682	734.8691	680.5690	(95)
Ext temp.	4.3000	4.9000	6.5000	8.9000	11.7000	14.6000	16.6000	16.4000	14.1000	10.6000	7.1000	4.2000	(96)
Heat loss rat	e W												
	1969.8806	1921.7655	1749.5691	1464.9202	1129.6893	756.3471	494.8682	520.2597	818.6463	1237.1414	1629.1456	1959.6315	(97)
Month fracti	1.0000	1.0000	1.0000	1.0000	1.0000	0.0000	0.0000	0.0000	0.0000	1.0000	1.0000	1.0000	(97a)
Space heating	kWh												
	924.1696	696.0404	568.1343	323.1168	143.7929	0.0000	0.0000	0.0000	0.0000	313.5017	643.8791	951.6225	(98)
Space heating												4564.2571	(98)
Space heating	per m2									(98) / (4) =	44.8223	(99)

8c. Space cooling requirement

Not applicable

CALCULATION OF TARGET EMISSIONS 09 Jan 2014

9a. Energy re	quirements -	Individua	l heating s	ystems, inc	luding micr	0-CHP							
Fraction of s Fraction of s Efficiency of Efficiency of Space heating	pace heat fr pace heat fr main space secondary/s requirement	om seconda: om main sy: heating sy: upplementa:	ry/suppleme stem(s) stem 1 (in ry heating	ntary syste %) system, %	m (Table 11)						0.0000 1.0000 93.5000 0.0000 4881.5584	(201) (202) (206) (208) (211)
2	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	
space neating	924.1696	696.0404	568.1343	323.1168	143.7929	0.0000	0.0000	0.0000	0.0000	313.5017	643.8791	951.6225	(98)
Space heating	93.5000	(main heat: 93.5000	ing system 93.5000	1) 93.5000	93.5000	0.0000	0.0000	0.0000	0.0000	93.5000	93.5000	93.5000	(210)
Space heating	fuel (main 988.4166	heating sy: 744.4283	stem) 607.6302	345.5794	153.7892	0.0000	0.0000	0.0000	0.0000	335.2959	688.6407	1017.7781	(211)
Water heating	requirement 0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	(215)
Water heating	·												
water neating	214.3042	188.9127	198.4573	177.9833	174.4754	155.9830	149.8837	164.3604	164.0361	184.5545	195.0476	209.1749	(64)
Efficiency of (217)m	water heate 88.2720	r 87.9817	87.4639	86.3859	84.3032	79.8000	79.8000	79.8000	79.8000	86.2163	87.7640	79.8000 88.3649	(216) (217)
Fuel for wate	r heating, k 242.7770 fuel used	214.7183	226.9019	206.0329	206.9617	195.4674	187.8242	205.9654	205.5590	214.0599	222.2410	236.7171	(219)
Annual totals	kWh/year	evetem										4881 5584	(211)
Space heating	fuel - seco	ndary										0.0000	(211)
Electricity f central he main heati Total electri Electricity f Total deliver	or pumps and ating pump ng flue fan city for the or lighting red energy fo	fans: above, kW (calculate r all uses	h/year d in Append	ix L)								30.0000 45.0000 75.0000 408.1752 7929.9594	(230c) (230e) (231) (232) (238)
12a. Carbon d	ioxide emiss	ions - Ind	ividual hea	ting system	s including	micro-CHP							
								Energy kWh/year	Emiss	ion factor kg CO2/kWh	k	Emissions g CO2/year	
Space heating Space heating Water heating Space and wat	 main syst secondary (other fuel 	em 1)						4881.5584 0.0000 2565.2258		0.2160 0.0000 0.2160		1054.4166 0.0000 554.0888 1608 5054	(261) (263) (264) (265)
Pumps and fan	is							75.0000		0.5190		38.9250	(267)
Energy for 11 Total CO2, kg Emissions per	ghting /m2/year m2 for spac	e and wate:	r heating					408.1752		0.5190		211.8429 1859.2733 15.7960	(268) (272) (272a)
Fuel factor (Emissions per	electricity) m2 for ligh	ting										1.5500 2.0804	(272b)
Emissions per Target Carbon	m2 for pump Dioxide Emi	s and fans ssion Rate	(TER) = (1	5.7960 * 1.	55) + 2.080	4 + 0.3823,	rounded to	2 d.p.				0.3823 26.9500	(272c) (273)

Appendix C

GHA Overheating Tool

33 Gypsy Lane, Great Amwel

EARLY STAGE OVERHEATING RISK TOOL : I WWMSR/YP TVS ZM H W K Y MHE RGI S R L SI X SE W W WW SZ I V L I E XM R K W W O MRV I WHH R WE PWG L Q I W EXX LII E V P I W X EK WSJ H W M KR. XMWWT I GM GEP P I

a pre-detail design assessment intended to help identify factors that could contribute to or mitigate the likelihood of overheating.

8 LIUYIVXVXRVAERFIERVVIVIHJSVERZIVEPRALIQISVSVMRHVZMAALVVIVVXVXIVVIVXVXUVIVXVXIVXIVXIVXIVXIVXIVXIVXIVXIVXIVXIVX

Additional information is provided in the accompanying guidance, with examples of scoring and advice on next steps.

Find out more information and download accompanying guidance at KSSHLSQ IWS/KYSZIVLIEXMRKIRRI[LSQIW

KEY FACTORS INCREASING THE LIKELIHOOD OF OVERHEATING KEY FACTORS REDUCING THE LIKELIHOOD OF OVERHEATING

(Geographical and local context										
	: K HU H L VW KH	6 R X WK HD V W			'R WK H VLW H VX UUR XQ G LQJ V I H DW X U HVL J QL ÀF DQ W						
VFKHP HLOWK8. "	1 RUWKHUQ (QJODQG6FRWODQG1,	0	Δ	E OX H JU HH Q L QIU DVWU XFWX UH "							
	6 HHJXL ODQFHI KUPUS	5 H V WRI (QJ O D QG D Q G: ales	2			1	1				
	, V WKH VLW H OL NHO \WR	& HQNDORQGRQV HIXLGDQFH	3		Z R X 06 UHT X L UHD V0 HDWR I VXU U R XQGLQJ VZL WK L 00 P UDGLX WREHEOXHJUHHQRUDUXUDOFRQMI W						
	VHHDQ8 UE DQ+ H DW	* UNURQ GR OD DOE KHV WHU% KOP	2	0	·						
	6 HHJXLODQFHIRUGHWDLO/	2 WAHUELWAWVNERCOV GHOV/HVXE XUEEDOODUHDV		0							

Site characteristics

'RHVWKHVLWHKDYH EDUULHUVWRZLQGRZV RSHQLQJ' 1 RLVH\$FRXVWLFWLWV 3 R UDLUTXDOLWVPHOOVHJ QHDUIDFWRU, RUFDUSDUNRU	Day IHDV R QV WRNHH SDOO Z LQGRZ VFOR/HG Day EDU ULHW VRPHRI WKH WP H RUI RUIR PHZLQ G RZ V- H JR QTX L HWV LGH	8 4		\$ U HL PP HGL D WH VX UU RX Q GLQ J V X UI D FH V LQP D MR ULW\ \$ D OH LQF ROR XU R UEOX HJU HH Q " /	1	0
YHU\EXV\URDG 6 HFXULWUUVIVFULPH \$ GMDFHQWVNRKHDWUHWIFWLRQ SODQW	Night UHV K UV WRNH SDOO Z LQGRZ VFORVHG	8	4	'R H WW K H V LWH K DY HH[LV WL Q JW D OO WUH H VRU EXLOGL Q J V WK D WZL 00WKD G H V R OD U H[SRV H G J O D] HG DU H D V " 6 KDGLQJ RQWRHDWWVRXWCDQC2CHVWI DF LQJDJHDVFDOQHGXFH V R OD UJD L Q/E XWP D \DO V R UH 6/F H6D \ O L J KWO H 140 V	1	1

Scheme character	eristics and	dwelling	design
------------------	--------------	----------	--------

\$ U HW KH GZH O OLQ J VÁDWV ") 00 W/RI WHQ F RPEL Q HO Q XP EH U R I I DFW R/W F R Q WLE X WLQJ WRRYH U K HD WL QJU L V/HJ GZH OOLQJ V L JHKH D W J DLQVIURPV XUURXQGL QJDUHDVRW/KHUGHQVHDQGHQF GRVHG G Z H 00QJ V PD \ E HV L PLOD UØ DII HF WHG V HH J XLGD Q F HI R U H [D P S OH V	3	0	#1'RG ZHOOLQUVK DYHKLJKH SRVHGWKHUPDOPDVV- \$1'DPHDQVIRUVHFXUHDQGTXLHWQLJKWYHQWLODWLRQ" 7KHUPDOPDVVFDQKHOSVORZGRZQWHPSHUUWXUHULVHVEXWW FDQDOVRFDXVHSURSHUWLHWREHVORZHUWRFRROVRQHHGVWEH XVHGZLWKFDUHVHHJXLGDQFH	1	0
'R HV WKH VFK H PHKD YHFR PPXQLW/KHDWLQJ" LHZ LWK KRWSL SHZR UNR SH UDWLQJGXULQJVX PHUHVSHFLD001LQ LQVHUQDODUHDV OHDOLQJVRK HDWJDLQVDQGKLJKHUWHPSHUDVMUHV	3	0	'R Å RR U WR F H LOLQ JK H LJKW V DO O RZ ! PDQG F H LOLQ J IDQ V Q RZR U L QWKHIX WKU H " ! DQL Q WD036 + LJ K H UFH L QQ V LORU HDV H V WUD WLÅ FDWL R QIQ G D LU ! P P RYHP HCAMOURI I HUNK HSRVH CQVL CDI RGF HCD, CJ DQV ! P	2 1	0

factors and increase mitigation factors AND Carry out a detailed assessment (e.g. dynamic modelling against CIBSE TM59)

and/or increase mitigation factors

AND Carry out a detailed assessment (e.g. dynamic modelling against CIBSE TM59)

and that risk factors do not increase (e.g. in planning conditions)

Appendix D

Water Consumption Calculations

33 Gypsy Lane, Great Amwel

<mark>bre</mark>global

Job n	:						
Dat	09/06/2022						
Assessor nam	Fom Reynolds						
Registration n							
Development nam	33a Gypsy Lane						
Issue Dat	:						
Rainwater Gi	eywater Results						

WATER EFFICIENCY CALCULATOR FOR NEW DWELLINGS

(for use with the Code for Sustainable Homes issues Wat 1 for the May 2009 and subsequent versions)

Dwelling Description 33a Gypsy Lane

1st step - Select from options below:

Is a Rain and/or Greywater system specified?	No
Is a shower AND bath present?	Yes
Has a washing machine been specified?	No
Has a dishwasher been specified?	No

2nd step - Build spreadsheet (click button below)

BUILD SPREADSHEET

As soon as this button is pressed the spreadsheet will change according to the options selected previously in the 1st step. Scroll down to see the changes.

3rd step - Enter consumption details for the specified fittings

TAPS (excluding kitchen taps)		Fitting type	Flow rate (litres/min)	Number of fittings
	1	Basin Taps	6.00	2
	2			
	3			
	4			
		Proport	ionate flow rate (litres/min)	4.20
		Consum	ption / person / day (Litres)	11.06

CSH Wat Tool May 09

BATHS		Fitting type	Capacity to overflow (litres)	Number of fittings
	1	Bath	170.00	1
	2			
	3			
	4			
		Proportionate	capacity to overflow (litres)	119.00
		Consum	ption / person / day (Litres)	18.70
SHOWERS		Fitting type	Flow rate (litres/min)	Number of fittings
	1	Shower	8.00	2
	2			
	3			
	4			
		Proport	ionate flow rate (litres/min)	5.60
		Consum	ption / person / day (Litres)	34.96
DISHWASHER				
Where no dishwasher is specified, a default consumption figure of 1.25 litres per place setting is used.				
		Consum	ption / person / day (Litres)	4.50

CSH Wat Tool May 09

WASH	ING MACHIN	IES			Number of fittings
Where machine default figure of kilogram	Where no washing machine is specified, a default consumption figure of 8.17 litres per kilogram of dry load is used.				
Where n	o washing mach	nines have beer of grey/rain	specified but p water was insta	olumbing for future supply alled, please enter details:	
			Consump	otion / person / day (Litres)	17.16
WC's	Fitting Typ	be Fi	ush Type	Volume**	Number of fittings
1	WC		Full Flush	4.00	2
· ·	wc		Part Flush	2.60	2
2			Full Flush Part Flush		
			Full Flush		
3			Part Flush		
			Full Flush		
4			Part Flush		
			Average effect	ive flushing volume (litres)	3.06
			Consump	otion / person / day (Litres)	13.53

0
38
0
0
0 388 0 0

Go to Start

4th step - Analyse Results

INTERNAL WATER CONSUMPTION		
NET INTERNAL WATER CONSUMPTION	(litres/person/day)	113.79
RAINWATER ONLY COLLECTION SAVING	(litres/person/day)	0.00
GREYWATER ONLY RECYCLING SAVING	(litres/person/day)	0.00
RAIN/GREYWATER COLLECTION SAVING (combined system)	(litres/person/day)	0.00
NORMALISATION FACTOR	(litres/person/day)	0.91
TOTAL WATER CONSUMPTION	(litres/person/day)	103.6
	CSH CREDITS ACHIEVED	3
CSH MANDATORY LEVEL:		Level 3/4

17. K COMPLIANCE			
EXTERNAL WATER USE	(litres / person / day)	5.00	
TOTAL WATER CONSUMPTION	(litres / person / day)	108.6	
	17. K COMPLIANCE?	Yes	

BRE Global 2009. BRE Certification is a registered trademark owned by BRE Global and may not be used without BRE Global's written permission.

Permission is given for this tool to be copied without infringement of copyright for use only on projects where a Code for Sustainable Homes assessment is carried out. Whilst every care is taken in preparing the Wat 1 assessment tool, BREG cannot accept responsibility for any inaccuracies or for consequential loss incurred as a result of such inaccuracies arising through the use of the Wat 1 tool.

PRINTING: before printing please make sure that in "Page Setup" you have selected the page to be as "Landscape" and that the Scale has been set up to 75% (maximum)

Appendix E

East Herts District Council Sustainability Checklist

https://www.eastherts.gov.uk/planning-building/make-planning-application.

Reference	Checklist Criteria	Summary of approach to address the criteria
Energy and Carbon Reduction		
En.1	Does the Sustainable construction, Energy and Water Statement detail how the proposed development's carbon emissions have been minimised and to what extent? Have full and reserved matters planning applications also included a carbon reduction template within the statement? (See SPD section 3.3 and appendix B)	& Duerchpl Wlrowkdyheho Uhgxfhoe 2r Yhuwkoduw Edvholgh7kk/Kdxeho Dfkilmhowrurxjkdolpsbr yng Exioolgjideulf 4d oorkh Xvhr dkhdysxfoyrs urlgh VSDFHoog + Khidvlgj
En.2	How have the site layout and building orientation and form been designed to minimise energy use? For example passive solar gain, natural shade, natural ventilation, thermal mass. (See SPD section 3.2.3)	7 KHRULOWWRRIWKOZHOLQJ Z WAWHODJHWOUJDRJODJQ IDFIQJVRXVWSURYLOWVRODJ JDIQ7KHXVHRIODJHSHOLQV IRUDWUDOSUJHYHOVLODIRQ DVMWZLWSDVVLYHOLJKWWLPH FRROQJ. Openings on both sid of the dwelling enable cross- ventilation to assist this proces
En.3	How has the energy hierarchy been applied to prioritise reducing the need for energy and implementing the 'fabric first approach'? (See SPD section 3.2.3)	\$ QLES URTHEEXLOLOGUI DEELLFKOV UHGXFHGFDUERCHPLV VLROVEV XV LQJSDVVLYHPHEDQV7 KH XVHR DKHDVSXPSVRS URLGH VSDFHIDQG + KH DVLQJKHQ SURYLGHVIDQEDGELVKEDDO 8 UHGXFVIRQ

134

En4	How will you ensure that where renewable/ low carbon technologies have been included to reduce carbon, that these will be successfully integrated into the design of the development? (See SPD sections 3.2.4 and 3.2.5)	Design of the heat pump and underfloor systems will be undertaken by the same party (as recommended by the Energy Saving Trust). The heat pump will be suitably sized for the demand - which will be low due to the insulation uplift over Part L 2013 - and will be commissioned by a suitable specialist pre-completion.
En5	How has the energy embodied in construction materials been reduced? (e.g. reuse and recycling/ sustainable materials/ locally sourced) (See SPD section 3.2.6)	Demolition material will be re-used on site where possible. New materials will be sourced locally wherever possible. Materials with a low embodied carbon (timber, low-carbon cement, for example) will be specified wherever possible
Climate Change Adaptation		
CA.1	How has the site layout and buildings been designed to mitigate overheating, giving priority to measures in line with the cooling hierarchy? (See SPD section 4.2.2)	7 KHOXDODSHFWQDXUHDODFZYURW YHQMDMRQTDQGWKHDUHNL]LQRI the IORRUISHQDEOFZLQOBZVHQDEOHVVHFXUH QJKWMPHYHQVLODVRZLWKVUQLILFIDDDLU FKDQJHVSHUKKU
CA.2	How has overheating assessment been assessed and what measures are proposed to address it? (See SPD section 4.2.2)	2 YHUKHOWQJUUWKOVEHOOVVHVVHG XVQJVKH*+\$2 YHUKHOVLQUAROKH GHMHORSPHQVVJUODOBOVLROSURIGHV VJQUEDQMASDFVROVKHRHUKHOMQJUUVN DQGOQXSOLIVUSKUHYHQVVODWIRRYHUVKH 3 DUMVIHTXLUHOYLDROSHODEOHZLOOFZV PLMJDVMVMHUHHOLQQULVV
CA.3	What Green Infrastructure is proposed? (See SPD section 4.2.3)	6 LJ QILEDQMOPR XQ/VRJ DQEHOSODQVQJ ZOO P LQP LVHMHDRRX Q/VRI KOUG/XUI DFHNLQ VKHGEMHOTSSPH Q/V

Sustainability SPD	
District Plan	
East Herts	

CA.4	How have existing landscape features such as trees/woodlands and hedgerows been protected and incorporated within a Green Infrastructure network? (See SPD section 4.2.3)	7 KHHILVIVQVVUHIVVRVIKH SRVKH VUMDJHVIKEHUHVVDQHG DQGSURVIFVKEGXULQVKH FRQVVVKFVIRQ7KHVHZLQVUHDQ JUHHQLQUDVVVXFVXUHRQVKHVLVVH
CA.5	Where feasible and appropriate, have green roofs or walls been included. Please explain your answer? (See SPD section 4.2.3)	* LYHQMHSURSRVHGGHVLJQVVLV QRWHDVLHOHMRQFXGHHLVMHU JUHHQURRI VRUZIDDVDSDDVMR VMHGMHOTSPHQW
CA.6	Have measures been included to address surface water runoff? (See SPD section 4.2.4)	7 KHPL Q.PL VOW KRIKDUG VXUDFHMDQGWKPDLQ WKDDQFH RIODUHU WHCDUHDVZLOON HS VXUDFHUXCRII WKOLQ.FX P
CA.7	If the application is major development, have details of SUDs been submitted? (See SPD section 4.2.4)	7 KHSURSRVDORDVQDH GZ HOOQULQRVFRQLGHUHGAREH P DVRUGHYHORSPH Q.V
Water Efficiency		
Wa.1	For new residential proposals, have you demonstrated compliance with the target for mains water consumption to be 110 litres or less per heard per day in the Sustainable construction, Energy and Water Statement? (See SPD section 5.2.2)	< HVDYSHFFLI LEDUROBOVELHQ SURYLGHGMOVUDIKLHYHVVKHO SHLVRQEDA VUDUHVV

Wa.2	For non-residential development, have measures been taken to	QD	137
	reduce water consumption in the proposed development?		East H
	(See SPD section 5.2.3)		erts Di
Wa.3	Have water recycling systems been considered and incorporated? Please explain your approach	1 RWARVHDUHORVVIRQVLGHUHG DSSURSUDWI RWALVFIDHRI GHYHORSP HQW	strict Plan
	(See SPD section 5.2.4)		Susta
Pollution: Air Quality			inat
AQ.1	How has the proposal addressed the minimum air quality standards? These apply to all new development as set out in section 6.1.2.2 of the SPD.	Figure 9 would suggest the development and is not loo Quality Management Area assessment is required.	at as this à a minor cated in ano Air that no for ther
AQ.2	 How does the proposal show consideration of air quality in the design of new development? Design should address the following principles: Building and development layout and design Emissions from transport Sustainable energy (See SPD section 6.1.2.4) 	The use of heat pumps el and particulate emissions boilers or biomass. Provision of electric car cl assist in the reduction of e associated with transport.	iminates the NOx associated with harging points will emissions

AQ.3	How has emissions mitigation been incorporated into the proposal? (See SPD section 6.1.2.5)	The use of heat pumps and the retention of green infrastructure will minimise any emissions locally to the site.
AQ.4	How will emissions be minimised through the construction and demolition phase of the development? Measures should follow the national guidance set out in section 6.1.2.7 of this SPD.	
AQ.5	Has an Emissions Assessment been carried out as part of the Air Quality Neutral Requirement? The assessment should utilise the Damage Cost Approach.	No, the development is minor and not located in an Air Quality Management Area.
AQ.6	Has an Air Quality Impact Assessment been submitted? This must be submitted if the proposal meets any of the criteria listed in section 6.1.3 of this SPD.	No, the development is minor and not located in an Air Quality Management Area.
AQ.7	Has an Air Quality Neutral Assessment been submitted? This must be submitted if the proposal meets the criteria listed in section 6.1.3 of this SPD.	No, the development is minor and not located in an Air Quality Management Area.

Pollution: Light Pollution		
LP.1	Does the proposal materially alter light levels outside the development and/or have the potential to adversely affect the neighbouring uses or amenity of residents and road users or impact on local ecology? (See SPD section 6.2.2)	
LP.2	Is the proposed light design the minimum required for security and operational purposes? (See SPD section 6.2.2)	
LP.3	Does the proposal minimise potential glare and spillage? Please detail the design measures adopted to ensure this (See SPD section 6.2.2)	
Biodiversity		
Bio.1	Have you submitted the East Herts biodiversity checklist? (See SPD section 7.3)	
Bio.2	In accordance with the biodiversity checklist, does the proposal affect a protected species or habitat?	

East Herts District Plan | Sustainability SPD

		(See SPD sections 7.2.4 and 7.3)	
-	Bio.3	If a protected species or habitat has been identified, has an ecological survey, with sufficient information been undertaken? (See SPD sections 7.2.4 and 7.3)	
	Bio.4	If major development, has an ecological survey, with sufficient information been undertaken to assess the likely ecological impact of the development? (See SPD sections 7.2 and 7.3)	
	Bio.5	Has the mitigation hierarchy been undertaken, to demonstrate an adverse impact on biodiversity has been avoided? If this is not possible, has the impact been mitigated and then subsequently compensated? (See SPD section 7.2.2)	
	Bio.6	Has a biodiversity net gain been achieved? Please explain (See SPD section 7.2.5)	

Bio.7	Has a suitable biodiversity management and monitoring strategy for the site been proposed?	
Sustainable Transport		
Т.1	Have you demonstrated that the development includes measures that reduce the overall need to travel, and particularly by private car? (See SPD section 8.2.2)	
Т.2	Have you demonstrated how, as first principles of design, the scheme's proposals prioritise walking and cycling within the development and link with existing networks beyond the development to deliver healthy and walkable neighbourhoods? (See SPD section 8.2.3)	
Т.3	Where cycling facilities and any bus stops and/or transport hubs are to be provided, have you demonstrated that they accessible and attractive for all users and offer appropriate shelter? (See SPD section 8.2.3)	
Т.4	Have you included measures (traditional and/or innovative) to encourage uptake of more sustainable modes of	

East Herts District Plan | Sustainability SPD

	transport and engender modal shift from the outset of development? (See SPD sections 8.2.2 and 8.2.3)	
Т.5	Have you developed and submitted to HCC an appropriate Travel Plan, Transport Assessment and/or Statement (as appropriate)? (See SPD section 8.2.4)	
Т.6	Where car parking is to be provided, have you provided justification for the number of spaces proposed and made provision for electric vehicle charging in accordance with the Vehicle Parking Provision at New Developments SPD? (See SPD section 8.2.5)	
Waste Management		
W.1	Have measures been proposed to reduce, re-use and recycle construction and demolition waste? (See SPD sections 9.2.2 and 9.2.3)	
W.2	As relevant, how has the internal and external design of the development factored in effective	

	sustainable waste management measures? Has sufficient detail been submitted with the application? (See SPD section 9.2.4)	
W.3	Have all the relevant criteria identified in Table 13 of the SPD been addressed? (See SPD section 9.2.4)	

East Herts District Plan | Sustainability SPD