

HAZEL COTTAGE RUFFORTH

HYDRAULICS REPORT

1. INTRODUCTION

This report provides the background to the surface water and foul design for a development at Hazel Cottage, Rufforth.

2. SURFACE WATER SCHEME

Investigations show that no infiltration is possible on site as the strata is clay. No surface water sewers are available for surface water disposal.

The surface water scheme on the development is to discharge the surface water to the existing combined drain on site at a rate of 0.5l/s, with storage provided as cellular storage under the driveway.

The existing house roof to reaming as existing.

3. HYDRAULIC CALCULATIONS

The SuDS system has been modelled in Microdrainage with the following criteria:-

M5-60 = 19mm Ration r = 0.4 Return period 1 in 100 years Climate change +30%

Contributing areas (roof areas of new house) = 61 sq m and driveway 95 sq m. (0.016hectares).

The proposed system works satisfactorily in the 1 in 100 year storm plus 30% climate change with no flooding, whilst discharge is limited to 0.5l/s.

The Microdrainage calculations show that the 120 minute storm is the critical event, requiring 5.8 Cu m of storage.

4. FOUL WATER

Foul water will be connected to the public foul sewerage system.

Report by

Hugh Morris BSc CEng MICE HM Design

APPENDED: Microdrainage Calculations

HM Design		Page 1
10 The Green	HAZEL COTTAGE	
York	RUFFORTH	
YO26 5LR		Micco
Date 22/08/2023 11:55	Designed by HM	Desipage
File Rufforth-Storage estima	Checked by	Drainage
Micro Drainage	Source Control 2020 1	-

Summary of Results for 100 year Return Period (+30%)

Half Drain Time : 134 minutes.

Storm		Max	Max	Max	Max		Max	Max	Statu	ıs	
	Event		Level	Depth	Infiltration	Control	Σ	Outflow	Volume		
			(m)	(m)	(1/s)	(1/s)		(1/s)	(m³)		
15	min	Summer	15.567	0.117	0.0	0.4		0.4	3.3	0	K
30	min	Summer	15.597	0.147	0.0	0.4		0.4	4.2	0	K
60	min	Summer	15.619	0.169	0.0	0.4		0.4	4.8	0	K
120	min	Summer	15.626	0.176	0.0	0.4		0.4	5.0	0	K
180	min	Summer	15.623	0.173	0.0	0.4		0.4	4.9	0	K
240	min	Summer	15.617	0.167	0.0	0.4		0.4	4.8	0	K
360	min	Summer	15.604	0.154	0.0	0.4		0.4	4.4	0	K
480	min	Summer	15.593	0.143	0.0	0.4		0.4	4.1	0	K
600	min	Summer	15.582	0.132	0.0	0.4		0.4	3.8	0	K
720	min	Summer	15.573	0.123	0.0	0.4		0.4	3.5	0	K
960	min	Summer	15.556	0.106	0.0	0.4		0.4	3.0	0	K
1440	min	Summer	15.529	0.079	0.0	0.3		0.3	2.3	0	K
2160	min	Summer	15.501	0.051	0.0	0.3		0.3	1.5	0	K
2880	min	Summer	15.482	0.032	0.0	0.2		0.2	0.9	0	K
4320	min	Summer	15.460	0.010	0.0	0.2		0.2	0.3	0	K
5760	min	Summer	15.450	0.000	0.0	0.2		0.2	0.0	0	K
7200	min	Summer	15.450	0.000	0.0	0.2		0.2	0.0	0	K
8640	min	Summer	15.450	0.000	0.0	0.1		0.1	0.0	0	K
08001	min	Summer	15.450	0.000	0.0	0.1		0.1	0.0	0	K
15	min	Winter	15.582	0.132	0.0	0.4		0.4	3.8	0	K

	Stor	m	Rain	Flooded	Discharge	Time-Peak
	Even	t	(mm/hr)	Volume	Volume	(mins)
				(m³)	(m³)	
15	min	Summer	121.269	0.0	3.6	18
30	min	Summer	79.695	0.0	4.8	32
60	min	Summer	49.937	0.0	6.0	60
120	min	Summer	30.267	0.0	7.3	102
180	min	Summer	22.297	0.0	8.0	134
240	min	Summer	17.851	0.0	8.5	168
360	min	Summer	12.957	0.0	9.3	236
480	min	Summer	10.330	0.0	9.9	306
600	min	Summer	8.659	0.0	10.4	374
720	min	Summer	7.492	0.0	10.8	440
960	min	Summer	5.959	0.0	11.4	568
1440	min	Summer	4.309	0.0	12.4	822
2160	min	Summer	3.110	0.0	13.4	1188
2880	min	Summer	2.466	0.0	14.2	1552
4320	min	Summer	1.775	0.0	15.3	2248
5760	min	Summer	1.405	0.0	16.2	2936
7200	min	Summer	1.171	0.0	16.9	0
8640	min	Summer	1.008	0.0	17.4	0
10080	min	Summer	0.889	0.0	17.9	0
15	min	Winter	121.269	0.0	4.1	18

©1982-2020 Innovyze

HM Design		Page 2
10 The Green	HAZEL COTTAGE	
York	RUFFORTH	
Y026 5LR		Micro
Date 22/08/2023 11:55	Designed by HM	Drainage
File Rufforth-Storage estima	Checked by	Diamage
Micro Drainage	Source Control 2020.1	

Summary of Results for 100 year Return Period (+30%)

	Stor Even		Max Level (m)	Max Depth (m)	Max Infiltration (1/s)	Max Control (1/s)	Max Σ Outflow (1/s)	Max Volume (m³)	Status
30	min	Winter	15.617	0.167	0.0	0.4	0.4	4.8	OK
60	min	Winter	15.644	0.194	0.0	0.4	0.4	5.5	OK
120	min	Winter	15.654	0.204	0.0	0.5	0.5	5.8	OK
180	min	Winter	15.650	0.200	0.0	0.5	0.5	5.7	O K
240	min	Winter	15.643	0.193	0.0	0.4	0.4	5.5	O K
360	min	Winter	15.624	0.174	0.0	0.4	0.4	5.0	OK
480	min	Winter	15.607	0.157	0.0	0.4	0.4	4.5	O K
600	min	Winter	15.592	0.142	0.0	0.4	0.4	4.0	OK
720	min	Winter	15.578	0.128	0.0	0.4	0.4	3.7	OK
960	min	Winter	15.554	0.104	0.0	0.3	0.3	3.0	OK
1440	min	Winter	15.519	0.069	0.0	0.3	0.3	2.0	OK
2160	min	Winter	15.485	0.035	0.0	0.3	0.3	1.0	OK
2880	min	Winter	15.464	0.014	0.0	0.2	0.2	0.4	OK
4320	min	Winter	15.450	0.000	0.0	0.2	0.2	0.0	OK
5760	min	Winter	15.450	0.000	0.0	0.1	0.1	0.0	O K
7200	min	Winter	15.450	0.000	0.0	0.1	0.1	0.0	OK
8640	min	Winter	15.450	0.000	0.0	0.1	0.1	0.0	OK
10080	min	Winter	15.450	0.000	0.0	0.1	0.1	0.0	OK

	stor	m	Rain	Flooded	Discharge	Time-Peak
Event		(mm/hr)	Volume	Volume	(mins)	
				(m³)	(m³)	
30	min	Winter	79.695	0.0	5.3	32
60	min	Winter	49.937	0.0	6.7	60
120	min	Winter	30.267	0.0	8.1	114
180	min	Winter	22.297	0.0	9.0	142
240	min	Winter	17.851	0.0	9.6	180
360	min	Winter	12.957	0.0	10.4	256
480	min	Winter	10.330	0.0	11.1	330
600	min	Winter	8.659	0.0	11.6	400
720	min	Winter	7.492	0.0	12.1	470
960	min	Winter	5.959	0.0	12.8	604
1440	min	Winter	4.309	0.0	13.9	854
2160	min	Winter	3.110	0.0	15.0	1216
2880	min	Winter	2.466	0.0	15.9	1584
4320	min	Winter	1.775	0.0	17.2	0
5760	min	Winter	1.405	0.0	18.1	0
7200	min	Winter	1.171	0.0	18.9	0
8640	min	Winter	1.008	0.0	19.5	0
10080	min	Winter	0.889	0.0	20.1	0

HM Design		Page 3
10 The Green	HAZEL COTTAGE	
York	RUFFORTH	
YO26 5LR		Micco
Date 22/08/2023 11:55	Designed by HM	Desipago
File Rufforth-Storage estima	Checked by	Drainage
Micro Drainage	Source Control 2020.1	

Rainfall Details

Time Area Diagram

Total Area (ha) 0.016

Time (mins) Area From: To: (ha)

©1982-2020 Innovyze

HM Design		Page 4
10 The Green	HAZEL COTTAGE	
York	RUFFORTH	
Y026 5LR		Micco
Date 22/08/2023 11:55	Designed by HM	Drainage
File Rufforth-Storage estima	Checked by	namaye
Micro Drainage	Source Control 2020.1	

Model Details

Storage is Online Cover Level (m) 16.000

Cellular Storage Structure

Depth (m) Area (m²) Inf. Area (m²) Depth (m) Area (m²) Inf. Area (m²) 0.000 30.0 30.0 0.211 0.0 34.6 0.210 30.0 34.6

Orifice Outflow Control

Diameter (m) 0.021 Discharge Coefficient 0.600 Invert Level (m) 15.400

©1982-2020 Innovyze