

HAZEL COTTAGE RUFFORTH

HYDRAULICS REPORT

1. INTRODUCTION

This report provides the background to the surface water and foul design for a development at Hazel Cottage, Rufforth.

2. SURFACE WATER SCHEME

Investigations show that no infiltration is possible on site as the strata is clay. No surface water sewers are available for surface water disposal.

The surface water scheme on the development is to discharge the surface water to the existing combined drain on site at a rate of 0.5l/s, with storage provided as cellular storage under the driveway.

The existing house roof to reaming as existing.

3. HYDRAULIC CALCULATIONS

The SuDS system has been modelled in Microdrainage with the following criteria:-

M5-60 = 19mm Ration r = 0.4 Return period 1 in 100 years Climate change +30% Contributing areas (roof areas of new house) = 61 sq m and driveway 95 sq m. (0.016hectares).

The proposed system works satisfactorily in the 1 in 100 year storm plus 30% climate change with no flooding, whilst discharge is limited to 0.5l/s.

The Microdrainage calculations show that the 120 minute storm is the critical event, requiring 5.8 Cu m of storage.

4. FOUL WATER

Foul water will be connected to the public foul sewerage system.

Report by

Hugh Morris BSc CEng MICE HM Design 07919 031289

APPENDED: Microdrainage Calculations

HM Design	Page 1	
10 The Green	HAZEL COTTAGE	
York	RUFFORTH	
YO26 5LR		Micco
Date 22/08/2023 11:55	Designed by HM	Desinado
File Rufforth-Storage estima	Checked by	Diamaye
Micro Drainage	Source Control 2020.1	L

Summary of Results for 100 year Return Period (+30%)

	Stor		Max	Max	Max	Max	Max	Max	Status
	Even	t	Level	Depth	Infiltration				
			(m)	(m)	(1/s)	(1/s)	(1/s)	(m³)	
15	min	Summer	15.567	0.117	0.0	0.4	0.4	3.3	OK
30	min	Summer	15.597	0.147	0.0	0.4	0.4	4.2	O K
60	min	Summer	15.619	0.169	0.0	0.4	0.4	4.8	OK
120	min	Summer	15.626	0.176	0.0	0.4	0.4	5.0	O K
180	min	Summer	15.623	0.173	0.0	0.4	0.4	4.9	OK
240	min	Summer	15.617	0.167	0.0	0.4	0.4	4.8	O K
360	min	Summer	15.604	0.154	0.0	0.4	0.4	4.4	O K
480	min	Summer	15.593	0.143	0.0	0.4	0.4	4.1	ΟK
600	min	Summer	15.582	0.132	0.0	0.4	0.4	3.8	OK
720	min	Summer	15.573	0.123	0.0	0.4	0.4	3.5	OK
960	min	Summer	15.556	0.106	0.0	0.4	0.4	3.0	OK
1440	min	Summer	15.529	0.079	0.0	0.3	0.3	2.3	O K
2160	min	Summer	15.501	0.051	0.0	0.3	0.3	1.5	O K
2880	min	Summer	15.482	0.032	0.0	0.2	0.2	0.9	ΟK
4320	min	Summer	15.460	0.010	0.0	0.2	0.2	0.3	OK
5760	min	Summer	15.450	0.000	0.0	0.2	0.2	0.0	OK
7200	min	Summer	15.450	0.000	0.0	0.2	0.2	0.0	O K
8640	min	Summer	15.450	0.000	0.0	0.1	0.1	0.0	OK
0080	min	Summer	15.450	0.000	0.0	0.1	0.1	0.0	O K
15	min	Winter	15.582	0.132	0.0	0.4	0.4	3.8	O K

	Even	t	Rain (mm/hr)	Volume	Discharge Volume	(mins)
				(m³)	(m³)	
15	min	Summer	121.269	0.0	3.6	18
30	min	Summer	79.695	0.0	4.8	32
60	min	Summer	49.937	0.0	6.0	60
120	min	Summer	30.267	0.0	7.3	102
180	min	Summer	22.297	0.0	8.0	134
240	min	Summer	17.851	0.0	8.5	168
360	min	Summer	12.957	0.0	9.3	236
480	min	Summer	10.330	0.0	9.9	306
600	min	Summer	8.659	0.0	10.4	374
720	min	Summer	7.492	0.0	10.8	440
			5.959		11.4	568
1440	min	Summer	4.309	0.0	12.4	822
2160	min	Summer	3.110	0.0	13.4	1188
2880	min	Summer	2.466	0.0	14.2	1552
4320	min	Summer	1.775	0.0	15.3	2248
5760	min	Summer	1.405	0.0	16.2	2936
7200	min	Summer	1.171	0.0	16.9	0
8640	min	Summer	1.008	0.0	17.4	0
10080	min	Summer	0.889	0.0	17.9	0
15	min	Winter	121.269	0.0	4.1	18

Half Drain Time : 134 minutes.

HM Design 10 The Gree									Page	2
	n		2	HAZE	L COTT	AGE				2500
York	32			2010/02/07	ORTH					
Y026 5LR				NOFF	UNII					2 m
	0000 11 F	-		-					- Micr	0
Date 22/08/	0.0001	gned b				Draii	nane			
File Ruffor		e estim	1a	10001000000000000	ked by		200 (201 - 10-20)		Drein	lage
Micro Drain	age			Sour	ce Con	trol 202	20.1			
	Summary (of Resu	lts f	or 10)0 vear	Return	Period	(+30%)		
	Gunnary	JI KEBU	100 1	OL IU	/o year	necuin	101104	(1000)	16	
	Storm	Max	Max	М	lax	Max	Max	Max	Status	
	Event						E Outflow			
		(m)	(m)	(1	/s)	(1/s)	(1/s)	(m ³)		
30	min Winter	15.617	0.167		0.0	0.4	0.4	4.8	ΟK	
	min Winter				0.0	0.4	0.4			
	min Winter				0.0	0.5	0.5			
180	min Winter	15.650	0.200		0.0	0.5	0.5	5.7	ΟK	
240	min Winter	15.643	0.193		0.0	0.4	0.4		ОК	
360	min Winter	15.624	0.174		0.0	0.4	0.4	5.0	ΟK	
	min Winter				0.0	0.4	0.4			
	min Winter				0.0	0.4	0.4			
	min Winter	CARGE AND			0.0	0.4	0.4			
	min Winter				0.0	0.3	0.3			
	min Winter				0.0	0.3	0.3			
	min Winter				0.0	0.3	0.3			
	min Winter				0.0	0.2	0.2			
	min Winter min Winter				0.0	0.2	0.2			
	min Winter				0.0		0.1			
	min Winter				0.0		0.1			
	min Winter				0.0	0.1	0.1			
		Storm Event		Rain m/hr)	Flooded Volume		ge Time-Pe (mins			
					(m³)	(m³)				
	30	min Win	ter 7	9.695	0.0) 5.	.3	32		
		min Win				6.	.7	60		
	120	min Win			0.0) 8.	.1 1	114		
		min Win		2.297	0.0			142		
		min Win		7.851	0.0			180		
		min Win		2.957				256		
		min Win min Win		0.330				330		
		min Win min Win		8.659 7.492	0.0			100 170		
		min Win		5.959				504		
		min Win		4.309				354		
		min Win		3.110	0.0			216		
		min Win	645.77 S	2.466	0.0			584		
		min Win		1.775				0		
	5760	min Win	ter	1.405	0.0) 18.	.1	0		
		min Win		1.171	0.0) 18.	.9	0		
		min Win		1.008				0		
	10080	min Win	ter	0.889	0.0	20.	.1	0		
					20 Inn					

[· · · · · · · · · · · · · · · · · · ·
HM Design		Page 3
10 The Green	HAZEL COTTAGE	
York	RUFFORTH	
YO26 5LR		Micro
Date 22/08/2023 11:55	Designed by HM	and the state of the
File Rufforth-Storage estima	Checked by	Drainage
Micro Drainage	Source Control 2020.1	
Ra	infall Details	
Rainfall Model	FSR Winter Storms Y	es
Return Period (years)	100 Cv (Summer) 0.7 and and Wales Cv (Winter) 0.8	50
Region Engla	and and Wales Cv (Winter) 0.8	
M5-60 (mm) Ratio R	19.000 Shortest Storm (mins) 0.400 Longest Storm (mins) 100	15 80
Summer Storms	Yes Climate Change % +	
Tin	ne Area Diagram	
	al Area (ha) 0.016 Lme (mins) Area	
	nme (mins) Area om: To: (ha)	
	0 4 0.016	
	32-2020 Innovyze	
©198	σz-2020 τηπονγze	

					DES
HM Design					Page 4
10 The Green		HAZEL C	OTTAGE		
York					
Y026 5LR					Micco
Date 22/08/2023 11:	55	Designe	d by HM		
File Rufforth-Stora					Drainago
Micro Drainage	2		Control 2	020.1	
		Model De	tails		
		Online Cove			
	Cellu	ılar Storag	ge Structu	ire	
	In ion Coefficie ion Coefficie	nt Base (m/h	r) 0.00000		
Depth (m) Ar	ea (m²) Inf.	Area (m²) De	epth (m) Ar	ea (m²) Inf.	Area (m²)
0.000	30.0	30.0	0.211	0.0	34.6
0.210	30.0	34.6			
		fice Outfl		-	