

Piggotts Farm, Albury End, SG11 2HS

Drainage Design 04/04/2023 Version 4.0 RAB: 2878_FRD

Piggotts Farm, Albury End 04/04/2023 Version 4.0

Disclaimer

This document has been prepared solely as a Drainage Design for Charlie Hockley on behalf of Hollyhock Limited. RAB Consultants accepts no responsibility or liability for any use that is made of this document other than by the client for the purposes for which it was originally commissioned and prepared. No person other than the client may copy (in whole or in part) use or rely on the contents of this document, without the prior written permission of the Managing Director of RAB Consultants Ltd. Any advice, opinions, or recommendations within this document should be read and relied upon only in the context of the whole document.

Published by

RAB Consultants Limited Second Floor Cathedral House Beacon Street Lichfield Staffordshire WS13 7AA

Call: 01543 547 303 Email: enquiries@rabconsultants.co.uk Visit: rabconsultants.co.uk

By viewing and saving this document digitally instead of printing it, you could save 4.6g of carbon emissions from double-sided printing on primary-sourced or 3.7g from 100% recycled A4 paper. Please only print this document if it is necessary.

Quality Control

Action	Name	
Prepared	Jacob Longbottom	
Checked	Dr Alexandros Tsavdaris	
Approved	Dr Alexandros Tsavdaris	

Revision History

Version	Date	Amendments	Issued to	
1.0	22/03/2022	First Issue	Hollyhock Trust Ltd T/A Hockley Farms	
2.0	25/03/2022	Change to drawings in Appendix C	Hollyhock Trust Ltd T/A Hockley Farms	
3.0	31/03/2022	Minor change	Hollyhock Trust Ltd T/A Hockley Farms	
4.0	04/04/2023	Small change to development plans	Hollyhock Limited	

Contents

1.0	INTRODUCTION	.1
2.0	SITE DETAILS	.2
2.1	Site location	2
2.2	Site description	2
2.3	Development proposal	3
3.0	DRAINAGE STRATEGY	.3
3.1	Existing site constraints	3
3.2	Existing runoff condition	5
3.3	SuDS feasibility	7
3.4	Proposed discharge	8
3.5	Proposed surface water management	8
3.6	Future resilience 1	1
3.7	Amenity and biodiversity 1	2
4.0	MAINTENANCE AND MANAGEMENT PLAN1	2
4.1	SuDS features checklist 1	2
4.2	Sustainable Drainage Maintenance Specification 1	3
5.0	CONCLUSION1	7
6.0	RECOMMENDATIONS1	7
APPE	NDIX A – DEVELOPMENT PROPOSALS1	8
APPE	NDIX B – TOPOGRAPHIC SURVEY1	9
APPE	NDIX C – DRAINAGE	20

1.0 Introduction

RAB Consultants has prepared this Drainage Design in support of the proposed agricultural development located at Piggotts Farm, Albury End.

The Secretary of State for Communities and Local Government laid a Written Ministerial Statement in the House of Commons on 18th December 2014 setting out changes to planning that will apply for major development from 6 April 2015. Therefore, from 6 April 2015 local planning policies and decisions on planning applications relating to major development are required to ensure that sustainable drainage systems (SuDS) are used for the management of surface water. As the Lead Local Flood Authority, Hertfordshire County Council is required under Article 18 of the Town and Country Planning (Development Management Procedure) (England) Order 2015 (the Development Management Procedure Order) to provide consultation response on the surface water drainage provisions associated with major development.

Major development is defined within the Development Management Procedure Order as development that involves any one or more of the following:

- 1. the winning and working of minerals or the use of land for mineral working deposits;
- 2. waste development;
- 3. the provision of dwelling houses where:
 - i. the number of dwelling houses to be provided is 10 or more; or
 - ii. the development is to be carried out on a site having an area of 0.5 hectares or more and it is not known whether the development falls within sub-paragraph 3.1;
- 4. the provision of a building or buildings where the floor space to be created by the development is 1,000 square metres or more; or
- 5. development carried out on a site having an area of 1 hectare or more.

In this instance a drainage design has been requested by the council under condition 6 of the decision notice stating: *No development shall take place until a detailed drainage strategy has been submitted to and approved in writing by the local planning authority.* This drainage design will be produced in accordance with the local drainage policies listed within Hertfordshire County Council's LLFA Summary Guidance for developers document updated in August 2021.

2.0 Site details

2.1 Site location

Site address:	Piggotts Farm, Albury End, SG11 2HS
Site area:	0.885ha
Existing land use:	Agricultural land
OS NGR:	TL428238
Local Planning Authority:	East Hertfordshire Council

TABLE 1: SITE LOCATION

2.2 Site description

The site is currently used as an agricultural field serving Piggotts Farm and can be accessed from Albury End Road. The site is bounded by agricultural land to the north, east, and west and by residential land to the south.

There are no known main rivers that run in close proximity to the site however, drainage ditches are present at the site.

2.3 Development proposal

Development proposals include the construction of a grain store with PV panels and a section of hardstanding to the east of the proposed structure.

3.0 Drainage Strategy

3.1 Existing site constraints

3.1.1 Fluvial flood risk

The site is located within Flood Zone 1, which is described in the NPPF as land having a less than 1 in 1,000 annual probability of river or sea flooding (less than 0.1% AEP).

3.1.2 Surface water flood risk

When the infiltration capacity of land or the drainage capacity of a local sewer network is exceeded, excess rainwater flows overland. This water will collect in topographic depressions and at obstructions, which can inundate development in low lying areas. The severity of the rainfall event, the degree of saturation of the soil before the event, the permeability of soils and geology, and the gradient of the surrounding land and it's use; all contribute to and affect the severity of overland flow.

The Environment Agency Flood Map for Surface Water (Figure 1), can be used to see the approximate areas that would experience surface water flooding from a range of AEPs, which is used to categorise the risk (Table 2).

RESILIENCE & FLOOD RISK

FIGURE 1: ENVIRONMENT AGENCY FLOOD RISK FROM SURFACE WATER

TABLE 2: ENVIRONMENT AGENCY SURFACE WATER RISK CATEGORIES

Surface Water Risk Category	Surface water flooding Annual Exceedance Probability
Very Low	< 0.1%
Low	Between 1% and 0.1% (1 in 100 years and 1 in 1000 years)
Medium	Between 1% and 3.3% (1 in 100 years and 1 in 30 years)
High	> 3.3% (1 in 30 years)

The Surface Water map identifies that there is a low risk of surface water flooding for the site. There are two parts of the site that are shown to be affected by the severe 0.1% AEP surface water event (Figure 1) which experience depths of up to 150mm in the north and in the south. The location where the proposed grain store structure is located is at very low risk of surface water flooding. SuDS measures will offer betterment by capturing this runoff and managing it in a sustainable manner.

3.1.3 Groundwater flood risk

British Geological Survey (BGS) records indicate that the proposed development site overlies bedrock composed of Thanet Formation – clay, silt and sand. This is overlain (superficial deposits) by Lowestoft Formation – diamicton.

The Soilscapes application details the site to be located within an area comprising *lime-rich loamy and clayey soils with impeded drainage*. As such, the risk of emerging ground water is low. In addition, infiltration will be quite challenging at site level due to the impeded drainage quality of the soils.

As there is a high degree of variability when considering groundwater flooding, using historic flooding is not a robust measure of the risk of flooding in future years.

3.1.4 Sewers flood risk

Thames Water is responsible for the adopted surface and foul sewer networks within the District and maintain a DG5 register of sites affected by sewer flood incidents on a post code basis. According to the East Herts 2016 SFRA (Strategic Flood Risk Assessment), the post code area of 'SG11 2' has experienced 4 instances of sewer flooding. The site owner suggested that there have been no instances of sewer related flooding.

It is important to note that previous sewer flood incidents, or the lack thereof, do not indicate the current or future risk to the site. Upgrade work could have been carried out to alleviate any issues or conversely, in areas that have not experienced sewer flooding incidents, the local drainage infrastructure could deteriorate leading to future flooding.

3.2 Existing runoff condition

3.2.1 Existing drainage arrangements

The location where the grain store is proposed is currently greenfield agricultural land and does not contain any existing drainage infrastructure. The existing barn to the east of the proposed build area utilises a piped drainage system to discharge runoff into a ditch at the site entrance.

3.2.2 Natural flow path

As shown in Figure 2 below, the land slopes south-east towards Kennel Cottage with a gradient of approximately 1:36. The drainage scheme will aim to mimic the natural slope of the site in line with the SuDS Manual (2015) design approach.

FIGURE 2: NATURAL FLOW PATH

3.2.3 Greenfield runoff

The greenfield runoff rate was calculated using the IH124 method for determining Greenfield runoff rate built into Microdrainage WinDes 2013.1 (including the modification given in the Interim Code of Practice for SUDS, Chapter 6):

- SAAR (mm) = 635
- Area (ha) = 0.511
- Soil = 0.400
- Region = 6

The QBAR was calculated at 1.53I/s (see Appendix C). The greenfield runoff rate was calculated on the basis of the proposed hardstanding area of 0.511ha.

AEP (%)	Greenfield peak flow rate (I/s/ha)	Greenfield peak flow rate (I/s)
100	2.60	1.33
QBAR	3.00	1.53
3.33	6.90	3.53
1	9.70	4.96
1 +22% Climate Change*	11.8	6.03

*Thames Upper Lee river basin higher central allowance for flow estimations

3.3 SuDS feasibility

The SuDS Manual (2015) discusses the SuDS approach to managing surface water runoff which is intended to mimic the natural catchment process as closely as is possible. The approach sets out the design objectives in respect of SuDS:

- Use of surface water runoff as a resource;
- Manage rainwater close to where it falls (at source);
- Manage runoff on the surface (above ground);
- Allow rainwater to soak into the ground (infiltration);
- Promote evapotranspiration;
- Slow and store runoff to mimic natural runoff rates and volumes;
- Reduce contamination of runoff through pollution prevention and by controlling the runoff at source; and
- Treat runoff to reduce the risk of urban contaminants causing environmental pollution.

Depending on the characteristics of the site and local requirements, these may be used in conjunction and varying degrees. Table 6 presents the functions of the SuDS components (from which a management train can be created) and their feasibility in respect of the site.

Technique	Description	Feasibility	
		Y / N / M (Maybe)	
Good building design and rainwater harvesting	Components that capture rainwater and facilitate its use within the building or local environment.	Y – there is opportunity to use rainwater harvesting tanks at the grain store for re-use on the adjacent agricultural fields.	
Porous and pervious surface materials	Structural surfaces that allow water to penetrate, thus offering attenuation potential, while reducing the rate of runoff (green roofs, pervious paving).	N – there is no available room on site for porous materials given the need for concrete pads for heavy loading.	
Infiltration Systems	Components that facilitate the infiltration of water into the ground. These often include temporary storage zones to accommodate runoff volumes before slow release to the soil.	N – the site's geology, as discussed in Section 3.1.3, would not allow for infiltration devices to be feasible.	
Conveyance Systems	Components that convey flows to downstream storage systems (e.g. swales, watercourses).	Y – there is available room on site for conveyance systems.	

TABLE 4: FEASIBILITY IF SUDS TECHNIQUES AT THE DEVELOPMENT SITE

Technique	echnique Description	
Storage Systems	Components that control the flows and, where possible, volumes of runoff being discharged from the site, by storing water and releasing it slowly (attenuation). These systems may also provide further treatment of the runoff (e.g. ponds, wetlands, and detention basins).	Y – there is room on site for sub-surface and surface storage structures such as cellular storage and ponds.
Treatment Systems	Components that remove or facilitate the degradation of contaminants present in the runoff.	Y – the above SuDS features can provide treatment benefits to the surface water.

The site has the potential to incorporate a number of SuDS options to manage surface water. These are discussed in more detail below.

3.4 Proposed discharge

The 2015 SuDS Manual recommends a specific hierarchy in terms of surface water discharge destinations:

- 1. Discharge into the ground.
- 2. Discharge into a surface water body.
- 3. Discharge to a surface water sewer.
- 4. Discharge to a combined sewer.

As described in Section 3.1.3, the geology of the site comprises diamicton rock with clayey soils resulting in impeded drainage issues. Therefore, infiltration is not viable at the site.

According to the topographic survey, there are drainage ditches that run alongside Albury End which is where the existing surface water system discharges to. As such, the scheme should aim to discharge into the ditch on Albury End utilising the on-site drainage system given the lack of an available surface water sewer.

3.5 Proposed surface water management

The proposed drainage scheme has been modelled in Microdrainage Network to understand the evolving flow regime under flood conditions and the potential for flooding. The proposed scheme (see Appendix C) will integrate a range of features, in line with the SuDS Manual philosophy, taking into consideration site constraints. In detail, a cellular storage device and dry basin will act as the attenuation features managing the runoff from a total impermeable area of 0.511ha.

A series of surface water pipes and an ACO QMAX slot drainage system will capture and convey runoff into the attenuation features, as shown in relevant drawings in Appendix C.

The tank will manage roof runoff and road runoff from an area of 4536m² before discharging to the onsite drainage system at a rate of 1.1 l/s, for all events up to and including the 1% AEP + 40% CC. A Hydrobrake (or similar) flow control device should be used to limit the flow rate from the cellular storage tank.

Due to the site topography and space constraints, part of the drained area needs to be managed via a separate storage feature. This is to avoid the use of pumps which are highly unsustainable and may increase the risk of flooding to others downstream. As such, a dry basin will manage road runoff from a small part of the proposed site. A Hydrobrake (or similar) flow control device should be used to limit the flow rate to 1 l/s for all events up to and including the 1% AEP + 40% CC.

FIGURE 3: SITE DRAINAGE AREAS

As such, the total discharge rate from the site will be 2.1 l/s for all events up to and including the 1% AEP +40% CC. The low discharge rate impacts the half drain time during the 1% AEP +40% CC of the tank however, the system will not be infiltrating, and a balance had to be struck between low rate and half drain time. A low rate would ensure no increase of flood risk to others downstream. In addition, the orifice size for both flow controls is ≥50mm to reduce the risk of blockages.

Rainwater harvesting tanks are also being proposed to store roof runoff from the grain store to be used onsite however, these have not been included in the model given the uncertainty with storage volumes during storm periods.

A layout of the proposed scheme can be found in Appendix C along with typical construction details.

3.5.1 Dry basin

The basin will manage the surface water runoff from the eastern triangle section of the proposed concrete apron which has a total area of approximately $575m^2$. The basin should have an area of $45.2m^2$ at the surface and $9m^2$ at the base with a depth to invert of 0.7m.

The side slopes of the dry basin should be set at a minimum of 1 in 3 and planted with short grass (50 mm-75mm) and native vegetation species in a sparse fashion along the benches. The base of the basin should be planted with water tolerant reed species (approximately 50 stems per m²) to reduce the erosion potential. Contractor must identify measures to ensure vegetation establishment and reduce the risk of

erosion post-construction; such measures may include (but not limited to) the use of erosion control mats, hydroseeding, etc. The basin must therefore be installed in line with the CIRIA C768 report (2017) Guidance on the construction of SuDS.

3.5.2 Cellular storage

A cellular storage tank (ACO Stormbrixx or similar) should be used to manage the runoff from the grain store and the majority of the concrete apron (impermeable area = 4536m²). The tank should have an area of 475m² and a depth of 0.914m giving a total storage capacity of 412.4425m³. A minimum cover depth would usually be required given the heavy loading present on site however, the concrete apron will act as structural protection for the tank and therefore, the tank can be located directly below the concrete slab. The tank manufacturer must confirm structural reliability.

The tanks will receive runoff via appropriate piped network and an ACO QMAX slot drainage system (see Appendix C). All inlets into the tank should have a SDS Aqua-Swirl (or similar) installed upstream to prevent build-up of silt in the tank, reducing its total storage capacity.

The cellular storage units must be installed in line with the CIRIA C768 report (2017) Guidance on the construction of SuDS.

3.5.3 Water quantity benefits

The scheme will offer significant reductions in runoff rates, compared with the greenfield rates in the 3.33% AEP events and above, as shown in the below table. This is to counterbalance the increased volume of runoff as a result of the development.

As such, the proposed scheme provides water quantity benefits, in line with the 2015 SuDS Manual.

TABLE 5: EXISTING AND PROPOSED PEAK FLOW RUNOFF RATES

AEP (%)	Greenfield peak flow rate (I/s)	Proposed peak flow rate (I/s)	Change (%)
50	1.53	2.1	37.3
3.33	3.53	2.1	40.5
1	4.96	2.1	57.7
1 +40%CC**	6.03	2.1	65.2

3.5.4 Water quality benefits

In line with the SuDS Manual, the water must receive a certain degree of treatment. There are no significant risks of pollution as a result of the development as it is classed a low density residential with no major risks.

According to Table 26.2 of the SuDS Manual and based on the land use, the site has a low pollution hazard level. In detail, the pollution hazard indices are:

- Total Suspended Solids= 0.5
- Heavy Metals= 0.4
- Hydrocarbons= 0.4

Consequently, the proposed SuDS feature(s) must have a higher mitigation index. Mitigation indices for various SuDS components can be found in Table 26.3 of the SuDS Manual (2015).

Total SuDS Mitigation Index = mitigation index₁ + (0.5 x mitigation index_n)

Where mitigation index_n = mitigation index for component n.

The proposed drainage scheme utilises a cellular storage device, rainwater harvesting and a dry basin.

Using Table 26.3 of the SuDS Manual (2015), the mitigation indices for each pollutant and for each feature were identified:

- TSS SuDS mitigation index = 0.5 > 0.5
- Heavy Metals SuDS mitigation index = 0.5 > 0.4
- Hydrocarbons SuDS mitigation index = 0.6 > 0.4

The cellular storage device should utilise an SDS Aqua-Swirl (or similar) upstream to mitigate the pollution hazards of the relevant site runoff. The product must have mitigation indices higher than the hazard indices identified above. It is our understanding that SDS Aqua Swirl offers such mitigation indices but there are other products which could also be used.

Consequently, the proposed scheme is in line with the water quality requirements of the SuDS Manual (2015).

3.6 Future resilience

3.6.1 Designing for exceedance

It is inevitable that as a result of heavy or extreme rainfall, the capacities of sewers and other drainage systems will be exceeded on occasion. Drainage exceedance will occur when the rate of surface water runoff exceeds the inlet capacity of the drainage system, when the receiving water or pipe system becomes overloaded, when the outfall becomes restricted due to flood levels in the receiving water, or due to poor maintenance of the SuDS features.

The scheme has been modelled in Microdrainage Network to manage the total proposed site runoff with no flooding during the 1% AEP + 40% CC event. Nevertheless, exceedance routes have been mapped in drawing RAB2878_001 to show how water will flow onsite should a failure occurs in the system.

The half drain time is shown in the calculations to exceed the recommended 1440-minute threshold however, this is expected as the final discharge rate is extremely low comparatively to the drained area. A higher discharge rate from the cellular storage would enable a half drain time lower than 1440 minutes however since the scheme is not infiltrating, this should not be an issue. A higher discharge rate would need to be accepted by the local authority as the scheme is not discharging to a public sewer.

3.6.2 Urban creep

In line with the local policies of Hertfordshire County Council, a 10% increase to the total impermeable site area has been applied to the scheme to ensure it can cope with additional flows from extension work (see Appendix C). It should be noted that there is no scope to further expand the layout and any expansion would require planning approval and an appropriate drainage strategy which would most likely utilise new SuDS.

3.7 Amenity and biodiversity

Primary consideration should be given to locally native species, and plants that benefit wildlife through their nectar, fruit, or berries. Generally, the choice of plant species should reflect the usual design decisions relating to their location in terms of aspect, sun or shade, height, from, colour, whether evergreen or deciduous, native or ornamental, and soil factors such as pH, depth, nutrient status and organic content. However, the consideration has to be their ability to withstand the fluctuations in soil moisture that will occur.

4.0 Maintenance and Management Plan

The following maintenance and management plan has been formed to assist with ensuring the longevity of the surface water scheme to provide multiple benefits throughout its lifetime. The plan will also aim to prevent any blockages or damage occurring to each component of the scheme to minimise the risk of flooding as much as possible.

The level of inspection and maintenance will vary depending on the type of SuDS component and scheme, the land use, and the type of vegetation. It is vital that SuDS construction is supervised and inspected on completion if owners are to avoid taking on liabilities and to ensure the specified materials are being used and placed correctly. Incorrect materials or installation should be rejected as they will adversely affect the performance, maintenance costs and ultimately the design life of the SuDS components.

The site manager must maintain maintenance logs for all elements.

The SuDS features incorporated to this particular design have to be maintained in order to ensure efficient water treatment and water management.

4.1 SuDS features checklist

- **Rainwater harvesting** is the collection of rainwater runoff for use. Runoff can be collected from roofs and other impermeable areas, stored, treated (where required) and then used as a supply of water for domestic, commercial, industrial and/or institutional properties.
- **Proprietary treatments systems** are manufactured products that remove specified pollutants from surface water runoff. they are often (but not always) subsurface structures and can often be complementary to landscaped features, reducing pollutant levels in the runoff and protecting the amenity and/or biodiversity functionality of downstream SuDS components.
- Attenuation tanks are used to create a below-ground void space for the temporary storage of surface water before infiltration, controlled release or use.
- Basins, ponds and wetlands are depressions in the ground where water is stored and treated. Water levels rise after rain and then drops to the normal level as the excess is released slowly to a watercourse or drain. Some water maybe held back as a pond for final treatment, amenity or wildlife interest.
- SuDS flow control structures are usually small orifices in control chamber, slots or V notches in weirs. They are usually near the surface so are accessible and easy to maintain. They may be in baskets, in small chambers or in the open.
- **Inspection Chambers** and rodding eyes are used on bends or where pipes come together. They allow cleaning of the system if necessary.

4.2 Sustainable Drainage Maintenance Specification

4.2.1 General requirements

Maintenance	Frequency	Owner
Maintenance activities comprise:		
Regular maintenance	Will vary depending on	(Private or
 Occasional tasks 	activity	adopted)
Remedial Work		

Regular maintenance (including inspections and monitoring). Consists of basic tasks done on a frequent and predictable schedule, including vegetation management, litter and debris removal, and inspections.

Occasional maintenance Comprises tasks that are likely to be required periodically, but on a much less frequent and predictable basis than the routine tasks (sediment removal is an example).

Remedial maintenance Comprises intermittent tasks that may be required to rectify faults associated with the system, although the likelihood of faults can be minimised by good design.

Where remedial work is found to be necessary, it is likely to be due to site-specific characteristics or unforeseen events, and as such timings are difficult to predict.

Avoid use of weedkillers and pesticides to prevent chemical pollution.

4.2.2 Detention basin

TABLE 6: MAINTENANCE SCHEDULE FOR THE BASIN, ADAPTED FROM CIRIA RP992/23 & C753

Maintenance	Frequency	Owner
Regular maintenance		
 Mow grass access paths and verges surrounding ponds at 35mm-50mm minimum and 75mm maximum or as specified to provide a cared for appearance and allow pedestrian access. 	Monthly or as required	Private (Site
 Mow rough grass areas for occasional access or habitat reasons at 100mm and maximum 150mm with cuttings removed to wildlife piles. 	As required 4-6 times annually	owner)
 Grass areas not required for access may be managed for wildlife interest and to reduce costs. 	Annually or as required	
Occasional tasks		

Maintenance	Frequency	Owner
 Where silt accumulates on apron or area in front of inlet or outlet then remove and land apply within design profile of SuDS. Remove silt as instructed but not more than 30% of pond area at any one time and to an agreed depth but not subsoil layer. Retain as much representative existing vegetation as possible to ensure rapid re-colonisation of open areas. Monitor presence of wildlife and log any changes in terms of species variety, population numbers, and any signs of concern (dead amphibians, etc.). 	Annually or every 3 years as required	
Remedial Work		
 Although not usually required this may be needed due to damage to liners or control structures. 	As required	

4.2.3 Rainwater Harvesting

TABLE 7: MAINTENANCE SCHEDULE FOR THE RAINWATER HARVESTING SYSTEM, ADAPTED FROM CIRIA RP992/23 AND C753

Maintenance	Frequency	Owner	
Regular Monitoring			
 Inspection of the tank for debris and sediment build- up. Inspection and cleaning of the tank, inlet/outlets, gutters, withdrawal devices and roof drain filters of silt and other debris. 	Annually (and following poor performance)	Private (Site	
Occasional Tasks	Three monthlies (or	owner)	
 Cleaning and/or replacement of any filters. 	as required)		
Remedial Work			
Pump repairs.	As required		
Overflow erosion damage and damage to tank repairs.			

4.2.4 Cellular storage

TABLE 8: MAINTENANCE SCHEDULE FOR THE CELLULAR STORAGE TANK, ADAPTED FROM CIRIA RP992/23 AND C753

Maintenance	Frequency	Owner
Regular Cleaning	Monthly for 3	
 Inspect and identify any areas that are not operating 	months, then	
correctly and ensure free flow is viable. If required,	annually.	
take remedial action.		Drivoto (Sito
Remove litter and debris from the catchment surface.	Monthly	
Regular Monitoring		Owner)
 Inspect/check all rainwater pipe inlets, pump chamber 	Appually	
and vent to ensure that they are in good condition and	Annually	
operating as designed; repair/rehabilitate inlets, outlet,		

Maintenance	Frequency	Owner
 and vent if required following advice from manufacturer. Make visual inspection of exceedance route and check route is not blocked by new fences, walls, bollards, etc. Remove as necessary. 		
 Occasional Tasks Survey inside of tank for sediment build-up and remove if necessary*. Replace cellular storage tank at the end of design life** 	Every 5 years or as required* Every 25 to 50 years**	

*Silt disposal to be undertaken in line with the Environment Agency Regulatory Position Statement 055 and by a qualified professional.

**Assuming maintenance schedule is followed, and remedial action is taken when required.

It is imperative that the management company maintains record logs, including dated images, of the cellular storage access chamber, all inlets, outlet flow control chamber, and silt traps. These records should be shared with the site owner.

Following 25 years from the installation of the proposed cellular storage tank, the tank manufacturer must review the records from the last 5 years and identify whether there is a requirement for replacement of the feature. Should a tank replacement be required, a qualified contractor must be appointed and develop a construction phase plan taking into consideration the piled foundations while clearly identifying the required temporary works to enable the tank replacement.

4.2.5 Inlets, outlets, controls and inspection chambers

Please note that the flow control chambers will require regular maintenance. The maintenance schedule for the control chambers must be also informed by the manufacturer as different features have different requirements.

TABLE 9: MAINTENANCE SCHEDULE FOR THE INLETS, OUTLETS, CONTROL STRUCTURES AND INSPECTION CHAMBERS/MANHOLES

Maintenance	Frequency	Owner
Regular maintenance		
 Inlets, outlets: Inspect surface structures removing obstructions and silt as necessary. Check there is no physical damage Strim vegetation 1m min. surround to structures and 	Monthly	
 Inspection chambers/manholes and below ground flow control chambers: Remove cover and inspect ensuring water is flowing freely and that the exit route for water is unobstructed. Remove debris and silt. Undertake inspection after leaf fall in autumn. 	Monthly for 12 months, then annually.	Private (Site owner)
 Occasional tasks Check topsoil levels are 20mm above edges of baskets and chambers to avoid mower damage. 	As necessary	

Maintenance	Frequency	Owner
Remedial WorkRepair physical damage if necessary.	As required	

4.2.6 Drainage network

TABLE 10: MAINTENANCE SCHEDULE FOR PIPED DRAINAGE NETWORK

Drainage Element	Maintenance	Frequency	Owner
Downpipes and gullies	 Regular maintenance Open any covers, inspect integrity of gullies and repair as necessary. 	Monthly	
	Remove silt / debris by suction.	Annually or as required	Private (Site owner)
Pipe network	 Regular maintenance Remove any sediment within the network and inspection chambers. 	Every 3 years or as required	
	 Open covers inspect integrity of chambers and repair as necessary. Remove silt / debris by suction. 	Annually	

5.0 Conclusion

The proposed development at Piggotts Farm, Albury End, SG11 2HS is located in Flood Zone 1 as defined in the NPPF. The proposal includes the construction of a grain store and concrete apron (Appendix A).

On the basis of the available information from the Environment Agency and East Hertfordshire Council, the site is at low risk from fluvial, surface water, groundwater and sewer flooding.

The proposed development must incorporate SuDS as described in Section 3.5 of this report and in the relevant drawings in Appendix C.

The proposed development can be deemed appropriate, provided that the recommendations in this report are adhered to, it will not increase the flood risk to other people, and it will provide multiple benefits with respect to the sustainable management of surface water runoff.

6.0 Recommendations

- The site should manage surface water through the use of SuDS as described in this report.
- Construction (Design and Management) Regulations 2015 (CDM Regulations):
 - The revised CDM Regulations came into force in April 2015 to update certain duties on all parties involved in a construction project, including those promoting the development. One of the designer's responsibilities is to ensure that the client organisation, in this instance Hollyhock Ltd is made aware of their duties under the CDM Regulations.
 - Contractor to prepare a Construction Phase Plan, in line with CDM (2015).
 - Principal designer to develop a health and safety design risk assessment and an accident prevention plan, in line with CDM (2015).
- All SuDS features must be constructed in line with recommendations made in the CIRIA SuDS Manual (2015), Water UK's Design and Construction Guidance (2020), and the CIRIA Guidance on the Construction of SuDS (2017).
- Manufacturer to confirm structural reliability of the cellular storage device.
- Dry basin must be planted with short native grass and pre-established native species, to reduce the impact of erosion.
- The site should limit discharge to 2.1 l/s through the use of flow control chambers (Hydro-brake, orifice plate etc.)
- All SuDS features should be maintained in line with Table 6, Table 7, Table 8, Table 9 and Table 10.
- Developer to confirm SuDS maintenance owner.

Appendix A – Development proposals

Piggotts Farm, Albury End 04/04/2023 Version 4.0

Appendix B – Topographic Survey

223840N

223780N

116.05 +115.65 + 115.81 + 115.55 +

> 115.56 + 115.45 +

115.71

____ 115.32 + 115.19 +

Appendix C – Drainage

- Microdrainage Calculations:
 - 1% AEP + 40% CC
 - **1% AEP**
 - o 3.33% AEP
 - 50% AEP
 - o QBAR
 - Urban Creep
- RAB Drawings

RAB Consultants Ltd		Page 1
Cathedral House		
Beacon Street		
Lichfield WS13 7AA		Micro
Date 04/04/2023 09:35	Designed by Micro Drainage	
File 2878_TankandPond.MDX	Checked by	Diamade
Micro Drainage	Network 2020.1.3	

STORM SEWER DESIGN by the Modified Rational Method

Network Design Table for Storm

- Indicates pipe length does not match coordinates
 « - Indicates pipe capacity < flow</pre>

PN	Length (m)	Fall (m)	Slope (1:X)	I.Area (ha)	T.E. (mins)	Base Flow (l/s)	k (mm)	HYD SECT	DIA (mm)	Section Type	Auto Design
S1.000	34.891#	0.233	149.7	0.076	5.00	0.0	0.600	0	225	Pipe/Conduit	•
S2.000	40.003#	0.233	171.7	0.067	5.00	0.0	0.600	0	225	Pipe/Conduit	•
S1.001	12.774#	0.812	15.7	0.067	0.00	0.0	0.600	0	225	Pipe/Conduit	•
S3.000 S3.001	42.500# 32.000#	0.175 0.650	242.9 49.2	0.039 0.037	5.00 0.00	0.0	0.600 0.600	0 0	225 225	Pipe/Conduit Pipe/Conduit	•
S4.000 S4.001	49.500# 11.000#	0.220 0.050	225.0 220.0	0.022 0.032	5.00 0.00	0.0	0.600 0.600	0 0	225 225	Pipe/Conduit Pipe/Conduit	∂ ●
S3.002	11.333#	0.659	17.2	0.039	0.00	0.0	0.600	0	225	Pipe/Conduit	•
S1.002	19.216#	0.146	131.6	0.073	0.00	0.0	0.600	0	150	Pipe/Conduit	0

Network Results Table

PN	Rain (mm/hr)	T.C. (mins)	US/IL (m)	Σ I.Area (ha)	Σ Base Flow (l/s)	Foul (1/s)	Add Flow (l/s)	Vel (m/s)	Cap (1/s)	Flow (1/s)	
S1.000	164.73	5.55	112.850	0.076	0.0	0.0	0.0	1.07	42.4	33.9	
S2.000	163.33	5.67	112.850	0.067	0.0	0.0	0.0	0.99	39.6	29.6	
S1.001	162.61	5.73	112.617	0.210	0.0	0.0	0.0	3.32	131.8	92.5	
s3.000 s3.001	161.34 158.26	5.85 6.13	112.900 112.725	0.039 0.076	0.0	0.0	0.0	0.83 1.87	33.2 74.3	17.0 32.6	
S4.000	160.23 157 99	5.95	112.345	0.022	0.0	0.0	0.0	0.87	34.5 34 9	9.5 23 1	
\$3.002	157.36	6.22	112.075	0.169	0.0	0.0	0.0	3.17	126.1	72.0	
S1.002	153.60	6.59	111.416	0.452	0.0	0.0	0.0	0.87	15.4«	188.0	
©1982-2020 Innovyze											

RAB Consultants Ltd		Page 2
Cathedral House		
Beacon Street		
Lichfield WS13 7AA		Micro
Date 04/04/2023 09:35	Designed by Micro Drainage	
File 2878_TankandPond.MDX	Checked by	Diamade
Micro Drainage	Network 2020.1.3	

STORM SEWER DESIGN by the Modified Rational Method

Network Design Table for Storm

PN	Length (m)	Fall (m)	Slope (1:X)	I.Area (ha)	T.E. (mins)	Ba Flow	ase (l/s)	k (mm)	HYD SECT	DIA (mm)	Section Type	Auto Design
S5.000	48.000	0.630	76.2	0.034	5.00		0.0	0.600	0	150	Pipe/Conduit	•
S6.000	47.000	0.640	73.4	0.025	5.00		0.0	0.600	0	150	Pipe/Conduit	ð
S5.001 S5.002	4.232# 11.015	0.520 0.260	8.1 42.4	0.000	0.00		0.0	0.600	0	150 150	Pipe/Conduit Pipe/Conduit	⊕ ⊕

Network Results Table

PN	Rain (mm/hr)	T.C. (mins)	US/IL (m)	Σ I.Area (ha)	Σ Base Flow (l/s)	Foul (l/s)	Add Flow (l/s)	Vel (m/s)	Cap (1/s)	Flow (l/s)
S5.000	163.06	5.69	111.600	0.034	0.0	0.0	0.0	1.15	20.4	15.0
S6.000	163.36	5.67	111.610	0.025	0.0	0.0	0.0	1.17	20.8	11.1
S5.001 S5.002	162.84 161.53	5.71 5.83	110.820 110.300	0.059 0.059	0.0	0.0	0.0	3.55 1.55	62.8 27.4	26.0 26.0

RAB Consultants Ltd		Page 3
Cathedral House		
Beacon Street		
Lichfield WS13 7AA		Micro
Date 04/04/2023 09:35	Designed by Micro Drainage	
File 2878_TankandPond.MDX	Checked by	Diamage
Micro Drainage	Network 2020.1.3	

Manhole Schedules for Storm

MH Name	MH CL (m)	MH Depth (m)	MH Connection	MH Diam.,L*W (mm)	PN	Pipe Out Invert Level (m)	Diameter (mm)	PN	Pipes In Invert Level (m)	Diameter (mm)	Backdrop (mm)
S1	113 350	0 500	Open Manhole	1200	S1 000	112 850	225				
Sla	113.350	0.500	Open Manhole	1200	52.000	112.850	225				
S2	113.350	0.733	Open Manhole	1200	S1.001	112.617	225	S1.000	112.617	225	
	110.000			1200	011001	110.01/	220	s2.000	112.617	225	
S2a	113.250	0.350	Open Manhole	1200	s3.000	112.900	225				
S2b	113.150	0.425	Open Manhole	1200	s3.001	112.725	225	s3.000	112.725	225	
S3a	112.770	0.425	Open Manhole	1200	s4.000	112.345	225				
S3b	112.550	0.425	Open Manhole	1200	S4.001	112.125	225	s4.000	112.125	225	
S2c	112.500	0.425	Open Manhole	1200	s3.002	112.075	225	s3.001	112.075	225	
			_					\$4.001	112.075	225	
S3	112.680	1.264	Open Manhole	1200	s1.002	111.416	150	s1.001	111.805	225	464
								s3.002	111.416	225	
S	111.770	0.500	Open Manhole	0		OUTFALL		S1.002	111.270	150	
S9	111.950	0.350	Open Manhole	1200	S5.000	111.600	150				
S8	111.960	0.350	Open Manhole	1200	s6.000	111.610	150				
S10	111.320	0.500	Open Manhole	1200	S5.001	110.820	150	s5.000	110.970	150	150
								s6.000	110.970	150	150
S11	111.000	0.700	Open Manhole	5000	\$5.002	110.300	150	s5.001	110.300	150	
S	110.820	0.780	Open Manhole	0		OUTFALL		s5.002	110.040	150	

RAB Consultants Ltd				Page 4
Cathedral House				
Beacon Street				
Lichfield WS13 7AA				Micco
Date 04/04/2023 09:35	Designed b	y Micro Dra	inage	
File 2878 TankandPond.MDX	Checked by		2	Urainage
Micro Drainage	Network 20	20.1.3		
Manhole	Schedules	<u>for Storm</u>		
MH Manhole Manhole Name Easting Northing (m) (m)	Intersection Easting (m)	Intersection Northing (m)	Manhole Access	Layout (North)
S2b 542767.095 223825.684	542767.095	223825.684	Required	
S3a 542801.187 223878.393	542801.187	223878.393	Required	
				•
S3b 542802.376 223829.460	542802.376	223829.460	Required	•
S2c 542799.769 223817.934	542799.769	223817.934	Required	
S3 542800.817 223842.486	542800.817	223842.486	Required	
s 542820.646 223843.024			No Entry	
\$9 542803.501 223817.244	542803.501	223817.244	Required	-
S8 542807.772 223834.542	542807.772	223834.542	Required	
S10 542851.608 223817.776	542851.608	223817.776	Required	2=0
S11 542858.432 223814.301	542858.432	223814.301	Required	\sim
S 542867.080 223821.124			No Entry	
©19	982-2020 Inn	ovyze		

RAB Consultants Ltd		Page 5
Cathedral House		
Beacon Street		
Lichfield WS13 7AA		Mirro
Date 04/04/2023 09:35	Designed by Micro Drainage	
File 2878_TankandPond.MDX	Checked by	Diamage
Micro Drainage	Network 2020.1.3	1

PIPELINE SCHEDULES for Storm

<u>Upstream Manhole</u>

- Indicates pipe length does not match coordinates

PN	Hyd Sect	Diam (mm)	MH Name	C.Level (m)	I.Level (m)	D.Depth (m)	MH Connection	MH DIAM., L*W (mm)
S1.000	0	225	S1	113.350	112.850	0.275	Open Manhole	1200
S2.000	0	225	S1a	113.350	112.850	0.275	Open Manhole	1200
S1.001	0	225	S2	113.350	112.617	0.508	Open Manhole	1200
S3.000 S3.001	0	225 225	S2a S2b	113.250 113.150	112.900 112.725	0.125 0.200	Open Manhole Open Manhole	1200 1200
S4.000 S4.001	0	225 225	S3a S3b	112.770 112.550	112.345 112.125	0.200 0.200	Open Manhole Open Manhole	1200 1200
S3.002	0	225	S2c	112.500	112.075	0.200	Open Manhole	1200
S1.002	0	150	S3	112.680	111.416	1.114	Open Manhole	1200
s5.000	0	150	S9	111.950	111.600	0.200	Open Manhole	1200

Downstream Manhole

PN	Length (m)	Slope (1:X)	MH Name	C.Level (m)	I.Level (m)	D.Depth (m)	MH Connection	MH DIAM., L*W (mm)
S1.000	34.891#	149.7	S2	113.350	112.617	0.508	Open Manhole	1200
S2.000	40.003#	171.7	S2	113.350	112.617	0.508	Open Manhole	1200
S1.001	12.774#	15.7	S3	112.680	111.805	0.650	Open Manhole	1200
S3.000 S3.001	42.500# 32.000#	242.9 49.2	S2b S2c	113.150 112.500	112.725 112.075	0.200	Open Manhole Open Manhole	1200 1200
S4.000 S4.001	49.500# 11.000#	225.0 220.0	S3b S2c	112.550 112.500	112.125 112.075	0.200 0.200	Open Manhole Open Manhole	1200 1200
S3.002	11.333#	17.2	S3	112.680	111.416	1.039	Open Manhole	1200
S1.002	19.216#	131.6	S	111.770	111.270	0.350	Open Manhole	0
S5.000	48.000	76.2	S10	111.320	110.970	0.200	Open Manhole	1200
				©1982-	2020 Ir	novyze		

RAB Consultants Ltd		Page 6
Cathedral House		
Beacon Street		
Lichfield WS13 7AA		Micro
Date 04/04/2023 09:35	Designed by Micro Drainage	
File 2878_TankandPond.MDX	Checked by	Diamage
Micro Drainage	Network 2020.1.3	

PIPELINE SCHEDULES for Storm

<u>Upstream Manhole</u>

PN	Hyd	Diam	MH	C.Level	I.Level	D.Depth	MH	MH DIAM., L*W
	Sect	(mm)	Name	(m)	(m)	(m)	Connection	(mm)
S6.000	0	150	S8	111.960	111.610	0.200	Open Manhole	1200
s5.001	0	150	S10	111.320	110.820	0.350	Open Manhole	1200
S5.002	0	150	S11	111.000	110.300	0.550	Open Manhole	5000

Downstream Manhole

PN	Length (m)	Slope (1:X)	MH Name	C.Level (m)	I.Level (m)	D.Depth (m)	MH Connection	MH DIAM., L*W (mm)
S6.000	47.000	73.4	S10	111.320	110.970	0.200	Open Manhole	1200
S5.001	4.232#	8.1	S11	111.000	110.300	0.550	Open Manhole	5000
S5.002	11.015	42.4	S	110.820	110.040	0.630	Open Manhole	0

RAB Consultants Ltd		Page 7
Cathedral House		
Beacon Street		
Lichfield WS13 7AA		Micro
Date 04/04/2023 09:35	Designed by Micro Drainage	
File 2878_TankandPond.MDX	Checked by	Diamage
Micro Drainage	Network 2020.1.3	

Area	Summary	for	Storm	
	_			

Pipe	PIMP	PIMP	PIMP	Gross	Imp.	Pipe Total
Number	Туре	Name	(%)	Area (ha)	Area (ha)	(ha)
1 0 0 0			1 0 0	0.056	0.076	0.076
1.000	-	-	100	0.076	0.076	0.0/6
2.000	-	-	100	0.067	0.067	0.067
1.001	-	-	100	0.067	0.067	0.067
3.000	-	-	100	0.039	0.039	0.039
3.001	-	-	100	0.037	0.037	0.037
4.000	-	-	100	0.022	0.022	0.022
4.001	-	-	100	0.032	0.032	0.032
3.002	-	-	100	0.039	0.039	0.039
1.002	-	-	100	0.073	0.073	0.073
5.000	-	-	100	0.034	0.034	0.034
6.000	-	-	100	0.025	0.025	0.025
5.001	-	-	100	0.000	0.000	0.000
5.002	-	-	100	0.000	0.000	0.000
				Total	Total	Total
				0.511	0.511	0.511

RAB Consulta	ants Ltd						Page 8
Cathedral Ho	ouse						
Beacon Stree	et						
Lichfield N	WS13 7AA						Micro
Date 04/04/2	2023 09:35		Design	ed by Mic	ro Drainage		
File 2878_Ta	ankandPond.	MDX	Checke	d by			Diamaye
Micro Draina	age		Networ	k 2020.1.	3		. <u> </u>
		<u>Online</u>	Contro	ls for Sto	orm		
IIda		timum Manha	10.02		1 002 1701.00	ma (m3)	
Hydro	<u>-Blakee Op</u>	CIMUM Manno	ie: 55,	D5/PN: 5.	1.002, VOIU	me (m°)	: 2.3
		Unit	Referen	ce MD-SHE-(0049-1200-126	4-1200	
		Desig	yn Head (m)		1.264	
		Design	Flow (1/	s)		1.2	
			Plusn-Fl Objecti	O™ VA Minimia	Calci Calci	lated	
		7	objecti	on MINIMIS	se upstream si Si	urface	
		Sump	Availab	le		Yes	
		Dia	ameter (m	m)		49	
		Invert	: Level (m)	11	11.416	
	Minimum O	utlet Pipe Dia	ameter (m	m)		75	
	Suggest	ed Manhole Dia	ameter (m	m)		1200	
Control	Points	Head (m) Flo	w (l/s)	Contro	ol Points	Head (m) Flow (l/s)
Design Point	(Calculated)	1.264	1.2		Kick-Flo	® 0.4	32 0.7
	Flush-Flo™	0.212	0.9	Mean Flow o	ver Head Rang	e	- 0.9
The hvdrolo	gical calcula	ations have be	en based	on the Hea	ad/Discharge n	relations	ship for the
Hydro-Brake	® Optimum as	specified. S	Should an	other type	of control de	evice oth	ner than a
Hydro-Brake	Optimum® be	utilised ther	n these s	torage rout	ing calculati	lons will	be
invalidated							
Depth (m)	Flow (l/s)	Depth (m) Flo	w (1/s)	Depth (m) F	flow (l/s) Der	oth (m)	Flow (l/s)
0.100	0.8	1.200	1.2	3.000	1.8	7.000	2.6
0.200	0.9	1.400	1.3	3.500	1.9	7.500	2.7
0.300	0.9	1.600	1.3	4.000	2.0	8.000	2.8
0.400	0.8	1.800	1.4	4.500	2.1	8.500	2.9
0.500	0.8	2.000	1.5	5.000	2.2	9.000	3.0
0.600	1.0	2.200	1.5	5.500	2.3	9.500	5.0
1.000	1.1	2.600	1.7	6.500	2.5		
	· ·		1		I.		
<u>Hydro-</u>	<u>-Brake® Opt</u>	imum Manhol	e: S11,	DS/PN: S	5.002, Volu	me (m³)	: 13.8
		Unit Referer	nce MD-SH	E-0051-1000	0-0700-1000		
		Design Head	(m)		0.700		
	D	esign Flow (l/	's)		1.0		
		Flush-Fl	_O™	mine cont	Calculated		
		Ubjecti Applicati	lve Mini	mise upstre	surface		
		Appiicali Sump Availab	ble		Yes		
		Diameter (n	nm)		51		
		<u>⊜10</u>	82-2020	Tapottiza			
		©19	02-2020	rmovyze			

RAB Consult	ants Ltd						Page 9
Cathedral H	ouse						
Beacon Stre	et						
Lichfield	WS13 7AA						Mirro
Date 04/04/	2023 09:35		Desig	ned by Mic	cro Draina	ge	Dcainago
File 2878_T	ankandPond	.MDX	Check	ed by			Diamage
Micro Drain	age		Netwo	rk 2020.1.	. 3		·
<u>Hydro</u>	<u>-Brake® Opt</u>	timum Manhol	<u>e: S11</u>	, DS/PN: S	<u>5.002, Vo</u>	lume (m³): 13.8
			Трти	art Iaval (r	m) 110 300		
		Minimum Outle	t Pipe !	Diameter (m	n) 75		
		Suggested M	anhole 1	Diameter (mr	m) 1200		
Control	Points	Head (m) Flo	w (l/s)	Contr	ol Points	Head	(m) Flow (1/s)
Design Point	(Calculated)	0.700 M 0.222	1.0	Mean Flow	Kick- over Head B	Flo® 0. ange	449 0.8
	114511 110	0.222	1.0	Incan I tow	over neua n	unge	0.9
The hydrolo	gical calcul	ations have be	en base	d on the He	ad/Discharg	e relation	ship for the
Hydro-Brake	© Optimum as	s specified. S	hould a	nother type	of control	device ot	her than a
invalidated	opermume be	e utiliseu then	LIESE	Storage Iou	cing carcui	acions wii	ii be
Depth (m)	Flow (l/s)	Depth (m) Flor	w (l/s)	Depth (m)	Flow (l/s)	Depth (m)	Flow (l/s)
0.100	0.9	1.200	1.3	3.000	1.9	7.000	2.9
0.200	1.0	1.400	1.4	3.500	2.1	7.500	2.9
0.300	1.0	1.600	1.4	4.000	2.2	8.000	3.0
0.400	0.9	2.000	1.5	5.000	2.3	9.000	3.2
0.600	0.9	2.200	1.7	5.500	2.6	9.500	3.3
0.800	1.1	2.400	1.7	6.000	2.7		
1.000	1.2	2.600	1.8	6.500	2.8		

RAB Consultants Ltd					Page 10				
Cathedral House									
Beacon Street									
Lichfield WS13 7AA					Micro				
Date 04/04/2023 09:35	Design	ned	by Micro	Drainage					
File 2878 TankandPond.MDX	Checke	ed	by		Diamaye				
Micro Drainage	Netwo	rk	2020.1.3						
<u>Storage</u>	Struct	ure	es for Sto:	<u>cm</u>					
Cellular Storage Manhole: S3, DS/PN: S1.002									
Invert Level (m) 111.416 Safety Factor 2.0 Infiltration Coefficient Base (m/hr) 0.00000 Porosity 0.95 Infiltration Coefficient Side (m/hr) 0.00000									
Depth (m) Area (m²) Inf. Are	ea (m²)	Der	oth (m) Area	(m²) Inf.	Area (m²)				
0.000 475.0 0.914 475.0	0.0		0.915	0.0	0.0				
<u>Tank or Pond M</u>	lanhole	: :	511, DS/PN	: S5.002					
Invert Level (m) 110.300									
Depth (m) Are	ea (m²)	Der	oth (m) Area	(m²)					
0.000	9.0		0.700	45.2					
Manhole	Headl	055	s for Storr	<u>n</u>					
PI	N US/I Nam	MH Ne I	US/MH Headloss						
S1.(S1 1 -	0.500						
S2.0 S1.0)00 S.	s2	0.500						
\$3.0	000 s:	2a	0.500						
\$3.0	001 S:	2b	0.500						
S4.(000 SI 001 SI	3a 3h	0.500						
S3.(001 S.	2c	0.500						
S1.0	002	s3	0.500						
\$5.0	000	S9	0.500						
S6.(S5.(000 : 001 :S	S8 10	0.500						
\$5.0	002 S	11	0.500						
©198	32-2020	0 I	nnovyze						
			4 -						

RAB Cons	sulta	nts Ltd							Pa	ge 11
Cathedra	al Ho	use								
Beacon S	Stree	t								
Lichfiel	ld W	S13 7AA							M	icro
Date 04/	/04/2	023 09:35			Design	ed by 1	Micro Dra	ainage		
File 287	78_Ta	nkandPond	.MDX		Checke	d by				allaye
Micro Dr	raina	ge]	Networ	k 2020	.1.3			
	Summa	ary of Cr	itical	Result	s by M	aximum	Level (1	Rank 1) fo	or Stor	<u>m</u>
				Sim	ilation	Critori	2			
		Areal Red	uction F	actor 1	.000	Additior	<u>a</u> nal Flow -	% of Total	L Flow 0	.000
		Hot	Start (mins)	0	MADI) Factor *	10m³/ha St	corage 2	.000
		Hot Star	rt Level	(mm)	0	-	In	let Coeffie	ecient 0	.800
Mai	nnole Foul S	Headloss Co Sewage per 1	DeII (GL Dectare	(1/s) 0	.500 FI	ow per b	erson per	Day (1/per	r/day) U	.000
	I OUI C	iewage per i	leeeure	(1)0) 0						
Number of	f Inpu	it Hydrogram	ohs 0	Number	of Offl:	ine Cont	rols 0 Nu	mber of Tin	me/Area I	Diagrams 0
Number	of On	line Contro	ols 2 Nu	mber of	Storage	e Struct	ures 2 Nu	mber of Rea	al Time (Controls 0
				Synthet	ic Rain	fall De	tails			
			Rainfa	ll Model				FEH		
		FEH F	ainfall	Version		075 000	075 07 400	2013		
			Di	ata Type	GD J42	015 225	0/J IL 420	Point		
			Cv	(Summer)				0.840		
			Cv	(Winter)				0.840		
	Margin for Flood Dick Marning (mm)									
	11	argin ior i	Ana	alysis T	imestep	2.5 Se	cond Incre	ement (Exte	nded)	
				DTS	Status				ON	
				DVD	Status				ON	
				inertia	Status				OFF	
								_		
		Duration	Profile((s) (min	s)	15 30	60 12	0 180 2	Summer and	Winter	
		Duración	(3) (11111	720	, 960, i	, 00, 12 1440, 21	.60, 100, 2	4320, 5760), 7200,	
								8640), 10080	
	Reti	urn Period(s) (year	s)					100	
		Climate	change (5)					40	
			Determ	01 i ma ta	Time	L (37)	Finat (X)		0 £1	Water
PN	Name	Storm	Period	Climate	Surc	t (X) harge	First (1) Flood	Overflow	Act.	(m)
						<u> </u>				/
S1.000	S1	15 Summer	100	+40% +40%	100/15	Summor				113.246
S1.000	Sia S2	15 Summer	100	+40%	100/15	Summer				112.940
S3.000	S2a	15 Summer	100	+40%						113.058
S3.001	S2b	15 Summer	100	+40%						112.871
S4.000	S3a	15 Summer	100	+40%	100/15	C.,				112.451
S4.001 S3.002	S2c	15 Summer	100	+40% +40%	100/12	summer				112.294
S1.002	s3	960 Winter	100	+40%	100/15	Summer				112.235
S5.000	S9	15 Summer	100	+40%	100/15	Summer				111.818
				<u>⊜100</u>	2_2020	Tnnatt	170			
				@198.	2-2020	THUOAZ	yze			

RAB Consultants Ltd		Page 12
Cathedral House		
Beacon Street		
Lichfield WS13 7AA		Micro
Date 04/04/2023 09:35	Designed by Micro Drainage	
File 2878_TankandPond.MDX	Checked by	Diamage
Micro Drainage	Network 2020.1.3	

PN	US/MH Name	Surcharged Depth (m)	Flooded Volume (m³)	Flow / Cap.	Overflow (1/s)	Half Drain Time (mins)	Pipe Flow (l/s)	Status	Level Exceeded
S1.000	S1	0.171	0.000	1.14			45.6	FLOOD RISK	
S2.000	S1a	0.135	0.000	1.07			40.2	FLOOD RISK	
S1.001	S2	0.098	0.000	1.06			119.9	SURCHARGED	
S3.000	S2a	-0.067	0.000	0.80			25.3	FLOOD RISK	
S3.001	S2b	-0.079	0.000	0.72			50.3	FLOOD RISK	
S4.000	S3a	-0.119	0.000	0.43			14.2	OK	
S4.001	S3b	0.017	0.000	1.15			33.8	FLOOD RISK	
S3.002	S2c	-0.006	0.000	1.00			106.9	FLOOD RISK	
S1.002	S3	0.669	0.000	0.07		3630	1.0	SURCHARGED	
S5.000	S9	0.068	0.000	1.05			20.9	FLOOD RISK	

-		
RAB Consultants Ltd		Page 13
Cathedral House		
Beacon Street		
Lichfield WS13 7AA		Mirro
Date 04/04/2023 09:35	Designed by Micro Drainage	Desinado
File 2878_TankandPond.MDX	Checked by	Diamage
Micro Drainage	Network 2020.1.3	

PN	US/MH Name	Storm	Return Period	Climate Change	First (X) Surcharge	First (Y) Flood	First (Z) Overflow	Overflow Act.	Water Level (m)
S6.000	S8	15 Summer	100	+40%					111.716
S5.001	S10	240 Winter	100	+40%	100/120 Winter				110.998
S5.002	S11	240 Winter	100	+40%	100/15 Summer				110.996

Suu US/MH PN Name	rcharged Depth (m)	Flooded Volume (m³)	Flow / Cap.	Overflow (1/s)	Half Drain Time (mins)	Pipe Flow (l/s)	Status	Level Exceeded
S6.000 S8	-0.044	0.000	0.83			16.8	FLOOD RISK	
S5.001 S10 S5.002 S11	0.028 0.546	0.000	0.17 0.04			7.5 1.0	SURCHARGED FLOOD RISK	

RAB Cor	nsulta	ants Ltd							Pac	je 1
Cathed	cal Ho	ouse								
Beacon	Stree	et								
Lichfie	eld W	IS13 7AA							N/	icco
Date 04	1/04/2	2023 09:36		I	Desian	ed bv	Micro D	rainage		
File 28	, . , 378 та	nkandPond	мрх	(Checke	d by		2 -		ainage
Micro I)raina		•11071	ר ז	Networ	L 2020	1 3			
		iye		1	Networ	K 2020	.1.5			
	Summ	ary of Cr:	itical	Results	s by Ma	aximum	Level	(Rank 1) f	<u>or Storr</u>	<u>n</u>
				Simu	lation	Criter	<u>ia</u>			
		Areal Red	uction F	actor 1.	.000 2	Additio	nal Flow	- % of Total	l Flow 0.	000
		Hot Sta	start (rt Level	(mm)	0	MAD	D Factor T	nlet Coeffie	ecient 0.	800
М	anhole	Headloss Co	beff (Gl	obal) 0.	.500 Flo	ow per	Person pe	er Day (1/per	r/day) 0.	000
	Foul	Sewage per 1	hectare	(l/s) 0.	.000	÷	1	1 1 1	. 1,	
									<i>i</i> –	
Number	of Inp	ut Hydrograp	phs 0	Number o	of Offl:	ine Con	trols 0 N	Number of Tim	me/Area D	iagrams 0
Numbe	r of U	nline Contro	DIS Z NU	imber of	Storage	e Struc	tures 2 M	Number of Rea	al Time C	ontrols U
				Synthet	ic Rain	fall De	etails			
			Rainfa	ll Model				FEH		
		FEH F	Rainfall	Version				2013		
			Site	Location	GB 542	875 223	3875 TL 4	2875 23875		
			D	ata Type				Point		
			Cv	(Summer)				0.840		
			Cv	(Winter)				0.840		
	1	Margin for E	lood Ri	sk Warni	ng (mm)				300.0	
	-		An	alysis T	imestep	2.5 Se	econd Inc	rement (Exte	nded)	
				DTS	Status				ON	
				DVD	Status				ON	
				Inertia	Status				OFF	
			Profile	(s)				Summer and	d Winter	
		Duration	(s) (mir	is)	15, 30,	, 60 , 1	20, 180,	240, 360, 48	80, 600,	
				720,	, 960, i	L440, 2	160, 2880	, 4320, 5760), 7200,	
								8640	0, 10080	
	Ret	urn Period(s) (year	s)					100	
		Climate	Change	(8)					0	
										Water
	US/MH		Return	Climate	Firs	t (X)	First (Y	() First (Z)	Overflow	/ Level
PN	Name	Storm	Period	Change	Surc	harge	Flood	Overflow	Act.	(m)
S1 000	C1	15 Summer	100	⊥∩∘						113 000
s2.000	S1a	15 Summer	100	+0%						113.012
s1.001	s2	15 Summer	100	+0%						112.784
s3.000	S2a	15 Summer	100	+0%						113.026
S3.001	S2b	15 Summer	100	+0%						112.842
S4.000	S3a	15 Summer	100	+0%						112.433
S4.001	S3b	15 Summer	100	+0%						112.290
\$3.002	S2c	15 Summer	100	+0%	100/15	C				112.225
S1.002	53 90	15 Summer	100	+U% +0%	100/15	summer				111 705
00.000	59	10 Summer	TOO	100						±±±•/00
				©1982	2-2020	Innov	vze			
L							<u> </u>			

RAB Consultants Ltd		Page 2
Cathedral House		
Beacon Street		
Lichfield WS13 7AA		Micro
Date 04/04/2023 09:36	Designed by Micro Drainage	
File 2878_TankandPond.MDX	Checked by	Diamage
Micro Drainage	Network 2020.1.3	

PN	US/MH Name	Surcharged Depth (m)	Flooded Volume (m³)	Flow / Cap.	Overflow (l/s)	Half Drain Time (mins)	Pipe Flow (l/s)	Status	Level Exceeded
S1.000	S1	-0.055	0.000	0.90			36.0	OK	
S2.000	S1a	-0.063	0.000	0.84			31.5	OK	
S1.001	S2	-0.058	0.000	0.88			99.6	OK	
S3.000	S2a	-0.099	0.000	0.57			18.1	FLOOD RISK	
S3.001	S2b	-0.108	0.000	0.52			35.9	OK	
S4.000	S3a	-0.137	0.000	0.31			10.1	OK	
S4.001	S3b	-0.060	0.000	0.87			25.6	FLOOD RISK	
S3.002	S2c	-0.075	0.000	0.75			80.4	FLOOD RISK	
S1.002	s3	0.421	0.000	0.06		2685	0.9	SURCHARGED	
S5.000	S9	-0.045	0.000	0.82			16.4	FLOOD RISK	

RAB Consultants Ltd		Page 3
Cathedral House		
Beacon Street		
Lichfield WS13 7AA		Micro
Date 04/04/2023 09:36	Designed by Micro Drainage	
File 2878_TankandPond.MDX	Checked by	Diamage
Micro Drainage	Network 2020.1.3	

PN	US/MH Name	s	torm	Return Period	Climate Change	First Surch	: (X) Marge	First (Y) Flood	First (Z) Overflow	Overflow Act.	Water Level (m)
S6.000	S8	15	Summer	100	+0%						111.694
S5.001	S10	15	Summer	100	+0%						110.906
S5.002	S11	180	Winter	100	+0%	100/15	Summer				110.818

PN	US/MH Name	Surcharged Depth (m)	Flooded Volume (m³)	Flow / Cap.	Overflow (1/s)	Half Drain Time (mins)	Pipe Flow (l/s)	Status	Level Exceeded
S6.000	S8	-0.066	0.000	0.60			12.0	FLOOD RISK	
S5.001	S10	-0.064	0.000	0.63			28.4	OK	
S5.002	S11	0.368	0.000	0.04			1.0	FLOOD RISK	

Cathedral House Beacon Street Lichfield WS13 7AA Date 04/04/2023 09:38 File 2878_TankandPond.MDX Micro Drainage Checked by Micro Drainage Micro Drainage Network 2020.1.3 Summary of Critical Results by Maximum Level (Rank 1) for Storm Binulation Criteria Areal Reduction Factor 1.000 Additional Flow - % of Total Flow 0.000 Bot Start (mins) 0 MADD factor * 10m'/ha Storage 2.000 Manhole Readloss Coeff (Global) 0.500 Flow per Person per Day (//per/day) 0.000 Foul Sewage per hectare (1/8) 0.000 Number of Input Hydrographs 0 Number of Storage Structures 2 Number of Time/Area Diagrams 0 Number of Online Controls 2 Number of Storage Structures 2 Number of Time/Area Diagrams 0 Number of Input Hydrographs 0 Number of Storage Structures 2 Number of Real Time Controls 0 Southeric Rainfall Model FEH Rainfall Woold Southeric Rainfall Perails Reinfall Model FEH Rainfall Version Southeric Rainfall Perails Reinfall Model FEH Rainfall Model Cv (Ninter) Okad0 Margin for Flood Risk Warning (mn) Southeric Status Off Forfile(s) Duration(s) (mins) 15, 30, 60, 120, 180, 240, 360, 480, 600, 720, 960, 1400, 2160, 2860, 4920, 5760, 7200, 8640, 10088 Return Period(s) (years) Climate Change (%) Ctimate Change (%) Ctimat	RAB Con	sulta	nts Ltd						Pag	ge 1
Beacon Street Lichfield WS13 7AA Date 04/04/2023 09:38 File 2878_TankandPond.MDX Micro Drainage Network 2020.1.3 Summary of Critical Results by Maximum Level (Rank 1) for Storm Simulation Criteria Areal Reduction Factor 1.000 Additional Flow - % of Total Flow 0.000 Hot Start (mm) 0 MADP Factor * 10m/ha Storage 2.000 Bot Start Evel (mm) 0 Inlet Coefficient 0.800 Houbber of Input Hydrographs 0 Number of Offline Controls 0 Number of Time/Area Diagrams 0 Number of Online Controls 2 Number of Storage Structures 2 Number of Time Controls 0 Number of Online Controls 2 Number of Storage Structures 2 Number of Time Controls 0 Number of Online Controls 0 Number of Storage Structures 2 Number of Evel (%) Number of Online Controls 0 Number of Storage Structures 2 Number of Evel (%) Number of Online Controls 1 542875 223875 TL 42875 23875 Data Type Cv (Summer) 0.840 Cv (Kumer) 0.840 Margin for Flood Bisk Narning (mm) 300.0 Analysis Timestep 2.5 Second Thorement (Extended) Duration(s) (mins) 15, 30, 60, 120, 180, 240, 360, 460, 600, 720, 960, 1440, 2160, 280, 4920, 570, 7200, 2640, 1000 Return Period(s) (years) 0 Clinate Change (s) 0 Status 0 Numer Status 0 Numer S	Cathedr	al Ho	use							
Lichfield WS13 7AA Date 04/04/2023 09:38 Pile 2578_TankanGrond.MDX Micro Drainage Network 2020.1.3 Summary of Critical Results by Maximum Level (Rank 1) for Storm Simulation Criteria Areal Reduction Factor 1.000 Additional Flow - % of Total Flow 0.000 Hot Start Kevel (m) 0 Kanhole Readloss Coeff (Global) 0.500 Flow per Person per Day (1/per/day) 0.000 Foul Sevage per hectare (1/s) 0.000 Number of Online Controls 0 Number of Offline Controls 0 Number of Time/Area Diagrams 0 Number of Online Controls 2 Number of Storage Structures 2 Number of Real Time Controls 0 Number of Online Controls 2 Number of Storage Structures 2 Number of Real Time Controls 0 Number of Online Controls 2 Number of Storage Structures 2 Number of Real Time Controls 0 Number of Online Controls 2 Number of Storage Structures 2 Number of Real Time Controls 0 Number of Online Controls 2 Number of Storage Structures 2 Number of Real Time Controls 0 Number of Online Controls 2 Number of Storage Structures 2 Number of Real Time Controls 0 Number of Online Controls 2 Number of Storage Structures 2 Number of Real Time Controls 0 Number of Online Controls 2 Number of Storage Structures 2 Number of Real Time Controls 0 Nargin for Flood Risk Marning (mm) Analysis Timestep 2.5 Second Increment (Extended) DTS Status OV Numer and Winter Duration(s) (mins) 15, 30, 60, 120, 180, 240, 360, 480, 600, 720, 960, 1400, 2160, 2860, 4320, 950, 720, 8640, 10380 Return Period(s) (years) 0 No Status No Sta	Beacon	Stree	t							
Date 04/04/2023 09:38 File 2073 TankandPond.MDX Micro Drainage Network 2020.1.3 Summary of Critical Results by Maximum Level (Rank 1) for Storm Simulation Criteria Areal Reduction Factor 1.000 Additional Plow - % of Total Flow 0.000 Mont Start Level (mm) 0 Mumber of Input Hydrographs 0 Number of Storage 2.000 Number of Input Hydrographs 0 Number of Storage 2.000 Number of Input Hydrographs 0 Number of Storage Structures 2 Number of Time/Area Diagrams 0 Number of Online Controls 2 Number of Storage Structures 2 Number of Rainfall Model PDI FRH Rainfall Wording 2013 Site Location GB 542875 223875 TL 42875 22875 Data Type Data Type Point Cv (Winter) 0.840 Margin for Flood Risk Marning (mm) 300.0 Margin for Flood Risk Marning (mm) 300.0 Margin for Flood Risk Marning (mm) 300.0 Rainfall Model PT Profile(s) Summer and Winter Duration(s) (mins) 15, 30, 60, 120, 180, 240, 360, 480, 600, 720, 960, 600, 720, 961, 1440, 2160, 280, 4320, 5764, 7200, 8640, 10080 Return Period(s) (years) 0 Climate Change (s) 0 VS/MI Return Climate First (X) <t< td=""><td>Lichfie</td><td>eld W</td><td>S13 7AA</td><td></td><td></td><td></td><td></td><td></td><td>N A</td><td>icco</td></t<>	Lichfie	eld W	S13 7AA						N A	icco
File 2078 TankandFond.MDX Checked by Micro Drainage Network 2020.1.3 Summary of Critical Results by Maximum Level (Rank 1) for Storm Simulation Criteria Areal Reduction Factor 1.000 Additional Flow - % of Total Flow 0.000 Hot Start Level (m) 0 Mappendix Criteria Areal Reduction Factor 1.000 Additional Flow - % of Total Flow 0.000 Hot Start Level (m) 0 Mappendix Criteria Areal Reduction Factor 1.000 Additional Flow - % of Total Flow 0.000 Hot Start Level (m) 0 Mappendix Criteria Mappendix Criteria Areal Reduction Factor 1.000 Additional Flow - % of Total Flow 0.000 Hot Start (wink) Number of Input Hydrographs 0 Number of Storage Structures 2 Number of Time/Area Diagrams 0 Number of Storage Structures 2 Number of Time/Area Diagrams 0 Number of Flow Controls 0 Number of Time/Area Diagrams 0 Number of Storage Structures 2 Number of Real Time Controls 0 Structoring Storage Structures 2 Number of Real Time Controls 0 Name Storm Flow Flow Act. O .840 O .840 Name Storm Freido Chage Structures 2 Number of Starage Structures 2 Numer	Date 04	/04/2	023 09:38		Γ	esigned b	v Micro Dr	ainage		
Micro Drainage Network 2020.1.3 Micro Drainage Network 2020.1.3 Summary of Critical Results by Maximum Level (Rank 1) for Storm Simulation Criteria Areal Reduction Factor 1.000 Additional Flow - % of Total Flow 0.000 Hot Start (Imfs) 0 MAD Factor * 10m²/ha Storage 2.000 Hot Start Level (mm) 0 Inlet Coefficient 0.800 Foul Sewage per bectare (1/s) 0.000 Number of Input Hydrographs 0 Number of Storage Structures 2 Number of Time/Area Diagrams 0 Number of Online Controls 2 Number of Storage Structures 2 Number of Real Time Controls 0 Number of Online Controls 2 Number of Storage Structures 2 Number of Real Time Controls 0 Number of Online Controls 2 Number of Storage Structures 2 Number of Real Time Controls 0 Number of Online Controls 2 Number of Storage Structures 2 Number of Real Time Controls 0 Number of Online Controls 2 Number of Storage Structures 2 Number of Real Time Controls 0 Number of Online Controls 2 Number of Storage Structures 2 Number of Real Time Controls 0 Number of Online Controls 2 Number of Storage Structures 2 Number of Real Time Controls 0 Number of Pioted Risk Warning 0 Or (Winter) 0.840 Margin for Flocd Risk Warning (mm) 300.0 Analysis Timestap 2.5 Second Increment (Extended) DT3 Status 0 Dra Status 0 Frofile(s) 5, 30, 60, 120, 180, 240, 360, 480, 600, 720, 960, 1440, 2160, 2860, 4320, 5760, 7200, 8640, 10080 Return Period(s) (years) 3 Clinate Change (%) 0 S1.000 S1 15 Summer 30 +0% 112.982 S1.001 S2 15 Summer 30 +0% 112.982 S1.001 S2 15 Summer 30 +0% 112.982 S1.001 S2 15 Summer 30 +0% 112.982 S1.001 S3 15 Summer 30 +0% 112.982 S1.001 S3 15 Summer 30 +0% 112.982 S1.001 S3 15 Summer 30 +0% 112.982 S1.002 S2 15 Summer 30 +0% 112.202 S1.002 S2 15 Summer 30 +0% 112.202 S1.002 S3 720 Winter 30 +0% 112.202 S1.00	File 28	78 Та	nkandPond	мрх		hecked by				anage
Network Construction Summary of Critical Results by Maximum Level (Rank 1) for Storm Simulation Criteria Areal Reduction Factor 1.000 Additional Flow - % of Total Flow 0.000 Hot Start Level (m) 0 MDD Factor * 10m//ha Storage 2.000 Bot Start Level (m) 0 Indet Coefficcient 0.800 Number of Storage Structures 2 Number of Time/Area Diagrams 0 Number of Online Controls 2 Number of Storage Structures 2 Number of Real Time Controls 0 Switcherics Rainfall Details FEH Reinfall Version Old Starts ON Number of Flow Controls 0 Number of Time/Area Diagrams 0 Number of Storage Structures 2 Number of Time/Area Diagrams 0 Number of Online Controls 2 Number of Starage Structures 2 Number of Real Time Controls 0 Switcherics Rainfall Details Feint Old Risk Warning (mm) 300.0 Analysis Timestep 2.5 Second Increment (Extended) Distatus ON Distatus ON Distatus ON <t< td=""><td>Micro D</td><td>raina</td><td></td><td>• 110/11</td><td>N</td><td>letwork 20</td><td>20 1 3</td><td></td><td></td><td></td></t<>	Micro D	raina		• 110/11	N	letwork 20	20 1 3			
Summary of Critical Results by Maximum Level (Rank 1) for Storm Simulation Criteria Areal Reduction Factor 1.000 Additional Flow - % of Total Flow 0.000 Hot Start (mina) 0 MADD Factor * 10m*/ha Storage 2.000 Numbele Headloss Coeff (Global) 0.500 Flow per Person per Day (1/per/day) 0.000 Foal Sewage per hectare (1/s) 0.000 Number of Input Hydrographs 0 Number of Offline Controls 0 Number of Time/Area Diagrams 0 Number of Online Controls 2 Number of Storage Structures 2 Number of Real Time Controls 0 Synthetic Rainfall Details Rainfall Model FEH FER Rainfall Version Suthetic Rainfall Details FEH FER Rainfall Version Suthetic Rainfall Details Number of Storage Structures 2 Number of Real Time Controls 0 Margin for Flood Risk Warning (mm) 300.0 Analysis Timestep 2.5 Second Increment (Extended) DVS Status ON DVD Status Duration(s) (mins) 13, 30, 60, 120, 180, 240, 350, 480, 600, 720, 960, 1440, 2160, 2880, 4320, 5760, 7200, 8640, 10003 Return Period(s) (years) 30 Climate Change (%) 0 Stoom Period Change Sucharge PN Return Climate PN Return Climate Stoom Period Change 112.992 Stoom Period Change 112.992 Stoom Period Change 112.992 Stoom Period C		, La Lila	ge		1	CEWOIK 20	20.1.5			
Simulation Criteria Areal Reduction Factor 1.000 Additional Flow - % of Total Flow 0.000 Hot Start (mins) 0 MADD Factor * 10m³/ha Storage 2.000 Hot Start Level (mm) 0 Inlet Coefficient 0.800 Nanhole Meadloss Coeff (clobal) 0.500 Flow per Person per Day (l/per/day) 0.000 Foul Sewage per hectare (l/s) 0.000 Number of Input Hydrographs 0 Number of Offline Controls 0 Number of Time/Area Diagrams 0 Number of Online Controls 2 Number of Storage Structures 2 Number of Real Time Controls 0 Number of Input Hydrographs 0 Number of Storage Structures 2 Number of Real Time Controls 0 Rainfall Model FEM Rainfall Model FEH Rainfall Model FEM CV (Summer) 0.840 Site Location GB 542875 223875 TL 42875 23875 Data Type Margin for Flood Risk Warning (mm) 300.0 Analysis Timestep 2.5 Second Increment (Extended) DTS Status Duration(s) (mins) 15, 30, 60, 120, 180, 240, 360, 460, 600, 720, 960, 1440, 2160, 2860, 4320, 5760, 7200, 8640 Return Period(s) (years) 30 Climate Change (%) 0 Start Status 0 VS/MH Return Climate First (X) First (Y) First (Z) Overflow Act. PN Name Storm 90 +08 St.001 S21 is Summer St.001 S21 is Summer St.001 S21 is Summer Name 30 +08		Cumm	orra of Cri	tical	Poculto	hu Mavim	um Torrol (Pank 1) f	or Stor	'n
Simulation Criteria Areal Reduction Pactor 1.000 Additional Flow - % of Total Flow 0.000 Not Start Level (nm) 0 Nahole Headloss Coeff (Global) 0.500 Flow per Person per Day (1/per/day) 0.000 Foul Sewage per hectare (1/a) 0.000 Number of Input Hydrographs 0 Number of Online Controls 2 Number of Storage Structures 2 Number of Real Time Controls 0 Number of Online Controls 2 Number of Storage Structures 2 Number of Real Time Controls 0 Number of Online Controls 2 Number of Storage Structures 2 Number of Real Time Controls 0 Number of Storage Structures 2 Number of Storage Structures 2 Number of Real Time Controls 0 Stite Location GB 542875 223875 TL 42875 23875 Data Type 0.840 Margin for Flood Risk Warning (mm) 300.0 Analysis Timestep 2.5 Second Increment (Extended) DYS Status DUT Status ON Inertia Status OFF Frofile(s) Summer and Winter Duration(a) (mina) 15, 30, 60, 120, 180, 240, 360, 460, 600, 720, 960, 1440, 2160, 2880, 4320, 5760, 7200, 8640, 10080 Return Period Change Surcharge Flood Overflow Act. Intervial Status VS/MH Return Climate First (X) First (X) First (X) Forstow Act. Int2.966 S1.001 <td< td=""><td></td><td><u>5 unina</u></td><td>ary or cri</td><td>LICAL</td><td>Nesurus</td><td><u>Dy Maxim</u></td><td></td><td></td><td><u>OI SCOII</u></td><td><u></u></td></td<>		<u>5 unina</u>	ary or cri	LICAL	Nesurus	<u>Dy Maxim</u>			<u>OI SCOII</u>	<u></u>
Simulation Criteria Areal Reduction Factor 1.000 Additional Flow - % of Total Flow 0.000 Not Start (mins) 0 MADD Factor * 10m*/ha Storage 2.000 Manhole Headloss Coeff (dobal) 0.500 Flow per Person per Day (1/per/day) 0.000 Foul Sewage per hectare (1/s) 0.000 Number of Input Hydrographs 0 Number of Offline Controls 0 Number of Time/Area Diagrams 0 Number of Online Controls 2 Number of Storage Structures 2 Number of Time/Area Diagrams 0 Number of Online Controls 2 Number of Storage Structures 2 Number of Time/Area Diagrams 0 Number of Online Controls 2 Number of Storage Structures 2 Number of Time/Area Diagrams 0 Number of Online Controls 2 Number of Storage Structures 2 Number of Time/Area Diagrams 0 Number of Online Controls 0 Number of Storage Structures 2 Number of Time/Area Diagrams 0 Number of Online Controls 2 Number of Storage Structures 2 Number of Time/Area Diagrams 0 Number of Online Controls 0 Number of Storage Processon Per Person Per Day (1/per/day) 0.000 Stite Location GB 542875 223875 TL 42875 23875 Duration (GB Status 0) 00.800 Cv (Summer) 0.840 DVD Status 0N Inertia Status 0N Duration(s) (mins) 15, 30, 60, 120, 180, 240, 360, 480, 680, 720, 8640, 1000 Return Period(s) (years) 30 <td></td>										
Areal Reduction Factor 1.000 Additional Flow - % of Total Flow 0.000 Hot Start Level (mn) 0 Inlet Coefficient 0.800 Manbol Headloss Coeff (Global) 0.500 Flow per Person per Day (1/per/day) 0.000 Foul Sewage per hettare (1/s) 0.000 Number of Input Hydrographs 0 Number of Offline Controls 0 Number of Real Time Controls 0 Number of Online Controls 2 Number of Storage Structures 2 Number of Real Time Controls 0 Synthetic Rainfall Details Rainfall Model FEH FEH Rainfall Version 2013 Site Location GB 542875 223875 TL 42875 23875 Data Type 0.840 Cv (Burmer) 0.840 Cv (Gurmer) 0.840 Margin for Flood Risk Warning (mm) 300.0 Analysis Timestep 2.5 Second Increment (Extended) DTS Status ON Duration(s) (mins) 15, 30, 60, 120, 180, 240, 350, 480, 600, 720, 720, 8640, 10880 Return Period(s) (years) 30 Climate Change (%) 0 VS/MH Return Climate First (X) First (Y) First (Z) Overflow Keter PN Name Stommer 30 0 112.986 <t< td=""><td></td><td></td><td></td><td></td><td>Simu</td><td>lation Crit</td><td>eria</td><td></td><td></td><td></td></t<>					Simu	lation Crit	eria			
Hot Start (mins) 0 MADD Factor * 10m*/has Storage 2.000 Manhole Headloss Coeff (Global) 0.500 Flow per Person per Day (1/per/day) 0.000 Number of Input Hydrographs 0 Number of Offline Controls 0 Number of Time/Area Diagrams 0 Number of Online Controls 2 Number of Real Time Controls 0 Number of Online Controls 2 Number of Real Time Controls 0 Synthetic Rainfall Details FEH Rainfall Model FEH FEH Rainfall Version 2013 Site Location GB 542875 223875 TL 42875 23875 Data Type CV (Winter) 0.840 CV (Winter) 0.840 DTS Status ON DVD Status ON Duration(s) (mins) 15, 30, 60, 120, 180, 240, 360, 480, 600, 720, 960, 1440, 2160, 2880, 4320, 5760, 7200, 8640, 10080 Return Period(s) (years) 30 Climate Change (s) 0 VS/MH Return Climate First (X) First (Y) First (Z) Overflow Level Mane Storm Poriod Change Storm 112.992 S1.000 S1 15 Summer <t< td=""><td></td><td></td><td>Areal Redu</td><td>action F</td><td>actor 1.</td><td>000 Addit</td><td>ional Flow -</td><td>∙ % of Tota</td><td>l Flow 0.</td><td>000</td></t<>			Areal Redu	action F	actor 1.	000 Addit	ional Flow -	∙ % of Tota	l Flow 0.	000
Bot Start Level (mm) 0 Inlet Coefficient 0.800 Manhole Headloss Coeff (Gibal) 0.500 Flow per Person per Day (1/per/day) 0.000 Foul Sewage per hectare (1/s) 0.000 Number of Input Hydrographs 0 Number of Offline Controls 0 Number of Input Hydrographs 0 Number of Storage Structures 2 Number of Real Time Controls 0 Number of Online Controls 2 Number of Storage Structures 2 Number of Real Time Controls 0 Synthetic Rainfall Details Rainfall Model FEH Rainfall Version 2013 Site Location GB 542875 223875 TL 42875 23875 Data Type Point CV (Winter) 0.840 Margin for Flood Risk Warning (mm) 300.0 Analysis Timestep 2.5 Second Increment (Extended) DTS Status DVD Status OFF Profile(s) Summer and Winter Duration(s) (mins) 15, 30, 60, 120, 180, 240, 360, 480, 600, 720, 960, 1440, 2160, 2880, 4320, 5760, 7200, 8640, 10080 Return Period(s) (years) 30 Climate Change (%) 0 Status 0 VS/MH Return Climate First (X) First (Y) First (Z)			Hot	Start (mins)	0 M	ADD Factor *	10m³/ha S	torage 2.	000
Find Field Diss Cost (Gibbar) 0.000 Food Sewage per hecter (L/s) 0.000 Number of Input Hydrographs 0 Number of Offline Controls 0 Number of Time/Area Diagrams 0 Number of Online Controls 2 Number of Storage Structures 2 Number of Real Time Controls 0 Synthetic Rainfall Details Rainfall Worsion 2013 Site Location GB 542875 223875 TL 42875 23875 Data Type Point Cv (Summer) 0.840 Cv (Winter) 0.840 Margin for Flood Risk Warning (mm) 300.0 Analysis Timestep 2.5 Second Increment (Extended) DTS Status 00N Number and Winter Profile(s) Summer and Winter Duration(s) (mins) 15, 30, 60, 120, 180, 240, 360, 480, 600, 720, 960, 1440, 2160, 2880, 4320, 5760, 7200, 8640, 10080 Return Period(s) (years) 30 Climate Change (%) 0 Sincon Sin 15 Summer 30 +0% Sincon Sin 15 Summer 30 +0% Si	M	nnholo	Hot Star	t Level	(mm)	0 500 Elou po	Ir The Device De	let Coeffi	ecient 0. r/daw) 0	800
Number of Input Hydrographs 0 Number of Offline Controls 0 Number of Real Time Controls 0 Number of Online Controls 2 Number of Storage Structures 2 Number of Real Time Controls 0 Synthetic Rainfall Details FEH Rainfall Model FEH Rainfall Version 2013 Site Location GB 542875 223875 TL 42875 23875 Data Type Data Type Point CV (Summer) 0.840 CV (Summer) 0.840 Number of Flood Risk Warning (mm) 300.0 Analysis Timestep 2.5 Second Increment (Extended) DTS Status ON Duration(s) (mins) 15, 30, 60, 120, 180, 240, 360, 460, 600, 720, 8640, 10080 Return Genes Return Period(s) (years) 30 Climate Change (%) 0 S1.000 S1 15 Summer 30 112.992 S2.000 S1 15 Summer 30 112.992 S1.001 S2 15 Summer 10 112.986 S1.001 S2 15 Summer 10 112.982 S1.001 S2 15 Summer 10 112.982 S1.001 S2 15 Summer 10 112.284	INIC	Foul S	Rewage per h	ectare	(1/s) 0.	000 FIOW De	r Person per	Day (I/pe	r/uay) 0.	000
Number of Input Hydrographs 0 Number of Strage Structures 2 Number of Real Time Controls 0 Number of Online Controls 2 Synthetic Rainfall Details FEH Rainfall Model FEH FEH Rainfall Version 2013 Site Location GB 542875 223875 TL 42875 23875 Data Type Data Type Point Cv (Summer) 0.840 Margin for Flood Risk Warning (mm) 300.0 Analysis Timestep 2.5 Second Increment (Extended) DTS Status DVD Status ON Duration(s) (mins) 15, 30, 60, 120, 180, 240, 360, 480, 600, 720, 960, 1440, 2160, 2880, 4320, 5760, 7200, 8640, 10080 Return Period(s) (years) 30 Climate Change (%) 0 VS/MH Return Climate First (X) First (Y) First (Z) Overflow Act. PN Name Storm Period Change Surcharge Flood Overflow Act. S1.000 S1 15 Summer 30 +0% 112.992 S2.000 S1 15 Summer 30 +0% 112.957 S3.001 S2 15 Summer 30 +0% 112.956 S1.000 S1 15 Summer 30 +0% 112.922		2002 0	ionago por i		(1,0) 0.	000				
Number of Online Controls 2 Number of Storage Structures 2 Number of Real Time Controls 0 Synthetic Rainfall Details Rainfall Model FEH FEH Rainfall Version FEH 2013 Site Location GB 542875 223875 TL 42875 23875 Data Type Point Cv (Summer) 0.840 Margin for Flood Risk Warning (mm) 300.0 Analysis Timestep 2.5 Second Increment (Extended) DTS Status ON Nov Status Profile(s) Summer and Winter ON Duration(s) (mins) 15, 30, 60, 120, 180, 240, 360, 480, 600, 720, 960, 1440, 2160, 2880, 4320, 5760, 7200, 8640, 10080 Water Profile(s) Summer and Winter 30 Climate Change (%) 0 0 VS/MH Return Climate First (X) First (Z) Vereflow FN Name 30 0 112.992 S1.000 S1 15 Summer 30 +0% 112.992 S2.000 S1a 15 Summer 30 +0% 112.925 S3.001 S2a 15 Summer 30 +0% 112.421 S4.001 S1a 15 Summer 30 +0% 112.421 S3.002 S2a 15 Summer 30	Number o	of Inpu	it Hydrograp	ohs O	Number o	f Offline C	ontrols 0 Nu	umber of Ti	me/Area [iagrams O
Synthetic Rainfall Details FEH Rainfall Model FEH FEH Rainfall Version 2013 Site Location GB 542875 223875 TL 42875 23875 Data Type Data Type Point CV (Summer) 0.840 Margin for Flood Risk Warning (mm) 300.0 Analysis Timestep 2.5 Second Increment (Extended) DTS Status DVD Status ON DVD Status ON Duration(s) (mins) 15, 30, 60, 120, 180, 240, 360, 480, 600, 720, 960, 1440, 2160, 2880, 4320, 5760, 7200, 8640, 10080 Return Period(s) (years) 30 Climate Change (%) 0 VS/MH Return Climate First (X) PN Name Storm S1.000 S1 15 Summer S2.000 S1 15 Summer 30 S1.000 S2 15 Summer 112.992 S2.000 S1 15 Summer 112.896 S1.001 S2 15 Summer 112.421 S3.001 S2b 15 Summer 10 S3.001 S2b </td <td>Number</td> <td>c of Or</td> <td>line Contro</td> <td>ols 2 Nu</td> <td>mber of</td> <td>Storage Str</td> <td>uctures 2 Nu</td> <td>umber of Re</td> <td>al Time C</td> <td>Controls 0</td>	Number	c of Or	line Contro	ols 2 Nu	mber of	Storage Str	uctures 2 Nu	umber of Re	al Time C	Controls 0
Rainfall Model FEH Rainfall Version 2013 Site Location GB 542875 223875 TL 42875 23875 Data Type Data Type Point CV (Summer) 0.840 Margin for Flood Risk Warning (mm) 300.0 Analysis Timestep 2.5 Second Increment (Extended) DTS Status DVD Status ON DVD Status ON Duration(s) (mins) 15, 30, 60, 120, 180, 240, 360, 480, 600, 720, 960, 1440, 2160, 2880, 4320, 5760, 7200, 8640, 10080 Return Period(s) (years) 30 Climate Change (%) 0 VS/MH Return Climate First (X) First (X) First (X) First (Z) S1.000 S1 15 Summer 30 S1.000 S1 15 Summer 30 S1.001 S21 15 Summer 112.992 S2.000 S1a 15 Summer 30 S3.001 S2a 15 Summer 112.757 S3.001 S2b 15 Summer 30 S3.001 S2b 104% 112.261					Synthet	ic Rainfall	Details			
FEH Rainfall Version 2013 Site Location GB 542875 223875 TL 42875 23875 Data Type Point Cv (Summer) 0.840 Cv (Winter) 0.840 Margin for Flood Risk Warning (mm) 300.0 Analysis Timestep 2.5 Second Increment (Extended) DTS Status DVD Status ON DVD Status ON Duration(s) (mins) 15, 30, 60, 120, 180, 240, 360, 480, 600, 720, 960, 1440, 2160, 2880, 4320, 5760, 7200, 8640, 10080 Return Period(s) (years) 30 Climate Change (%) 0 VS/MH Return Climate First (X) First (Y) First (Z) Overflow Ketr VS/MH Return Climate First (X) First (Y) First (Z) Overflow Mater VS/MH Return Climate First (X) First (Y) First (Z) Overflow Mater S1.000 S1 15 Summer 30 112.992 112.992 S2.000 S1 15 Summer 30 112.992 112.996 S1.001 S2 15 Summer 30 112.923 112.923 S3.001 S2 15 Summer 30 112.923 112.92				Rainfal	l Model		Decails	FEH		
Site Location GB 542875 223875 TL 42875 23875 Data Type Point Cv (Summer) O.840 Margin for Flood Risk Warning (mm) 300.0 Analysis Timestep 2.5 Second Increment (Extended) DTS Status ON DUS Status ON Duration(s) (mins) 15, 30, 60, 120, 180, 240, 360, 480, 600, 720, 960, 1440, 2160, 2880, 4320, 5760, 7200, 8640, 10080 Return Period(s) (years) 30 Climate Change (%) 0 VS/MH Return Climate First (X) First (Y) First (Z) Overflow Act (m) S1.000 S1 S1 15 Summer 30 +0% S1.001 S2 S2 15 Summer 30 +0% S3.001 S2b S2b 15 Summer 30 +0% S3.001 S2b S2b 15 Summer S40 +0% S3.001 S2b S2b 15 Summer S40 +0% S3.001 S2b S2b 15 Summer S40 +0% S3.001 S2b			FEH R	ainfall	Version			2013		
Data Type Point Cv (Summer) 0.840 Aralysis Timestep 2.5 Second Increment (Extended) 0.840 DTS Status ON DD Status ON Duration(s) (mins) 15, 30, 60, 120, 180, 240, 360, 480, 600, 720, 960, 1440, 2160, 2880, 4320, 5760, 7200, 8640, 10080 Return Period(s) (years) 30 Climate Change (%) 0 VIS/MH Return Climate First (X) First (Y) First (Z) Overflow Keturn Period (s) (years) 30 Climate Change (%) 112.992 S1.000 S1 15 Summer 30 S1.001 S2 15 Summer 30 S3.001 S2 15 Summer 112.286 S4.001 S3b 15 Summer 30 S3.001 S2 15 Summer 112.2261 S4.001 S3b 15 Summer 112.2262 S4.002 S22 S2 S2 <t< td=""><td></td><td></td><td></td><td>Site I</td><td>Location</td><td>GB 542875 2</td><td>223875 TL 42</td><td>875 23875</td><td></td><td></td></t<>				Site I	Location	GB 542875 2	223875 TL 42	875 23875		
Cv (Summer) 0.840 Cv (Winter) 0.840 Margin for Flood Risk Warning (mm) 300.0 Analysis Timestep 2.5 Second Increment (Extended) DTS Status DTS Status ON DVD Status ON DVD Status ON Duration(s) (mins) 15, 30, 60, 120, 180, 240, 360, 480, 600, 720, 960, 1440, 2160, 2880, 4320, 5760, 7200, 8640, 10080 Return Period(s) (years) 30 Climate Change (%) 0 VS/MH Return Climate PN Name Storm Period Change Surcharge Flood Overflow Act. (m) S1.000 S1 S1 Summer 30 +0% S3.001 S2b S2 Summer 30 +0% S3.001 S2b S3 15 S1.00 S3a S2 Summer S3 15 S3.001 S2b <td< td=""><td></td><td></td><td></td><td>Da</td><td>ata Type</td><td></td><td></td><td>Point</td><td></td><td></td></td<>				Da	ata Type			Point		
Margin for Flood Risk Warning (mm) 300.0 Analysis Timestep 2.5 Second Increment (Extended) DTS Status ON DVD Status ON Inertia Status OFF Profile(s) Summer and Winter Duration(s) (mins) 15, 30, 60, 120, 180, 240, 360, 480, 600, 720, 960, 1440, 2160, 2880, 4320, 5760, 7200, 8640, 10080 Return Period(s) (years) 30 Climate Change (%) 0 VS/MH Return Climate FN Name Storm S1.000 S1 15 S1.001 S1 15 S2.000 S1a 15 S3.001 S2a 15 S3.001 S2a 15 S3.001 S2a 15 S3.001 S2a 15 S4.001 S3a 15 S3.002 S2c 15 S4.001 S3a 15 S3.002 S2c 15 S3.003 S2a 15 S4.004 S3a 15 S5.000 S9 15 S5.000 S9 <td></td> <td></td> <td></td> <td>Cv</td> <td>(Summer)</td> <td></td> <td></td> <td>0.840</td> <td></td> <td></td>				Cv	(Summer)			0.840		
Margin for Flood Risk Warning (mm) 300.0 Analysis Timestep 2.5 Second Increment (Extended) DTS Status ON DVD Status ON Inertia Status OFF Profile(s) Summer and Winter Duration(s) (mins) 15, 30, 60, 120, 180, 240, 360, 480, 600, 720, 960, 1440, 2160, 2880, 4320, 5760, 7200, 8640, 10080 Return Period(s) (years) 30 Climate Change (%) 0 VS/MH Return Climate First (X) First (X) First (Z) Overflow Level 0 0 S1.000 S1 15 Summer 30 S1.001 S2 15 Summer 112.992 S2.000 S1a 15 Summer 112.992 S3.001 S2 15 Summer 112.826 S4.000 S3a 15 Summer 112.226 S4.001 S3b 15 112.220 S1.002 S3 720 10% 112.220 S1.001 S2 15 Summer 112.220 S3.001 S2b 15 11				CV	(WINCEL)			0.040		
Analysis Timestep 2.5 Second Increment (Extended) DTS Status ON DVD Status ON Inertia Status OFF Profile(s) Summer and Winter Duration(s) (mins) 15, 30, 60, 120, 180, 240, 360, 480, 600, 720, 960, 1440, 2160, 2880, 4320, 5760, 7200, 8640, 10080 Return Period(s) (years) 30 Climate Change (%) 0 Name Storm Period Change First (X) First (Y) First (Z) Overflow Level PN Name Storm Period Change Surcharge Flood Overflow Act. S1.000 S1 15 Summer 30 +0% 112.992 112.992 S2.000 S1a 15 Summer 30 +0% 112.992 S1.001 S2 15 Summer 30 +0% 112.202 S1.001 S2 15 Summer 30 +0% 112.226 S4.001 S3b 15 Summer 30 +0% 112.226 S4.000 S3a 15 Summer 30 +0% 112.202 S1.002 S3 720 Winter 30 +0% 111.202 S5.000 S9 15		М	argin for F	lood Ris	sk Warnin	ng (mm)			300.0	
DTS Status ON DVD Status ON Inertia Status OFF Profile(s) Summer and Winter Duration(s) (mins) 15, 30, 60, 120, 180, 240, 360, 480, 600, 720, 960, 1440, 2160, 2880, 4320, 5760, 7200, 8640, 10080 Return Period(s) (years) 30 Climate Change (%) 0 Water Water US/MH Return Climate First (X) First (Y) First (Z) Overflow Water Inc. 0 112.992 112.992 112.992 S1.000 S1 15 Summer 30 112.996 112.996 S1.001 S2 15 Summer 30 112.757 113.008 S3.001 S2a 15 Summer 30 112.826 112.926 S4.000 S3a 15 Summer 30 112.421 12.421 S4.001 S3a 15 Summer 30 112.202 112.202 S1.002 S3 720 Winter 30 +0% 112.202 S1.002 S3 720 Winter 30 +0% 112.202 S1.002 S3 720 Winter <td></td> <td></td> <td></td> <td>Ana</td> <td>alysis T</td> <td>imestep 2.5</td> <td>Second Incr</td> <td>ement (Exte</td> <td>ended)</td> <td></td>				Ana	alysis T	imestep 2.5	Second Incr	ement (Exte	ended)	
DVD Status ON Inertia Status OFF Profile(s) Summer and Winter Duration(s) (mins) 15, 30, 60, 120, 180, 240, 360, 480, 600, 720, 960, 1440, 2160, 2880, 4320, 5760, 7200, 8640, 10080 Return Period(s) (years) 30 Climate Change (%) 0 Water Water US/MH Return Climate First (X) First (Y) Name Storm Period Change S1.000 S1 S1 Summer 30 +0% S1.001 S2 S2 15 S3 15 S1 52 S3.001 S2a S2a 15 S3 10					DTS	Status			ON	
Profile (s) Summer and Winter Duration (s) (mins) 15, 30, 60, 120, 180, 240, 360, 480, 600, 720, 960, 1440, 2160, 2880, 4320, 5760, 7200, 8640, 10080 Return Period (s) (years) 30 Climate Change (%) 0 Water Water US/MH Return Climate First (X) First (Y) First (Z) Overflow PN Name Storm Period Change Surcharge Flood Overflow Act. (m) \$1.000 \$1 15 Summer 30 +0% 112.992 \$2.000 \$1a 15 Summer 30 +0% 112.996 \$1.001 \$2 15 Summer 30 +0% 112.986 \$3.001 \$2b 15 Summer 30 +0% 112.826 \$4.000 \$3a 15 Summer 30 +0% 112.264 \$3.002 \$2c 15 Summer 30 +0% 112.202 \$4.001 \$3b 15 \$30 +0% 112.202 \$3.002 \$2c 15					DVD	Status			OFF	
Profile(s) Summer and Winter Duration(s) (mins) 15, 30, 60, 120, 180, 240, 360, 480, 600, 720, 960, 1440, 2160, 2880, 4320, 5760, 7200, 8640, 10080 Return Period(s) (years) 30 Climate Change (%) 0 Water Water US/MH Return Climate First (X) First (Y) First (Z) Overflow Act. FN Name Storm Period Change Surcharge Flood Overflow Act. (m) \$1.000 \$1 15 Summer 30 +0% +112.992 \$2.000 \$1a 15 Summer 30 +0% +112.986 \$1.001 \$2 15 Summer 30 +0% +112.986 \$3.001 \$2a 15 Summer 30 +0% +112.826 \$4.000 \$3a 15 Summer 30 +0% +112.264 \$3.002 \$2c 15 Summer 30 +0% +112.264 \$3.002 \$2c 15 Summer 30 +0% +112.202 \$3.002 \$2c					INCLUIA	Status			OFF	
Profile(s) Summer and Winter Duration(s) (mins) 15, 30, 60, 120, 180, 240, 360, 480, 600, 720, 960, 1440, 2160, 2880, 4320, 5760, 7200, 8640, 10080 Return Period(s) (years) 30 Climate Change (%) 0 Water Water US/MH Return Climate First (X) First (Y) First (Z) Overflow Act. Mater FN Name Storm Period Change Surcharge Flood Overflow Act. (m) \$1.000 \$1 15 Summer 30 +0% 112.992 \$2.000 \$1a 15 Summer 30 +0% 112.992 \$2.000 \$1a 15 Summer 30 +0% 112.992 \$2.000 \$1a 15 Summer 30 +0% 112.992 \$3.001 \$2a 15 Summer 30 +0% 112.826 \$4.000 \$3a 15 Summer 30 +0% 112.202 \$3.002 \$2c 15 Summer 30 +0%										
Duration(s) (mins) 15, 30, 60, 120, 180, 240, 360, 460, 600, 720, 8640, 10080 720, 960, 1440, 2160, 2880, 4320, 5760, 7200, 8640, 10080 Return Period(s) (years) 30 Climate Change (%) 0 Water Water US/MH Return Climate First (X) First (Y) First (Z) Overflow Level PN Name Storm Period Change Surcharge Flood Overflow Act. (m) \$1.000 S1 15 Summer 30 +0% 112.992 \$2.000 S1a 15 Summer 30 +0% 112.992 \$2.000 S1a 15 Summer 30 +0% 112.992 \$3.001 S2 15 Summer 30 +0% 112.2757 \$3.001 S2b 15 Summer 30 +0% 112.826 \$4.001 S3b 15 Summer 30 +0% 112.202 \$3.002 S2c 15 Summer 30 +0% 112.202 \$5.000 S9 15 Summe			I	Profile(s)	15 20 60	100 100 0	Summer and	d Winter	
Name Storn Period Change Surcharge First (Y) First (Z) Overflow Level PN Name Storn Period Change Surcharge Flood Overflow Act. (m) \$1.000 S1 15 Summer 30 +0% 112.992 \$2.000 S1 15 Summer 30 +0% 112.992 \$2.000 S1a 15 Summer 30 +0% 112.992 \$2.000 S1a 15 Summer 30 +0% 112.992 \$3.001 S2 15 Summer 30 +0% 112.256 \$4.000 S3a 15 Summer 30 +0% 112.264 \$3.002 S2c 15 Summer 30 +0% 112.202 \$1.002 S3 720 Winter 30 +0% 111.839 \$5.000 S9 15 Summer 30 +0% 111.688			Duration	(S) (min	s) 720.	15, 30, 60, 960, 1440,	2160, 2880, 2	40, 360, 4	30, 600, 0. 7200.	
Return Period(s) (years) Climate Change (%) 30 0 US/MH Return Climate First (X) First (Y) First (Z) Overflow Mater PN Name Storm Period Change Surcharge Flood Overflow Act. Mater S1.000 S1 15 Summer 30 +0% 112.992 112.992 S2.000 S1a 15 Summer 30 +0% 112.992 S2.000 S1a 15 Summer 30 +0% 112.992 S2.000 S1a 15 Summer 30 +0% 112.992 S3.001 S22 15 Summer 30 +0% 112.264 S4.001 S3a 15 Summer 30 +0% 112.264 S3.002 S2c 15 Summer 30 +0% 112.202 S1.002 S3 720 Winter 30 +0% 111.688					, 20,	500, 2110,	2200, 2000,	864	0, 10080	
Climate Change (%) 0 US/MH Return Climate First (X) First (Z) Overflow PN Name Storm Period Change Surcharge Flood Overflow Act. Mater S1.000 S1 15 Summer 30 +0% 112.992 112.992 S2.000 S1a 15 Summer 30 +0% 112.992 S2.000 S1a 15 Summer 30 +0% 112.986 S1.001 S2 15 Summer 30 +0% 112.086 S3.000 S2a 15 Summer 30 +0% 112.826 S4.000 S3a 15 Summer 30 +0% 112.264 S3.002 S2c 15 Summer 30 +0% 112.202 S1.002 S3 720 Winter 30 +0% 111.688 (©1982-2020 Innovyze		Reti	urn Period(s	s) (year	s)				30	
US/MH Return Climate First (X) First (Y) First (Z) Overflow Mater PN Name Storm Period Change Surcharge Flood Overflow Act. (m) \$1.000 \$1 15 Summer 30 +0% 112.992 \$2.000 \$1a 15 Summer 30 +0% 112.986 \$1.001 \$2 15 Summer 30 +0% 112.757 \$3.000 \$2a 15 Summer 30 +0% 112.826 \$4.000 \$3a 15 Summer 30 +0% 112.264 \$4.001 \$3b 15 Summer 30 +0% 112.202 \$1.002 \$3 720 Winter 30 +0% 111.839 \$5.000 \$9 15 Summer 30 +0% 111.688			Climate (Change (응)				0	
US/MH PN Return Climate Storm First (X) Period First (Y) Surcharge First (Z) Flood Overflow Act. Water Level (m) \$1.000 \$1 15 Summer 30 +0% 112.992 \$2.000 \$1a 15 Summer 30 +0% 112.992 \$2.000 \$1a 15 Summer 30 +0% 112.986 \$1.001 \$2 15 Summer 30 +0% 112.757 \$3.000 \$2a 15 Summer 30 +0% 112.826 \$4.000 \$3a 15 Summer 30 +0% 112.2421 \$4.001 \$3b 15 Summer 30 +0% 112.264 \$3.002 \$2c 15 Summer 30 +0% 112.202 \$1.002 \$3 720 Winter 30 +0% 111.688 U U U U U U U										
US/MH Return Climate First (X) First (Y) First (Z) Overflow Level PN Name Storm Period Change Surcharge Flood Overflow Act. (m) \$1.000 \$1 15 Summer 30 +0% 112.992 \$2.000 \$1a 15 Summer 30 +0% 112.986 \$1.001 \$2 15 Summer 30 +0% 112.757 \$3.000 \$2a 15 Summer 30 +0% 112.826 \$4.000 \$3a 15 Summer 30 +0% 112.2421 \$4.001 \$3b 15 Summer 30 +0% 112.202 \$1.002 \$3 720 Winter 30 +0% 111.839 \$5.000 \$9 15 Summer 30 +0% 111.688										Water
PN Name Storm Period Change Surcharge Flood Overflow Act. (m) \$1.000 \$1 15 Summer 30 +0% 112.992 \$2.000 \$1a 15 Summer 30 +0% 112.986 \$1.001 \$2 15 Summer 30 +0% 112.757 \$3.000 \$2a 15 Summer 30 +0% 113.008 \$3.001 \$2b 15 Summer 30 +0% 112.826 \$4.000 \$3a 15 Summer 30 +0% 112.421 \$4.001 \$3b 15 Summer 30 +0% 112.202 \$1.002 \$3 720 Winter 30 +0% 111.839 \$5.000 \$9 15 Summer 30 +0% 111.688		US/MH		Return	Climate	First (X)	First (Y)	First (Z)	Overflow	Level
\$1.000 \$1 15 Summer 30 +0% 112.992 \$2.000 \$1a 15 Summer 30 +0% 112.986 \$1.001 \$2 15 Summer 30 +0% 112.757 \$3.000 \$2a 15 Summer 30 +0% 113.008 \$3.001 \$2b 15 Summer 30 +0% 112.826 \$4.000 \$3a 15 Summer 30 +0% 112.421 \$4.001 \$3b 15 Summer 30 +0% 112.264 \$3.002 \$2c 15 Summer 30 +0% 112.202 \$1.002 \$3 720 Winter 30 +0% 111.839 \$5.000 \$9 15 Summer 30 +0% 111.688	PN	Name	Storm	Period	Change	Surcharge	Flood	Overflow	Act.	(m)
S1.000 S1 15 Summer 30 +0% 112.992 S2.000 S1a 15 Summer 30 +0% 112.986 S1.001 S2 15 Summer 30 +0% 112.757 S3.000 S2a 15 Summer 30 +0% 113.008 S3.001 S2b 15 Summer 30 +0% 112.826 S4.000 S3a 15 Summer 30 +0% 112.2421 S4.001 S3b 15 Summer 30 +0% 112.264 S3.002 S2c 15 Summer 30 +0% 112.202 S1.002 S3 720 Winter 30 +0% 111.839 S5.000 S9 15 Summer 30 +0% 111.688 (©1982-2020 Innovyze	g1 000	01	15 9	20	100					112 002
s1.001 s2 15 summer 30 +0% 112.757 s3.000 s2a 15 summer 30 +0% 113.008 s3.001 s2b 15 summer 30 +0% 112.826 s4.000 s3a 15 summer 30 +0% 112.421 s4.001 s3b 15 summer 30 +0% 112.264 s3.002 s2c 15 summer 30 +0% 112.202 s1.002 s3 720 Winter 30 +0% 111.839 s5.000 s9 15 summer 30 +0% 111.688	S1.000	SI Sla	15 Summer	30	+0%					112.986
\$3.000 \$2a 15 Summer 30 +0% 113.008 \$3.001 \$2b 15 Summer 30 +0% 112.826 \$4.000 \$3a 15 Summer 30 +0% 112.421 \$4.001 \$3b 15 Summer 30 +0% 112.264 \$3.002 \$2c 15 Summer 30 +0% 112.202 \$1.002 \$3 720 Winter 30 +0% 111.839 \$5.000 \$9 15 Summer 30 +0% 111.688	s1.001	s2	15 Summer	30	+0%					112.757
\$3.001 \$2b 15 Summer 30 +0% 112.826 \$4.000 \$3a 15 Summer 30 +0% 112.421 \$4.001 \$3b 15 Summer 30 +0% 112.264 \$3.002 \$2c 15 Summer 30 +0% 112.202 \$1.002 \$3 720 Winter 30 +0% 30/15 Summer \$5.000 \$9 15 Summer 30 +0% 111.688 ©1982-2020 Innovyze	s3.000	S2a	15 Summer	30	+0%					113.008
\$4.000 \$3a 15 Summer 30 +0% 112.421 \$4.001 \$3b 15 Summer 30 +0% 112.264 \$3.002 \$2c 15 Summer 30 +0% 112.202 \$1.002 \$3 720 Winter 30 +0% 30/15 Summer \$5.000 \$9 15 Summer 30 +0% 111.688 ©1982-2020 Innovyze	S3.001	S2b	15 Summer	30	+0%					112.826
\$4.001 \$35 15 Summer 30 +0% 112.202 \$3.002 \$2c 15 Summer 30 +0% 112.202 \$1.002 \$3 720 Winter 30 +0% 111.839 \$5.000 \$9 15 Summer 30 +0% 111.688 ©1982-2020 Innovyze	S4.000	S3a	15 Summer	30	+0%					112.421
S1.002 S3 720 Winter 30 +0% 30/15 Summer 111.839 S5.000 S9 15 Summer 30 +0% ©1982-2020 Innovyze	S4.001	53D 520	15 Summer	30 30	+U% +N%					112.204
\$5.000 \$9 15 \$\$ 111.688 ©1982-2020 Innovyze	s1.002	S3	720 Winter	30	+0%	30/15 Summe	er			111.839
©1982-2020 Innovyze	S5.000	S9	15 Summer	30	+0%					111.688
©1982-2020 Innovyze										
					©1982	-2020 Inn	ovyze			

RAB Consultants Ltd		Page 2
Cathedral House		
Beacon Street		
Lichfield WS13 7AA		Micro
Date 04/04/2023 09:38	Designed by Micro Drainage	
File 2878_TankandPond.MDX	Checked by	Diamacje
Micro Drainage	Network 2020.1.3	

PN	US/MH Name	Surcharged Depth (m)	Flooded Volume (m³)	Flow / Cap.	Overflow (1/s)	Half Drain Time (mins)	Pipe Flow (l/s)	Status	Level Exceeded
S1.000	S1	-0.083	0.000	0.70			28.1	OK	
S2.000	S1a	-0.089	0.000	0.65			24.6	OK	
S1.001	S2	-0.085	0.000	0.68			77.7	OK	
S3.000	S2a	-0.117	0.000	0.45			14.1	FLOOD RISK	
S3.001	S2b	-0.124	0.000	0.40			27.9	OK	
S4.000	S3a	-0.149	0.000	0.24			7.9	OK	
S4.001	S3b	-0.086	0.000	0.68			20.0	FLOOD RISK	
S3.002	S2c	-0.098	0.000	0.59			62.8	FLOOD RISK	
S1.002	S3	0.273	0.000	0.06		1925	0.9	SURCHARGED	
S5.000	S9	-0.062	0.000	0.64			12.8	FLOOD RISK	

RAB Consultants Ltd		Page 3
Cathedral House		
Beacon Street		
Lichfield WS13 7AA		Micro
Date 04/04/2023 09:38	Designed by Micro Drainage	
File 2878_TankandPond.MDX	Checked by	Diamage
Micro Drainage	Network 2020.1.3	1

PN	US/MH Name	s	torm	Return Period	Climate Change	First (X) Surcharge	First (Y) Flood	First (Z) Overflow	Overflow Act.	Water Level (m)
S6.000	S8	15	Summer	30	+0%					111.682
S5.001	S10	15	Summer	30	+0%					110.894
S5.002	S11	180	Summer	30	+0%	30/15 Summer				110.692

PN	US/MH Name	Surcharged Depth (m)	Flooded Volume (m³)	Flow / Cap.	Overflow (1/s)	Half Drain Time (mins)	Pipe Flow (l/s)	Status	Level Exceeded
S6.000	S8	-0.078	0.000	0.46			9.4	FLOOD RISK	
S5.001	S10	-0.076	0.000	0.49			22.2	OK	
S5.002	S11	0.242	0.000	0.04			1.0	SURCHARGED	

RAB Con	sulta	nts Ltd						Pa	ge 1
Cathedr	al Ho	use							
Beacon	Stree	t							
Lichfie	ld W	S13 7AA						N	licco
Date 04	/04/2	023 09:40		I	Designed by	y Micro Dr	ainage		
File 28	78_Ta	nkandPond.	MDX	(Checked by				lalliage
Micro D	raina	ge		1	Network 202	20.1.3		I	
	Summa	ary of Cri	tical	Results	s by Maximu	um Level (Rank 1) f	<u>or Stor</u>	m
				Cim	lation Crite				
		Areal Redu	ction Fa	actor 1.	.000 Addit:	<u>=114</u> ional Flow -	% of Tota	l Flow O	.000
		Hot	Start (r	mins)	0 MA	ADD Factor *	10m³/ha St	torage 2	.000
		Hot Star	t Level	(mm)	0	In	let Coeffie	ecient 0	.800
Ma	FOUL C	Headloss Co Sewage per h	eII (Glo ectare	.0 (isac) 0 (is/[)	.500 F.Tom bei .000	r Person per	uay (1/pei	r/day) O	.000
	LOUL C	.c.age per 1		(1) (1)					
Number o	of Inpu	t Hydrograp	hs 0 1	Number o	of Offline Co	ontrols 0 Nu	umber of Tin	me/Area	Diagrams O
Number	c of On	line Contro	⊥s 2 Nui	mber of	Storage Stru	actures 2 Nu	umber of Rea	al Time	Controls 0
				Synthet	ic Rainfall	<u>Details</u>			
			Rainfal	l Model			FEH		
		FEH R	ainfall	Version	CD 542075 2	22075 mt 42	2013		
			Da	ita Tvpe	GB 342073 2	230/3 11 42	Point		
			Cv ((Summer)			0.840		
			Cv (Winter)			0.840		
	м	argin for F	lood Ris	k Warni	ng (mm)			300 0	
	11	argin ior i	Ana	lysis T	imestep 2.5	Second Incr	ement (Exte	ended)	
				DTS	Status			ON	
				DVD	Status			ON	
				Inertia	Status			OFF	
							_		
		Duration	rofile((s) (min	S) S)	15 30 60	120 180 2	AU 360 48	d Winter	
		Duración	(3) (11111	720 ,	960, 1440,	2160, 2880,	4320, 5760), 7200,	
							8640), 10080	
	Reti	arn Period(s	s) (year Shango (s) %)				2	
			liange (~)				0	
	пе /ми		Poturn	Climato	First (V)	First (V)	First (7)	Overflor	Water
PN	Name	Storm	Period	Change	Surcharge	Flood	Overflow	Act.	(m)
	-			-					
S1.000	S1	15 Summer	2	+0% +0%					112.936 112 933
s1.001	Sia S2	15 Summer	2	+0%					112.698
S3.000	S2a	15 Summer	2	+0%					112.969
S3.001	S2b	15 Summer	2	+0%					112.784
S4.000	S3a sar	15 Summer	2	+0% +0%					112.394 112 203
s3.002	S2c	15 Summer	2	+0%					112.146
S1.002	S3	720 Winter	2	+0%	2/120 Summe	r			111.631
S5.000	S9	15 Summer	2	+0%					111.654
				©1921	2-2020 Inno				
				©1 702		, y 2 C			

RAB Consultants Ltd		Page 2
Cathedral House		
Beacon Street		
Lichfield WS13 7AA		Micro
Date 04/04/2023 09:40	Designed by Micro Drainage	
File 2878_TankandPond.MDX	Checked by	Diamage
Micro Drainage	Network 2020.1.3	

PN	US/MH Name	Surcharged Depth (m)	Flooded Volume (m³)	Flow / Cap.	Overflow (l/s)	Half Drain Time (mins)	Pipe Flow (l/s)	Status	Level Exceeded
S1.000	S1	-0.139	0.000	0.31			12.2	OK	
S2.000	S1a	-0.142	0.000	0.28			10.7	OK	
S1.001	S2	-0.144	0.000	0.28			31.8	OK	
S3.000	S2a	-0.156	0.000	0.19			6.1	FLOOD RISK	
S3.001	S2b	-0.166	0.000	0.16			10.9	OK	
S4.000	S3a	-0.176	0.000	0.10			3.4	OK	
S4.001	S3b	-0.147	0.000	0.26			7.6	OK	
S3.002	S2c	-0.154	0.000	0.22			23.6	OK	
S1.002	S3	0.065	0.000	0.06		942	0.9	SURCHARGED	
S5.000	S9	-0.096	0.000	0.28			5.6	FLOOD RISK	

RAB Consultants Ltd		Page 3
Cathedral House		
Beacon Street		
Lichfield WS13 7AA		Micro
Date 04/04/2023 09:40	Designed by Micro Drainage	
File 2878_TankandPond.MDX	Checked by	Diamage
Micro Drainage	Network 2020.1.3	I

PN	US/MH Name	s	torm	Return Period	Climate Change	First (X) Surcharge	First (Y) Flood	First (Z) Overflow	Overflow Act.	Water Level (m)
S6.000	S8	15	Summer	2	+0%					111.656
S5.001	S10	15	Summer	2	+0%					110.867
S5.002	S11	180	Summer	2	+0%	2/120 Summer				110.484

PN	US/MH Name	Surcharged Depth (m)	Flooded Volume (m³)	Flow / Cap.	Overflow (1/s)	Half Drain Time (mins)	Pipe Flow (l/s)	Status	Level Exceeded
S6.000	S8	-0.104	0.000	0.20			4.1	OK	
S5.001	S10	-0.103	0.000	0.21			9.6	OK	
S5.002	S11	0.034	0.000	0.04			1.0	SURCHARGED	

RAB Consultants Ltd		Page 1
Cathedral House		
Beacon Street		
Lichfield WS13 7AA		Micro
Date 04/04/2023 09:43	Designed by Micro Drainage	
File 2878_URBANCREEP.MDX	Checked by	Diamage
Micro Drainage	Network 2020.1.3	_1

		<u>Are</u>	a Su	mmary for	Storm	
Pipe	PIMP	PIMP	PIMP	Gross	Imp.	Pipe Total
Number	Туре	Name	(%)	Area (ha)	Area (ha)	(ha)
1.000	-	-	100	0.076	0.076	0.076
2.000	-	-	100	0.077	0.077	0.077
1.001	-	-	100	0.077	0.077	0.077
3.000	-	-	100	0.049	0.049	0.049
3.001	-	-	100	0.047	0.047	0.047
4.000	-	-	100	0.033	0.033	0.033
4.001	-	-	100	0.032	0.032	0.032
3.002	-	-	100	0.039	0.039	0.039
1.002	-	-	100	0.073	0.073	0.073
5.000	-	-	100	0.034	0.034	0.034
6.000	-	-	100	0.025	0.025	0.025
5.001	-	-	100	0.000	0.000	0.000
5.002	-	-	100	0.000	0.000	0.000
				Total	Total	Total
				0.562	0.562	0.562

RAB Consultants Ltd				Page 2				
Cathedral House								
Beacon Street								
Lichfield WS13 7AA				Micco				
Date 04/04/2023 09.43	Г	Designed by Mic	ro Drainage					
	LIO DIAINAGE	Drainage						
FILE 2878_ORBANCREEP.MDA			2					
MICLO DIALMAYE NETWORK 2020.1.3								
Summary of Critica	al Results	s by Maximum Le	evel (Rank 1)) for Storm				
	Simu	lation Criteria						
Areal Reduction	n Factor 1.	.000 Additional	$F \perp OW = \% OI T $	otal Flow 0.000				
Hot Start Ley	vel (mm)	0	Inlet Coe	ffiecient 0.800				
Manhole Headloss Coeff	(Global) 0.	.500 Flow per Per	son per Day (1	/per/day) 0.000				
Foul Sewage per hecta:	re (l/s) 0.	.000						
Number of Input Hydrographs 0 Number of Online Controls 2	Number o Number of	of Offline Contro Storage Structure	ls 0 Number of es 2 Number of	Time/Area Diagrams 0 Real Time Controls 0				
	Synthet:	ic Rainfall Detai	<u>.ls</u>					
Rair	nfall Model		FE	CH C				
FEH Rainfa	all Version	CD 542975 223975	201 12975 2397	.3				
510	Data Type	GB 342073 223073	Poin	nt.				
C	Cv (Summer)		0.84	10				
C	Cv (Winter)		0.84	10				
Margin for Flood	Risk Warnin Analysis T DTS DVD Inertia	ng (mm) imestep 2.5 Secor Status Status Status	nd Increment (E	300.0 Extended) ON OFF OFF				
Profi Duration(s) (le(s) mins) 720,	15, 30, 60, 120, 960, 1440, 2160	Summer 180, 240, 360 , 2880, 4320, 3	and Winter , 480, 600, 5760, 7200, 8640, 10080				
Climate Chang	e (%)			40				
	turn Climat	to First (Y)	First (V)	First (7) Overflow				
PN Name Storm Pe	eriod Chang	ge Surcharge	Flood	Overflow Act.				
21.000 21.15.5	100	00 100/15 5						
S1.000 S1 15 Summer	100 +40	0% 100/15 Summer	100/15 Summer					
S1.001 S2 15 Summer	100 +40	0% 100/15 Summer	100/10 Summer					
S3.000 S2a 15 Summer	100 +40	0%						
S3.001 S2b 15 Summer	100 +40	0%						
S4.000 S3a 15 Summer	100 +40	0%						
S4.001 S3b 15 Summer	100 +40	0% 100/15 Summer						
S3.002 S2c 15 Summer	100 +40	0% 100/15 Summer						
S5.000 S9 15 Summer	100 +40	0% 100/15 Summer						
	©1982	2-2020 Innovyze	2					

RAB Consultants Ltd		Page 3
Cathedral House		
Beacon Street		
Lichfield WS13 7AA		Micro
Date 04/04/2023 09:43	Designed by Micro Drainage	
File 2878_URBANCREEP.MDX	Checked by	Diamage
Micro Drainage	Network 2020.1.3	

	US/MH	Water Level	Surcharged Depth	Flooded Volume	Flow /	Overflow	Half Drain Time	Pipe Flow	
PN	Name	(m)	(m)	(m³)	Cap.	(l/s)	(mins)	(l/s)	Status
S1.000	S1	113.318	0.243	0.000	1.10			43.8	FLOOD RISK
S2.000	S1a	113.350	0.275	0.058	1.17			43.9	FLOOD
S1.001	S2	113.046	0.204	0.000	1.11			125.8	SURCHARGED
S3.000	S2a	113.104	-0.021	0.000	0.98			31.0	FLOOD RISK
S3.001	S2b	112.901	-0.049	0.000	0.88			61.2	FLOOD RISK
S4.000	S3a	112.569	-0.001	0.000	0.59			19.4	FLOOD RISK
S4.001	S3b	112.495	0.145	0.000	1.36			40.0	FLOOD RISK
S3.002	S2c	112.423	0.123	0.000	1.08			115.6	FLOOD RISK
S1.002	S3	112.403	0.837	0.000	0.07		3925	1.1	FLOOD RISK
S5.000	S9	111.818	0.068	0.000	1.05			20.9	FLOOD RISK

US/MH	Level
Name	Exceeded
S1	
S1a	1
S2	
S2a	
S2b	
S3a	
S3b	
S2c	
S3	
S9	
	US/MH Name S1 S1a S2 S2a S2b S3a S3b S2c S3 S3 S9

RAB Consultants Ltd		Page 4
Cathedral House		
Beacon Street		
Lichfield WS13 7AA		Mirro
Date 04/04/2023 09:43	Designed by Micro Drainage	
File 2878_URBANCREEP.MDX	Checked by	Diamage
Micro Drainage	Network 2020.1.3	

PN	US/MH Name	Storm	Return Period	Climate Change	First (X) Surcharge	First (Y) Flood	First (Z) Overflow	Overflow Act.	Water Level (m)
S6.000	S8	15 Summer	100	+40%					111.716
S5.001	S10	240 Winter	100	+40%	100/120 Winter				110.998
S5.002	S11	240 Winter	100	+40%	100/15 Summer				110.996

PN	US/MH Name	Surcharged Depth (m)	Flooded Volume (m³)	Flow / Cap.	Overflow (1/s)	Half Drain Time (mins)	Pipe Flow (l/s)	Status	Level Exceeded
S6.000	S8	-0.044	0.000	0.83			16.8	FLOOD RISK	
S5.001	S10	0.028	0.000	0.17			7.5	SURCHARGED	
S5.002	S11	0.546	0.000	0.04			1.0	FLOOD RISK	

RAB Consultants Ltd		Page 1
Cathedral House		
Beacon Street		
Lichfield WS13 7AA		Micro
Date 01/03/2022 14:38	Designed by Micro Drainage	
File 2878.SRCX	Checked by	Diamage
Micro Drainage	Source Control 2020.1.3	

ICP SUDS Mean Annual Flood

Input

Return Period (years) 100 SAAR (mm) 635 Urban 0.000 Area (ha) 1.000 Soil 0.400 Region Number Region 6

Results 1/s

QBAR Rural 3.0 QBAR Urban 3.0 Q100 years 9.7 Q1 year 2.6 Q30 years 6.9 Q100 years 9.7

Section A-A

Image: Space of the second state of		LEGEND
 A substrate of the second se		Image: Type D ICImage: Display control deviceImage: Display control
Image: Section A-A Crewing Drawing Drawing <tr< th=""><th>ow control device</th><th> LAII setting out to be in accordance with the Architects drawings. Any discrepancies between the Engineers and the Architects drawings to be referred to the Architect before proceeding. Dimensions must not be sealed. This drawing must be read in conjunction with all relevant drawings and with the drainage report (RA28278 FRD). A A construction prises pian. In line with CDM 2015, must be prepared by the principal religibility or leading to have the contractor must comply with all current injugation relating to have that a safety. Connections to Public severs to be agreed and inspected by Water Authority. Until technical approval have been obtained from the relevant Authority. It is outlied with a contractor commone the work prior to such from the relevant Authority. It is outlied with a contractor commone the Work prior to such approval heiging and the astery of the advector and particular approval having agreements for water and severage of criterios in advector and principle. Drainage to be in accordance with BS 7533-13:2009, Building Regulations Part H: Drainage and Wasie Disposal, <i>Design and Construction Outling</i> agreements for water and severage of criterios in domessic gardens and pathways without any possibility of vehicular access. O sin in domestic driveways, parking areas and varie with severage and the severage of the cortex of the cortex of pathways without any possibility of vehicular access to vehicles with a gross vehicle weight in excess of 7.5 tonnes. A pipes not meeting the criteria & AUST include a minimum 150mm thick Class GEN3 Concrete surround in line with 2020 Design Aud Construction Guidance document. Source Class to matholices/inspector charabeers are to suit anticipated vehicular access to vehicles with a gross vehicle weight in excess of 7.5 tonnes. A pipes not meeting the criteria & AUST include a minimum 150mm thick Class GEN3 Concrete surround in line weight in excess of 7.5 tonnes. Court Clas</th></tr<>	ow control device	 LAII setting out to be in accordance with the Architects drawings. Any discrepancies between the Engineers and the Architects drawings to be referred to the Architect before proceeding. Dimensions must not be sealed. This drawing must be read in conjunction with all relevant drawings and with the drainage report (RA28278 FRD). A A construction prises pian. In line with CDM 2015, must be prepared by the principal religibility or leading to have the contractor must comply with all current injugation relating to have that a safety. Connections to Public severs to be agreed and inspected by Water Authority. Until technical approval have been obtained from the relevant Authority. It is outlied with a contractor commone the work prior to such from the relevant Authority. It is outlied with a contractor commone the Work prior to such approval heiging and the astery of the advector and particular approval having agreements for water and severage of criterios in advector and principle. Drainage to be in accordance with BS 7533-13:2009, Building Regulations Part H: Drainage and Wasie Disposal, <i>Design and Construction Outling</i> agreements for water and severage of criterios in domessic gardens and pathways without any possibility of vehicular access. O sin in domestic driveways, parking areas and varie with severage and the severage of the cortex of the cortex of pathways without any possibility of vehicular access to vehicles with a gross vehicle weight in excess of 7.5 tonnes. A pipes not meeting the criteria & AUST include a minimum 150mm thick Class GEN3 Concrete surround in line with 2020 Design Aud Construction Guidance document. Source Class to matholices/inspector charabeers are to suit anticipated vehicular access to vehicles with a gross vehicle weight in excess of 7.5 tonnes. A pipes not meeting the criteria & AUST include a minimum 150mm thick Class GEN3 Concrete surround in line weight in excess of 7.5 tonnes. Court Clas
Kingsbrock House, Y Kingsway, Bedford, MK42 9BA Client Hollyhock Trust Ltd T/A Hockley Farms Project Project Drawing Drawing VL Drawing No. Drawing No.		
Project Project Project Drawing Drawing Checked by AT Approved by AT Drawn by JL Date: 31/03/2023 Scale: 1:20@ A1 Drawing No. Revision		Kingsbrook House, Ykingsway, Bedford, MK42 9BA Client
Checked by AT Approved by AT Drawn by JL Date: 31/03/2023 Scale: 1:20@ A1 Drawing No. Revision Compare to the second se		Project Piggotts Farm Drawing Dry Basin Section A-A
		Checked by A I Approved by A T Drawn by JL Date: 31/03/2023 Scale: 1:20@ A1 Drawing No. Revision

Modular Storage Detail with Catchpit Chamber

Modular Storage Section

Drawing No.		
	RAB2878_	_003

2

Revision