

Dunsty Hill Farm

Energy Statement

September 2023

CONTENTS

...........

1.	Executive Summary				
2.	Policy Framework4				
3.	Energy Calculations6				
4.	Renewable Technologies8				
5.	Water Efficiency11				
6.	Conclusion12				
Арр	endix 1 – CO ₂ Calculation Spreadsheet				
Арр	endix 2 – Part L 2021 – Summary Information Sheet				
Appendix 3 – BREL Compliance (Part L 2021)					
Арр	Appendix 4 – Air Source Heat Pump Datasheet				

DOCUMENT CONTROL SHEET					
Report Reference PP2196/DHF/ES/202308-EC					
Issue Purpose For Planning					
Client Highbarrow Holdings Ltd					
Author Edward Coate					
Approved By Ryan Thrower					
Date of Issue 13 th September 2023					
DISCLAIMER					
This report has been produced to support a Planning Application and is not to be used 'For Construction', for Building Control compliance or for submission against a Planning Condition.					
This report is based on drawings and specifications provided along with information assumed by NRG Consulting for the purposes of compliance. Any budget costs or plant sizing contained within this document are estimated unless otherwise specified and are to be taken as guideline only.					
NRG Consulting accepts no responsibility whatsoever to third parties to whom this report or any part thereof is made known. Any such party relies upon the report at their own risk.					

1. EXECUTIVE SUMMARY

1.1 NRG Consulting have been appointed to undertake an Energy Statement on a proposed development at the Dunsty Hill Farm, Culvert Green, within the jurisdiction of Aylesbury District Council.

The proposed development is for one new-build residential dwelling.

1.2 SAP calculations have been undertaken and this document illustrates a reduction in CO₂ emissions over the baseline of Part L 2021 via:

Energy Efficiency Measures

- High levels of thermal insulation to achieve U-Values lower than the Part L 2021 notional building specification.
- LED Lighting with a luminous efficacy of 95lm/W.
- Air Permeability target of 5.1 m3/(hm2) @50Pa.

Renewable Technologies

- An Individual Air Source Heat Pump (ASHP) is proposed. This has been modelled as the Vaillant Arotherm (8 kW).
- 1.3 A carbon emissions table is shown across the page illustrating the carbon reduction of the proposed development against the target for Part L 2021 of the Building Regulations.
- 1.4 This proposed application is on the same site as a previously consented conversion scheme of the existing barn. In terms of carbon emissions, the conversion would have higher emissions due to certain elements that would not be able to match a new-build development including the amount of insulation, the air tightness level and the ability to minimise heat loss through the thermal bridging junctions.

	CO ₂ Emissions (Tonnes per Annum)			
	Regulated			
Baseline: Part L 2021 of the Building Regulations (TER)	0.92			
Final CO ₂ Emissions of Proposed Development (DER)	0.43			
Regulated CO ₂ savings over Part L 2021	53.96%			
Table: Carbon Emissions Table				

2. POLICY FRAMEWORK

2.1 The proposed development falls within the Government's **"minor"** category of planning applications.

NATIONAL POLICY – NPPF (2021)

The delivery of sustainable development is at the foundation of the NPPF, which defines it as "meeting the needs of the present without compromising the ability of future generations to meet their own needs.

LOCAL POLICIES

2.2 While the development now resides in the local authority of Buckinghamshire due to moved boundaries, the Local Plan here is still several years from adoption and therefore the following Planning Policies from the previous local authority are still applicable to this report:

Vale of Aylesbury Local Plan 2013-2033 – Policy C3

C3 Renewable Energy

All development schemes should look to achieve greater efficiency in the use of natural resources.

Planning applications involving renewable energy development will be encouraged provided that there is no unacceptable adverse impact, including cumulative impact, on the following issues:

- a. landscape and biodiversity including designations, protected habitats and species
- b. visual impacts on local landscapes
- c. the historic environment including designated and non designated assets and their settings
- d. the Green Belt, particularly visual impacts on openness
- e. aviation activities
- f. highways and access issues, and
- g. residential amenity.

The Council will seek to ensure that all development schemes achieve greater efficiency in the use of natural resources, including measures minimise energy use, improve water efficiency and promote waste minimisation and recycling. Developments should also minimise, reuse and recycle construction waste wherever possible.

In seeking to achieve carbon emissions reductions, the <u>Councilthe council</u> will <u>promoteassess</u> <u>developments using</u> an 'energy hierarchy'. An energy hierarchy identifies the order in which energy issues should be addressed and is illustrated as follows:

- h. reducing energy use, in particular by the use of sustainable design and construction measures
- i. supplying energy efficiently and giving priority to decentralised energy supply
- . making use of renewable energy
- k. making use of allowable solutions, and
- I. an energy statement will be <u>required</u>encouraged for proposals for major residential developments (over 10 dwellings), and all non-residential development, to demonstrate how the energy hierarchy has been applied.

With continually improving standards through building regulations, new buildings carry reduced need for heating and loads are based on winter heat and all year-round hot water demands. A feasibility assessment for district heating (DH) and cooling utilising technologies such as combined heat and power (CHP), including biomass CHP or other low carbon technology, will be <u>required</u>encouraged for:

- m. all residential developments of 100 dwellings or more
- n. all residential developments in off-gas areas for 50 dwellings or more, and
- o. all applications for non-domestic developments above 1000sqm floorspace.

Where feasibility assessments demonstrate that decentralised energy systems are deliverable and viable and can secure <u>at least</u> 10% of their energy from decentralised and renewable or low carbon sources, such systems will be <u>requiredencouraged</u> as part of the development.

Planning permission will normally be granted for off-site renewable energy (for example, but not confined, to wind, solar, biomass and energy crops, anaerobic digestion and landfill gas), where it has been demonstrated that all the following criteria have been met:

- p. There is no significant adverse effect on landscape or townscape character, ecology and wildlife, heritage assets whether designated or not, areas or features of historical significance or amenity value
- q. there is no significant adverse impact on local amenity, health and quality of life as a result of noise, emissions to atmosphere, electronic interference or outlook through unacceptable visual intrusion, and
- r. there is no adverse impact on highway safety. Where development is granted, mitigation measures will be required as appropriate to minimise any environmental impacts. When considering the social and economic benefits, the Council the council will encourage community participation/ownership of a renewable energy scheme.

Aylesbury Vale is located within an area of water stress and as such the <u>Councilthe council</u> will seek a higher level of water efficiency than required in the Building Regulations, with developments achieving a limit of 110 litres/person/day.

Applications for the adaption of older buildings should include improved energy and water efficiency and retrofitted renewable energy systems where possible.

BUILDING REGULATIONS (PART L 2021 & FUTURE HOMES STANDARD)

2.3 On 24th July 2018 the Department for Business Energy & Industrial Strategy (BEIS) published their update to SAP 9.92 (Part L 2013), called SAP 10.

In October 2019, the Ministry of Housing, Communities and Local Government (MHCLG) then issued consultation on changes to Part L of the Building Regulations. Dubbed *The Future Homes Standard*, it is an aspiration to ensure all new homes will have low carbon heating and "world-leading levels of energy efficiency" by 2025 and is intended to be the primary driver in achieving the Governments desire to reduce carbon emissions in the creation of new-build housing stock.

On the June 15th 2022, Part L 2021 of the Building Regulations came into force. As per the requirements, all new homes must produce 31% less CO_2 emissions than that of Part L 2013 in-order to achieve Building Regulation compliance.

2.4 The major change in the regulations is the change in carbon factor of electricity to represent the decarbonisation of the National Grid and the push towards net-zero carbon developments.

Fuel	SAP 2012 CO2 (kgCO2/kWh)	SAP 10 CO2 (kgCO2/kWh)	Part L 2021 CO2 (kgCO2/kWh)	Percentage Reduction		
Main Gas	0.216	0.210	0.210	2.75%		
Electricity	0.519	0.233	0.136	73.8%		
Table: Change in Carbon Factors from Part L 2013 to Part L 2021						

3. ENERGY CALCULATIONS

3.1 In order to estimate the predicted energy demand and regulated CO₂ emissions for the site, SAP Calculations have been carried out by a licensed and OCDEA accredited SAP Assessor using Elmhurst Design SAP 10.2 (Part L 2021).

3.2 The baseline CO₂ emissions covered by Part L 2021 of the Building Regulations will be expressed as the Target Emissions Rate (TER). This covers regulated carbon emissions from:

- Heating
- Cooling
- Hot Water
- Lighting
- Auxiliary (Pumps and Fans)

3.3 **Passive Design**

Passive design measures utilised by the architect in the concept and development of the schemes design include:

- Through good design and careful construction, air infiltration will be minimised and thus a low Air Permeability target has been chosen.
- Optimising orientation and site layout to reduce energy demand.
- Provision of cross-ventilation.
- Maximising thermal mass where possible to reduce internal temperature variation.
- High-performance double-glazing system to reduce heat demand and increase solar gains.
- Thermal Bridging has been reviewed and appropriate industry schemes (Timber Frame calculated PSI-Values and Timber Frame ACDs) have been used.

ELEMENT	PART L1a LIMITING FABRIC PARAMETERS	PROPOSED U-VALUES (W/m ² K)				
	Walls					
External Wall	0.26 W/m ² K 0.16 W/m ² K					
	Floors					
Ground Floor	0.18 W/m²K	0.10 W/m²K				
Roof						
Sloping Roof	0.16 W/m²K	0.10 W/m²K				
Openings						
Windows	1.6 W/m²K	1.2 W/m²K				
Doors	1.6 W/m²K	1.0 W/m²K				
Air Permeability						
	5.1 m³/(hm²) @50Pa					
Table: Proposed Fabric Specification						

Active Design

- 3.4 The development will incorporate efficient building services to limit carbon emissions, including:
 - A zero-NOx heating system
 - LED Lighting

ELEMENT	PROPOSED DETAILS		
Ventilation	Natural Ventilation (Intermittent Extract and Trickle Vents)		
Heating	Air Source Heat Pump - (Modelled as Vaillant Arotherm)		
Heating Controls	Time and Temperature Zone Controls		
Heat Emitters	Underfloor Heating		
Hot Water	From ASHP		
Cylinder	180ltr (1.4kWh/day heat loss)		
Lighting	LED (95 lm/W)		
Cooling	Νο		
Table: Proposed Mechanical and Electrical Specification			

Unregulated Emissions

- 3.5 Unregulated energy use and their associated carbon emissions are often generated from systems or processes that are harder to quantify than regulated emissions which are from fixed systems.
- 3.6 Unregulated energy use is not counted within SAP for the purpose of Part L compliance. This is because the emissions from these items are variable and dependant on occupant behaviour and specification i.e. different levels of White Good provision and use and amount of small power equipment used.

For the proposed development unregulated emissions consist of:

- Equipment (Small Power devices)
- Cooking
- 3.7 Unregulated CO₂ emissions have been calculated from the SAP Worksheet in-line with the calculation previously used for *ENE* 7 of the *Code for Sustainable Homes*.

These have then been translated into CO_2 by multiplying the figure by the carbon factor for electricity.

Carbon dioxide emissions (tonnes CO2 per annum)			
Proposed Development – Unregulated CO ₂ emissions	0.75		

4. **RENEWABLE TECHNOLOGIES**

4.1 Renewable Energy is typically defined as:

"Energy derived from a source that is continually replenished, such as wind, wave, solar, hydroelectric and energy from plant material, but not fossil fuels or nuclear energy. Although not strictly renewable, geothermal energy is generally included."

- 4.2 Based on recent legislation such as the Clean Air Act as well as the location of the proposed development, the following technologies have been discounted:
 - Wind Turbines
 - Biomass
 - Hydropower / Wave Technology
 - Biogas / Biofuel
- 4.3 The feasibility of remaining renewable and low carbon technologies is highlighted in the table opposite.
- 4.4 Following a review of the available technologies, the following have been integrated into the scheme:
 - Air Source Heat Pump (Individual)

FEASIBILITY						
Technology	Considerations					Overall
	Cost	Noise	Land Use	Tariffs	CO ₂ Offset	Teasibility
Photovoltaic Panels (PV)	There is currentl chain issues ar decreased payb has created. The CO ₂ offset o therefore carbor	There is currently an increased cost of PV installation due to supply- chain issues and shipping costs. This is partially offsetting the decreased payback time that the rise in electricity costs per kWh has created. The CO ₂ offset of PV in Part L 2021 is 73.8% less than Part L 2013 therefore carbon savings for the technology are greatly diminished.				
Air Source Heat Pumps (ASHP)	ASHPs provide a low-temperature heating system at high efficiency and work will with either radiators or underfloor heating as the chosen emitters. They are also zero-NOx emission systems and therefore comply with any local policies on Air Quality. Due to the continued decarbonisation of the National Grid,				Yes	
Ground Source Heat Pumps (GSHP)	GSHPs are like ASHPs but operate at slightly higher efficiencies due to drawing heat from the ground, a source that is warmer than the outside air, especially in Winter. However, the technology is more expensive than Air Source and requires either significant horizontal space for a <i>slinky</i> style system or deep boreholes as part of a vertical system. As this is not proposed here, ASHPs are more suited to the scheme				No	
Solar Thermal	As the proposed building-use is a large residential dwelling with a built-in electrically heated HWC from the ASHP, Solar Thermal would not be suited to the scheme as the hot water needs are already met by a renewably heated source and electricity.				No	
Table: Renewable Energy Feasibility						

AIR SOURCE HEAT PUMPS

4.5 To provide renewable heating and hot water, individual Air Source Heat Pumps are proposed. An ASHP extracts heat from ambient air via a heat exchanger and raises the temperature of an internal refrigerant via the compression cycle.

The ASHPs will consist of an internal unit and an external unit, and the design will be in-line with the schematic below which shows a typical ASHP installation to a new build dwelling.

Figure: ASHP Schematic

ASHP Details

Figure: ASHP Model (For Reference Only) – Vaillant Arotherm

ASHP System Details			
Dwellings to be Heated	1		
Number of Heat Pumps	1		
Make and Model	TBC – Vaillant Arotherm 8 kW used in SAP		
SCOP	4.58		
Fraction of Heat	100%		
Table: Proposed ASHP Specification			

AIR SOURCE HEAT PUMPS – BENEFITS

4.6 ASHPs have multiple benefits - with an air source heat pump, end-users can save money on their energy bills and reduce the carbon footprint of the scheme compared to a gas or a conventional (boiler or portable heaters) electric heating system. One of the key advantages of air source heat pumps is their versatility and affordability. An ASHP can work for either heating or cooling purposes and can be used for space heating or water heating.

The most important advantages of purchasing an air source heat pump are the following:

Low Carbon Footprint

4.7 Air source heat pumps have are a form of low carbon heating, as they use the outside air to heat or cool. For every 3 to 4 units of energy produced from an air source heat pump, only 1 unit of electricity is used, making it a far better alternative to cut emissions.

Save Money on Energy Bills

4.8 ASHPs reduce energy bills as the outside air is used for heating and cooling.

Can Be Used for Heating and Cooling

- 4.9 Air source heat pumps can be used for both heating and cooling purposes. Depending on the model, they can provide cooling in the summer and heating in the winter.
- 4.10 In addition, air source heat pumps work very well with underfloor heating.

High Seasonal Coefficient of Performance (SCOP)

4.11 Air source heat pumps are efficient both in the winter and summer, thanks to a high SCOP (seasonal coefficient of performance). The COP of a heat pump is a way to measure its efficiency by comparing the power input needed to produce heat to the amount of heat output. A 'seasonal COP' figure is adjusted to seasonality.

Low Maintenance

4.12 Servicing and maintenance should be done by a technician **once a year**. As such air source heat pumps are low maintenance.

Long Lifespan

4.13 Air source heat pumps have a long lifespan, and with proper maintenance, they can be operational for up to 20 years. What's more, is that most air source heat pumps have 5-year warranties. With several technological developments modern heat pumps are able to work efficiently for close to 25 years before they need replacing.

5. WATER EFFICIENCY

- 5.1 The Local Plan requires that all developments must incorporate water conservation measures to limit the consumption to 110 litres per person per day.
- 5.2 This target is the same as the optional target included within Part G of the Building Regulations which encourages the efficient use of potable water. The specification proposed has been produced using the calculation methodology used to assess compliance against the water performance targets in Building Regulations 17.K and is based on the Government's *"The Water Efficiency Calculator for new dwellings September 2009"* (withdrawn in June 2016).

5.3 The current guidance and calculation methodology can now be found within Approved Document G - Sanitation, hot water safety and water efficiency (2015 edition with 2016 amendments): <u>https://assets.publishing.service.gov.uk/government/uploads/system/uploads/att</u> <u>achment_data/file/504207/BR_PDF_AD_G_2015_with_2016_amendments.pdf</u>

5.4 The proposed specification for the scheme can be found on the right-hand side of the page showing compliance. For the Dishwashers and Washing Machines, default consumption figures have been used.

PROPOSED SANITARYWARE SPECIFICATION

Element	Specification	Unit of Measurement		
WC	6/3 dual flush	Litres per Flush		
Basin Taps	5	Litres per Minute		
Kitchen Sink Taps	9	Litres per Minute		
Shower	8	Litres per Minute		
Bath	155	Capacity to Overflow		
Washing Machine	8.17	Litres per Kilo (Dry)		
Dishwasher	1.25	Litres per Place Setting		
Allowance for External Use	5	(Litres / Person / Day)		
Total Consumption (Litr	es / Person / Day)	109.7		
. Table : Proposed Water Consumption (litres/person/day				

6. CONCLUSION

6.1 A full energy strategy in-line with the energy hierarchy has been undertaken and this document illustrates a reduction in CO₂ emissions over the baseline of Part L 2021 via:

Energy Efficient Measures

- High levels of thermal insulation to achieve U-Values lower than the Part L 2021 notional building specification.
- LED Lighting with a minimum luminous efficacy of 95lm/W
- Air Permeability target of 5.1 m3/(hm2) @50Pa

Renewable Technologies

An Air Source Heat Pump will be provided for maximum efficiency and carbon savings.

- 6.2 A final carbon emission reduction table is shown on the opposite side of the page illustrating the savings at each stage of the energy hierarchy. Overall, the scheme achieves **53.96%** CO₂ compared to that of the Part L 2021.
- 6.3 This development is situated on the same site that benefits from a planning consent for a barn conversion scheme, Due to the nature of this superseded dwelling being a conversion, it is inherently higher-emission when compared to any new-build development.

This Energy Statement relates to this new build development and will, by default, be more efficient in all aspects. This includes CO_2 reduction, reduction in primary energy, and an improvement to fabric efficiency.

	CO ₂ Emissions (Tonnes per Annum)			
	Regulated			
Baseline: Part L 2021 of the Building Regulations (TER)	0.92			
Final CO ₂ Emissions of Proposed Development (DER)	0.43			
Regulated CO ₂ Savings over Part L 2021	53.96%			
Table: Carbon Emissions Table				

PROJECT: DUNSTY HILL FARM

Plots	Floor Area	Target Emissions (TER) Part L Baseline	Total TER	Dwelling Emission Rate (DER) Proposed Dwelling	Total DER
	m²	kg/CO ₂ /m ² /year	kg/CO ₂ /year	kg/CO ₂ /m ² /year	kg/CO ₂ /year
House	95	9.73	924	4.48	426
<u>Total Site Area (m²):</u>	95		<u>924</u>		<u>426</u>

RES	ULTS		OVERALL RESULTS					
Baseline Emissions - Total Site	<u>924</u>	kg/CO ₂ /year	Final CO ₂ Emissions	<u>426</u>	kg/CO ₂ /year			
		-	CO ₂ reduction over Part L 2021	<u>53.96</u>	%			
			Total CO ₂ savings achieved	499	kg/CO ₂ /year			

Building Regulations England Part L (BREL) Compliance Report

Approved Document L1 2021 Edition, England assessed by Array SAP 10 program, Array

Date: Thu 31 Aug 2023 09:27:23

Project Information							
Assessed By	Edward Coate	Building Type	House, Detached				
OCDEA Registration	EES/026101	Assessment Date	2023-08-31				

Dwelling Details			
Assessment Type	As designed	Total Floor Area	95 m ²
Site Reference	Dunsty Hill Farm(REAL)	Plot Reference	00001
Address			

Client Details	
Name	TBC
Company	TBC
Address	TBC, TBC, TBC

This report covers items included within the SAP calculations. It is not a complete report of regulations compliance.

1a Target emission rate and dwelling emission rate							
Fuel for main heating system	Electricity						
Target carbon dioxide emission rate	9.73 kgCO ₂ /m ²						
Dwelling carbon dioxide emission rate	4.48 kgCO ₂ /m ²	OK					
1b Target primary energy rate and dwelling primary energy							
Target primary energy	52.45 kWh _{PE} /m ²						
Dwelling primary energy	46.86 kWh _{PE} /m ²	OK					
1c Target fabric energy efficiency and dwelling fabric energy efficiency							
Target fabric energy efficiency	46.5 kWh/m ²						
Dwelling fabric energy efficiency	46.2 kWh/m ²	OK					

2a Fabric U-values										
Element	Maximum permitted	Dwelling average U-Value	Element with highest							
	average U-Value [W/m ⁻ K]	[w/m ⁻ K]	Individual U-Value							
External walls	0.26	0.16	Walls (1) (0.16)	OK						
Party walls	0.2	N/A	N/A	N/A						
Curtain walls	1.6	N/A	N/A	N/A						
Floors	0.18	0.1	Heatloss Floor 1 (0.1)	OK						
Roofs	0.16	0.1	Roof (1) (0.1)	ОК						
Windows, doors,	1.6	1.19	Opening (1.2)	OK						
and roof windows										
Rooflights	2.2	N/A	N/A	N/A						

2b Envelope elements (better than typically expected values are flagged with a subsequent (!))									
Name	Net area [m ²]	U-Value [W/m ² K]							
Exposed wall: Walls (1)	75.5	0.16							
Ground floor: Heatloss Floor 1, Heatloss Floor 1	95	0.1 (!)							
Exposed roof: Roof (1)	95	0.1 (!)							

2c Openings (better than typically expected values are flagged with a subsequent (!))									
Name	Area [m ²]	Orientation	Frame factor	U-Value [W/m ² K]					
Opening, Opening Type 2	0.66	North	0.7	1.2					
Opening, Opening Type 2	6.3	North	0.7	1.2					
Opening, Opening Type 1	2.1	North	N/A	1 (!)					
Opening, Opening Type 2	6.3	South	0.7	1.2					
Opening, Opening Type 2	6.3	South	0.7	1.2					
Opening, Opening Type 2	0.66	South	0.7	1.2					
Opening, Opening Type 2	6.93	West	0.7	1.2					

2d Thermal bridging (better than typically expected values are flagged with a subsequent (!))									
Building part 1 - Main Dwelling: Thermal bridging calculated from linear thermal transmittances for each junction									
Main element	Junction detail	Psi value Drawing /							
			[W/mK]	reference					
External wall	E2: Other lintels (including other steel lintels)	Government-approved scheme	0.083						

Main element	Junction detail		Source	Psi value	Drawing /				
				[W/mK] reference					
External wall	E3: Sill		Government-approved scheme	0.042					
External wall	E4: Jamb		Government-approved scheme						
External wall	E5: Ground floor (norm	al)	Government-approved scheme	overnment-approved scheme 0.211					
External wall	E16: Corner (normal)		Government-approved scheme						
External wall	E10: Eaves (insulation level)	at ceiling	Calculated by person with suitable expertise						
External wall	E12: Gable (insulation a	at ceiling	Calculated by person with suitable	0.24					
			схренизе						
3 Air permeabili	ty (better than typically	<pre>/ expected '</pre>	values are flagged with a subsequ	uent (!))					
Maximum permit	ted air permeability at 50)Pa	8 m³/hm²						
Dwelling air perm	eability at 50Pa		5.1 m [°] /hm ² , Design value		OK				
Air permeability to	est certificate reference								
4 Space heating									
Main heating sy	stem 1: Heat pump with	radiators or	underfloor heating - Electricity						
Efficiency		332.1%							
Emitter type		Underfloor							
Flow temperature)	35°C							
System type		Heat Pump	•						
Manufacturer		Vaillant Gro	pup UK Ltd						
Model		aroTHERM	8kW						
Commissioning									
Secondary heat	ing system: N/A								
Fuel		N/A							
Efficiency		N/A							
Commissioning									
E Hot water									
5 Hot water Cylinder/store	type: Cylinder								
Connoity	type. Cylinder	190 litroo							
	`C	1 / k/k/b/da	N/						
Primary ninework	r insulated		ly						
Manufacturer		105							
Model									
Commissioning									
Waste water hea	at recovery system 1 -	type: N/A							
Efficiency									
Manufacturer									
Model									
0.0									
6 Controls	(
Main heating 1 -	type: Time and tempera	ature zone c	ontrol by arrangement of plumbing a	ind electrical se	rvices				
Function									
Ecodesign class									
Model									
Water besting	tupo: Culindor thormest	t and LIM/ -	anarataly timed						
Water neating -	type: Cylinder thermosta	at and HW S	eparately timed						
Model									
MODEI									
7 Lighting									
Minimum permitte	ed light source efficacy	75 lm/W							
Lowest light sour	ce efficacy	95 lm/W			OK				
External lights co	ntrol	N/A							
8 Mechanical ve	ntilation								
System type: N/	A								
Maximum permit	ted specific fan power	N/A							
Specific fan powe	er	N/A			N/A				
Minimum permitte	ed heat recoverv	N/A							
efficiency)								
Heat recoverv eff	iciency	N/A			N/A				
Manufacturer/Mo	del								
Commissioning									

9 Local generation	
N/A	
10 Heat networks	
N/A	
11 Supporting documentary evidence	
N/A	
12 Declarations	
a. Assessor Declaration	
are a true and accurate reflection based upon the design in the purpose of carrying out the "As designed" assessment, evidence (SAP Conventions, Appendix 1 (documentary evidence required) has been reviewed in the Compliance Report.	Infents of this BREL Compliance Report Information submitted for this dwelling for and that the supporting documentary idence) schedules the minimum course of preparing this BREL
Signed:	Assessor ID:
Name:	Date:
b. Client Declaration	
N/A	

Property Reference		D	unsty Hill F	Farm(REAL)								Issued on Date 31/08/2023					
Assessment Reference	ce	00	0001						Prop Ty	pe Ref							
Property																	
					ſ			050					750				
SAP Rating						81 B		DER		4.48			IER		9.7	3	
Environmental						96 A		% DER < TE	R						53	96	
CO ₂ Emissions (t/year	r)					0.38		DFEE		46.20			TFEE		46	53	
Compliance Check						See BREL		% DFEE < 1	FEE	_					0.7	2	
% DPER < TPER						10.66		DPER		46.86			TPER		52	45	
Assessor Details		Mr. Edwa	ard Coate										Assessor ID		Z4	17-0001	
Client		NRG, TB	3C														
SAP 10 WORKSHEET FOR New Build (As Designed) (Version 10.2, February 2022) CALCULATION OF DWELLING EMISSIONS FOR REGULATIONS COMPLIANCE 					(1b) 3a)+(3b)-	Store x +(3c)+	y height (m) 2.5000 (3d)+(3e)	(2b) (3n	=	Volume (m3) 237.5000 237.5000	(1b) - (4) (5)						
2. Ventilation r	rate														m3	per hour	
Number of open of Number of open f Number of chimme Number of flues Number of flues Number of interm Number of interm Number of flues	thimneys Flues eys / flues at attached to s attached to d chimneys nittent extrac ve vents ess gas fires	ttache solid other ct fan	d to c fuel bo heater s	losed fire piler	e									0 * 8 0 * 2 0 * 1 0 * 2 0 * 3 0 * 2 0 * 1 6 * 1 0 * 4	0 = 0 = 0 = 5 = 0 = 0 = 0 = 0 =	0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	(6a) (6b) (6c) (6d) (6e) (6f) (7a) (7b) (7c)
Infiltration due Pressure test Pressure Test Me Measured/design Infiltration rat Number of sides	e to chimneys ethod AP50 :e sheltered	, flue	s and t	fans = ((6a)+(6b)+(6c)+(6d)-	+(6e)+(6	if)+(6g)+(7a)+(7b)	+(7c) =			60.0000	Air c / (5)	hanges = Bl	per hour 0.2526 Yes ower Door 5.1000 0.5076 0	(8) (17) (18) (19)
Shelter factor Infiltration rat	e adjusted to	o incl	ude she	elter fact	tor						(20) =	1 - (21	[0.075 x) = (18)	(19)] x (20)	= =	1.0000 0.5076	(20) (21)
Wind speed Wind factor Adj infilt rate Effective ac	Jan 5.1000 5.1000 5.1000 5.0000 5.0000 5.000 5.000 5.000 5.000 5.000 5.000 5.0	⁻ eb 5.0000 1.2500 0.6345 0.7013	Ma 4 1 0 0	ar .9000 .2250 .6218 .6933	Apr 4.4000 1.1000 0.5584 0.6559	May 4.3000 1.0750 0.5457 0.6489	Jun 3.80 0.95 0.48 0.61	Ju 900 3. 900 0. 923 0. 933 0.	1 8000 9500 4823 6163	Aug 3.7000 0.9250 0.4696 0.6102	Sep 4.00 1.00 0.50 0.50	000 000 076 288	Oct 4.3000 1.0750 0.5457 0.6489	NO 4. 1. Ø.	v 5000 1250 5711 6631	Dec 4.7000 1.1750 0.5965 0.6779	(22) (22a) (22b) (25)

3. Heat losses and heat loss parameter

Element	Gross	Openings	NetArea	U-value	ΑxU	K-value	A x K
	m2	m2	m2	W/m2K	W/K	kJ/m2K	kJ/K
Opening Type 1			2.1000	1.0000	2.1000		(26)
Opening Type 2 (Uw = 1.20)			27.1500	1.1450	31.0878		(27)
Heatloss Floor 1			95.0000	0.1000	9.5000	110.0000	10450.0000 (28a)
External Wall 1	104.7500	29.2500	75.5000	0.1600	12.0800	190.0000	14345.0000 (29a)
External Roof 1	95.0000		95.0000	0.1000	9.5000	9.0000	855.0000 (30)
Total net area of external elements Aum(A, m2)		294.7500				(31)
Fabric heat loss, W/K = Sum (A x U)			(26)	.(30) + (32) =	64.2678		(33)
Internal Wall 1			109.0000			9.0000	981.0000 (32c)

Heat capacity Thermal mass p List of Therma	Cm = Sum(A parameter (1 1 Bridges	x k) FMP = Cm /	TFA) in kJ/	m2K				(28).	(30) + (3	32) + (32a).	(32e) =	26631.0000 280.3263	(34) (35)
K1 Ele E2 Oth E3 Sil E4 Jam E5 Gro	ement ler lintels l b wund floor d	(including	other stee	l lintels)				L 14 13 24 41	ength .5000 .5000 .5000	Psi-value 0.0830 0.0420 0.0500 0.2110	Tot 1.20 0.50 1.22	al 35 570 550	
E16 Co E10 Fa	orner (norma	al) ation at ce	iling level)				41 10 12	.0000	0.0370	0.37 0.75	700 160	
E12 Ga Thermal bridge	ble (insulated) s (Sum(L x	ation at ce Psi) calcu	iling level lated using	.) Appendix K	()			29	.0000	0.2400	6.96	500 19.9224	(36)
Point Thermal Total fabric h	bridges leat loss	- ,			,				((33) + (36)	(36a) = + (36a) =	0.0000 84.1902	(37)
Ventilation he	at loss cal Jan	lculated mo Feb	nthly (38)m Mar	ı = 0.33 x (Apr	(25)m x (5) May	Jun	Jul	Aug	Sep	0ct	Nov	Dec	
(38)m Heat transfer	55.6034 coeff	54.9660	54.3411	51.4063	50.8573	48.3011	48.3011	47.8278	49.2857	50.8573	51.9681	53.1294	(38)
Average = Sum(139.7936 39)m / 12 =	139.1562 =	138.5313	135.5965	135.0474	132.4913	132.4913	132.0180	133.4759	135.0474	136.1582	137.3195 135.5939	(39)
HLP	Jan 1.4715	Feb 1.4648	Mar 1.4582	Apr 1.4273	May 1.4216	Jun 1.3946	Jul 1.3946	Aug 1.3897	Sep 1.4050	Oct 1.4216	Nov 1.4332	Dec 1.4455	(40)
HLP (average) Days in mont	31	28	31	30	31	30	31	31	30	31	30	1.4273 31	
4. Water heati	ng energy i	requirement	s (kWh/year	·)									
Assumed occupa Hot water usag	ncy e for mixer	showers										2.6882	(42)
Hot water usag	0.0000 e for baths	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	(42a)
Hot water usag	79.9162 e for other	78.7293 r uses	77.0579	73.9763	71.6687	69.1100	67.7280	69.3876	71.1947	73.9326	77.0777	79.6460	(42b)
Average daily	42.1595 hot water u	40.6265 use (litres	39.0934 /day)	37.5603	36.0272	34.4942	34.4942	36.0272	37.5603	39.0934	40.6265	42.1595 112.4217	(42c) (43)
Daily hot wate	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	0ct	Nov	Dec	
Energy conte Energy content	122.0757 193.3381 (annual)	119.3558 169.9610	116.1513 178.5203	111.5366 152.6880	107.6960 144.9795	103.6042 127.3935	102.2221 123.6288	105.4149 130.5256	108.7550 134.1058	113.0260 153.3752 Total = S	117.7042 167.6912 Sum(45)m =	121.8055 190.7180 1866.9249	(44) (45)
Distribution 1	.oss (46)m 29.0007	= 0.15 x (25.4942	45)m 26.7780	22.9032	21.7469	19.1090	18.5443	19.5788	20.1159	23.0063	25.1537	28.6077	(46)
Water storage Store volume	loss:											180.0000	(47)
a) If manufac Temperature Enter (49) or	turer decla factor from (54) in (55	ared loss f n Table 2b 5)	actor is kn	iown (kWh/c	lay):							1.4000 0.5400 0.7560	(48) (49) (55)
Tf aulinden en	23.4360	21.1680	23.4360	22.6800	23.4360	22.6800	23.4360	23.4360	22.6800	23.4360	22.6800	23.4360	(56)
it cylinder co	23.4360	21.1680	23.4360	22.6800	23.4360	22.6800	23.4360	23.4360	22.6800	23.4360	22.6800	23.4360	(57)
Primary loss Combi loss	23.2624	0.0000	23.2624	0.0000	0.0000	0.0000	23.2624 0.0000	0.0000	0.0000	0.0000	0.0000	23.2624 0.0000	(59) (61)
Total heat req	uired for N 240.0365	vater heati 212.1402	ng calculat 225.2187	ed for eact: 197.8800	1 month 191.6779	172.5855	170.3272	177.2240	179.2978	200.0736	212.8832	237.4164	(62)
WWHRS PV diverter	0.0000 0.0000	0.0000 0.0000	0.0000 0.0000	0.0000 0.0000	0.0000 0.0000	0.0000 0.0000	0.0000 0.0000	0.0000 0.0000	0.0000 0.0000	0.0000 0.0000	0.0000 0.0000	0.0000 0.0000	(63a) (63b)
Solar input FGHRS	0.0000 0.0000	0.0000 0.0000	0.0000 0.0000	0.0000 0.0000	0.0000 0.0000	0.0000 0.0000	0.0000 0.0000	0.0000 0.0000	0.0000 0.0000	0.0000 0.0000	0.0000 0.0000	0.0000 0.0000	(63c) (63d)
Output from w/	h 240.0365	212.1402	225.2187	197.8800	191.6779	172.5855	170.3272	177.2240 Total p	179.2978 er year (kl	200.0736 Wh/year) = S	212.8832 Sum(64)m =	237.4164 2416.7609	(64) (64)
12Total per ye Electric showe	ear (kWh/yea er(s)	ar)							, , , , , , , , , , , , , , , , , , ,		. ,	2417	(64)
	0.0000	0.0000	0.0000	0.0000 Tot	0.0000 al Energy u	0.0000 used by inst	0.0000 antaneous	0.0000 electric sho	0.0000 wer(s) (kWh	0.0000 n/vear) = Su	0.0000 m(64a)m =	0.0000 0.0000	(64a) (64a)
Heat gains fro	om water hea 101.6436	ating, kWh/ 90.2554	month 96.7167	86.9224	85.5644	78.5119	78.4653	80.7585	80.7438	88.3560	91.9109	100.7725	(65)
5. Internal ga	ins (see Ta	able 5 and	5a)										
Metabolic gain	is (Table 5) Jan), Watts Feb	Mar	Apr	Mav	Jun	Jul	Aug	Sep	0ct	Nov	Dec	
(66)m Lighting gains	134.4085 (calculate	134.4085 ed in Appen	134.4085 dix L. equa	134.4085 ition L9 or	134.4085 L9a), also	134.4085 see Table 5	134.4085	134.4085	134.4085	134.4085	134.4085	134.4085	(66)
Appliances gai	125.0785	138.4797 ated in App	125.0785 endix endix endix	129.2477	125.0785	129.2477	125.0785	125.0785	129.2477	125.0785	129.2477	125.0785	(67)
Cooking gains	247.9820	250.5553	244.0707	230.2658	212.8396	196.4615	185.5198	182.9466	189.4311	203.2360	220.6622	237.0404	(68)
Dumps for	36.4408	36.4408	36.4408	36.4408	36.4408	36.4408	36.4408	36.4408	36.4408	36.4408	36.4408	36.4408	(69)
Losses e.g. ev	aporation ((negative v	alues) (Tab	ole 5)	107 5360	107 5360	107 5260	107 5360	107 5360	107 5360	107 5360	107 5360	(70)
Water heating	gains (Tab]	-107.5268 le 5)	-10/.5268	-10/.5268	-10/.5268	-10/.5268	-10/.5268	-10/.5268	-10/.5268	-10/.5268	-10/.5268	-10/.5268	(71)

T-+-1 :-+1	136.6178	134.3086	129.9956	120.7255	115.0059	109.0443	105.4641	108.5464	112.1441	118.7580	127.6541	135.4469 (72)
Iotal internal	gains 573.0008	586.6662	562.4673	543.5616	516.2465	498.0761	479.3849	479.8939	494.1456	510.3950	540.8866	560.8883 (73)

6. Solar gains

[Jan]	Area m2	Solar flux Table Ga W/m2	g Specific data or Table 6b	FF Specific data or Table 6c	Access factor Table 6d	Gains W
North	6.9600	10.6334	0.7200	0.7000	0.7700	25.8491 (74)
South	13.2600	46.7521	0.7200	0.7000	0.7700	216.5250 (78)
West	6.9300	19.6403	0.7200	0.7000	0.7700	47.5384 (80)

Solar gains	289.9125	497.0062	688.8036	868.7240	987.3725	986.6416	948.5527	858.9854	750.9111	551.6320	347.8189	247.7399 (83)
Total gains	862.9133	1083.6724	1251.2709	1412.2856	1503.6190	1484.7176	1427.9376	1338.8794	1245.0567	1062.0271	888.7055	808.6281 (84)

7. Mean internal temperature (heating season)

Temperature	during heatin	ng periods i	in the livir	ng area from	n Table 9, 1	h1 (C)						21.0000 (85)
Utilisation	factor for ga	ains for liv	/ing area, r	ni1,m (see 🛛	Table 9a)							
	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	0ct	Nov	Dec
tau	52.9173	53.1597	53.3995	54.5552	54.7770	55.8338	55.8338	56.0340	55.4220	54.7770	54.3302	53.8707
alpha	4.5278	4.5440	4.5600	4.6370	4.6518	4.7223	4.7223	4.7356	4.6948	4.6518	4.6220	4.5914
util living	area											
Ū	0.9930	0.9806	0.9531	0.8782	0.7420	0.5530	0.4047	0.4476	0.6827	0.9163	0.9837	0.9947 (86)
Living	19.8485	20.0676	20.3326	20.6377	20.8298	20.9145	20.9307	20.9287	20.8815	20.6148	20.1819	19.8266
Non living	18.3989	18.6791	19.0104	19.3862	19.5864	19.6741	19.6825	19.6859	19.6462	19.3755	18.8449	18.3863
24 / 16	0	0	0	0	0	0	0	0	0	0	0	0
24 / 9	3	0	0	0	0	0	0	0	0	0	0	0
16 / 9	28	0	0	0	0	0	0	0	0	0	0	10
MIT	20.4109	20.0676	20.3326	20.6377	20.8298	20.9145	20.9307	20.9287	20.8815	20.6148	20.1819	19.9907 (87)
Th 2	19.7089	19.7140	19.7190	19.7424	19.7468	19.7674	19.7674	19.7713	19.7595	19.7468	19.7379	19.7286 (88)
util rest o	f house											
	0.9904	0.9737	0.9366	0.8387	0.6701	0.4546	0.2933	0.3312	0.5825	0.8791	0.9766	0.9927 (89)
MIT 2	19.1867	18.6791	19.0104	19.3862	19.5864	19.6741	19.6825	19.6859	19.6462	19.3755	18.8449	18.6282 (90)
Living area	fraction								fLA =	Living area	(4) =	0.6011 (91)
MIT	19,9225	19.5137	19.8051	20.1384	20.3338	20,4197	20,4327	20,4329	20.3887	20.1204	19,6486	19,4471 (92)
Temperature	adiustment		00051									0.0000
adjusted MI	T 19.9225	19.5137	19.8051	20.1384	20.3338	20.4197	20.4327	20.4329	20.3887	20.1204	19.6486	19.4471 (93)

8. Space heating requirement

space nearing requirement

	7.0.0	Feb	Max	A	Maxi	7	71	A	Com	Oct	Neur	Dee	
	Jan	reb	MgL.	Apr	ridy	Jun	JUI	Aug	Sep	000	NOV	Dec	
Utilisation	0.9909	0.9724	0.9379	0.8524	0.7055	0.5077	0.3539	0.3946	0.6356	0.8917	0.9760	0.9922	(94)
Useful gains	855.0741	1053.7762	1173.5455	1203.8004	1060.7711	753.8545	505.3161	528.3248	791.3387	947.0430	867.3785	802.3059	(95)
Ext temp.	4.3000	4.9000	6.5000	8.9000	11.7000	14.6000	16.6000	16.4000	14.1000	10.6000	7.1000	4.2000	(96)
Heat loss rat	e W												
	2183.9272	2033.5840	1843.1763	1523.8883	1165.9697	771.0540	507.8029	532.4148	839.3879	1285.6998	1708.5888	2093.7277	(97)
Space heating	; kWh												
	988.6667	658.4308	498.2053	230.4633	78.2677	0.0000	0.0000	0.0000	0.0000	251.9606	605.6714	960.8179	(98a)
Space heating	, requiremen	t - total p	er year (kW	h/year)								4272.4838	
Solar heating	kWh												
-	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	(98b)
Solar heating	contributi	on - total	per year (k	Wh/year)								0.0000	
Space heating	kWh												
	988.6667	658.4308	498.2053	230.4633	78.2677	0.0000	0.0000	0.0000	0.0000	251.9606	605.6714	960.8179	(98c)
Space heating	requiremen	t after sol	ar contribu	tion - tota	l per year	(kWh/year)						4272.4838	. ,
Space heating	per m2				. ,					(98c) / (4) =	44.9735	(99)

9a. Energy	/ requirements -	- Individua	l heating s	ystems, inc	luding micro	-CHP						
Fraction of Fraction of Efficiency Efficiency Efficiency	of space heat fr of space heat fr y of main space y of main space y of secondary/s	rom seconda rom main sy heating sy heating sy supplementa	ry/supplements stem(s) stem 1 (in 2 stem 2 (in 2 ry heating	ntary syste %) %) system, %	m (Table 11)							0.0000 (201) 1.0000 (202) 332.1111 (206) 0.0000 (207) 0.0000 (208)
	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	0ct	Nov	Dec
Space heat	ting requirement	2										
	988.6667	658.4308	498.2053	230.4633	78.2677	0.0000	0.0000	0.0000	0.0000	251.9606	605.6714	960.8179 (98)
Space heat	ting efficiency	(main heat	ing system :	1)								
	332.1111	332.1111	332.1111	332.1111	332.1111	0.0000	0.0000	0.0000	0.0000	332.1111	332.1111	332.1111 (210)
Space heat	ting fuel (main	heating sy	stem)									
	297.6916	198.2562	150.0117	69.3934	23.5667	0.0000	0.0000	0.0000	0.0000	75.8664	182.3701	289.3062 (211)
Space heat	ting efficiency	(main heat	ing system :	2)								
	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000 (212)
Space heat	ting fuel (main	heating sy	stem 2)									
	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000 (213)

Space heating fuel (secondary) 0.0000 0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	(215)
Water heating											
Water heating requirement 240,0365 212,1402	225.2187	197.8800	191,6779	172.5855	170.3272	177,2240	179,2978	200.0736	212,8832	237.4164	(64)
Efficiency of water heater	172 7000	172 7000	172 7000	172.3000	172 7000	172 7000	172 7000	172 7000	172 7000	173.7000	(216)
Fuel for water heating, kWh/month	1/3./000	1/3./000	1/3./000	1/3./000	1/3./000	1/3./000	1/3./000	1/3./000	1/3./000	1/3./000	(217)
138.1902 122.1302 Space cooling fuel requirement	129.6596	113.9205	110.3500	99.3584	98.0583	102.0288	103.2227	115.1834	122.5580	136.6819	(219)
(221)m 0.0000 0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	(221)
Pumps and Fa 0.0000 0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	(231)
Lighting 24.5630 19.7053	17.7425	12.9989	10.0407	8.2034	9.1595	11.9058	15.4645	20.2903	22.9178	25.2457	(232)
(233a)m 0.0000 0.0000	0.0000	ative quant: 0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	(233a)
Electricity generated by wind turbi	.nes (Append	ix M) (negat	tive quanti	ty)							
(234a)m 0.0000 0.0000 Electricity generated by hydro-elec	0.0000 tric genera:	0.0000 tors (Append	0.0000 dix M) (neg	0.0000 ative quant	0.0000 ity)	0.0000	0.0000	0.0000	0.0000	0.0000	(234a)
(235a)m 0.0000 0.0000 Electricity used on pet electricity	0.0000	0.0000 by micro-CH	0.0000 (Appendix	0.0000 N) (negati	0.0000 ve if net g	0.0000	0.0000	0.0000	0.0000	0.0000	(235a)
(235c)m 0.0000 0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	(235c)
(233b)m 0.0000 0.0000	dix M) (neg 0.0000	ative quant: 0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	(233b)
Electricity generated by wind turbi	nes (Append. a aaaa	ix M) (negat	tive quanti ø øøøø	ty) 0 0000	0 0000	0 0000	0 0000	0 0000	0 0000	0 0000	(234h)
Electricity generated by hydro-elec	tric genera	tors (Append	dix M) (neg	ative quant	ity)	0.0000	0.0000	0.0000	0.0000	0.0000	(2340)
(235b)m 0.0000 0.0000	0.0000 botcococo	0.0000 by micpo_CH	0.0000 (Appondix	0.0000 (N) (nogati	0.0000 vo if pot a	0.0000	0.0000	0.0000	0.0000	0.0000	(235b)
(235d)m 0.0000 0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	(235d)
Annual totals kWh/year										1286 4624	(211)
Space heating fuel - main system 1										1286.4624	(211)
Space heating fuel - secondary										0.0000	(213) (215)
Efficiency of water heater										173,7000	(215)
Water heating fuel used										1391.3419	(219)
Space cooling fuel										0.0000	(221)
Electricity for pumps and fans:											
Total electricity for the above, kw	lh/year									0.0000	(231)
Electricity for lighting (calculate	ed in Append	ix L)								198.2373	(232)
Energy saving/generation technologi	es (Appendi	ces M ,N and	4 Q)								(222)
PV generation										0.0000	(233)
Hydro-electric generation (Annendix	N)									0.0000	(234) (235a)
Electricity generated - Micro CHP (Appendix N)									0.0000	(235)
Appendix Q - special features											()
Energy saved or generated										-0.0000	(236)
Energy used										0.0000	(237)
Total delivered energy for all uses	i									2876.0416	(238)
12a. Carbon dioxide emissions - Ind	lividual hea	ting systems	s including	micro-CHP							
						Energy	Emiss	ion factor		Emissions	
						kWh/year	2	kg CO2/kWh	k	g CO2/year	
Space heating - main system 1						1286.4624		0.1564		201.2432	(261)
Total CO2 associated with community	systems									0.0000	(373)
Water heating (other fuel)						1391.3419		0.1409		196.0388	(264)
Space and water heating						0.0000		0 0000		397.2820	(265)
rumps, tans and electric keep-hot						108.0000		0.0000		0.0000	(267)
Total CO2 kg/yean						190.23/3		0.1443		28.0118 /25 0020	(208) (272)
EPC Dwelling Carbon Dioxide Emissio	on Rate (DFR)								4,4800	(273)
											· -/

13a.	Primary	energy	-	Individual	heating	systems	including	micro-CHP		

Energy Primary energy	/ factor Pri	mary energy	
n/year kg	CO2/kWh	kWh/year	
5.4624	1.5791	2031.4409	(275)
		0.0000	(473)
1.3419	1.5210	2116.2221	(278)
		4147.6630	(279)
0.0000	0.0000	0.0000	(281)
3.2373	1.5338	304.0631	(282)
		4451.7260	(286)
		46.8600	(287)
	Energy Primary energy //year kg 5.4624 1.3419 0.0000 8.2373	Energy Primary energy factor Pri n/year kg CO2/kWh 5.4624 1.5791 1.3419 1.5210 0.0000 0.0000 8.2373 1.5338	Energy Primary energy factor //year kg C02/kWh kWh/year 5.4624 1.5791 2031.4409 0.0000 1.3419 1.5210 2116.2221 4147.6630 0.0000 0.0000 0.0000 8.2373 1.5338 304.0631 4451.7260 46.8600

------- - - -SAP 10 WORKSHEET FOR New Build (As Designed) (Version 10.2, February 2022) CALCULATION OF TARGET EMISSIONS

1. Overall dwell	Ling charac	teristics											
								Area	Store	y height		Volume	
Ground floor	TEA = (1a))+(1b)+(1/	·)+(1d)+(1o)	(1p)		95 0000		(m2) 95.0000	(1b) x	(m) 2.5000	(2b) =	(m3) 237.5000	(1b) -
Dwelling volume	a IFA = (1a)+(10)+(10	.)+(10)+(1e)	(11)		93.0000		(3a)+(3b)+(3c)+	(3d)+(3e))(3n) =	237.5000	(4)
2. Ventilation r	rate 											m2 non houn	
Numbon of onon o	himpovs										0 * 90 -	m3 per nour	(62)
Number of open f Number of chimme Number of flues Number of flues Number of blocke Number of passiv Number of fluele	Flues Flues eys / flues attached t attached t ed chimneys mittent ext ve vents ess gas fir	attached o solid fu o other he ract fans es	to closed f wel boiler water	ire							$\begin{array}{c} 0 & * & 20 \\ 0 & * & 20 \\ 0 & * & 10 \\ 0 & * & 20 \\ 0 & * & 35 \\ 0 & * & 20 \\ 0 & * & 35 \\ 0 & * & 20 \\ 3 & * & 10 \\ 0 & * & 10 \\ 0 & * & 40 \\ \end{array}$	0.0000 0.0000 0.0000 0.0000 0.0000 30.0000 0.0000 0.0000 0.0000	(66) (6c) (6d) (6e) (6f) (7a) (7b) (7c)
		63					(c) (-) (-			20.000	Air chang	ges per hour	(0)
Pressure test Pressure Test Me Measured/design Infiltration rat Number of sides	ethod AP50 ce sheltered	ys, flues	and tans	= (6a)+(6D)	+(6C)+(60)+	(60)+(67)+	(6g)+(7a)+(7	/D)+(/C) =		30.0006	a / (5) =	0.1263 Yes Blower Door 5.0000 0.3763 0	(8) (17) (18) (19)
Shelter factor Infiltration rat	te adjusted	to includ	le shelter f	actor					(20) = 1 - (21	[0.075 >) = (18)	x (19)] = x (20) =	1.0000 0.3763	(20) (21)
	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	0ct	Nov	Dec	
Wind speed Wind factor Adj infilt rate	5.1000 1.2750	5.0000 1.2500	4.9000 1.2250	4.4000 1.1000	4.3000 1.0750	3.8000 0.9500	3.8000 0.9500	3.7000 0.9250	4.0000 1.0000	4.3000 1.0750	4.5000 1.1250	4.70001.1750	(22) (22a)
Effective ac	0.4798 0.6151	0.4704 0.6106	0.4610 0.6063	0.4139 0.5857	0.4045 0.5818	0.3575 0.5639	0.3575 0.5639	0.3481 0.5606	0.3763 0.5708	0.4045 0.5818	0.4234 0.5896	4 0.4422 5 0.5978	(22b) (25)
3. Heat losses a	and heat lo	ss paramet	er										
Element				Gross	Openings	Ne	tArea	U-value	AxU	k	<-value	A x K	
TER Opaque door TER Opening Type Heatloss Floor 1	e (Uw = 1.2 L	0)		mz	mz	2 21 95	.1000 .6600 .0000	w/m2k 1.0000 1.1450 0.1300	2.1000 24.8015 12.3500		KJ/ MZK	KJ/K	(26) (27) (28a)
External Wall 1 External Roof 1	f ovtonnol	alamanta	1	04.7500 95.0000	23.7600	80 95	.9900 .0000	0.1800 0.1100	14.5782 10.4500				(29a) (30) (31)
Fabric heat loss	s, W/K = Su	m (A x U)	Aulli(A, IIIZ)			294	(26)(3	30) + (32)	= 64.2797				(33)
Thermal mass par List of Thermal	rameter (TM Bridges	P = Cm / 1	FA) in kJ/m	2K								280.3263	(35)
K1 Eleme E2 Other E3 Sill E4 Jamb E5 Grour E16 Corr E10 Eave	ent r lintels (nd floor (n ner (normal es (insulat	including ormal)) ion at cei	other steel	lintels)				1 1 2 4 1 1	Length Ps 4.5000 3.5000 4.5000 1.9000 0.0000 2.6000	i-value 0.0500 0.0500 0.0500 0.1600 0.0900 0.0600	T(0. 1. 6. 0. 0.	otal 7250 5750 2250 7040 9000 7560	
Thermal bridges Point Thermal br Total fabric hea	(Sum(L x P ridges at loss	si) calcul	ated using	Appendix K)				2	9.0000) + (36)	(36a) = + (36a) =	12.7250 0.0000 77.0047	(36) (37)
Ventilation heat	: loss calc	ulated mor	thly (38)m	= 0.33 x (2	5)m x (5)				,		. ,		. ,
(38)m	Jan 48.2089	Feb 47.8586	Mar 47.5152	Apr 45.9024	May 45.6006	Jun 44.1959	Jul 44.1959	Aug 43.9358	Sep 44.7370	Oct 45.6006	Nov 46.211	Dec 1 46.8493	(38)
Heat transfer co 1 Average = Sum(39	0ett L25.2136 9)m / 12 =	124.8633	124.5199	122.9071	122.6053	121.2006	121.2006	120.9405	121.7417	122.6053	123.215	8 123.8540 122.9057	(39)
HLP	Jan 1.3180	Feb 1.3144	Mar 1.3107	Apr 1.2938	May 1.2906	Jun 1.2758	Jul 1.2758	Aug 1.2731	Sep 1.2815	Oct 1.2906	Nov 1.2970	Dec 0 1.3037	(40)
HLP (average) Days in mont	31	28	31	30	31	30	31	31	30	31	30	1.2937 3 31	

4. Water heati	ng energy r	equirement	s (kWh/year	`)									
Assumed occupa Hot water usag	ncy e for mixer	showers										2.6882	(42)
Hot water usage	0.0000 e for baths	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	(42a)
Hot water usag	79.9162 e for other	78.7293 uses	77.0579	73.9763	71.6687	69.1100	67.7280	69.3876	71.1947	73.9326	77.0777	79.6460	(42b)
Average daily	42.1595 hot water u	40.6265 se (litres	39.0934 s/day)	37.5603	36.0272	34.4942	34.4942	36.0272	37.5603	39.0934	40.6265	42.1595 112.4217	(42c) (43)
Daily hat water	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	0ct	Nov	Dec	
Energy conte Energy content	122.0757 193.3381 (annual)	119.3558 169.9610	116.1513 178.5203	111.5366 152.6880	107.6960 144.9795	103.6042 127.3935	102.2221 123.6288	105.4149 130.5256	108.7550 134.1058	113.0260 153.3752 Total = S	117.7042 167.6912 um(45)m =	121.8055 190.7180 1866.9249	(44) (45)
Distribution lo	oss (46)m 29.0007	= 0.15 x (25.4942	(45)m 26.7780	22.9032	21.7469	19.1090	18.5443	19.5788	20.1159	23.0063	25.1537	28.6077	(46)
Store volume	turer decla	red loss f	factor is kr	own (kub/c	(vel							180.0000	(47) (48)
Temperature Enter (49) or Total storage	factor from (54) in (55 loss	Table 2b			ay).							0.5400 0.8381	(49) (55)
If cylinder co	25.9803 ntains dedi	23.4661 cated sola	25.9803 ar storage	25.1422	25.9803	25.1422	25.9803	25.9803	25.1422	25.9803	25.1422	25.9803	(56)
Primary loss Combi loss	25.9803 23.2624 0.0000	23.4661 21.0112 0.0000	25.9803 23.2624 0.0000	25.1422 22.5120 0.0000	25.9803 23.2624 0.0000	25.1422 22.5120 0.0000	25.9803 23.2624 0.0000	25.9803 23.2624 0.0000	25.1422 22.5120 0.0000	25.9803 23.2624 0.0000	25.1422 22.5120 0.0000	25.9803 23.2624 0.0000	(57) (59) (61)
Total heat req	uired for w 242.5807	ater heati 214.4383	ing calculat 227.7629	ed for each 200.3422	194.2221	175.0477	172.8715	179.7683	181.7600	202.6179	215.3454	239,9607	(62)
WWHRS PV diverter	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	(63a)
Solar input	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	(63c)
Output from w/	h	214 4282	227 7020	200.2422	104 2221	175 0477	172 0715	170 7692	181 7000	202 (170	215 2454	220.0007	(050)
12Total per ye	242.5807 ar (kWh/yea	r)	227.7629	200.3422	194.2221	1/5.04//	1/2.8/15	Total p	er year (kW	202.61/9 h/year) = S	um(64)m =	239.9607 2446.7176 2447	(64) (64) (64)
Electric snowe	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	(64a)
Heat gains from	m water hea	ting, kWh/	month	Tot	al Energy us	sed by inst	antaneous e	lectric sho	wer(s) (kWh	/year) = Su	m(64a)m =	0.0000	(64a)
	103.6790	92.0938	98.7521	88.8921	87.5998	80.4817	80.5007	82.7939	82.7135	90.3914	93.8807	102.8079	(65)
5. Internal ga	ins (see Ta	ble 5 and	5a)										
Metabolic gain	 c (Table 5)												
((())	Jan	Feb	Mar 124 4005	Apr	May	Jun	Jul	Aug	Sep	0ct	Nov	Dec	$\langle c c \rangle$
(66)m Lighting gains	(calculate	d in Appen	134.4085 ndix L, equa	134.4085 ation L9 or	134.4085 L9a), also s	see Table 5	134.4085	134.4085	134.4085	134.4085	134.4085	134.4085	(66)
Appliances gai	125.0529 ns (calcula	138.4515 ted in App	125.0529 endix L, eq	129.2214 uation L13	125.0529 or L13a), al	129.2214 lso see Tab	125.0529 le 5	125.0529	129.2214	125.0529	129.2214	125.0529	(67)
Cooking gains	247.9820 (calculated	250.5553 in Append	244.0707 lix L, equat	230.2658 ion L15 or	212.8396 L15a), also	196.4615 see Table	185.5198 5	182.9466	189.4311	203.2360	220.6622	237.0404	(68)
Pumps fans	36.4408	36.4408	36.4408	36.4408	36.4408	36.4408 0 0000	36.4408 0 0000	36.4408 0 0000	36.4408 0 0000	36.4408	36.4408	36.4408	(69) (70)
Losses e.g. ev	aporation (negative v	values) (Tab	ole 5)	107 5268	107 5268	107 5260	107 5269	107 5269	107 5268	107 5268	107 5268	(70)
Water heating	gains (Tabl	e 5)	-107.5268	-107.5268	-10/.5268	-107.5268	-107.5268	-107.5268	-107.5268	-107.5268	-107.5268	-107.5268	(71)
Total internal	139.3536 gains	137.0444	132.7313	123.4613	117.7417	111.7801	108.1999	111.2821	114.8799	121.4938	130.3898	138.1826	(72)
	578.7111	592.3737	568.1776	549.2710	521.9568	500.7855	482.0952	482.6042	496.8550	516.1053	546.5960	566.5985	(73)
6 Solar gains													
[Jan]			μ	m2	Solar flux Table 6a W/m2	Speci or	g fic data Table 6b	Specific or Tab	FF data le 6c	Acce fact Table	ss or 6d	Gains W	
North			5.5	500	10.6334		0.6300		.7000	0.77	00	18.0359	(74)
South West			10.5	5800 5300	46.7521		0.6300	0 0	.7000	0.77 0.77	00 00	151.1675	(78)
									.,	0.77		55.1520	(00)
Solar gains	202.3961	346.9730	480.8672	606.4636	689.2829	688.7678	662.1802	599.6612	524.2227	385.1076	242.8221	172.9543	(83)
IOTAL gains	/81.1072	939.3467	1049.0448	1155.7346	1211.2397	1189.2233	1144.2754	1082.2654	1021.0776	901.2129	/89.4181	/39.5528	(84)
7. Mean intern	al temperat	ure (heati	ing season)										
Temperature du	ring heatin	g periode	in the livi	ng area fro	m Tahle 9	 Th1 (C)						21.0000	(85)
Utilisation fa	ctor for ga	ins for li	ving area,	ni1,m (see	Table 9a)	- (c)	11	A	500	Oct	Nov	21.0000	(0))
tau	59.0790	59.2448	59.4082	60.1877	60.3359	61.0352	61.0352	61.1664	60.7639	60.3359	60.0369	59.7276	
aipna	4.9386	4.9497	4.9605	5.0125	5.0224	5.0690	5.0690	5.0//8	5.0509	5.0224	5.0025	4.9818	

util living a	rea											
-	0.9951	0.9875	0.9705	0.9193	0.8078	0.6240	0.4608	0.5054	0.7441	0.9414	0.9887	0.9963 (86)
MIT	19.6840	19.9149	20.2103	20.5729	20.8372	20.9663	20.9940	20.9905	20.9192	20.5707	20.0630	19.6507 (87)
Th 2	19.8267	19.8296	19.8324	19.8457	19.8482	19.8598	19.8598	19.8620	19.8554	19.8482	19.8432	19.8379 (88)
util rest of	house											
	0.9933	0.9830	0.9596	0.8901	0.7448	0.5251	0.3442	0.3850	0.6504	0.9136	0.9838	0.9949 (89)
MIT 2	18.3251	18.6197	18.9915	19.4372	19.7231	19.8433	19.8583	19.8593	19.8081	19.4473	18.8197	18.2906 (90)
Living area f	raction								fLA =	Living area	/ (4) =	0.6011 (91)
MIT	19.1419	19.3982	19.7241	20.1198	20.3927	20.5183	20.5409	20.5392	20.4759	20.1225	19.5670	19.1081 (92)
Temperature a	djustment											0.0000
adjusted MIT	19.1419	19.3982	19.7241	20.1198	20.3927	20.5183	20.5409	20.5392	20.4759	20.1225	19.5670	19.1081 (93)

8. Space heating requirement

	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
Utilisation	0.9919	0.9809	0.9584	0.8979	0.7765	0.5837	0.4145	0.4575	0.7038	0.9213	0.9823	0.9937 (94)
Useful gains	774.8064	921.4137	1005.4034	1037.7277	940.4705	694.3084	474.3021	495.1865	718.6607	830.2884	775.4296	734.8866 (95)
Ext temp.	4.3000	4.9000	6.5000	8.9000	11.7000	14.6000	16.6000	16.4000	14.1000	10.6000	7.1000	4.2000 (96)
Heat loss rate	e W											
	1858.4097	1810.2894	1646.6603	1378.9949	1065.7760	717.2994	477.6385	500.6017	776.2159	1167.5125	1536.1353	1846.4233 (97)
Space heating	kWh											
	806.2009	597.3245	477.0951	245.7124	93.2273	0.0000	0.0000	0.0000	0.0000	250.8947	547.7081	826.9833 (98a)
Space heating	requirement	t - total p	er year (kW	h/year)								3845.1463
Solar heating	kWh											
	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000 (98b)
Solar heating	contributio	on - total	per year (k	Wh/year)								0.0000
Space heating	kWh											
	806.2009	597.3245	477.0951	245.7124	93.2273	0.0000	0.0000	0.0000	0.0000	250.8947	547.7081	826.9833 (98c)
Space heating	requirement	t after sol	ar contribu	tion - tota	l per year	(kWh/year)						3845.1463
Space heating	per m2									(98c) / (4) =	40.4752 (99)

9a. Energy re	equirements ·	- Individua	l heating s	ystems, inc	luding micr	o-CHP							
Fraction of s Fraction of s Efficiency of Efficiency of Efficiency of	space heat fr space heat fr f main space f main space f secondary/s	rom seconda rom main sy heating sy heating sy supplementa	ry/supplementstem(s) stem 1 (in 2 stem 2 (in 2 ry heating 2	ntary syste %) %) system, %	m (Table 11)						0.0000 1.0000 92.3000 0.0000 0.0000	(201) (202) (206) (207) (208)
с. н. н.	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	0ct	Nov	Dec	
Space heating	g requirement 806.2009	597.3245	477.0951	245.7124	93.2273	0.0000	0.0000	0.0000	0.0000	250.8947	547.7081	826.9833	(98)
Space heating	92.3000	(main heat 92.3000	ing system 92.3000	1) 92.3000	92.3000	0.0000	0.0000	0.0000	0.0000	92.3000	92.3000	92.3000	(210)
Space heating	g fuel (main 873.4571	heating sy 647.1555	stem) 516.8961	266.2106	101.0047	0.0000	0.0000	0.0000	0.0000	271.8253	593.3999	895.9732	(211)
Space heating	g efficiency 0.0000	(main heat 0.0000	ing system : 0.0000	2) 0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	(212)
Space heating	g fuel (main	heating sy	stem 2)	0 0000	0 0000	0 0000	0 0000	0 0000	0 0000	0 0000	0 0000	0 0000	(213)
Space heating	g fuel (secor	ndary)	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	(213)
	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	(215)
Water heating Water heating	g requirement 242.5807	t 214.4383	227.7629	200.3422	194.2221	175.0477	172.8715	179.7683	181.7600	202.6179	215.3454	239.9607	(64)
Efficiency of	f water heate	er 86 2309	85 6776	84 5187	82 5122	79 8000	79 8000	79 8000	79 8000	84 5402	86 0608	79.8000	(216)
Fuel for wate	er heating, l	kWh/month	265 0272	227 0200	225 2050	210.2500	216 6200	225 2726	227 7004	220 6705	250 2240	277 0002	(210)
Space cooling	280.3026 g fuel requin	248.6790 rement	265.8372	237.0389	235.3858	219.3580	216.6309	225.2/36	227.7694	239.6705	250.2248	277.0803	(219)
(221)m	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	(221)
Pumps and Fa	7.3041	6.5973	7.3041	7.0685	7.3041	7.0685	7.3041	7.3041	7.0685	7.3041	7.0685	7.3041	(231)
Lighting	25.9835	20.8450	18.7686	13.7507	10.6214	8.6778	9.6892	12.5944	16.3589	21.4637	24.2432	26.7057	(232)
(233a)m	-71.6130	-93.3122	-124.0921	-128.7651	-130.4189	-118.8148	-117.2461	-114.5604	-108.9815	-101.1351	-75.9096	-62.8449	(233a)
(234a)m	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000	(234a)
(235a)m	generated by 0.0000	0.0000	tric genera 0.0000	tors (Appen 0.0000	dix M) (neg 0.0000	ative quant 0.0000	1ty) 0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	(235a)
Electricity ı (235c)m	used or net e 0.0000	electricity 0.0000	generated 0.0000	by micro-CH 0.0000	P (Appendix 0.0000	N) (negati 0.0000	ve if net 0.0000	generation) 0.0000	0.0000	0.0000	0.0000	0.0000	(235c)
Electricity g (233b)m	generated by -67.4857	PVs (Appen -137.6371	dix M) (neg -266.0150	ative quant -389.1777	ity) -505.0688	-504.1318	-498.2482	-426.1587	-318.1940	-193.2392	-88.8543	-53.7087	(233b)
Electricity g (234b)m	generated by 0.0000	wind turbi 0.0000	nes (Append: 0.0000	1x M) (nega 0.0000	tive quanti 0.0000	ty) 0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	(234b)
Electricity g (235b)m	generated by 0.0000	hydro-elec 0.0000	tric genera [.] 0.0000	tors (Appen 0.0000	dix M) (neg 0.0000	ative quant 0.0000	ity) 0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	(235b)
Electricity (235d)m	used or net e 0.0000	electricity 0.0000	generated 0.0000	by micro-CH 0.0000	P (Appendix 0.0000	N) (negati	ve if net 0.0000	generation) 0.0000	0.0000	0.0000	0.0000	0.0000	(235d)
Annual totals	s kWh/year												(
Space heating	g fuel - mair	n system 1										4165.9223	(211)
Space heating	g fuel - mair	n system 2										0.0000	(213)
Space heating	g tuel - seco	ondary										0.0000	(215)
Etticiency of	r water heate	er										/9.8000	(210)
water neating	g tuei used											2923.2511	(219)
Space cooring												0.0000	(221)

Electricity for pumps and fans: Total electricity for the above, kWh/year Electricity for lighting (calculated in Appendix L)	86.0000 (231) 209.7020 (232)
Energy saving/generation technologies (Appendices M ,N and Q) PV generation Wind generation Hydro-electric generation (Appendix N) Electricity generated - Micro CHP (Appendix N) Appendix Q - special features Energy saved or generated Energy used Energy used	-4695.6130 (233) 0.0000 (234) 0.0000 (235a 0.0000 (235) -0.0000 (235) 0.0000 (236) 0.0000 (237)

12a. Carbon dioxide emissions - Individual heating systems including micro-CHP

	Energy	Emission factor	Emissions
	kWh/year	kg CO2/kWh	kg CO2/year
Space heating - main system 1	4165.9223	0.2100	874.8437 (261)
Total CO2 associated with community systems			0.0000 (373)
Water heating (other fuel)	2923.2511	0.2100	613.8827 (264)
Space and water heating			1488.7264 (265)
Pumps, fans and electric keep-hot	86.0000	0.1387	11.9293 (267)
Energy for lighting	209.7020	0.1443	30.2665 (268)
Energy saving/generation technologies			
PV Unit electricity used in dwelling	-1247.6938	0.1363	-170.0767
PV Unit electricity exported	-3447.9192	0.1267	-436.8038
Total			-606.8806 (269)
Total CO2, kg/year			924.0416 (272)
EPC Target Carbon Dioxide Emission Rate (TER)			9.7300 (273)

13a. Primary energy - Individual heating systems including micro-CHP

E	nergy Primary energ	y factor	Primary energy
kWł	n/year kg	CO2/kWh	kWh/year
Space heating - main system 1 4165	5.9223	1.1300	4707.4922 (275)
Total CO2 associated with community systems			0.0000 (473)
Water heating (other fuel) 2923	3.2511	1.1300	3303.2737 (278)
Space and water heating			8010.7659 (279)
Pumps, fans and electric keep-hot 86	5.0000	1.5128	130.1008 (281)
Energy for lighting 209	.7020	1.5338	321.6479 (282)
Energy saving/generation technologies			
PV Unit electricity used in dwelling -1247	.6938	1.5039	-1876.3852
PV Unit electricity exported -3447	7.9192	0.4651	-1603.4895
Total			-3479.8747 (283)
Total Primary energy kWh/year			4982.6400 (286)
Target Primary Energy Rate (TPER)			52.4500 (287)

aroTHERM air-to-water heat pump

The **TECHNICAL** Brochure

Contents

Why Vaillant?	4
Air-to-water heat pumps	5
aroTHERM heat pump	6
aroTHERM hybrid systems	10
Heat exchanger module	12
Inline 6kW back-up heater	16
Wall-mounted 40 litre decoupler module	20
Heat pump cylinders	24
System controls	26
Performance data	28
System design considerations	29
Schematics and wiring diagrams	32
Training	52
Service and support	53

0

Mar. 7

Vaillant has been setting the standard in the heating market since 1874 by continually developing products that revolutionise the industry.

Today, our innovative solutions are still setting the standard in the heating marketplace. We have produced a comprehensive range of renewable technologies designed to utilise sustainable sources of energy.

Our products are at the very forefront of technology and deliver on the Vaillant promise to 'think ahead', safeguarding our planet for future generations whilst delivering energy efficient products that can reduce the cost of providing heating and hot water to the home. Every product developed by Vaillant is routinely subjected to rigorous materials analysis, robustness testing, lifetime testing and acoustics analysis. This meticulous and unremitting commitment to quality is evident at every stage in the product development process, which is applied to every spare part that we sell.

Furthermore, we are committed to finding new and ever more imaginative ways to provide service excellence before, during and long after the installation of Vaillant appliances. We strongly believe that the most advanced heating solutions on the market demand the most forward-thinking service solutions - that is why we pride ourselves on our unrivalled service support.

Air-to-water heat pumps

Air-to-water heat pumps are becoming an increasingly popular choice for those looking to install renewable products in the home. The main advantage of air-to-water heat pumps is that they can help safeguard against the fluctuations in oil and LPG prices that leave homeowners vulnerable to the ever-rising costs of heating their home.

The air-to-water pumps can be integrated into UK heating systems with ease, causing minimal disruption to the homeowner. They also eliminate the need for on-site fuel storage and can be used as part of an efficient all-electric heating solution. Furthermore, air-to-water heat pumps offer excellent energy savings compared to alternatives like standard electric, LPG or oil, especially as all Vaillant heat pumps are MCS accredited and may therefore be eligible for government funding. They can also reduce carbon emissions, whilst offering a more sustainable heating solution than oil and LPG sources.

As experts within the heating industry, Vaillant can help you to develop bespoke heating systems that meet the requirements of even the most complex installations. With our extensive range of products and system accessories, you'd be hard pressed to find another manufacturer that can match our offering of flexible system solutions.

aroTHERM is Vaillant's second generation air-to-water heat pump range. Developed in-line with the exacting standards and precision engineering you would expect when you choose Vaillant.

What's more, with a 'Quiet Mark' award you can be assured knowing the aroTHERM air-to-water heat pump is one of the most understated miracles of engineering we've ever produced.

Key features and benefits

- Four models aroTHERM 5kW, 8kW, 11kW and 15kW
- Compact size for easy siting Possible to fit 5kW, 8kW and 11kW models under a standard window
- Quiet operation

'Quiet Mark' approved thanks to its ultra quiet operation. Sound power as low as 58dB(A) (5kW) with permitted planning available as low as three metres

- Blue fin coated evaporator with anti-hydro coating Gives improved performance and extra protection against corrosion
- Set-up wizard for first installation With simple steps to help speed up commissioning
- Ability to cascade up to seven aroTHERM heat pumps Suitable for larger domestic and commercial properties

Key

- 1. Electronic box
- 2. Condenser
- 3. Four-way valve
- 4. CH pump
- 5. Compressor
- 6. Gas buffer (refrigerant heat exchanger)
- 7. Fan
- 8. Evaporator
- Solid case design with in-built anti-vandalism measure No requirement for extra vandalism cages
- Wider fin spacing and tray heater Improves de-icing efficiency
- MCS accredited Eligible for RHI schemes

aroTHERM heat pump

Dimensions

Dimension	Unit	5kW	8kW	11kW	15kW
А	mm	408	463	463	463
В	mm	980	1103	1103	1103
С	mm	840	975	975	1380
D	mm	437	437	437	437
E	mm	120	162	162	162
F	mm	740	778	778	778
G	mm	120	162	162	162

Clearances

Clearance	Unit	For heating mode
А	mm	> 250
В	mm	> 1000
С	mm	> 120
D	mm	> 600
E	mm	> 300
A B C D E	mm mm mm mm	> 250 > 1000 > 120 > 600 > 300

Condensate connections

Connection	Description
1	Condensate drain pipe
2	Adaptor
3	Cable tie
4	Elbow
5	Seal
aroTHERM heat pump

Technical Data	Unit	aroTHERM 5kW	aroTHERM 8kW	aroTHERM 11kW	aroTHERM 15kW	
Article number		0020257346	0020257347	0020257348	0020257349	
Heat pump type			Monoblock air-to-water heat pump			
Flow / return heating connections	BSP		1	1⁄4"		
Product dimensions, width	mm	980	1,103	1,103	1,103	
Product dimensions, height	mm	840	975	975	1,380	
Product dimensions, depth	mm	408	463	463	463	
Net weight	kg	86	102	126	165	
Hydraulic lines material			Cc	pper		
Hydraulic connections material			В	rass		
Hydraulic seals material			E	PDM		
Plate heat exchanger material			AISI 304 s	tainless steel		
Pump casing material			Paintec	l cast iron		
Supply voltage / frequency	V / Hz		230) / 50		
Fuse type C or D	А	16	16	20	32	
Inverter controller fuse	A / V	HRC 20 / 550				
IP rating			IF	P 25		
Maximum inrush current	А	16	16	20	25	
Maximum current consumption	А	16	16	20	25	
Pump power consumption	W	15 - 70	15 - 70	15 - 70	6 - 87	
Fan power consumption	W	15 - 42	15 - 42	15 - 76	17 - 76 (2 x fan)	
Electrical classification				I		
Overvoltage category				Ш		
Fan rotational speed	rpm	550	550	700	600	
Sound power level for A7/W35 according to EN 12102 and EN ISO 9614-1	dB(A)	58	59	65	65	
Sound power level for A7/W45 according to EN 12102 and EN ISO 9614-1	dB(A)	58	59	65	65	
Sound power level for A7/W55 according to EN 12102 and EN ISO 9614-1	dB(A)	58	60	66	66	
Maximum DHW flow temperature	°C	60	63	63	63	
Minimum air temperature (heating and cylinder charging)	°C	-15	-20	-20	-20	
Maximum air temperature (heating)	°C	28				
Maximum air temperature (cylinder charging)	°C			46		
Maximum air flow	m³/h	2,000	2,700	3,400	5,500	
Energy-related Products at 35°C*	band	A++	A++	A+	A++	
Energy-related Products at 55°C*	band	A+	A++	A+	A+	

* when installed with a VRC 700 / VRC 700f

Heating Circuit	Unit	aroTHERM 5kW	aroTHERM 8kW	aroTHERM 11kW	aroTHERM 15kW		
Minimum operating pressure	bar		1.0				
Maximum operating pressure	bar	3.0					
Heating circuit water contents in the heat pump	I	1.1	1.6	2.1	2.7		
Minimum heating circuit water contents	1	17	21	35	60		
Minimum volume flow rate	l/h	380	380	540	1,200		
Nominal volume flow rate	l/h	860	1,400	1,900	2,590		
Hydraulic pressure difference	mbar	640	450	300	370		

aroTHERM heat pump

At Vaillant, we believe that everyone should be able to utilise renewable heating technologies, not only to protect the planet, but also to benefit from savings in running costs. Vaillant has developed the aroTHERM hybrid system for those properties that have heat loss outside the scope of a single heat pump and/or have a relatively new heating system which can be costly to run. aroTHERM hybrid is designed to be operated with the VRC 700 / VRC 700f control. The VRC 700 / VRC 700f features the unique Vaillant triVAI® hybrid management system, which ensures the most efficient generator (air source heat pump, gas, oil or LPG) can be calculated and selected, to help reduce energy consumption and help customers to save money on their bills.

What is triVAI®?

aroTHERM hybrid is controlled via the VRC 700 / VRC 700f* which features Vaillant's triVAI® intelligent tariff selection tool. This ensures the system works as efficiently as possible at all times, whilst automatically selecting the most cost-effective heat source, regardless of the heating and hot water demands the system has to respond to. The VRC 700 / VRC 700f triVAI® feature selects the most cost-effective heat source based on a variety of coexisting variables, and crucially, does not require any intervention from the end user. It achieves this by analysing the Coefficient of Performance of the heat pump, efficiency of the auxiliary boiler and energy tariff prices for each heat source option. This smart approach to integrating renewable technology with existing heating systems offers more scope and flexibility for a wider range of properties.

Key features and benefits

- Unique triVAI[®] intelligent control system feature controlled via the VRC 700 / VRC 700f Three possible energy tariffs can be entered - providing maximum cost savings
- Excellent green credentials Provides significant carbon and energy bill savings
- Compatible with all boiler systems Including gas, oil and LPG
- Reduced maintenance costs Glycol only needed in the outdoor circuit to the heat pump
- Easy to install and commission Uses the Vaillant set-up wizard
- Suitable for a wide range of properties Can be installed in new build properties as well as retrofitted into older properties or those that already use an expensive heating system

Pack components

- 5kW, 8kW, 11kW or 15kW aroTHERM hybrid heat pump
- VWZ MWT 150 heat exchanger module
- VWZ MPS 40 litre decoupler module
- VR 32 eBUS coupler controls address board for use with Vaillant boilers

*VRC 700 / VRC 700f control supplied separately

aroTHERM hybrid heat pump packs for Vaillant boilers

Description	Article number
aroTHERM 5kW hybrid heat pump for Vaillant boiler	0020257350
aroTHERM 8kW hybrid heat pump for Vaillant boiler	0020257351
aroTHERM 11kW hybrid heat pump for Vaillant boiler	0020257352
aroTHERM 15kW hybrid heat pump for Vaillant boiler	0020257353

aroTHERM hybrid heat pump packs for incumbent boilers

Description	Article number
aroTHERM 5kW hybrid heat pump for incumbent boiler	0020257354
aroTHERM 8kW hybrid heat pump for incumbent boiler	0020257355
aroTHERM 11kW hybrid heat pump for incumbent boiler	0020257356
aroTHERM 15kW hybrid heat pump for incumbent boiler	0020257357

The wall-mounted heat exchanger module separates the heat pump circuit from the heating system circuit.

As the heat pump is fitted outside the property, it is subjected to changing weather conditions and as such, requires the fluid flowing though the heat pump to have frost protection, to ensure that it does not freeze and damage the heat pump. Filling the entire heating system with glycol can be expensive; the heat exchanger module allows connected glycol circuits to be separated from heating circuits. The heat exchanger module will prevent the contamination of glycol circuits in the event that radiators are removed or drained and re-filled. In addition, the heat exchanger module is supplied with integral fill and flush points for a simpler installation.

The forty plates within the module ensure that the energy is transferred from the heat pump circuit to the heating circuit as efficiently as possible. Air bleed vents/valves within the module also help prevent air getting trapped within the system.

Key features and benefits

 Designed to separate the heat pump glycol circuit from the heating circuit
 Only a small proportion of the system is required to be

filled with glycol
Wall-mounted, compact and lightweight 500mm (H) x 250mm (D) x 360mm (W) for easy and flexible siting

Key

- 1. Air bleed vent
- 2. Fill and flush points
- 3. High efficiency CH pump
- 4. PRV central heating side
- 5. Forty plate-to-plate heat exchanger
- 6. Installation heating circuit inlet 1"
- 7. Installation heating circuit outlet 1"
- 8. Safety valve drain
- 9. Glycol water circuit outlet to heat pump 1"
- 10. Glycol water circuit inlet from heat pump 1"

- Modulating circuit pump ErP A rated 35% more energy efficient than a standard pump, making the heating circuit ready to comply with future legislation
- Fill and flush points for the heat pump glycol circuit Quick and easy to install with no extra cost

Dimensions

Clearances

NOTE: All measurements are millimetres. Clearance necessary for the installation or maintenance of the appliance

Technical Data	Unit	Heat exchanger module VWZ MWT 150
Article number		0020222285
Product dimensions, width	mm	360
Product dimensions, height	mm	500
Product dimensions, depth	mm	250
Net weight	kg	12
Maximum admissible water pressure	bar	3.0
Minimum admissible water pressure	bar	0.05
Heating and glycol circuit connections	BSP	1″
Supply voltage / frequency	V / Hz	230 / 50
Maximum electrical consumption (pump)	W	45
IP rating		IP X4

This back-up heater is an inline immersion heater developed to give the system an extra boost when required, to ensure comfort levels are maintained in severe weather conditions such as extended cold snaps.

The back-up heater comes with a temperature sensor and sensor pocket to ensure that it only comes on when required and to limit its usage time as much as possible.

Key features and benefits

- Provides a back-up boost to the heating system Ensures comfort levels are maintained during extreme weather conditions
- Wall-mounted, compact and lightweight 500mm (H) x 250mm (D) x 280mm (W) for easy and flexible installation
- Flexible outputs Can be wired to give 2kW, 4kW, 6kW or staged output

Key

- 1. Air bleed vent
- 2. Heating element
- 3. Heat pump input 1"
- 4. Installation output 1"
- 5. Electrical box

Dimensions

Clearances

Technical Data	Unit	Inline 6kW back-up heater
Article number		0020222286
Product dimensions, width	mm	280
Product dimensions, height	mm	500
Product dimensions, depth	mm	250
Net weight	kg	4
Central heating maximum hydraulic pressure (PSH maximum)	bar	3.0
Central heating minimum hydraulic pressure (PSH minimum)	bar	0.5
Connections	BSP	1″
Supply voltage / frequency	V / Hz	230 / 50
Maximum electrical consumption (pump)	W	6
Maximum current	А	30
IP rating		IP 20
Cable size		3 G4

Wall-mounted 45 litre decoupler module

The wall-mounted 45 litre decoupler module gives added system flexibility to the aroTHERM range as it can act as both a hydraulic nil point in the system and a low-loss header, ensuring system flow through the heat pump and the system.

Should the system have multiple zones and/or require an additional pump to support the complete heating system, the decoupler module provides an excellent solution and is easy to site and install. The tank comes complete with an NTC sensor and pocket at the top of the tank as well as an air bleed valve/vent to help remove air from the system.

at the top of primary heat source with the boiler acting as a boost or taking over once the boiler becomes less cost-effective and/or efficient than the heat pump.

Key features and benefits

- Helps maintain heat pump and back-up appliance differentials
 Better efficiency and performance
- Four inlets Allows more system volume to be added to meet the requirements of the heat pump or to link two heat sources together in one heating circuit for a hybrid system
- Multiple tappings Flexible system design
- Thermally layered Increased performance
- Wall-mounted and compact 939mm (H) x 365mm (W) x 467mm (D) for easy and flexible installation

The four inlets can be used to link two heating sources and heat pumps into one heating set-up to create a

hybrid system. In these cases, the decoupler module acts

as a mixing module in which the heat pump acts as the

Wall-mounted 45 litre decoupler module

Dimensions

Clearances

NOTE: All measurements are millimetres. Clearance necessary for the installation or maintenance of the appliance

Wall-mounted 45 litre decoupler module

Technical Data	Unit	Decoupler module VP RW 45/2 B
Article number		0010038365
Product dimensions, width	mm	365
Product dimensions, height	mm	939
Product dimensions, depth	mm	467
Net weight	kg	18
Nominal capacity of tank	I	45
Maximum admissible water pressure	bar	3.0
Minimum admissible water pressure	bar	0.5
Left hand side connections	BSP	1 1⁄4″
Right hand side connections	BSP	1 1⁄4″

The uniSTOR heat pump cylinder range has been developed to work in harmony with Vaillant aroTHERM heat pumps, to provide highly efficient heating and hot water systems.

uniSTOR's large surface area and smooth coil design maximises heat transfer, to ensure connected Vaillant heat pumps run at their optimum efficiency, to reduce running costs and increase hot water performance.

Ranging from 150 up to 800 litres, our uniSTOR heat pump cylinders are available in both pre-plumbed (150 to 300 litres only) and standard options, giving you and your customers even more flexibility. In addition to this, the 250 and 300 litre cylinders have an increased coil size making them compatible with a wider range of heat pump systems.

uniSTOR cylinders also have a Global Warming Potential of less than 5, thanks to thermal injected insulation, as well as a 100% recyclable stainless steel tank with an ultrahard-wearing outer shell, to deliver a highly efficient and sustainable heating system.

Key features and benefits

- Thermal injected polyurethane insulation combined with vacuum panels
 Superior insulation and efficiency
- Large diameter, smooth bore coil technology Provides quiet operation, reduces build-up of scale and aids in long-term efficiency through automatic descaling
- Global Warming Potential less than 5 and ozone depletion of 0 Designed around environmental requirements
- Factory fitted immersion heater (150 to 300 litre uniSTOR cylinders) Emergency back-up in case of main heat source failure
- Thermodynamically positioned sensor pocket Optimises system performance
- Expansion vessels included or available as accessories Complete system solution offering whilst meeting all building regulations

Compatibility matrix

aroTHERM	uniSTOR 150 litre cylinder	uniSTOR 200 litre cylinder	uniSTOR 250 litre cylinder	uniSTOR 300 litre cylinder	uniSTOR 500 litre cylinder	auroSTOR 500 litre cylinder*	uniSTOR 800 litre cylinder
5kW	\checkmark	\checkmark					
8kW	\checkmark	✓	✓	\checkmark			
11kW	\checkmark	✓	\checkmark	\checkmark	\checkmark	✓	
15kW		\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark

uniSTOR cylinders

Description	Article number
150 litre pre-plumbed slimline uniSTOR	0020237129
200 litre pre-plumbed uniSTOR	0020237130
250 litre pre-plumbed uniSTOR	0020237131
300 litre pre-plumbed uniSTOR	0020237132
150 litre standard uniSTOR	0020235271
200 litre standard uniSTOR	0020235272
250 litre standard uniSTOR	0020235273
300 litre standard uniSTOR	0020235274
500 litre large capacity uniSTOR	0010019228
800 litre large capacity uniSTOR	0010019229
500 litre large capacity auroSTOR*	0010019234

 * auroSTOR 500 litre cylinder for combined heat pump and solar thermal systems.

Accessories (500 and 800 litre cylinders only)	Article number
Immersion heater 7kW (800 litre only)	0020235671
Unvented cylinder kit 1"	0020235964
Unvented cylinder kit 1¼"	0020235965
Unvented cylinder kit 11/2"	0020235966
Unvented cylinder kit 2"	0020235967
Expansion vessel 50 litre (for uniSTOR and auroSTOR 500 litre)	0020229941
Expansion vessel 80 litre (for uniSTOR 800 litre)	0020229942

NOTE: One unvented kit and expansion vessel required with each 500 and 800 litre cylinder

For further details on heat pump cylinders please see the Heat Pump Cylinder Brochure.

The Vaillant wired VRC 700 and wireless VRC 700f system controls allow your customer to take control of their Vaillant heating and hot water system.

Designed to work harmoniously with all current Vaillant products, the VRC 700 and VRC 700f effortlessly use weather compensation technology to ensure your customers appliances are working to their peak performance and always maintaining optimum efficiency.

Key features and benefits

- Designed with simplicity and familiarity in mind The VRC 700 and VRC 700f controls are designed with ease of use in mind. Using a familiar menu structure, it makes controlling the system easy and efficient
- Takes care of all Vaillant equipment automatically Intelligently communicates with all Vaillant appliances. The hybrid management system will also automatically choose the most efficient appliance, to deliver the most cost effective and energy efficient solution
- Flexible time programs Three heating and three hot water time periods can be set for each week, day or over a 24 hour period
- Holiday function

Prevents the heating and hot water coming on whilst away and reinstates it upon return

- Programs stored in memory permanently Holds time and temperature programs permanently, even in the event of a power failure
- Up to three heating circuits with domestic hot water control

Additional heating zone controls are available in wired (VR 91) and wireless (VR 91f) options and are designed to mirror the functionality of the VRC 700 and VRC 700f. This is to provide your customers with a familiar user experience anywhere in their property

- Clear, high contrast backlit display Blue backlit display, offers outstanding contrast, resulting in clear information, with low energy consumption on both the VRC 700 / VRC 700f and VR 91 / VR 91f
- Controls multiple heat pumps
 Control up to seven heat pumps with a single boiler in cascade whilst also supporting solar thermal
- Cascade functionality utilises degree minutes in order to calculate when best to use each appliance in turn It simultaneously records the individual running hours to ensure every appliance is run for an equal amount of time

Pack enables control of the aroTHERM heat pump system, one wired/wireless heating zone and hot water system

Pack includes: VRC 700(f)

Wired pack: 0020236291 **Wireless pack:** 0020259829

Pack enables control of the aroTHERM heat pump system, one wired/wireless heating zone using Vaillant controls and one heating zone using third party controls, hot water and heat exchanger module

Pack includes: VRC 700(f) and VR 70

Wired pack: 0020236292 Wireless pack: 0020259830

Pack enables control of the aroTHERM heat pump system, two wired/wireless heating zones and hot water system

Pack includes: VRC 700(f), VR 70 and VR 91(f)

Wired pack: 0020236293 Wireless pack: 0020259831 Pack enables control of the aroTHERM heat pump system, three wired/wireless heating zones and hot water system

Pack includes: VRC 700(f), VR 71 and two VR 91(f)

Wired pack: 0020236294 Wireless pack: 0020259832

Pack enables control of the aroTHERM heat pump system, one wired/wireless heating zone and solar thermal hot water system

Pack includes: Wired VRC 700(f), VR 70 and VR 11

Wired pack: 0020236295 Wireless pack:

Wireless pack 0020259833

Pack enables control of the aroTHERM heat pump system, two wired/wireless heating zones and solar thermal hot water system

Pack includes: VRC 700(f), VR 71 VR 11 and VR 91(f)

Wired pack: 0020259834 Wireless pack: 0020259835

VRC 700 and VRC 700f controls and components

Description	Article number
VRC 700 wired, weather compensating, programmable room thermostat	0020236291
VRC 700f wireless, weather compensating, programmable room thermostat	0020259829
VR 91 wired, programmable, room thermostat	0020171334
VR 91f wireless, programmable, room thermostat	0020231566
VR 70 wiring centre	0020184844
VR 71 wiring centre	0020184847
VR 32 eBUS coupler	0020139895
VR 40 two-in-seven multifunctional module	0020017744

Performance data

When designing a heating system that utilises a heat pump, there are a number of design factors that need to be considered.

Heat loss

MCS recommend using the MIS 3005 installation standard for designing a heat pump system. Systems should be specified at peak winter requirements, depending on location, to ensure year round comfort as detailed in the table below.

Location	Altitude (/m)	Hourly dry-bulb temperature (/°C) equal to or exceeded for 99% of the hours in a year
Belfast	68	-1.2
Birmingham	96	-3.4
Cardiff	67	-1.6
Edinburgh	35	-3.4
Glasgow	5	-3.9
London	25	-1.8
Manchester	75	-2.2
Plymouth	27	-0.2

A room-by-room heating requirement check will then need to be carried out at the set outside temperature in order to understand the heating needs of the total property.

Seasonal Coefficient of Performance

As the outside air temperature drops, the amount of energy the heat pump can extract decreases, meaning the heating output will decrease to ensure end user comfort at peak heating times.

				aroTHER	M output an	d SCoP tabl	e			
		35°C	flow	40°C	flow	45°C	flow	50°C	flow	55°C flow
		output (kW)	SCoP	output (kW)	SCoP	output (kW)	SCoP	output (kW)	SCoP	SCoP
5kW	-5°C	5.26		5.33		5.39		4.94		
	-3°C	5.66	4 07	5.97	3.66	6.28	3.26	5.68	3 15	3 0 3
	0°C	6.12	4.01	6.40	5.00	6.68	5.20	6.11	5.15	5.05
	2°C	6.43		6.71		6.98		6.41		
		35°C	flow	40°C	flow	45°C	flow	50°C	flow	55°C flow
		output (kW)	SCoP	output (kW)	SCoP	output (kW)	SCoP	output (kW)	SCoP	SCoP
8kW	-5°C	7.15		6.46		5.76		5.27	3.41	
	-3°C	7.70	1 5 0	6.76	4.22	5.81	3.86	5.27		2.05
	0°C	7.81	4.30	7.20		6.58		5.98		2.95
	2°C	8.27		7.74		7.20		6.47		
		35°C	flow	40°C	flow	45°C	flow	50°C	flow	55°C flow
		output (kW)	SCoP	output (kW)	SCoP	output (kW)	SCoP	output (kW)	SCoP	SCoP
11kW	-5°C	8.23	3.15	7.70	3.03	7.17	2.91	5.65		
	-3°C	8.42		7.86		7.30		6.00	20	20
	0°C	9.25		8.57		7.88		6.70	2.9	2.9
	2°C	9.81		9.02		8.28		7.00		
		35°C flow		40°C flow		45°C flow		50°C flow		55°C flow
		output (kW)	SCoP	output (kW)	SCoP	output (kW)	SCoP	output (kW)	SCoP	SCoP
15kW	-5°C	12.65		12.07		11.00	2.01	10.25		
	-3°C	12.90	2 20	12.20	2.15	11.50		10.65	2.01	2.01
	0°C	13.20	3.28	12.85	3.15	12.40	3.01	11.78	3.01	3.01
	2°C	14.00		13.55		13.10		12.45		

Seasonal Coefficient of Performance data is calculated as per EN 14825 for aroTHERM 5kW and 8kW. aroTHERM 11kW and 15kW are calculated as per EN 14511.

Planning permission

As air-to-water heat pumps are installed on the outside of the property and produce a certain level of sound (the pumps use a fan to move air which will generate noise), it must be determined if a single heat pump installation meets permitted development rules. The Vaillant MCS 020 tool can help determine sound pressure levels from our full range of air-to-water heat pumps. If the sound pressure level is 42dB(A) or above, planning permission is likely to be required. However, it is worth noting that planning permission for each county within the UK varies and that Scotland has its own rules regarding air-to-water heat pumps, which you will need to refer to.

System sizing

Determine the estimated heat loss from the property, taking into consideration the year of build. The value in table A will determine the approximate amount of kW required from the heat pump and will indicate which aroTHERM is required in table B. aroTHERM and aroTHERM hybrid heat pumps can also be installed in cascade for larger domestic and commercial properties. Contact Vaillant for further details.

Heat loss calculation table A

No house upgrade										Ē	al m²								
Year	Unit	70	80	90	100	110	120	130	140	150 1	60 1	0 18	0 19	0 200	210	220	230	240	250
1970-1995	100W/m ²	7.00	8.00	9.00	10.00	11.00	12.00 1	3.00 1	4.00										
1996-2005	80W/m ²	5.60	6.40	7.20	8.00	8.80	9.60 1	0.40	1.20 1	2.00 12	.80 13.	60 14.	15.2	0					
2006-2010	50W/m ²	3.50	4.00	4.50	5.00	5.50	6.00	5.50	. 00'2	7.50 8	.00 8.	50 9.0	9.6 0	0 10.0	0 10.50	0 11.00	11.50	12.00	12.50
2010	40W/m ²	2.80	3.20	3.60	4.00	4.40	4.80	5.20	5.60	5.00 6	.40 6.	30 7.2	0 7.6	0 8.00) 8.4C	8.8C	9.20	9.60	10.00
House upgrade for double glazing an	d loft insulation									ē	al m²								
Year	Unit	70	80	06	100	110	120	130	140	150 1	60 1	0 18	0 19	0 200	210	220	230	240	250
1970-1995	85W/m ²	5.95	6.80	7.65	8.50	9.35	10.20	11.05	. 06.11	12.75	3.60 14	45 15.	30						
1996-2005	70W/m ²	4.90	5.60	6.30	7.00	7.70	8.40	9.10	9.80 1	0.50 1	11 11	90 12.6	50 13.3	0 14.00	0 14.70	15.40	0		
2006-2010	50W/m ²	3.50	4.00	4.50	5.00	5.50	6.00	6.50	. 00'.	7.50 8	.00	50 9.0	0 9.5	0 10.0	0 10.50	0 11.00	11.50	12.00	12.50
2010	40W/m ²	2.80	3.20	3.60	4.00	4.40	4.80	5.20	5.60	5.00 6	.40 6.	80 7.2	0 7.6	0 8.00	8.04	8.80	9.20	9.60	10.00
•										1									
House upgrade for double glazing, lof-	t insulation and cavity wall insulation									Ę	al m²								
Year	Unit	70	80	90	100	110	120	130	140	150 1	60 1	0 18	0 19	0 200	210	220	230	240	250
1970-1995	70W/m ²	4.90	5.60	6.30	7.00	7.00	8.40	9.10	9.80 1	0.50 11	.20 11.	90 12.6	60 13.2	0 14.00	0				
1996-2005	60W/m ²	4.20	4.80	5.40	6.00	6.60	7.20	7.80	8.40	9.00.9	.60 10	20 10.8	30 11.4	0 12.00	0 12.60	0 13.20	13.8C	14.40	15.00
2006-2010	50W/m ²	3.50	4.00	4.50	5.00	5.50	6.00	6.50	7.00	7.50 8	.00 8.	50 9.0	9.6 0	0 10.0	0 10.5	0 11.00	11.50	12.00	12.50
2010	40W/m ²	2.80	3.20	3.60	4.00	4.40	4.80	5.20	5.60	5.00 6	.40 6.	30 7.2	0 7.6	0 8.00	8.40	98.80	9.20	9.60	10.00
Rottuerda contration table R							Au	kiliary	heat	er req	uired f	or pea	k hea	ting re	quire	ments	; (-3°C	and t	oelow)

aroTHERM calculation table B

Based on 35° C flow temperature and - 3° C outside air temperature

aroTHERM 5kW	aroTHERM 8kW	aroTHERM 11kW	aroTHERM 15kW	hybrid systems
0 - 6kW	4.5kW - 7.7kW	6.5kW - 8.4kW	8kW - 12.9kW	11kW and above

This estimating tool is to be used as a guide only and does not replace a full heat loss calculation for a property. Vaillant will not accept responsibility for the mis-sizing of a heating system. Please contact your local sales representative for more details.

750mm flexi hose

- Pre-insulated with 20mm weatherproof high-grade insulation to improve system efficiency and cut installation time
- Right angled fixing to the heat pump to minimise rear clearance
- 28mm copper compression fitting for a fast and easy installation
- 'Kink-free' bending designed to minimise the possibility of 'kinking' in the hose
- 750mm length to suit most site requirements

Description	Article number
750mm flexi hose	0020165288

Raised rubber feet

- Available in 600mm length therefore meeting all site requirements
- Raised rubber mounting that offers excellent vibration absorption to minimise noise
- Extra clearance at the base, which improves access to the condensation pipe and drainage
- Improves air flow

Description	Article number
Raised rubber feet	0020175140

Discharge vessel

- Small wall-mounted vessel
- Collects heating system glycol if the PRV opens
- Ensures glycol does not discharge into the drainage system

Description	Article number
Discharge vessel	0020145563

Heat pump, DHW tank, single zone - schematic

On first commissioning please select system No. 8 for VRC 700 / VRC 700f

32

-1022 12

2

Heat Pump

Heat pump, heat exchanger module, decoupler, DHW tank, single zone - schematic

On first commissioning please select system No. 10 for VRC 700 / VRC 700f

Schematics and wiring diagrams

Heat pump, heat exchanger module, DHW tank, underfloor heating - schematic

On first commissioning please select system No. 10 for VRC 700 / VRC 700f and system No. 1 for VR 70

Schematics and wiring diagrams

Heat pump, heat exchanger module, DHW tank, two zone - schematic

Schematics and wiring diagrams Heat pump, DHW tank, underfloor heating, one rad zone - schematic

On first commissioning please select system No. 10 for VRC 700 / VRC 700f

Schematics and wiring diagrams

Heat pump, heat exchanger module, decoupler, DHW tank, U/F, one zone - schematic

Hybrid, Vaillant combi boiler, heat exchanger module, decoupler, one zone - wiring

Hybrid, Vaillant system boiler, heat exchanger module, decoupler, U/F - schematic

Hybrid, Vaillant system boiler, heat exchanger module, decoupler, U/F - wiring

Hybrid, on/off third-party combi boiler, heat exchanger module, decoupler, U/F - schematic

Hybrid, on/off third-party system boiler, heat exchanger module, decoupler, DHW tank, U/F, one zone - schematic

Hybrid, on/off third-party system boiler, heat exchanger module, decoupler, DHW tank, U/F, one zone - wiring

As the industry's leading training provider, Vaillant offer comprehensive training courses designed to give you the skills, knowledge and understanding to help take your business forward.

Each year, we train thousands of professionals and we're continually developing and improving our training programmes and facilities to provide a service that matches your requirements. Each one of Vaillant's training courses is based on practical, hands-on experience and backed up by qualified, expert tuition to help you improve your skills and in turn increase your profit. We can even tailor courses to suit your company's individual training needs. Our training is provided at Vaillant's own Centres of Excellence, situated throughout the country to ensure, wherever you are, there's a centre within easy reach. These spacious, state-of-the-art facilities offer a comfortable and superbly equipped training environment that also gives you a unique opportunity to find out more about Vaillant's full range of services and any upcoming product developments.

For more information on our courses or to visit one of our UK Centres of Excellence: Telephone: 0345 601 8885 Email: training.enguiriesuk@vaillant-group.com

Our dedicated team of specialist engineers support any manufacturer in the UK.

Backed by an expertly trained call centre, they're available to assist you whenever you're installing renewable products. We also have an in-house systems design team, who are on hand to answer any queries you may have during the design stage.

Straightforward delivery

We will deliver your renewable system anywhere you want, be it directly to site or to the local trade counter where you place your order. On-site deliveries will arrive with the correct lifting equipment to ensure that the goods can be unloaded safely - it couldn't be easier.

Assisted commissioning*

Service engineers will visit the installation and guide you through the first system commissioning, helping with the final stages and the handover of the installation as needed.

* A charge may apply for this service.

Spares

Our UK stockists hold extensive supplies of our heat pump ranges and the majority of Vaillant spare parts so long lead times can be avoided, removing the need for extensive notice on orders. Should you have any difficulty in sourcing a particular item, then our customer service representatives are only a phone call away and will be happy to help you locate the spares you require. Notes

Notes

Customer service support contact details

Sales Support

Vaillant products are available to purchase from reputable heating merchants in the UK. To find contact details for your nearest Vaillant representative: **Telephone: 0345 602 0262**

Renewable Service

For renewable products aftersales servicing and comissioning: Telephone: 0330 100 3540 Email: aftersales@vaillant.co.uk

Technical Enquiries

For technical assistance: Telephone: 0330 100 3540 Email: aftersales@vaillant.co.uk

Training Enquiries

Vaillant provide many different training courses, for more information: Telephone: 0345 601 8885 Email: training.enguries.uk@vaillant-group.com

General enquiries

If you have a general enquiry our friendly reception staff will happily point you in the right direction: **Telephone: 0345 602 2922**

Vaillant Group UK Ltd Nottingham Road, Belper, Derbyshire DE56 1JT Telephone: 0345 602 2922 www.vaillant.co.uk info@vaillant.co.uk

