STUCTURAL DESIGN CALCULATIONS FOR
PROPOSED ALTERATIONS 498 EDGE LANE

rev A
 Rear chimney
 support added

Introduction:

The purpose of these calculations is to present only the main structural elements required form the proposed alterations, in support of building regulation submission.
The design is limited to the elements considered and the duties of principle designer is not undertaken.

Existing building framing:

The property is a traditional two storey house with load bearing masonry walls, timber floors and tiled timber roof construction.

Proposal:

Conversion of roof space into habitable space
Generally worst case beams considered and some are sized by comparison
Lateral stability is achieved by standard floor diaphragm action spanning between internal cross walls and compliance size masonry piers.

Summary of the design calculations is shown on sketches. The details are indicative and only for general guidance for the builder. The builder must check on site suitability and applicability and if the builder is not sure has any doubt or find any discrepancy then structural engineer must be consulted for further guidance and/or advice.

These calculations do not constitute a structural appraisal of the building. It is the client responsibility employs an experienced contractor who has full knowledge and understanding of current good building practice.

The calculations are not to be used as working drawings and any setting out dimension should be checked by the builder on site prior to work commencing/ordering materials.

Where these calculations are used to obtain building control local authority approvals, no reliance shall be placed upon them and contained herein are not to be used until such approval have been given in full.

Structural Reliability - in accordance with BS EN 1990 App B

```
Consequences Classes:CC2
Reliability Class: RC 2
```

Steel Execution class EXC 2
Durability: Comply with building regulation class 1 , minimum strapping requirements Design life 50years

Disproportionate Collapse Requirement

The building domestic and under 4 storey high therefore it classed as 1 low risk group.
floors to walls as described in BS 5628: Part 1; 1992 Clause 28.2.2, and Appendix C, if a strap is added to figures 23, 24 and 25.
straps at 2 m maximum but 1.2 m is recommended
Examples of horizontal and vertical tying

Figure 2: face fix strap to existing building straps at $1.2 \mathrm{~m} \mathrm{c} / \mathrm{c}$

Figure 3: Timber floor bearing directly onto a wall

Figure 10: Timber floors abutting a wall
Figure 11: Timber floor bearing directly onto a cavity separating wall

References

All Design work is to be carried out in accordance with the Building Regulations and the appropriate British standards and Code of Practice.

Architectural drawings

General Construction Notes (as applicable)

- It is the responsibility of the Builder/Contractor to ensure that all temporary and permanent construction works are carried out in a safe, competent and professional manner, to good standard of workmanship and in accordance with recognized good building practice
- Temporary support/Needle beams must be designed for a minimum line load of $20 \mathrm{kN} / \mathrm{m}$ wall run (where needle beams are to be used, they must be placed at no more than 500 mm above new lintels level).
- The Contractor is recommended to refer to the guidance given in the following Building Research Establishments Good Building Guide;

1. No. 15 - " providing temporary support during work openings in external walls" and
2. No. 20 - "Removing internal load -bearing walls in older dwellings"

- The Contractor is responsible for checking and taking all necessary measurements on site prior to any fabrication, material order and/or commencement of work
- The builder is responsible for the quality of materials and workmanship to carry out the works. All proprietary products to be installed in accordance with the manufacturers recommendations.
- All main steelwork to be Grade S355 (43) and steel flats to be S275 to BS EN 10025.
- All Internal steelwork to have one coat of Zinc Rich Primer 75μ. Touched up where damaged.
- Steel lintels to have $\mathbf{1 / 2 h r}$ fire resistance, to Building Regulation specifications
- Steel beam ends to be fully built into exiting walls.
- Steel beams are heavy and will require mechanical lifting aids. The builder must apply all the appropriate health and safety measure splice o be designed where required.
- Floor and roof levels around perimeter wall at $1.2 \mathrm{~m} \mathrm{c} / \mathrm{c}$.
- It is the responsibility of the Builder/Contractor to ensure that all temporary and permanent construction works are carried out in a safe, competent and professional manner, to good standard of workmanship and in accordance with recognized good building practice
- The Contractor is responsible for checking and taking all necessary measurements on site prior to any fabrication, material order and/or commencement of work
- Lintel beam installed into new opening in existing masonry walls to be slate wedged and mortar packed (dry mix 1 cement: 3 sand) between the soffit of the opening and the top of then lintel, in order to transfer the load onto the lintel.
- All work to comply with the current Building Regulation requirements. All work to be carried out to the satisfaction of the local Authority Building Inspector.
- All TIMBER RAFTERS/JOISTS to be connected with metal truss clip, or similar, to hips and wall plate.
- Internal load bearing walls, including party walls must be checked by the builder for condition and thickness prior to beam installations.
- Foundation General

Existing foundation to be exposed and checked for embedment depth required of 0.75 m below ground floor level to allow spread and for soil capacity required of $100 \mathrm{kN} / \mathrm{m} 2$ (such as dense sand or firm to stiff clay) to the satisfaction of the building control inspector. If the ground looked soft and/suspect, enlarge/underpin locally with mass concrete.
Effects of adjacent trees will need to be considered on foundation depth if the encountered soil is clay type strata which require the builder to seek further advice from structural Eng, NHBC guidance and/or Building inspector
When digging for new wall foumdation care need to be taken not undermine existing foumdation, boumdary foumdation, neighbouring building foundation and existing drains.

- All new foundations to be of adequate width $(600 \times 450 \mathrm{~mm}$
thick minimum UNO) and taken down to suitable depth (900 mm minimum) confirmed by the building inspector
- There is always a possibility that some initial settlement may occur due to load re-distribution and the supporting ground strata slight consolidation. This is unavoidable in these situations but will not be a recurring problem. The client may need to carry out some re-decoration when the movement has ceased.

Construction (Design \& Management) Regulations 2015:

- Under the C(D\&M) Regs the designer's responsibility is limited to the reasonably foreseeable risks to persons involved in the construction, maintenance and repair of a structure from hazards that arise from the design. Therefore, this DRA only assesses the possible hazards that may arise from the specific structural design at this stage of the project. Should any alterations to the structure be carried out without the knowledge of the designer then no responsibility can be attributed.
- It is the Contractors responsibility to use this document for the construction and future maintenance of the building as designed at this stage. This is not a Method Statement.
- Under the C(D\&M) Regulations 2015 it is the clients responsibility to ensure that every person designing the structure and every contractor who has been or may be appointed to work on the project is promptly provided with sufficient preconstruction information to ensure so far as is reasonably practicable the health and safety of all persons engaged in the construction work, liable to be affected by the way in which it is carried out, and who will use the structure in future.

Designers Risk Analysis:

Considerations to be given are:
During initial construction,
Noise and vibrations. Not only consider the effects these may have on workers but also neighbours.

1. Contamination,

Where ground may be contaminated may need to consider substructure works that do not allow leaching through surface etc.
2. Falls from height, generally over 2 m . These include around edges of deep excavations, upper floor and roof edges.
3. Collapse of the structure under both temporary and permanent imposed loads.
4. Handling of structural elements.
5. Consideration must be given to the weight of elements specified and whether mechanical handling is feasible. Otherwise consider splicing beams and columns etc or the use of lightweight masonry if acceptable.
6. Fire.

Although on site welding may be necessary, using this near combustible materials is not wise.
Long term,
7. Falls from height, generally over 2 m . Consideration should be given for the future maintenance of the building such as ladder restraint to upper walls.
8. Collapse of the structure under the permanent imposed loads. The structural elements should be clearly marked on the drawings.

Structural design calculations
Address: 498 Edge Lane
Sept 2023
Proposed Alterations

DEMOLITION/WALLS REMOVAL NOTES:

Structural design calculations
Address: 498 Edge Lane Sept 2023

Proposed Alterations

Loading

Tiles $\quad 0.55 \mathrm{kN} / \mathrm{m} 2$
Felt + Battens $\quad 0.05 \mathrm{kN} / \mathrm{m} 2$
Rafter $\quad 0.12 \mathrm{kN} / \mathrm{m} 2$
Insulation +Plaster Board $\quad 0.12 \mathrm{kN} / \mathrm{m} 2$
On Plan Roof Loading, Total $0.84 \mathrm{kN} / \mathrm{m} 2$
For Typical Roof Pitch 30 degree $\quad \therefore$ Total $=\quad \underline{1.0 \mathrm{kN} / \mathrm{m} 2}$
Flat Roof dead $\quad 0.60 \mathrm{kN} / \mathrm{m} 2$
Roof Imposed Loading
Floor Dead loading
Floor imposed
$0.60 \mathrm{kN} / \mathrm{m} 2$
$0.5 \mathrm{kN} / \mathrm{m} 2$

Walls
Brickwork, $102 \mathrm{~mm} \quad 2.10 \mathrm{kN} / \mathrm{m} 2$
Blockwork, 100mm (1350kg/m3)
1.35 kN/m2

Plaster Finish, 12.5 mm
0.12 kN/m2

HSH

Site: 498 Edge Lane
Job: structrual design
Job number:
Made by NK

SuperBeam 7.05b 411924
dormer loft+ alteration +chimn .SBW
Client copy

SuperBeam Project Summary

Project started Jan 2022 by NK
Site address: 498 Edge Lane
Job: structrual design
Client: 01

ITEMS:

1: Beam: Dormer joists
Span: 3.6 m . Reactions: R1: 0.86 kN R2: 0.86 kN
Use $50 \times 150 \mathrm{C} 16$

2: Beam: ridge
Span: 5.0 m . Reactions: R1: 12.70 kN R2: 12.70 kN
Use $152 \times 152 \times 23$ UC S355
Bearing R1: $250 \times 100 \mathrm{~mm}$ padstone
Bearing R2: As R1

3: Beam: dormer window lintel
Span: 2.1 m. Reactions: R1: 2.65 kN R2: 2.65 kN
Use 2no 50×150 C16

4: Beam: chimney beam
Span: 3.65 m . Reactions: R1: 5.97 kN R2: 5.26 kN
Use $152 \times 89 \times 16$ UB S355
Bearing R1: $89 \times 100 \mathrm{~mm}$ padstone
Bearing R2: Not specified

5: Beam: Loft Beam1 support dormer face
Span: 2.0 m . Reactions: R1: $12.90 \mathrm{kN} \mathrm{R2:} 8.72 \mathrm{kN}$
Use $127 \times 76 \times 13$ UB S355
Bearing R1: $125 \times 100 \mathrm{~mm}$ padstone
Bearing R2: $125 \times 100 \mathrm{~mm}$ padstone

6: Beam: floor joists
Span: 3.65 m . Reactions: R1: 1.46 kN R2: 1.46 kN
Use 75×150 C16

7: Beam: stair trimmer
Span: 1.6 m . Reactions: R1: 4.16 kN R2: 4.16 kN
Use 2no 50×150 C16

8: Beam: trimmer 2
Span: 3.65 m . Reactions: R1: 3.45 kN R2: 3.63 kN
Use $127 \times 76 \times 13$ UB S355
Bearing R1: $76 \times 100 \mathrm{~mm}$ padstone
Bearing R2: Not specified

HSH

Site: 498 Edge Lane Job: structrual design Job number:			Made by NK Page 11 Client copy Printed 14 Sep 2023 09:23
Super	7 7.05b 411924	dormer lo	
9:	Beam: Loft front Beam 1 Span: 5.0 m . Reactions: R1: 17.82 kN Use $203 \times 102 \times 23$ UB S355 Bearing R1: $400 \times 100 \mathrm{~mm}$ padstone Bearing R2: Not specified	$12.56 \mathrm{kN}$	
10:	Beam: ground floor knockthrough Span: 1.6 m . Reactions: R1: 14.22 kN Use $152 \times 89 \times 16$ UB S355 Bearing R1: $125 \times 100 \mathrm{~mm}$ padstone Bearing R2: $125 \times 100 \mathrm{~mm}$ padstone	$12.06 \mathrm{kN}$	

Site: 498 Edge Lane
Job: structrual design

Made by NK

Page 12
Client copy
Printed 14 Sep 2023 09:23

Span: 3.6 m.

Beam: Dormer joists

Load name
U D Flat roof dead
U L Flat roof live
Loading w1
0.60×0.4
Start x1
0

Loading w2	End $x 2$
	L

Total load: 1.73 kN
Dead:
Live:

R1comp R2comp
$0.43 \quad 0.43$
$0.43 \quad 0.43$
$\mathbf{0 . 8 6} \quad \mathbf{0 . 8 6}$
$0.43 \quad 0.43$
$0.43 \quad 0.43$

Load types: U: UDL D: Dead; L: Live (positions in m. from R1)
Maximum B.M. $=0.778 \mathrm{kNm}$ at 1.80 m . from R1
Maximum S.F. $=0.864 \mathrm{kN}$ at 0.00 m . from R1
Live load deflection $=0.525 \times 10^{8} / E \mathrm{l}$ at 1.80 m . from R1 (E in $\mathrm{N} / \mathrm{mm}^{2}$, I in cm^{4})
Total deflection $=1.05 \times 10^{8} / \mathrm{El}$ at 1.80 m . from R1

Timber beam calculation to BS5268 Part 2: 2002 using C16 timber
Use 50×150 C16 $2.8 \mathrm{~kg} / \mathrm{m}$ approx
$z=187.5 \mathrm{~cm}^{3} \quad \mathrm{I}=1,406 \mathrm{~cm}^{4}$
Timber grade: C16 Load sharing system: $\mathrm{K}_{8}=1.1$ [§2.10.11]
K_{3} (loading duration factor) $=1.25$ (medium term)
$\mathrm{K}_{7}($ depth factor $)=(300 / 150)^{0.11}=1.08[\S 2.10 .6] \quad \mathrm{K}_{8}($ load sharing factor $)=1.1[\S 2.9,2.10]$
$E=8,800 \mathrm{~N} / \mathrm{mm}^{2}\left(\mathrm{E}_{\text {mean }}\right)$

Bending

Permissible bending stress, $\sigma_{\mathrm{m}, \mathrm{adm}}=\sigma_{\mathrm{m}, \mathrm{g}} \cdot \mathrm{K}_{3} \cdot \mathrm{~K}_{7} \cdot \mathrm{~K}_{8}=5.3 \times 1.25 \times 1.08 \times 1.1=7.86 \mathrm{~N} / \mathrm{mm}^{2}$
Applied bending stress, $\sigma_{m, a}=0.778 \times 1000 / 187.5=4.15 \mathrm{~N} / \mathrm{mm}^{2} \mathrm{OK}$
Shear
Permissible shear stress, $\tau_{\text {adm } / / /}=\tau_{\mathrm{g}, / /} \cdot \mathrm{K}_{3} . \mathrm{K}_{8}=0.67 \times 1.25 \times 1.1=0.92 \mathrm{~N} / \mathrm{mm}^{2}$
Applied shear stress, $\tau_{\mathrm{a}}=0.864 \times 1000 \times 3 /(2 \times 50 \times 150)=0.17 \mathrm{~N} / \mathrm{mm}^{2} \mathrm{OK}$

Deflection

Bending deflection $=1.05 \times 10^{8} /(8,800 \times 1,406)=8.48 \mathrm{~mm}$
Mid-span shear deflection $=1.2 \times 0.778 \times 10^{6} /((\mathrm{E} / 16) \times 50 \times 150)=0.23 \mathrm{~mm}$
Total deflection $=8.48+0.23=8.71 \mathrm{~mm}(0.0024 \mathrm{~L})<=0.003 \mathrm{~L} \mathrm{OK}$

Site: 498 Edge Lane
Job: structrual design

Made by NK

Page 13
Client copy

SuperBeam 7.05b 411924
dormer loft+ alteration +chimn .SBW Printed 14 Sep 2023 09:23

Beam: ridge

Load name Loading w1
U D flat roof dead
U D pitched roof dead
U L Pitched roof live
U L Flat roof live

Loading w1	Start $x 1$	Loading w2	End $x 2$
0.6×2.1	0	L	
1×1.6	0	L	
0.6×1.6	0	L	
0.6×2.1	0	Lotal load: 25.40 kN	
Dead:			
Live:			

Span: 5.0 m .
R1comp R2comp
$3.15 \quad 3.15$
$4.00 \quad 4.00$
$2.40 \quad 2.40$
$3.15 \quad 3.15$
$12.70 \quad 12.70$
$7.15 \quad 7.15$
$5.55 \quad 5.55$

Load types: U: UDL D: Dead; L: Live (positions in m. from R1)
Maximum B.M. $=15.88 \mathrm{kNm}$ at 2.50 m . from R1
Maximum S.F. $=12.70 \mathrm{kN}$ at 0.00 m . from R1
Live load deflection $=18.1 \times 10^{8} / E l$ at 2.50 m . from R1 $\left(E\right.$ in $\mathrm{N} / \mathrm{mm}^{2}$, I in $\left.\mathrm{cm}^{4}\right)$
Total deflection $=41.3 \times 10^{8} / \mathrm{El}$ at 2.50 m . from R1

Steel beam calculation to BS449 Part 2 using S355 steel
SECTION SIZE : $152 \times 152 \times 23$ UC S355
$D=152.4 \mathrm{~mm} \quad B=152.2 \mathrm{~mm} \quad \mathrm{t}=5.8 \mathrm{~mm} \quad \mathrm{~T}=6.8 \mathrm{~mm} \quad \mathrm{I}_{\mathrm{x}}=1,250 \mathrm{~cm}^{4} \quad \mathrm{r}_{\mathrm{y}}=3.70 \mathrm{~cm} \quad Z_{x}=164 \mathrm{~cm}^{3}$
Bending: $\quad L_{e}=0=0.00 \mathrm{~m} . L_{E} / r_{y}=0.00 \times 100 / 3.70=0 \quad D / T=22.4$
Permissible bending stress, $p_{b c}=230 \mathrm{~N} / \mathrm{mm}^{2}$ (Table 3b)
Actual bending stress, $\mathrm{f}_{\mathrm{bc}}=15.9 \times 1000 / 164.0=96.8 \mathrm{~N} / \mathrm{mm}^{2} \mathrm{OK}$
Shear: \quad Maximum shear in web, $f_{s}=12.7 \times 1000 /(5.8 \times 152.4)=14.4 \mathrm{~N} / \mathrm{mm}^{2}$ OK
Beam web: Check unstiffened web capacity with load of 12.70 kN
Bearing: $p_{b}=260 \mathrm{~N} / \mathrm{mm}^{2}$ (Table 9); $\mathrm{C} 1=37.6 \mathrm{kN} ; \quad \mathrm{C} 2=1.51 \mathrm{kN} / \mathrm{mm}$
Buckling: $p_{c}=196 \mathrm{~N} / \mathrm{mm}^{2}$ (Table 17b); $\mathrm{C} 1=86.6 \mathrm{kN} ; \mathrm{C} 2=1.14 \mathrm{kN} / \mathrm{mm}$
Minimum required stiff bearing length, $L_{b}=0 \mathrm{~mm}$
Bearing capacity, $\mathrm{P}_{\mathrm{w}}=\mathrm{C} 1+\mathrm{L}_{\mathrm{b}} . \mathrm{C} 2=37.6 \mathrm{kN} \lll$
Buckling capacity, $P_{x}=C 1+L_{b} . C 2=86.6 \mathrm{kN}$
Deflection: Live load deflection $=18.1 \times 1 \mathrm{e} / /(205,000 \times 1,250)=7.0 \mathrm{~mm}(\mathrm{~L} / 709) \mathrm{OK}$
Total deflection $=41.3 \times 1 \mathrm{e} 8 /(205,000 \times 1,250)=16.1 \mathrm{~mm}(\mathrm{~L} / 310)$
Combined bending and shear check (14.c): $\left(f_{b c} / p_{b c}\right)^{2}+\left(f_{s} / p_{s}\right)^{2}=0.177$ at $2.50 \mathrm{~m} .(<=1.25 \mathrm{OK})$

HSH

Site: 498 Edge Lane	Made by NK
Job: structrual design	Page 14
Job number:	Client copy

SuperBeam 7.05b 411924
dormer loft+ alteration +chimn .SBW
Printed 14 Sep 2023 09:23

Bearings

$152 \times 152 \times 23$ UC stiff bearing length, $b_{1}=t+1.6 r+2 T=31.6 \mathrm{~mm}$
Masonry: $\quad 20 \mathrm{~N} / \mathrm{mm}^{2}$ brick, class (iii) mortar, normal const/normal mfr, Class 1 bearing Local design strength (factored) $=5 \times 1.25 / 3.5=1.79 \mathrm{~N} / \mathrm{mm}^{2}($ BS5628-1:2005 Table 2a)
R1: $\mathbf{2 5 0 \times 1 0 0} \mathbf{~ m m}$ padstone
Factored reaction $=7.15 \times 1.4+5.55 \times 1.6=18.89 \mathrm{kN}$
Factored stress under padstone $=18.89 \times 1000 / 250 \times 100=0.76 \mathrm{~N} / \mathrm{mm}^{2}$
R2 as R1

Site: 498 Edge Lane Job: structrual design Job number:				Mad Pag Clie		
SuperBeam 7.05b 411924		dorme	+ alteration +ch	SBW Print	Sep 20230	
Beam: dormer window lintel						n : 2.1 m.
Load name	Loading w1	Start x1	Loading w2	End x 2	R1comp	R2comp
U L	0	0		L	0.00	0.00
U D Flat roof dead	0.60×2.1	0		L	1.32	1.32
\cup L Flat roof live	0.6x2.1	0		L	1.32	1.32
			Tota	d: 5.29 kN	2.65	2.65
				Dead:	1.32	1.32
				Live:	1.32	1.32

Load types: U: UDL D: Dead; L: Live (positions in m. from R1)

Maximum B.M. $=1.39 \mathrm{kNm}$ at 1.05 m . from R1
Maximum S.F. $=2.65 \mathrm{kN}$ at 0.00 m . from R1
Live load deflection $=0.319 \times 10^{8} / E l$ at 1.05 m . from R1 (E in $\mathrm{N} / \mathrm{mm}^{2}$, I in cm^{4})
Total deflection $=0.638 \times 10^{8} / \mathrm{El}$ at 1.05 m . from R1

Timber beam calculation to BS5268 Part 2: 2002 using C16 timber
Use 2no 50×150 C16 $5.6 \mathrm{~kg} / \mathrm{m}$ approx
$z=375.0 \mathrm{~cm}^{3} \quad \mathrm{I}=2,813 \mathrm{~cm}^{4}$
Timber grade: C16 2 members acting together: $\mathrm{K}_{8}=1.1$ [§2.9]
K_{3} (loading duration factor) $=1.25$ (medium term)
$\mathrm{K}_{7}($ depth factor $)=(300 / 150)^{0.11}=1.08[\S 2.10 .6] \quad \mathrm{K}_{8}($ load sharing factor $)=1.1[\S 2.9,2.10]$
$E=5,800 \times 1.14=6,612 \mathrm{~N} / \mathrm{mm}^{2}\left(\mathrm{E}_{\text {min }} \cdot \mathrm{K}_{9}\right)$

Bending

Permissible bending stress, $\sigma_{m, a d m}=\sigma_{m, g} \cdot \mathrm{~K}_{3} \cdot \mathrm{~K}_{7} \cdot \mathrm{~K}_{8}=5.3 \times 1.25 \times 1.08 \times 1.1=7.86 \mathrm{~N} / \mathrm{mm}^{2}$
Applied bending stress, $\sigma_{m, a}=1.39 \times 1000 / 375=3.70 \mathrm{~N} / \mathrm{mm}^{2} \mathrm{OK}$

Shear

Permissible shear stress, $\tau_{\text {adm }, / /}=\tau_{\mathrm{g}, / /} \cdot \mathrm{K}_{3} . \mathrm{K}_{8}=0.67 \times 1.25 \times 1.1=0.92 \mathrm{~N} / \mathrm{mm}^{2}$
Applied shear stress, $\tau_{\mathrm{a}}=2.65 \times 1000 \times 3 /(2 \times 100 \times 150)=0.26 \mathrm{~N} / \mathrm{mm}^{2}$ OK

Deflection

Bending deflection $=0.638 \times 10^{8} /(6,612 \times 2,813)=3.43 \mathrm{~mm}$
Mid-span shear deflection $=1.2 \times 1.39 \times 10^{6} /((E / 16) \times 100 \times 150)=0.27 \mathrm{~mm}$
Total deflection $=3.43+0.27=3.70 \mathrm{~mm}(0.0018 \mathrm{~L})<=14 \mathrm{~mm} \mathrm{OK}$

Site: 498 Edge Lane
Job: structrual design

Made by NK

Page 16
Client copy
dormer loft+ alteration +chimn
.SBW
Printed 14 Sep 2023 09:23
Beam: chimney beam

	Load name	Loading w1	Start $x 1$	Loading w2	End $x 2$	R1comp	R2comp
U D o.w.	0.2	0	L	0.37	0.37		
R D chimney	$0.35 \times 20 \times 0.5 \times 2.5$	1.1	2.3	$\frac{5.61}{5}$	$\underline{4.89}$		
			Total load: 11.23 kN	$\mathbf{5 . 9 7}$	$\mathbf{5 . 2 6}$		
			Dead:	5.97	5.26		
			Live:	0.00	0.00		

Load types: U: UDL R: Part UDL D: Dead; L: Live (positions in m. from R1)
Maximum B.M. $=8.30 \mathrm{kNm}$ at 1.74 m . from R1
Maximum S.F. $=5.97 \mathrm{kN}$ at 0.00 m . from R1
Live load deflection $=0.00 \times 10^{8} / E \mathrm{l}$ at R 2 (E in $\mathrm{N} / \mathrm{mm}^{2}$, I in cm^{4})
Total deflection $=10.5 \times 10^{8} /$ El at 1.79 m . from R1

Steel beam calculation to BS449 Part 2 using S355 steel
SECTION SIZE : $152 \times 89 \times 16$ UB S355
$D=152.4 \mathrm{~mm} \quad B=88.7 \mathrm{~mm} \quad \mathrm{t}=4.5 \mathrm{~mm} \quad \mathrm{~T}=7.7 \mathrm{~mm} \quad \mathrm{I}_{\mathrm{x}}=834 \mathrm{~cm}^{4} \quad \mathrm{r}_{\mathrm{y}}=2.10 \mathrm{~cm} \quad Z_{x}=109 \mathrm{~cm}^{3}$
Bending: $\quad L_{e}=L=3.65 m . \quad L_{E} / r_{y}=3.65 \times 100 / 2.10=174 \quad D / T=19.8$
Permissible bending stress, $\mathrm{p}_{\mathrm{bc}}=103.9 \mathrm{~N} / \mathrm{mm}^{2}$ (Table 3b)
Actual bending stress, $\mathrm{f}_{\mathrm{bc}}=8.30 \times 1000 / 109.0=76.2 \mathrm{~N} / \mathrm{mm}^{2} \mathrm{OK}$
Shear: Maximum shear in web, $f_{s}=5.97 \times 1000 /(4.5 \times 152.4)=8.7 \mathrm{~N} / \mathrm{mm}^{2}$ OK
Beam web: Check unstiffened web capacities with loads of 5.975 kN and 5.255 kN
Bearing: $p_{b}=260 \mathrm{~N} / \mathrm{mm}^{2}$ (Table 9); $\mathrm{C} 1=31.0 \mathrm{kN} ; \mathrm{C} 2=1.17 \mathrm{kN} / \mathrm{mm}$
Buckling: $p_{c}=187 \mathrm{~N} / \mathrm{mm}^{2}$ (Table 17b); $\mathrm{C} 1=64.2 \mathrm{kN} ; \quad \mathrm{C} 2=0.842 \mathrm{kN} / \mathrm{mm}$
R1:Minimum required stiff bearing length, $L_{b}=0 \mathrm{~mm}$
Bearing capacity, $\mathrm{P}_{\mathrm{w}}=\mathrm{C} 1+\mathrm{L}_{\mathrm{b}} . \mathrm{C} 2=31.0 \mathrm{kN} \lll$
Buckling capacity, $P_{x}=C 1+L_{b} . C 2=64.2 \mathrm{kN}$
R2:Minimum required stiff bearing length, $L_{b}=0 \mathrm{~mm}$
Bearing capacity, $\mathrm{P}_{\mathrm{w}}=\mathrm{C} 1+\mathrm{L}_{\mathrm{b}} . \mathrm{C} 2=31.0 \mathrm{kN} \lll$
Buckling capacity, $P_{x}=C 1+L_{b} . C 2=64.2 \mathrm{kN}$
Deflection: Live load deflection $=0.00 \times 1 \mathrm{e} 8 /(205,000 \times 834)=0.0 \mathrm{~mm}$ OK
Total deflection $=10.5 \times 1 \mathrm{e} 8 /(205,000 \times 834)=6.1 \mathrm{~mm}(\mathrm{~L} / 594)$
Combined bending and shear check (14.c): $\left(\mathrm{f}_{\mathrm{bc}} / \mathrm{p}_{\mathrm{bc}}\right)^{2}+\left(\mathrm{f}_{\mathrm{s}} / \mathrm{p}_{\mathrm{s}}\right)^{2}=0.537$ at $1.75 \mathrm{~m} .(<=1.25 \mathrm{OK})$

Site: 498 Edge Lane	Made by NK
Job: structrual design	Page 17
Job number:	Client copy

SuperBeam 7.05b 411924
dormer loft+ alteration +chimn .SBW
Printed 14 Sep 2023 09:23

Bearings

$152 \times 89 \times 16$ UB stiff bearing length, $b_{1}=t+1.6 r+2 T=32.1 \mathrm{~mm}$
R1: $\mathbf{8 9} \times 100 \mathrm{~mm}$ padstone
Factored reaction $=5.97 \times 1.4+0.00 \times 1.6=8.36 \mathrm{kN}$
Masonry: $\quad 20 \mathrm{~N} / \mathrm{mm}^{2}$ brick, class (iii) mortar, normal const/normal mfr, Class 1 bearing
Local design strength (factored) $=5 \times 1.25 / 3.5=1.79 \mathrm{~N} / \mathrm{mm}^{2}(\mathrm{BS5628-1:2005}$ Table 2a)
Factored stress under padstone $=8.36 \times 1000 / 89 \times 100=0.94 \mathrm{~N} / \mathrm{mm}^{2}$
R2: None

Site: 498 Edge Lane

Made by NK
Job: structrual design
Page 18
Job number:
Client copy
dormer loft+ alteration +chimn

Beam: Loft Beam1 support dormer face

Load name
U D dormer face
U D Flat roof dead
U L Flat roof live
U D loft floor
U L Floor live
P D Beam: chimney beam : R1
P L Beam: chimney beam: R1

Loading w1 1×2.3
0.60×2.1
0.6×2.1
0.5×1.5
0
oading w2

Span: 2.0 m.

Total load: 21.61 kN
Dead:
Live:

R2comp
$2.30 \quad 2.30$ $1.26 \quad 1.26$
$1.26 \quad 1.26$
$0.75 \quad 0.75$
$2.25 \quad 2.25$
$5.08 \quad 0.90$
$0.00 \quad 0.00$
$12.90 \quad 8.72$
$9.39 \quad 5.21$
$3.51 \quad 3.51$

Load types: U: UDL P: PL D: Dead; L: Live (positions in m. from R1)
Maximum B.M. $=4.86 \mathrm{kNm}$ at 0.89 m . from R1
Maximum S.F. $=12.90 \mathrm{kN}$ at 0.00 m . from R1
Live load deflection $=0.731 \times 10^{8} / E \mathrm{l}$ at 1.00 m . from R1 (E in $\mathrm{N} / \mathrm{mm}^{2}$, I in cm^{4})
Total deflection $=2.07 \times 10^{8} / \mathrm{El}$ at 0.97 m . from R1

Steel beam calculation to BS449 Part 2 using S355 steel
SECTION SIZE : $127 \times 76 \times 13$ UB S355
$D=127.0 \mathrm{~mm} \quad B=76.0 \mathrm{~mm} \quad \mathrm{t}=4.0 \mathrm{~mm} \quad \mathrm{~T}=7.6 \mathrm{~mm} \quad \mathrm{I}_{\mathrm{x}}=473 \mathrm{~cm}^{4} \quad \mathrm{r}_{\mathrm{y}}=1.84 \mathrm{~cm} \quad Z_{x}=75.0 \mathrm{~cm}^{3}$
Bending: $\quad L_{e}=0.85 \mathrm{~L}=1.70 \mathrm{~m} . \mathrm{L}_{\mathrm{E}} / \mathrm{r}_{\mathrm{y}}=1.70 \times 100 / 1.84=92 \quad \mathrm{D} / \mathrm{T}=16.7$
Permissible bending stress, $\mathrm{p}_{\mathrm{bc}}=182.7 \mathrm{~N} / \mathrm{mm}^{2}$ (Table 3b)
Actual bending stress, $\mathrm{f}_{\mathrm{bc}}=4.86 \times 1000 / 75.0=64.8 \mathrm{~N} / \mathrm{mm}^{2} \mathrm{OK}$
Shear: \quad Maximum shear in web, $f_{s}=12.9 \times 1000 /(4.0 \times 127.0)=25.4 \mathrm{~N} / \mathrm{mm}^{2}$ OK
Beam web: Check unstiffened web capacities with loads of 12.90 kN and 8.716 kN
Bearing: $p_{b}=260 \mathrm{~N} / \mathrm{mm}^{2}$ (Table 9); $\mathrm{C} 1=27.4 \mathrm{kN} ; \quad \mathrm{C} 2=1.04 \mathrm{kN} / \mathrm{mm}$
Buckling: $p_{c}=192 \mathrm{~N} / \mathrm{mm}^{2}$ (Table 17b); $\mathrm{C} 1=48.8 \mathrm{kN} ; \quad \mathrm{C} 2=0.769 \mathrm{kN} / \mathrm{mm}$
R1:Minimum required stiff bearing length, $L_{b}=0 \mathrm{~mm}$
Bearing capacity, $\mathrm{P}_{\mathrm{w}}=\mathrm{C} 1+\mathrm{L}_{\mathrm{b}} . \mathrm{C} 2=27.4 \mathrm{kN} \lll$
Buckling capacity, $P_{x}=C 1+L_{b} . C 2=48.8 \mathrm{kN}$
R2:Minimum required stiff bearing length, $L_{b}=0 \mathrm{~mm}$
Bearing capacity, $\mathrm{P}_{\mathrm{w}}=\mathrm{C} 1+\mathrm{L}_{\mathrm{b}} . \mathrm{C} 2=27.4 \mathrm{kN} \lll$
Buckling capacity, $P_{x}=C 1+L_{b} . C 2=48.8 \mathrm{kN}$
Deflection: Live load deflection $=0.731 \times 1 \mathrm{e} / /(205,000 \times 473)=0.8 \mathrm{~mm}(\mathrm{~L} / 2652) \mathrm{OK}$
Total deflection $=2.07 \times 1 \mathrm{e} 8 /(205,000 \times 473)=2.1 \mathrm{~mm}(\mathrm{~L} / 939)$

HSH

Site: 498 Edge Lane Job: structrual design Job number:	Made by NK Page 19
Client copy	

R1: $125 \times 100 \mathrm{~mm}$ padstone
Factored reaction $=9.39 \times 1.4+3.51 \times 1.6=18.76 \mathrm{kN}$
Factored stress under padstone $=18.76 \times 1000 / 125 \times 100=1.50 \mathrm{~N} / \mathrm{mm}^{2}$

R2: $\mathbf{1 2 5 \times 1 0 0} \mathbf{~ m m}$ padstone

Factored reaction $=5.21 \times 1.4+3.51 \times 1.6=12.90 \mathrm{kN}$
Factored stress under padstone $=12.90 \times 1000 / 125 \times 100=1.03 \mathrm{~N} / \mathrm{mm}^{2}$

Site: 498 Edge Lane
Job: structrual design

Made by NK

Page 20

Client copy
Printed 14 Sep 2023 09:23

Beam: floor joists
dormer loft alteration +chimn .SBW

Load name
U D floor dead
U L Floor live

Loading w1	Start $x 1$	Loading w2
0.5×0.4	0	End $x 2$
1.5×0.4	0	L
		L
		Total load: 2.92 kN
		Live:

R1comp	R2comp
0.37	0.37
1.10	1.10
1.46	1.46
0.37	0.37
1.10	1.10

Load types: U: UDL D: Dead; L: Live (positions in m. from R1)
Maximum B.M. $=1.33 \mathrm{kNm}$ at 1.82 m . from R1
Maximum S.F. $=1.46 \mathrm{kN}$ at 0.00 m . from R1
Live load deflection $=1.39 \times 10^{8} / E \mathrm{l}$ at 1.83 m . from R1 $\left(E\right.$ in $\mathrm{N} / \mathrm{mm}^{2}$, I in $\left.\mathrm{cm}^{4}\right)$
Total deflection $=1.85 \times 10^{8} / \mathrm{El}$ at 1.83 m . from R1

Timber beam calculation to BS5268 Part 2: 2002 using C16 timber
Use 75×150 C16 $4.2 \mathrm{~kg} / \mathrm{m}$ approx
$z=281.3 \mathrm{~cm}^{3} \quad \mathrm{I}=2,109 \mathrm{~cm}^{4}$
Timber grade: C16 Load sharing system: $\mathrm{K}_{8}=1.1$ [§2.10.11]
K_{3} (loading duration factor) $=1.00$ (long term)
$\mathrm{K}_{7}($ depth factor $)=(300 / 150)^{0.11}=1.08[\S 2.10 .6] \quad \mathrm{K}_{8}($ load sharing factor $)=1.1[\S 2.9,2.10]$
$E=8,800 \mathrm{~N} / \mathrm{mm}^{2}\left(\mathrm{E}_{\text {mean }}\right)$

Bending

Permissible bending stress, $\sigma_{m, a d m}=\sigma_{m, g} \cdot \mathrm{~K}_{3} \cdot \mathrm{~K}_{7} \cdot \mathrm{~K}_{8}=5.3 \times 1.00 \times 1.08 \times 1.1=6.29 \mathrm{~N} / \mathrm{mm}^{2}$
Applied bending stress, $\sigma_{\mathrm{m}, \mathrm{a}}=1.33 \times 1000 / 281=4.74 \mathrm{~N} / \mathrm{mm}^{2} \mathrm{OK}$

Shear

Permissible shear stress, $\tau_{\text {adm }, / /}=\tau_{\mathrm{g}, / /} \cdot \mathrm{K}_{3} \cdot \mathrm{~K}_{8}=0.67 \times 1.00 \times 1.1=0.74 \mathrm{~N} / \mathrm{mm}^{2}$
Applied shear stress, $\tau_{\mathrm{a}}=1.46 \times 1000 \times 3 /(2 \times 75 \times 150)=0.19 \mathrm{~N} / \mathrm{mm}^{2} \mathrm{OK}$

Deflection

Bending deflection $=1.85 \times 10^{8} /(8,800 \times 2,109)=9.96 \mathrm{~mm}$
Mid-span shear deflection $=1.2 \times 1.33 \times 10^{6} /((\mathrm{E} / 16) \times 75 \times 150)=0.26 \mathrm{~mm}$
Total deflection $=9.96+0.26=10.22 \mathrm{~mm}(0.0028 \mathrm{~L})<=0.003 \mathrm{~L}$ OK

Load types: U: UDL D: Dead; L: Live (positions in m. from R1)
Maximum B.M. $=1.66 \mathrm{kNm}$ at 0.80 m . from R1
Maximum S.F. $=4.16 \mathrm{kN}$ at 0.00 m . from R1
Live load deflection $=0.333 \times 10^{8} / E l$ at 0.80 m . from R1 (E in $\mathrm{N} / \mathrm{mm}^{2}$, I in cm^{4})
Total deflection $=0.444 \times 10^{8} / \mathrm{El}$ at 0.80 m . from R1

Timber beam calculation to BS5268 Part 2: 2002 using C16 timber
Use 2no 50×150 C16 $5.6 \mathrm{~kg} / \mathrm{m}$ approx
$z=375.0 \mathrm{~cm}^{3} \quad \mathrm{I}=2,813 \mathrm{~cm}^{4}$
Timber grade: C16 2 members acting together: $\mathrm{K}_{8}=1.1$ [§2.9]
K_{3} (loading duration factor) $=1.00$ (long term)
$\mathrm{K}_{7}($ depth factor $)=(300 / 150)^{0.11}=1.08[\S 2.10 .6] \quad \mathrm{K}_{8}($ load sharing factor $)=1.1[\S 2.9,2.10]$
$E=5,800 \times 1.14=6,612 \mathrm{~N} / \mathrm{mm}^{2}\left(\mathrm{E}_{\text {min }} \cdot \mathrm{K}_{9}\right)$

Bending

Permissible bending stress, $\sigma_{m, a d m}=\sigma_{m, g} \cdot \mathrm{~K}_{3} \cdot \mathrm{~K}_{7} \cdot \mathrm{~K}_{8}=5.3 \times 1.00 \times 1.08 \times 1.1=6.29 \mathrm{~N} / \mathrm{mm}^{2}$
Applied bending stress, $\sigma_{\mathrm{m}, \mathrm{a}}=1.66 \times 1000 / 375=4.44 \mathrm{~N} / \mathrm{mm}^{2} \mathrm{OK}$
Shear
Permissible shear stress, $\tau_{\text {adm }, / /}=\tau_{\mathrm{g}, / /} \cdot \mathrm{K}_{3} . \mathrm{K}_{8}=0.67 \times 1.00 \times 1.1=0.74 \mathrm{~N} / \mathrm{mm}^{2}$
Applied shear stress, $\tau_{\mathrm{a}}=4.16 \times 1000 \times 3 /(2 \times 100 \times 150)=0.42 \mathrm{~N} / \mathrm{mm}^{2} \mathrm{OK}$

Deflection

Bending deflection $=0.444 \times 10^{8} /(6,612 \times 2,813)=2.39 \mathrm{~mm}$
Mid-span shear deflection $=1.2 \times 1.66 \times 10^{6} /((\mathrm{E} / 16) \times 100 \times 150)=0.32 \mathrm{~mm}$
Total deflection $=2.39+0.32=2.71 \mathrm{~mm}(0.0017 \mathrm{~L})<=0.003 \mathrm{~L} \mathrm{OK}$

Site: 498 Edge Lane
Job: structrual design

Made by NK

Page 22
Client copy
Printed 14 Sep 2023 09:23

Span: 3.65 m.
Beam: trimmer 2

Load name
U D floor dead
U L Floor live
P D Beam: stair trimmer: R1
P L Beam: stair trimmer: R1
dormer loft+ alteration +chimn .SBW

Loading w1	Start x1	Loading w2	End $x 2$	Span: 3.65 m.	
				R1comp	R2comp
0.5x0.4	0		$\stackrel{L}{\mathrm{~L}}$	0.37	0.37
1.5×0.4	0		L	1.10	1.10
1.04 [B/F]	1.9			0.50	0.54
3.12 [B/F]	1.9			1.50	1.62
Total load: 7.08 kN				3.45	3.63
			Dead:	0.86	0.91
			Live:	2.59	2.72

Load types: U: UDL P: PL D: Dead; L: Live (positions in m. from R1)
Maximum B.M. $=5.12 \mathrm{kNm}$ at 1.90 m . from R1
Maximum S.F. $=-3.63 \mathrm{kN}$ at R2
Live load deflection $=4.54 \times 10^{8} / E l$ at 1.86 m . from R1 $\left(E\right.$ in $\mathrm{N} / \mathrm{mm}^{2}$, I in $\left.\mathrm{cm}^{4}\right)$
Total deflection $=6.05 \times 10^{8} / \mathrm{El}$ at 1.86 m . from R1

Steel beam calculation to BS449 Part 2 using S355 steel

SECTION SIZE : $127 \times 76 \times 13$ UB S355

$D=127.0 \mathrm{~mm} \quad B=76.0 \mathrm{~mm} \quad \mathrm{t}=4.0 \mathrm{~mm} \quad \mathrm{~T}=7.6 \mathrm{~mm} \quad \mathrm{I}_{\mathrm{x}}=473 \mathrm{~cm}^{4} \quad \mathrm{r}_{\mathrm{y}}=1.84 \mathrm{~cm} \quad Z_{x}=75.0 \mathrm{~cm}^{3}$
Bending: $\quad L_{e}=0.85 \mathrm{~L}=3.10 \mathrm{~m} . \quad \mathrm{L}_{\mathrm{E}} / r_{y}=3.10 \times 100 / 1.84=169 \quad \mathrm{D} / \mathrm{T}=16.7$
Permissible bending stress, $\mathrm{p}_{\mathrm{bc}}=119.6 \mathrm{~N} / \mathrm{mm}^{2}$ (Table 3b)
Actual bending stress, $\mathrm{f}_{\mathrm{bc}}=5.12 \times 1000 / 75.0=68.3 \mathrm{~N} / \mathrm{mm}^{2} \mathrm{OK}$
Shear: \quad Maximum shear in web, $\mathrm{f}_{\mathrm{s}}=3.63 \times 1000 /(4.0 \times 127.0)=7.1 \mathrm{~N} / \mathrm{mm}^{2}$ OK
Beam web: Check unstiffened web capacities with loads of 3.455 kN and 3.625 kN
Bearing: $p_{b}=260 \mathrm{~N} / \mathrm{mm}^{2}$ (Table 9); $\mathrm{C} 1=27.4 \mathrm{kN} ; \mathrm{C} 2=1.04 \mathrm{kN} / \mathrm{mm}$
Buckling: $p_{c}=192 \mathrm{~N} / \mathrm{mm}^{2}$ (Table 17b); $\mathrm{C} 1=48.8 \mathrm{kN} ; \mathrm{C} 2=0.769 \mathrm{kN} / \mathrm{mm}$
R1:Minimum required stiff bearing length, $L_{b}=0 \mathrm{~mm}$
Bearing capacity, $\mathrm{P}_{\mathrm{w}}=\mathrm{C} 1+\mathrm{L}_{\mathrm{b}} . \mathrm{C} 2=27.4 \mathrm{kN} \lll$
Buckling capacity, $P_{x}=C 1+L_{b} . C 2=48.8 \mathrm{kN}$
R2:Minimum required stiff bearing length, $L_{b}=0 \mathrm{~mm}$
Bearing capacity, $\mathrm{P}_{\mathrm{w}}=\mathrm{C} 1+\mathrm{L}_{\mathrm{b}} . \mathrm{C} 2=27.4 \mathrm{kN} \lll$
Buckling capacity, $\mathrm{P}_{\mathrm{x}}=\mathrm{C} 1+\mathrm{L}_{\mathrm{b}} . \mathrm{C} 2=48.8 \mathrm{kN}$
Deflection: Live load deflection $=4.54 \times 1 \mathrm{e} 8 /(205,000 \times 473)=4.7 \mathrm{~mm}(\mathrm{~L} / 780) \mathrm{OK}$
Total deflection $=6.05 \times 1 \mathrm{e} 8 /(205,000 \times 473)=6.2 \mathrm{~mm}(\mathrm{~L} / 585)$
Combined bending and shear check (14.c): $\left(f_{b c} / p_{b c}\right)^{2}+\left(f_{s} / p_{s}\right)^{2}=0.326$ at $1.90 \mathrm{~m} .(<=1.25 \mathrm{OK})$

Site: 498 Edge Lane	Made by NK
Job: structrual design	Page 23
Job number:	Client copy

SuperBeam 7.05b 411924
dormer loft+ alteration +chimn .SBW
Printed 14 Sep 2023 09:23

Bearings

$127 \times 76 \times 13$ UB stiff bearing length, $b_{1}=t+1.6 r+2 T=31.4 \mathrm{~mm}$
R1: $\mathbf{7 6 \times 1 0 0} \mathbf{~ m m}$ padstone
Factored reaction $=0.86 \times 1.4+2.59 \times 1.6=5.35 \mathrm{kN}$
Masonry: $\quad 20 \mathrm{~N} / \mathrm{mm}^{2}$ brick, class (iii) mortar, normal const/normal mfr, Class 1 bearing
Local design strength (factored) $=5 \times 1.25 / 3.5=1.79 \mathrm{~N} / \mathrm{mm}^{2}($ BS5628-1:2005 Table 2a)
Factored stress under padstone $=5.35 \times 1000 / 76 \times 100=0.70 \mathrm{~N} / \mathrm{mm}^{2}$
R2: None

Site: 498 Edge Lane

Job: structrual design
Made by NK

Job number:
Page 24

SuperBeam 7.05b 411924
Client copy

Beam: Loft front Beam 1

Load name
U D Pitched roof dead
U L Pitched roof live
U D floor dead
U L Floor live
P D Beam: chimney beam: R1
P L Beam: chimney beam: R1
dormer loft+ alteration +chimn .SBW

Span: 5.0 m .

Load types: U: UDL P: PL D: Dead; L: Live (positions in m. from R1)
Maximum B.M. $=16.16 \mathrm{kNm}$ at 2.43 m . from R1
Maximum S.F. $=17.82 \mathrm{kN}$ at 0.00 m . from R1
Live load deflection $=21.0 \times 10^{8} / E l$ at 2.50 m . from R1 $\left(E\right.$ in $\mathrm{N} / \mathrm{mm}^{2}$, I in $\left.\mathrm{cm}^{4}\right)$
Total deflection $=42.5 \times 10^{8} /$ El at 2.46 m . from R1

Steel beam calculation to BS449 Part 2 using S355 steel
SECTION SIZE : $203 \times 102 \times 23$ UB S355
$D=203.2 \mathrm{~mm} \quad B=101.8 \mathrm{~mm} \quad \mathrm{t}=5.4 \mathrm{~mm} \quad \mathrm{~T}=9.3 \mathrm{~mm} \quad \mathrm{I}_{\mathrm{x}}=2,110 \mathrm{~cm}^{4} \quad \mathrm{r}_{\mathrm{y}}=2.36 \mathrm{~cm} \quad Z_{x}=207 \mathrm{~cm}^{3}$
Bending: $\quad L_{e}=L=5.00 m . \quad L_{E} / r_{y}=5.00 \times 100 / 2.36=212 \quad D / T=21.8$
Permissible bending stress, $\mathrm{p}_{\mathrm{bc}}=83 \mathrm{~N} / \mathrm{mm}^{2}$ (Table 3b)
Actual bending stress, $\mathrm{f}_{\mathrm{bc}}=16.2 \times 1000 / 207.0=78.1 \mathrm{~N} / \mathrm{mm}^{2}$ OK
Shear: \quad Maximum shear in web, $f_{s}=17.8 \times 1000 /(5.4 \times 203.2)=16.2 \mathrm{~N} / \mathrm{mm}^{2}$ OK
Beam web: Check unstiffened web capacities with loads of 17.82 kN and 12.56 kN
Bearing: $p_{b}=260 \mathrm{~N} / \mathrm{mm}^{2}$ (Table 9); $\mathrm{C} 1=41.1 \mathrm{kN} ; \quad \mathrm{C} 2=1.40 \mathrm{kN} / \mathrm{mm}$
Buckling: $p_{c}=178 \mathrm{~N} / \mathrm{mm}^{2}$ (Table 17b); $\mathrm{C} 1=97.8 \mathrm{kN} ; \mathrm{C} 2=0.963 \mathrm{kN} / \mathrm{mm}$
R1:Minimum required stiff bearing length, $L_{b}=0 \mathrm{~mm}$
Bearing capacity, $\mathrm{P}_{\mathrm{w}}=\mathrm{C} 1+\mathrm{L}_{\mathrm{b}} . \mathrm{C} 2=41.1 \mathrm{kN} \lll$
Buckling capacity, $P_{x}=C 1+L_{b} . C 2=97.8 \mathrm{kN}$
R2:Minimum required stiff bearing length, $L_{b}=0 \mathrm{~mm}$
Bearing capacity, $\mathrm{P}_{\mathrm{w}}=\mathrm{C} 1+\mathrm{L}_{\mathrm{b}} . \mathrm{C} 2=41.1 \mathrm{kN} \lll$
Buckling capacity, $P_{x}=C 1+L_{b} . C 2=97.8 \mathrm{kN}$
Deflection: Live load deflection $=21.0 \times 1 \mathrm{e} 8 /(205,000 \times 2,110)=4.9 \mathrm{~mm}(\mathrm{~L} / 1030)$ OK
Total deflection $=42.5 \times 1 \mathrm{e} 8 /(205,000 \times 2,110)=9.8 \mathrm{~mm}(\mathrm{~L} / 509)$
Combined bending and shear check (14.c): $\left(\mathrm{f}_{\mathrm{bc}} / \mathrm{p}_{\mathrm{bc}}\right)^{2}+\left(\mathrm{f}_{\mathrm{s}} / \mathrm{p}_{\mathrm{s}}\right)^{2}=0.884$ at $2.40 \mathrm{~m} .(<=1.25 \mathrm{OK})$

HSH

Site: 498 Edge Lane	Made by NK
Job: structrual design	Page 25 Client copy
Job number:	Printer

SuperBeam 7.05b 411924
dormer loft+ alteration +chimn
.SBW
Printed 14 Sep 2023 09:23

Bearings

$203 \times 102 \times 23$ UB stiff bearing length, $b_{1}=t+1.6 r+2 T=36.2 \mathrm{~mm}$
R1: $\mathbf{4 0 0} \times \mathbf{1 0 0} \mathbf{~ m m}$ padstone
Factored reaction $=11.37 \times 1.4+6.45 \times 1.6=26.23 \mathrm{kN}$
Masonry: $\quad 20 \mathrm{~N} / \mathrm{mm}^{2}$ brick, class (iii) mortar, normal const/normal mfr, Class 1 bearing
Local design strength (factored) $=5 \times 1.25 / 3.5=1.79 \mathrm{~N} / \mathrm{mm}^{2}(\mathrm{BS} 5628-1: 2005$ Table 2a)
Factored stress under padstone $=26.23 \times 1000 / 400 \times 100=0.66 \mathrm{~N} / \mathrm{mm}^{2}$
R2: None

Site: 498 Edge Lane

Made by NK
Job: structrual design
Page 26
Job number:
Client copy
SuperBeam 7.05b 411924
dormer loft+ alteration +chimn
.SBW
Printed 14 Sep 2023 09:23
Beam: ground floor knockthrough

Load name
U D dormer face
U D Flat roof dead
U L Flat roof live
U D loft floor
U L Floor live
U D wall
P D Beam: trimmer 2: R1
P L Beam: trimmer 2: R1

Loading w1
1x2.3
0.60×1.8
$0.6 \times 1.8 \quad 0$
$0.5 \times 1.8 \quad 0 \quad$ L
$0.5 \times 1.8 \quad 0 \quad$ L
$1.5 \times 1.8 \quad 0 \quad$ L
$2.3 \times 2.7 \quad 0 \quad L$
$0.86[B / F] \quad 0.3$
$2.59[B / F] \quad 0.3$

Start $x 1 \quad$ Loading w2	
0	
0	
0	
0	
0	
0	
0.3	
0.3	

Total load: 26.29 kN Dead: Live:

Span: 1.6 m.

R1comp	R2comp
1.84	1.84
0.86	0.86
0.86	0.86
0.72	0.72
2.16	2.16
4.97	4.97
0.70	0.16
2.11	0.49
$\mathbf{1 4 . 2 2}$	$\mathbf{1 2 . 0 6}$
9.09	8.55
5.13	3.51

Load types: U: UDL P: PL D: Dead; L: Live (positions in m. from R1)
Maximum B.M. $=5.10 \mathrm{kNm}$ at 0.75 m . from R1
Maximum S.F. $=14.22 \mathrm{kN}$ at 0.00 m . from R1
Live load deflection $=0.442 \times 10^{8} / E l$ at 0.77 m . from R1 (E in $\mathrm{N} / \mathrm{mm}^{2}$, I in cm^{4})
Total deflection $=1.38 \times 10^{8} / \mathrm{El}$ at 0.79 m . from R1

Steel beam calculation to BS449 Part 2 using S355 steel
SECTION SIZE : $152 \times 89 \times 16$ UB S355
$D=152.4 \mathrm{~mm} \quad B=88.7 \mathrm{~mm} \quad \mathrm{t}=4.5 \mathrm{~mm} \quad \mathrm{~T}=7.7 \mathrm{~mm} \quad \mathrm{I}_{\mathrm{x}}=834 \mathrm{~cm}^{4} \quad \mathrm{r}_{\mathrm{y}}=2.10 \mathrm{~cm} \quad Z_{\mathrm{x}}=109 \mathrm{~cm}^{3}$
Bending: $\quad L_{e}=0.85 \mathrm{~L}=1.36 \mathrm{~m} . \mathrm{L}_{\mathrm{E}} / r_{y}=1.36 \times 100 / 2.10=65 \quad \mathrm{D} / \mathrm{T}=19.8$
Permissible bending stress, $\mathrm{p}_{\mathrm{bc}}=210.7 \mathrm{~N} / \mathrm{mm}^{2}$ (Table 3b)
Actual bending stress, $\mathrm{f}_{\mathrm{bc}}=5.10 \times 1000 / 109.0=46.8 \mathrm{~N} / \mathrm{mm}^{2} \mathrm{OK}$
Shear: \quad Maximum shear in web, $f_{s}=14.2 \times 1000 /(4.5 \times 152.4)=20.7 \mathrm{~N} / \mathrm{mm}^{2}$ OK
Beam web: Check unstiffened web capacities with loads of 14.22 kN and 12.06 kN
Bearing: $p_{b}=260 \mathrm{~N} / \mathrm{mm}^{2}$ (Table 9); C1 $=31.0 \mathrm{kN} ; \quad \mathrm{C} 2=1.17 \mathrm{kN} / \mathrm{mm}$
Buckling: $p_{c}=187 \mathrm{~N} / \mathrm{mm}^{2}$ (Table 17b); $\mathrm{C} 1=64.2 \mathrm{kN} ; \quad \mathrm{C} 2=0.842 \mathrm{kN} / \mathrm{mm}$
R1:Minimum required stiff bearing length, $L_{b}=0 \mathrm{~mm}$
Bearing capacity, $\mathrm{P}_{\mathrm{w}}=\mathrm{C} 1+\mathrm{L}_{\mathrm{b}} . \mathrm{C} 2=31.0 \mathrm{kN} \lll$
Buckling capacity, $P_{x}=C 1+L_{b} . C 2=64.2 \mathrm{kN}$
R2:Minimum required stiff bearing length, $L_{b}=0 \mathrm{~mm}$
Bearing capacity, $\mathrm{P}_{\mathrm{w}}=\mathrm{C} 1+\mathrm{L}_{\mathrm{b}} . \mathrm{C} 2=31.0 \mathrm{kN} \lll$
Buckling capacity, $\mathrm{P}_{\mathrm{x}}=\mathrm{C} 1+\mathrm{L}_{\mathrm{b}} . \mathrm{C} 2=64.2 \mathrm{kN}$
Deflection: Live load deflection $=0.442 \times 1 \mathrm{e} 8 /(205,000 \times 834)=0.3 \mathrm{~mm}(\mathrm{~L} / 6194) \mathrm{OK}$

HSH

Site: 498 Edge Lane Job: structrual design Job number:	Made by NK Page 27 Client copy
SuperBeam 7.05b 411924 dormer loft+ alteration +chimn .SBW	Printed 14 Sep 2023 09:23
Total deflection $=1.38 \times 1 \mathrm{e} /(205,000 \times 834)=0.8 \mathrm{~mm}(\mathrm{~L} / 1988)$	
Combined bending and shear check (14.c): $\left(\mathrm{f}_{\mathrm{bc}} / \mathrm{p}_{\mathrm{bc}}\right)^{2}+\left(\mathrm{f}_{\mathrm{s}} / \mathrm{p}_{\mathrm{s}}\right)^{2}=0.049$ at $0.77 \mathrm{~m} .(<=1$	25 OK)
Bearings	
$152 \times 89 \times 16$ UB stiff bearing length, $\mathrm{b}_{1}=\mathrm{t}+1.6 \mathrm{r}+2 \mathrm{~T}=32.1 \mathrm{~mm}$	
Masonry: $\quad 20 \mathrm{~N} / \mathrm{mm}^{2}$ brick, class (iii) mortar, normal const/normal mfr, Class 1 bearing Local design strength (factored) $=5 \times 1.25 / 3.5=1.79 \mathrm{~N} / \mathrm{mm}^{2}($ BS5628-1:2	005 Table 2a)
R1: $125 \times 100 \mathrm{~mm}$ padstone	
Factored reaction $=9.09 \times 1.4+5.13 \times 1.6=20.94 \mathrm{kN}$	
Factored stress under padstone $=20.94 \times 1000 / 125 \times 100=1.68 \mathrm{~N} / \mathrm{mm}^{2}$	
R2: $125 \times 100 \mathrm{~mm}$ padstone	
Factored reaction $=8.55 \times 1.4+3.51 \times 1.6=17.59 \mathrm{kN}$	
Factored stress under padstone $=17.59 \times 1000 / 125 \times 100=1.41 \mathrm{~N} / \mathrm{mm}^{2}$	

Existing doors where ecessary to be replaced with Fire doors (minimum E20)

Structural support for removed walls to $S E$ design/details

Continuous mechanical extract over hob vent to tract a minimum of $301 / \mathrm{s}$ vi cooker hood or $601 / \mathrm{s}$ if cated elsewhere, extracting to the external air.

Bathrooms nical extract ventilation at 15 - bs Builder to ensure that new infill sturg panel is sound quality ((20Nbricks ilar bonded into existing to allow load ilar spread,

thumb turn or snibs). Hasp and staple locks, padlocks and sliding bolt mechanisms are unacceptable for use on the outside of bedroom doors
 including foundations, alls, roofs and lintels are to eck for adequacy prior to tof work and as required Control Officer Contro
uctural engineer to be consulted
Finished floor lemater $\quad 1 \mid$ Finished floor le $127 \times 76 \mathrm{UB}$ beam supported
flush throughou
 windows/doors/spreader to SE design/detalls Existing drainage to be
investigated by contractor prior to start

New MH/IC in accordance to United Utilitiec racuirement

Bedroom 04
$7.7 \mathrm{~m}^{2}$
removable restrictive opening device allowing 10 cm opening while device should be easily removed in case of emergancy

Walls to be removed structural engineer to be 127x76UB beam supported on 200Lg x100x70dp PPC con lintel as a padstone gle glazed spreader or use 3C dp PPC
con lintel sary

Existing ceiling to be upgraded to provid $\min .30$ minutes fire resistance between $)^{\text {units }}$
 etection a
installed,

provide 150x75C16 at 400c/c floor joists, typical

ves bedrooms and final
al = The builder must check existing walls condition and check suitability for proposed details and to discuss t beam levels and headroom to suit architect and 5 clients requirements. please consult with design engineer for further advice or clarification required. - Builder must carefully consider installation of the beams and temporary work required to carry out the work safely.
e) Steel beams exact length must be measured on site S and not taken from the design calculation. DI - Please refer to general construction notes for S foundation minimum size further requirements, ormation and guidance

- Please Refer To Architect Drawings for specifications and setting out information

Please refer to general construction notes for further requirements and guidance

Nailed 30×5 metal strap or 50×38 timber tie to provide beam lateral restraint , at every 3rd or 4th rafters approximately

100×75 continuous flange timber runner plates bolted through web with M10 at 600c/c. staggered on either sides of web.
continuous web timber runner plates full depth bolted through web with M12 at 600c/c.

Rafters to arch spec.

100×50 studs above beam. finishes and insulation to arch spec. and details
F.Joists nailed and to be tightly fitted into joist and against UB face (no gaps). Insulation to arch spec. and details

Please refer to general construction notes for further requirements, important information and guidance
metal galv joist hanger by simpson or bat typical, nailed to f. joist , web plate and flange plate of UB. Typical

Typical Steel floor Beam Connection Details to F.joists NTS - Indicative Only

Remaining Chimney breast above beam

6 mm steel seal plate
steel beam

Typical Chimney Beam support Details NTS - Indicative Only

Typical upper Ridge Beam Connection Details NTS - Indicative Only

