Address: 498 Edge Lane Proposed Alterations Sept 2023

STUCTURAL DESIGN CALCULATIONS FOR PROPOSED ALTERATIONS 498 EDGE LANE

rev A Rear chimney support added

Introduction:

The purpose of these calculations is to present only the main structural elements required form the proposed alterations, in support of building regulation submission.

The design is limited to the elements considered and the duties of principle designer is not undertaken.

Existing building framing:

The property is a traditional two storey house with load bearing masonry walls, timber floors and tiled timber roof construction.

Proposal:

Conversion of roof space into habitable space

Generally worst case beams considered and some are sized by comparison

Lateral stability is achieved by standard floor diaphragm action spanning between internal cross walls and compliance size masonry piers.

Summary of the design calculations is shown on sketches. The details are indicative and only for general guidance for the builder. The builder must check on site suitability and applicability and if the builder is not sure has any doubt or find any discrepancy then structural engineer must be consulted for further guidance and/or advice.

These calculations do not constitute a structural appraisal of the building. It is the client responsibility employs an experienced contractor who has full knowledge and understanding of current good building practice.

Design Calculation by: N Karim Structural design Engineer- 07753620457

HSH Structural design calculations Address: 498 Edge Lane Proposed Alterations

Sept 2023

The calculations are not to be used as working drawings and any setting out dimension should be checked by the builder on site prior to work commencing/ordering materials.

Where these calculations are used to obtain building control local authority approvals, no reliance shall be placed upon them and contained herein are not to be used until such approval have been given in full.

Structural Reliability - in accordance with BS EN 1990 App B

Consequences Classes:	CC2
Reliability Class:	RC 2
Steel Execution class EXC 2	

Durability: Comply with building regulation class 1, minimum strapping requirements Design life 50years

Disproportionate Collapse Requirement

The building domestic and under 4 storey high therefore it classed as 1 low risk group.

floors to walls as described in BS 5628: Part 1; 1992 Clause 28.2.2, and Appendix C, if a strap is added to figures 23, 24 and 25. straps at 2m maximum but 1.2m is recommended

Examples of horizontal and vertical tying

Design Calculation by: N Karim Structural design Engineer- 07753620457

Address: 498 Edge Lane Proposed Alterations

Sept 2023

References

All Design work is to be carried out in accordance with the Building Regulations and the appropriate British standards and Code of Practice.

Architectural drawings

General Construction Notes (as applicable)

- It is the responsibility of the Builder/Contractor to ensure that all temporary and permanent construction works are carried out in a safe, competent and professional manner, to good standard of workmanship and in accordance with recognized good building practice
- Temporary support/Needle beams must be designed for a minimum line load of 20 kN/m wall run (where needle beams are to be used, they must be placed at no more than 500mm above new lintels level).
- The Contractor is recommended to refer to the guidance given in the following Building Research Establishments Good Building Guide;
 - 1. No. 15 " providing temporary support during work openings in external walls" and

Address: 498 Edge Lane Proposed Alterations Sept 2023

- 2. No. 20 "Removing internal load –bearing walls in older dwellings"
- The Contractor is responsible for checking and taking all necessary measurements on site prior to any fabrication, material order and/or commencement of work
- The builder is responsible for the quality of materials and workmanship to carry out the works. All proprietary products to be installed in accordance with the manufacturers recommendations.
- All main steelwork to be Grade S355 (43) and steel flats to be S275 to BS EN 10025.
- All Internal steelwork to have one coat of Zinc Rich Primer 75µ. Touched up where damaged.
- Steel lintels to have 1/2hr fire resistance, to Building Regulation specifications
- Steel beam ends to be fully built into exiting walls.
- Steel beams are heavy and will require mechanical lifting aids. The builder must apply all the appropriate health and safety measure splice o be designed where required.
- Floor and roof levels around perimeter wall at 1.2m c/c.
- It is the responsibility of the Builder/Contractor to ensure that all temporary and permanent construction works are carried out in a safe, competent and professional manner, to good standard of workmanship and in accordance with recognized good building practice
- The Contractor is responsible for checking and taking all necessary measurements on site prior to any fabrication, material order and/or commencement of work
- Lintel beam installed into new opening in existing masonry walls to be slate wedged and mortar packed (dry mix 1 cement: 3 sand) between the soffit of the opening and the top of then lintel, in order to transfer the load onto the lintel.

Design Calculation by: N Karim Structural design Engineer- 07753620457

Sept 2023

Address: 498 Edge Lane Proposed Alterations

- All work to comply with the current Building Regulation requirements. All work to be carried out to the satisfaction of the local Authority Building Inspector.
- All TIMBER RAFTERS/JOISTS to be connected with metal truss clip, or similar, to hips and wall plate.
- Internal load bearing walls, including party walls must be checked by the builder for condition and thickness prior to beam installations.
- Foundation General

Existing foundation to be exposed and checked for embedment depth required of 0.75m below ground floor level to allow spread and for soil capacity required of 100 kN/m2 (such as dense sand or firm to stiff clay) to the satisfaction of the building control inspector. If the ground looked soft and/suspect, enlarge/underpin locally with mass concrete.

Effects of adjacent trees will need to be considered on foundation depth if the encountered soil is clay type strata which require the builder to seek further advice from structural Eng, NHBC guidance and/or Building inspector

When digging for new wall foundation care need to be taken not undermine existing foundation, boundary foundation, neighbouring building foundation and existing drains.

- <u>All new foundations to be of adequate width (600x450mm</u> <u>thick minimum UNO) and taken down to suitable depth</u> <u>(900mm minimum) confirmed by the building inspector</u>
- There is always a possibility that some initial settlement may occur due to load re-distribution and the supporting ground strata slight consolidation. This is unavoidable in these situations but will not be a recurring problem. The client may need to carry out some re-decoration when the movement has ceased.

Construction (Design & Management) Regulations 2015:

- Under the C(D&M) Regs the designer's responsibility is limited to the reasonably foreseeable risks to persons involved in the construction, maintenance and repair of a structure from hazards that arise from the design. Therefore, this DRA only assesses the possible hazards that may arise from the specific structural design at this stage of the project. Should any alterations to the structure be carried out without the knowledge of the designer then no responsibility can be attributed.
- It is the Contractors responsibility to use this document for the construction and future maintenance of the building as designed at this stage. This is not a Method Statement.
- Under the C(D&M) Regulations 2015 it is the clients responsibility to ensure that every person designing the structure and every contractor who has been or may be appointed to work on the project is promptly provided with sufficient preconstruction information to ensure so far as is reasonably practicable the health and safety of all persons engaged in the construction work, liable to be affected by the way in which it is carried out, and who will use the structure in future.

Sept 2023

Designers Risk Analysis:

Considerations to be given are:

During initial construction,

Noise and vibrations. Not only consider the effects these may have on workers but also neighbours.

1. Contamination,

Where ground may be contaminated may need to consider substructure works that do not allow leaching through surface etc.

- 2. Falls from height, generally over 2m. These include around edges of deep excavations, upper floor and roof edges.
- 3. Collapse of the structure under both temporary and permanent imposed loads.
- 4. Handling of structural elements.
- 5. Consideration must be given to the weight of elements specified and whether mechanical handling is feasible. Otherwise consider splicing beams and columns etc or the use of lightweight masonry if acceptable.
- 6. Fire.

Although on site welding may be necessary, using this near combustible materials is not wise.

Long term,

- 7. Falls from height, generally over 2m. Consideration should be given for the future maintenance of the building such as ladder restraint to upper walls.
- 8. Collapse of the structure under the permanent imposed loads. The structural elements should be clearly marked on the drawings.

Address: 498 Edge Lane Proposed Alterations Sept 2023

DEMOLITION/WALLS REMOVAL NOTES:

Structural design calculations

Address: 498 Edge Lane Proposed Alterations

Sept 2023

Loading

Tiles Felt + Battens Rafter Insulation +Plaster Board		0.55 kN/m2 0.05 kN/m2 0.12 kN/m2 0.12kN/m2
On Plan Roof Loading, For Typical Roof Pitch 30 degree	Total ∴Total =	0.84 kN/m2 <u>1.0 kN/m2</u>
Flat Roof dead Roof Imposed Loading Floor Dead loading Floor imposed		0.60 kN/m2 0.60 kN/m2 0.5kN/m2 1.50 kN/m2
Walls Brickwork, 102mm Blockwork, 100mm (1350kg/m3) Plaster Finish, 12.5 mm		2.10 kN/m2 1.35 kN/m2 0.12 kN/m2

	HSH	
Job: : Job n	498 Edge Lane structrual design umber: am 7.055 411924 dormer loft+ alteration +chimp. SBW	Made by NK Page 10 Client copy
	dormer loft+ alteration +chimn .SBW	Printed 14 Sep 2023 09:23
Projec Site a	et started Jan 2022 by NK ddress: 498 Edge Lane tructrual design : 01	
1:	Beam: Dormer joists Span: 3.6 m. Reactions: R1: 0.86 kN R2: 0.86 kN Use 50 x 150 C16	
2:	Beam: ridge Span: 5.0 m. Reactions: R1: 12.70 kN R2: 12.70 kN Use 152 x 152 x 23 UC S355 Bearing R1: 250 x 100 mm padstone Bearing R2: As R1	
3:	Beam: dormer window lintel Span: 2.1 m. Reactions: R1: 2.65 kN R2: 2.65 kN Use 2no 50 x 150 C16	
4:	Beam: chimney beam Span: 3.65 m. Reactions: R1: 5.97 kN R2: 5.26 kN Use 152 x 89 x 16 UB S355 Bearing R1: 89 x 100 mm padstone Bearing R2: Not specified	
5:	Beam: Loft Beam1 support dormer face Span: 2.0 m. Reactions: R1: 12.90 kN R2: 8.72 kN Use 127 x 76 x 13 UB S355 Bearing R1: 125 x 100 mm padstone Bearing R2: 125 x 100 mm padstone	
6:	Beam: floor joists Span: 3.65 m. Reactions: R1: 1.46 kN R2: 1.46 kN Use 75 x 150 C16	
7:	Beam: stair trimmer Span: 1.6 m. Reactions: R1: 4.16 kN R2: 4.16 kN Use 2no 50 x 150 C16	
8:	Beam: trimmer 2 Span: 3.65 m. Reactions: R1: 3.45 kN R2: 3.63 kN Use 127 x 76 x 13 UB S355 Bearing R1: 76 x 100 mm padstone Bearing R2: Not specified	

		HSH	
Job:	498 Edge Lane structrual design number:		Made by NK Page 11 Client copy
	am 7.05b 411924	dormer loft+ alteration +chimn .SBW	Printed 14 Sep 2023 09:23
9:	Beam: Loft front Beam 1 Span: 5.0 m. Reactions: R1: 17.82 kN R2 Use 203 x 102 x 23 UB S355 Bearing R1: 400 x 100 mm padstone Bearing R2: Not specified	:: 12.56 kN	
10:	Beam: ground floor knockthrough Span: 1.6 m. Reactions: R1: 14.22 kN R2 Use 152 x 89 x 16 UB S355 Bearing R1: 125 x 100 mm padstone Bearing R2: 125 x 100 mm padstone	: 12.06 kN	

Site: 498 Edge Lane Job: structrual design				Made I Page 1	•	
Job number:				Client		
SuperBeam 7.05b 411924		dormer l	oft+ alteration +chim	nn SBW Printed	14 Sep 2023 09:	23
Beam: Dormer joists					Sp	oan: 3.6 m.
Load name	Loading w1	Start x1	Loading w2	End x2	R1comp	R2comp
U D Flat roof dead	0.60x0.4	0	•	L	0.43	0.43
U L Flat roof live	0.6x0.4	0		L	0.43	0.43
			Total	load: 1.73 kN	0.86	0.86
				Dead:	0.43	0.43
				Live:	0.43	0.43

Maximum B.M. = 0.778 kNm at 1.80 m. from R1

Maximum S.F. = 0.864 kN at 0.00 m. from R1

Live load deflection = 0.525 x 10⁸/EI at 1.80 m. from R1 (E in N/mm², I in cm⁴)

Total deflection = 1.05 x 10⁸/El at 1.80 m. from R1

Timber beam calculation to BS5268 Part 2: 2002 using C16 timber

Use 50 x 150 C16 2.8 kg/m approx

 $z = 187.5 \text{ cm}^3$ I = 1,406 cm⁴

Timber grade: C16 Load sharing system: $K_8 = 1.1$ [§2.10.11]

 K_3 (loading duration factor) = 1.25 (medium term) K_7 (depth factor) = (300/150)^{0.11} = 1.08 [§2.10.6] K₈ (load sharing factor) = 1.1 [§2.9,2.10]

 $E = 8,800 \text{ N/mm}^2 (E_{\text{mean}})$

Bending

Permissible bending stress, $\sigma_{m,adm} = \sigma_{m,g}$.K₃.K₇.K₈ = 5.3 x 1.25 x 1.08 x 1.1 = 7.86 N/mm² Applied bending stress, $\sigma_{m,a}$ = 0.778 x 1000/187.5 = 4.15 N/mm² OK

Shear

Permissible shear stress, $\tau_{adm,//} = \tau_{g,//}$.K₃.K₈ = 0.67 x 1.25 x 1.1 = 0.92 N/mm² Applied shear stress, $\tau_a = 0.864 \times 1000 \times 3/(2 \times 50 \times 150) = 0.17 \text{ N/mm}^2 \text{ OK}$ Deflection Bending deflection = $1.05 \times 10^8 / (8,800 \times 1,406) = 8.48 \text{ mm}$ Mid-span shear deflection = 1.2 x 0.778 x 10⁶/((E/16) x 50 x 150) = 0.23 mm Total deflection = 8.48 + 0.23 = 8.71 mm (0.0024 L) <= 0.003L OK

Site: 498 Edge Lane Job: structrual design Job number: SuperBeam 7.05b 411924		dormer loft	+ alteration +chimn	Made b Page 13 Client c .SBW Printed 1	3	23
Beam: ridge					Sp	an: 5.0 m.
Load name	Loading w1	Start x1	Loading w2	End x2	R1comp	R2comp
U D flat roof dead	0.6x2.1	0	•	L	3.15	3.15
U D pitched roof dead	1x1.6	0		L	4.00	4.00
U L Pitched roof live	0.6x1.6	0		L	2.40	2.40
U L Flat roof live	0.6x2.1	0		L	3.15	3.15
			Total loa	ad: 25.40 kN	12.70	12.70
				Dead:	7.15	7.15
				Live:	5.55	5.55
	Load types: U: UDL D	D: Dead; L: Li	ve (positions in	m. from R1)		

Maximum B.M. = 15.88 kNm at 2.50 m. from R1

Maximum S.F. = 12.70 kN at 0.00 m. from R1

Live load deflection = 18.1 x 108/EI at 2.50 m. from R1 (E in N/mm², I in cm⁴)

Total deflection = 41.3 x 10⁸/El at 2.50 m. from R1

Steel beam calculation to BS449 Part 2 using S355 steel

SECTION SIZE : 152 x 152 x 23 UC S355

D=152.4 mm	B=152.2 mm t=5.8 mm T=6.8 mm I_x =1,250 cm ⁴ r_y =3.70 cm Z_x =164 cm ³
Bending:	$L_e = 0 = 0.00m$. $L_E/r_y = 0.00 \times 100/3.70 = 0$ D/T = 22.4
	Permissible bending stress, p _{bc} = 230 N/mm² (Table 3b)
	Actual bending stress, $f_{bc} = 15.9 \times 1000/164.0 = 96.8 \text{ N/mm}^2 \text{ OK}$
Shear:	Maximum shear in web, f _s = 12.7 x 1000/(5.8 x 152.4) = 14.4 N/mm ² OK
Beam web:	Check unstiffened web capacity with load of 12.70 kN
	Bearing: p _b = 260N/mm² (Table 9); C1 = 37.6 kN; C2 = 1.51 kN/mm Buckling: p _c = 196N/mm² (Table 17b); C1 = 86.6 kN; C2 = 1.14 kN/mm
	Minimum required stiff bearing length, L _b = 0mm Bearing capacity, P _w = C1 + L _b .C2 = 37.6kN <<< Buckling capacity, P _x = C1 + L _b .C2 = 86.6kN
Deflection:	Live load deflection = 18.1 x 1e8/(205,000 x 1,250) = 7.0 mm (L/709) OK
	Total deflection = 41.3 x 1e8/(205,000 x 1,250) = 16.1 mm (L/310)
Combined be	nding and shear check (14.c): $(f_{bc}/p_{bc})^2 + (f_s/p_s)^2 = 0.177$ at 2.50 m. (<=1.25 OK)

Site: 498 Edge Lane		Made by NK
Job: structrual design		Page 14
Job number:		Client copy
SuperBeam 7.05b 411924	dormer loft+ alteration +chimn .SBW	Printed 14 Sep 2023 09:23

Bearings

 $152 \times 152 \times 23$ UC stiff bearing length, b₁ = t + 1.6r + 2T = 31.6 mm

20N/mm² brick, class (iii) mortar, normal const/normal mfr, Class 1 bearing Local design strength (factored) = 5 x 1.25/3.5 = 1.79N/mm² (BS5628-1:2005 Table 2a) Masonry:

R1: 250 x 100 mm padstone

Factored reaction = 7.15 x 1.4 + 5.55 x 1.6 = 18.89 kN

Factored stress under padstone = 18.89 x 1000/250 x 100 = 0.76 N/mm²

R2 as R1

Site: 498 Edge Lane				Made	by NK	
Job: structrual design				Page 1	5	
Job number:				Client	сору	
SuperBeam 7.05b 411924		dormer l	oft+ alteration +chin	nn .SBW Printed	14 Sep 2023 09:	23
Beam: dormer window li	ntel				Sp	oan: 2.1 m.
Load name	Loading w1	Start x1	Loading w2	End x2	R1comp	R2comp
UL	0	0	-	L	0.00	0.00
U D Flat roof dead	0.60x2.1	0		L	1.32	1.32
U L Flat roof live	0.6x2.1	0		L	1.32	<u>1.32</u>
			Total	load: 5.29 kN	2.65	2.65
				Dead:	1.32	1.32

1.32

1.32

Live:

Load types: U: UDL D: Dead; L: Live (positions in m. from R1)

Maximum B.M. = 1.39 kNm at 1.05 m. from R1

Maximum S.F. = 2.65 kN at 0.00 m. from R1

Live load deflection = 0.319 x 10⁸/EI at 1.05 m. from R1 (E in N/mm², I in cm⁴)

Total deflection = 0.638 x 10⁸/El at 1.05 m. from R1

Timber beam calculation to BS5268 Part 2: 2002 using C16 timber

Use 2no 50 x 150 C16 5.6 kg/m approx

z = 375.0 cm³ I = 2,813 cm⁴

Timber grade: C16 2 members acting together: $K_8 = 1.1$ [§2.9]

 K_3 (loading duration factor) = 1.25 (medium term) K_7 (depth factor) = (300/150)^{0.11} = 1.08 [§2.10.6] K₈ (load sharing factor) = 1.1 [§2.9,2.10]

 $E = 5,800 \text{ x} 1.14 = 6,612 \text{ N/mm}^2 (E_{min}.K_9)$

Bending

Permissible bending stress, $\sigma_{m,adm} = \sigma_{m,g}$.K₃.K₇.K₈ = 5.3 x 1.25 x 1.08 x 1.1 = 7.86 N/mm² Applied bending stress, $\sigma_{m,a}$ = 1.39 x 1000/375 = 3.70 N/mm² OK

Shear

Permissible shear stress, $\tau_{adm,l'} = \tau_{g,l'}$.K₃.K₈ = 0.67 x 1.25 x 1.1 = 0.92 N/mm² Applied shear stress, τ_a = 2.65 x 1000 x 3/(2 x 100 x 150) = 0.26 N/mm² OK

Deflection

Bending deflection = $0.638 \times 10^{8}/(6,612 \times 2,813) = 3.43$ mm Mid-span shear deflection = 1.2 x 1.39 x 10⁶/((E/16) x 100 x 150) = 0.27 mm Total deflection = 3.43 + 0.27 = 3.70 mm (0.0018 L) <= 14mm OK

Site: 498 Edge Lane Job: structrual desig Job number:				Made Page 1 Client	16	
SuperBeam 7.05b 411924		dormer l	oft+ alteration +chim		14 Sep 2023 09:	23
Beam: chimney bear	m				Spa	ın: 3.65 m.
Load name	Loading w1	Start x1	Loading w2	End x2	R1comp	R2comp
UD o.w.	0.2	0	0	L	0.37	0.37
R D chimney	0.35x20x0.5x2.5	1.1		2.3	5.61	4.89
			Total lo	ad: 11.23 kN	5.97	5.26
				Dead:	5.97	5.26
				Live:	0.00	0.00

Load types: U: UDL R: Part UDL D: Dead; L: Live (positions in m. from R1)

Maximum B.M. = 8.30 kNm at 1.74 m. from R1 Maximum S.F. = 5.97 kN at 0.00 m. from R1 Live load deflection = 0.00×10^8 /EI at R2 (*E in N/mm²*, *I in cm⁴*) Total deflection = 10.5×10^8 /EI at 1.79 m. from R1

Steel beam calculation to BS449 Part 2 using S355 steel **SECTION SIZE** : **152 x 89 x 16 UB** S355

D=152.4 mm	B=88.7 mm t=4.5 mm T=7.7 mm I_x =834 cm ⁴ r_y =2.10 cm Z_x =109 cm ³
Bending:	L _e = L = 3.65m. L _E /r _y = 3.65 x 100/2.10 = 174 D/T = 19.8
	Permissible bending stress, p _{bc} = 103.9 N/mm² (Table 3b)
	Actual bending stress, f_{bc} = 8.30 x 1000/109.0 = 76.2 N/mm ² OK
Shear:	Maximum shear in web, f _s = 5.97 x 1000/(4.5 x 152.4) = 8.7 N/mm ² OK
Beam web:	Check unstiffened web capacities with loads of 5.975 kN and 5.255 kN
	Bearing: p _b = 260N/mm² (Table 9); C1 = 31.0 kN; C2 = 1.17 kN/mm Buckling: p _c = 187N/mm² (Table 17b); C1 = 64.2 kN; C2 = 0.842 kN/mm
	R1:Minimum required stiff bearing length, $L_b = 0mm$ Bearing capacity, $P_w = C1 + L_b.C2 = 31.0kN \ll$ Buckling capacity, $P_x = C1 + L_b.C2 = 64.2kN$
	R2:Minimum required stiff bearing length, L _b = 0mm Bearing capacity, P _w = C1 + L _b .C2 = 31.0kN <<< Buckling capacity, P _x = C1 + L _b .C2 = 64.2kN
Deflection:	Live load deflection = 0.00 x 1e8/(205,000 x 834) = 0.0 mm OK
	Total deflection = 10.5 x 1e8/(205,000 x 834) = 6.1 mm (L/594)
Combined be	nding and shear check (14.c): $(f_{bc}/p_{bc})^2 + (f_s/p_s)^2 = 0.537$ at 1.75 m. (<=1.25 OK)

Site: 498 Edge Lane		Made by NK
Job: structrual design		Page 17
Job number:		Client copy
SuperBeam 7.05b 411924	dormer loft+ alteration +chimn .SBW	Printed 14 Sep 2023 09:23

Bearings

152 x 89 x 16 UB stiff bearing length, $b_1 = t + 1.6r + 2T = 32.1 \text{ mm}$

R1: 89 x 100 mm padstone

Factored reaction = 5.97 x 1.4 + 0.00 x 1.6 = 8.36 kN

Masonry: 20N/mm² brick, class (iii) mortar, normal const/normal mfr, Class 1 bearing Local design strength (factored) = 5 x 1.25/3.5 = 1.79N/mm² (BS5628-1:2005 Table 2a)

Factored stress under padstone = 8.36 x 1000/89 x 100 = 0.94 N/mm²

R2: None

Site: 498 Edge Lane				Made by	NK	
Job: structrual design				Page 18		
Job number:				Client co	ру	
SuperBeam 7.05b 411924	do	rmer loft+ alte	eration +chimn .SE	3W Printed 14	Sep 2023 09:2	.3
Beam: Loft Beam1 support dormer	face				Sp	an: 2.0 m.
Load name	Loading w1	Start x1	Loading w2	End x2	R1comp	R2comp
U D dormer face	1x2.3	0		L	2.30	2.30
U D Flat roof dead	0.60x2.1	0		L	1.26	1.26
U L Flat roof live	0.6x2.1	0		L	1.26	1.26
U D loft floor	0.5x1.5	0		L	0.75	0.75
U L Floor live	1.5x1.5	0		L	2.25	2.25
P D Beam: chimney beam : R1	5.97 [B/F]	0.3			5.08	0.90
P L Beam: chimney beam : R1	0.00 [B/F]	0.3			0.00	0.00
			Total load	d: 21.61 kN	12.90	8.72
				Dead:	9.39	5.21
				Live:	3.51	3.51

Load types: U: UDL P: PL D: Dead; L: Live (positions in m. from R1)

Maximum B.M. = 4.86 kNm at 0.89 m. from R1

Maximum S.F. = 12.90 kN at 0.00 m. from R1

Live load deflection = 0.731 x 10⁸/EI at 1.00 m. from R1 (*E in N/mm²*, *I in cm⁴*)

Total deflection = 2.07 x 10⁸/El at 0.97 m. from R1

Steel beam calculation to BS449 Part 2 using S355 steel **SECTION SIZE : 127 x 76 x 13 UB** S355

D=127.0 mm	B=76.0 mm t=4.0 mm T=7.6 mm I_x =473 cm ⁴ r_y =1.84 cm Z_x =75.0 cm ³
Bending:	$L_e = 0.85L = 1.70m$. $L_E/r_y = 1.70 \times 100/1.84 = 92$ D/T = 16.7
	Permissible bending stress, p _{bc} = 182.7 N/mm ² (Table 3b)
	Actual bending stress, f_{bc} = 4.86 x 1000/75.0 = 64.8 N/mm ² OK
Shear:	Maximum shear in web, $f_s = 12.9 \times 1000/(4.0 \times 127.0) = 25.4 \text{ N/mm}^2 \text{ OK}$
Beam web:	Check unstiffened web capacities with loads of 12.90 kN and 8.716 kN
	Bearing: $p_b = 260N/mm^2$ (Table 9); C1 = 27.4 kN; C2 = 1.04 kN/mm Buckling: $p_c = 192N/mm^2$ (Table 17b); C1 = 48.8 kN; C2 = 0.769 kN/mm
	R1:Minimum required stiff bearing length, $L_b = 0mm$ Bearing capacity, $P_w = C1 + L_b.C2 = 27.4kN <<<$ Buckling capacity, $P_x = C1 + L_b.C2 = 48.8kN$
	R2:Minimum required stiff bearing length, $L_b = 0mm$ Bearing capacity, $P_w = C1 + L_b.C2 = 27.4kN \ll$ Buckling capacity, $P_x = C1 + L_b.C2 = 48.8kN$
Deflection:	Live load deflection = 0.731 x 1e8/(205,000 x 473) = 0.8 mm (L/2652) OK
	Total deflection = 2.07 x 1e8/(205,000 x 473) = 2.1 mm (L/939)

Site: 498 Edge Lane Job: structrual design		Made by NK Page 19
Job number:		Client copy
SuperBeam 7.05b 411924	dormer loft+ alteration +chimn .SBW	Printed 14 Sep 2023 09:23
Combined bending and shear check (14.c): $(f_{bc}/p_{bc})^2$	$(f_s/p_s)^2 = 0.126 \text{ at } 0.88 \text{ m.}$	25 OK)

Bearings

 127 x 76 x 13 UB stiff bearing length, b₁ = t + 1.6r + 2T = 31.4 mm
Masonry: 20N/mm² brick, class (iii) mortar, normal const/normal mfr, Class 1 bearing Local design strength (factored) = 5 x 1.25/3.5 = 1.79N/mm² (BS5628-1:2005 Table 2a)

R1: 125 x 100 mm padstone

Factored reaction = 9.39 x 1.4 + 3.51 x 1.6 = 18.76 kN Factored stress under padstone = 18.76 x 1000/125 x 100 = 1.50 N/mm²

R2: 125 x 100 mm padstone

Factored reaction = 5.21 x 1.4 + 3.51 x 1.6 = 12.90 kN Factored stress under padstone = 12.90 x 1000/125 x 100 = 1.03 N/mm²

Site: 498 Edge Lane Job: structrual design Job number:				Page	by NK 20 t copy	
SuperBeam 7.05b 411924		dorn	ner loft+ alteration +c	himn .SBW Printee	d 14 Sep 2023 09:	23
Beam: floor joists					Spa	an: 3.65 m.
Load name	Loading w1	Start x1	Loading w2	End x2	R1comp	R2comp
U D floor dead	0.5x0.4	0	-	L	0.37	0.37
U L Floor live	1.5x0.4	0		L	1.10	<u>1.10</u>
			Tota	load: 2.92 kN	1.46	1.46
				Dead:	0.37	0.37
				Live:	1.10	1.10
	Load types: U: l	UDL D: Dead	L: Live (position	ns in m. from R1)		

Maximum B.M. = 1.33 kNm at 1.82 m. from R1

Maximum S.F. = 1.46 kN at 0.00 m. from R1

Live load deflection = 1.39 x 108/EI at 1.83 m. from R1 (E in N/mm², I in cm⁴)

Total deflection = 1.85 x 10⁸/El at 1.83 m. from R1

Timber beam calculation to BS5268 Part 2: 2002 using C16 timber

Use 75 x 150 C16 4.2 kg/m approx

 $z = 281.3 \text{ cm}^3$ I = 2,109 cm⁴

Timber grade: C16 Load sharing system: $K_8 = 1.1$ [§2.10.11]

 K_3 (loading duration factor) = 1.00 (long term) K_7 (depth factor) = (300/150)^{0.11} = 1.08 [§2.10.6] K₈ (load sharing factor) = 1.1 [§2.9,2.10]

 $E = 8,800 \text{ N/mm}^2 (E_{\text{mean}})$

Bending

Permissible bending stress, $\sigma_{m,adm} = \sigma_{m,g}$.K₃.K₇.K₈ = 5.3 x 1.00 x 1.08 x 1.1 = 6.29 N/mm² Applied bending stress, $\sigma_{m,a}$ = 1.33 x 1000/281 = 4.74 N/mm² OK

Shear

Permissible shear stress, $\tau_{adm,//} = \tau_{g,//}$.K₃.K₈ = 0.67 x 1.00 x 1.1 = 0.74 N/mm² Applied shear stress, τ_a = 1.46 x 1000 x 3/(2 x 75 x 150) = 0.19 N/mm² OK Deflection Bending deflection = 1.85 x 10⁸/(8,800 x 2,109) = 9.96 mm

Mid-span shear deflection = 1.2 x 1.33 x 106/((E/16) x 75 x 150) = 0.26 mm

Total deflection = 9.96 + 0.26 = 10.22 mm (0.0028 L) <= 0.003L OK

Site: 498 Edge Lane Job: structrual design Job number: SuperBeam 7.05b 411924		dorn	ner loft+ alteration +c	Page Clien	e by NK 21 It copy d 14 Sep 2023 09:	23
Beam: stair trimmer					S	oan: 1.6 m.
Load name	Loading w1	Start x1	Loading w2	End x2	R1comp	R2comp
U D floor dead	0.5x2.6	0	•	L	1.04	1.04
U L Floor live	1.5x2.6	0		L	3.12	<u>3.12</u>
			Tota	l load: 8.32 kN	4.16	4.16
				Dead:	1.04	1.04
				Live:	3.12	3.12
	Load types: U: l	JDL D: Dead;	: L: Live (positio	ns in m. from R1)		

Maximum B.M. = 1.66 kNm at 0.80 m. from R1

Maximum S.F. = 4.16 kN at 0.00 m. from R1

Live load deflection = 0.333 x 108/EI at 0.80 m. from R1 (E in N/mm², I in cm⁴)

Total deflection = 0.444 x 10⁸/EI at 0.80 m. from R1

Timber beam calculation to BS5268 Part 2: 2002 using C16 timber

Use 2no 50 x 150 C16 5.6 kg/m approx

z = 375.0 cm³ I = 2,813 cm⁴

Timber grade: C16 2 members acting together: $K_8 = 1.1$ [§2.9]

 K_3 (loading duration factor) = 1.00 (long term) K_7 (depth factor) = (300/150)^{0.11} = 1.08 [§2.10.6] K₈ (load sharing factor) = 1.1 [§2.9,2.10]

 $E = 5,800 \times 1.14 = 6,612 \text{ N/mm}^2 (E_{min}.K_9)$

Bending

Permissible bending stress, $\sigma_{m,adm} = \sigma_{m,g}$.K₃.K₇.K₈ = 5.3 x 1.00 x 1.08 x 1.1 = 6.29 N/mm² Applied bending stress, $\sigma_{m,a}$ = 1.66 x 1000/375 = 4.44 N/mm² OK

Shear

Permissible shear stress, $\tau_{adm,//} = \tau_{g,//}$.K₃.K₈ = 0.67 x 1.00 x 1.1 = 0.74 N/mm² Applied shear stress, $\tau_a = 4.16 \times 1000 \times 3/(2 \times 100 \times 150) = 0.42 \text{ N/mm}^2 \text{ OK}$ Deflection

Bending deflection = $0.444 \times 10^{8}/(6,612 \times 2,813) = 2.39 \text{ mm}$ Mid-span shear deflection = 1.2 x 1.66 x 10⁶/((E/16) x 100 x 150) = 0.32 mm Total deflection = 2.39 + 0.32 = 2.71 mm (0.0017 L) <= 0.003L OK

Site: 498 Edge Lane Job: structrual design				Made by Page 22		
Job number: SuperBeam 7.05b 411924	dor	mer loft+ alter	ation +chimn .SB	Client co	ру Sep 2023 09:2	3
Beam: trimmer 2					•	n: 3.65 m.
Load name	Loading w1	Start x1	Loading w2	End x2	R1comp	R2comp
U D floor dead	0.5x0.4	0	Ū	L	0.37	0.37
U L Floor live	1.5x0.4	0		L	1.10	1.10
P D Beam: stair trimmer : R1	1.04 [B/F]	1.9			0.50	0.54
P L Beam: stair trimmer : R1	3.12 [B/F]	1.9			1.50	1.62
			Total loa	ad: 7.08 kN	3.45	3.63
				Dead:	0.86	0.91
				Live:	2.59	2.72

Load types: U: UDL P: PL D: Dead; L: Live (positions in m. from R1)

Maximum B.M. = 5.12 kNm at 1.90 m. from R1

Maximum S.F. = -3.63 kN at R2

Live load deflection = 4.54 x 10⁸/EI at 1.86 m. from R1 (*E in N/mm²*, *I in cm⁴*)

Total deflection = 6.05 x 10⁸/El at 1.86 m. from R1

Bending moment and shear force

Steel beam calculation to BS449 Part 2 using S355 steel

SECTION SIZE : 127 x 76 x 13 UB S355

D=127.0 mm B=76.0 mm t=4.0 mm T=7.6 mm I_x =473 cm⁴ r_y =1.84 cm Z_x =75.0 cm³

Bending:	$L_e = 0.85L = 3.10m$. $L_E/r_y = 3.10 \times 100/1.84 = 169$ D/T = 16.7 Permissible bending stress, $p_{bc} = 119.6$ N/mm ² (Table 3b)
	Actual bending stress, f_{bc} = 5.12 x 1000/75.0 = 68.3 N/mm ² OK
Shear:	Maximum shear in web, f _s = 3.63 x 1000/(4.0 x 127.0) = 7.1 N/mm ² OK
Beam web:	Check unstiffened web capacities with loads of 3.455 kN and 3.625 kN
	Bearing: p _b = 260N/mm² (Table 9); C1 = 27.4 kN; C2 = 1.04 kN/mm Buckling: p _c = 192N/mm² (Table 17b); C1 = 48.8 kN; C2 = 0.769 kN/mm
	R1:Minimum required stiff bearing length, $L_b = 0mm$ Bearing capacity, $P_w = C1 + L_b.C2 = 27.4kN \ll$ Buckling capacity, $P_x = C1 + L_b.C2 = 48.8kN$
	R2:Minimum required stiff bearing length, $L_b = 0mm$ Bearing capacity, $P_w = C1 + L_b.C2 = 27.4kN \ll$ Buckling capacity, $P_x = C1 + L_b.C2 = 48.8kN$
Deflection:	Live load deflection = 4.54 x 1e8/(205,000 x 473) = 4.7 mm (L/780) OK
	Total deflection = 6.05 x 1e8/(205,000 x 473) = 6.2 mm (L/585)

Combined bending and shear check (14.c): $(f_{bc}/p_{bc})^2 + (f_s/p_s)^2 = 0.326$ at 1.90 m. (<=1.25 OK)

Site: 498 Edge Lane		Made by NK
Job: structrual design		Page 23
Job number:		Client copy
SuperBeam 7.05b 411924	dormer loft+ alteration +chimn .SBW	Printed 14 Sep 2023 09:23

Bearings

127 x 76 x 13 UB stiff bearing length, $b_1 = t + 1.6r + 2T = 31.4 \text{ mm}$

R1: 76 x 100 mm padstone

Factored reaction = 0.86 x 1.4 + 2.59 x 1.6 = 5.35 kN

Masonry: 20N/mm² brick, class (iii) mortar, normal const/normal mfr, Class 1 bearing Local design strength (factored) = 5 x 1.25/3.5 = 1.79N/mm² (BS5628-1:2005 Table 2a)

Factored stress under padstone = 5.35 x 1000/76 x 100 = 0.70 N/mm²

R2: None

Site: 498 Edge Lane Job: structrual design Job number: SuperBeam 7.05b 411924	do	rmer loft+ alte	ration +chimn .SE	Made by Page 24 Client cc 3W Printed 14		3
Beam: Loft front Beam 1					Spa	an: 5.0 m.
Load name	Loading w1	Start x1	Loading w2	End x2	R1comp	R2comp
U D Pitched roof dead	1x1.8	0	-	L	4.50	4.50
U L Pitched roof live	0.6x1.8	0		L	2.70	2.70
U D floor dead	0.5x1	0		L	1.25	1.25
U L Floor live	1.5x1	0		L	3.75	3.75
P D Beam: chimney beam : R1	5.97 [B/F]	0.3			5.62	0.36
P L Beam: chimney beam : R1	0.00 [B/F]	0.3			0.00	0.00
-			Total load	d: 30.37 kN	17.82	12.56
				Dead:	11.37	6.11
				Live:	6.45	6.45
Load types: U:	UDL P: PL D: D	Dead; L: Liv	e (positions in	m. from R1)		

Maximum B.M. = 16.16 kNm at 2.43 m. from R1

Maximum S.F. = 17.82 kN at 0.00 m. from R1

Live load deflection = 21.0 x 108/EI at 2.50 m. from R1 (E in N/mm², I in cm⁴)

Total deflection = 42.5 x 10⁸/EI at 2.46 m. from R1

Steel beam calculation to BS449 Part 2 using S355 steel SECTION SIZE : 203 x 102 x 23 UB S355

D=203.2 mm	B=101.8 mm t=5.4 mm T=9.3 mm I_x =2,110 cm ⁴ r_y =2.36 cm Z_x =207 cm ³
Bending:	$L_e = L = 5.00m$. $L_E/r_y = 5.00 \times 100/2.36 = 212$ D/T = 21.8
	Permissible bending stress, p _{bc} = 83 N/mm² (Table 3b)
	Actual bending stress, f _{bc} = 16.2 x 1000/207.0 = 78.1 N/mm ² OK
Shear:	Maximum shear in web, f _s = 17.8 x 1000/(5.4 x 203.2) = 16.2 N/mm ² OK
Beam web:	Check unstiffened web capacities with loads of 17.82 kN and 12.56 kN
	Bearing: p _b = 260N/mm² (Table 9); C1 = 41.1 kN; C2 = 1.40 kN/mm Buckling: p _c = 178N/mm² (Table 17b); C1 = 97.8 kN; C2 = 0.963 kN/mm
	R1:Minimum required stiff bearing length, L _b = 0mm Bearing capacity, P _w = C1 + L _b .C2 = 41.1kN <<< Buckling capacity, P _x = C1 + L _b .C2 = 97.8kN
	R2:Minimum required stiff bearing length, $L_b = 0mm$ Bearing capacity, $P_w = C1 + L_b.C2 = 41.1kN <<<$ Buckling capacity, $P_x = C1 + L_b.C2 = 97.8kN$
Deflection:	Live load deflection = 21.0 x 1e8/(205,000 x 2,110) = 4.9 mm (L/1030) OK
	Total deflection = 42.5 x 1e8/(205,000 x 2,110) = 9.8 mm (L/509)
Combined be	nding and shear check (14.c): $(f_{bc}/p_{bc})^2 + (f_s/p_s)^2 = 0.884$ at 2.40 m. (<=1.25 OK)

Site: 498 Edge Lane Job: structrual design

Job number: SuperBeam 7.05b 411924 Made by NK Page 25 Client copy

dormer loft+ alteration +chimn .SBW Printed 14 Sep 2023 09:23

Bearings

203 x 102 x 23 UB stiff bearing length, b₁ = t + 1.6r + 2T = 36.2 mm

R1: 400 x 100 mm padstone

Factored reaction = 11.37 x 1.4 + 6.45 x 1.6 = 26.23 kN

Masonry: 20N/mm² brick, class (iii) mortar, normal const/normal mfr, Class 1 bearing Local design strength (factored) = 5 x 1.25/3.5 = 1.79N/mm² (BS5628-1:2005 Table 2a)

Factored stress under padstone = 26.23 x 1000/400 x 100 = 0.66 N/mm²

R2: None

Site: 498 Edge Lane				Made by	y NK	
Job: structrual design				Page 26	;	
Job number:				Client c	ору	
SuperBeam 7.05b 411924		dormer loft+ a	Iteration +chimn .	SBW Printed 14	4 Sep 2023 09:2	23
Beam: ground floor knockthroug	h				Sp	an: 1.6 m.
Load name	Loading w1	Start x1	Loading w2	End x2	R1comp	R2comp
U D dormer face	1x2.3	0	·	L	1.84	1.84
U D Flat roof dead	0.60x1.8	0		L	0.86	0.86
U L Flat roof live	0.6x1.8	0		L	0.86	0.86
U D loft floor	0.5x1.8	0		L	0.72	0.72
U L Floor live	1.5x1.8	0		L	2.16	2.16
U D wall	2.3x2.7	0		L	4.97	4.97
P D Beam: trimmer 2 : R1	0.86 [B/F]	0.3			0.70	0.16
P L Beam: trimmer 2 : R1	2.59 [B/F]	0.3			2.11	0.49
			Total loa	ld: 26.29 kN	14.22	12.06
				Dead:	9.09	8.55
				Live:	5.13	3.51
Load types:	U: UDL P: PL	D: Dead: L: L	ive (positions	in m. from R1)		

Load types: U: UDL P: PL D: Dead; L: Live (positions in m. from R1)

Maximum B.M. = 5.10 kNm at 0.75 m. from R1 Maximum S.F. = 14.22 kN at 0.00 m. from R1 Live load deflection = 0.442 x 10⁸/EI at 0.77 m. from R1 (*E in N/mm²*, *I in cm⁴*) Total deflection = 1.38 x 10⁸/El at 0.79 m. from R1

Bending moment and shear force

Steel beam calculation to BS449 Part 2 using S355 steel SECTION SIZE : 152 x 89 x 16 UB S355

D=152.4 mm	B=88.7 mm t=4.5 mm T=7.7 mm I_x =834 cm ⁴ r_y =2.10 cm Z_x =109 cm ³		
Bending:	$L_e = 0.85L = 1.36m$. $L_E/r_y = 1.36 \times 100/2.10 = 65$ D/T = 19.8		
	Permissible bending stress, p _{bc} = 210.7 N/mm² (Table 3b)		
	Actual bending stress, f_{bc} = 5.10 x 1000/109.0 = 46.8 N/mm ² OK		
Shear:	Maximum shear in web, f _s = 14.2 x 1000/(4.5 x 152.4) = 20.7 N/mm ² OK		
Beam web:	Beam web: Check unstiffened web capacities with loads of 14.22 kN and 12.06 kN Bearing: $p_b = 260$ N/mm ² (Table 9); C1 = 31.0 kN; C2 = 1.17 kN/mm Buckling: $p_c = 187$ N/mm ² (Table 17b); C1 = 64.2 kN; C2 = 0.842 kN/mm		
	R1:Minimum required stiff bearing length, $L_b = 0mm$ Bearing capacity, $P_w = C1 + L_b.C2 = 31.0kN \ll$ Buckling capacity, $P_x = C1 + L_b.C2 = 64.2kN$		
	R2:Minimum required stiff bearing length, L _b = 0mm Bearing capacity, P _w = C1 + L _b .C2 = 31.0kN <<< Buckling capacity, P _x = C1 + L _b .C2 = 64.2kN		
Deflection:	Live load deflection = 0.442 x 1e8/(205,000 x 834) = 0.3 mm (L/6194) OK		

Site: 498 Edge Lane Job: structrual design Job number: SuperBeam 7.05b 411924 dormer loft+ alteration +chimn .SBW		Made by NK Page 27 Client copy Printed 14 Sep 2023 09:23	
	Total deflection = 1.38 x 1e8/(205,000 x 834) = 0.8 mm (L/1988)		
Combined bending and shear check (14.c): $(f_{bc}/p_{bc})^2 + (f_s/p_s)^2 = 0.049$ at 0.77 m. (<=1.25 OK)			
Masonry: R1: 125 x 1 Factored re	16 UB stiff bearing length, $b_1 = t + 1.6r + 2T = 32.1 \text{ mm}$ 20N/mm ² brick, class (iii) mortar, normal const/normal mfr, Class 1 bearing Local design strength (factored) = 5 x 1.25/3.5 = 1.79N/mm ² (BS5628-1:2 00 mm padstone action = 9.09 x 1.4 + 5.13 x 1.6 = 20.94 kN ress under padstone = 20.94 x 1000/125 x 100 = 1.68 N/mm ²	•	
R2: 125 x 1 Factored re	00 mm padstone action = 8.55 x 1.4 + 3.51 x 1.6 = 17.59 kN ress under padstone = 17.59 x 1000/125 x 100 = 1.41 N/mm²		

Typical Steel floor Beam Connection Details to F.joists NTS - Indicative Only

Typical Chimney Beam support Details NTS - Indicative Only

Typical upper Ridge Beam Connection Details NTS - Indicative Only