APPENDIX V ENVIRONMENTAL DATABASE

Envirocheck® Report:

Datasheet

Order Details:

Order Number:

313915961_1_1

Customer Reference:

3293

National Grid Reference:

564060, 228880

Slice:

Α

Site Area (Ha):

0.33

Search Buffer (m):

1000

Site Details:

Duck End Farm Ltd, Duck End Farm Lindsell DUNMOW CM6 3QH

Client Details:

Mr P Miles Brown 2 Green Associates Ltd Suite 1 Wenden Court Station Road Wendens Ambo Saffron Walden Essex CB11 4LB

Report Section	Page Number
Summary	-
Agency & Hydrological	1
Waste	11
Hazardous Substances	-
Geological	12
Industrial Land Use	13
Sensitive Land Use	14
Data Currency	15
Data Suppliers	19
Useful Contacts	20

Introduction

The Environment Act 1995 has made site sensitivity a key issue, as the legislation pays as much attention to the pathways by which contamination could spread, and to the vulnerable targets of contamination, as it does the potential sources of contamination.

For this reason, Landmark's Site Sensitivity maps and Datasheet(s) place great emphasis on statutory data provided by the Environment Agency/Natural Resources Wales and the Scottish Environment Protection Agency; it also incorporates data from Natural England (and the Scottish and Welsh equivalents) and Local Authorities; and highlights hydrogeological features required by environmental and geotechnical consultants. It does not include any information concerning past uses of land. The datasheet is produced by querying the Landmark database to a distance defined by the client from a site boundary provided by the client.

In this datasheet the National Grid References (NGRs) are rounded to the nearest 10m in accordance with Landmark's agreements with a number of Data Suppliers.

Copyright Notice

© Landmark Information Group Limited 2023. The Copyright on the information and data and its format as contained in this Envirocheck® Report ("Report") is the property of Landmark Information Group Limited ("Landmark") and several other Data Providers, including (but not limited to) Ordnance Survey, British Geological Survey, the Environme Agency/Natural Resources Wales and Natural England, and must not be reproduced in whole or in part by photocopying or any other method. The Report is supplied under

Agency/Natural Resolutes waters and Natural England, and mist not be reproduced in whole of in part by protocopying of any other method. The Report is supplied under Landmark's Terms and Conditions accepted by the Customer.

A copy of Landmark's Terms and Conditions can be found with the Index Map for this report. Additional copies of the Report may be obtained from Landmark, subject to Landmark's charges in force from time to time. The Copyright, design rights and any other intellectual rights shall remain the exclusive property of Landmark and /or other Data providers, whose Copyright material has been included in this Report.

© Environment Agency & United Kingdom Research and Innovation 2023. © Natural Resources Wales & United Kingdom Research and Innovation 2023.

Natural England Copyright Notice

Site of Special Scientific Interest, National Nature Reserve, Ramsar, Special Protection Area, Special Conservation Area, Marine Nature Reserve data (derived from Ordnance Survey 1:10000 raster) is provided by, and used with the permission of, Natural England who retain the copyright and Intellectual Property Rights for the data.

Scottish Natural Heritage Copyright

Contains SNH information licensed under the Open Government Licence v3.0.

Ove Arup Copyright Notice

The Mining Instability data was obtained on licence from Ove Arup & Partners Limited (for further information, contact mining.review@arup.com). No reproduction or further use of such Data is to be made without the prior written consent of Ove Arup & Partners Limited. The supplied Mining Instability data is derived from publicly available records and other third party sources and neither Ove Arup & Partners nor Landmark warrant the accuracy or completeness of such information or data.

Stantec Copyright Notice

The cavity data presented has been extracted from the PBA (now Stantec UK Ltd) enhanced version of the original DEFRA national cavity databases. Stantec UK Ltd retain the copyright & intellectual property rights in the data. Whilst all reasonable efforts are made to check that the information contained in the cavity databases is accurate we do not warrant that the data is complete or error free. The information is based upon our own researches and those collated from a number of external sources and is continually being augmented and updated by Stantec UK Ltd. In no event shall Stantec UK Ltd or Landmark be liable for any loss or damage including, without limitation, indirect or consequential loss or damage arising from the use of this data.

Radon Potential dataset Copyright Notice

Information supplied from a joint dataset compiled by The British Geological Survey and Public Health England.

Natural Resources Wales Copyright Notice

Contains Natural Resources Wales information © Natural Resources Wales and Database Right. All rights Reserved. Contains Ordnance Survey Data. Ordnance Survey Licence number 100019741. Crown Copyright and Database Right. Contains Natural Resources Wales information © Natural Resources Wales and Database Right. All rights Reserved. Some features of this information are based on digital spatial data licensed from the Centre for Ecology & Hydrology © NERC (CEH). Defra, Met Office and DARD Rivers Agency © Crown copyright. © Cranfield University. © James Hutton Institute. Contains OS data © Crown copyright and database right 2023. Land & Property Services © Crown copyright and database right.

Report Version v53.0

Summary

Data Type	Page Number	On Site	0 to 250m	251 to 500m	501 to 1000m (*up to 2000m)
Agency & Hydrological					
BGS Groundwater Flooding Susceptibility					n/a
Contaminated Land Register Entries and Notices					
Discharge Consents	pg 1		1	2	19
Prosecutions Relating to Controlled Waters			n/a	n/a	n/a
Enforcement and Prohibition Notices					
Integrated Pollution Controls					
Integrated Pollution Prevention And Control					
Local Authority Integrated Pollution Prevention And Control					
Local Authority Pollution Prevention and Controls					
Local Authority Pollution Prevention and Control Enforcements					
Nearest Surface Water Feature			Yes		
Pollution Incidents to Controlled Waters	pg 6				1
Prosecutions Relating to Authorised Processes					
Registered Radioactive Substances					
River Quality					
River Quality Biology Sampling Points					
River Quality Chemistry Sampling Points					
Substantiated Pollution Incident Register					
Water Abstractions	pg 6				(*2)
Water Industry Act Referrals					
Groundwater Vulnerability Map	pg 7	Yes	n/a	n/a	n/a
Groundwater Vulnerability - Soluble Rock Risk			n/a	n/a	n/a
Bedrock Aquifer Designations	pg 7	Yes	n/a	n/a	n/a
Superficial Aquifer Designations	pg 7	Yes	n/a	n/a	n/a
Source Protection Zones	pg 7	1			
Extreme Flooding from Rivers or Sea without Defences				n/a	n/a
Flooding from Rivers or Sea without Defences				n/a	n/a
Areas Benefiting from Flood Defences				n/a	n/a
Flood Water Storage Areas				n/a	n/a
Flood Defences				n/a	n/a
OS Water Network Lines	pg 7		4	3	16

Summary

Data Type	Page Number	On Site	0 to 250m	251 to 500m	501 to 1000m (*up to 2000m)
Waste					
BGS Recorded Landfill Sites					
Historical Landfill Sites					
Integrated Pollution Control Registered Waste Sites					
Licensed Waste Management Facilities (Landfill Boundaries)					
Licensed Waste Management Facilities (Locations)	pg 11				1
Local Authority Landfill Coverage	pg 11	2	n/a	n/a	n/a
Local Authority Recorded Landfill Sites					
Registered Landfill Sites					
Registered Waste Transfer Sites					
Registered Waste Treatment or Disposal Sites	pg 11				1
Hazardous Substances					
Control of Major Accident Hazards Sites (COMAH)					
Explosive Sites					
Notification of Installations Handling Hazardous Substances (NIHHS)					
Planning Hazardous Substance Consents					
Planning Hazardous Substance Enforcements					
Geological					
BGS 1:625,000 Solid Geology	pg 12	Yes	n/a	n/a	n/a
BGS Recorded Mineral Sites					
CBSCB Compensation District			n/a	n/a	n/a
Coal Mining Affected Areas			n/a	n/a	n/a
Mining Instability			n/a	n/a	n/a
Man-Made Mining Cavities					
Natural Cavities					
Non Coal Mining Areas of Great Britain				n/a	n/a
Potential for Collapsible Ground Stability Hazards	pg 12	Yes		n/a	n/a
Potential for Compressible Ground Stability Hazards				n/a	n/a
Potential for Ground Dissolution Stability Hazards				n/a	n/a
Potential for Landslide Ground Stability Hazards	pg 12	Yes		n/a	n/a
Potential for Running Sand Ground Stability Hazards	pg 12	Yes		n/a	n/a
Potential for Shrinking or Swelling Clay Ground Stability Hazards	pg 12	Yes		n/a	n/a
Radon Potential - Radon Affected Areas			n/a	n/a	n/a
Radon Potential - Radon Protection Measures			n/a	n/a	n/a

Summary

Data Type	Page Number	On Site	0 to 250m	251 to 500m	501 to 1000m (*up to 2000m)
Industrial Land Use					
Contemporary Trade Directory Entries	pg 13			1	
Fuel Station Entries					
Gas Pipelines					
Underground Electrical Cables					
Sensitive Land Use					
Ancient Woodland					
Areas of Adopted Green Belt					
Areas of Unadopted Green Belt					
Areas of Outstanding Natural Beauty					
Environmentally Sensitive Areas					
Forest Parks					
Local Nature Reserves					
Marine Nature Reserves					
National Nature Reserves					
National Parks					
Nitrate Sensitive Areas					
Nitrate Vulnerable Zones	pg 14	2			1
Ramsar Sites					
Sites of Special Scientific Interest					
Special Areas of Conservation					
Special Protection Areas					
World Heritage Sites					

Agency & Hydrological

Page 1 of 20

Map ID		Details	Quadrant Reference (Compass Direction)	Estimated Distance From Site	Contact	NGR
1	Discharge Consents Operator: Property Type: Location: Authority: Catchment Area: Reference: Permit Version: Effective Date: Issued Date: Revocation Date: Discharge Type: Discharge Environment: Receiving Water: Status: Positional Accuracy:	Mr & Mrs P F Charlton WWTW (NOT WATER CO) (NOT STP AT A PRIVATE PREMISES) New Barn Hall, Holders, Lindsell, Essex, Cm6 3qh Environment Agency, Anglian Region Upper River Chelmer (Dunmow) Prenf20689 1 25th June 2007 25th June 2007 Not Supplied Sewage Discharges - Final/Treated Effluent - Not Water Company Freshwater Stream/River Ditch Trib Of Stebbing Brook New Consent (Water Resources Act 1991, Section 88 & Schedule 10 as amended by Environment Act 1995) Located by supplier to within 10m	A13NW (NW)	137	2	563900 228960
2	-	Mr Jonathan Curtis Domestic Property (Single) Brickhouse Farm Retrofit Kit, Lindsell, Dunmow, Essex, Cm6 3hq Environment Agency, Anglian Region Not Supplied Epryb3895ev 1 12th July 2022 12th July 2022 Not Supplied Sewage Discharges - Final/Treated Effluent - Not Water Company Freshwater Stream/River Trbutary Of Daisyley Brook New issued under EPR 2010 Located by supplier to within 10m	A12NE (W)	397	2	563633 228952
3	Discharge Consents Operator: Property Type: Location: Authority: Catchment Area: Reference: Permit Version: Effective Date: Issued Date: Revocation Date: Discharge Type: Discharge Environment: Receiving Water: Status: Positional Accuracy:	Mr & Mrs A Barnard WWTW (NOT WATER CO) (NOT STP AT A PRIVATE PREMISES) Mulberry Youse Lindsell, Dunmow, Essex, Essex, Cm6 3qq Environment Agency, Anglian Region Upper River Chelmer (Dunmow) Prenf15937 1 21st August 2003 21st August 2003 Not Supplied Sewage Discharges - Final/Treated Effluent - Not Water Company Freshwater Stream/River Trib Of River Chelmer New Consent (Water Resources Act 1991, Section 88 & Schedule 10 as amended by Environment Act 1995) Located by supplier to within 10m	A12SE (SW)	452	2	563649 228632
4	Discharge Consents Operator: Property Type: Location: Authority: Catchment Area: Reference: Permit Version: Effective Date: Issued Date: Revocation Date: Discharge Type: Discharge Environment: Receiving Water: Status: Positional Accuracy:	Mr Stuart Warwick WWTW (NOT WATER CO) (NOT STP AT A PRIVATE PREMISES) Daviron, Thaxted Road, Lindsell, Essex, Cm6 3qn Environment Agency, Anglian Region Upper River Chelmer (Dunmow) Prenf13043 1 21st March 2000 26th April 2000 Not Supplied Sewage Discharges - Final/Treated Effluent - Not Water Company Freshwater Stream/River Stebbing Brook (River Chelmer) New Consent (Water Resources Act 1991, Section 88 & Schedule 10 as amended by Environment Act 1995) Located by supplier to within 10m	A8NW (SW)	527	2	563850 228370

Agency & Hydrological

Page 2 of 20

Map ID		Details	Quadrant Reference (Compass Direction)	Estimated Distance From Site	Contact	NGR
5	Discharge Consent Operator: Property Type: Location: Authority: Catchment Area: Reference: Permit Version: Effective Date: Issued Date: Revocation Date: Discharge Type: Discharge Environment: Receiving Water: Status: Positional Accuracy:	Mrs Cadogan Domestic Property (Single) Edenfield Holders Meadow, Holders Green, Lindsell, Gt Dunmow, Cm6 3qq Environment Agency, Anglian Region Not Given Prenf07865 1 11th March 1992 11th March 1992 Not Supplied Sewage Discharges - Final/Treated Effluent - Not Water Company Freshwater Stream/River Trib Of River Chelmer Post National Rivers Authority Legislation where issue date > 31/08/1989 Located by supplier to within 100m	A12SE (SW)	536	2	563570 228600
6		Mr Jim Mead Domestic Property (Single) Home Office At Pettits Pettitts, Lindsell, Dunmow, Essex, Cm6 3qj Environment Agency, Anglian Region Upper River Chelmer (Dunmow) Npswqd009724 1 4th February 2010 4th February 2010 Not Supplied Sewage Discharges - Final/Treated Effluent - Not Water Company Freshwater Stream/River Trib Of Daisyley Brook New Consent (Water Resources Act 1991, Section 88 & Schedule 10 as amended by Environment Act 1995) Located by supplier to within 10m	A8NW (S)	554	2	563915 228316
7	Discharge Consent Operator: Property Type: Location: Authority: Catchment Area: Reference: Permit Version: Effective Date: Issued Date: Revocation Date: Discharge Type: Discharge Type: Discharge Type: Status: Positional Accuracy:	Mrs Susan Holden Domestic Property (Single) Christmas Cottage 3 Strawyard, Holders Green, Lindsell, Dunmow, Cm6 3qq Environment Agency, Anglian Region Not Supplied Eprzb3590ay 1 14th October 2022 10th October 2022 Not Supplied Sewage Discharges - Final/Treated Effluent - Not Water Company Freshwater Stream/River Ditch Trib Of River Chelmer New issued under EPR 2010 Located by supplier to within 10m	A12SE (SW)	588	2	563531 228565
8	Discharge Consent Operator: Property Type: Location: Authority: Catchment Area: Reference: Permit Version: Effective Date: Issued Date: Revocation Date: Discharge Type: Discharge Environment: Receiving Water: Status: Positional Accuracy:	Norman Mascal Domestic Property (Single) Thatch Cottage One Straw Yard Holders Green, Lindsell, Dunmow, Essex, Cm6 3qq Environment Agency, Anglian Region Upper River Chelmer (Dunmow) Prenf13658 1 5th July 2001 5th July 2001 Not Supplied Sewage Discharges - Final/Treated Effluent - Not Water Company Freshwater Stream/River Tributary Of River Chelmer New Consent, by Application (Water Resources Act 1991, Section 88) Located by supplier to within 10m	A12SE (SW)	593	2	563500 228610

Order Number: 313915961_1_1

Agency & Hydrological

Page 3 of 20

Map ID		Details	Quadrant Reference (Compass Direction)	Estimated Distance From Site	Contact	NGR
9	Discharge Consent Operator: Property Type: Location: Authority: Catchment Area: Reference: Permit Version: Effective Date: Issued Date: Revocation Date: Discharge Type: Discharge Environment: Receiving Water: Status: Positional Accuracy:	Mr & Mrs Instone Domestic Property (Single) Lindsell House, Lindsell, Dunmow, Essex, Cm6 3qj Environment Agency, Anglian Region Upper River Chelmer (Dunmow) Prenf13273 1 27th September 2000 2nd October 2000 Not Supplied Sewage Discharges - Final/Treated Effluent - Not Water Company Freshwater Stream/River Tributary Stebing Brook New Consent, by Application (Water Resources Act 1991, Section 88) Located by supplier to within 10m	A8NW (S)	604	2	563930 228260
10	Discharge Consent Operator: Property Type: Location: Authority: Catchment Area: Reference: Permit Version: Effective Date: Issued Date: Revocation Date: Discharge Type: Discharge Environment: Receiving Water: Status: Positional Accuracy:	Mr F J Bambridge WWTW (NOT WATER CO) (NOT STP AT A PRIVATE PREMISES) Nicholas House Lindsell, Dunmow, Essex, Cm6 3qq Environment Agency, Anglian Region Not Given Prenf00701 2 14th January 1992 14th January 1992 Not Supplied Sewage Discharges - Final/Treated Effluent - Not Water Company Freshwater Stream/River Trib Easton Brook Post National Rivers Authority Legislation where issue date > 31/08/1989 Located by supplier to within 100m	A7NE (SW)	687	2	563490 228450
10	Discharge Consent Operator: Property Type: Location: Authority: Catchment Area: Reference: Permit Version: Effective Date: Issued Date: Revocation Date: Discharge Type: Discharge Environment: Receiving Water: Status: Positional Accuracy:	Mr F J Bambridge WWTW (NOT WATER CO) (NOT STP AT A PRIVATE PREMISES) Nicholas House Lindsell, Dunmow, Essex, Cm6 3qq Environment Agency, Anglian Region Not Supplied Prenf00701 1 18th April 1989 18th April 1989 13th January 1992 Sewage Discharges - Final/Treated Effluent - Not Water Company Freshwater Stream/River Trib Easton Brook Post National Rivers Authority Legislation where issue date > 31/08/1989 Located by supplier to within 10m	A7NE (SW)	687	2	563490 228450
11	Discharge Consent Operator: Property Type: Location: Authority: Catchment Area: Reference: Permit Version: Effective Date: Issued Date: Revocation Date: Discharge Type: Discharge Environment: Receiving Water: Status: Positional Accuracy:	Mr Bird Sewage Disposal Works - Other Burstead House Burstead Green, Lindsell, Nr Great Dunmow, Essex Environment Agency, Anglian Region Not Given Prenf11115 1 31st October 1997 31st October 1997 Not Supplied Sewage Discharges - Final/Treated Effluent - Not Water Company Freshwater Stream/River Tributary Stebbing Brook Post National Rivers Authority Legislation where issue date > 31/08/1989 Located by supplier to within 100m	A9NE (SE)	839	2	564800 228400

Agency & Hydrological

Page 4 of 20

Map ID		Details	Quadrant Reference (Compass Direction)	Estimated Distance From Site	Contact	NGR
11	Discharge Consent Operator: Property Type: Location: Authority: Catchment Area: Reference: Permit Version: Effective Date: Issued Date: Revocation Date: Discharge Type: Discharge Environment: Receiving Water: Status: Positional Accuracy:	Trevor Neaves Domestic Property (Single) Bustard House Bustard Green, Lindsell, Great Dunmow, Essex, Cm6 3qp Environment Agency, Anglian Region Upper River Chelmer (Dunmow) Prenf11115 1 31st October 1997 31st October 1997 Not Supplied Sewage Discharges - Final/Treated Effluent - Not Water Company Freshwater Stream/River Tributary Of Stebbing Brook New Consent (Water Resources Act 1991, Section 88 & Schedule 10 as amended by Environment Act 1995) Located by supplier to within 100m	A9NE (SE)	839	2	564800 228400
12		Mr & Mrs M J Becker Domestic Property (Single) Templars Farm Lindsell, Great Dunmow, Essex, Cm6 3ql Environment Agency, Anglian Region Not Supplied Prelf02428 1 23rd April 1990 23rd April 1990 1st October 1996 Unknown Land/Soakaway Land Post National Rivers Authority Legislation where issue date > 31/08/1989 Located by supplier to within 10m	A8SW (S)	866	2	564040 227980
13	Discharge Consent Operator: Property Type: Location: Authority: Catchment Area: Reference: Permit Version: Effective Date: Issued Date: Revocation Date: Discharge Type: Discharge Type: Discharge Type: Status: Positional Accuracy:	M Menhinick WWTW (NOT WATER CO) (NOT STP AT A PRIVATE PREMISES) Slated Cottages Holders Green, Lindsell, Nr Dunmow, Essex, Cm6 3qg Environment Agency, Anglian Region Not Given Prenf11208 1 23rd January 1998 23rd January 1998 Not Supplied Sewage Discharges - Final/Treated Effluent - Not Water Company Freshwater Stream/River Tributary River Chelmer Post National Rivers Authority Legislation where issue date > 31/08/1989 Located by supplier to within 100m	A12SW (W)	867	2	563200 228630
14	Discharge Consent Operator: Property Type: Location: Authority: Catchment Area: Reference: Permit Version: Effective Date: Issued Date: Revocation Date: Discharge Type: Discharge Environment: Receiving Water: Status: Positional Accuracy:	Terence Charles Jackson WWTW (NOT WATER CO) (NOT STP AT A PRIVATE PREMISES) Bandana Lee Holders Green, Lindsell, Great Dunmow, Essex, Cm6 2qg Environment Agency, Anglian Region Upper River Chelmer (Dunmow) Prenf20198 1 27th October 2006 27th October 2006 Not Supplied Sewage Discharges - Final/Treated Effluent - Not Water Company Freshwater Stream/River Tributary Of River Chelmer New Consent (Water Resources Act 1991, Section 88 & Schedule 10 as amended by Environment Act 1995) Located by supplier to within 10m	A7NW (W)	900	2	563200 228530

Agency & Hydrological

Page 5 of 20

Map ID		Details	Quadrant Reference (Compass Direction)	Estimated Distance From Site	Contact	NGR
14	Discharge Consent Operator: Property Type: Location: Authority: Catchment Area: Reference: Permit Version: Effective Date: Issued Date: Revocation Date: Discharge Type: Discharge Environment: Receiving Water: Status: Positional Accuracy:	Dr David William Clutton WWTW (NOT WATER CO) (NOT STP AT A PRIVATE PREMISES) Lower Sweetings Holders Green, Lindsell, Dunmow, Essex, Cm6 3qg Environment Agency, Anglian Region Upper River Chelmer (Dunmow) Prenf20196 1 1st September 2006 1st September 2006 Not Supplied Sewage Discharges - Final/Treated Effluent - Not Water Company Freshwater Stream/River Ditch Trib Chelmer New Consent (Water Resources Act 1991, Section 88 & Schedule 10 as amended by Environment Act 1995) Located by supplier to within 10m	A7NW (W)	900	2	563200 228530
15	Discharge Consent Operator: Property Type: Location: Authority: Catchment Area: Reference: Permit Version: Effective Date: Issued Date: Revocation Date: Discharge Type: Discharge Environment: Receiving Water: Status: Positional Accuracy:	Mr & Mrs Gibbon WWTW (NOT WATER CO) (NOT STP AT A PRIVATE PREMISES) Cowels Cottage Cowels Farm Lane, Lindsell, Great Dunmow, Essex, Cm6 3qg Environment Agency, Anglian Region Upper River Chelmer (Dunmow) Prenf13151 1 20th June 2000 22nd June 2000 Not Supplied Sewage Discharges - Final/Treated Effluent - Not Water Company Freshwater Stream/River Tributary Of Stebbing Brook New Consent, by Application (Water Resources Act 1991, Section 88) Located by supplier to within 10m	A7NW (SW)	965	2	563240 228320
16	-	J B & J E Taylor Domestic Property (Single) School Villas Lindsell, Dunmow, Essex, Cm6 3qn Environment Agency, Anglian Region Not Given Prenf01399 3 21st December 1992 21st December 1992 Not Supplied Sewage Discharges - Final/Treated Effluent - Not Water Company Freshwater Stream/River Trib Stebbing Brook Post National Rivers Authority Legislation where issue date > 31/08/1989 Located by supplier to within 100m	A8SW (S)	978	2	563920 227880
16	Discharge Consent Operator: Property Type: Location: Authority: Catchment Area: Reference: Permit Version: Effective Date: Issued Date: Revocation Date: Discharge Type: Discharge Environment: Receiving Water: Status: Positional Accuracy:	J Pittis Domestic Property (Single) School Villas Lindsell, Dunmow, Essex, Cm6 3qn Environment Agency, Anglian Region Not Supplied Prenf01399 2 14th January 1992 14th January 1992 20th December 1992 Sewage Discharges - Final/Treated Effluent - Not Water Company Freshwater Stream/River Trib Stebbing Brook Post National Rivers Authority Legislation where issue date > 31/08/1989 Located by supplier to within 10m	A8SW (S)	978	2	563920 227880

Order Number: 313915961_1_1

Agency & Hydrological

Page 6 of 20

Map ID		Details	Quadrant Reference (Compass Direction)	Estimated Distance From Site	Contact	NGR
16	Discharge Consents Operator: Property Type: Location: Authority: Catchment Area: Reference: Permit Version: Effective Date: Issued Date: Revocation Date: Discharge Type: Discharge Environment: Receiving Water: Status: Positional Accuracy:	J Pittis Domestic Property (Single) School Villas Lindsell, Dunmow, Essex, Cm6 3qn Environment Agency, Anglian Region Not Supplied Prenf01399 1 25th September 1989 25th September 1989 13th January 1992 Sewage Discharges - Final/Treated Effluent - Not Water Company Freshwater Stream/River Trib Stebbing Brook Post National Rivers Authority Legislation where issue date > 31/08/1989 Located by supplier to within 10m	A8SW (S)	978	2	563920 227880
17	Discharge Consent: Operator: Property Type: Location: Authority: Catchment Area: Reference: Permit Version: Effective Date: Issued Date: Revocation Date: Discharge Type: Discharge Environment: Receiving Water: Status: Positional Accuracy:	Uttlesford D.C. Domestic Property (Multiple) Whitegates, Lindsell, Dunmow, Essex, Cm6 3ql Environment Agency, Anglian Region Upper River Chelmer (Dunmow) Pr2nfe04165 2 8th March 1995 8th March 1995 Not Supplied Sewage Discharges - Final/Treated Effluent - Not Water Company Freshwater Stream/River Unknown Trib. Daisley Brook Post National Rivers Authority Legislation where issue date > 31/08/1989 Located by supplier to within 10m	A3NW (S)	985	2	564050 227860
	Nearest Surface Wa	ater Feature	A13NW (N)	95	-	564046 229018
18	Property Type: Location: Authority: Pollutant: Note: Incident Date: Incident Reference: Catchment Area: Receiving Water: Cause of Incident: Incident Severity:	to Controlled Waters Not Given Chelmsford District Environment Agency, Anglian Region Unknown Tributary Stebbing Brook 13th July 1992 1625 Not Given Freshwater Stream/River Unknown Category 3 - Minor Incident Located by supplier to within 100m	A8SW (S)	948	2	564000 227900
	Water Abstractions Operator: Licence Number: Permit Version: Location: Authority: Abstraction Type: Source: Daily Rate (m3): Yearly Rate (m3): Details: Authorised Start: Authorised Start: Authorised End: Permit Start Date: Permit End Date: Positional Accuracy:	E W Davies Farms Ltd 8/37/31/*S/0016 100 Furthermore Hall, L.Bardfield. Environment Agency, Anglian Region General Agriculture: Spray Irrigation - Direct Water may be abstracted from a single point Surface Not Supplied Not Supplied Status: Perpetuity 01 April 30 September 1st December 1988 Not Supplied Located by supplier to within 10m	(N)	1798	2	564700 230600

Agency & Hydrological

Map ID		Details	Quadrant Reference (Compass Direction)	Estimated Distance From Site	Contact	NGR
	Water Abstractions					
	Operator: Licence Number: Permit Version: Location: Authority: Abstraction Type: Source: Daily Rate (m3): Yearly Rate (m3): Details: Authorised Start: Authorised End: Permit Start Date: Permit End Date:	E W Davies Farms Ltd 8/37/31/*S/0016 100 Furthermore Hall Reservoir 2 Environment Agency, Anglian Region General Agriculture: Spray Irrigation - Direct Water may be abstracted from a single point Surface Not Supplied Not Supplied Status: Perpetuity 01 April 30 September 1st December 1988 Not Supplied	(NE)	1969	2	564900 230700
	-	Located by supplier to within 10m				
	Groundwater Vulne Combined Classification: Combined Vulnerability: Combined Aquifer: Pollutant Speed: Bedrock Flow: Dilution: Baseflow Index: Superficial Patchiness: Superficial Thickness: Superficial Recharge:	rability Map Secondary Superficial Aquifer - Medium Vulnerability Medium Unproductive Bedrock Aquifer, Productive Superficial Aquifer Intermediate Mixed <300 mm/year 40-70% >90% >10m Low	A13NW (W)	0	3	564064 228884
	Groundwater Vulne None	rability - Soluble Rock Risk				
	Bedrock Aquifer De Aquifer Designation:	_	A13NW (W)	0	3	564064 228884
	Superficial Aquifer Aquifer Designation:	Designations Secondary Aquifer - Undifferentiated	A13NW (W)	0	3	564064 228884
19	Source Protection 2 Name: Source: Reference: Type:	Not Supplied Environment Agency, Head Office Not Supplied Zone III (Total Catchment): The total area needed to support the discharge from the protected groundwater source.	A13NW (W)	0	2	564064 228884
	Extreme Flooding for None	rom Rivers or Sea without Defences				
	Flooding from River None	rs or Sea without Defences				
	Areas Benefiting fro	om Flood Defences				
	Flood Water Storag None	e Areas				
	Flood Defences None					
20	OS Water Network I Watercourse Form: Watercourse Length: Watercourse Level: Permanent: Watercourse Name: Catchment Name: Primacy:	Inland river 324.7 On ground surface True	A13SE (SE)	197	4	564279 228778

Order Number: 313915961_1_1

Agency & Hydrological

Page 8 of 20

Map ID	Details	Quadrant Reference (Compass Direction)	Estimated Distance From Site	Contact	NGR
21	OS Water Network Lines Watercourse Form: Inland river Watercourse Length: 7.5 Watercourse Level: Underground Permanent: True Watercourse Name: Daisyley Brook Catchment Name: Chelmer Primacy: 1	A13SE (SE)	199	4	564275 228768
22	OS Water Network Lines Watercourse Form: Inland river Watercourse Length: 765.3 Watercourse Level: On ground surface Permanent: True Watercourse Name: Daisyley Brook Catchment Name: Chelmer Primacy: 1	A13SE (SE)	201	4	564273 228761
23	OS Water Network Lines Watercourse Form: Inland river Watercourse Length: 77.3 Watercourse Level: On ground surface Permanent: True Watercourse Name: Not Supplied Catchment Name: Chelmer Primacy: 1	A13NW (N)	225	4	563980 229138
24	OS Water Network Lines Watercourse Form: Inland river Watercourse Length: 97.5 Watercourse Level: On ground surface Permanent: True Watercourse Name: Daisyley Brook Catchment Name: Chelmer Primacy: 1	A14NW (E)	389	4	564468 229021
25	OS Water Network Lines Watercourse Form: Inland river Watercourse Length: 3.5 Watercourse Level: Underground Permanent: True Watercourse Name: Daisyley Brook Catchment Name: Chelmer Primacy: 1	A14NW (NE)	443	4	564477 229118
26	OS Water Network Lines Watercourse Form: Inland river Watercourse Length: 252.9 Watercourse Level: On ground surface Permanent: True Watercourse Name: Daisyley Brook Catchment Name: Chelmer Primacy: 1	A14NW (NE)	445	4	564477 229121
27	OS Water Network Lines Watercourse Form: Inland river Watercourse Length: 22.5 Watercourse Level: On ground surface Permanent: True Watercourse Name: Not Supplied Catchment Name: Chelmer Primacy: 1	A14NW (E)	533	4	564597 229083
28	OS Water Network Lines Watercourse Form: Inland river Watercourse Length: 5.3 Watercourse Level: On ground surface Permanent: True Watercourse Name: Not Supplied Catchment Name: Chelmer Primacy: 1	A7NE (SW)	623	4	563602 228421
29	OS Water Network Lines Watercourse Form: Inland river Watercourse Length: 8.6 Watercourse Level: Underground Permanent: True Watercourse Name: Not Supplied Catchment Name: Chelmer Primacy: 1	A7NE (SW)	624	4	563605 228416

Order Number: 313915961_1_1

Agency & Hydrological

Map ID	Details	Quadrant Reference (Compass Direction)	Estimated Distance From Site	Contact	NGR
30	OS Water Network Lines Watercourse Form: Inland river Watercourse Level: 90.8 Watercourse Level: On ground surface Permanent: True Watercourse Name: Not Supplied Catchment Name: Chelmer Primacy: 1	A14SW (E)	624	4	564731 228881
31	OS Water Network Lines Watercourse Form: Inland river Watercourse Length: 166.0 Watercourse Level: On ground surface Permanent: True Watercourse Name: Not Supplied Catchment Name: Chelmer Primacy: 1	A7NE (SW)	626	4	563609 228409
32	OS Water Network Lines Watercourse Form: Inland river Watercourse Length: 595.5 Watercourse Level: On ground surface Permanent: True Watercourse Name: Not Supplied Catchment Name: Chelmer Primacy: 1	A12NE (W)	632	4	563414 229063
33	OS Water Network Lines Watercourse Form: Inland river Watercourse Length: 36.7 Watercourse Level: On ground surface Permanent: True Watercourse Name: Not Supplied Catchment Name: Chelmer Primacy: 1	A8SW (S)	677	4	564066 228168
34	OS Water Network Lines Watercourse Form: Inland river Watercourse Length: 54.7 Watercourse Level: On ground surface Permanent: True Watercourse Name: Not Supplied Catchment Name: Chelmer Primacy: 1	A14SE (E)	716	4	564777 228621
35	OS Water Network Lines Watercourse Form: Inland river Watercourse Length: 18.7 Watercourse Level: On ground surface Permanent: True Watercourse Name: Not Supplied Catchment Name: Chelmer Primacy: 1	A14SE (SE)	750	4	564791 228566
36	OS Water Network Lines Watercourse Form: Inland river Watercourse Length: 31.6 Watercourse Level: On ground surface Permanent: True Watercourse Name: Not Supplied Catchment Name: Chelmer Primacy: 1	A9NE (SE)	826	4	564817 228451
37	OS Water Network Lines Watercourse Form: Inland river Watercourse Length: 5.5 Watercourse Level: Underground Permanent: True Watercourse Name: Daisyley Brook Catchment Name: Chelmer Primacy: 1	A8SE (S)	845	4	564341 228042
38	OS Water Network Lines Watercourse Form: Inland river Watercourse Length: 544.8 Watercourse Level: On ground surface Permanent: True Watercourse Name: Daisyley Brook Catchment Name: Chelmer Primacy: 1	A8SE (S)	849	4	564346 228039

Agency & Hydrological

Map ID	Details	Quadrant Reference (Compass Direction)	Estimated Distance From Site	Contact	NGR
	OS Water Network Lines				
39	Watercourse Form: Inland river Watercourse Level: On ground surface Permanent: True Watercourse Name: Not Supplied Catchment Name: Chelmer Primacy: 1	A7NW (SW)	939	4	563346 228229
	OS Water Network Lines				
40	Watercourse Form: Inland river Watercourse Length: 252.4 Watercourse Level: On ground surface Permanent: True Watercourse Name: Not Supplied Catchment Name: Chelmer Primacy: 1	A12SW (W)	942	4	563125 228624
	OS Water Network Lines				
41	Watercourse Form: Inland river Watercourse Length: 100.5 Watercourse Level: Not Supplied Permanent: True Watercourse Name: Not Supplied Catchment Name: Chelmer Primacy: 1	A12SW (W)	942	4	563124 228625
	OS Water Network Lines				
42	Watercourse Form: Inland river Watercourse Level: On ground surface Permanent: True Watercourse Name: Not Supplied Catchment Name: Chelmer Primacy: 1	A12SW (W)	948	4	563098 228721

Order Number: 313915961_1_1 Date: 07-Jul-2023 rpr_ec_datasheet v53.0 A Landmark Information Group Service

Map ID		Details	Quadrant Reference (Compass Direction)	Estimated Distance From Site	Contact	NGR
	Licensed Waste Ma	nagement Facilities (Locations)				
43	Licence Number: Location: Operator Name: Operator Location: Authority: Site Category: Licence Status: Issued: Last Modified: Expires: Suspended: Revoked: Surrendered: IPPC Reference: Positional Accuracy:	70346 Lindsell Stores, Whitegates, Lindsell, Great Dunmow, Essex, CM6 3QL Lilley John Malcolm Not Supplied Environment Agency - Anglian Region, Eastern Area Metal Recycling Sites (Vehicle Dismantlers) Expired 21st January 1994 Not Supplied Located by supplier to within 10m	A8SW (S)	862	2	564052 227983
	Local Authority Lan	dfill Coverage				
	Name:	Uttlesford District Council - Has no landfill data to supply		0	5	564064 228884
	Local Authority Lan	dfill Coverage				
	Name:	Essex County Council - Has supplied landfill data		0	6	564064 228884
	Registered Waste T	reatment or Disposal Sites				
44	Licence Holder: Licence Reference: Site Location: Operator Location: Authority: Site Category: Max Input Rate: Waste Source Restrictions: Licence Status: Dated: Preceded By Licence: Superseded By Licence: Superseded By Licence: Positional Accuracy: Boundary Quality: Authorised Waste	J M Lilley 275/94 Lindsell Stores, Whitegates, Lindsell, DUNMOW, Essex, CM6 3QL As Site Address Environment Agency - Anglian Region, Eastern Area Scrapyard Very Small (Less than 10,000 tonnes per year) No known restriction on source of waste Site exempt from licenceExempt 21st January 1994 Not Given Manually positioned to the address or location Not Supplied Max.Waste Permitted By Licence Motor Vehicles/Parts Special Wastes Waste N.O.S.	A8SW (S)	845	2	564050 228000

Geological

Map ID		Details	Quadrant Reference (Compass Direction)	Estimated Distance From Site	Contact	NGR
	BGS 1:625,000 Soli	d Geology				
	Description:	Thames Group	A13NW (W)	0	1	564064 228884
	Coal Mining Affects	ed Areas				
	In an area that might	t not be affected by coal mining				
	Non Coal Mining An No Hazard	reas of Great Britain				
	Potential for Collap	sible Ground Stability Hazards				
	Hazard Potential: Source:	Very Low British Geological Survey, National Geoscience Information Service	A13NW (W)	0	1	564064 228884
	Potential for Comp	ressible Ground Stability Hazards				
	Hazard Potential: Source:	No Hazard British Geological Survey, National Geoscience Information Service	A13NW (W)	0	1	564064 228884
	Potential for Groun	d Dissolution Stability Hazards				
	Hazard Potential: Source:	No Hazard British Geological Survey, National Geoscience Information Service	A13NW (W)	0	1	564064 228884
	Potential for Lands	lide Ground Stability Hazards				
	Hazard Potential: Source:	Very Low British Geological Survey, National Geoscience Information Service	A13NW (W)	0	1	564064 228884
	Potential for Runni	ng Sand Ground Stability Hazards				
	Hazard Potential: Source:	Very Low British Geological Survey, National Geoscience Information Service	A13NW (W)	0	1	564064 228884
	Potential for Shrink	ring or Swelling Clay Ground Stability Hazards				
	Hazard Potential: Source:	Low British Geological Survey, National Geoscience Information Service	A13NW (W)	0	1	564064 228884
	Radon Potential - R	adon Affected Areas				
	Affected Area: Source:	The property is in a Lower probability radon area (less than 1% of homes are estimated to be at or above the Action Level). British Geological Survey, National Geoscience Information Service	A13NW (W)	0	1	564064 228884
		Radon Protection Measures No radon protective measures are necessary in the construction of new	A13NW	0	1	564064
	Source:	dwellings or extensions British Geological Survey, National Geoscience Information Service	(W)	0	ı	228884

Order Number: 313915961_1_1 Date: 07-Jul-2023 rpr_ec_datasheet v53.0 A Landmark Information Group Service Page 12 of 20

Industrial Land Use

Map ID		Details	Quadrant Reference (Compass Direction)	Estimated Distance From Site	Contact	NGR
	Contemporary Trade	e Directory Entries				
45	Location: Classification: Status:	Carl Hopkins Spts & Classic Cars Brickhouse Farm, Lindsell, Dunmow, CM6 3QH Garage Services Active Automatically positioned to the address	A12SE (W)	324	-	563719 228794

Order Number: 313915961_1_1 Date: 07-Jul-2023 rpr_ec_datasheet v53.0 A Landmark Information Group Service Page 13 of 20

Sensitive Land Use

Map ID		Details	Quadrant Reference (Compass Direction)	Estimated Distance From Site	Contact	NGR
	Nitrate Vulneral	ble Zones				
46	Name: Description: Source:	Sandlings And Chelmsford Groundwater Environment Agency, Head Office	A13NW (W)	0	3	564064 228884
	Nitrate Vulneral	ble Zones				
47	Name: Description: Source:	River Chelmer Nvz Surface Water Environment Agency, Head Office	A13NW (W)	0	3	564064 228884
	Nitrate Vulneral	ble Zones				
48	Name: Description: Source:	River Blackwater Nvz Surface Water Environment Agency, Head Office	A18NE (N)	744	3	564190 229654

Order Number: 313915961_1_1 Date: 07-Jul-2023 rpr_ec_datasheet v53.0 A Landmark Information Group Service Page 14 of 20

Agency & Hydrological	Version	Update Cycle
Contaminated Land Register Entries and Notices		
Braintree District Council - Environmental Health Department	January 2020	Annual Rolling Update
Environment Agency - Head Office	June 2020	Annually
Uttlesford District Council - Environmental Health Department	October 2017	Annual Rolling Update
Discharge Consents Environment Agency - Anglian Region	April 2023	Quarterly
	April 2023	Quarterly
Enforcement and Prohibition Notices Environment Agency - Anglian Region	March 2013	
Integrated Pollution Controls		
Environment Agency - Anglian Region	January 2009	
Integrated Pollution Prevention And Control		
Environment Agency - Anglian Region	January 2023	Quarterly
	candary 2020	Quartony
Local Authority Integrated Pollution Prevention And Control Braintree District Council - Environmental Health Department	August 2014	Variable
Uttlesford District Council - Environmental Health Department	September 2014	Variable
Local Authority Pollution Prevention and Controls		
Braintree District Council - Environmental Health Department	August 2014	Not Applicable
Uttlesford District Council - Environmental Health Department	September 2014	Annual Rolling Update
Local Authority Pollution Prevention and Control Enforcements	Coptomissi 2011	7 tillidai rtolling Opdati
Braintree District Council - Environmental Health Department	August 2014	Variable
Uttlesford District Council - Environmental Health Department	September 2014	Variable
Nearest Surface Water Feature	Coptomissi 2011	Variable
Ordnance Survey	May 2023	
Pollution Incidents to Controlled Waters		
Environment Agency - Anglian Region	September 1999	
Prosecutions Relating to Authorised Processes	·	
Environment Agency - Anglian Region	July 2015	
Prosecutions Relating to Controlled Waters		
Environment Agency - Anglian Region	March 2013	
Registered Radioactive Substances		
Environment Agency - Anglian Region	June 2016	As notified
River Quality		
Environment Agency - Head Office	November 2001	Not Applicable
River Quality Biology Sampling Points		
Environment Agency - Head Office	April 2012	
River Quality Chemistry Sampling Points		
Environment Agency - Head Office	April 2012	
Substantiated Pollution Incident Register	·	
Environment Agency - Anglian Region - Eastern Area	April 2023	Quarterly
Water Abstractions		
Environment Agency - Anglian Region	April 2023	Quarterly
Water Industry Act Referrals		
Environment Agency - Anglian Region	October 2017	
	00.0001 2017	
Groundwater Vulnerability Map Environment Agency - Head Office	June 2018	As notified
	3410 2010	7.0 110411104
Bedrock Aquifer Designations Environment Agency - Head Office	January 2018	Annually
Superficial Aquifer Designations	Sandary 2010	, amouny
Environment Agency - Head Office	January 2018	Annually
Source Protection Zones	-	
Environment Agency - Head Office	September 2022	Bi-Annually

Order Number: 313915961_1_1 Date: 07-Jul-2023 rpr_ec_datasheet v53.0 A Landmark Information Group Service

Agency & Hydrological	Version	Update Cycle
Extreme Flooding from Rivers or Sea without Defences		
Environment Agency - Head Office	February 2023	Quarterly
Flooding from Rivers or Sea without Defences		
Environment Agency - Head Office	February 2023	Quarterly
Areas Benefiting from Flood Defences		
Environment Agency - Head Office	February 2023	Quarterly
Flood Water Storage Areas		
Environment Agency - Head Office	February 2023	Quarterly
Flood Defences		
Environment Agency - Head Office	August 2022	Quarterly
OS Water Network Lines		
Ordnance Survey	April 2023	Quarterly
BGS Groundwater Flooding Susceptibility		
British Geological Survey - National Geoscience Information Service	May 2013	As notified
Waste	Version	Update Cycle
BGS Recorded Landfill Sites		
British Geological Survey - National Geoscience Information Service	November 2002	As notified
Historical Landfill Sites		
Environment Agency - Head Office	March 2023	Quarterly
ntegrated Pollution Control Registered Waste Sites		
Environment Agency - Anglian Region	January 2009	Not Applicable
Licensed Waste Management Facilities (Landfill Boundaries)		
Environment Agency - Anglian Region - Eastern Area	January 2023	Quarterly
Licensed Waste Management Facilities (Locations)		
Environment Agency - Anglian Region - Eastern Area	January 2023	Quarterly
Local Authority Landfill Coverage		
Braintree District Council	February 2003	Not Applicable
Essex County Council	February 2003	Not Applicable
Uttlesford District Council - Environmental Health Department	February 2003	Not Applicable
Local Authority Recorded Landfill Sites		
Braintree District Council	October 2018	
Essex County Council	October 2018	
Uttlesford District Council - Environmental Health Department	October 2018	
Registered Landfill Sites		
Environment Agency - Anglian Region - Eastern Area	March 2006	Not Applicable
Registered Waste Transfer Sites		
-	4 "10040	
Environment Agency - Anglian Region - Eastern Area	April 2018	
Environment Agency - Anglian Region - Eastern Area Registered Waste Treatment or Disposal Sites	April 2018	

Order Number: 313915961_1_1 Date: 07-Jul-2023 rpr_ec_datasheet v53.0 A Landmark Information Group Service Page 16 of 20

Hazardous Substances	Version	Update Cycle
Control of Major Accident Hazards Sites (COMAH)		
Health and Safety Executive	March 2023	Bi-Annually
Explosive Sites		
Health and Safety Executive	March 2017	
Notification of Installations Handling Hazardous Substances (NIHHS)		
Health and Safety Executive	August 2001	
Planning Hazardous Substance Enforcements		
Essex County Council	February 2016	Variable
Braintree District Council	June 2023	Variable
Uttlesford District Council - Planning Department	May 2023	Variable
Planning Hazardous Substance Consents		
Braintree District Council	February 2016	Variable
Essex County Council	February 2016	Variable
Uttlesford District Council - Planning Department	October 2015	Variable
Geological	Version	Update Cycle
BGS 1:625,000 Solid Geology	J	A C I
British Geological Survey - National Geoscience Information Service	January 2009	As notified
BGS Recorded Mineral Sites		D: A
British Geological Survey - National Geoscience Information Service	June 2023	Bi-Annually
CBSCB Compensation District		
Cheshire Brine Subsidence Compensation Board (CBSCB)	August 2011	A
Cheshire Brine Subsidence Compensation Board (CBSCB)	November 2020	As notified
Coal Mining Affected Areas		
The Coal Authority - Property Searches	February 2023	Annual Rolling Update
Mining Instability		
Ove Arup & Partners	June 1998	Not Applicable
Non Coal Mining Areas of Great Britain		
British Geological Survey - National Geoscience Information Service	May 2015	Not Applicable
Potential for Collapsible Ground Stability Hazards		
British Geological Survey - National Geoscience Information Service	April 2020	As notified
Potential for Compressible Ground Stability Hazards		
British Geological Survey - National Geoscience Information Service	January 2019	As notified
Potential for Ground Dissolution Stability Hazards		
British Geological Survey - National Geoscience Information Service	January 2019	As notified
Potential for Landslide Ground Stability Hazards		
British Geological Survey - National Geoscience Information Service	January 2019	As notified
Potential for Running Sand Ground Stability Hazards	,	
British Geological Survey - National Geoscience Information Service	January 2019	As notified
Potential for Shrinking or Swelling Clay Ground Stability Hazards		
British Geological Survey - National Geoscience Information Service	January 2019	As notified
Radon Potential - Radon Affected Areas	January 2010	7.10 11041104
British Geological Survey - National Geoscience Information Service	September 2022	Annually
• ,	Ochtember 2022	Ailliually
Radon Potential - Radon Protection Measures	Contomb == 0000	A
British Geological Survey - National Geoscience Information Service	September 2022	Annually

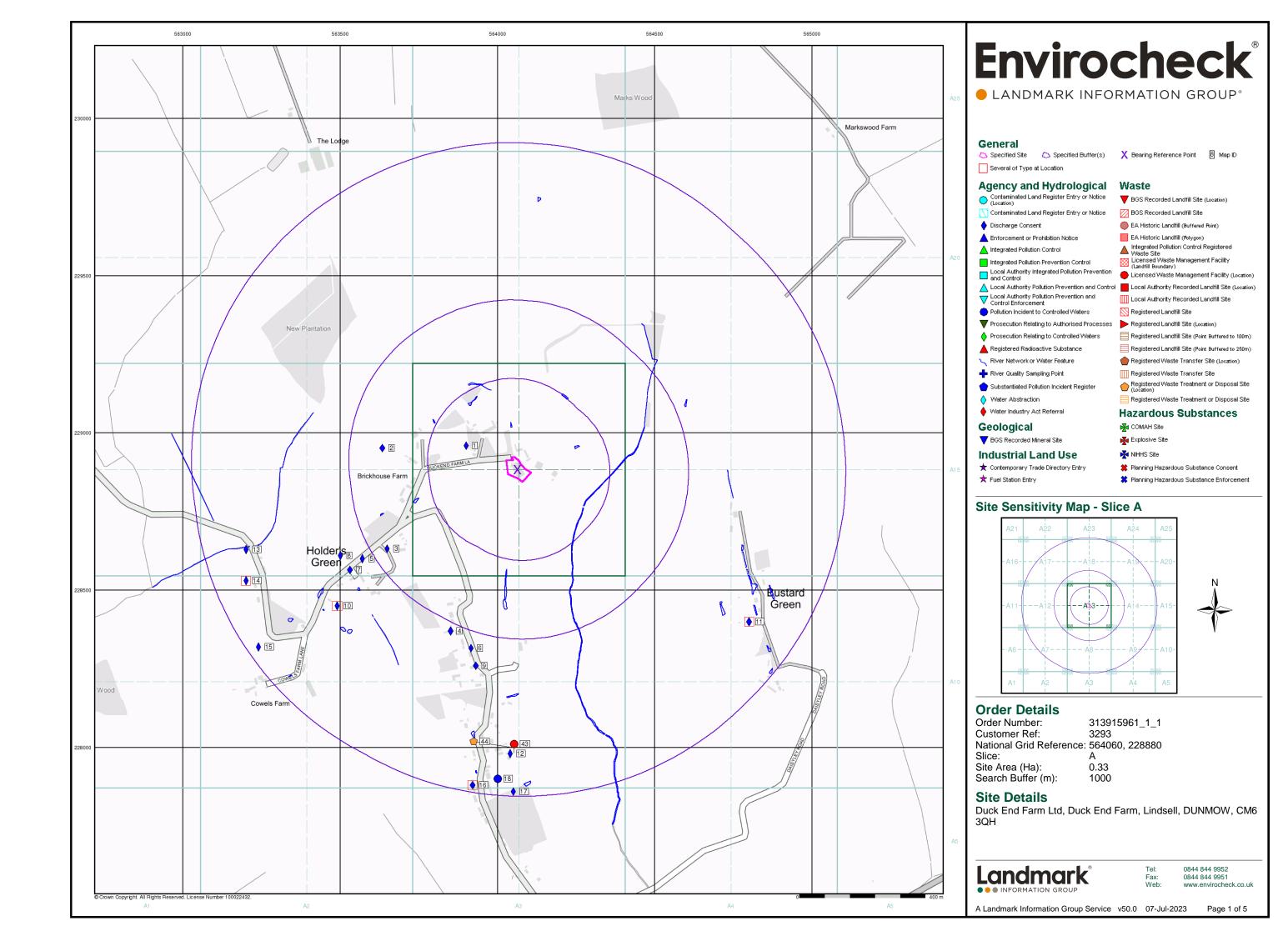
Order Number: 313915961_1_1 Date: 07-Jul-2023 rpr_ec_datasheet v53.0 A Landmark Information Group Service Page 17 of 20

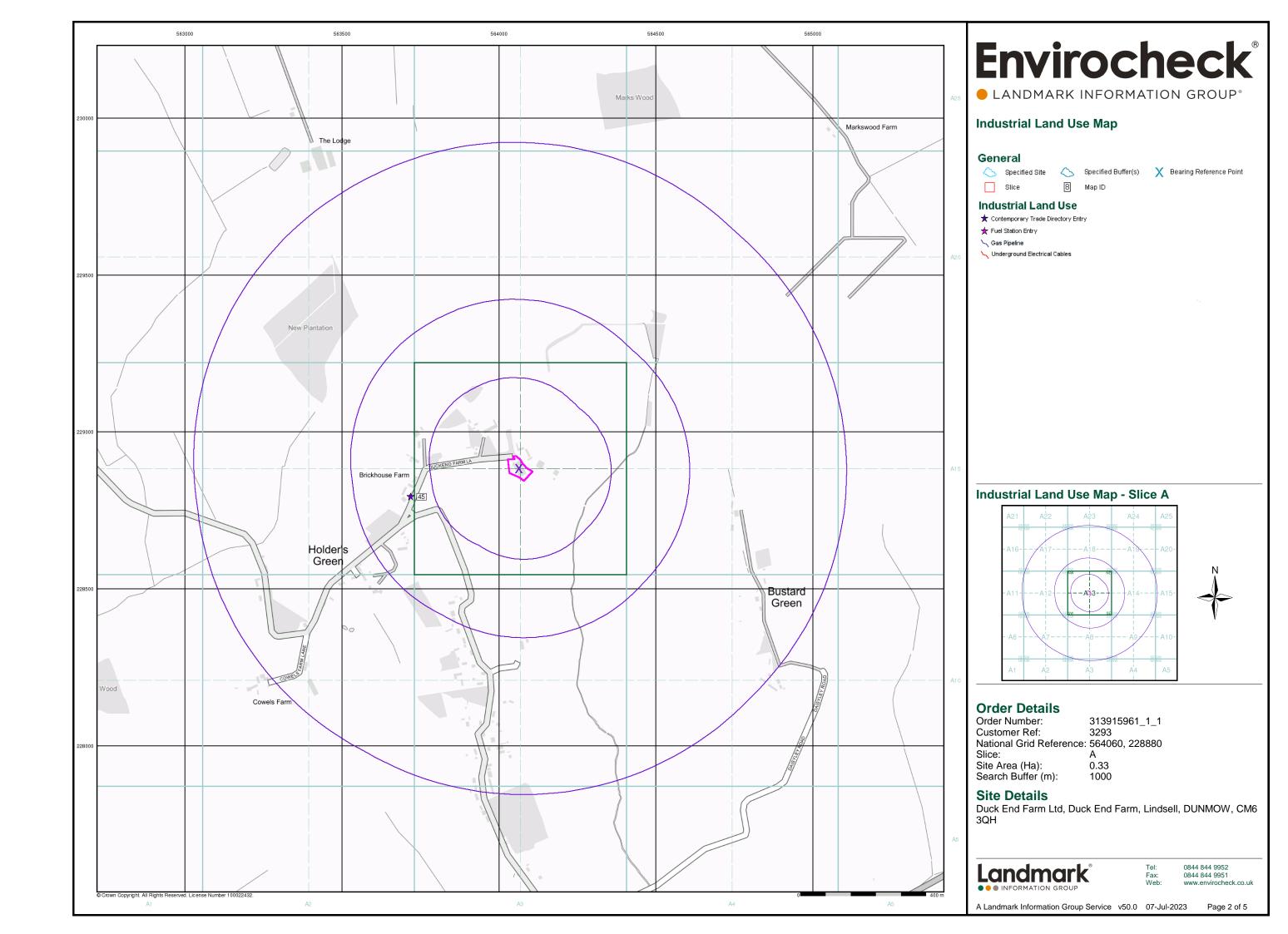
Industrial Land Use	Version	Update Cycle
Contemporary Trade Directory Entries		
Thomson Directories	April 2023	Quarterly
Fuel Station Entries		
Catalist Ltd - Experian	June 2023	Quarterly
Gas Pipelines		
National Grid	October 2021	Bi-Annually
Underground Electrical Cables		
National Grid	February 2023	Bi-Annually
Sensitive Land Use	Version	Update Cycle
Ancient Woodland		
Natural England	April 2023	Bi-Annually
Areas of Adopted Green Belt		
Braintree District Council	July 2022	Quarterly
Uttlesford District Council	July 2022	Quarterly
Areas of Unadopted Green Belt		
Braintree District Council	July 2022	Quarterly
Uttlesford District Council	July 2022	Quarterly
Areas of Outstanding Natural Beauty		
Natural England	April 2023	Bi-Annually
Environmentally Sensitive Areas		
Natural England	January 2017	
Forest Parks		
Forestry Commission	May 2023	Not Applicable
Local Nature Reserves		
Natural England	March 2023	Bi-Annually
Marine Nature Reserves		
Natural England	April 2023	Bi-Annually
National Nature Reserves		
Natural England	February 2023	Bi-Annually
National Parks		
Natural England	February 2018	Bi-Annually
Nitrate Sensitive Areas		
Natural England	April 2023	Not Applicable
Nitrate Vulnerable Zones		
Department for Environment, Food and Rural Affairs (DEFRA - formerly FRCA)	April 2016	
Environment Agency - Head Office	March 2023	Bi-Annually
Ramsar Sites		
Natural England	March 2023	Bi-Annually
Sites of Special Scientific Interest		
Natural England	March 2023	Bi-Annually
Special Areas of Conservation		
Natural England	April 2023	Bi-Annually
Special Protection Areas		
Natural England	April 2023	Bi-Annually

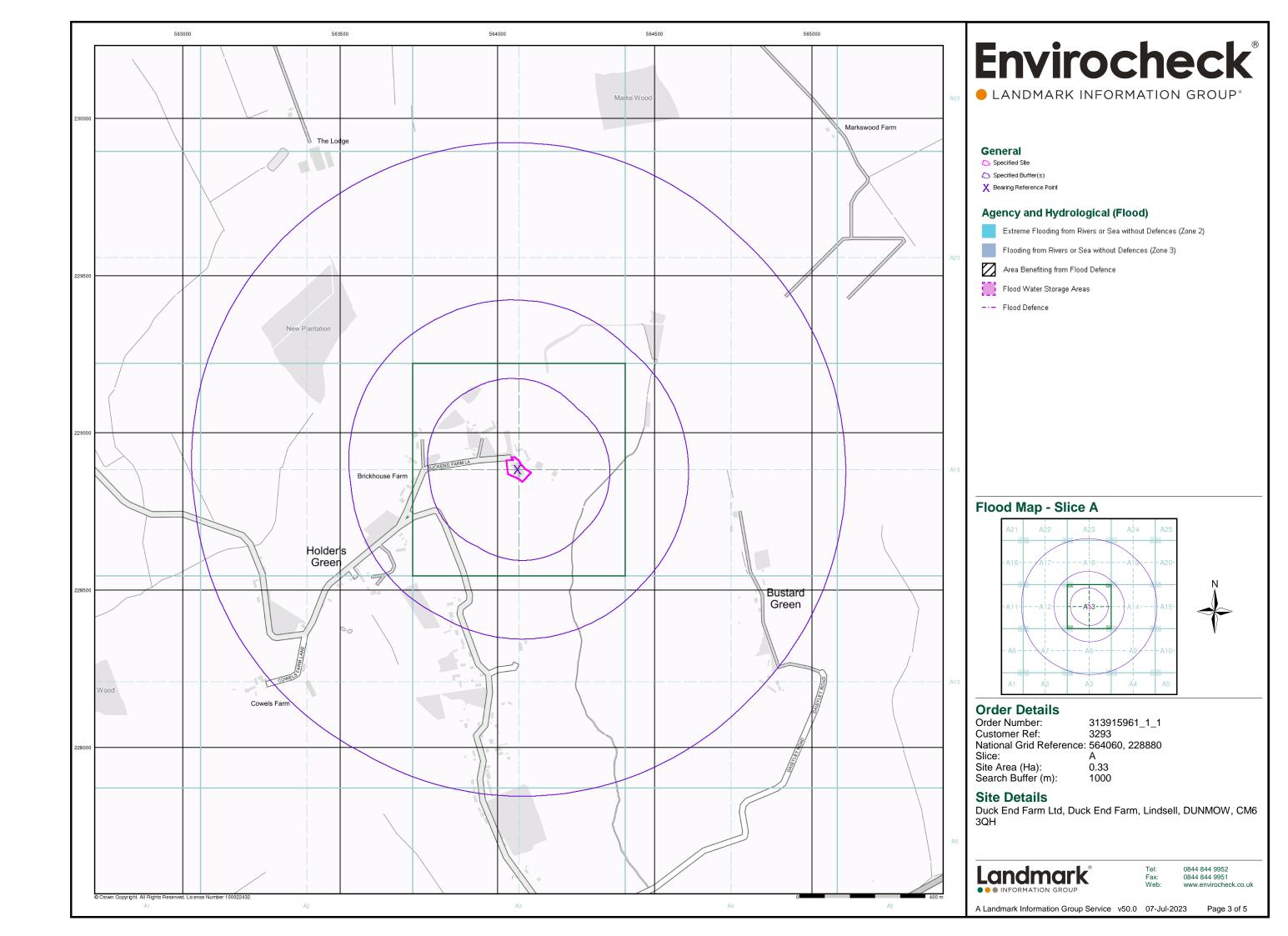
Order Number: 313915961_1_1 Date: 07-Jul-2023 rpr_ec_datasheet v53.0 A Landmark Information Group Service Page 18 of 20

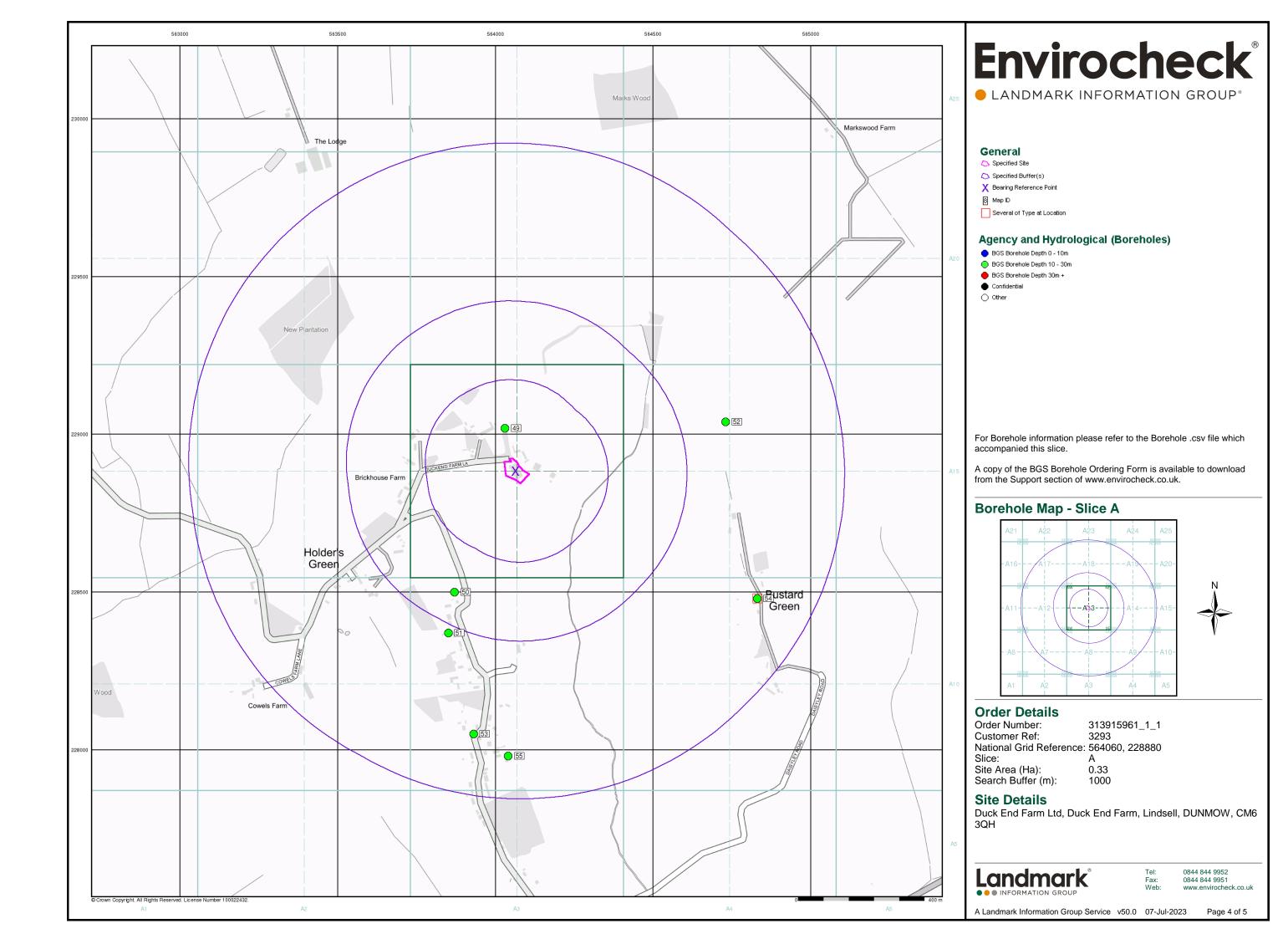
Data Suppliers

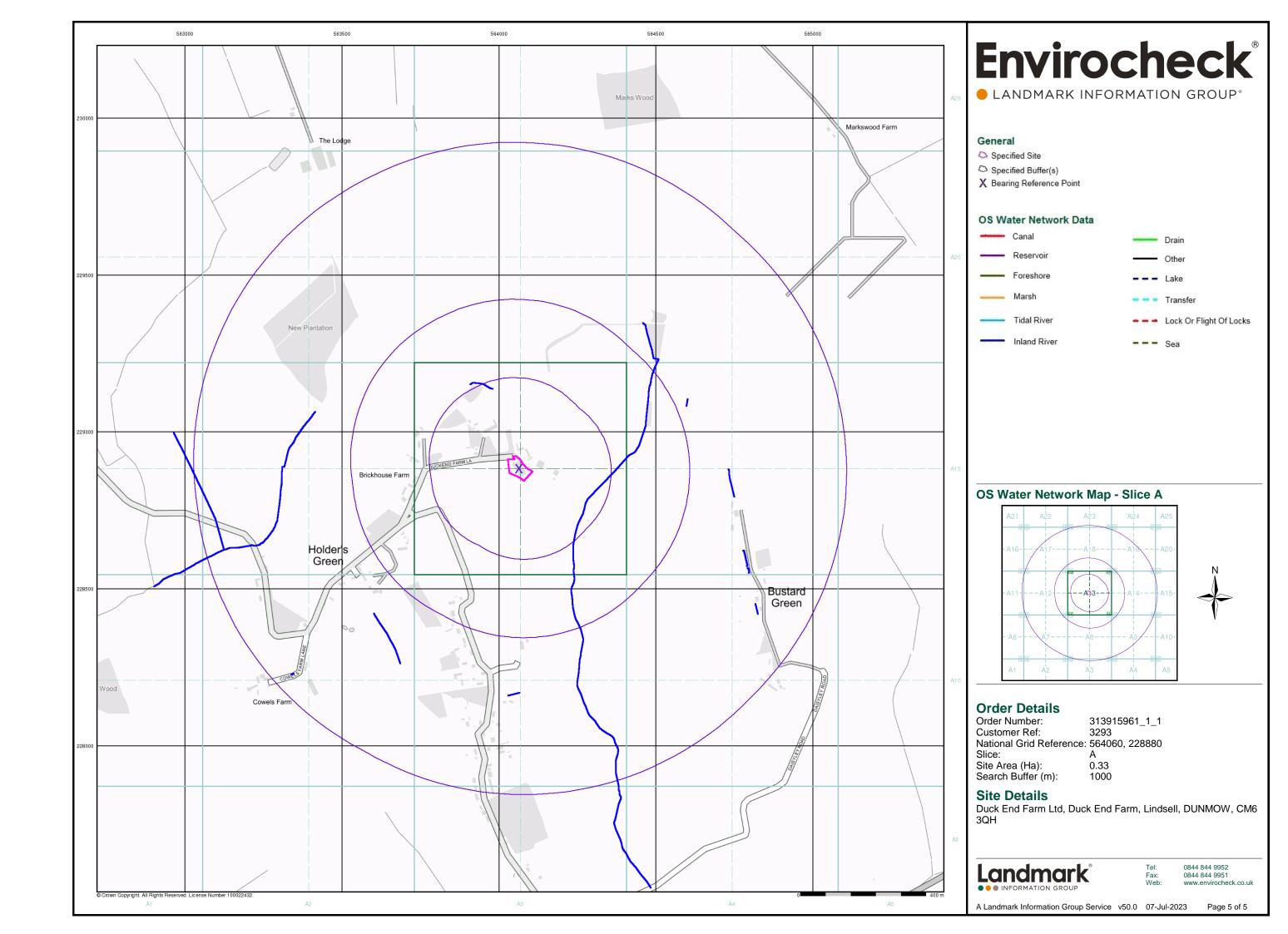
A selection of organisations who provide data within this report

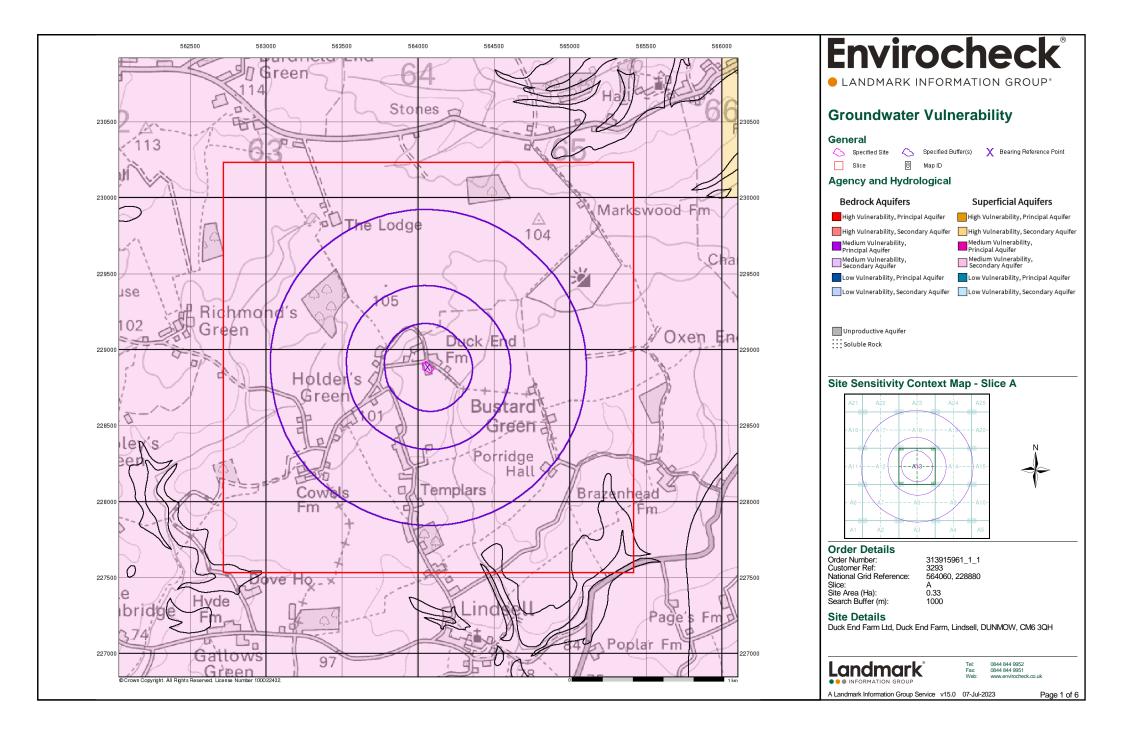

Data Supplier	Data Supplier Logo
Ordnance Survey	Map data
Environment Agency	Environment Agency
Scottish Environment Protection Agency	SEP Scottish Environment Protection Agency
The Coal Authority	The Coal Authority
British Geological Survey	British Geological Survey NATURAL ENVIRONMENT RESEARCH COUNCIL
Centre for Ecology and Hydrology	Centre for Ecology & Hydrology NATURAL ENVIRONMENT RESEARCH COUNCIL
Natural Resources Wales	Cyfoeth Naturiol Cymru Natural Resources Wales
Scottish Natural Heritage	SCOTTISH NATURAL HERITAGE 迎公介
Natural England	NATURAL ENGLAND
Public Health England	Public Health England
Ove Arup	ARUP
Stantec UK Ltd	ARUP Stantec

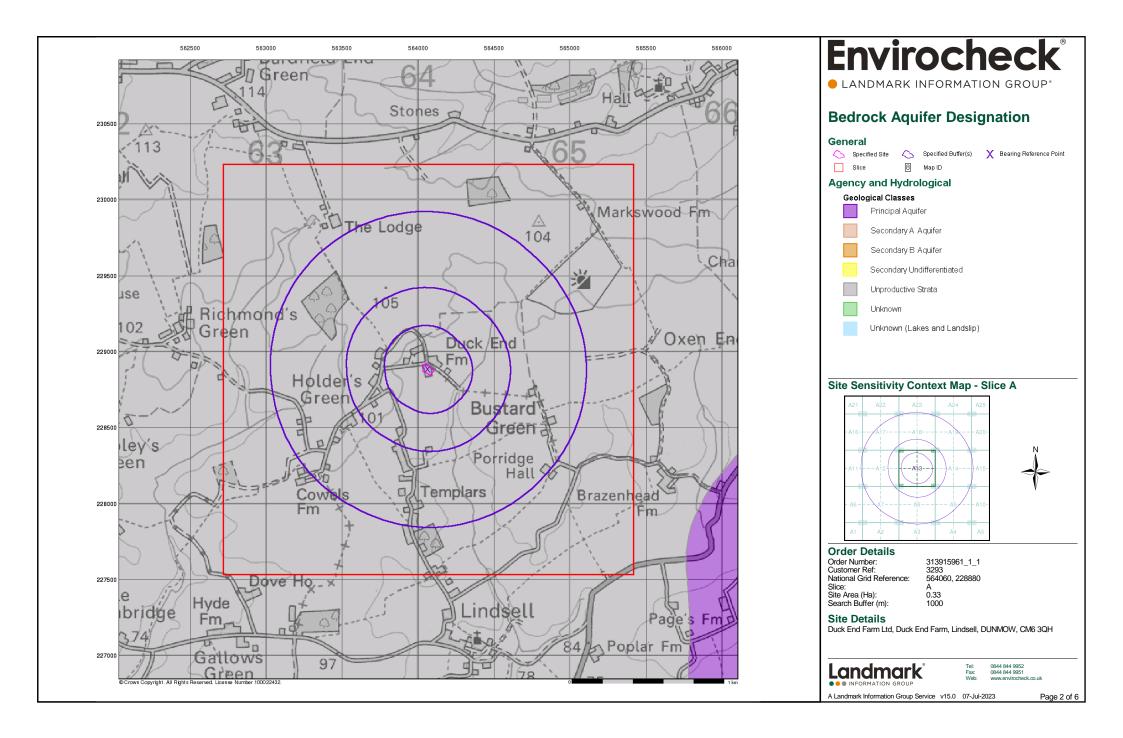


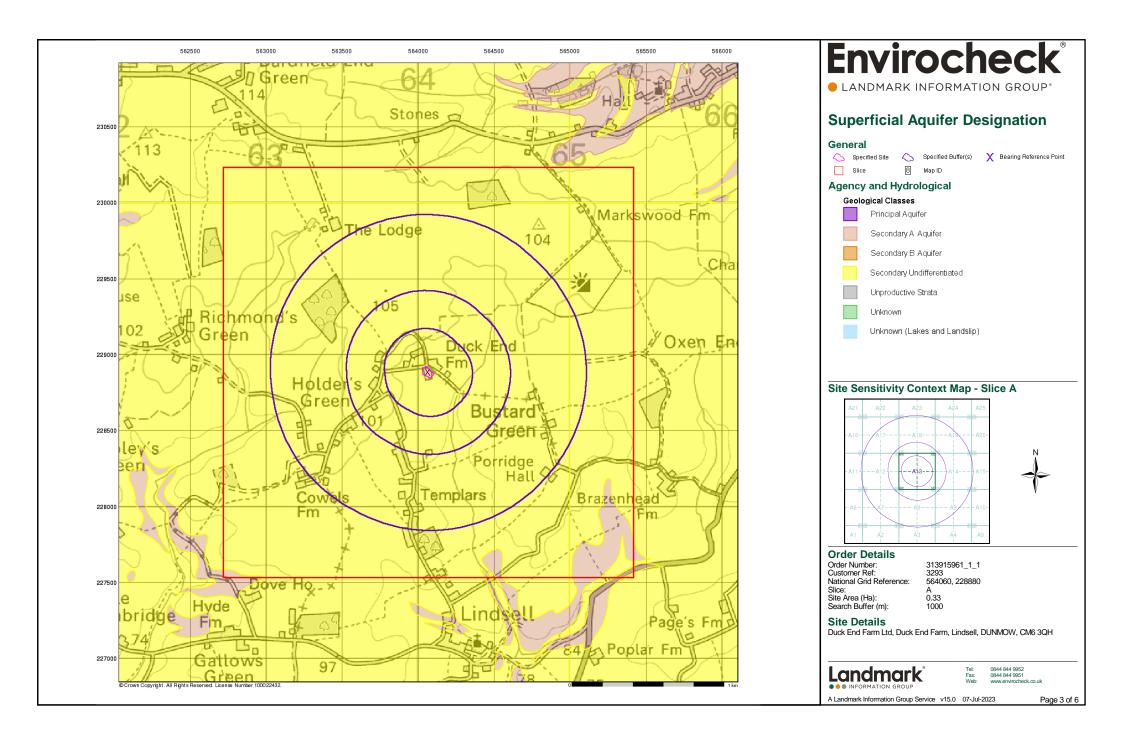

Useful Contacts

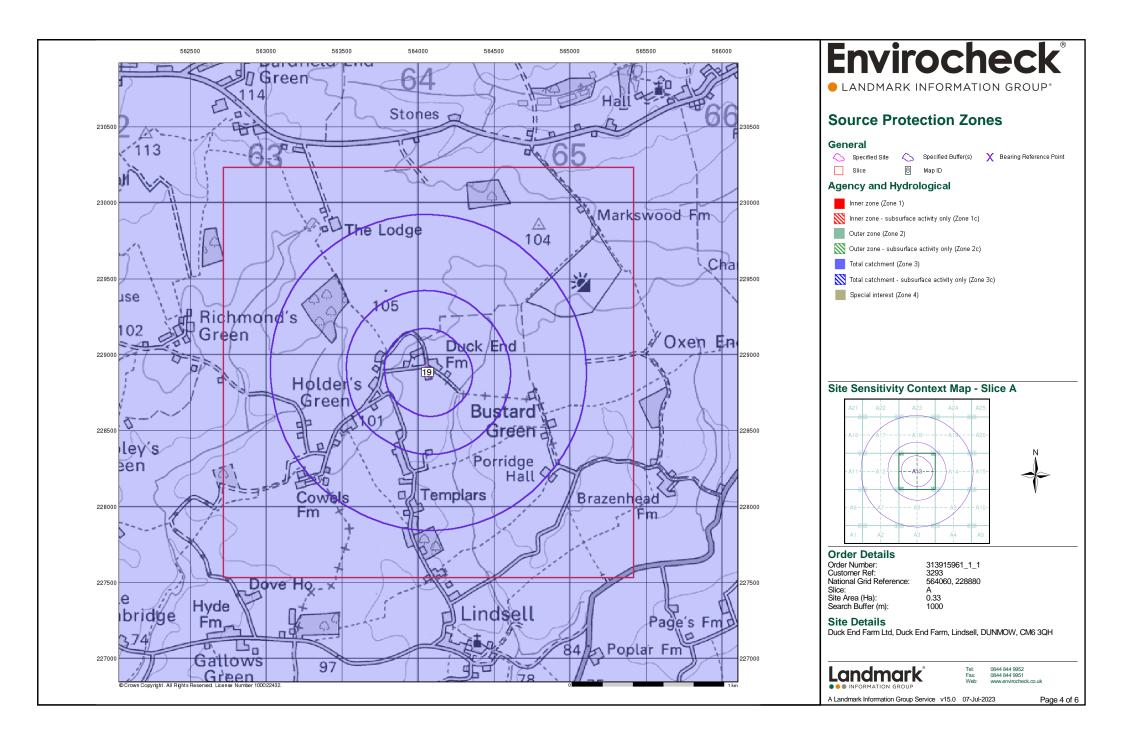

Contact	Name and Address	Contact Details
1	British Geological Survey - Enquiry Service British Geological Survey, Environmental Science Centre, Keyworth, Nottingham, Nottinghamshire, NG12 5GG	Telephone: 0115 936 3143 Fax: 0115 936 3276 Email: enquiries@bgs.ac.uk Website: www.bgs.ac.uk
2	Environment Agency - National Customer Contact Centre (NCCC) PO Box 544, Templeborough, Rotherham, S60 1BY	Telephone: 03708 506 506 Email: enquiries@environment-agency.gov.uk
3	Environment Agency - Head Office Rio House, Waterside Drive, Aztec West, Almondsbury, Bristol, Avon, BS32 4UD	Telephone: 01454 624400 Fax: 01454 624409
4	Ordnance Survey Adanac Drive, Southampton, Hampshire, SO16 0AS	Telephone: 03456 05 05 05 Email: customerservices@ordnancesurvey.co.uk Website: www.ordnancesurvey.gov.uk
5	Uttlesford District Council - Environmental Health Department Council Offices, London Road, Saffron Walden, Essex, CB11 4ER	Telephone: 01799 510581 Fax: 01799 510499 Website: www.uttlesford.gov.uk
6	Essex County Council County Hall, Chelmsford, Essex, CM1 1YS	Telephone: 01245 492211 Website: www.essexcc.gov.uk
7	Natural England County Hall, Spetchley Road, Worcester, WR5 2NP	Telephone: 0300 060 3900 Email: enquiries@naturalengland.org.uk Website: www.naturalengland.org.uk
-	Public Health England - Radon Survey, Centre for Radiation, Chemical and Environmental Hazards Chilton, Didcot, Oxfordshire, OX11 0RQ	Telephone: 01235 822622 Fax: 01235 833891 Email: radon@phe.gov.uk Website: www.ukradon.org
-	Landmark Information Group Limited Imperium, Imperial Way, Reading, Berkshire, RG2 0TD	Telephone: 0844 844 9952 Fax: 0844 844 9951 Email: customerservices@landmarkinfo.co.uk Website: www.landmarkinfo.co.uk

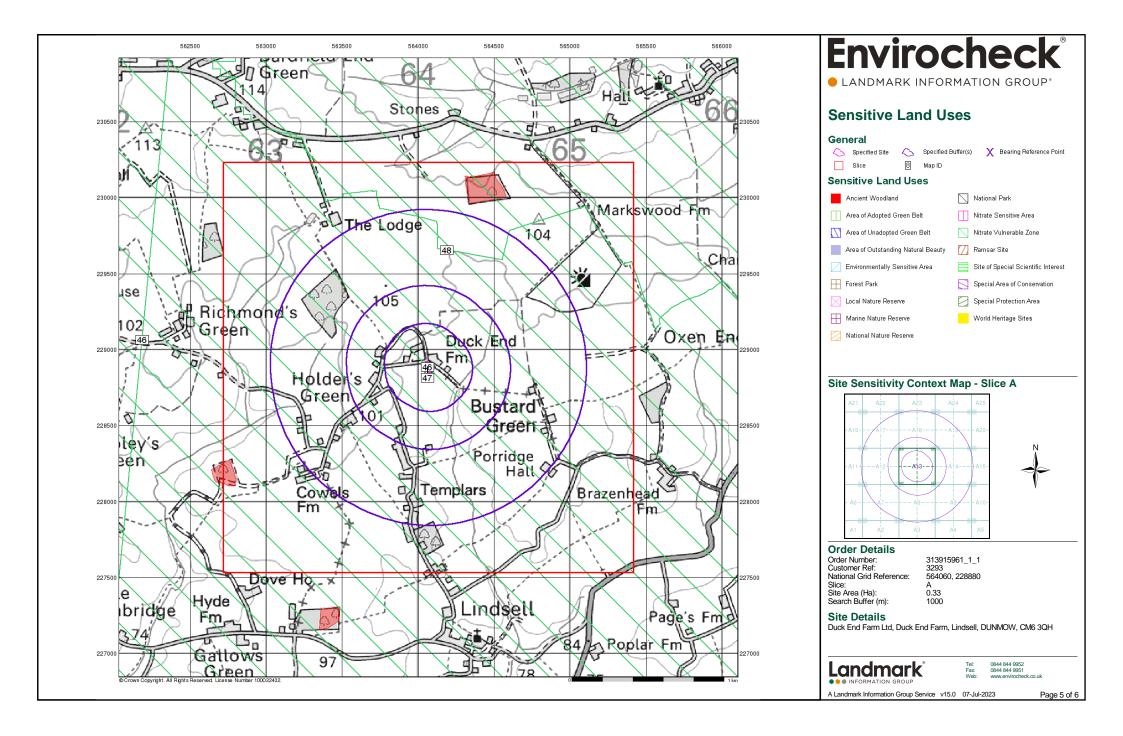

Please note that the Environment Agency / Natural Resources Wales / SEPA have a charging policy in place for enquiries.

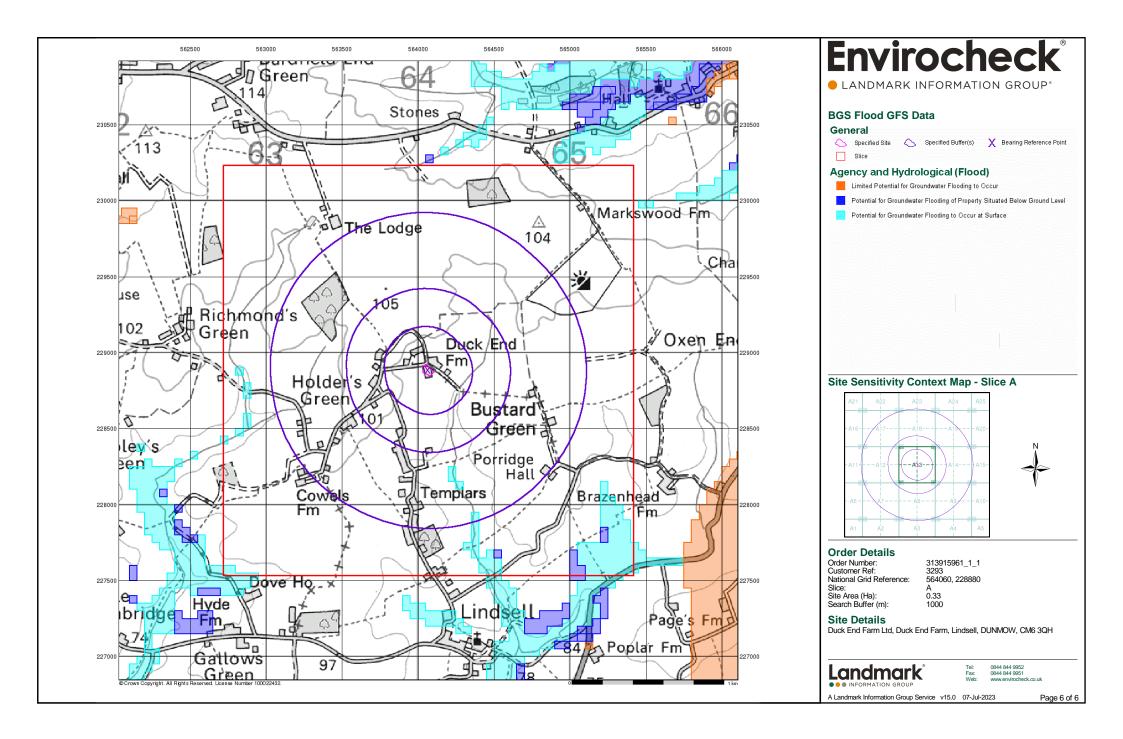












APPENDIX VI GEOLOGICAL LOGS

Project: Duck End Farm Duck End Lane Lindsell Location:

Borehole Number:

Start of Drilling:

WS1

Project No: 3293 Client Duck

Completion of Drilling: Duck End Farm Limited Drilling Method:

24-May-23 24-May-23 Window Sampler

Logged By: NB Ground Level (m AOD):

	Sample/Tes	it					
nple /		Sample	_		Depth	Thick-	
est	Result	range	Description	Log	(m)	ness (m)	S/pip
J,V		0.0-0.1	TOP SOIL - Rough grass over stiff dark brown, silty, slightly sandy, slightly gravelly friable CLAY. Cobble of concrete at 0.1-0.2m.		0.2	0.0	
ι, ν			MADE GROUND - Interbedded stiff brown, thinly laminated slightly silty, slightly sandy , slightly		0.2	0.2	
			gravelly CLAY and firm silty, slightly sandy, slightly gravelly humic clay with rootlets. Gravel of				
			fine to coarse flint and occasional brick fragment and timber fragment. Wet at base.				
					_		
)		0.8-0.9					
J,V		0.9-1.0					
					1.0		
					1.1	0.9	
PT	3,1,1,2,2	1.2-1.65	Soft to firm mid to dark brown, slightly silty, slightly sandy, slightly gravelly CLAY. Gravel of fine to	·			
D	N=6	1.3-1.4	medium round chalk and fine to coarse flint.	0			
,		1.3-1.4		x			
					-		
				0			
				x			
)		1.9-2.0			2.0		
PT	3,1,3,2,4	2.0-2.45		0	_		
	N=10			x			
				<u> </u>	2.3	1.2	
			Stiff, mid to dark grey brown, slightly silty, slightly sandy, slightly gravelly CLAY. Gravel of fine to	_ ·			
			medium and occasional course round chalk and occasional cobble.	0	_		
				x			
				·— —			
)		2.9-3.0		0			
,		2.9-3.0		x	3.0		
РΤ	5,4,6,8,6	3.0-3.45		·			
	N=24	0.0 0.10	becomes dark grey.	0			
	27			x			
					-		
				0			
				x			
)		3.9-4.0	becomes firm mid brown and orange mottled.				
					4.0		
PT	4,2,3,3,4	4.0-4.45		0			
	N=12			x			
				·— —			
				<u> </u>			
				0	<u> </u>		
				x			
,		1050		·— —			
0		4.8-5.0					
				o x	F 0		
			becomes soft.	x	_5.0		
PT	1,1,0,2,2	5.0-5.45					
•	N=5	2.2 0.10		0			
	-			о <u></u> .	5.5	2.2	
			Base of borehole				
					_		
					6.0		
					_		
					7.0		
					_ ′		
arks:				ı		_	
					1	Brown	Green
ndwa	iter: Dry				General	Anical and Generalizate	Mental Consul
			Tub, V - Vial or 60ml jar, D - Small Disturbed, B - Large bulk sample, W - Water sample,				1

Project: Duck End Farm Location:

Duck End Lane Lindsell

Borehole Number:

WS2

Project No: 3293 Client Duck

Start of Drilling: Completion of Drilling: 24-May-23 24-May-23

Duck End Farm Limited Logged By: NB

Drilling Method: Ground Level (m AOD): Window Sampler

	Sample/Test	ı					
nple /		Sample			Depth	Thick-	
est	Result	range	Description TOR COULD Provide a service of the description of the desc	Log	(m)	ness (m)	S/pi
J,V		0.1-0.2	TOP SOIL - Rough grass over stiff dark brown, silty, slightly sandy, slightly gravelly friable CLAY. Occasional brick fragment.				
J,V			MADE GROUND/REWORKED GROUND - Firm mid brown and mottled orange brown, slightly silty	_	0.2	0.2	
J,V			slightly sand, slightly gravelly CLAY with occasional cobble of flint an chalk.		0.3	0.1	
0, 0			Firm to stiff mid to dark brown, slightly silty, slightly sandy, slightly gravelly CLAY. Gravel of fine to	- /			
			medium round chalk and fine to coarse flint.	x	_		
				0			
J,V		0.8-0.9		x			
D		0.9-1.0	becomes stiff	l	1.0		
				·			
PT	3,3,2,4,4	1.2-1.65		0			
	N=13		becomes stiff to very stiff.	x			
D		1.3-1.4		·— —			
					_		
				0			
				x			
				·— —			
_		4000					
D DT	12155	1.9-2.0 2.0-2.45		0	2.0		
PT	4,3,4,5,5 N=17	2.0-2.45		x			
	N=17			.— —			
				:			
				0	2.5	2.2	
			Very stiff, mid to dark grey brown, slightly silty, slightly sandy, slightly gravelly CLAY. Gravel of fine	X	2.5	2.2	}
			to medium and occasional coarse round chalk and flint.	.— —			
				0			
				x			
D		2.9-3.0			3.0	0.5	
			Base of borehole - Refusal at 3.0m				1
PT	5,5,13,16,17	3.0-3.45					
	N=51						
					L		
					4.0		
					<u> </u>		
					5.0		
							l
					-		
					6.0		
					0.0		
					_		
					7.0		
					_ `		
arks:			•				
						Brown	reen
ındwa	ater: Dry				Gentes	inical and Gerenvironme	with Consultani
			Tub, V - Vial or 60ml jar, D - Small Disturbed, B - Large bulk sample, W - Water sample,			Page 1 of	

Project: Duck End Farm Duck End Lane Lindsell Location:

Borehole Number:

WS3

Page 1 of 1

Start of Drilling: Completion of Drilling: 24-May-23 24-May-23

Project No: 3293
Client Duck End Farm Limited
Logged By: NB

Drilling Method:

Window Sampler

	Sample/Tes	st					
ole /		Sample			Depth	Thick-	
st	Result	range	Description MADE GROUND/REWORKED NATURAL - 20mm of dark brown sandy clay over stiff mid brown clay	Log	(m)	ness (m)	S/p
,V		0.1-0.3	over stiff mid brown, slightly silty, slightly sandy, slightly gravelly CLAY. Gravel of fine to medium				
, -			flint and chalk.		0.35	0.35	
			MADE GROUND - Thin horizon of burnt wood, timber, ash, mails and plastic in dark brown matrix.		0.40	0.05	ľ
			MADE GROUND/DISTRUBED GROUND - Firm, dark brown, silty, slightly sandy, slightly gravelly				İ
,V		0.45-0.65	friable CLAY. Grades to mid brown slightly silty, slightly sandy, slightly gravelly CLAY.				
			Gravel of fine to medium flint and chalk. Rare brick fragment.				
						0.5	
			Stiff to very stiff mid brown, silty, sandy slightly gravelly CLAY. Gravel of fine to medium round and		0.9 1.0	0.5	ŀ
			subrotund flint.	0	_ 1.0		
,V		1.0-1.2		x			
				- <u>-</u> _			
				·_			
				0	1.5	0.6	
			Stiff to very stiff mid brown and mottled pale blue grey and orange, slightly silty, slightly sandy, slightly gravelly. Gravel of fine to medium and occasional coarse flint and chalk.	x			
			signity gravelly. Gravel of fille to filedidiff and occasional coarse fillit and chaix.	·			
				0			
				x	2.0	0.5	
			Base of borehole		-		l
					_		
					3.0		
					_		
					_		
					4.0		
					-		
					-		
					5.0		
					_		
					6.0		
					_		
					7.0		
arks:							

J - 250 or 500ml Jar, T - Tub, V - Vial or 60ml jar, D - Small Disturbed, B - Large bulk sample, W - Water sample,

Project: Duck End Farm Location:

Duck End Lane Lindsell

Borehole Number:

WS4

Page 1 of 1

Start of Drilling: Completion of Drilling: 24-May-23 24-May-23

Project No: 3293
Client Duck End Farm Limited
Logged By: NB

Drilling Method:
Ground Level (m AOD):

Window Sampler

ple /	ample/Test Result	Sample range 0.1-0.3 0.4-0.6	Description MADE GROUND/REWORKED NATURAL - Wood chippings over stiff mid brover stiff mid brown, slightly silty, slightly sandy, slightly gravelly CLAY. Grav flint and chalk. MADE GROUND/DISTRUBED GROUND - Firm, dark brown, silty, slightly sa friable CLAY. Grades to mid brown slightly silty, slightly sandy, slightly grave Gravel of fine to medium flint and chalk. Rare brick fragment. Stiff to very stiff mid brown, silty, sandy slightly gravelly CLAY. Gravel of fine subrotund flint.	vel of fine to medium undy, slightly gravelly slly CLAY.	 o x	Depth (m) 0.3	Thickness (m) 0.3	S/pip
J,V	Result	0.1-0.3 0.4-0.6	MADE GROUND/REWORKED NATURAL - Wood chippings over stiff mid brower stiff mid brown, slightly silty, slightly sandy, slightly gravelly CLAY. Grav flint and chalk. MADE GROUND/DISTRUBED GROUND - Firm, dark brown, silty, slightly sat friable CLAY. Grades to mid brown slightly silty, slightly sandy, slightly grave Gravel of fine to medium flint and chalk. Rare brick fragment. Stiff to very stiff mid brown, silty, sandy slightly gravelly CLAY. Gravel of fine	vel of fine to medium undy, slightly gravelly slly CLAY.			0.3	S/pip
J,V	Result	0.1-0.3	MADE GROUND/REWORKED NATURAL - Wood chippings over stiff mid brower stiff mid brown, slightly silty, slightly sandy, slightly gravelly CLAY. Grav flint and chalk. MADE GROUND/DISTRUBED GROUND - Firm, dark brown, silty, slightly sat friable CLAY. Grades to mid brown slightly silty, slightly sandy, slightly grave Gravel of fine to medium flint and chalk. Rare brick fragment. Stiff to very stiff mid brown, silty, sandy slightly gravelly CLAY. Gravel of fine	vel of fine to medium undy, slightly gravelly slly CLAY.		0.3	0.3	Эгрп
J,V		0.4-0.6	over stiff mid brown, slightly silty, slightly sandy, slightly gravelly CLAY. Grav flint and chalk. MADE GROUND/DISTRUBED GROUND - Firm, dark brown, silty, slightly sa friable CLAY. Grades to mid brown slightly silty, slightly sandy, slightly grave Gravel of fine to medium flint and chalk. Rare brick fragment. Stiff to very stiff mid brown, silty, sandy slightly gravelly CLAY. Gravel of fine	vel of fine to medium undy, slightly gravelly slly CLAY.	 o x	_1.0		
			MADE GROUND/DISTRUBED GROUND - Firm, dark brown, silty, slightly sa friable CLAY. Grades to mid brown slightly silty, slightly sandy, slightly grave Gravel of fine to medium flint and chalk. Rare brick fragment. Stiff to very stiff mid brown, silty, sandy slightly gravelly CLAY. Gravel of fine	olly CLAY.	 o x	_1.0		
			friable CLAY. Grades to mid brown slightly silty, slightly sandy, slightly grave Gravel of fine to medium flint and chalk. Rare brick fragment. Stiff to very stiff mid brown, silty, sandy slightly gravelly CLAY. Gravel of fine	olly CLAY.	 o x		0.8	
			Gravel of fine to medium flint and chalk. Rare brick fragment. Stiff to very stiff mid brown, silty, sandy slightly gravelly CLAY. Gravel of fine		 o x		0.8	
J,∨		1.2-1.4		e to medium round and	 o x		0.8	
1,V		1.2-1.4		e to medium round and	 o x		0.8	
J,∨		1.2-1.4		e to medium round and	 o x		0.8	
J,V		1.2-1.4		e to medium round and	 o x		0.8	
J,V		1.2-1.4		e to medium round and	o x ·			
J, V		1.2-1.4	subround linit.		_x			
					·— —			
						_		
						_		
					o x			
					-^-			
						2.0	0.9	
			Base of borehole					
						-		
					1	_3.0		
					-	_		
						4.0		
					•			
						_		
						5.0		
						_		
						6.0		
						_		
						7.0		
						7.0		
arks:							Brown	

J - 250 or 500ml Jar, T - Tub, V - Vial or 60ml jar, D - Small Disturbed, B - Large bulk sample, W - Water sample,

Project: Duck End Farm
Location: Duck End Lane
Lindsell

Borehole Number: WS5

Start of Drilling: 24-May-23
Project No: 3293
Client Duck End Farm Limited Drilling Method: Window Sampler

Logged By: NB Ground Level (m AOD):

Loggod	by. No		Jordand Level (III AOD).				
	Sample/Tes						
Sample / Test	Result	Sample range	Description		Depth (m)	Thick-	C/mir-
Test	Result	range	TOP SOIL/MADE GROUND - rough vegetation over firm, dark brown, slightly silty, slightly sandy	Log	(m) 0.1	ness (m) 0.1	S/pipe
T,J,V		0.0-0.1	slightly gravelly CLAY. Gravel of fine to medium flint and occasional ash.		0	0	
			Firm to stiff, mid brown and mottled light blue grey, slightly silty, sandy and gravelly CLAY.	0			
T,J,V		0.5-0.6	Gravel of fine to coarse chalk and occasional flint,	x			
				·	-		
D		0.8-0.9		0			
D		0.9-1.0	becomes stiff.	x			
D		0.5-1.0		_ :_	1.0		
				0			
SPT	3,2,3,3,4	1.2-1.65	becomes very stiff and mottled pale blue grey.	x			
D	N=12	1.5-1.6		·— —			
		1.0 1.0		0			
				x	<u> </u>		
				·— —			
D		1.9-2.0		o x	2.0		
SPT	4,2,3,3,4	2.0-2.45	becomes stiff.				
	N=12						
				o x			
				^			
D		2.4-2.5					
				0			
				x			
D		2.9-3.0			3.0		
				0			
SPT	3,2,2,2,3 N=9	3.0-3.45	becomes soft between 3.15m and 3.4m.	x			
	N=9			.— —			
				0			
			becomes stiff.	x			
D		3.9-4.0		0			
				x	4.0	3.9	
SPT	3,2,2,4,4,4	4.0-4.45	Firm to stiff, mid to dark grey, slight silty, slightly sandy, slightly gravelly CLAY. Gravel of fine to	·— —			
	N=14		medium calk and siltstone with orange FeO staining.				
				o x			
D		4.4-4.5					
D		4.8-5.0		o x			
					5.0		
SPT	4,3,3,6,5	5.0-5.45		0			
Oi i	N=17	0.0 0.40		^			
			Page of herehole	0	5.5	1.5	
			Base of borehole				
					6.0		
					H		
					_7.0		
Remarks:	'						
Groundwa	iter: Dry					Brown	reen
Keys)ml.lar T∵	Tub, V - Vial or 60ml jar, D - Small Disturbed, B - Large bulk sample, W - Water sample,		Gerteil	Page 1 of	non consultants
		Jui, 1 ª			1	go i oi	

Project: Duck End Farm Location:

Duck End Lane Lindsell

Borehole Number:

WS6

Project No: 3293

Start of Drilling: Completion of Drilling:

24-May-23 24-May-23 Window Sampler

Client Duck End Farm Limited Logged By: NB

Drilling Method:

Ground Level (m AOD):

March Part		Sample/Tes	st					
Marke Section Marke Section Marke	Sample /		Sample	5				٠.
Section Sect	rest	Result	range		Log			S/pipe
1.1					_			
D	T 11/		0004		_/			
1								
Description Test Control Test Control Test Control Test Control Test Te						0.6	0.4	
Description	T,J,V		0.8-0.9					
### 3,3,3,45	D		0.9-1.0	fine to coarse round chaik and rare fiint.				
SPT 2,22,2,3 3,940becomes soft to firm.						1.0		
D	OPT	00045	40405					
D 15-16	SPI		1.2-1.65	becomes stiff to very stiff				
D 2.2.2.3 1.9.2.0	D		1.5-1.6					
D						_		
D								
D								
SPT 2,2,2,3 2,0,2,45								
D 2,425 D 2,930 SPT 3,33,4 3,0-345 D 3,940 D 3,940 D 4,445 N-7 A,445 D 4,445 N-14 D 4,445 Seconds from and mid brown in colour. D 4,60 SPT 2,12,22 A,4445 Seconds from and mid brown in colour. D 5,5 4,9 Seconds from and mid brown in colour. D 6,0 SPT 2,12,10 A,10	22223		hecomes stiff with grange horn mottling and rare dead roots		_2.0			
D 2-9-3.0 SPT 32.3.3.4 30-3.45 D 3.9-4.0 SPT 2.1.2.22 40-4.45 D 4.4.4.5	51 1		2.0-2.43					
D								
D								
D	D		2.4-2.5			_		
D 2,9-3.0 3,0-3.45								
D 2,9-30								
SPT 3,2,3,3,4 3,0-3,45	D		2.9-3.0			3.0		
SPT 3,2,3,3,4 3,0,3,45	_					_3.0		
D 3.9-4.0	SPT		3.0-3.45					
D 3.9-4.0becomes soft to firm		N=12						
D								
D 3,9-4.0						_		
D 3.9-4.0								
SPT 2,12,2	D		3.9-4.0	becomes soft to firm.				
N=7 D						4.0		
D	SPT		4.0-4.45					
D		.,						
D								
D	D		4.4-4.5	becomes firm and mid brown in colour.		-		
D								
SPT 2,2,4,3,5 N=14 5.0-5.45 N=14 5.0-5.45 N=14	D		4.8-5.0					
SPT 2,2,4,3,5 N=14 5.0-5.45						F.0		
SPT 2,2,4,3,5						_5.0		
Base of borehole.	SPT		5.0-5.45					
Base of borehole.		N=14						
emarks: groundwater: Dry Base of borehole.					-^-	5.5	4.9	
emarks: proundwater: Dry				Base of borehole.				
emarks: proundwater: Dry								
emarks: proundwater: Dry								
emarks: roundwater: Dry Brown green gentanista and the enformantial foundation.						_6.0		
emarks: roundwater: Dry Brown green gentanista and the enformantial foundation.								
emarks: roundwater: Dry Brown green gentanista and the enformantial foundation.								
emarks: roundwater: Dry Brown green gentanista and the enformantial foundation.								
emarks: roundwater: Dry Brown green gentanista and the enformantial foundation.						F		
emarks: roundwater: Dry Brown green gentanista and the enformantial foundation.								
emarks: roundwater: Dry Brown green gentanista and the enformantial foundation.								
emarks: roundwater: Dry Brown green gentanista and the enformantial foundation.						7.0		
From Green Contained and conditional and condi						F'.5		
From Green Contained and conditional and condi	Don: -: '					L		
roundwater: Dry	kemarks:						Brown	-00
eys J - 250 or 500ml Jar, T - Tub, V - Vial or 60ml jar, D - Small Disturbed, B - Large bulk sample, W - Water sample, Page 1 of 1	Groundwa	iter: Dry				Gesterio	mical and Gerenvironme	tal Consultants
	Keys	J - 250 or 500	0ml Jar, T -	Tub, V - Vial or 60ml jar, D - Small Disturbed, B - Large bulk sample, W - Water sample,			Page 1 of	1

APPENDIX VII GEOTECHNICAL RESULTS

ISSUED BY SOIL PROPERTY TESTING LTD DATE ISSUED: 12/06/2023

Contract Duck End Farm, Duckend Farm Lane, Holder's Green, Lindsell, CM6 3QH
Serial No. 42654_1

Client:

Brown 2 Green Associates

Suite 1, Wenden Court Station Road Wendends Ambo Nr. Saffron Walden

CB11 4LB

Samples Labelled:

Soil Property Testing Ltd

15, 16, 18 Halcyon Court, St Margaret's Way, Stukeley Meadows, Huntingdon, Cambridgeshire, PE29 6DG

Tel: 01480 455579

Email: enquiries@soilpropertytesting.com **Website:** www.soilpropertytesting.com

Samples Submitted By: Approved Signatories:

Brown 2 Green Associates

✓ J.C. Garner B.Eng (Hons) FGS

Technical Director & Quality Manager

☐ W. Johnstone

Materials Lab Manager

Remarks:

For the attention of Philip Miles

Duck End Farm, Duckend Farm Lane,

Holder's Green, Lindsell, CM6 3QH

Your Reference No: 3293

Notes:

1 All remaining samples or remnants from this contract will be disposed of after 21 days from today, unless we are notified to the contrary.

2 Opinions and interpretations expressed herein are outside the scope of UKAS accreditation.

3 Tests marked "NOT UKAS ACCREDITED" in this test report are not included in the UKAS Accreditation Schedule for this testing laboratory.

4 This test report may not be reproduced other than in full except with the prior written approval of the issuing laboratory.

5 The results within this report only relate to the items tested or sampled.

ISSUED BY SOIL PROPERTY TESTING LTD DATE ISSUED: 12/06/2023

Contract Duck End Farm, Duckend Farm Lane, Holder's Green, Lindsell, CM6 3QH 42654_1 Serial No. **Target Date** 13/06/2023 Scheduled By **Brown 2 Green Associates** Schedule Remarks et Cartest last lift a real addr. Mate Collection ... Bore Sample Top Hole Туре Ref. Depth No. Sample Remarks WS1 0.80 1 1.30 1 WS1 1 1 1.90 1 WS1 1 WS1 2.90 1 1 WS1 3.90 1 WS5 0.90 1 1 1 WS5 1.50 1 1 WS5 -1.90 1 1 WS5 2.90 1 WS5 3.90 1 WS6 0.90 1 1 1 1 WS6 1.90 2.90 1 WS6 WS6 3.80 1 Totals 14 5 5 **End of Schedule**

ISSUED BY SOIL PROPERTY TESTING LTD DATE ISSUED: 12/06/2023

Contract	Duck End Farm, Duckend Farm Lane, Holder's Green, Lindsell, CM6 3QH
Serial No.	42654_1

SUMMARY OF WATER CONTENT

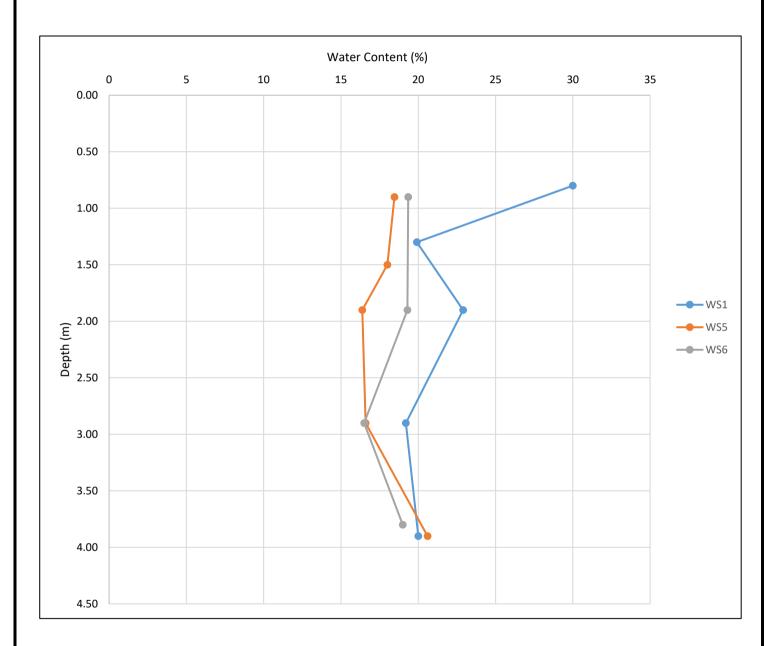
Borehole /Pit No.	Depth (m)	Туре	Ref.	Water Content (%)	Description	Remarks		
WS1	0.80 - 0.90	-	-	30.0	Firm mottled grey and yellowish brown slightly gravelly slightly sandy silty CLAY with frequent recently active and decayed roots. Gravel is fine and medium angular to subrounded chalk and chert			
WS1	1.30 - 1.40	-	-	19.9	Firm mottled bluish grey and light olive brown slightly gravelly slightly sandy silty CLAY with rare decayed roots. Gravel is fine and medium angular to subrounded chalk and chert			
WS1	1.90 - 2.00	-	-	22.9	Stiff mottled bluish grey and light olive brown slightly gravelly slightly sandy silty CLAY with occasional recently active and decayed roots. Gravel is fine and medium angular to subrounded chalk and chert			
WS1	2.90 - 3.00	-	-	19.2	Stiff mottled bluish grey and olive slightly gravelly slightly sandy silty CLAY. Gravel is fine and medium angular to subrounded chalk and chert			
WS1	3.90 - 4.00	-	- 20.0 Firm mottled bluish grey and olive yellow slightly gravelly slightly sandy silty CLAY with occasional orange staining. Gravel is fine and medium subangular and subrounded chalk					
WS5	0.90 - 1.00	-	-	18.5	Firm mottled light bluish grey and light olive brown slightly gravelly slightly sandy silty CLAY with rare recently active and decayed roots. Gravel is fine and medium angular to subrounded chalk and chert			
WS5	1.50 - 1.60	-	-	18.0	Stiff mottled light bluish grey and olive yellow slightly gravelly slightly sandy silty CLAY with rare decayed roots. Gravel is fine and medium subangular and subrounded chalk			
WS5	1.90 - 2.00	-	-	16.4	Stiff mottled light bluish grey and brownish yellow slightly gravelly slightly sandy silty CLAY with rare decayed roots. Gravel is fine and medium angular to subrounded chalk and chert			
WS5	2.90 - 3.00	-	-	16.6	Stiff mottled light bluish grey and olive yellow slightly gravelly slightly sandy silty CLAY. Gravel is fine and medium subangular and subrounded chalk			
WS5	3.90 - 4.00	-	-	20.6	Firm olive yellow slightly gravelly slightly sandy silty CLAY with rare orange staining. Gravel is fine and medium angular to subrounded chalk			
WS6	0.90 - 1.00	-	-	19.4	Stiff mottled light bluish grey and olive brown slightly gravelly slightly sandy silty CLAY with rare recently active and decayed roots. Gravel is fine and medium angular to subrounded chalk and chert			
WS6	1.90 - 2.00	-	-	19.3	Stiff mottled light bluish grey and olive yellow slightly gravelly slightly sandy silty CLAY with occasional decayed roots. Gravel is fine and medium angular to subrounded chalk			
WS6	2.90 - 3.00	-	-	16.5	Stiff mottled light grey and olive yellow slightly gravelly slightly sandy silty CLAY with occasional orange staining and rare decayed roots. Gravel is fine and medium subangular and subrounded chalk			
WS6	3.80 - 3.90	-	-	19.0	Firm olive yellow slightly gravelly slightly sandy silty CLAY with occasional orange staining. Gravel is fine and medium subangular and subrounded chalk			

Method Of Preparation: E
Method of Test: E

BS EN ISO: 17892-1: 2014

Type of Sample Key: Comments: U = Undisturbed, B = Bulk, D = Disturbed, J = Jar, W = Water, SPT = Split Spoon Sample, C = Core Cutter

Remarks to Include: Sample disturbance, loss of moisture, variation from test procedure, location and origin of test specimen within original sample, oven drying temperature if not 105-110C



ISSUED BY SOIL PROPERTY TESTING LTD DATE ISSUED: 12/06/2023

Sorial No. 42654 1	Contract	Duck End Farm, Duckend Farm Lane, Holder's Green, Lindsell, CM6 3QH
Serial No. 42034_1	Serial No.	42654_1

WATER CONTENT VS DEPTH BELOW GROUND LEVEL

Method of Preparation: BSEN ISO 17892-1: 2014
Method of Test: BSEN ISO 17892-1: 2014

Type of Sample Key: U - Undisturbed, B = Bulk, D = Disturbed, J = Jar, W = Water, SPT = Split Spoon Sample, C = Core Cutter

Comments:

Remarks to Include: Sample disturbance, loss of moisture, variation from test procedure, location and origin of test specimen within

original sample, oven drying temperature if not 105-110°C

ISSUED BY SOIL PROPERTY TESTING LTD DATE ISSUED: 12/06/2023

Contract	Duck End Farm, Duckend Farm Lane, Holder's Green, Lindsell, CM6 3QH
Serial No.	42654_1

SUMMARY OF WATER CONTENT, LIQUID LIMIT, PLASTIC LIMIT, PLASTICITY INDEX AND LIQUIDITY INDEX

Dorobola	Dareth	Tomas	D-f	Water	Liquid	Plastic	Plasti-	Liquid-	S	ample Pr				
Borehole /Pit No.	Depth	Туре	Ref.	Content	Limit	Limit	city Index	ity Index	Method	Ret'd 0.425mm	Corr'd W/C	Curing Time	Description	Class
/1 IC NO.	(m)			(%)	(%)	(%)	(%)	illuex		(%)	<0.425mm	(hrs)		
WS1	1.30 - 1.40	-	-	19.9	49	18	31	0.06	Wet Sieved	8 (M)	21.6*	26	Firm mottled bluish grey and light olive brown slightly gravelly slightly sandy silty CLAY with rare decayed roots. Gravel is fine and medium angular to subrounded chalk and chert	CI
WS1	2.90 - 3.00	-	-	19.2	42	18	24	0.05	Wet Sieved	13 (M)	22.1*	24	Stiff mottled bluish grey and olive slightly gravelly slightly sandy silty CLAY. Gravel is fine and medium angular to subrounded chalk and chert	CI
WS5	0.90 - 1.00	-	-	18.5	46	15	31	0.11	Wet Sieved	14 (M)	21.5*	24	Firm mottled light bluish grey and light olive brown slightly gravelly slightly sandy silty CLAY with rare recently active and decayed roots. Gravel is fine and medium angular to subrounded chalk and chert	CI
WS5	1.90 - 2.00	-	-	16.4	35	15	20	0.07	Wet Sieved	12 (M)	18.6*	24	Stiff mottled light bluish grey and brownish yellow slightly gravelly slightly sandy silty CLAY with rare decayed roots. Gravel is fine and medium angular to subrounded chalk and chert	CL/C
WS6	0.90 - 1.00	-	-	19.4	51	18	33	0.04	Wet Sieved	8 (M)	21.0*	26	Stiff mottled light bluish grey and olive brown slightly gravelly slightly sandy silty CLAY with rare recently active and decayed roots. Gravel is fine and medium angular to subrounded chalk and chert	СН

Method Of Preparation: BS EN ISO: 17892-1: 2014 & BS 1377: Part 2:1990:4.2

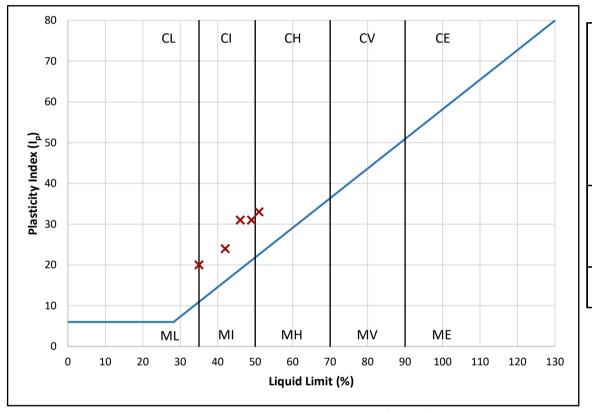
Method of Test: BS EN ISO: 17892-1: 2014 & BS 1377: Part 2:1990:3.2, 4.4, 5.3, 5.4

Type of Sample Key: U = Undisturbed, B = Bulk, D = Disturbed, J = Jar, W = Water, SPT = Split Spoon Sample, C = Core Cutter

*Corrected water content assume material greater than 0.425mm is non-porous. See BS1377: Part 2: 1990 Clause 3 Note 1.

Table Notation: Ret'd 0.425mm: (A) = Assumed, (M) = Measured

ISSUED BY SOIL PROPERTY TESTING LTD DATE ISSUED: 12/06/2023



Contract Duck End Farm, Duckend Farm Lane, Holder's Green, Lindsell, CM6 3QH

Serial No. **42654_1**

PLOT OF PLASTICITY INDEX AGAINST LIQUID LIMIT USING CASAGRANDE CLASSIFICATION CHART

		Plasticit	у	
Low	Medium	High	Very High	Extremely High

Plasticity Chart BS5930: 2015: Figure 8

Method of Preparation: BS 1377: Part 2: 1990: 4.2

Method of Test: BS1377: Part 2: 3.2, 4.4, 5.3, 5.4

Type of Sample Key: U = Undisturbed, B = Bulk, D = Disturbed, J = Jar, W = Water, SPT = Split Spoon Sample, C = Core Cutter

Comments: Volume Change Potential: NHBC Standards Chapter 4.2 Unmodified Plasticity Index

ISSUED BY SOIL PROPERTY TESTING LTD DATE ISSUED: 12/06/2023

Contract		Duck I	End Farm,	Duckend	Farm Lane	e, Holde	er's Gr	een, Lind	sell, CM6 3QH			
Serial No.		42654	_1									
		DET				•	-		ND PLASTIC LIM	IT AND)	
Borehole / Pit No.	Depth		Sample Reference	Water Content		Description						
I W/S1 I	m 1.30 - 1.40		-	19.9		AY with rare	decayed	l roots. Gravel	ightly gravelly slightly is fine and medium			
			P	REPARATI	ON				Liquid Limit			49 %
Method of p	prepa	aration	l		Wet sie	ved over	r 0.425	mm sieve	Plastic Limit			18 %
Sample reta	ained	0.425	mm sieve	(Meası	ıred)			8 %	Plasticity Index			31 %
Corrected w	vater	conte	nt for mate	rial passing	g 0.425mm			21.6 %	Liquidity Index			0.06
Sample reta	ained	2mm	sieve	(Meası	ıred)			5 %	NHBC Modified (I	'p)		29 %
Curing time	!		26	hrs	Clay Co	ntent	Not ana	lysed	Derived Activity		Not an	alysed
C=CLAY Plasticity In %	ıdex	70 60 50 40		CL	CI	СН		CV	CE		ım High	ıme Change Potential
(lp) 30 20				×						Mediun	NHBC Volui	
M=SILT		10	10 2	ML 20 30	MI 40 50	MH 60	70	MV 80	ME 90 100 110	120	™OJ	imit %
	L		10 2	20 30	40 50	60	70		ty Chart BS5930: 2015: Fi			

Method of Preparation: BS EN ISO: 17892-1: 2014 & BS 1377: Part 2: 1990: 4.2

Method of Test: BS EN ISO: 17892-1: 2014 & BS 1377: Part 2: 1990: 3.2, 4.4, 5.3, 5.4

Type of Sample Key: U=Undisturbed, B=Bulk, D=Disturbed, J=Jar, W=Water, SPT=Split Spoon Sample, C=Core Cutter

Comments: Corrected water content assume material greater than 0.425mm non-porous. See BS1377: Part2: 1990 Clause 3 Note 1

Volume Change Potential: NHBC Standards Chapter 4.2 Unmodified Plasticity Index

ISSUED BY SOIL PROPERTY TESTING LTD DATE ISSUED: 12/06/2023

Contract		Duck I	End Farm,	Duckend	Farm Lan	e, Holde	er's Gr	een, Linc	Isell, CM6 3QH				
Serial No.	ſ	42654	_1										
		DET				-			ND PLASTIC LIM	IT AND)		
Borehole / Pit No.	epth m		Sample	Water Content				ription			Remarks		
I \\/\S1 I	m 2.90 - 3.00	-	Reference -	19.2					ly slightly sandy silty ounded chalk and chert				
			Р	REPARATI	ON				Liquid Limit			42 %	
Method of p	repa	aration	l		Wet sie	eved over	0.425	mm sieve	Plastic Limit			18 %	
Sample retai	ined	0.425	mm sieve	(Meası	ured)			13 %	Plasticity Index		24 %		
Corrected w	ater	conte	nt for mate	rial passing	g 0.425mm	า	2	22.1 %	Liquidity Index			0.05	
Sample retai	ined	2mm	sieve	(Meası	ured)			10 %	NHBC Modified (I	'p)		21 %	
Curing time			24	hrs	Clay Co	ontent	Not ana	lysed	Derived Activity		Not an	alysed	
C=CLAY Plasticity Inc.	dex	70 60 50 40		CL	CI	СН		CV	CE		um High	ume Change Potential	
(lp)		20			×						/ Mediun	NHBC Volui	
M=SILT		10	10 2	ML 20 30	MI 40 5	MH 0 60	70	MV 80	ME 90 100 110	120	MO7	imit %	
	L							Plastici	ty Chart BS5930: 2015: Fi	gure 8	J		

Method of Preparation: BS EN ISO: 17892-1: 2014 & BS 1377: Part 2: 1990: 4.2

Method of Test: BS EN ISO: 17892-1: 2014 & BS 1377: Part 2: 1990: 3.2, 4.4, 5.3, 5.4

Type of Sample Key: U=Undisturbed, B=Bulk, D=Disturbed, J=Jar, W=Water, SPT=Split Spoon Sample, C=Core Cutter

Comments: Corrected water content assume material greater than 0.425mm non-porous. See BS1377: Part2: 1990 Clause 3 Note 1

Volume Change Potential: NHBC Standards Chapter 4.2 Unmodified Plasticity Index

ISSUED BY SOIL PROPERTY TESTING LTD DATE ISSUED: 12/06/2023

Contract	1	Duck !	End Farm,	Duckend	Farm Lane	, Holder'	s Green, Lind	lsell, CM6 3QH		
Serial No.		42654	_1							
		DET				-		ND PLASTIC LIMIT A	ND	
Borehole / Pit No.	Depth		Sample	Water Content		Remar	ks			
WS5	m).90 - 1.00	-	Reference -	(W) %	slightly sandy s	silty CLAY with	y and light olive bro rare recently active ngular to subrounde	e and decayed roots.		
•			P	REPARATIO	ON			Liquid Limit		46 %
Method of p	orepa	aration	1		Wet sie	ved over 0	.425mm sieve	Plastic Limit		15 %
Sample retai	ined	0.425	mm sieve	(Measu	ured)		14 %	Plasticity Index		31 %
Corrected w	/ater	conte	nt for mate	rial passing	g 0.425mm		21.5 %	Liquidity Index		0.11
Sample retai	ined	2mm	sieve	(Measu	ured)		11 %	NHBC Modified (I'p)		27 %
Curing time			24	hrs	Clay Cor	ntent No	ot analysed	Derived Activity	Not a	nalysed
C=CLAY Plasticity Inc.	dex	70 60 50 40		CL	CI	CH	CV	CE	dium High	Jume Change Potential
(lp)		20			*				Mediun	NHBC Volui
M=SILT		10 0	10 2	ML 20 30	MI 40 50	MH 60	MV 70 80	ME 90 100 110 12	Liquid	Limit %

Method of Preparation: BS EN ISO: 17892-1: 2014 & BS 1377: Part 2: 1990: 4.2

Method of Test: BS EN ISO: 17892-1: 2014 & BS 1377: Part 2: 1990: 3.2, 4.4, 5.3, 5.4

Type of Sample Key: U=Undisturbed, B=Bulk, D=Disturbed, J=Jar, W=Water, SPT=Split Spoon Sample, C=Core Cutter

Comments: Corrected water content assume material greater than 0.425mm non-porous. See BS1377: Part2: 1990 Clause 3 Note 1

Volume Change Potential: NHBC Standards Chapter 4.2 Unmodified Plasticity Index

ISSUED BY SOIL PROPERTY TESTING LTD DATE ISSUED: 12/06/2023

Contract		Duck	End Farm,	Duckend	Farm Lane	, Holder'	s Green, Lin	dsell, CM6 3QH				
Serial No.	ľ	42654	_1									
		DET				-		AND PLASTIC LIMIT	AND			
Borehole / Pit No.	Depth m		Sample Reference	Water Content (W) %			Description	R	Remarks			
\\\\\\$5	1.90 - 2.00	-	-		slightly sandy s	ilty CLAY with		low slightly gravelly ts. Gravel is fine and t				
			P	REPARATIO	ON			Liquid Limit			35 %	
Method of	prepa	aration	1		Wet siev	ed over 0	.425mm siev	e Plastic Limit			15 %	
Sample reta	ained	0.425	mm sieve	(Measu	ıred)		12 %	Plasticity Index	20 %			
Corrected w	water	conte	nt for mate	rial passing	0.425mm		18.6 %	Liquidity Index		0.07		
Sample reta	ained	2mm	sieve	(Measu	ıred)	,	10 %	NHBC Modified (I'p)			18 %	
Curing time	5		24	hrs	Clay Cor	ntent No	ot analysed	Derived Activity		Not ar	nalysed	
C=CLAY Plasticity In % (Ip)	ndex	70 60 50 40 30		CL	CI	CH	CV	CE		Medium High	NHBC Volume Change Potential	
M=SILT ML MI MH MV ME Liquid							NO I	Limit %				

Method of Preparation: BS EN ISO: 17892-1: 2014 & BS 1377: Part 2: 1990: 4.2

Method of Test: BS EN ISO: 17892-1: 2014 & BS 1377: Part 2: 1990: 3.2, 4.4, 5.3, 5.4

Type of Sample Key: U=Undisturbed, B=Bulk, D=Disturbed, J=Jar, W=Water, SPT=Split Spoon Sample, C=Core Cutter

Comments: Corrected water content assume material greater than 0.425mm non-porous. See BS1377: Part2: 1990 Clause 3 Note 1

Volume Change Potential: NHBC Standards Chapter 4.2 Unmodified Plasticity Index

ISSUED BY SOIL PROPERTY TESTING LTD DATE ISSUED: 12/06/2023

Contract		Duck	End Farm,	Duckend	Farm Lane	, Holder'	s Green, Linc	lsell, CM6 3QH				
Serial No.		42654	_1									
		DET						ND PLASTIC LIMIT	T AND			
Borehole / Pit No.	Depth m		Sample Reference	Water Content (W) %			Description			Remarks		
WS6	0.90 - 1.00		-	19.4	sandy silty CLA	Y with rare red		ightly gravelly slightly ecayed roots. Gravel is nd chert				
			P	REPARATION	ON			Liquid Limit			51	%
Method of	prepa	aration			Wet siev	ved over 0	.425mm sieve	Plastic Limit			18	%
Sample reta	ained	0.425	mm sieve	(Meası	ured)		8 %	Plasticity Index	33 %			%
Corrected w	water	conte	nt for mate	rial passing	g 0.425mm		21.0 %	Liquidity Index		0.04		
Sample reta	ained	2mm	sieve	(Meası	ured)		6 %	NHBC Modified (I'p	o)		30	%
Curing time	9		26	hrs	Clay Co	ntent No	ot analysed	Derived Activity		Not an	alysed	
C=CLAY Plasticity In % (Ip)	ndex	70 60 50 40 30		CL	CI	СН	CV	CE		Medium High	NHBC Volume Change Potential	
M=SILT 0 ML MI MH MV ME						NOT Liquid L		<u> </u> %				

Method of Preparation: BS EN ISO: 17892-1: 2014 & BS 1377: Part 2: 1990: 4.2

Method of Test: BS EN ISO: 17892-1: 2014 & BS 1377: Part 2: 1990: 3.2, 4.4, 5.3, 5.4

Type of Sample Key: U=Undisturbed, B=Bulk, D=Disturbed, J=Jar, W=Water, SPT=Split Spoon Sample, C=Core Cutter

Comments: Corrected water content assume material greater than 0.425mm non-porous. See BS1377: Part2: 1990 Clause 3 Note 1

Volume Change Potential: NHBC Standards Chapter 4.2 Unmodified Plasticity Index

APPENDIX VIII CHEMICAL ANALYSIS REPORTS

eurofins Chemtest

Eurofins Chemtest Ltd
Depot Road
Newmarket
CB8 0AL

Tel: 01638 606070 Email: info@chemtest.com

Final Report

Report No.: 23-17863-1

Initial Date of Issue: 06-Jun-2023

Re-Issue Details:

Client Brown 2 Green Associates

Client Address: Suite 1, Wenden Court

Station Road Wendens Ambo Nr. Saffron Walden

Essex CB11 4LB

Contact(s): Philip Miles

Radu Mihai Ilie

Project 3293 Duck End Farm Holders, Green

Road, Lindsell

Quotation No.: Date Received: 28-May-2023

Order No.: Date Instructed: 28-May-2023

No. of Samples: 11

Turnaround (Wkdays): 5 Results Due: 02-Jun-2023

Date Approved: 06-Jun-2023

Approved By:

Details: Stuart Henderson, Technical

Manager

Project: 3293 Duck End Farm Holders, Green Road, Lindsell

Client: Brown 2 Green Associates		Che	mtest J	ob No.:	23-17863	23-17863	23-17863	23-17863	23-17863	23-17863	23-17863	23-17863
Quotation No.:	(Chemte	st Sam	ple ID.:	1646847	1646848	1646849	1646850	1646851	1646852	1646853	1646854
		Sa	ample Lo	ocation:	WS1	WS1	WS2	WS3	WS3	WS4	WS5	WS6
			Sampl	е Туре:	SOIL							
			Top De	oth (m):	0.1	0.9	0.1	0.1	0.45	0.1	0	0.3
		Bot	tom De	oth (m):	0.2	1	0.2	0.3	0.65	0.3	0.1	0.4
			Date Sa	ampled:	24-May-2023							
			Asbest	os Lab:	DURHAM		DURHAM	DURHAM		DURHAM		DURHAM
Determinand	Accred.	SOP	Units	LOD								
ACM Type	U	2192		N/A	-		-	-		-		-
Ashastas Identification	U	2402		N/A	No Asbestos		No Asbestos	No Asbestos		No Asbestos		No Asbestos
Asbestos Identification	0	2192		IN/A	Detected		Detected	Detected		Detected		Detected
Moisture	N	2030	%	0.020	16	28	19	16	23	16	19	18
Soil Colour	N	2040		N/A	Brown							
Other Metarial	N	20.40		NI/A	Ctoroso	Stones and	Stones and	Stones and	Stones and	Roots and	Ctoroso	Doots
Other Material	N	2040		N/A	Stones	Roots	Roots	Roots	Roots	Stones	Stones	Roots
Soil Texture	N	2040		N/A	Clay							
рН	М	2010		4.0	•	7.9	8.0	8.3	•	8.3		•
Sulphate (2:1 Water Soluble) as SO4	М	2120	g/l	0.010		0.029	< 0.010	< 0.010		< 0.010		
Cyanide (Total)	М	2300	mg/kg	0.50	< 0.50		< 0.50	< 0.50		< 0.50		
Arsenic	М	2455	mg/kg	0.5	7.3	10	13	8.4	8.6	9.2	9.7	12
Cadmium	М	2455	mg/kg	0.10	0.24	1.7	0.39	0.15	0.25	0.17	0.42	< 0.10
Chromium	М	2455	mg/kg	0.5	18	17	32	20	23	32	29	30
Copper	М	2455	mg/kg	0.50	15	23	20	13	18	17	23	11
Mercury	М	2455	mg/kg	0.05	0.05	0.16	0.06	0.05	0.07	< 0.05	0.05	0.06
Nickel	М	2455	mg/kg	0.50	19	17	33	27	21	32	24	24
Lead	М	2455	mg/kg	0.50	28	130	34	11	160	13	55	15
Selenium	М	2455	mg/kg	0.25	0.36	0.81	0.76	0.49	0.51	0.62	0.80	0.67
Vanadium	U	2455	mg/kg	0.5	27	28	51	29	35	44	41	46
Zinc	М	2455	mg/kg	0.50	130	1300	180	46	260	50	250	71
Aliphatic VPH >C5-C6	U	2780	mg/kg	0.05				< 0.05		< 0.05	< 0.05	< 0.05
Aliphatic VPH >C6-C7	U	2780	mg/kg	0.05				< 0.05		< 0.05	< 0.05	< 0.05
Aliphatic VPH >C7-C8	U	2780	mg/kg	0.05				< 0.05		< 0.05	< 0.05	< 0.05
Aliphatic VPH >C6-C8 (Sum)	N	2780	mg/kg	0.10				< 0.10		< 0.10	< 0.10	< 0.10
Total Aliphatic VPH >C5-C10	U	2780	mg/kg	0.25				< 0.25		< 0.25	< 0.25	< 0.25
Aliphatic EPH >C10-C12	М	2690	mg/kg	2.00				5.4		3.3	7.0	4.6
Aliphatic VPH >C8-C10	U	2780	mg/kg	0.05				< 0.05		< 0.05	< 0.05	< 0.05
Aliphatic EPH >C12-C16	М	2690	mg/kg	1.00				4.6		1.7	7.8	2.6
Aliphatic EPH >C16-C21	M	2690	mg/kg	2.00				2.5		< 2.0	11	< 2.0
Aliphatic EPH >C21-C35	М	2690	mg/kg	3.00				4.8		< 3.0	32	6.6
Aliphatic EPH >C35-C40	N	2690	mg/kg	10.00				< 10		< 10	< 10	< 10
Total Aliphatic EPH >C10-C35	M	2690	mg/kg	5.00				17		6.3	58	15
Total Aliphatic EPH >C10-C40	N	2690	mg/kg	10.00				17		< 10	58	15
Aromatic VPH >C5-C7	U	2780	mg/kg	0.05				< 0.05		< 0.05	< 0.05	< 0.05
Aromatic VPH >C7-C8	Ü	2780	mg/kg	0.05				< 0.05		< 0.05	< 0.05	< 0.05
Aromatic VPH >C8-C10	Ü	2780	mg/kg	_				< 0.05		< 0.05	< 0.05	< 0.05

Project: 3293 Duck End Farm Holders, Green Road, Lindsell

Client: Brown 2 Green Associates				23-17863	23-17863	23-17863	23-17863	23-17863	23-17863	23-17863	23-17863	
Quotation No.:		Chemtes	st Sam	ple ID.:	1646847	1646848	1646849	1646850	1646851	1646852	1646853	1646854
		Sa	mple Lo	ocation:	WS1	WS1	WS2	WS3	WS3	WS4	WS5	WS6
			Sampl	е Туре:	SOIL							
			Гор Dep	oth (m):	0.1	0.9	0.1	0.1	0.45	0.1	0	0.3
		Bott	om De	oth (m):	0.2	1	0.2	0.3	0.65	0.3	0.1	0.4
			Date Sa	ampled:	24-May-2023							
			Asbest	os Lab:	DURHAM		DURHAM	DURHAM		DURHAM		DURHAM
Determinand	Accred.	SOP	Units	LOD								
Total Aromatic VPH >C5-C10	U	2780	mg/kg	0.25				< 0.25		< 0.25	< 0.25	< 0.25
Aromatic EPH >C10-C12	U	2690	mg/kg	1.00				< 1.0		< 1.0	< 1.0	< 1.0
Aromatic EPH >C12-C16	U	2690	mg/kg	1.00				< 1.0		< 1.0	18	< 1.0
Aromatic EPH >C16-C21	U	2690	mg/kg	2.00				< 2.0		2.2	220	6.4
Aromatic EPH >C21-C35	U	2690	mg/kg	2.00				6.9		< 2.0	630	7.7
Aromatic EPH >C35-C40	N	2690	mg/kg	1.00				1.0		4.9	100	36
Total Aromatic EPH >C10-C35	U	2690	mg/kg	5.00				7.2		< 5.0	870	14
Total Aromatic EPH >C10-C40	N	2690	mg/kg	10.00				< 10		< 10	970	50
Total VPH >C5-C10	U	2780	mg/kg	0.50				< 0.50		< 0.50	< 0.50	< 0.50
Total EPH >C10-C35	U	2690	mg/kg	10.00				25		< 10	930	29
Total EPH >C10-C40	N	2690	mg/kg	10.00				26		< 10	1000	65
Organic Matter	М	2625	%	0.40	1.7		0.97	< 0.40		< 0.40		
Benzene	М	2760	μg/kg	1.0							< 1.0	< 1.0
Toluene	М	2760	μg/kg	1.0							< 1.0	< 1.0
Ethylbenzene	М	2760	μg/kg	1.0							< 1.0	< 1.0
m & p-Xylene	М	2760	μg/kg	1.0							< 1.0	< 1.0
o-Xylene	М	2760	μg/kg	1.0							< 1.0	< 1.0
Methyl Tert-Butyl Ether	М	2760	μg/kg	1.0							< 1.0	< 1.0
Naphthalene	М	2800	mg/kg	0.10	0.34	0.38	< 0.10	< 0.10	< 0.10	< 0.10	0.46	< 0.10
Acenaphthylene	N	2800	mg/kg	0.10	0.37	0.66	< 0.10	< 0.10	0.12	< 0.10	0.70	< 0.10
Acenaphthene	М	2800	mg/kg	0.10	0.20	< 0.10	< 0.10	< 0.10	0.12	< 0.10	1.3	< 0.10
Fluorene	М	2800	mg/kg	0.10	0.34	0.43	< 0.10	< 0.10	0.19	< 0.10	1.5	< 0.10
Phenanthrene	М	2800	mg/kg	0.10	4.4	8.5	0.29	< 0.10	2.0	< 0.10	17	0.32
Anthracene	М	2800	mg/kg	0.10	0.73	0.66	0.10	< 0.10	0.46	< 0.10	4.4	< 0.10
Fluoranthene	М	2800	mg/kg	0.10	7.7	12	0.51	< 0.10	3.5	< 0.10	28	0.32
Pyrene	М	2800	mg/kg	0.10	6.3	8.9	0.43	< 0.10	2.8	< 0.10	24	0.34
Benzo[a]anthracene	М	2800	mg/kg	0.10	2.8	3.3	0.22	< 0.10	1.6	< 0.10	11	0.17
Chrysene	М	2800	mg/kg	0.10	3.7	5.3	0.25	< 0.10	1.8	< 0.10	12	0.20
Benzo[b]fluoranthene	М	2800	mg/kg	0.10	4.6	5.5	0.27	< 0.10	2.1	< 0.10	15	< 0.10
Benzo[k]fluoranthene	М	2800	mg/kg	0.10	1.8	2.2	0.10	< 0.10	0.82	< 0.10	5.6	< 0.10
Benzo[a]pyrene	М	2800	mg/kg	0.10	3.3	4.4	0.19	< 0.10	1.7	< 0.10	12	0.16
Indeno(1,2,3-c,d)Pyrene	М	2800	mg/kg	0.10	2.3	2.8	0.15	< 0.10	1.1	< 0.10	7.9	0.13
Dibenz(a,h)Anthracene	N	2800	mg/kg	0.10	0.44	0.43	< 0.10	< 0.10	0.19	< 0.10	1.5	< 0.10
Benzo[g,h,i]perylene	М	2800	mg/kg	0.10	2.3	2.4	0.11	< 0.10	1.0	< 0.10	7.6	0.10
Total Of 16 PAH's	N	2800	mg/kg	2.0	42	58	2.6	< 2.0	20	< 2.0	150	< 2.0

Project: 3293 Duck End Farm Holders, Green Road, Lindsell

Client: Brown 2 Green Associates		Che	mtest J	ob No.:	23-17863	23-17863	23-17863
Quotation No.:	(Chemte	st Sam	ple ID.:	1646855	1646856	1646857
		Sa	ample Lo	ocation:	WS6	WS2	WS2
			Sampl	e Type:	SOIL	SOIL	SOIL
			Top De	oth (m):	2.9	0.8	1.9
		Bot	tom De	oth (m):	3	0.9	2
			Date Sa	ampled:	24-May-2023	24-May-2023	24-May-2023
			Asbest				
Determinand	Accred.	SOP	Units	LOD			
ACM Type	U	2192		N/A			
Asbestos Identification	U	2192		N/A			
Moisture	N	2030	%	0.020	13	17	14
Soil Colour	N	2040		N/A	Brown	Brown	Brown
Other Material	N	2040		N/A	Stones	Roots and Stones	Stones and Roots
Soil Texture	N	2040		N/A	Clay	Clay	Clay
pH	M	2010		4.0	8.3	8.3	8.3
Sulphate (2:1 Water Soluble) as SO4	M	2120	g/l	0.010	< 0.010	< 0.010	< 0.010
Cyanide (Total)	M	2300	mg/kg	0.50	V 0.010	V 0.010	V 0.010
Arsenic	M	2455	mg/kg	0.5			
Cadmium	M	2455	mg/kg	0.10			
Chromium	M	2455	mg/kg	0.5			
Copper	M	2455	mg/kg	0.50			
Mercury	M	2455	mg/kg	0.05			
Nickel	M	2455	mg/kg	0.50			
Lead	М	2455	mg/kg	0.50			
Selenium	М	2455	mg/kg	0.25			
Vanadium	U	2455	mg/kg	0.5			
Zinc	М	2455	mg/kg	0.50			
Aliphatic VPH >C5-C6	U	2780	mg/kg	0.05			
Aliphatic VPH >C6-C7	U	2780	mg/kg	0.05			
Aliphatic VPH >C7-C8	U	2780	mg/kg	0.05			
Aliphatic VPH >C6-C8 (Sum)	N	2780	mg/kg	0.10			
Total Aliphatic VPH >C5-C10	U	2780	mg/kg	0.25			
Aliphatic EPH >C10-C12	М	2690	mg/kg	2.00			
Aliphatic VPH >C8-C10	U	2780	mg/kg	0.05			
Aliphatic EPH >C12-C16	М	2690	mg/kg	1.00			
Aliphatic EPH >C16-C21	М	2690	mg/kg	2.00			
Aliphatic EPH >C21-C35	М	2690	mg/kg	3.00			
Aliphatic EPH >C35-C40	N	2690	mg/kg	10.00			
Total Aliphatic EPH >C10-C35	М	2690	mg/kg	5.00			
Total Aliphatic EPH >C10-C40	N	2690	mg/kg	10.00			
Aromatic VPH >C5-C7	U	2780	mg/kg	0.05			
Aromatic VPH >C7-C8	U	2780	mg/kg	0.05			
Aromatic VPH >C8-C10	U	2780	mg/kg	0.05			

Project: 3293 Duck End Farm Holders, Green Road, Lindsell

Client: Brown 2 Green Associates			mtest Jo		23-17863	23-17863	23-17863
Quotation No.:	(est Sam		1646855	1646856	1646857
		Sa	ample Lo		WS6	WS2	WS2
			Sampl	е Туре:	SOIL	SOIL	SOIL
			Top Dep	. ,	2.9	0.8	1.9
		Bot	ttom Dep	oth (m):	3	0.9	2
			Date Sa	ampled:	24-May-2023	24-May-2023	24-May-2023
			Asbest	os Lab:			
Determinand	Accred.	SOP	Units	LOD			
Total Aromatic VPH >C5-C10	U	2780	mg/kg	0.25			
Aromatic EPH >C10-C12	U	2690	mg/kg	1.00			
Aromatic EPH >C12-C16	U	2690	mg/kg	1.00			
Aromatic EPH >C16-C21	U	2690	mg/kg	2.00			
Aromatic EPH >C21-C35	U	2690	mg/kg	2.00			
Aromatic EPH >C35-C40	N	2690	mg/kg	1.00			
Total Aromatic EPH >C10-C35	U	2690	mg/kg	5.00			
Total Aromatic EPH >C10-C40	N	2690	mg/kg	10.00			
Total VPH >C5-C10	U	2780	mg/kg	0.50			
Total EPH >C10-C35	U	2690	mg/kg	10.00			
Total EPH >C10-C40	N	2690	mg/kg	10.00			
Organic Matter	М	2625	%	0.40			
Benzene	М	2760	μg/kg	1.0			
Toluene	М	2760	μg/kg	1.0			
Ethylbenzene	М	2760	μg/kg	1.0			
m & p-Xylene	М	2760	μg/kg	1.0			
o-Xylene	М	2760	μg/kg	1.0			
Methyl Tert-Butyl Ether	М	2760	μg/kg	1.0			
Naphthalene	М	2800	mg/kg	0.10			
Acenaphthylene	N	2800	mg/kg	0.10			
Acenaphthene	М	2800	mg/kg	0.10			
Fluorene	М	2800	mg/kg	0.10			
Phenanthrene	М	2800	mg/kg	0.10			
Anthracene	М	2800	mg/kg	0.10			
Fluoranthene	М	2800	mg/kg	0.10			
Pyrene	М	2800	mg/kg	0.10			
Benzo[a]anthracene	М	2800		0.10			
Chrysene	М	2800		0.10			
Benzo[b]fluoranthene	М	2800		0.10			
Benzo[k]fluoranthene	М	2800		0.10			
Benzo[a]pyrene	М	2800		0.10			
Indeno(1,2,3-c,d)Pyrene	М	2800		0.10			
Dibenz(a,h)Anthracene	N	2800		0.10			
Benzo[g,h,i]perylene	М	2800		0.10			
Total Of 16 PAH's	N	2800		2.0			

Test Methods

SOP	Title	Parameters included	Method summary
2010	pH Value of Soils	рН	pH Meter
2030	Moisture and Stone Content of Soils(Requirement of MCERTS)	Moisture content	Determination of moisture content of soil as a percentage of its as received mass obtained at <37°C.
2040	Soil Description(Requirement of MCERTS)	Soil description	As received soil is described based upon BS5930
2120	Water Soluble Boron, Sulphate, Magnesium & Chromium	Boron; Sulphate; Magnesium; Chromium	Aqueous extraction / ICP-OES
2192	Asbestos	Asbestos	Polarised light microscopy / Gravimetry
2300	Cyanides & Thiocyanate in Soils	Free (or easy liberatable) Cyanide; total Cyanide; complex Cyanide; Thiocyanate	Allkaline extraction followed by colorimetric determination using Automated Flow Injection Analyser.
2455	Acid Soluble Metals in Soils	Metals, including: Arsenic; Barium; Beryllium; Cadmium; Chromium; Cobalt; Copper; Lead; Manganese; Mercury; Molybdenum; Nickel; Selenium; Vanadium; Zinc	Acid digestion followed by determination of metals in extract by ICP-MS.
2625	Total Organic Carbon in Soils	Total organic Carbon (TOC)	Determined by high temperature combustion under oxygen, using an Eltra elemental analyser.
2690	EPH A/A Split	Aliphatics: >C10-C12, >C12-C16, >C16-C21, >C21- C35, >C35- C40 Aromatics: >C10-C12, >C12-C16, >C16- C21, >C21- C35, >C35- C40	Acetone/Heptane extraction / GCxGC FID detection
2760	Volatile Organic Compounds (VOCs) in Soils by Headspace GC-MS	Volatile organic compounds, including BTEX and halogenated Aliphatic/Aromatics.(cf. USEPA Method 8260)*please refer to UKAS schedule	Automated headspace gas chromatographic (GC) analysis of a soil sample, as received, with mass spectrometric (MS) detection of volatile organic compounds.
2780	VPH A/A Split	Aliphatics: >C5-C6, >C6-C7,>C7-C8,>C8-C10 Aromatics: >C5-C7,>C7-C8,>C8-C10	Water extraction / Headspace GCxGC FID detection
2800	Speciated Polynuclear Aromatic Hydrocarbons (PAH) in Soil by GC-MS	Acenaphthene*; Acenaphthylene; Anthracene*; Benzo[a]Anthracene*; Benzo[a]Pyrene*; Benzo[b]Fluoranthene*; Benzo[ghi]Perylene*; Benzo[k]Fluoranthene; Chrysene*; Dibenz[ah]Anthracene; Fluoranthene*; Fluorene*; Indeno[123cd]Pyrene*; Naphthalene*; Phenanthrene*; Pyrene*	Dichloromethane extraction / GC-MS

Report Information

Key **UKAS** accredited MCERTS and UKAS accredited M Unaccredited Ν This analysis has been subcontracted to a UKAS accredited laboratory that is accredited for S this analysis This analysis has been subcontracted to a UKAS accredited laboratory that is not accredited SN for this analysis Τ This analysis has been subcontracted to an unaccredited laboratory I/S Insufficient Sample U/S Unsuitable Sample N/E not evaluated < "less than" "greater than" > SOP Standard operating procedure LOD Limit of detection

Comments or interpretations are beyond the scope of UKAS accreditation

The results relate only to the items tested

Uncertainty of measurement for the determinands tested are available upon request

None of the results in this report have been recovery corrected

All results are expressed on a dry weight basis

The following tests were analysed on samples as received and the results subsequently corrected to a dry weight basis TPH, BTEX, VOCs, SVOCs, PCBs, Phenols

For all other tests the samples were dried at < 37°C prior to analysis

All Asbestos testing is performed at the indicated laboratory

Issue numbers are sequential starting with 1 all subsequent reports are incremented by 1

Sample Deviation Codes

- A Date of sampling not supplied
- B Sample age exceeds stability time (sampling to extraction)
- C Sample not received in appropriate containers
- D Broken Container
- E Insufficient Sample (Applies to LOI in Trommel Fines Only)

Sample Retention and Disposal

All soil samples will be retained for a period of 30 days from the date of receipt

All water samples will be retained for 14 days from the date of receipt

Charges may apply to extended sample storage

If you require extended retention of samples, please email your requirements to: <u>customerservices@chemtest.com</u>