

Chris Christou CEng MistructE Director

Richard Russell CEng MistructE Director

Sustainable Drainage Strategy for the Outbuilding to Rear of 67c Camlet Way, Hadley Wood, EN4 ONL

Enfield Council Planning Reference: 22/01601/HOU Lead Local Flood Authority — Enfield Council

Prepared by: Christos Christou Beng CEng MIStructe Project No. 23091 Revision 00

Revision	Prepared by	Checked by	Date	Status
02	CC	RR	06/11/23	Preliminary

Contents

Chris Christou CEng MistructE Director

Richard Russell GEng MistructE Director

1.	Introduction	3
2.	Proposed Sustainable Drainage Scheme	4
3.	Management and Maintenance	4
4.	Constraints and Opportunity	4
5.	Application of Hierarchy	5
5.	SuDS Treatment Train & Water Quality	5
6.	Amenity & Bio-Diversity	6
7.	Description of the Sustainable Drainage System	6
8.	Hydraulic Calculations and Parameters	6
9.	Exceedance Flows	8
10	.Management of SuDS	8
11	.Maintenance of SuDS	8
12	.Maintenance Schedule	9
	.Attached Documents	10

1.0 Introduction

- 67c Camlet Way is a substantial detached villa on the North side of Camlet Way Barnet. It is proposed to consider a small single storey out building for recreation at the end of the rear garden.
- ii. With the increase in urban development, it was realised that the traditional collection of ever larger volumes of surface water into public sewers was not sustainable and that measures were required to control the amount of water discharged off-site and to improve the quality Director of the water discharged.
- iii. The UK Government sets out a National Planning Policy Framework for England and to support decision making provides guidance in a document "Guidance-Flood risk and coastal change this includes requirements for Sustainable Drainage Systems (SuDS)" Paragraph 51 states:

"Why are sustainable drainage systems important?

Sustainable drainage systems are designed to control surface water run off close to where it falls and mimic natural drainage as closely as possible. They provide opportunities to:

reduce the causes and impacts of flooding;

remove pollutants from urban run-off at source;

combine water management with green space with benefits for amenity, recreation and wildlife."

- iv. The Planning Consent 23/01458/HOU contained the following condition No 5.
- 5 The development shall not commence until a SUDS strategy and a Groundwater Flood Risk Assessment has been submitted to and approved in writing by the Local Planning Authority. A Groundwater FRA should include:
 - Onsite geological investigation
 - · Depth to groundwater and relative depth of the basement level
 - Identification of groundwater flow routes, and demonstration that the proposed basement will not impact these
 - · Measures to reduce the impact of the basement on groundwater flows and flooding

Reason: To ensure the sustainable management of water, minimise flood risk, minimise discharge of surface water outside of the curtilage of the property and ensure that the drainage system will remain functional throughout the lifetime of the development in accordance with Policy CP28 of the Core Strategy, DMD Policy 61, and Policy SI 5 of the London Plan and the NPPF and to maximise opportunities for sustainable development, improve water quality, biodiversity, local amenity and recreation value.

v. The London Plan 2021 contains the following policy:

Policy SI.13 Sustainable drainage Policy Planning decisions

A Development should utilise sustainable urban drainage systems (SUDS) unless there are practical reasons for not doing so, and should aim to achieve greenfield run- off rates and ensure that surface water run-off is managed as close to its source as possible in line with the following drainage hierarchy:

AMA Consulting Engineers Ltd

6A Nesbitts Alley Barnet EN5 5XG t: +44(0)20 8361 6827 w: www.amaci.co.uk AMA Consulting Engineers is a trading name of C and R Design LTD. Registered in England No. 6600563

Pg.3

- 1. store rainwater for later use
- 2. use infiltration techniques, such as porous surfaces in non-clay areas
- 3. attenuate rainwater in ponds or open water features for gradual release
- 4. attenuate rainwater by storing in tanks or sealed water features forgradual release Director
- 5. discharge rainwater direct to a watercourse
- 6. discharge rainwater to a surface water sewer/drain
- 7. discharge rainwater to the combined sewer.

Drainage should be designed and implemented in ways that deliver other policy objectives of this Plan, including water use efficiency and quality, biodiversity, amenity and recreation.

vi. This document is not a flood risk assessment (FRA). One has been prepared by Jomas Associates and is included within the Appendix I. Based on the Jomas Report, the site is at low risk from identified potential sources of flooding. The development can be constructed and operated safely in flood risk terms without being at significant risk or increasing flood risk elsewhere and is therefore considered NPPF compliant.

2.0 Proposed Sustainable Drainage Scheme

i. This document describes a proposed SuDS Scheme for the project showing the SuDS elements and proposing a discharge rate. Hydraulic calculations are provided for the SuDS elements. This scheme has been prepared with the proposed development plans and may be subject to design development once the construction details are known.

3.0 Management and Maintenance

- i. The SuDS described in this document will be within a single house development and management and maintenance will be the responsibility of the owner.
- ii. For the continued efficiency and effectiveness of the SuDS system maintenance is required. A schedule of anticipated maintenance is included. London Borough of Enfield suggest a laminated drawing with the schedule on the back be prepared.

4.0 Constraints and Opportunities

- i. The site area is 70m² or 0.007 hectare, all of which is rear garden, the predevelopment drained area is 0 sq m and the post development drained area 70m².
- ii. The Enfield Borough Planning Geological map indicates that the superficial geology is London Clay, which is consistent with site investigation of nearby properties.
- iii. The Enfield Borough Watercourses map shows that there are no open bodies or watercourses close to the site.
- iv. The site falls from the road towards the rear garden. The new outhouse will be constructed level with the rear boundary of the garden with a low retaining wall to the remaining garden.

AMA Consulting Engineers Ltd

6A Nesbitts Alley Barnet EN5 5XG t: +44(0)20 8361 8827 w: www.amaci.co.uk

AMA Consulting Engineers is a trading name of C and R Design LTD. Registered in England No. 6600663

Richard Russell CEng MistructE Director

- v. There is no scope for surface features such as swales ponds or similar.
- vi. Flow rates will be limited to:
 - Q Bar 1 for storms up to a 1 year return period controlled by an orifice plate.
 - Q Bar 100 for all storms up to a 100 year return period with a 6 hour event controlled Eng MistructE by the rate of an electric lift pump.
- vii. Areas of paving will be permeable over stone drainage layer to provide water quality treatment. The drainage blanket will be supplemented by a geocell tank to provide attenuation drainage. The surface water will be pumped to the existing surface water manholes at the side of the house.

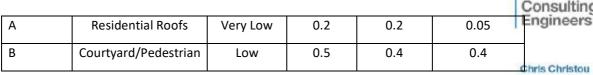
5.0 Applications of the Hierarchy of Drainage Control

Ref	Hierarchy	Discussion on Suitability	Suitable	Adopted
1	store rainwater for later use	Not practical	No	No
2	use infiltration techniques, such as porous surfaces in non-clay areas	Clay area, not viable	No	No
3	attenuate rainwater in ponds or open water features for gradual release	Not viable due to small external spaces	No	No
4	attenuate rainwater by storing in tanks or sealed water features for gradual release	Surface Water to be stored in geocell tank the rear yard and slowly through a vortex device	Yes	Yes
5	discharge rainwater direct to a watercourse	None available.	No	No
6	discharge rainwater to a surface water sewer/drain	None available.	Yes	Yes
7	discharge rainwater to the combined sewer.	The public sewers are combined	No	No

5.0 SuDS Treatment Train and Water Quality

- i. Water falling on roofs will drain through rainwater pipes into the stone drainage blanket under the permeable paving. To minimise the risk of silt flowing into the stone drainage rainwater pipes where possible will flow onto the permeable paving.
- ii. The stone tanks will treat the runoff water.
- iii. Here are the indices from the Index Based Analysis using The Simple Index Method as Chapter 26 of the SuDS Manual.

Ref	Source	Pollution Indices T26.2 SuDS Manual			
	Land Use	Pollution	TTS	Metals	Hydrocarbons
		Risk Level			


AMA Consulting Engineers Ltd 6A Nesbilts Alky Barnet EN5 5XG 1: +44(0)20 8361 6827 w: www.amacl.co.uk AMA Consulting Engineers is a trading name of C and R Design LTD. Registered in England No. 6600663 Pg.5

Richard Russell CEng MistructE

Director

e institution of

StructuraEngineers

CEng MistructE Director

CEng MistructE Director

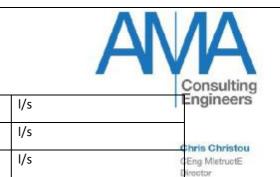
It is proposed to provide both green roofs off and stone tanks under permeable paving. Pollution Indices T26 3 SuDS Manual **Richard Russell**

Ref	Source	Pollution Indices T26.3 SuDS Manual		
	SuDS Component	TTS Metals Hyd		Hydrocarbons
А	Permeable Paving	0.7	0.6	0.7

It can be seen that the treatment index for either of the SuDS components is bigger than the ٧. pollution hazard index.

6.0 Amenity and Biodiversity

iv.


i. The SuDS itself does not provide amenity but by allowing the outbuilding to be built additional recreation is provided.

7.0 Description of Sustainable Drainage System

- i. The surface water drainage system is shown on drawings 23091-130100-P1.
- ii. For flows up to a 1 in 1 year storm Q_{bar1in1} = 0.03 l/s
- Q_{bar1in00} = 0.1 l/s iii. For storms up to a 100 + climate change
- iv. Permeable paving will be between the outbuilding and the retaining wall. A stone drainage blanket is provided under the permeable paving as a storage tank to contain the storm water up to a 1 in 100 Year storm with uplift for climate change in conjunction with a geocell tank.
- These attenuation tanks drain to a manhole with a baffle and orifice plate, details of which v. are attached to the hydraulic calculations. And from there to a package pump chamber.
- vi. The drainage system is designed to intercept the first 5 mm of any rainfall to reduce the total volume of surface water discharged from site over the year as a whole. Interception will be provided by the green roofs, and the permeable pavement with the stone tank under the parking court.

8.0 Hydraulic Calculations and Parameters

- i. The calculations are attached, parameters are based on the Enfield Design Guide.
- ii. Qbar rural is calculated in accordance with the "Flood estimation for small catchments Marshall DCW and Bayliss AC. IOH Report No.124. Institute of hydrology, Wallingford, 1994," see spread sheet.

lichard Russell

CEng MistructE Director

t

iii.	CvCr are	e taken	as 1.1.
	0101010	- cancen	uo 1.1

Q_{bar} Rural

Q_{bar} 1 Year Return

Q_{bar} 30 Year Return

Q_{bar} 100 Year Return

iv. The uplift for Climate Change was considered in the range 20% Centre to 40% Upper (NPPF) and a value of 40% was selected given the sensitivity of the site.

0.33

0.03

0.08

0.1

I/s

v. The volume to be stored is considered by balancing storm inflows and limited outflows with a hydrograph based on the Wallingford Modified Rational Method.

- vi. The flow/head characteristics of the orifice flow control device are used in calculating storage volumes.
- vii. The volume of storage is not increased for Urban Creep by 10%.
- viii. The total volume required is 6.1 cu m. No reduction is made for the interception storage.
- ix. Time to empty after the 100 Year +CC storm is 6.2 hours.
- x. Abstracted from the spreadsheets in the hydraulic calculations the comparative flow and volumes are tabulated below.
- xi. Table of flows:

Storm	Flow		
Return Period	Proposed Q _{peak}	Greenfield Q _{bar}	Existing Q_{peak}
Years	l/s	l/s	l/s
1	0.03	0.03	0
30	0.08	0.08	0
100	0.1	0.1	0
Add for CC	40%		
100 + CC	0.1		

xii. Table of volumes:

Storm		Existing	After Development		
Return Period	Duration	Run Off Volume	Run Off Volume	Reduction in Run Off	Attenuation Volume Required
Years	Mins	m ³	m ³		m ³
1	15	0.03	0.54		1.25
30	240	1.13	3.08		2.1
100	360	2.26	4.38		4.3
100+CC	360	-	6.13		6.1

AMA Consulting Engineers Ltd

6A Nesbitts Alley Barnet FN5 5XG t: +44(0)20 8361 6827 w: www.amacl.co.uk

AMA Consulting Engineers is a trading name of C and R Design LTD. Registered in England No. 5500563

9.0 Exceedance Flows

Exceedance flows will be as existing with any exceedance flowing behind the outbuilding and Chris Christou onto the field to the rear of the property. A sketch is included in the calculations.

10.0 Management of the SuDS

- i. The SuDS is intended to be simple and robust.
- ii. The system will need to be managed by the building owner.

11.0 Maintenance of the SuDS

- i. A SuDS maintenance table is attached below.
- ii. SuDS maintenance may be considered to be:
 - Regular maintenance, including inspections,
 - Occasional maintenance, and
 - Remedial maintenance.
- iii. Items described as regular or occasional can be included in the landscape maintenance. Items described as remedial may require design and result in a capital expenditure.
- iv. The frequency of maintenance may require to be ascertained after the system has been in use.
- v. Where SuDS elements need to be replaced then the design drawings should be used to specify replacement material.
- vi. At the end of construction this schedule will be updated as required, combined with a plan and laminated for maintenance team.

Director Richard Russell CEng MistructE

Director

12.0 Maintenance Schedule

Ref	SuDS Element	Activity	Frequency	Type & Notes Christon
1	Gullies & Drainage Channels	Inspect to check for sediment and empty if full	Annually or as required	Routine/Occasional CEng MistructE Material removed should be disposed Richard Russell of as contaminated.
2	Underground drains	Pipes to be cleaned if blocked	As required	Occasional
3	Orifice Plate	Inspect for blocked flow control unit in Spring and Autumn. Unblock if necessary.	When Blocked	Routine/Remedial
4	Package Pump Unit	Maintenance	Annual	Routine by specialist contractor
5	Package Pump Unit	Attendance on pump failure	If pump alarm sounds/lights up	Occasional by specialist contractor
6	Permeable Paving	Sweep and remove debris and leaf litter	Monthly or more often as required	Regular Maintenance
7	Permeable Paving	Vacuum clean	5 yearly	Regular Maintenance
8	Permeable Paving	Lift and relay	Intervals of 20 years approximately	Remedial Maintenance
9	Stone Drainage Blanket	Lifted, cleaned of silt and re-laid.	After 20 to 40 years anticipated	Remedial Maintenance Trial area be exposed and checked when paving re-laid. Material removed should be disposed of as contaminated.

13.0 Attached Documents

Appendix A – Enfield Proforma

- Appendix B SuDS drainage Scheme Drawings
- Appendix C Areas
- Appendix D Exceedance
- Appendix E Hydraulic Calculations
- Appendix F Existing Building CCTV Drainage Survey
- Appendix G Architectural Existing and Proposed Drawings
- Appendix I Groundwater Flood Risk Assessment

Chris Christou CEng MistructE Director

Richard Russell GEng MistructE Director

Chris Christou CEng MistructE Director

Richard Russell CEng MistructE Director

AMA Consulting Engineers Ltd 6A Neshitts Alley Barnet FN5 5XG t: +44(0)20 8361 5827 w: www.amacl.co.uk AMA Consulting Engineers is a trading name of C and H Design LTD. Registered in England No. 5600583

Pg.1

GREATER LONDON AUTHORITY

	Project / Site Name (including sub- catchment / stage / phase where appropriate)	outbuilding to the Rear of 67c Camlet Way
	Address & post code	67c Camlet Way, Hadley Wood, EN4 ONL
	OS Grid ref. (Easting, Northing)	E 525822 N 197779
tails	LPA reference (if applicable)	
1. Project & Site Details	Brief description of proposed work	Outbuilding to the rear of 67c Camlet Way
	Total site Area	70 m ²
	Total existing impervious area	0 m ²
	Total proposed impervious area	70 m ²
	Is the site in a surface water flood risk catchment (ref. local Surface Water Management Plan)?	No
	Existing drainage connection type and location	Public sewer
	Designer Name	Christos Christou
	Designer Position	Engineer
	Designer Company	AMA Consulting Engineers

	2a. Infiltration Feasibility				
	Superficial geology classification		London Clay		
	Bedrock geology classification		London Clay		
	Site infiltration rate	n/a	m/s		
	Depth to groundwater level		m belo	w ground level	
	ls infiltration feasible?		No	-	
	2b. Drainage Hierarchy				
			Feasible (Y/N)	Proposed (Y/N)	
Ó	1 store rainwater for later use	Ν	Ν		
די ו האהמבת הומרומו פב עו ו מו פבווובו ומ	2 use infiltration techniques, such as porous surfaces in non-clay areas		N	N	
	3 attenuate rainwater in ponds or open water features for gradual release		Ν	N	
i opone	4 attenuate rainwater by storing ir sealed water features for gradual r	Y	Y		
1	5 discharge rainwater direct to a w	Ν	N		
	6 discharge rainwater to a surface sewer/drain	water	Y	Y	
	7 discharge rainwater to the combined sewer.		N	Ν	
	2c. Proposed Discharge Details				
	Proposed discharge location ection to exist		ing manhole a	t side of the exi	
	Has the owner/regulator of the discharge location been consulted?		No		

London Sustainable Drainage Proforma v2019.02

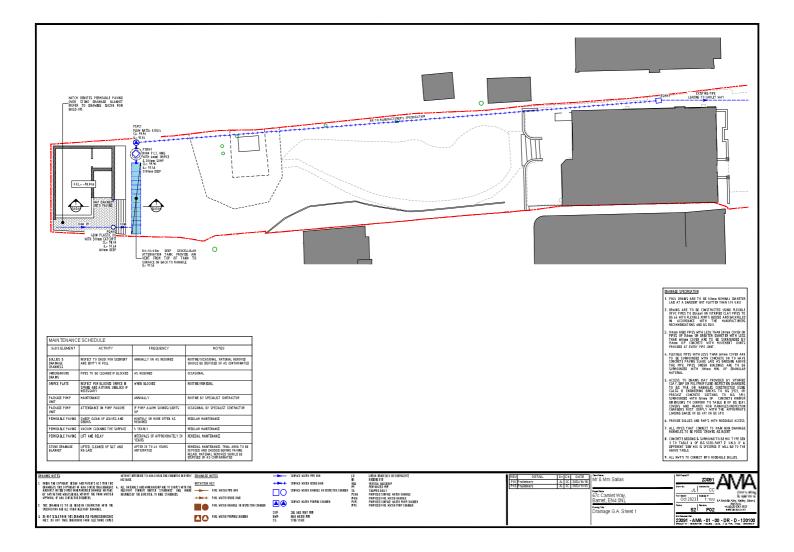
å

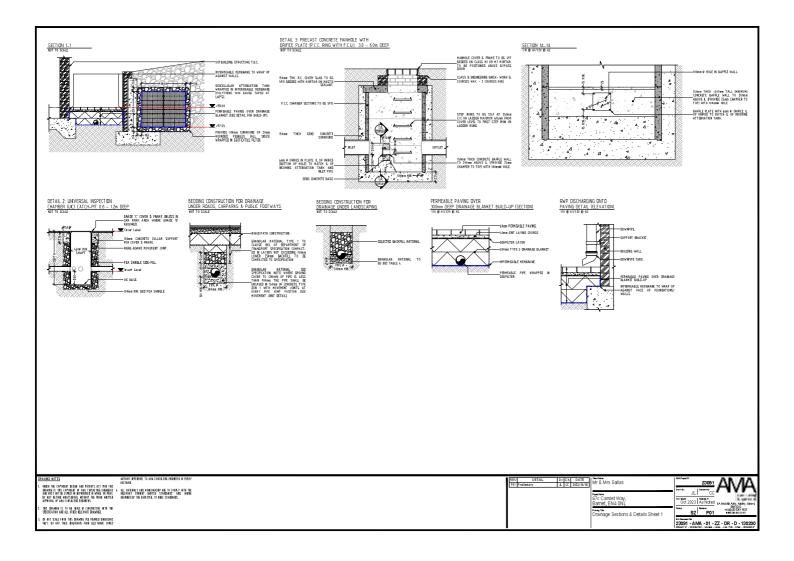
GREATER LONDON AUTHORITY

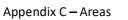
	3a. Discharge Ra	tes & Required Sta	rage		
		Greenfield (GF) runoff rate (I/s)	Existing discharge rate (I/s)	Required storage for GF rate (m ³)	Proposed discharge rate (I/s)
	Qbar	0.33	\geq	\geq	\geq
	1 in 1	0.03	0	1.25	0.03
	1 in 30	0.08	0	2.1	0.08
trategy	1 in 100	0.1	0	4.3	0.1
	1 in 100 + CC	>	\geq	6.1	0.1
	Climate change allowance used		40%		
	3b. Principal Met Control	thod of Flow	Orifice plate +	constant flow v	ia pump
	3c. Proposed Sul	OS Measures			
Draina			Catchment area (m²)	Plan area (m²)	Storage vol. (m ³)
3. [Rainwater harvesting		0	\langle	0
	Infiltration system	ms	0	\sim	0
	Green roofs		0	0	0
	Blue roofs		0	0	0
	Filter strips		0	0	0
	Filter drains		0	0	0
	Bioretention / tre		0	0	0
	Pervious paveme	ents	70	20	0
	Swales		0	0	0
	Basins/ponds		0	0	0
	Attenuation tank	s	0	\geq	6.4
	Total		70	20	6.4

	4a. Discharge & Drainage Strategy	Page/section of drainage report			
	Infiltration feasibility (2a) – geotechnical factual and interpretive reports, including infiltration results	See SuDS report section 5, page 5			
	Drainage hierarchy (2b)	See SuDS report section 5, page 5			
u	Proposed discharge details (2c) – utility plans, correspondence / approval from owner/regulator of discharge location	See section 8, page 7 & Appendices			
ormatic	Discharge rates & storage (3a) – detailed hydrologic and hydraulic calculations	See appendix			
4. Supporting Information	Proposed SuDS measures & specifications (3b)	See drawings in appendix			
Dd I	4b. Other Supporting Details	Page/section of drainage report			
Sup	Detailed Development Layout	See drawings in appendix			
4.	Detailed drainage design drawings, including exceedance flow routes	See drawings in appendix			
	Detailed landscaping plans	Not available			
	Maintenance strategy	See SuDS report, section 11, page 8			
	Demonstration of how the proposed SuDS measures improve:				
	a) water quality of the runoff?	See SuDS report section 5, page 5			
	b) biodiversity?	See SuDS report section 6, page 6			
	c) amenity?	See SuDS report section 6, page 6			

London Sustainable Drainage Proforma v2019.02




Appendix B – SuDS drainage Scheme Drawings


Chris Christou CEng MietructE Director

Richard Russell CEng MistructE Director

AMA Consulting Engineers Ltd 6A Neshitts Alley Barnet FN5 5XG t: +44(0)20 8361 5827 w: www.amacl.co.uk AMA Consulting Engineers is a trading name of C and H Design LTD. Registered in England No. 5600583

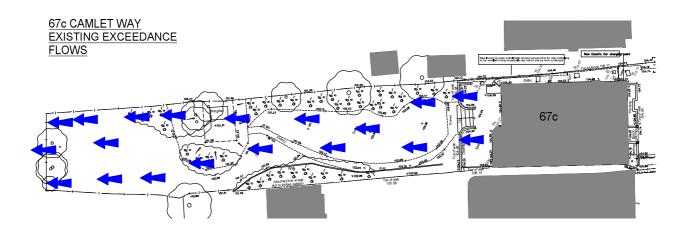


Chris Christou CEng MistructE Director

Richard Russell CEng MistructE Director

AMA Consulting Engineers Ltd 6A Neshitts Alley Barnet FN5 5XG t: +44(0)20 8361 5827 w: www.amacl.co.uk AMA Consulting Engineers is a trading name of C and H Design LTD. Registered in England No. 5600583

Pg.3

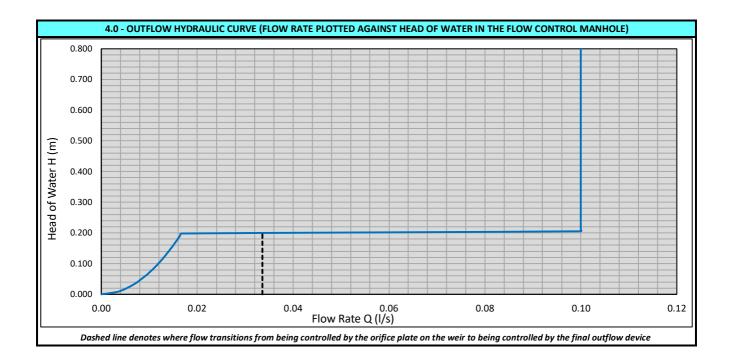



Appendix D – Exceedance

Chris Christou CEng MistructE Director

Richard Russell CEng MistructE Director

AMA Consulting Engineers Ltd 6A Neshitts Alley Barnet FN5 5XG t: +44(0)20 8361 5827 w: www.amacl.co.uk AMA Consulting Engineers is a trading name of C and H Design LTD. Registered in England No. 5600583

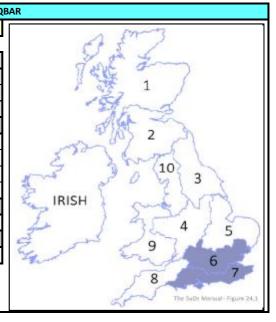

Chris Christou CEng MistructE Director

Richard Russell CEng MistructE Director

AMA Consulting Engineers Ltd 6A Neshitts Alley Barnet FN5 5XG t: +44(0)20 8361 5827 w: www.amacl.co.uk AMA Consulting Engineers is a trading name of C and R Design LTD. Registered in England No. 5600583

Pg.5

	Destant	CZa Camlat Ma						lu fo un oti o u
CarNeedetts Allery London; END SK3	Project Client	67c Camlet Wa Mr & Mrs Salla				Made by	Dverall Site	Project No
1 +44(020 8381 6827		Overall Site Info				CC	12-10-23	23091
Consulting www.errest.co.uk	Description					Checked		Revision
Engineers	v1.0				CC		0	
		1.0 - SCHEDU	LE OF ARE	AS				
Total Area of t	he Entire Site	A _{site}	70	m²				
Pre-Development F	Pervious Area	A _{pre,pervious}	70	m²				
Pre-Development Imp	pervious Area	A _{pre,impervious}	0	m²	A _{pre,impervious} = A	_{site} - A _{pre,pervi}	ous	
Post-Development F	Pervious Area	A _{post,pervious}	0	m²				
Post-Development Imp	pervious Area	A _{post,impervious}	70	m ²	A _{post,impervious} = A	A _{site} - A _{post,pe}	rvious	
	2.0 - LOC/	ATION SPECIFIC	C HYDROL	OGICAL D	ATA			
2.1 - SITE LC	OCATION				For assessment	of J factors	for hydrauli	c curves
Site Lo	cation in UK	Englar	nd and Wa	les	Wallingford Tab	ole 6.1		
2.2 - WALLINGFORI								
Rainfall Intensity for Storm with 5 Year Return Perio		M5-60	20	mm	Obtained from	UKSUDs We	bsite using I	H124 Method
Ratio Between the M5-60 and the M5-2day St	Duration		0.40		Obtained from		hsite using l	H124 Method
	o.m intensity	1	0.40			<u></u>	Some doing I	<u></u>
2.3 - FLOOD ESTIMATE FOR SI	MALL CATCH	MENT AREAS			1			
Winter Rainfall Acceptance Potent	ial (Soil Type)	WRAP	4		Obtained from	UKSUDs We	bsite using I	H124 Method
Soil Runo	off Coefficient	SPR	0.47		Obtained from	UKSUDs We	bsite using I	H124 Method
Standard Annual Ave	erage Rainfall	SAAR	682	mm	Obtained from UKSUDs Website using IH124 Method			
			1		-			
2.4 - INCREASE FOR C	CLIMATE CHA	NGE						
Percentage Increase on Rain	fall Intensity i	High (Upper)	40%	1	<u>National Plannin</u> 2 for 50-95 Year		amework (N	PPF) Guidance Table
					1			
2.5 - URBAN	N CREEP		NI/A		Applies to developments with houses only			
Upli	ift on Storage	Omit	N/A		Refer to lead lo			
					Typical value is 10%			
3.0	- OUTFLOW	CONTROL ME	THOD FRO	OM STORA	GE TANK			
3.1 - PRIMARY FLOW	CONTROL DE	VICE						
Primary Flow Control Device (Installed on a Weir w	ithin the Flow	Control Manhole)	Orific	e Plate				
Diametre	of the Orifice	d	6.0	mm				
Thickness of the	e Orifice Plate	t	5.00	mm				
Numb	per of Orifices	n _{orifice}	1		<u> </u>			
Numb	per of Outlets	n _{outlet}	1		55			
Coefficient	t of Discharge	C _d	0.6		55	IE		
Heigh	nt of the Weir	H _{WEIR}	0.2	m	×2	PLA		
	x Flow Rate C		a max hea	d of 0.2m)		ЧT	1	NA N
3.2 - SECONDARY OUTFLO					INLET	ORIFICE PLATE		
Outflow Control Device (Installed on Outflow Pipe w				stant		0	-	8
Rate of Cons	stant Outflow	Q	0.100	l/s				
						Section	n Through Fl	ow Control Manhole



ANIAA		Project	67c Camlet Way	Calculation of Runoff QBAR				
Consulting	Client	Mr & Mrs Sallas	Made by	Date	Project No			
		Qbar/E	Qbar/Existing/Proposed Flows & Volumes	CC	12-10-23	23091		
	w: www.amad.co.uk	Description		Checked		Revision		
Engineers		SuDs Storage	v1.0	CC		0		

1.0 - SITE INFORMATION									
		70.0	m²						
Area of the Site	A _{site}	0.000070	km ²	User Input - Defined Previously and now expressed in multiple units					
		0.0070	hectares						
	A _{pre,pervious}	70.0	m²						
Pre-Development Pervious Area		0.000070	km ²	User Input - Defined Previously and now expressed in multiple units					
		0.0070	hectares						
		0.0	m²						
Post-Development Pervious Area	A _{post,pervious}	0.000000	km ²	User Input - Defined Previously and now expressed in multiple units					
		0.0000	hectares						
Soil Runoff Coefficient	SPR	0.47		User Input - Defined Previously					
Standard Annual Average Rainfall	SAAR	682.0	mm	User Input - Defined Previously					

2.0 - CALCULATION OF RUNOFF RATE FOR DIFFERENT SITE DEVELOPMENT STAGES: QBAR _{rural}								
		0.0000	m ³ /s	for: 50 hectares ≤ A < 200 hectares				
Greenfield Site (using A = A _{site})	QBAR _{RURAL,GF}	0.033	l/s	QBAR _{rural} = 0.00108 * A ^{0.89} x SAAR ^{1.17} x SPR ^{2.17} for: A < 50 hectares				
	QBAR _{RURAL,Pre}	0.0000	m³/s	$QBAR_{rural} = 0.00108 * [(A/0.5) * 0.5^{0.89}] * SAAR^{1.17} * SPR^{2.17}$				
Pre-Development Pervious Area (using A = A _{pre,pervious})		0.033	I/s	A is area in units of km ² in these formulas QBAR _{mual} Formula from: "Flood estimation for small catchments"				
		0.0000	m ³ / s	Marshall DCW and Bayliss AC. IOH Report No.124. Institute of				
Post-Development Pervious Area (using A = A _{post,pervious})	QBAR _{RURAL,Post}	0.000		hydrology, Wallingford, 1994 QBAR _{rural} is in units of m ³ / s				

	6 & 7										
3.1 - GROWTH CURVES AND RUNOFF FOR HYDROMETRIC AREA: 6 & 7											
		Greenfield	Pre-Development	Post-Development							
Return Period	Growth Factor	QBAR, GF	QBAR,Pre	QBAR,Post							
	i dotoi	l/s	I/s	l/s							
1 Year	0.85	0.03	0.03	0.00							
2 Years	0.88	0.03	0.03	0.00							
5 Years	1.28	0.04	0.04	0.00							
10 Years	1.62	0.05	0.05	0.00							
25 Years	2.14	0.07	0.07	0.00							
30 Years	2.4	0.08	0.08	0.00							
50 Years	2.62	0.09	0.09	0.00							
100 Years	3.19	0.10	0.10	0.00							
500 Years	4.49	0.15	0.15	0.00							

4.0 - CALCULATE RAINFALL INTEN				
Storm Duration for 1 in 1 Year Storm	D	5	minutes	
Storm Duration for 1 in 30 Year Storm	D	5	minutes	
Storm Duration for 1 in 100 Year Storm	D	5	minutes	User Input
Rainfall Intensity for Storm with 5 Year Return Period and 60min Duration	M5-60	20.0	mm	User Input - Defined Previously
Ratio Between the M5-60 and the M5-2day Storm Intensity	r	0.4		User Input - Defined Previously
4.1 - 1 in 1 Year Storm of Duration I		_		1
4.1 - 1 in 1 Year Storm of Duration L Return Period of Storm	T = 5 minutes	1	Years	•
Wallingford Factor	Z ₁	0.371	Tears	From Wallingford Modified Rational Method Equation 6.1
Rainfall Intensity for 1 in 5 Year Storm with Duration D = 5 minutes	M5-5	7.411	mm	M5-5 = Z1 * M5-60
	J ₀	1699	x10 ⁻⁴	From Wallingford Modifed Rational Method Table 6.1
J Factors for England and Wales	J ₁	2800	x10 ⁻⁶	From Wallingford Modifed Rational Method Table 6.1
	J ₂	114000	x10 ⁻⁹	From Wallingford Modifed Rational Method Table 6.1
C _r Factor	Cr	0.197		Cr = J0 + (J1 * M5-5) + (J2 * M5-5^2)
Wallingford Factor	Z ₂	0.615		Z ₂ = interpolated from Table 6.2 or 6.3 (Wallingford)
Rainfall Intensity for 1 in 1 Year Storm with Duration D = 5 minutes	M1-5	4.559	mm	M1-5 = Z2 * M5-5
4.2 - 1 in 30 Year Storm of Duration	D = E minutos			1
Return Period of Storm	T	30	Years	-
Wallingford Factor	Z ₁	0.371		From Wallingford Modified Rational Method Equation 6.1
Rainfall Intensity for 1 in 5 Year Storm with Duration D = 5 minutes	M5-5	7.411	mm	M5-5 = 21 * M5-60
L Factors for Factors dated Webs	J ₀	1699	x10 ⁻⁴	From Wallingford Modifed Rational Method Table 6.1
J Factors for England and Wales	J ₁	2800	x10 ⁻⁶	From Wallingford Modifed Rational Method Table 6.1
C. Factor	J ₂	114000	x10 ⁻⁹	From Wallingford Modifed Rational Method Table 6.1
C _r Factor	C _r	0.197		$Cr = J0 + (J1 * M5-5) + (J2 * M5-5^{2})$
Wallingford Factor	Z ₂	1.454		Z ₂ = exp(Cr * [ln(T) - 1.5])
Rainfall Intensity for 1 in 30 Year Storm with Duration D = 5 minutes	M30-5	10.776	mm	M30-5 = Z2 * M5-5
4.3 - 1 in 100 Year Storm of Duration	D = 5 minutes			1
Return Period of Storm	T	100	Years	
Wallingford Factor	Z ₁	0.371		From Wallingford Modified Rational Method Equation 6.1
Rainfall Intensity for 1 in 5 Year Storm with Duration D = 5 minutes	M5-5	7.411	mm	M5-5 = Z1 * M5-60
	Jo	1699	x10 ⁻⁴	From Wallingford Modifed Rational Method Table 6.1
J Factors for England and Wales	-0 J ₁	2800	x10 ⁻⁶	From Wallingford Modifed Rational Method Table 6.1
	J ₂	114000	x10 ⁻⁹	From Wallingford Modifed Rational Method Table 6.1
C _r Factor	C _r	0.197		Cr = J0 + (J1 * M5-5) + (J2 * M5-5^2)
Wallingford Factor	Z ₂	1.843		$Z_2 = \exp(Cr * [ln(T) - 1.5])$
Rainfall Intensity for 1 in 100 Year Storm with Duration D = 5				
minutes	M100-5	13.659	mm	M100-5 = Z2 * M5-5

minutes

5.1 - 1 in 1 Year Storm of Duration	D = 5 minutes			
Volumetric Runoff Coefficient	C _v	0.600		CIRIA SuDS Guide - Equation 24.5
Dimensionless Routing Coefficient	C _R	1.67		CIRIA SuDS Guide - Equation 24.5
Rainfall Intensity	i	54.710	mm/hr	i = M1-5 converted into mm per hour
Pre-Development Impervious Area	A _{pre,impervious}	0.0000	hectares	User Input - Defined Previously
Post-Development Impervious Area	A _{post,impervious}	0.0070	hectares	User Input - Defined Previously
Peak Flow Rate Pre-Development (Runoff)	Q _{pre}	0.00	l/s	$Q_{pre} = 2.78 * C_v * C_R * i * A_{pre,impervious}$
Peak Flow Rate Post-Development (Runoff)	Q _{post}	1.06	l / s	$Q_{post} = 2.78 * C_v * C_R * i * A_{post,impervious}$
5.2 - 1 in 30 Year Storm of Duration	D = 5 minutes			
Volumetric Runoff Coefficient	Cv	0.600		CIRIA SuDS Guide - Equation 24.5
Dimensionless Routing Coefficient	C _R	1.67		CIRIA SuDS Guide - Equation 24.5
Rainfall Intensity	i	129.316	mm/hr	i = M30-5 converted into mm per hour
Pre-Development Impervious Area	A _{pre,impervious}	0.0000	hectares	User Input - Defined Previously
Post-Development Impervious Area	A _{post,impervious}	0.0070	hectares	User Input - Defined Previously
Peak Flow Rate Pre-Development (Runoff)	Q _{pre}	0.00	l / s	$Q_{pre} = 2.78 * C_v * C_R * i * A_{pre,impervious}$
Peak Flow Rate Post-Development (Runoff)	Q _{post}	2.52	l/s	$Q_{post} = 2.78 * C_v * C_R * i * A_{post,impervious}$
	_	_	_	1
5.3 - 1 in 100 Year Storm of Duration			_	
Volumetric Runoff Coefficient	- •	0.600		CIRIA SuDS Guide - Equation 24.5
Dimensionless Routing Coefficient	C _R	1.67		CIRIA SuDS Guide - Equation 24.5
Rainfall Intensity		163.914	mm/hr	i = M100-5 converted into mm per hour
Pre-Development Impervious Area	p. c)po	0.0000		User Input - Defined Previously
Post-Development Impervious Area	post,impervious	0.0070	-	User Input - Defined Previously
Peak Flow Rate Pre-Development (Runoff)	Q _{pre}	0.00	-	$Q_{pre} = 2.78 * C_v * C_R * i * A_{pre,impervious}$
Peak Flow Rate Post-Development (Runoff)	Q _{post}	3.19	l/s	$Q_{post} = 2.78 * C_v * C_R * i * A_{post,impervious}$

Percentage Incre	CC	40%	%	User Input - Defined Previously							
Return Period	Storm Duration D	Greenfield Runoff Rate	Pre-Development Runoff Rate		Post-Development Runoff Rate	Allowable Runoff Rate	Betterment vs Pre-Dev				
	Minutes	l/s	l/s		l/s	l / s	%				
1 in 1 Year	5	0.03	0.03		1.06	0.03	0%				
1 in 30 Years	5	0.08	0.08		2.52	0.08	0%				
1 in 100 Years	5	0.10	0.10		3.19	0.10	0%				
1 in 100 Years + Climate Change	5				4.47	0.10					
	User Input	= QBAR	= QBAR _{pre} +	Q _{pre}	$= QBAR_{post} + Q_{post}$ $= QBAR_{post} + (Q_{post} * (1+CC))$	User Input	=(1 - (RO _{Allow} / RO _{Pre-Dev})) * 100				

7.0 - CALCULATE RAINFALL INTER	SITY FOR DIFF	FRENT STORM	RFTURN P	FRIODS (OVER SET DURATIONS)
Storm Duration for 1 in 1 Year Storm	D	15	minutes	User Input - Defined Previously
Storm Duration for 1 in 30 Year Storm	D	240	minutes	User Input - Defined Previously
Storm Duration for 1 in 100 Year Storm	D	360	minutes	User Input - Defined Previously
Rainfall Intensity for Storm with 5 Year Return Period and 60min	M5-60	20.0	mm	User Input - Defined Previously
Ratio Between the M5-60 and the M5-2day Storm Intensity	r	0.4		User Input - Defined Previously
7.1 - 1 in 1 Year Storm of Duration D	= 15 minutes			
Return Period of Storm	Т	1	Years	
Wallingford Factor	Z ₁	0.630		From Wallingford Modified Rational Method Equation 6.1
Rainfall Intensity for 1 in 5 Year Storm with Duration D = 15 minutes	M5-15	12.594	mm	M5-15 = Z1 * M5-60
	J _o	1644	x10 ⁻⁴	From Wallingford Modifed Rational Method Table 6.1
J Factors for England and Wales	J ₁	5831	x10 ⁻⁶	From Wallingford Modifed Rational Method Table 6.1
	J ₂	-134300	x10 ⁻⁹	From Wallingford Modifed Rational Method Table 6.1
C, Factor	C _r	0.217		Cr = J0 + (J1 * M5-15) + (J2 * M5-15^2)
Wallingford Factor	Z ₂	0.615		Z_2 = interpolated from Table 6.2 or 6.3 (Wallingford)
Deinfell leternity for 1 in 1 Very Germany with Dynastics D 15 minutes	N44.45	7 740		
Rainfall Intensity for 1 in 1 Year Storm with Duration D = 15 minutes	M1-15	7.748	mm	M1-15 = Z2 * M5-15
7.2 - 1 in 30 Year Storm of Duration D	= 240 minutes		•	
Return Period of Storm	Т	30	Years	
Wallingford Factor	Z ₁	1.445		From Wallingford Modified Rational Method Equation 6.1
Rainfall Intensity for 1 in 5 Year Storm with Duration D = 240 minutes	M5-240	28.906	mm	M5-240 = Z1 * M5-60
	J ₀	1644	x10 ⁻⁴	From Wallingford Modifed Rational Method Table 6.1
J Factors for England and Wales	J ₁	5831	x10 ⁻⁶	From Wallingford Modifed Rational Method Table 6.1
	J ₂	-134300	x10 ⁻⁹	From Wallingford Modifed Rational Method Table 6.1
C, Factor	C _r	0.221		Cr = J0 + (J1 * M5-240) + (J2 * M5-240^2)
Wallingford Factor	Z ₂	1.521		$Z_2 = \exp(Cr * [ln(T) - 1.5])$
Rainfall Intensity for 1 in 30 Year Storm with Duration D = 240 minutes	M30-240	43.979	mm	M30-240 = Z2 * M5-240
				l l
7.3 - 1 in 100 Year Storm of Duration	D = 360 minute	s		
Return Period of Storm	Т	100	Years	
Wallingford Factor	Z ₁	1.599		From Wallingford Modified Rational Method Equation 6.1
Rainfall Intensity for 1 in 5 Year Storm with Duration D = 360 minutes	M5-360	31.985	mm	M5-360 = Z1 * M5-60
	J _o	2644	x10 ⁻⁴	From Wallingford Modifed Rational Method Table 6.1
J Factors for England and Wales	_	-1621		From Wallingford Modifed Rational Method Table 6.1
				-
C Factor				-
Wallingford Factor				
C, Factor	J ₁ J ₂ C _r Z ₂	-1621 3150 0.216 1.954	x10 ⁻⁶ x10 ⁻⁹ 	From Wallingford Modifed Rational Method Table 6.1 From Wallingford Modifed Rational Method Table 6.1 Cr = J0 + (J1 * M5-360) + (J2 * M5-360^2) $Z_2 = exp(Cr * [In(T) - 1.5])$

minutes

Wallingford Factor

Rainfall Intensity for 1 in 100 Year Storm with Duration D = 360

 Z_2

M100-360

1.954

62.507

mm

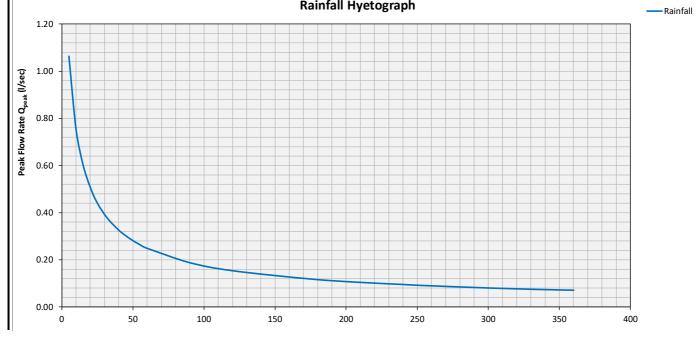
Z₂ = exp(Cr * [ln(T) - 1.5])

M100-360 = Z2 * M5-360

	8.0 - C/	ALCULATE RUN	OFF FROM IM	PERVIOUS	AREAS		
8.1 - 1 in 1 Year	Storm of Duration D	= 15 minutes		-			
Volume	tric Runoff Coefficient	Cv	0.600		CIRIA SuDS Guide - Equation 24.5		
Dimensionle	ess Routing Coefficient	C _R	1.67		CIRIA SuDS Guide - Equation 24.5		
	Rainfall Intensity	i	30.991	mm/hr	i = M1-15 converted into mm per hour		
Pre-Develop	ment Impervious Area	A _{pre,impervious}	0.0000	hectares	User Input - Defined Previously		
Post-Develop	ment Impervious Area	A _{post,impervious}	0.0070	hectares	User Input - Defined Previously		
Peak Flow Rate Pre-	Development (Runoff)	Q _{pre}	0.00	l/s	$Q_{pre} = 2.78 * C_v * C_R * i * A_{pre,impervious}$		
Peak Flow Rate Post-	Development (Runoff)	Q _{post}	0.60		$Q_{post} = 2.78 * C_v * C_R * i * A_{post,impervious}$		
	Storm of Duration D						
Volume	tric Runoff Coefficient	C _v	0.600		CIRIA SuDS Guide - Equation 24.5		
Dimensionle	ess Routing Coefficient	C _R	1.67		CIRIA SuDS Guide - Equation 24.5		
	Rainfall Intensity	i	10.995	mm/hr	i = M30-240 converted into mm per hour		
Pre-Develop	ment Impervious Area	A _{pre,impervious}	0.0000	hectares	User Input - Defined Previously		
Post-Develop	ment Impervious Area	A _{post,impervious}	0.0070	hectares	User Input - Defined Previously		
Peak Flow Rate Pre-	Development (Runoff)	Q _{pre}	0.00	l/s	$Q_{pre} = 2.78 * C_v * C_R * i * A_{pre,impervious}$		
Peak Flow Rate Post-	Development (Runoff)	Q _{post}	0.21	l/s	$Q_{post} = 2.78 * C_v * C_R * i * A_{post,impervious}$		
8.3 - 1 in 100 Year	Storm of Duration) = 360 minute	s				
Volume	Cv	0.600		CIRIA SuDS Guide - Equation 24.5			
Dimensionle	ess Routing Coefficient	C _R	1.67		CIRIA SuDS Guide - Equation 24.5		
	Rainfall Intensity	i	10.418	mm/hr	i = M100-360 converted into mm per hour		
Pre-Develop	ment Impervious Area	A _{pre,impervious}	0.0000	hectares	User Input - Defined Previously		
Post-Develop	ment Impervious Area	A _{post,impervious}	0.0070	hectares	User Input - Defined Previously		
Peak Flow Rate Pre-	Development (Runoff)	Q _{pre}	0.00	l/s	$Q_{pre} = 2.78 * C_v * C_R * i * A_{pre,impervious}$		
Peak Flow Rate Post-	Development (Runoff)	Q _{post}	0.20	l/s	$Q_{post} = 2.78 * C_v * C_R * i * A_{post,impervious}$		
		9.0 - SUMMAR	RY OF RUNOFF	VOLUME			
Percentage Increa	se for Climate Change	CC	40%	%	User Input - Defined Previously		
ő	rease for Urban Creep	UC	0%	%	User Input - Defined Previously		
		Greenfield	Pre-Developme	ent Runoff			
Return Period	Storm Duration D	Runoff Volume	Volum		Post-Development Runoff Volume		
	Minutos		m ³				
1 in 1 Voor	Minutes 15	m ³ 0.03	m ³ 0.03		m ³ 0.54		
1 in 1 Year 1 in 30 Years	240	0.03	0.03		3.08		
1 in 100 Years	360	2.26	2.26		4.38		
1 in 100 Years + Climate Change	360				6.13		
	User Input	= QBAR * D	= (QBAR + C) * D	= (QBAR + [Q _{ore} *(1+UC)]) * D		
			x	spic/	$= (QBAR + [Q_{pre}^{*}(1+CC)^{*}(1+UC)]) * D$		

Total Runoff Volumes shown above do not account for any off site discharge

Consulting		67c Camlet Way	Storage Tank Sizing				
	Client	Mr & Mrs Sallas	Made by	Date	Project No		
		Storage Tank Sizing	CC	12-10-23	23091		
			Checked		Revision		
Engineers	SuDs Sto	prage v1.0	CC		0		


		1.0 - INPUT ST	ORAGE TAN					
Position in the Ground	Description of the Individual Storage Tank	Height of the Individual Storage Tank H _{TANK}	Plan Area of the Tank A _{TANK}	Type of Storage Tank	Max Head of Water (Cumulative) H	Voids Ratio	Effective Plan Area A _{eff}	V _{TANK}
Deenest	TANK 1	m 0.800	m ² 8.000	Geocell	m 0.80	R _{voids} 95%	m ² 7.60	m ³
Deepest	TANK I	0.800	8.000	None	0.80	95%	7.60	6.080
				None				
				None				
				None				
				None None				
				None				
				None				
				None				
				None None				
				None				
				None				
		_		None				
				None None				
V				None				
				None				
Shallowest				None	Total Storage			6.080
				ead of Water Available from all t	the Individual Sto	rage Tank	s H _{TOTAL} (m)	0.800
			OT STORAGE					
0.9		Storage Volume P	Plotted vs	Head of Water				
0.8								torage olume
0.7								
<u></u> <u>0.6</u>								
H 0.5								
/at								
y 0.4 								
6.0 ead								
İ 0.2								
0.1								
0	1 2	3	4	5	6	7		
0	1 2	Storage Volume with	in the Tanl	k V _{TANK} (m³)	0	,		
0.9		Effective Tank Plan	Area Plo	tted vs Head of Water			Eff	fective
0.8							Ar	ea
0.7								
E ^{0.6}								
н _{0.5}								
of Wat								
0.6								
L 0.2								
0.1								
0	1 2	3	4	5 6	7	8		
U	± 2	Effective Plan Area of T	Tank A _{eff} (C	umulative) (m²)	1	0		

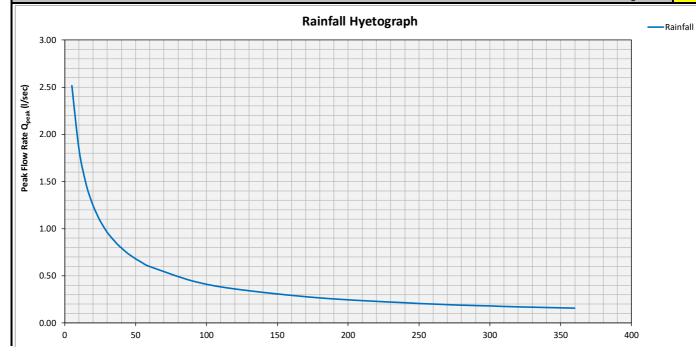
	ABIAA	a Sa Nosbitts Alex	Project	67c Camlet Way	Hydraulic Curve - 1 in 1 Year Storm			
11		London, END SAG	Client	Mr & Mrs Sallas	Made by	Date	Project No	
		++440(20)8081-6827	Description	1 in 1 Year Storm Event (Storage Tank	CC	12-10-23	23091	
	Consulting	e amilianad couk	Description	Discharge)	Checked		Revision	
	Engineers	The second second second	SuDs Storage	e v1.0	CC		0	

1.0 - INPUT I	DATA			
Return Period of Storm Event	Т	1	Years	User Input
Ratio Relating to the Type of Rainfall Expected	r 0.4			User Input - Defined Previously
Site Location	Engla	nd and Wales		User Input - Defined Previously
Rainfall Intensity for Storm with 5 Year Return Period and 60min Duration	M5-60	20	mm	User Input - Defined Previously
2.0 - AREAS USED FOR VOLUME CALCULATIONS	and allowa	HANGE		
Area of the Site used for Storage Calculations	Post-Develo	opment Imper		
	post, imperviou	70	m²	User Input - Defined Previously
Allowance for Urban Creep	UC	0%	%	
Final Area Used for Hydraulic Calculations	A _{final}	70	m ²	Afinal = Apost,impervious * (1 + Urban Creep%)
Percentage Increase on Rainfall Intensity for Climate Change	CC	0%	%	No increase for Climate Change for 1 in 1 Year Storm
Volumetric Runoff Coefficient	Cv	0.60		User Input - Defined Previously
Dimensionless Routing Coefficient	C _R	1.67		User Input - Defined Previously

3.0 - PLOT HYDRAULIC CURVE (RAINFALL ON THE SITE AND DISCHARGE FROM THE STORAGE TANK)

				WATE	R LANDING	ON THE	E SITE FROM T	HE RAINFAL	L EVENT				STC	RAGE TAN	IK OUTFLOV	V
Duration	Wallingford Factor	Rainfall Intensity		J Factors		C _r Factor	Wallingford Factor	Rainfall Intensity for 1 Year Storm	Rainfall Intensity for M1-D	Rainfall Intensity for M1-D + Climate Change	Peak Flow Rate	Run Off Volume Over Time Step	Head of Water in Storage Tank	Outflow from Storage Tank	Discharge from Storage Tank	Storage Volume
D	Z ₁	M5-D	J ₀	J ₁	J ₂	C _r	Z ₂	M1-D	i	i _{climate,change}	Q _{peak}	V _{runoff}	н	Q _{outflow}	Voutflow	V _{storage}
mins		mm	x10 ⁻⁴	x10 ⁻⁶	x10 ⁻⁹			mm	mm/hr	mm/hr	I/sec	m³	m	I/sec	m³	m³
5	0.371	7.411	1699	2800	114000	0.197	0.615	4.559	54.710	54.710	1.06	0.319	0.000	0.000	0.01	0.309
10												0.453	0.041	0.008	0.01	0.441
15	0.630	12.594	1644	5831	-134300	0.217	0.615	7.748	30.991	30.991	0.60	0.542	0.058	0.009	0.01	0.527
20	0.703	14.058	1644	5831	-134300	0.220	0.618	8.690	26.069	26.069	0.51	0.608	0.069	0.010	0.02	0.590
25	0.761	15.217	1644	5831	-134300	0.222	0.621	9.448	22.674	22.674	0.44	0.661	0.078	0.010	0.02	0.640
30	0.809	16.179	1644	5831	-134300	0.224	0.625	10.107	20.215	20.215	0.39	0.708	0.084	0.011	0.02	0.683
35	0.850	17.005	1644	5831	-134300	0.225	0.628	10.679	18.308	18.308	0.36	0.748	0.090	0.011	0.03	0.720
40	0.887	17.730	1644	5831	-134300	0.226	0.631	11.187	16.780	16.780	0.33	0.783	0.095	0.012	0.03	0.752
45	0.919	18.379	1644	5831	-134300	0.226	0.634	11.643	15.524	15.524	0.30	0.815	0.099	0.012	0.03	0.780
50	0.948	18.966	1644	5831	-134300	0.227	0.636	12.060	14.472	14.472	0.28	0.844	0.103	0.012	0.04	0.806
55	0.975	19.504	1644	5831	-134300	0.227	0.638	12.444	13.575	13.575	0.26	0.871	0.106	0.012	0.04	0.829
60	1.000	20.000	1644	5831	-134300	0.227	0.640	12.800	12.800	12.800	0.25	0.896	0.109	0.012	0.05	0.850
90	1.120	22.394	1644	5831	-134300	0.228	0.650	14.547	9.698	9.698	0.19	1.018	0.112	0.013	0.07	0.950
120	1.209	24.186	1644	5831	-134300	0.227	0.657	15.884	7.942	7.942	0.15	1.112	0.125	0.013	0.09	1.020
180	1.344	26.871	1644	5831	-134300	0.224	0.667	17.936	5.979	5.979	0.12	1.256	0.134	0.014	0.14	1.114
240	1.445	28.906	1644	5831	-134300	0.221	0.676	19.529	4.882	4.882	0.09	1.367	0.147	0.014	0.19	1.173
270	1.489	29.774	1644	5831	-134300	0.219	0.679	20.219	4.493	4.493	0.09	1.415	0.154	0.015	0.22	1.195
300	1.528	30.568	2644	-1621	3150	0.218	0.681	20.821	4.164	4.164	0.08	1.457	0.157	0.015	0.25	1.210
330	1.565	31.302	2644	-1621	3150	0.217	0.683	21.367	3.885	3.885	0.08	1.496	0.159	0.015	0.27	1.222
360	1.599	31.985	2644	-1621	3150	0.216	0.684	21.876	3.646	3.646	0.07	1.531	0.161	0.015	0.30	1.230
											Maxi	mum Volun	ne to be Stor	ed in Stora	age Tank m ³	1.230
							Rainf	all Hve	tograph							

	4.0 - FORMULAS USED	IN SECTION	3.0
	Variable		Formula
	Wallingford Factor	Z ₁	$Z_{1} = \frac{\alpha \varphi \sigma \left(\left(E(D) + J \sigma \left[1.06 \frac{MS-60}{407} \right] + \left[E \sigma \left(\frac{721}{11150} \right) + \frac{E \sigma \left(\frac{407}{123} \right)}{E \sigma \left(\frac{721}{13} \right)} \right] \right)}{M6-60}$ From Wallingford Equation 6.1. Duration D is specified in Hours
	Rainfall Intensity for Storm with 5 Year Return Period and Duration D (mm)	M5-D	M5-D = Z ₁ * M5-60 Wallingford Equation 6.1
Water Landing on the	J Factors	J ₀ , J ₁ , J ₂	From Wallingford Modifed Rational Method Table 6.1
Site from the Rainfall	C _r Factor	Cr	$C_r = J_0 + (J_1 * M5-60) + (J_2 * M5-60^2)$ Wallingford Equation 6.3
Event	Wallingford Factor - Wallingford Equation 6.2	Za	Z ₂ = interpolated from Table 6.2 T = Return period of storm (years) or 6.3 Wallingford Equation 6.2 (rearranged)
	Rainfall Intensity for 1 Year Storm of Duration D	M1-D	M1-D = M5-D * Z ₂ Wallingford Equation 6.2. In units of mm
	Rainfall Intensity for M1-D	i	i = M1-D * (60 / D) Same as M1-D but in units of mm/hr
	Rainfall Intensity for M1-D + Climate Change	İ _{climate,change}	i _{climate,change} = I * (1 + percentage increase) mm/hr
	Peak Flow Rate	Q _{peak}	Q _{peak} = i _{climate,change} * A _{site} * (1/1000) * (1/3600) * 1000 litres/second
	Runoff Volume Over Time Step	V _{runoff}	$V_{runoff} = Q_{peak} * D * (1/1000) * 60$ (D specified in minutes) m ³
	Head of Water in Storage Tank	Н	Calculated by assuming the first 5 minutes of rain is stored and then using this volume of stored water to determine a head from the sizing of the storage tank
Storage Tank Outflow	Outflow from Storage Tank	Q _{outflow}	Once the head of water in the tank is known the outflow can be worked out from the orifice equation or from the data from the Hydrobrake flow curves
	Discharge from Storage Tank	V _{outflow}	A running total of the outflor from the storage tank
	Storage Volume	V _{storage}	The difference between the outflowing water and the inflowing water from the tank

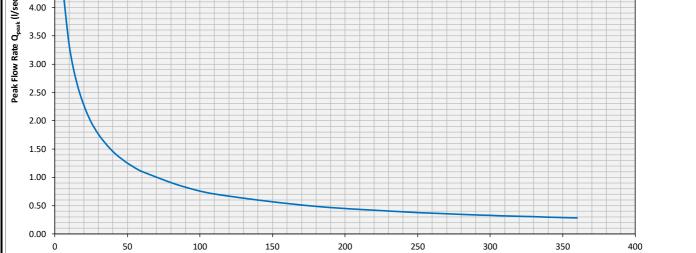

l

	ANIAA	IT SE NORDES AND	Project	67c Camlet Way	Hydraulic	c Curve - 1 in 30 Year Storm
15		Lorden, FRS 54G	Client	Mr & Mrs Sallas	Made by	Date Project No
		1 + 44(220 PDR) 6827 cronolitional to ch	Description	1 in 30 Year Storm Event (Storage Tank	CC	12-10-23 23091
	Consulting			Discharge)	Checked	Revision
	Engineers		SuDs Storage	e v1.0	CC	0

1.0 - INPUT	DATA					
Return Period of Storm Event	Т	30	Years	User Input - Valid Range 5-100 Years		
Ratio Relating to the Type of Rainfall Expected	r	0.4		User Input - Defined Previously		
Site Location	Engla	and and Wales		User Input - Defined Previously		
Rainfall Intensity for Storm with 5 Year Return Period and 60min Duration	M5-60	20	mm	User Input - Defined Previously		
2.0 - AREAS USED FOR VOLUME CALCULATIONS	AND ALLOWANCE FOR CLIMATE CHANGE					
Area of the Site used for Storage Calculations	Post-Devel	opment Imper				
	post, imperviou	70	m ²	User Input - Defined Previously		
Allowance for Urban Creep	UC	0%	%			
Final Area Used for Hydraulic Calculations	A _{final}	70	m ²	Afinal = Apost, impervious * (1 + Urban Creep%)		
Percentage Increase on Rainfall Intensity for Climate Change	CC	0%	%	No increase for Climate Change for 1 in 30 Year Storm		
Volumetric Runoff Coefficient	Cv	0.60		User Input - Defined Previously		
Dimensionless Routing Coefficient	C _R	1.67		User Input - Defined Previously		

3.0 - PLOT HYDRAULIC CURVE (RAINFALL ON THE SITE AND DISCHARGE FROM THE STORAGE TANK)

WATER LANDING ON THE SITE FROM THE RAINFALL EVENT											STC	ORAGE TAN	NK OUTFLOV	V		
Duration	Wallingford Factor	Rainfall Intensity		J Factors		C _r Factor	Wallingford Factor	Rainfall Intensity for 100 Year Storm	Rainfall Intensity for M30-D	Rainfall Intensity for M30-D + Climate Change	Peak Flow Rate	Run Off Volume Over Time Step	Head of Water in Storage Tank	Outflow from Storage Tank	Discharge from Storage Tank	Storage Volume
D	Z ₁	M5-D	Jo	J ₁	J ₂	C,	Z ₂	M30-D	i	i _{climate,change}	Q _{peak}	V _{runoff}	н	Q _{outflow}	Voutflow	V _{storage}
mins		mm	x10 ⁻⁴	x10 ⁻⁶	x10 ⁻⁹			mm	mm/hr	mm/hr	I / sec	m³	m	l/sec	m³	m³
5	0.371	7.411	1699	2800	114000	0.197	1.454	10.776	129.316	129.316	2.51	0.754	0.000	0.000	0.01	0.744
10	0.530	10.591	1644	5831	-134300	0.211	1.494	15.822	94.930	94.930	1.85	1.108	0.098	0.012	0.01	1.094
15	0.630	12.594	1644	5831	-134300	0.217	1.509	19.009	76.035	76.035	1.48	1.331	0.144	0.014	0.02	1.313
20	0.703	14.058	1644	5831	-134300	0.220	1.519	21.352	64.056	64.056	1.25	1.495	0.173	0.016	0.02	1.472
25	0.761	15.217	1644	5831	-134300	0.222	1.525	23.209	55.701	55.701	1.08	1.625	0.194	0.017	0.03	1.597
30	0.809	16.179	1644	5831	-134300	0.224	1.530	24.749	49.499	49.499	0.96	1.732	0.210	0.100	0.06	1.675
35	0.850	17.005	1644	5831	-134300	0.225	1.533	26.069	44.690	44.690	0.87	1.825	0.220	0.100	0.09	1.737
40	0.887	17.730	1644	5831	-134300	0.226	1.535	27.225	40.837	40.837	0.79	1.906	0.229	0.100	0.12	1.788
45	0.919	18.379	1644	5831	-134300	0.226	1.537	28.254	37.673	37.673	0.73	1.978	0.235	0.100	0.15	1.830
50	0.948	18.966	1644	5831	-134300	0.227	1.539	29.184	35.021	35.021	0.68	2.043	0.241	0.100	0.18	1.865
55	0.975	19.504	1644	5831	-134300	0.227	1.540	30.031	32.762	32.762	0.64	2.102	0.245	0.100	0.21	1.895
60	1.000	20.000	1644	5831	-134300	0.227	1.541	30.811	30.811	30.811	0.60	2.157	0.249	0.100	0.24	1.919
90	1.120	22.394	1644	5831	-134300	0.228	1.542	34.521	23.014	23.014	0.45	2.416	0.253	0.100	0.42	1.999
120	1.209	24.186	1644	5831	-134300	0.227	1.539	37.229	18.615	18.615	0.36	2.606	0.263	0.100	0.60	2.009
180	1.344	26.871	1644	5831	-134300	0.224	1.531	41.146	13.715	13.715	0.27	2.880	0.264	0.100	0.96	1.923
240	1.445	28.906	1644	5831	-134300	0.221	1.521	43.979	10.995	10.995	0.21	3.079	0.253	0.100	1.32	1.761
270	1.489	29.774	1644	5831	-134300	0.219	1.516	45.146	10.032	10.032	0.20	3.160	0.232	0.100	1.50	1.663
300	1.528	30.568	2644	-1621	3150	0.218	1.513	46.248	9.250	9.250	0.18	3.237	0.219	0.100	1.68	1.560
330	1.565	31.302	2644	-1621	3150	0.217	1.510	47.264	8.593	8.593	0.17	3.308	0.205	0.097	1.85	1.456
360	1.599	31.985	2644	-1621	3150	0.216	1.507	48.206	8.034	8.034	0.16	3.374	0.192	0.016	1.88	1.493
											Maxi	mum Volun	ne to be Stor	ed in Stora	age Tank m ³	2.009


	4.0 - FORMULAS USED	IN SECTION	3.0
	Variable		Formula
	Wallingford Factor	Zı	$Z_1 = \frac{axp\left(Ia(0) - Ia\left[1.06\frac{M_{0-50}^{2}}{40x}\right] + \left[Ia\left(\frac{724}{11150}\right) \times \frac{Ia\left(\frac{48x}{100}\right)}{Ia\left(\frac{724}{16}\right)}\right]\right)}{M_{0-60}}$ From Wallingford Equation 6.1. Duration D is specified in Hours
	Rainfall Intensity for Storm with 5 Year Return Period and Duration D (mm)	M5-D	M5-D = Z ₁ * M5-60 Wallingford Equation 6.1
Water Landing on the	J Factors	J ₀ , J ₁ , J ₂	From Wallingford Modifed Rational Method Table 6.1
Site from the Rainfall	C _r Factor	Cr	$C_r = J_0 + (J_1 * M5-60) + (J_2 * M5-60^2)$ Wallingford Equation 6.3
Event	Wallingford Factor - Wallingford Equation 6.2	Z ₂	$Z_2 = \exp(C_r * [ln(T) - 1.5])$ T = Return period of storm (years) Wallingford Equation 6.2 (rearranged)
	Rainfall Intensity for 30 Year Storm of Duration D	M30-D	M30-D = M5-D * Z ₂ Wallingford Equation 6.2. In units of mm
	Rainfall Intensity for M30-D	i	i = M30-D * (60 / D) Same as M30-D but in units of mm/hr
	Rainfall Intensity for M30-D + Climate Change	i _{climate,change}	i _{climate,change} = I * (1 + percentage increase) mm/hr
	Peak Flow Rate	Q _{peak}	$Q_{peak} = i_{climate,change} * A_{site} * (1/1000) * (1/3600) * 1000$ litres/second
	Runoff Volume Over Time Step	V _{runoff}	$V_{runoff} = Q_{peak} * D * (1/1000) * 60$ (D specified in minutes) m ³
	Head of Water in Storage Tank	н	Calculated by assuming the first 5 minutes of rain is stored and then using this volume of stored water to determine a head from the sizing of the storage tank
Storage Tank Outflow	Outflow from Storage Tank	Q _{outflow}	Once the head of water in the tank is known the outflow can be worked out from the orifice equation or from the data from the Hydrobrake flow curves
	Discharge from Storage Tank	Voutflow	A running total of the outflor from the storage tank
	Storage Volume	V _{storage}	the tank

	Project	67c Camlet Way	Hydraulic Curve - 1 in 100 Year Storm		
Lonion, the SHG	Client	Mr & Mrs Sallas	Made by	Date	Project No
	Description	1 in 100 Year Storm Event (Storage Tank Discharge)	CC	12-10-23	23091
Consulting www.mad.co.uk	Description	1 in 100 Year Storm Event (Storage Tank Discharge)	Checked		Revision
Engineers	SuDs Storage	e v1.0	CC		0

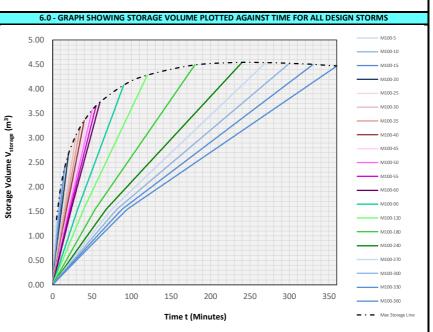
1.0 - INPU	Γ DATA			
Return Period of Storm Event	Т	100	Years	User Input - Valid Range 5-100 Years
Ratio Relating to the Type of Rainfall Expected	r	0.4		User Input - Defined Previously
Site Location	England	and Wales		User Input - Defined Previously
Rainfall Intensity for Storm with 5 Year Return Period and 60min Duration		20		User Input - Defined Previously
2.0 - AREAS USED FOR VOLUME CALCULATION	S AND ALLOWAN	ANGE		
Area of the Site used for Storage Calculations	Post-Develop	ment Impervi	ous	
	Apost, impervious	70	m ²	User Input - Defined Previously
Allowance for Urban Creep	UC	0%	%	
Final Area Used for Hydraulic Calculations	A _{final}	70	m²	Afinal = Apost, impervious * (1 + Urban Creep%)
Percentage Increase on Rainfall Intensity for Climate Change	CC	40%	%	User Input - Defined Previously (NPPF Table 2)
Volumetric Runoff Coefficient	Cv	0.60		User Input - Defined Previously
Dimensionless Routing Coefficient	C _R	1.67		User Input - Defined Previously

3.0 - PLOT HYDRAULIC CURVE (RAINFALL ON THE SITE AND DISCHARGE FROM THE STORAGE TANK)

	WATER LANDING ON THE SITE FROM THE RAINFALL EVENT STORAGE TANK													IK OUTFLOV	v	
Duration	Wallingford Factor	Rainfall Intensity		J Factors		C _r Factor	Wallingford Factor	Rainfall Intensity for 100 Year Storm	Rainfall Intensity for M100-D	Rainfall Intensity for M100-D + Climate Change	Peak Flow Rate	Run Off Volume Over Time Step	Head of Water in Storage Tank	Outflow from Storage Tank	Discharge from Storage Tank	Storage Volume
D	Z ₁	M5-D	Jo	J_1	J ₂	C _r	Z ₂	M100-D	i	i _{climate,change}	Q _{peak}	V _{runoff}	н	Q _{outflow}	V _{outflow}	V _{storage}
mins		mm	x10 ⁻⁴	x10 ⁻⁶	x10 ⁻⁹			mm	mm/hr	mm/hr	I/sec	m³	m	I / sec	m³	m³
5	0.371	7.411	1699	2800	114000	0.197	1.843	13.659	163.914	229.479	4.46	1.339	0.000	0.000	0.01	1.329
10	0.530	10.591	1644	5831	-134300	0.211	1.926	20.400	122.399	171.359	3.33	1.999	0.175	0.016	0.01	1.984
15	0.630	12.594	1644	5831	-134300	0.217	1.959	24.670	98.681	138.153	2.69	2.418	0.261	0.100	0.04	2.373
20	0.703	14.058	1644	5831	-134300	0.220	1.979	27.822	83.465	116.851	2.27	2.727	0.312	0.100	0.07	2.652
25	0.761	15.217	1644	5831	-134300	0.222	1.993	30.321	72.770	101.879	1.98	2.971	0.349	0.100	0.10	2.867
30	0.809	16.179	1644	5831	-134300	0.224	2.002	32.395	64.789	90.705	1.76	3.175	0.377	0.100	0.13	3.040
35	0.850	17.005	1644	5831	-134300	0.225	2.009	34.168	58.575	82.004	1.59	3.349	0.400	0.100	0.16	3.184
40	0.887	17.730	1644	5831	-134300	0.226	2.015	35.720	53.580	75.012	1.46	3.501	0.419	0.100	0.19	3.306
45	0.919	18.379	1644	5831	-134300	0.226	2.019	37.099	49.465	69.252	1.35	3.636	0.435	0.100	0.22	3.411
50	0.948	18.966	1644	5831	-134300	0.227	2.022	38.341	46.010	64.414	1.25	3.757	0.449	0.100	0.25	3.503
55	0.975	19.504	1644	5831	-134300	0.227	2.024	39.472	43.060	60.285	1.17	3.868	0.461	0.100	0.28	3.584
60	1.000	20.000	1644	5831	-134300	0.227	2.025	40.510	40.510	56.713	1.10	3.970	0.472	0.100	0.31	3.655
90	1.120	22.394	1644	5831	-134300	0.228	2.028	45.405	30.270	42.378	0.82	4.450	0.481	0.100	0.49	3.955
120	1.209	24.186	1644	5831	-134300	0.227	2.023	48.923	24.461	34.246	0.67	4.794	0.520	0.100	0.67	4.120
180	1.344	26.871	1644	5831	-134300	0.224	2.006	53.891	17.964	25.149	0.49	5.281	0.542	0.100	1.03	4.247
240	1.445	28.906	1644	5831	-134300	0.221	1.985	57.367	14.342	20.078	0.39	5.622	0.559	0.100	1.39	4.227
270	1.489	29.774	1644	5831	-134300	0.219	1.974	58.763	13.059	18.282	0.36	5.759	0.556	0.100	1.57	4.184
300	1.528	30.568	2644	-1621	3150	0.218	1.967	60.113	12.023	16.832	0.33	5.891	0.551	0.100	1.75	4.136
330	1.565	31.302	2644	-1621	3150	0.217	1.960	61.357	11.156	15.618	0.30	6.013	0.544	0.100	1.93	4.078
360	1.599	31.985	2644	-1621	3150	0.216	1.954	62.507	10.418	14.585	0.28	6.126	0.537	0.100	2.11	4.011
									<u> </u>		Maxi	mum Volun	ne to be Stor	ed in Stora	ge Tank m ³	4.247
_											INGA			cum store		
Rainfall Hyetograph — Rainfall												ainfall				
5.0 4.5 ()sec	60 -															

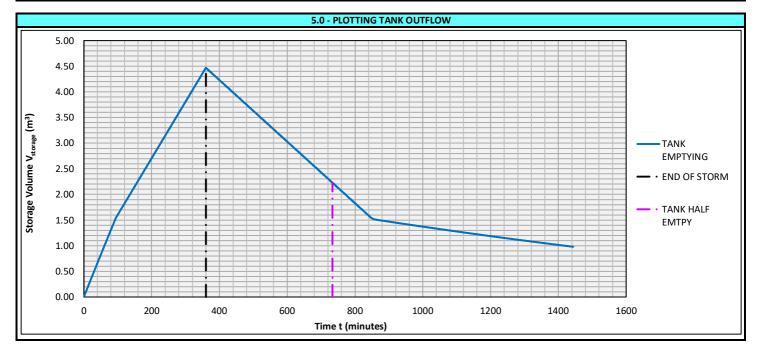
	4.0 - FORMULAS USE				
	4.0 - FORMULAS USE Variable	D IN SECTION 3.			
Variable			Formula		
	Wallingford Factor	Z1	$Z_1 = \frac{axp\left(In(0) + In\left[1.06\frac{W5-60}{49r}\right] + \left[In\left(\frac{721}{1115D}\right) + \frac{Un\left(\frac{200}{100}\right)}{Un\left(\frac{721}{10}\right)}\right]\right)}{M5-60}$ From Wallingford Equation 6.1. Duration D is specified in Hours		
	Rainfall Intensity for Storm with 5 Year Return Period and Duration D (mm)	M5-D	M5-D = Z ₁ * M5-60 Wallingford Equation 6.1		
Water Landing on the	J Factors	J ₀ , J ₁ , J ₂	From Wallingford Modifed Rational Method Table 6.1		
Site from the Rainfall	C _r Factor	Cr	$C_r = J_0 + (J_1 * M5-60) + (J_2 * M5-60^2)$ Wallingford Equation 6.3		
Event	Wallingford Factor - Wallingford Equation 6.2	Z ₂	$Z_2 = \exp(C_r * [ln(T) - 1.5]) $ $T = Return period of storm Wallingford Equation 6.2 (rearr$		
	Rainfall Intensity for 100 Year Storm of Duration D	M100-D	M100-D = M5-D * Z ₂ Wallingford Equation 6.2. In units of		
	Rainfall Intensity for M100-D	i	i = M100-D * (60 / D) Same as M100-D but in units of mm/hr		
	Rainfall Intensity for M100-D + Climate Change	i _{climate,change}	i _{climate,change} = I * (1 + percentage increase) mm/hr		
	Peak Flow Rate	Q _{peak}	Q _{peak} = i _{climate,change} * A _{site} * (1/1000) * (1/3600) * 1000 litres/second		
	Runoff Volume Over Time Step	V _{runoff}	$V_{runoff} = Q_{peak} * D * (1/1000) * 60$ (D specified in minutes) m ³		
	Head of Water in Storage Tank	Н	Calculated by assuming the first 5 minutes of rain is stored and then using this volume of stored water to determine a head from the sizing of the storage tank		
Storage Tank Outflow	Outflow from Storage Tank	Q _{outflow}	Once the head of water in the tank is known the outflow can be worked out from the orifice equation or from the data from the Hydrobrake flow curves		
	Discharge from Storage Tank	V _{outflow}	A running total of the outflor from the storage tank		
	Storage Volume	V _{storage}	The difference between the outflowing water and the inflowing water from the tank		

L


	Project	67c Camlet Way		Design	Storms
London, B	Client	Mr & Mrs Sallas	Made by	Date	Project No
	Ball 6827 Description	Design Storms	CC	12-10-23	23091
Consulting www.and			Checked		Revision
Engineers	SuDs Storage	v1.0	CC		0

1.0 - SITE INFO (WALLINGFORD INPUTS)						
Return Period T	100	Years				
Site Location	England and Wales					
r	0.40					
M5-60	20	mm				
2.0 - AREA USED FOR RUNOFF CALCULATION						
Area of Used in Calculations	Post-Development Impervious					

Chosen Area: Apost,impervious	70	m²
Include Allowance for Urban Creep		Omit
Multiplier for Urban Creep	1.00	
Final Area Lload in	70	m²
Final Area Used in Calculations	0.00007	km ²
culculations	0.00700	hectares


3.0 - CLIMATE CHANGE INCREASE							
Include Increase for Climate Change	YES						
Multiplier for Climate Change Increase	1.4 Multiplier						

4.0 - ROUTING COEFFICIENTS								
Volumetri Coeffi	c Runoff	0.60						
Dimensi Routing Co		1.67						
	5.0 - SUMMARY OF DESIGN STORM RESULTS							
	Duration	Peak Flow Rate	Max Storage Volume					
Storm Type		Q _{peak}	V _{storage}					
	minutes	I / sec	m³					
M100-5	5	4.46	1.34					
M100-10	10	3.33	1.98					
M100-15	15	2.69	2.38					
M100-20	20	2.27	2.67					
M100-25	25	1.98	2.89					
M100-30	30	1.76	3.07					
M100-35	35	1.59	3.23					
M100-40	40	1.46	3.36					
M100-45	45	1.35	3.47					
M100-50	50	1.25	3.57					
M100-55	55	1.17	3.66					
M100-60	60	1.10	3.74					
M100-90	90	0.82	4.08					
M100-120	120	0.67	4.29					
M100-180	180	0.49	4.49					
M100-240	240	0.39	4.54					
M100-270	270	0.36	4.54					
M100-300	300	0.33	4.53					
M100-330	330	0.30	4.50					
M100-360	360	0.28	4.47					
Max Storage Volume (m ³) 4.54								

ľ	ANA See Needing Aless London; UNC SEG	Project	ect 67c Camlet Way		Time for Storage Tank to Empty		
		Client	Mr & Mrs Sallas	Made by	Date	Project No	
Consulting	Description	Ctorogo Tonk Emptying Timo	CC	######	23091		
		Description	Storage Tank Emptying Time	Checked	F	Revision	
Engineers			SuDs Storage v1.0		CC		0

1.0 - INPUT DATA							
Return Period of Storm Event	Т	100	Years	User Input - Valid Range 5-100 Years			
Ratio Relating to the Type of Rainfall Expected	r	0.4		User Input - Defined Previously			
Site Location	England	d and Wale	5	User Input - Defined Previously			
Rainfall Intensity for Storm with 5 Year Return Period and 60min Duration	M5-60	20	mm	User Input - Defined Previously			
2.0 - AREAS USED FOR VOLUME CALCULATIONS AND ALLOWANCE FOR CLIMATE CHANGE							
Area of the Site used for Storage Calculations	Post-Develop	oment Imper					
	Apost, impervious	70	m²	User Input - Defined Previously			
Allowance for Urban Creep	UC	0%	%				
Final Area Used for Hydraulic Calculations	A _{final} 70 m ²		mź	Afinal = Apost,impervious * (1 + Urban Creep%)			
Include Increase in Rainfall Intensity for Climate Change?	In	Include					
Percentage Increase on Rainfall Intensity for Climate Change	CC	40%	%	User Input - Defined Previously			
Volumetric Runoff Coefficient	Cv	0.60					
Dimensionless Routing Coefficient	C _R	1.67					
3.0 - CHOSEN STORM	DURATION						
Storm Duration	D	360	minutes	6hrs			
Peak Flow Rate	Q _{peak}	0.28	l/s				
Flow Rate into the Storage Tank	Q	0.02	m ³ / min	Q = Q _{peak} * 60 * (1/1000)			
4.0 - TIME FOR TANK	ΤΟ ΕΜΡΤΥ						
Percentage of Tank Full After 24hrs (includes storm duration within 24hr period)	T _{empty}	22%	%				
Time for Tank to Empty to 50% After Storm Ends	T _{50%}	373	minutes	6.22hrs			

www.uksuas.com | storage estimation tool

Oct 12 2023 16:24

Calculated by:	Christos Christou	Site Deta	ils
Site name:	67c Camlet Way	Latitude:	51.66559° N
Site location :	67c Camlet Way	Longitude:	0.17953° W
normal	n of the storage volume requirement ia in line with Environment Agency gu		
management	SC030219 (2013), the SuDS Manual C75	Reference:	1845460825

the non-statutory standards for SuDS (Defra, 2015). It is not to be used for detailed design of drainage systems. It is recommended that hydraulic modelling software is used to

calculate

volume requirements and design details before finalising the design of the drainage scheme.

Site characteristics

Methodology

	-					
Total site area (ha):		0.1	esti	IH124		
Significant public open space	ce (ha):	0	Q _{BAR} estimation method:	Calculate from SPR and SA		
Area positively drained (ha)	:	0.1	SPR estimation method:	Calculate from SOIL type		
Impermeable area (ha): 0.1 Soil						
Percentage of drained area (%):	that is impermeable	100	characteristics	Default 4	Edited	
Impervious area drained via	infiltration (ha):	0	SOIL type:	0.47	0.47	
Return period for infiltratior (year):	n system design	10	SPR:	0.41	0.41	
			Hydrological			
Impervious area drained to (ha):	rainwater harvesting	0	characteristics	Default	Edited	
Return period for rainwater (year):	harvesting system	10	Rainfall 100 yrs 6 hrs:		63	
Compliance factor for rainwater harvesting system (%): Net site area for storage volume design (ha):		66	Rainfall 100 yrs 12 hrs:		94.71	
		0.1	FEH / FSR conversion facto	n. 1.23	1.23	
Net impermable area for sto		0.1	SAAR (mm):	682	682	
(ha):		30	M5-60 Rainfall Depth (mm)	20	20	
Pervious area contribution			'r' Ratio M5-60/M5-2 day:	0.4	0.4	
* where rainwater harvestin managing surface water rur	-		Hydological region:	6	6	
impermeable area is less th	an 50% of the 'area po	ositively	Growth curve factor 1 year	0.85	0.85	
drained', the 'net site area' a	and the estimates of (Q _{BAR} and othe	-	·		
flow rates will have been rea	duced accordingly.		Growth curve factor 10 yea	a r. 1.62	1.62	
			Growth curve factor 30 yea	ar. 2.3	2.3	
Design criteria	1		Growth curve factor 100	3.19	3.19	
Climate change allowance factor.	1.4		years:			
). Lo		

Q_{BAR} for total site area (l/s):

0.47

0.47

Date:

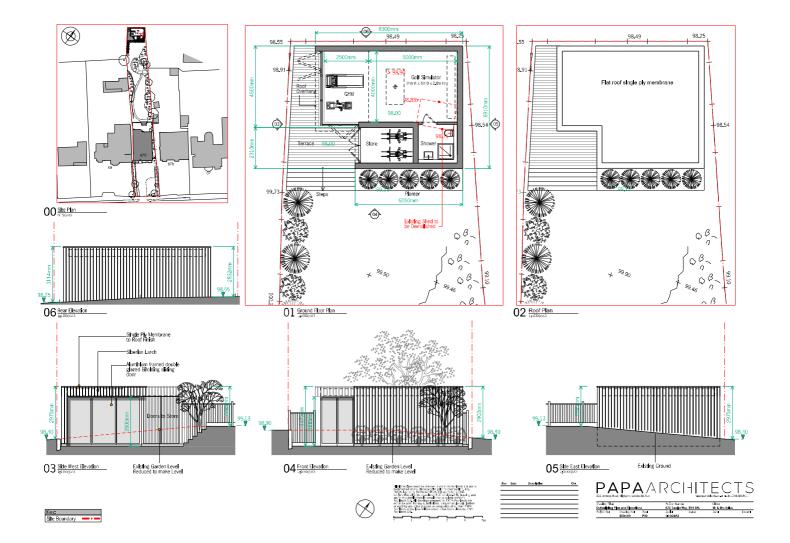
Urban creep allowance factor:	1.1	Q _{BAR} for net site area (I/s):	0.47	0.47
Volume control approach	Use long term storage			
Interception rainfall depth (mm):	5			
Minimum flow rate (l/s):	2			
'				

Chris Christou CEng MietructE Director

Richard Russell CEng MistructE Director

AMA Consulting Engineers Ltd 6A Nesbitts Alley Barnet

EN5 5XG t: +44(0)20 8361 5827 w: www.amacl.co.uk AMA Consulting Engineers is a trading name of C and R Design LTD. Registered in England No. 5600583


Pg.7

 \oplus

01 Existing Block Plan

Strakter und de sondere und en der fange de sondere und en de s

Key: Site Boundary ----

Appendix I – Groundwater Flood Risk Assessment

Chris Christou CEng MietructE Director

Richard Russell CEng MistructE Director

AMA Consulting Engineers Ltd 6A Nesbitts Alley

Barnet FN5 5XG t: +44(0)20 8361 5827 w: www.amacl.co.uk AMA Consulting Engineers is a trading name of C and H Design LTD. Registered in England No. 5600583