

Great Budbridge Manor Merstone Newport Isle of Wight PO30 3DH

Friday 1st September 2023

FAO: Mr Piers Verey

Re: Phase II Site Investigation at Merston Valley Nursery, Main Road Merston, PO30 3DE

A site investigation was undertaken in line with the proposals of Phase I Desk Study (reference 18-09-04 Revision 1). The aim of the investigation was to determine if the adjoining tanks have impacted on site soils. The investigation comprised of the excavation of two trial trenches along the boundary adjacent to the subject tanks.

The fieldwork was undertaken on the 7th August 2023, the site investigation layout and detailed trial pit section sheets; along with chemical test certificate is attached. The trial trench on the northern boundary of the boiler house was split two sections (TT102A and TT102B to avoid services in that area).

General Sequence

TT101 was undertaken within the glass house on the eastern boundary of the tanks. The sequence encountered was brown/orange/red SAND to termination depth of 0.80mbgl.

TT102A was undertaken on the northern boundary of-the boiler house. The strata encountered were grassed brown sandy TOPSOIL with occasional brick and timber (MADE GROUND) to 0.20mbgl. This was underlain with brown/orange/red SAND to 0.80mbgl.

TT102B was grassed brown TOPSOIL to 0.02mbgl over CONCRETE to 0.25mbgl. Brown silty gravelly SAND (gravel was chalk) was then encountered to termination depth of 0.80mbgl.

TT102 was slightly shorter in length than proposed to avoid damaging services. TT102 is described above as A and B as the western half of the trial pit was surfaced with thin layer of grassed topsoil over concrete. The eastern half of the trench did not contain concrete.

Chemical Laboratory Testing

Representative samples recovered during the site investigation were dispatched daily under their 'Chain of Custody' protocols to the Environmental Laboratory Limited (a UKAS and MCERTS accredited laboratory.

OM

ISO 14001

Head Office: Ropewalks 301 Tea Factory St Peters Square Fleet Street Liverpool, L1 4DQ Tel: 0151 521 2539 Fax: 0151 909 3661

Demeter Environmental Ltd Registered in England and Wales: 7010088 VAT Registration Number: 158 1690 89

Brighton Office: Gemini House 136-140 Old Shoreham Road Brighton East Sussex BN3 7BD Tel: 01273 741 629

Six subsamples of soil were analysed for Hydrocarbons (TPHCWG), VOC's, SVOC's.

Assessment of Potential Polution Linkages

The chemical test certificate is attached, all TPHCWG fractions were below the limit of detection.

All results from the VOC suite were below the limit if detection and no TIC compounds were detected.

Whilst all results from the SVOC were below the limit of detection a number of TIC compounds were identified at concentrations above the limit of detection, namely:

Sample Location		TT101A	TT101B	TT101C	TT102A	TT102B	TT102C
Sample Depth (m)		0.50	0.40	0.55	0.40	0.40	0.50
2-Propanol, 1,1'-oxybis-	mg/kg	1.35	0.37	-	0.48	-	1.25
1-Propanol, 2-(2-hydroxypropoxy)-	mg/kg	1.92	-	-	0.99	1.06	2.38
Caprolactam	mg/kg	2.93	0.77	-0.62	1.71	1.23	3.12
Acetyl valeryl	mg/kg	-	-	0.09	-	-	-
Pentane, 2-isocyano-2,4,4-trimethyl-	mg/kg	-	-	-	0.35	-	-
Triacetin	mg/kg	-	-	-	-	-	0.13

A literature review of the six chemicals did not identify any connection with them and toxicological data was limited to caprolactam where the Oral TDI of 500ug/kg bw/day was given on the IRIS database.

No fate and transport data could be sourced for caprolactam and based on the relatively high TDI the concentrations the samples are unlikely to represent a risk to human health.

Based on the above the tanks have not impacted site soils and the site is suitable for use, however it is advised that as part of the development once Plot 6 is cleared that additional samples of the exposed soils are taken to ensure that the SVOC's are limited to the western boundary of Plot 6.

If you have any queries, please do not hesitate to contact the undersigned.

Yours sincerely,

Paul Hadjikyriacou MPhil MPhys MRes(Contaminated Land Management) MInstP

Head Office: Ropewalks 301 Tea Factory St Peters Square Fleet Street Liverpool, L1 4DQ Tel: 0151 521 2539 Fax: 0151 909 3661 Demeter Environmental Ltd Registered in England and Wales: 7010088 VAT Registration Number: 158 1690 89

OM

ISO 14001

REGISTERED FIRM

Brighton Office: Gemini House 136-140 Old Shoreham Road Brighton East Sussex BN3 7BD Tel: 01273 741 629

DE DEMETER Environmental LTD

Demeter Environmental Ltd Liverpool Office: Hanover House Hanover Street Liverpool L1 3DZ

Tel: 0151 521 2539 Fax: 0151 909 3661

Brighton Office: Gemini House 136-140 Old Shoreham Road Brighton,East Sussex BN3 7BD Tel: 01273 741 727

Email: enquiries@demeterenvironmental.co.uk

Drawing: 2

Site Name: Former Merstone Valley Nurseries

Aerial Plate

Scale: 1:2,500 at A4

Demeter Environmental Ltd Liverpool Office: Hanover House

Hanover House Hanover Street Liverpool L1 3DZ

Tel: 0151 521 2539 Fax: 0151 909 3661

Brighton Office: Gemini House 136-140 Old Shoreham Road Brighton, East Sussex BN3 7BD Tel: 01273 741 727

Email: enquiries@demeterenvironmental.co.uk

Drawing 3

Merstone Valley Nursery

Scale: 1:500 at A3

Site Investigation layout - August 2023

© ACORUS Rural Property Services Ltd. NDTES

1. If in doubt ask

DATE DRAWN BY CHECKED BY

DRAWING NO. 200-01 LG

REVISION

D

WWW.COrus. © ACORUS Rural Property Services Ltd.

www.acorus.co.uk

AS SHOWN @A1 April '18 NM

SCALE

JOB NO.

LG/BURY/VEREY

- 2. Written dimensions to be used only
- 3. This drawing is confidential and remains the exclusive property of ACORUS.
- 4. Do not copy unless authorised.
- OS Licence No. 100039456

				PIT LOG	TRIAL PIT NO. Sheet 1 of 1	TT10	1
CLIENT Mr Piers V	erey		SITE	ormer Merestone	Valley Nurseries	3	
DATE OF FIELDWORK SCAL 07/08/23-07/08/23 1:2	E L 5	EVEL/POSITION See locat	ion plan		LOGGED BY	JOB NO. 23-0	7-06
PIT DIMENSIONS A/C : 5.00 B/D : 1.00		DEPTH	FACE A	FACE B	FACE C	FACE	E D
ORIENTATION		_					
A D C Orientation FACE AND POSITION LOGGED All	В						
SAMPLE AND TEST RECORD DEPTH TYPE RESULT	DEPTH	D	ESCRIPTION OF S	STRATUM (thickn	ess)	STRATUM NO.	WATER DEPTH
0.40 JAR 0.50 JAR 0.55 JAR 	0.80	Brown/orange	e/red SAND H TERMINATED METHOD AND R	EMARKS			
DEPTH STRUCK ELAPSED TIME WATER LEVEL REMARKS ON GROUP NS TRIAL TRECH DRY	JNDWATER	Tracked excar	vator	All d	imensions are in metres u	nless otherwi	se stated

			TRIAL I	TRIAL PIT NO. Sheet 1 of 1	TT102	2A	
CLIENT Mr Pi	iers Verey		SITE	ormer Merestone	Valley Nurseries	5	
DATE OF FIELDWORK 07/08/23-07/08/23	SCALE 1:25	LEVEL/POSITION See locat	ion plan		LOGGED BY	JOB NO. 23-07	7-06
PIT DIMENSIONS A/C : 2.00 B/D : 1.00	0	DEPTH	FACE A	FACE B	FACE C	FACE	E D
ORIENTATION	ORIENTATION						
A D C Orientation	В						
	D DEPTH	H D	ESCRIPTION OF S	STRATUM (thickn	ess)	STRATUM	WATER
		Grassed brow	m sandy TOPSOI	L with occasion	al timber and	NO.	DEPTH
	0.20	Brown/orange	(red SAND				
0.40 JAR		Drown, orange			_		
	0.80	TRIAL TRENCH	I TERMINATED				
					_		
					_		
GROUNDWATER INFORMATION		EXCAVATION	METHOD AND R	EMARKS			
DEPTH STRUCK TIME WATER REMARKS OF NS TRIAL TREE	ON GROUNDWATER	Tracked excav	rator				

			TRIAL	PIT LOG	TRIAL PIT NO. Sheet 1 of 1	TT102	2B
CLIENT Mr Piers Ver	rey		SITE	ormer Merestone	Valley Nurseries	3	
DATE OF FIELDWORK SCALE 07/08/23-07/08/23 1:25	LE	EVEL/POSITION See locat	tion plan		LOGGED BY	JOB NO. 23-0	7-06
PIT DIMENSIONS A/C : 3.00 B/D : 1.00	DIMENSIONS A/C: 3.00 B/D: 1.00 DEPTH				FACE C	FAC	ΞD
ORIENTATION		0.02 					
A D C Orientation	B	0.25					
SAMPLE AND TEST RECORD						STRATUM	WATER
DEPTH TYPE RESULT	DEPTH		ESCRIPTION OF	STRATUM (thickn	ess)	NO.	DEPTH
	0.02	<u>Grassed bro</u> CONCRETE (0	wn sandy TOPSOI .23)	L (MADE GROUND)	. (0.02)		
0.40 JAR _0.50 JAR	0.80	Brown/orang TRIAL TRENC	e/red silty gra H TERMINATED	velly SAND. Grav	vels are chalk. 		
GROUNDWATER INFORMATION DEPTH STRUCK ELAPSED TIME WATER LEVEL REMARKS ON GROUN NS TRIAL TRECH DRY	NDWATER	EXCAVATION Tracked exca	METHOD AND R	EMARKS All d	imensions are in metres u	nless otherwi	ise stated

Unit A2 Windmill Road Ponswood Industrial Estate St Leonards on Sea East Sussex TN38 9BY Telephone: (01424) 718618

> cs@elab-uk.co.uk info@elab-uk.co.uk

THE ENVIRONMENTAL LABORATORY LTD

Analytical Report Number:	23-49499
Issue:	1
Date of Issue:	17/08/2023
Contact:	Paul Hadjikyriacou
Customer Details:	Demeter Environmental Limited 301 Tea Factory St Peters Square Liverpool L1 4DQ
Quotation No:	Q22-03523
Order No:	23-07-06-01
Customer Reference:	23-07-06
Date Received:	10/08/2023
Date Approved:	17/08/2023
Details:	Former Merstone Vallev Nurseries
Approved by:	June
Graham Knight, Lab Manage	r

Any comments, opinions or interpretations expressed herein are outside the scope of UKAS accreditation (Accreditation Number 2683)

This report may only be reproduced in full

Sample Summary

Elab No.	Client's Ref.	Date Sampled	Date Scheduled	Description	Deviations
334266	TT101A 1 0.50	07/08/2023	10/08/2023	Silty loam	
334267	TT101B 2 0.40	07/08/2023	10/08/2023	Silty loam	
334268	TT101C 3 0.55	07/08/2023	10/08/2023	Silty loam	
334269	TT102A 4 0.40	07/08/2023	10/08/2023	Sandy silty loam	
334270	TT102B 5 0.40	07/08/2023	10/08/2023	Sandy silty loam	
334271	TT102C 6 0.50	07/08/2023	10/08/2023	Sandy silty loam	

		ELAB	Reference	334266	334267	334268	334269	334270	334271
	Cu	stomer	Reference	1	2	3	4	5	6
		:	Sample ID						
		Sa	mple Type	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL
	Sample Location							TT102B	TT102C
		Sample	Denth (m)	0.50	0.40	0.55	0.40	0.40	0.50
		Som	nling Doto	0.00	07/00/2022	0.00	07/00/2022	07/00/2022	0.00
		Sam	pling Date	07/08/2023	07/08/2023	07/08/2023	07/08/2023	07/08/2023	07/08/2023
Determinand	Codes	Units	LOD						
Soil sample preparation paramete	ers								
Moisture Content	N	%	0.1	12.2	12.6	12.5	12.8	13.2	13.3
Material removed	N	%	0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Description of Inert material removed	N		0	None	None	None	None	None	None
Miscellaneous									
Soil Organic Matter	U	%	0.1	0.7	0.7	0.8	0.7	0.7	0.8
BTEX									
Benzene	М	ug/kg	10	< 10.0	< 10.0	< 10.0	< 10.0	< 10.0	< 10.0
Toluene	М	ug/kg	10	< 10.0	< 10.0	< 10.0	< 10.0	< 10.0	< 10.0
Ethylbenzene	М	ug/kg	10	< 10.0	< 10.0	< 10.0	< 10.0	< 10.0	< 10.0
Xylenes	М	ug/kg	10	< 10.0	< 10.0	< 10.0	< 10.0	< 10.0	< 10.0
MTBE	U	ug/kg	10	< 10.0	< 10.0	< 10.0	< 10.0	< 10.0	< 10.0
TPH CWG									
>C5-C6 Aliphatic (HS_1D_MS)	N	mg/kg	0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
>C6-C8 Aliphatic (HS_1D_MS)	N	mg/kg	0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
>C8-C10 Aliphatic (EH_CU_1D_AL)	N	mg/kg	1	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
>C10-C12 Aliphatic (EH_CU_1D_AL)	N	mg/kg	1	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
>C12-C16 Aliphatic (EH_CU_1D_AL)	N	mg/kg	1	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
>C16-C21 Aliphatic (EH_CU_1D_AL)	N	mg/kg	1	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
>C21-C35 Aliphatic (EH_CU_1D_AL)	N	mg/kg	1	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
>C35-C40 Aliphatic (EH_CU_1D_AL)	N	mg/kg	1	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Total (>C5-C40) Aliphatic (HS_1D_MS+EH_CU_1D_AL)	N	mg/kg	1	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
>C5-C7 Aromatic (HS_1D_MS)	N	mg/kg	0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
>C7-C8 Aromatic (HS_1D_MS)	N	mg/kg	0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
>C8-C10 Aromatic (EH_CU_1D_AR)	N	mg/kg	1	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
>C10-C12 Aromatic (EH_CU_1D_AR)	N	mg/kg	1	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
>C12-C16 Aromatic (EH_CU_1D_AR)	N	mg/kg	1	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
>C16-C21 Aromatic (EH_CU_1D_AR)	N	mg/kg	1	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
>C21-C35 Aromatic (EH_CU_1D_AR)	N	mg/kg	1	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
>C35-C40 Aromatic (EH_CU_1D_AR)	N	mg/kg	1	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Total (>C5-C40) Aromatic (HS_1D_MS+EH_CU_1D_AR)	N	mg/kg	1	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Total (>C5-C40) Ali/Aro (HS_1D_MS+EH_CU_1D_Total)	N	mg/kg	1	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0

	ELAB Reference			334266	334267	334268	334269	334270	334271
	Cu	stomer I	Reference	1	2	3	4	5	6
		5	Sample ID						
		Sar	mple Tvpe	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL
		Sample	e Location	TT101A	TT101B	TT101C	TT102A	TT102B	TT102C
	c	Sample	Denth (m)	0.50	0.40	0.55	0.40	0.40	0.50
		Som	nling Doto	0.30	0.+0	0.00	0.+0	0.+0	0.30
Determinent.	0.1	Sam		07/06/2023	07/06/2023	07/06/2023	07/06/2023	07/06/2023	07/06/2023
Determinand	Codes	Units	LOD						
VOC									
Heptane	N	ug/kg	10	< 10.0	< 10.0	< 10.0	< 10.0	< 10.0	< 10.0
Octane	N	ug/kg	10	< 10.0	< 10.0	< 10.0	< 10.0	< 10.0	< 10.0
Nonane	N	ug/kg	10	< 10.0	< 10.0	< 10.0	< 10.0	< 10.0	< 10.0
Teluene	IVI	ug/kg	10	< 10.0	< 10.0	< 10.0	< 10.0	< 10.0	< 10.0
Ethylbenzene	M	ug/kg	10	< 10.0	< 10.0	< 10.0	< 10.0	< 10.0	< 10.0
m+p-xylene	M	ug/kg	10	< 10.0	< 10.0	< 10.0	< 10.0	< 10.0	< 10.0
o-xylene	M	ug/kg	10	< 10.0	< 10.0	< 10.0	< 10.0	< 10.0	< 10.0
cis-1,2-dichloroethene	N	ug/kg	10	< 10.0	< 10.0	< 10.0	< 10.0	< 10.0	< 10.0
1,1-Dichloroethane	М	ug/kg	10	< 10.0	< 10.0	< 10.0	< 10.0	< 10.0	< 10.0
Chloroform	М	ug/kg	10	< 10.0	< 10.0	< 10.0	< 10.0	< 10.0	< 10.0
Tetrachloromethane	М	ug/kg	10	< 10.0	< 10.0	< 10.0	< 10.0	< 10.0	< 10.0
1,1,1-Trichloroethane	М	ug/kg	10	< 10.0	< 10.0	< 10.0	< 10.0	< 10.0	< 10.0
Trichloroethylene	M	ug/kg	10	< 10.0	< 10.0	< 10.0	< 10.0	< 10.0	< 10.0
Tetrachloroethylene	M	ug/kg	10	< 10.0	< 10.0	< 10.0	< 10.0	< 10.0	< 10.0
1,1,1,2-Tetrachloroethane	M	ug/kg	10	< 10.0	< 10.0	< 10.0	< 10.0	< 10.0	< 10.0
1-1-2-2-Tetrachloroethane	M	ug/kg	10	< 10.0	< 10.0	< 10.0	< 10.0	< 10.0	< 10.0
Chlorobenzene	M	ug/kg	10	< 10.0	< 10.0	< 10.0	< 10.0	< 10.0	< 10.0
Bromobenzene	IVI M	ug/kg	10	< 10.0	< 10.0	< 10.0	< 10.0	< 10.0	< 10.0
Mothydothydbonzono	IVI	ug/kg	10	< 10.0	< 10.0	< 10.0	< 10.0	< 10.0	< 10.0
1 1-Dichloro-1-propene	M	ug/kg	10	< 10.0	< 10.0	< 10.0	< 10.0	< 10.0	< 10.0
Trans - 1-2 -dichloroethylene	N	ug/kg	10	< 10.0	< 10.0	< 10.0	< 10.0	< 10.0	< 10.0
2.2-Dichloropropane	N	ua/ka	10	< 10.0	< 10.0	< 10.0	< 10.0	< 10.0	< 10.0
Bromochloromethane	N	ug/kg	10	< 10.0	< 10.0	< 10.0	< 10.0	< 10.0	< 10.0
1,2-Dichloroethane	М	ug/kg	10	< 10.0	< 10.0	< 10.0	< 10.0	< 10.0	< 10.0
Dibromomethane	М	ug/kg	10	< 10.0	< 10.0	< 10.0	< 10.0	< 10.0	< 10.0
1,2-Dichloropropane	М	ug/kg	10	< 10.0	< 10.0	< 10.0	< 10.0	< 10.0	< 10.0
cis-1,3-Dichloro-1-propene	М	ug/kg	10	< 10.0	< 10.0	< 10.0	< 10.0	< 10.0	< 10.0
trans-1,3-Dichloro-1-propene	M	ug/kg	10	< 10.0	< 10.0	< 10.0	< 10.0	< 10.0	< 10.0
1,1,2-Trichloroethane	N	ug/kg	10	< 10.0	< 10.0	< 10.0	< 10.0	< 10.0	< 10.0
Dibromochloromethane	N	ug/kg	10	< 10.0	< 10.0	< 10.0	< 10.0	< 10.0	< 10.0
1,3-Dichloropropane	N	ug/kg	10	< 10.0	< 10.0	< 10.0	< 10.0	< 10.0	< 10.0
1,2-dibromoethane	N	ug/kg	10	< 10.0	< 10.0	< 10.0	< 10.0	< 10.0	< 10.0
Styrene	N N	ug/kg	10	< 10.0	< 10.0	< 10.0	< 10.0	< 10.0	< 10.0
2 Chlorotoluono	N	ug/kg	10	< 10.0	< 10.0	< 10.0	< 10.0	< 10.0	< 10.0
1 2 4-Trimethylbenzene	N	ug/kg	10	< 10.0	< 10.0	< 10.0	< 10.0	< 10.0	< 10.0
4-Chlorotoluene	N	ua/ka	10	< 10.0	< 10.0	< 10.0	< 10.0	< 10.0	< 10.0
t-butylbenzene	N	ug/ka	10	< 10.0	< 10.0	< 10.0	< 10.0	< 10.0	< 10.0
1,3,5-Trimethylbenzene	N	ug/kg	10	< 10.0	< 10.0	< 10.0	< 10.0	< 10.0	< 10.0
1-methylpropylbenzene	N	ug/kg	10	< 10.0	< 10.0	< 10.0	< 10.0	< 10.0	< 10.0
p-cymene	N	ug/kg	10	< 10.0	< 10.0	< 10.0	< 10.0	< 10.0	< 10.0
1,3-Dichlorobenzene	N	ug/kg	10	< 10.0	< 10.0	< 10.0	< 10.0	< 10.0	< 10.0
Butylbenzene	N	ug/kg	10	< 10.0	< 10.0	< 10.0	< 10.0	< 10.0	< 10.0
1,2-Dibromo-3-chloropropane	N	ug/kg	10	< 10.0	< 10.0	< 10.0	< 10.0	< 10.0	< 10.0
Hexachlorobutadiene	N	ug/kg	10	< 10.0	< 10.0	< 10.0	< 10.0	< 10.0	< 10.0
1-2-3 - Trichlorobenzene	N	ug/kg	10	< 10.0	< 10.0	< 10.0	< 10.0	< 10.0	< 10.0
Naphthalene	N	ug/kg	10	< 10.0	< 10.0	< 10.0	< 10.0	< 10.0	< 10.0
	N	ug/kg	10	< 10.0	< 10.0	< 10.0	< 10.0	< 10.0	< 10.0
1,4-DICRIOFODENZENE	N N	ug/Kg	10	< 10.0	< 10.0	< 10.0	< 10.0	< 10.0	< 10.0
Riomoform	N N	ug/Kg	10	< 10.0	< 10.0	< 10.0	< 10.0	< 10.0	< 10.0
		uy/ny	10	< 10.0	< 10.0	< 10.0	< 10.0	< 10.0	< 10.0
Various	N	ug/kg	10	None Detected					
TIC									

•	Reference	334266	334267	334268	334269	334270	334271		
	Cu	stomer	Reference	1	2	3	4	5	6
	0.		Sample ID						
		Sa		801	8011	8011	8011	8011	8011
		Sa	inple Type				SUIL	JUIL	
	Sample Location				11101B	111010	TT102A	TT102B	111020
	:	Sample	Depth (m)	0.50	0.40	0.55	0.40	0.40	0.50
		Sam	pling Date	07/08/2023	07/08/2023	07/08/2023	07/08/2023	07/08/2023	07/08/2023
Determinand	Codes	Units	LOD						
SVOC									
Phenol	N	mg/kg	0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Aniline	N	mg/kg	0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Bis(2-chloroethyl)ether	N	mg/kg	0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
2-Chlorophenol	N	mg/kg	0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
1,3-Dichlorobenzene	N	mg/kg	0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
1,4-Dichlorobenzene	N	mg/kg	0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Benzyl Alcohol	N	mg/kg	0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
1,2-Dichlorobenzene	N	mg/kg	0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
2-Methylphenol	N	mg/kg	0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Bis(2-chloroisopropyl)ether	N	mg/kg	0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
3 and 4-methylphenol	N	mg/kg	0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
N-Nitrosodi-n-propylamine	N	mg/kg	0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Hexachloroethane	N	mg/kg	0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Nitrobenzene	N	mg/kg	0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Isophorone	N	mg/kg	0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
2-Nitrophenol	N	mg/kg	0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
2,4-Dimethylphenol	N	mg/kg	0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Bis(2-chloroethoxy)methane	N	mg/kg	0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
2,4-Dichlorophenol	N	mg/kg	0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
1,3,5-Trichlorobenzene	N	mg/kg	0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Naphthalene	N	mg/kg	0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
3-Chloroaniline	N	mg/kg	0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Hexachloro-1,3-butadiene	N	mg/kg	0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
4-Chloro-3-methylphenol	N	mg/kg	0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
2-Methylnaphthalene	N	mg/kg	0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
1-Methylnaphthalene	N	mg/kg	0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Hexachlorocyclopentadiene	N	mg/kg	0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
2,4,6-1 richlorophenol	N	mg/kg	0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
2,4,5-1 richlorophenol	N	mg/kg	0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
1-Chioronaphthaiene	IN N	mg/kg	0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
	N N	mg/kg	0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Dimethyl phthelate	IN N	mg/kg	0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Dimethyl phinalate	IN N	mg/kg	0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
	IN NI	mg/kg	0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
	IN NI	mg/kg	0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
	IN N	mg/kg	0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
3-Nitroaniline	N	mg/kg	0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
	N	mg/kg	0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
	N	mg/kg	0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Dibenzofuran	N	ma/ka	0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
2.3.5.6-Tetrachlorophenol	N	ma/ka	0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
2.3.4.6-Tetrachlorophenol	N	ma/ka	0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Diethyl phthalate	N	ma/ka	0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
1-chloro-4-phenoxybenzene	N	ma/ka	0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Fluorene	N	ma/ka	0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
4-Nitroaniline	N	ma/ka	0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Dinitro-o-cresol	N	ma/ka	0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
L	1								. • •

•	ELAB Reference						334269	334270	334271
	Cu	stomer	Reference	1	2	3	4	5	6
			Sample ID						
		Sa	mole Type	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL
		Sampl		TT101A	TT101B	TT101C	TT102A	TT102B	TT102C
		Sampi	Depth (m)	0.50	0.40	0.55	0.40	0.40	0.50
		Sample		0.00	0.40	0.00	0.40	0.40	0.00
		Sam	pling Date	07/08/2023	07/08/2023	07/08/2023	07/08/2023	07/08/2023	07/08/2023
Determinand	Codes	Units	LOD						
SVOC									
Diphenylamine	N	mg/kg	0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Azobenzene	N	mg/kg	0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
1-bromo-4-phenoxybenzene	N	mg/kg	0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Hexachlorobenzene	N	mg/kg	0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Pentachiorophenoi	N	mg/kg	0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
	N N	mg/kg	0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
	N	ma/ka	0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Dibutyl phthalate	N	ma/ka	0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Fluoranthene	N	mg/kg	0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Pyrene	N	mg/kg	0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Butyl benzyl phthalate	N	mg/kg	0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Bis-2-ethylhexyladipate	N	mg/kg	0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Diisooctyl phthalate	N	mg/kg	0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Benzo(a)anthracene	N	mg/kg	0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Chrysene	N	mg/kg	0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Bis(2-ethylhexyl)phthalate	N	mg/kg	0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Benzo(b)fluoranthene	N	mg/kg	0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Benzo(k)nuorantnene	N N	mg/kg	0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Indepo(1,2,3-cd)pyrene	N	mg/kg	0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Dibenzo(a,h)anthracene	N	ma/ka	0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Benzola.h.ilpervlene	N	ma/ka	0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
SVOCTIC		00							
Various	N	ma/ka	0.01	Y	Y	Y	Y	Y	Y
		ing/kg	0.01		· ·		· ·		
		4	0.04	4.05					
2-Propanol, 1,1'-oxybis-	N	mg/kg	0.01	1.35	-	-	-	-	-
1-Propanol, 2-(2-hydroxypropoxy)-	N	mg/kg	0.01	1.92	-	-	-	-	-
Caprolactam	N	mg/kg	0.01	2.93	-	-	-	-	-
2-Propanol, 1,1-oxybis-	N N	mg/kg	0.01	-	0.37	-	-	-	-
1-Propanoi, 2-(2-nydroxypropoxy)-	N N	mg/kg	0.01	-	0.77	-	-	-	-
Caprolactam	N N	mg/kg	0.01	-	0.78	-	-	-	-
		mg/kg	0.01	-	-	0.02	-	-	-
2 Propagal 1 1' anybig		mg/kg	0.01	-	-	0.09	- 0.48	-	-
2-Propanol, 1,1-0xybis-	IN NI	mg/kg	0.01	-	-	-	0.40	-	-
Conrelactor		mg/kg	0.01	-	-	-	0.99	-	-
Pentane 2-isocyano-244-trimethyl-		mg/kg	0.01				0.35		_
1-Propagal 2-(2-bydroxypropagy)	N	mg/kg	0.01		_		0.00	1.06	_
Caprolactam	N	ma/ka	0.01	_		_	-	1.00	_
2-Propanol 1 1'-oxybie-	N	ma/ka	0.01	-	-				1 25
1-Propanol 2-(2-hydroxypropoxy)-	N	ma/ka	0.01	_	_	_	_	-	2 38
Caprolactam	N	ma/ka	0.01	_	-	-	-	-	3.12
Triacetin	N	ma/ka	0.01	_	-	-	-	-	0.13
			0.01						0.10

Method Summary Report No.: 23-49499, issue number 1

Parameter	Codes	Analysis Undertaken	Date Method		Technique	
	Coues	On	Tested	Number	rechnique	
Soil						
VOC in solids	М	As submitted sample	14/08/2023		GC-MS	
SVOC in solids	N	As submitted sample	14/08/2023	167	GC-MS	
Low range Aliphatic hydrocarbons soil	N	As submitted sample	14/08/2023	181	GC-MS	
Low range Aromatic hydrocarbons soil	N	As submitted sample	14/08/2023	181	GC-MS	
VOC in solids	М	As submitted sample	14/08/2023	181	GC-MS	
BTEX in solids	М	As submitted sample	14/08/2023	181A	GC-MS	
Aliphatic hydrocarbons in soil	N	As submitted sample	14/08/2023	214	GC-FID	
Aliphatic/Aromatic hydrocarbons in soil	N	As submitted sample	15/08/2023	214	GC-FID	
Aromatic hydrocarbons in soil	N	As submitted sample	15/08/2023	214	GC-FID	
Soil organic matter	U	Air dried sample	17/08/2023	BS1377:P3	Titrimetry	

Tests marked N are not UKAS accredited

Report Information

Report No.: 23-49499, issue number 1

Key U hold UKAS accreditation hold MCERTS and UKAS accreditation Μ Ν do not currently hold UKAS accreditation ٨ MCERTS accreditation not applicable for sample matrix UKAS accreditation not applicable for sample matrix S Subcontracted to approved laboratory UKAS Accredited for the test SM Subcontracted to approved laboratory MCERTS/UKAS Accredited for the test NS Subcontracted to approved laboratory. UKAS accreditation is not applicable. I/S **Insufficient Sample** U/S Unsuitable sample n/t Not tested means "less than" < > means "greater than" LOD refers to limit of detection, except in the case of pH soils and pH waters where it LOD means limit of discrimination. Soil sample results are expressed on an air dried basis (dried at < 30°C), and are uncorrected for inert material removed. ELAB are unable to provide an interpretation or opinion on the content of this report. The results relate only to the sample received. PCB congener results may include any coeluting PCBs Uncertainty of measurement for the determinands tested are available upon request Unless otherwise stated, sample information has been provided by the client. This may affect the validity of the results.

Deviation Codes

- a No date of sampling supplied
- b No time of sampling supplied (Waters Only)
- c Sample not received in appropriate containers
- d Sample not received in cooled condition
- e The container has been incorrectly filled
- f Sample age exceeds stability time (sampling to receipt)
- g Sample age exceeds stability time (sampling to analysis)

Where a sample has a deviation code, the applicable test result may be invalid.

Sample Retention and Disposal

All soil samples will be retained for a period of one month All water samples will be retained for 7 days following the date of the test report Charges may apply to extended sample storage

TPH Classification - HWOL Acronym System

- HS Headspace analysis
- EH Extractable Hydrocarbons i.e. everything extracted by the solvent
- CU Clean-up e.g. by florisil, silica gel
- 1D GC Single coil gas chromatography
- Total Aliphatics & Aromatics
- AL Aliphatics only
- AR Aromatics only
- 2D GC-GC Double coil gas chromatography
- #1 EH_Total but with humics mathematically subtracted
- #2 EH_Total but with fatty acids mathematically subtracted
- _ Operator underscore to separate acronyms (exception for +)
- + Operator to indicate cumulative e.g. EH+HS_Total or EH_CU+HS_Total
- MS Mass Spectrometry