

HAVEN HOLIDAY PARKS

ALLHALLOWS

ROCHESTER

KENT, ME3 9QD

FLOOD RISK ASSESSMENT AND DRAINAGE STRATEGY

FOR

HAVEN LEISURE LTD

3rd August 2023

Report No.: 5720 FRADS

P02

Contents Amendment Record

Revision	Date	Author	Checker	Approver
P01	26/07/2023	Jack Moss	Mike Frazer	Jack Moss
P02	03/08/2023	Jack Moss	Mike Frazer	Jack Moss

Original Author:	Jack Moss MEng (Hons)) CEng MICE N	1CIWEM	
Original Checker:	Mike Frazer MEng (Hor	ns) GMICE		
Original Approver:	Jack Moss MEng (Hons)) CEng MICE N	ICIWEM	
Project Number: 5720	Current Revision:	P02	Date:	03/08/2023
Considine Limited 25 Hollingworth Court Turkey Mill, Ashford Road Maidstone Kent ME14 5PP				

Contents

1. Intro	oduction and Brief1
2. Exis	ting Site Conditions2
2.1	Location2
2.2	Site Topography5
2.3	Site Geology5
2.4	Hydrogeology and Hydrology6
3. Proj	posed Development9
4. Floc	od Risk
4.1	Criteria11
4.2	Flood Risk Zones
4.3	Tidal and Fluvial Flooding12
4.4	Flood Risk Summary12
5. Proj	bosed Surface Water Strategy13
5.1	Existing Surface Water Strategy13
5.2	Existing Run Off Rates
5.3	Managing Surface Water14
5.4	Managing Surface Water – Scheme Proposals15
5.5	Exceedance and Surface Water Conveyance17
5.6	Surface Water Strategy Summary17
6. Con	clusions19

List of Appendices

- Appendix 1 Proposed Site Plan
- Appendix 2 Environment Agency Flood Map for Planning
- Appendix 3 Surface Water Drainage Strategy
- Appendix 4 Drained Areas Analysis
- Appendix 5 CIRIA C573 Pollution Indices
- Appendix 6 Preliminary Surface Water Network Calculations
- Appendix 7 Brownfield Runoff Rates

1. Introduction and Brief

This report has been prepared for Haven Leisure Ltd to assess flood risk and to provide guidance on the method of surface water disposal for the proposed residential development at Haven Holiday Parks, Allhallows, Rochester, ME3 9QD. The proposal is to construct a link building between the existing arcade building and existing show & bar building.

Figure 1.1 – Development Proposals – full drawings within Appendix 1

This document has been produced in accordance with current best practice and recommendations and guidance set out in the National Planning Policy Framework (NPPF).

Considine has no responsibility to any other parties to whom this report may be circulated, in part or in full, and any such parties rely on the contents of this report solely at their own risk.

All copyright and other intellectual rights in and over this report and its contents shall remain vested in Considine. The client and any other person authorised by them is granted irrevocable royalty free licence to use and reproduce this report for all purposes relating to the property but Considine shall not be liable for any use of the report for any purpose other than that for which it was originally prepared.

2. Existing Site Conditions

2.1 Location

The development site is located at Haven Holiday Parks, Allhallows, Rochester, ME3 9QD. The British National Grid Reference is: E: 583818, N: 178686. The figures below show the site in the wider area, more locally and then an aerial image to show the site in its current context.

Figure 2.1 – Site location general area. Location shown by red circle. © Google Maps

Figure 2.2 – Site location more locally. Location shown by red circle. © Google Maps

The following aerial image provides additional information about the context of the site and surrounding areas.

Figure 2.3 – Aerial image of site © Google Maps. Approximate site boundary shown in red.

The site is an existing leisure park comprising holiday accommodation and various amenity provisions, including swimming facilities, eateries, and entertainment spaces. The application site is immediately surrounded by a show and bar facility to the east, arcade and swimming facilities to the west, fast food provisions to the south and various entertainment spaces to the north. All of these are served by a network of roads and hardstandings. The wider site is bounded by the River Thames to the north, the village of Allhallows to the south, marshland to the east, and agricultural fields to the west.

The existing development impermeable areas are summarised as follows:

	Area (m²)
Total Site Area:	694
Existing Roof Area:	114
Existing Impermeable Hardstandings:	514
Total Existing Impermeable Area:	628

Figure 2.4 – Drained Areas Analysis Extract (Pre-Development)

2.2 Site Topography

A review of the topographical survey indicates that the site generally falls from the west to the east. Overall, there is a fall of approximately 0.8m.

2.3 Site Geology

A review of the BGS online bedrock mapping tool has identified that the development site is likely underlain by the London Clay formation (Clay & Silt). This is sedimentary bedrock.

Figure 2.5 – BGS Extracts: Bedrock Geology © BGS

site is not known to be underlain by superficial deposits.

A review of the BGS online superficial deposits mapping tool has identified that the development

Figure 2.6 – BGS Extracts: Superficial Geology © BGS

A site investigation carried out by Ground Engineering Limited, in 2019, within the immediate area confirms that the site is underlain by the London Clay formation with areas of made ground.

2.4 Hydrogeology and Hydrology

The Environment Agency provide information about the groundwater and aquifers. Review of that information confirms that the site is not within a Ground Water Source Protection Zone. It is also not located over an Aquifer in terms of the Bedrock and it is also not located within a Groundwater Vulnerability Zone. The following EA Extracts identify the zoning for the site.

Figure 2.7 – Groundwater Source Protection Zone © Environment Agency

As defined within the figure above, the site is not within a groundwater source protection zone.

Vange			A1159	Great Wakering
And here I a			Prittlewell	
Timber Pitseaball Fleet				
Vange Creek	Benfleet Creek	Leigh on Sea Chalkwell	Clifftown	Bay North Shoebury
East Haven Creek	Winter Gardens Ha		Southend Pier (Shore)	
10 - S. 10 10 10 10	Dutch Village Canvey Island			
Manorway Heet	Canvey Village		Southend Pier (Pier Head)	
Shell Haven				
minin				
River Thames			Legend	? X
Hope Blyth Sands			Only layers selected and	visible at this map scale will be shown
Contraction of the Street			Landscape	
Cliffle Fleet He		Allballows.on.tra	Geology and Soils	
		Allhallows	Aquifer Designation Map	(Bedrock) (England)
Ryestnet Germon		verof Vanilet Creek	Principal	
	A CAR		Secondary A	
Coding	Northward Hill	Lower Stoke	Secondary B	
States Vel	High Halstow Penn Street		Secondary (undiff	erentiated)
1 the state	opprover wood Shamal Street		Unproductive	
Street	Tunbridge	Colemou	ith'Gree	
eham			n Read	Minster
am Prochaster			Shepherds Creek	Pough Road
Note Street	nden		riteet Greek Loading Hope Reach	orough
			Rushende	m Mer Road Easter
Upper Upn	a South Y			Isle of Sheoney
AL AND THE AL			Winney Creek	
Rochester	Grang La		1 Statemane	
Chath	am Gillingham	and the state of the	Ridnan	The second se

Figure 2.8 – Aquifer Designations Map (Bedrock) © Environment Agency

As noted within the figure above, the site is not above an aquifer (unproductive). This area has rock layers or drift deposits with low permeability that have negligible significance for water supply or river base flow.

Legend ? X
Only layers selected and visible at this map scale will be shown
Geology and Soils
Groundwater Vulnerability Map (England)
Local Information
Soluble Rock Risk
High
Medium - High
Medium
Low
Unproductive

Figure 2.9 – Groundwater Vulnerability Zone Map © Environment Agency

As noted within the above figure, the site is within the unproductive groundwater vulnerability zone. The medium-low groundwater vulnerability zone is within the vicinity though, and this zone is defined as offering some groundwater protection.

It is important though to understand that pollution risks are an issue for the underlying geology. As such the risk of Pollution can be assessed using the Source, Pathway, Receptor model as follows.

Source – there are two sources of potential contamination on the site. Firstly, contamination as a result of current and previous site activities and secondly from the proposed site activities. The existing site area serves as amenity space for leisure park users, presenting a low risk. Although a link building is to be constructed, the site use will remain unchanged. Therefore, the risk shall remain low.

Pathway – the pathway is the vertical movement of water through the subsoils and the bedrock. This can be by direct surface down soakage or from drainage features such as soakaways or other infiltration systems. The infiltration potential at ground level is low at the site, and therefore the opportunities for ingress of contaminants is also low.

Receptor – the receptor is the actual uses of groundwater that receives flow from the vicinity of the discharge, such as groundwater, watercourses etc. Investigations carried out for a development within the immediate vicinity of this development concluded that groundwater was observed at 3.2m below ground level. Should infiltration techniques be proposed, a suitable unsaturated zone should be applied. At the time of writing, the risk is considered medium.

Water Quality and Surface Water runoff is addressed later in this report.

3. Proposed Development

The proposal is to construct a link building between the existing arcade building and existing show & bar building. The figure below shows the Architect's current proposals.

Figure 3.1 – Development Proposals – full drawings within Appendix 1

The proposed development impermeable areas are shown in the figure below and are summarised as follows:

	Area (m²)
Total Site Area:	694
Proposed Roof Area:	487
Proposed Permeable Hardstandings:	0
Proposed Impermeable Hardstandings:	207
Total Proposed Impermeable Area:	694

Figure 3.2 – Drained Areas Analysis Extract (Post-Development)

It is evident that the proposals increase the impermeable areas by 66m².

In accordance with national guidance, an allowance for urban creep is not required for commercial spaces. Therefore, an impermeable area of 694m² needs to be considered for positive surface water design.

4. Flood Risk

This Flood Risk Assessment (FRA) is based on the guidance provided within section 10 of the NPPF and accompanying Planning Practice Guidance (PPG).

4.1 Criteria

As according to the PPG, a site typically requires a specific detailed FRA where the total site area is greater than 1ha or the site is found to be at risk of flooding.

The site is less than 1ha and, therefore, the requirement for an FRA is subject to the site being within Flood Zone 2 or Flood Zone 3.

4.2 Flood Risk Zones

The PPG defines a number of flood zones based on the probability of flooding, and provides guidance on the most appropriate form of development within each zone. The flood risk is summarised below:

Flood Zone	Definition
Zone 1 – Low	Land having a less than 1 in 1000 annual probability of river or sea
Probability	flooding.
Zone 2 – Medium	Land having between 1 in 100 and 1 in 1000 annual probability of
Probability	river flooding, or land having between 1 in 200 and 1 in 1000 annual
	probability of sea flooding.
Zone 3a – High	Land having a 1 in 100 or greater annual probability of river flooding,
Probability	or Land having a 1 in 200 or greater annual probability of sea flooding.
Zone 3b – The	This zone comprises land where water has to flow or be stored in
Functional	times of flood. Local planning authorities should identify in their
Floodplain	Strategic Flood Risk Assessment (SFRA) areas of functional floodplain
	and its boundaries accordingly, in agreement with the Environment
	Agency.

Table 4.1 – Flood Zone Definitions

The vulnerability of flooding at the site has been explored further on the following pages.

4.3 Tidal and Fluvial Flooding

A review of the Environment Agency's online mapping tool has identified that the development site is within Flood Zone 1, an area with a low probability of flooding from Rivers and Sea.

Figure 4.2 – Extract of Environment Agency's Flood Map for Planning

Flood Zone 1 comprises land assessed as having a <0.1% (1 in 1000) AEP of flooding from rivers or sea. Therefore, the risk of flooding from Fluvial or Tidal Sources is considered to be negligible.

In accordance with the NPPF and PPG an FRA is, therefore, not strictly required.

4.4 Flood Risk Summary

This site has been assessed in accordance with the guidance provided within the NPPF, accompanying Planning Practice Guidance (PPG). The site is less than 1ha and is not at risk of flooding; therefore, an FRA is not required.

5. Proposed Surface Water Strategy

5.1 Existing Surface Water Strategy

It is evident from Southern Water sewer asset records that there are no surface water sewers within the vicinity of the site. However, there is an abundance of private surface water networks that generally flow north, towards The Thames.

The existing roof area and hardstandings appear to discharge surface water into these networks, that are understood to discharge at an unrestricted rate to the nearby watercourse.

Given the soil at the site, it is unlikely that the areas of softscape drain fully to ground. It is anticipated that for severe storm events, these areas surcharge and also discharge into the positive drainage networks.

The recently constructed 'Show Bar' building and associated access road is understood to discharge to a swale located north-east of the building. Rainwater pipes attributed to the Show Bar building that shall be enclosed by this new link building shall therefore need to continue to drain as existing.

5.2 Existing Run Off Rates

The development area currently comprises the outer limits of an existing roof, hardstandings and small areas of softscape. In general, the development area is considered brownfield in nature.

The underlying geology from review of BGS data indicates that the site is likely impermeable in terms of infiltration. As the site is actually brownfield in nature, the existing runoff rates from the site development have been assessed.

The brownfield site has been assessed using the modified rational method to understand the predevelopment and post-development discharge rates and volumes. The following tables highlight the findings of this assessment, and the calculations can be found within the appendices.

	Pre-Development	Post-Development	Post-Development Runoff		
	Runoff Rates	Runoff Rates	Rates (+45% CC)		
1 in 2 year (l/s)	6.002	6.633	9.618		
1 in 30 years (l/s)	14.094	15.576	22.585		
1 in 100 years (l/s)	18.181	20.048	29.069		

Table 5.1 - Summary of Brownfield Runoff Rates.

The previous table defines the pre-development and post-development runoff rates, based on the average intensity for a 15min storm for the respective events and assuming no restriction within the proposed drainage network. It is evident that there shall be a small net increase from the proposed development.

Table 6.2 Summan	of Prownfield	Runoff Valumos
Table 0.5 - Summar	/ OF BLOWITTEIU	Runon volumes.

	Pre-Development Runoff Volumes	Post-Development Runoff Volumes	Post-Development Runoff Volumes (Whole Site +45% CC
1 in 100 years (m ³)	45.31	50.07	72.61

The previous table defines the pre-development and post-development runoff volume, based on the average intensity for a 360min storm for the respective event and assuming no restriction within the proposed drainage network. It is evident that there shall be a small increase in offsite discharge as a result of the development.

Based on the above, any offsite discharge from the proposed impermeable developed area should be restricted to 50% of the brownfield runoff rate in accordance with national policy. As the positively drained areas are increased, this should be 50% of the pre-development runoff rate. Therefore, any offsite discharge should be restricted to 3l/s. Therefore, it is proposed that the offsite discharge is restricted to 3l/s for the 1:100-year event plus an allowance for climate change.

Methods for managing surface water are discussed in the following sections.

5.3 Managing Surface Water

The management of surface water has been assessed in accordance with the guidance set out in CIRIA report C753 'The SuDS Manual 2015'.

To mimic the natural catchment processes as closely as possible, a "management train" is required. This concept is fundamental to successful management of surface water and employs drainage techniques in series to incrementally reduce pollution, flow rates and volumes.

The hierarchy of techniques and processes that should be considered in developing the management train are as follows:

- **Prevention.** The use of good site design and housekeeping measures to prevent run off transporting pollutants to the drainage system.
- Source Control. Control of run off at or very near to its source. This includes disposal methods that comprise green roofs, permeable pavements, rainwater harvesting or other permeable surfaces.
- **Site Control.** Management of surface water locally within a development site. This includes disposal techniques that comprise infiltration structures and detention basins.
- **Regional Control.** Management of run off from a site, or series of sites, typically in a balancing pond or wetland. However, for this development regional controls do not apply.

5.4 Managing Surface Water – Scheme Proposals

Wherever possible, surface water should be managed in small cost effective landscaped features located within small sub catchments rather than being conveyed to and managed in large systems at the bottom of the drained area. The techniques that are higher in the hierarchy are preferred to those further down so that prevention and control of water at source should always be considered before site or regional controls. However, where upstream opportunities are restricted, a number of lower hierarchy options should be used in series and water should only be conveyed elsewhere if it cannot be dealt with on site.

5.4.1 Prevention & Water Quality

There are a number of factors that contribute to pollution incidents and water quality issues such as sediments, oil, fertilisers, pesticides, animal waste and litter, but improvements can be made by managing surface water and stormwater particularly during extreme weather events.

Sustainable drainage systems mimic natural drainage and help to improve water quality by reducing sediment and contaminants from runoff leading to a number of benefits such as aesthetic, health, and opportunities for wildlife and biodiversity.

It is proposed that this minor network is connected to the recently constructed network as defined within planning reference MC/19/1820. This network comprises a swale structure that enhances water quality and reduces downstream pollution. The network shall also benefit from the use of catchpits which shall further assist with pollution prevention.

CIRIA C753 Pollution Indices calculations has been produced and can be found in Appendix 5. It is evident that using the aforementioned features shall not increase the risk of polluting downstream waters.

5.4.2 Source Control

As already noted, source control features include permeable pavements and other infiltration structures which are explored further as follows.

Permeable Pavements (Type A & B)

It is unlikely that infiltration is viable at the site, and therefore Type A & B permeable pavements have been discounted from this development.

Green Roofs

Given the nature of the roof structure and required plant, the benefits of green roofs are outweighed by the structural requirements on this development. Therefore, green roofs have been discounted from this development.

Rainwater Harvesting

Rainwater harvesting has not been considered for this development

5.4.3 Site Control

As previously mentioned, site control includes disposal techniques that comprise infiltration structures and detention basins. The opportunities of utilising these have been explored below.

Soakaways

The site is unlikely suitable for concentrated infiltration techniques such as soakaways due to the anticipated strata. Therefore, soakaways have been discounted at this stage.

Attenuation Tanks

As infiltration is unlikely viable, it is proposed that an attenuation tank is utilised to assist with a restricted offsite discharge of surface water.

Ponds

The site use does not naturally lend itself to the use of ponds. Therefore, ponds have been discounted from this development.

Detention Basins

The site use does not naturally lend itself to the use of detention basins. Therefore, detention basins have been discounted from this development.

Permeable Pavements (Type C)

There are limited adjustments to pavements. Therefore any replacement paved areas are to be impermeable to match surrounding pavements and reduce the risk of maintenance issues.

Swales

The application site use does not naturally lend itself to the use of swales. Therefore, swales have been discounted from this development. However, the surface water drainage shall connect to the wider network that benefits from a swale structure prior to discharging to The Thames.

5.4.4 Strategy Proposals & Preliminary Sizing Estimations

An element of site control must include provision for Climate Change.

National policy for climate change allowance changed in 2022, requiring developments to consider the 1:30 year event plus climate change allowance and the 1:100 year event plus climate change allowance, in addition to all events previously considered. The climate change allowance varies between areas and a site specific assessment of the required climate change allowance is required by referring to the Department for Environment, Food and Rural Affairs (DEFRA) online tool. Designs should consider the upper end climate change allowance for the relevant epoch.

A summary of the allowances for this particular site can be found within the following table.

6				
Peak Rainfall Climate Change Allowances				
Epoch	2050s	2070s		
1:30 year event (3.3% AEP)	35%	35%		
1:100 year event (1% AEP)	45%	40%		

Table 6.4 – Climate Change Allov	vances
----------------------------------	--------

Based on the previous table, the following events and respective climate change allowance should be considered for the development: 1:30 year event plus 35% climate change allowance, and the 1:100 year event plus 45% climate change allowance.

As previously calculated, the brownfield runoff from all of the post-development areas is anticipated to be 6l/s for the 1:2 year event. Based on the above, any offsite discharge from the proposed impermeable developed area should be restricted to 50% of the brownfield runoff rate in accordance with national policy. As the positively drained areas are increased, this should be 50% of the pre-development runoff rate. Therefore, any offsite discharge should be restricted to 31/s. Therefore, it is proposed that the offsite discharge is restricted to 31/s for the 1:100-year event plus an allowance for climate change. This shall be an improvement on the anticipated pre-development scenario as the site had a similar drained area with no restricted discharge.

It is proposed that the drainage from the new building connects to the existing surface water network. Due to site constraints and associated drainage levels, it is anticipated that a package pumping station shall be required which shall act as the flow control. A geocellular attenuation tank shall provide storage sufficient for the 1:100 year event plus 45% climate change allowance.

The individual elements have been explored further below:

Geocellular Attenuation Tank

As previously mentioned, the offsite discharge is to be restricted to 3l/s for the 1:100 year event, plus a 45% climate change allowance. As can be seen by the appended MicroDrainage calculations, a geocellular attenuation tank with effective dimensions of 8m x 3m x 1.2m deep can fully accommodate the 1:100 year event with a 45% climate change allowance. The attenuation tank requires a minimum of 95% voids.

5.5 Exceedance and Surface Water Conveyance

Exceedance routes shall be provided by appropriate external levels design during the detailed design stage. The exceedance routes shall need to accommodate system failure and events greater than the 1:100 year event inclusive of a 45% climate change allowance.

5.6 Surface Water Strategy Summary

It is evident from Southern Water sewer asset records that there are no surface water sewers within the vicinity of the site. However, there is an abundance of private surface water networks that generally flow north, towards The Thames.

The existing roof area and hardstandings appear to discharge surface water into these networks, that are understood to discharge at an unrestricted rate to the nearby watercourse.

Given the soil at the site, it is unlikely that the areas of softscape drain fully to ground. It is anticipated that for severe storm events, these areas surcharge and also discharge into the positive drainage networks.

The recently constructed 'Show Bar' building and associated access road is understood to discharge to a swale located north-east of the building. Rainwater pipes attributed to the 'Show Bar' building that shall be enclosed by this new link building shall therefore need to continue to drain as existing.

The proposal is to utilise a new geocellular attenuation tank and connect to the existing private network that benefits from a swale. Accordingly, all storm events up to and including the critical 100-year event with a 45% allowance for climate change will be assessed when considering the volume for the attenuation structure.

The attenuation structure will be sized to accommodate a 1 in 100 year storm event with a 45% allowance for future climate change. This is in accordance with the latest national policy.

It is anticipated that a condition will be imposed on a planning permission requiring further details of the surface water drainage system to be submitted for approval.

It is evident from the aforementioned that a suitable surface water network can be provided that accords with National and Local Planning Policy Guidance.

6. Conclusions

This document has been produced in accordance with current best practice and recommendations and guidance set out in the National Planning Policy Framework (NPPF).

The report concludes:

- The site is an existing leisure park comprising holiday accommodation and various amenity provisions, including swimming facilities, eateries, and entertainment spaces. The application site is immediately surrounded by a show and bar facility to the east, arcade and swimming facilities to the west, fast food provisions to the south and various entertainment spaces to the north. All of these are served by a network of roads and hardstandings. The wider site is bounded by the River Thames to the north, the village of Allhallows to the south, marshland to the east, and agricultural fields to the west.
- A review of the BGS online bedrock mapping tool has identified that the development site is likely underlain by the London Clay formation (Clay & Silt).
- A review of the BGS online superficial deposits mapping tool has identified that the development site is not known to be underlain by superficial deposits.
- A review of the Environment Agency's online mapping tool has identified that the development site is within Flood Zone 1, an area with a low probability of flooding from Rivers and Sea.
- The proposal is to construct a link building between the existing arcade building and existing show & bar building.
- It is proposed that the drainage from the new building connects to the existing surface water network. Due to site constraints and associated drainage levels, it is anticipated that a package pumping station shall be required which shall act as the flow control. A geocellular attenuation tank shall provide storage sufficient for the 1:100 year event plus 45% climate change allowance.
- It is evident that the site can be drained satisfactorily in accordance with Local and National Planning Policy Guidance. The details of the drainage systems should be the subject of suitably worded Planning Conditions which would require the schemes to be submitted to the local authority for approval prior to construction work commencing.

Appendix 1 – Proposed Site Plan

 / 11.07.2023 GENERAL UPDATE
A 26.07.2023 GENERAL UPDATE INC. POSITION OF ROOFLIGHTS
B 27.07.2023 UPDATED ANNOTATIONS NB NB

PLANNING

Client:	Haven Leisure Ltd.
Project:	Haven Holiday Parks Allhallows Rochester
Drawing:	Proposed Site General Arrangement Plan

Purpose: Planning Dwg. No: J9571-08

Date: 10/07/2023 Scale: 1:500 @ A3 Drawn: NB Revision: B

Appendix 2 – Environment Agency Flood Map for Planning

Flood map for planning

Your reference <Unspecified>

Location (easting/northing) 583819/178691

Created **25 Jul 2023 8:45**

Your selected location is in flood zone 1, an area with a low probability of flooding.

You will need to do a flood risk assessment if your site is any of the following:

- bigger that 1 hectare (ha)
- In an area with critical drainage problems as notified by the Environment Agency
- identified as being at increased flood risk in future by the local authority's strategic flood risk assessment
- at risk from other sources of flooding (such as surface water or reservoirs) and its development would increase the vulnerability of its use (such as constructing an office on an undeveloped site or converting a shop to a dwelling)

Notes

The flood map for planning shows river and sea flooding data only. It doesn't include other sources of flooding. It is for use in development planning and flood risk assessments.

This information relates to the selected location and is not specific to any property within it. The map is updated regularly and is correct at the time of printing.

Flood risk data is covered by the Open Government Licence **which** sets out the terms and conditions for using government data. https://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/

Use of the address and mapping data is subject to Ordnance Survey public viewing terms under Crown copyright and database rights 2022 OS 100024198. https://flood-map-for-planning.service.gov.uk/os-terms

© Environment Agency copyright and / or database rights 2022. All rights reserved. © Crown Copyright and database right 2022. Ordnance Survey licence number 100024198.

Appendix 3 – Surface Water Drainage Strategy

DRAINAGE STRATEGY LAYOUT	

considine ref 5720	drawn by JEM	^{date} JUL 23	drawing scales 1:200@A1	original paper size A1
drawing referen project 5720	ice : originator - CON	volume J – 00	- XX - DR	- C - 1810
status : SO	status c SUI	lescription : TABLE	FOR INFORI	MATION

Appendix 4 – Drained Areas Analysis

Appendix 5 – CIRIA C573 Pollution Indices

CIRIA C753 POLLUTION INDICES

Project No:	5720	Sheet No.	1
Made By:	JEM	Revision:	P01
Date:	26/072023	Project:	HAVE

P01

pject: HAVEN HOLIDAY PARKS, ALLHALLOWS

Land Use	Pollution Hazard Level	Total Suspended Suspended Solids (TSS)	Metals	Hydrocarbons	Applicable
Residential Roofs	Very Low	0.20	0.20	0.05	
Other Roofs (typically commercial/industrial roofs)	Low	0.30	0.20	0.05	x
Individual property driveways, residential car parks, low traffic roads, (eg cul de sacs, homezones and general access roads) and non-residential car parking with infrequent change (eg schools, offices) ie < 300 traffic movements/day	Low	0.50	0.40	0.40	
Commercial yard and delivery areas, non-residential car parking with frequent change (eg hospitals, retail), all roads except low traffic roads and trunk roads/motorways	Medium	0.70	0.60	0.70	
Sites with heavy pollution (eg haulage yards, lorry parks, highly frequented lorry approaches to industrial estates, waste sites), sites where chemicals and fuels (other than domestic fuel oil) are to be delivered, handled, stored used or manufactured; industrial sites; trunk roads and motorways.	High	0.80	0.80	0.90	

Up to 0.8 where there is potential for metals to leach from the roof

These should only be used if considered appropriate as part of a detailed risk assessment. Refer to CIRIA C753

	Total Suspended Suspended Solids (TSS)	Metals	Hydrocarbons
Total Polution Hazard Indices	0.30	0.20	0.05

CIRIA C753 POLLUTION INDICES

Project No:	5720	Sheet No.	2
Made By:	JEM	Revision:	P01
Date:	26/072023	Project:	HAVEN HO

26/072023 Project: HAVEN HOLIDAY PARKS, ALLHALLOWS

Type of SuDS Component	Total Suspended Suspended Solids (TSS)	Metals	Hydrocarbons	Applicable
Filter Strip	0.40	0.40	0.50	
Filter Drain	0.40	0.40	0.40	
Swale	0.50	0.60	0.60	X
Bioretention System	0.80	0.80	0.80	
Permeable Pavement	0.70	0.60	0.70	
Detention Basin	0.50	0.50	0.60	
Pond	0.70	0.70	0.50	
Wetland	0.80	0.80	0.80	
Downstream Defender [®] Vortex	0.30	0.20	0.20	
Downstream Defender® Vortex Plus	0.50	0.40	0.50	
Downstream Defender® Advanced Vortex	0.50	0.40	0.50	
Klargester AquaTreat®	0.80	0.60	0.90	
Standard Catchpit	0.10	0.00	0.00	Х

Select Primary Mitigation: Swale

	Total Suspended Suspended Solids (TSS)	Metals	Hydrocarbons
Total Mitigation Indices	0.55	0.60	0.60
Total Polution Hazard Indices	0.30	0.20	0.05
Indices Balance	-0.25	-0.4	-0.55

ACCEPTABLE

ACCEPTABLE

ACCEPTABLE

Appendix 6 – Preliminary Surface Water Network Calculations

Considine Limited		Page 1
25 Hollingworth Court	5720	
Kent	ALLHALLOWS	
ME14 5PP	ATT1-P01	Micro
Date 25/07/2023 18:07	Designed by JEM	
File 5720-ATT1-P01.SRCX	Checked by MJF	Diamage
Innovyze	Source Control 2020.1	

Summary of Results for 2 year Return Period

Half Drain Time : 8 minutes.

	Stori Even	m t	Max Level (m)	Max Depth (m)	Max Infiltration (1/s)	Max Control (1/s)	Max Σ Outflow (1/s)	Max Volume (m³)	Status
15	min :	Summer	98.097	0.097	0.0	3.5	3.5	2.5	ΟK
30	min :	Summer	98.095	0.095	0.0	3.5	3.5	2.4	ΟK
60	min :	Summer	98.074	0.074	0.0	3.5	3.5	1.9	ΟK
120	min :	Summer	98.060	0.060	0.0	3.5	3.5	1.5	ΟK
180	min :	Summer	98.033	0.033	0.0	3.5	3.5	0.8	ΟK
240	min :	Summer	98.010	0.010	0.0	3.5	3.5	0.2	ΟK
360	min :	Summer	98.002	0.002	0.0	3.5	3.5	0.1	ΟK
480	min :	Summer	98.001	0.001	0.0	2.6	2.6	0.1	ΟK
600	min :	Summer	98.001	0.001	0.0	3.5	3.5	0.1	ΟK
720	min :	Summer	98.001	0.001	0.0	2.6	2.6	0.1	ΟK
960	min :	Summer	98.000	0.000	0.0	1.4	1.4	0.1	ΟK
1440	min :	Summer	98.000	0.000	0.0	1.0	1.0	0.1	ΟK
2160	min :	Summer	98.000	0.000	0.0	0.7	0.7	0.0	ΟK
2880	min :	Summer	98.000	0.000	0.0	0.6	0.6	0.0	ΟK
4320	min :	Summer	98.000	0.000	0.0	0.4	0.4	0.0	ΟK
5760	min :	Summer	98.000	0.000	0.0	0.3	0.3	0.0	ΟK
7200	min :	Summer	98.000	0.000	0.0	0.3	0.3	0.0	ОК
8640	min :	Summer	98.000	0.000	0.0	0.3	0.3	0.0	ΟK

	Stori Even	m t	Rain (mm/hr)	Flooded Volume (m³)	Discharge Volume (m³)	Time-Peak (mins)	
15	min :	Summer	35.291	0.0	5.4	16	
30	min :	Summer	22.454	0.0	7.0	25	
60	min :	Summer	13.850	0.0	8.4	40	
120	min :	Summer	9.669	0.0	11.8	72	
180	min :	Summer	7.516	0.0	13.7	102	
240	min :	Summer	6.181	0.0	15.1	130	
360	min :	Summer	4.586	0.0	16.6	186	
480	min :	Summer	3.659	0.0	17.4	262	
600	min :	Summer	3.056	0.0	18.5	310	
720	min :	Summer	2.631	0.0	18.9	414	
960	min :	Summer	2.071	0.0	19.4	538	
1440	min :	Summer	1.478	0.0	21.6	716	
2160	min :	Summer	1.063	0.0	23.5	0	
2880	min :	Summer	0.849	0.0	25.1	0	
4320	min :	Summer	0.631	0.0	27.9	0	
5760	min :	Summer	0.519	0.0	30.7	0	
7200	min :	Summer	0.452	0.0	33.4	0	
8640	min S	Summer	0.407	0.0	36.0	0	
		C	1982-20	20 Inno	ovyze		

Considine Limited		Page 2
25 Hollingworth Court	5720	
Kent	ALLHALLOWS	
ME14 5PP	ATT1-P01	Micro
Date 25/07/2023 18:07	Designed by JEM	
File 5720-ATT1-P01.SRCX	Checked by MJF	Diamage
Innovyze	Source Control 2020.1	•

10080 m 15 m 30 m 60 m 120 m 180 m 240 m 360 m 480 m 600 m	nin Summer nin Winter nin Winter nin Winter nin Winter nin Winter nin Winter	(m) 98.000 98.116 98.111 98.076 98.039 98.003	(m) 0.000 0.116 0.111 0.076 0.039 0.003	(1/s) 0.0 0.0 0.0 0.0 0.0 0.0	(1/s) 0.3 3.5 3.5 3.5 3.5 3.5	(1/s) 0.3 3.5 3.5 3.5 3.5	(m ³) 0.0 3.0 2.9 2.0 1.0	
10080 m 15 m 30 m 60 m 120 m 180 m 240 m 360 m 480 m 600 m	nin Summer nin Winter nin Winter nin Winter nin Winter nin Winter nin Winter	98.000 98.116 98.111 98.076 98.039 98.003	0.000 0.116 0.111 0.076 0.039 0.003	0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.3 3.5 3.5 3.5 3.5	0.3 3.5 3.5 3.5 3.5	0.0 3.0 2.9 2.0 1.0	0 H 0 H 0 H 0 H
15 m 30 m 60 m 120 m 180 m 240 m 360 m 480 m	nin Winter nin Winter nin Winter nin Winter nin Winter nin Winter	98.116 98.111 98.076 98.039 98.003	0.116 0.111 0.076 0.039 0.003	0.0 0.0 0.0 0.0 0.0	3.5 3.5 3.5 3.5	3.5 3.5 3.5 3.5	3.0 2.9 2.0 1.0	0 H 0 H 0 H
30 m 60 m 120 m 180 m 240 m 360 m 480 m 600 m	nin Winter nin Winter nin Winter nin Winter nin Winter	98.111 98.076 98.039 98.003	0.111 0.076 0.039 0.003	0.0 0.0 0.0 0.0	3.5 3.5 3.5	3.5 3.5 3.5	2.9 2.0 1.0	0 H 0 H
60 m 120 m 180 m 240 m 360 m 480 m 600 m	nin Winter nin Winter nin Winter nin Winter	98.076 98.039 98.003	0.076 0.039 0.003	0.0 0.0 0.0	3.5 3.5	3.5 3.5	2.0 1.0	O F
120 m 180 m 240 m 360 m 480 m 600 m	nin Winter nin Winter nin Winter	98.039 98.003	0.039 0.003	0.0	3.5	3.5	1.0	OF
180 m 240 m 360 m 480 m 600 m	nin Winter nin Winter	98.003	0.003	0.0	2 5			0 1
240 m 360 m 480 m 600 m	nin Winter	00 003			5.5	3.5	0.1	O F
360 m 480 m 600 m		90.005	0.003	0.0	3.5	3.5	0.1	O F
480 m 600 m	min Winter	98.002	0.002	0.0	3.5	3.5	0.1	O F
600 m	nin Winter	98.001	0.001	0.0	2.6	2.6	0.1	O F
	min Winter	98.001	0.001	0.0	2.6	2.6	0.1	O F
720 m	nin Winter	98.001	0.001	0.0	2.6	2.6	0.1	O F
960 m	nin Winter	98.000	0.000	0.0	1.0	1.0	0.1	O F
1440 m	min Winter	98.000	0.000	0.0	0.7	0.7	0.0	O F
2160 m	nin Winter	98.000	0.000	0.0	0.5	0.5	0.0	O F
2880 m	nin Winter	98.000	0.000	0.0	0.4	0.4	0.0	O F
4320 m	nin Winter	98.000	0.000	0.0	0.3	0.3	0.0	O F
5760 m	nin Winter	98.000	0.000	0.0	0.3	0.3	0.0	O F
7200 m	nin Winter	98.000	0.000	0.0	0.2	0.2	0.0	O F

	Storm		Flooded	Discharge	Time-Peak	
	Event	(mm/hr)	Volume	Volume	(mins)	
			(m³)	(m³)		
10090	min Summor	0 375	0 0	39 7	0	
10080	min Winter	35 201	0.0	50.7	17	
30	min Winter	22 454	0.0		26	
50	min Winter	13 950	0.0	9.1	20	
120	min Winter	13.030	0.0	12 2	76	
120	min Winter	9.009	0.0	15.2	70	
180	min winter	7.510	0.0	15.4	98	
240	min winter	6.181	0.0	10.8	124	
360	min Winter	4.586	0.0	18.5	204	
480	min Winter	3.659	0.0	19.5	308	
600	min Winter	3.056	0.0	19.7	364	
720	min Winter	2.631	0.0	20.7	348	
960	min Winter	2.071	0.0	22.4	478	
1440	min Winter	1.478	0.0	24.4	0	
2160	min Winter	1.063	0.0	26.4	0	
2880	min Winter	0.849	0.0	28.1	0	
4320	min Winter	0.631	0.0	31.3	0	
5760	min Winter	0.519	0.0	34.3	0	
7200	min Winter	0.452	0.0	37.4	0	
8640	min Winter	0.407	0.0	40.4	0	
	©1	982-20	20 Inno	vyze		

25 Hollingworth Court ALLHALLOWS Kent ALLHALLOWS MR14 5PF ATTI-PO1 Date 25/07/2023 18:07 Designed by JEM File 5720-ATTI-PO1.SRCX Checked by MJP Source Control 2020.1 <u>Summary of Results for 2 year Return Period</u> Storm Max Max Max Max Max Max Status Event Level Depth Infiltration Control 2 Outflew Volume (m) (m) (1/s) (1/s) (1/s) (m') 10080 min Winter 98.000 0.000 0.0 0.2 0.2 0.0 0K <u>Storm Rain Flooded Discharge Time-Peak</u> Event (mm/hr) Volume Volume (mine) (m') 10080 min Winter 0.375 0.0 43.4 0	Considine Limited		Page 3
<pre>Kent ALLBALLOWS ME14 5PP ATTI-PO1</pre>	25 Hollingworth Court	5720	
ME14 5PP ATTI-P01 Date 25/07/2023 18:07 Designed by JEM Tinovyze Source Control 2020.1 Summary of Results for 2 year Return Period Storm Max Max Max Max Max Max Status Event Level Depth Infiltration Control 5 Outflow Volume (m) (m) (1/s) (1/s) (1/s) (m') 10080 min Winter 98.000 0.000 0.0 0.2 0.2 0.0 0 K Storm Rain Flooded Discharge Time-Feak Event (mm/hr) Volume Volume (mins) (m') (m') 10080 min Winter 0.375 0.0 43.4 0	Kent	ALLHALLOWS	
bate 25/07/2023 18:07 File 5720-ATTI-POLSRCX Decked by MJF Innovyze Source Control 2020.1 Summary of Results for 2 year Return Period Storm Max Max Max Max Max Max Status Event Level Depth Infiltration Control 2 Outflow Volume (m) (m) (1/s) (1/s) (1/s) (m²) 10080 min Winter 98.000 0.000 0.0 0.2 0.2 0.0 0 K Storm Rain Flooded Discharge Time-Peak Event (mm/hr) Volume Volume (mins) (m²) (m²) 10080 min Winter 0.375 0.0 43.4 0	ME14 5PP	ATT1-P01	Micco
File 5720-ATTI-P01.SRCX Checked by MJF Define Source Control 2020.1 Source Control 2020.1 Summary of Results for 2 year Return Period Storm Max Max	Date 25/07/2023 18:07	Designed by JEM	
Innovyze Source Control 2020.1 Summary of Results for 2 year Return Period Storm Max Max Max Max Max Max Status Event Level Depth Infiltration Control E Outflow Volume (m) (m) (1/s) (1/s) (n ³) 10080 min Winter 98.000 0.00 0.0 0.2 0.2 0.0 0 K Storm Rain Flooded Discharge Time-Peak Event (mm/hr) Volume Volume (mins) (m ³) (m ³) 10080 min Winter 0.375 0.0 43.4 0	File 5720-ATT1-P01.SRCX	Checked by MJF	Dialitada
Summary of Results for 2 year Return Period Storm Max Etaus Event Level Depth Infiltration Control D Outflow Volume (m) (1/s) (1/s) (1/s) (m) 10080 min Winter 98.000 0.000 0.0 0.2 0.2 0.0 0 X Storm Rain Flooded Discharge Time-Peak Event (mm/hr) Volume Volume (mins) (m ³) (m ³) 0 0 43.4 0	Innovyze	Source Control 2020.1	
Summary of Results for 2 year Return Period Storn Max Max Max Max Max Max Max Max Status Ryant Level Pepth Infiltration Control 2 (Urbley Volume (n') 0.0 0.2 0.2 0.0 0.5 10000 min Winter 98.000 0.000 0.0 0.0 0.2 0.2 0.0 0.5 Storn Rain Flooded Discharge Time-Peak Control Call Call Call 10000 min Winter 0.375 0.0 43.4 0			
Storm Max Max Max Max Max Max Max Status INDED (m) (m) (1/s) (1/s) (1/s) (m) 10080 min Winter 98.000 0.000 0.0 0.0 0.2 0.2 0.0 0.0 Storm Rain Flooded Discharge Time-Peak (min) (m) (m) (m) (m) 10080 min Winter 98.000 0.000 0.0 0.0 0.2 0.2 0.0 0 Storm Rain Flooded Discharge Time-Peak (min) (m) (m) (m) (m) (m) 0.0 43.4 0 0	Summary of Resu	<u>llts for 2 year Return Period</u>	
Storm Max 10000			
Event Level Dept Infiltration Control 2 Outflow Volume (m) (n) (1/s) (1/s) (m ²) 10080 min Winter 98.000 0.000 0.0 0.2 0.2 0.0 0 K Storm Rain Flooded Discharge Time-Peak Event (mm/hr) Volume Volume (mins) (m ²) (m ²) 10080 min Winter 0.375 0.0 43.4 0	Storm Max Max	Max Max Max Max St	atus
(a) (b) (c) (c) (c) (c) 10080 min Winter 98.000 0.000 0.0 0.2 0.2 0.0 0 K Storm Rain Flooded Discharge Time-Peak Event (mm/hr) Volume Volume (mins) (m ³) 10080 min Winter 0.375 0.0 43.4 0	Event Level Deptr	1 Infiltration Control Σ Outflow Volume $(1/s)$ $(1/s)$ $(1/s)$ (m^3)	
10080 min Winter 98.000 0.000 0.0 0.2 0.2 0.0 ок Storm Rain Flooded Discharge Time-Peak Event (mm/hr) Volume Volume (mins) (m ³) (m ³) 10080 min Winter 0.375 0.0 43.4 0		(1/5) (1/5) (1/5) (1/	
StormRainFlooded Discharge Time-Peak (mins) (m³)Image: Storm(mm/hr)VolumeVolume(m³)(m³)(m³)10080 min Winter0.3750.043.40	10080 min Winter 98.000 0.000	0.0 0.2 0.2 0.0	ОК
StormRainFlooded Discharge Time-Peak VolumeEvent(mm/hr)Volume(mins) (m²)(m²)(m²)(m²)10080 min Winter0.3750.043.40			
Storm EventRain (mm/hr)Flooded Discharge Time-Peak Volume (m³)(m³)(m³)10080 min Winter0.3750.043.40			
Event (mm/hr) Volume Volume (mins) (m³) (m³) 10080 min Winter 0.375 0.0 43.4 0	Storm	Rain Flooded Discharge Time-Deak	
(m³) (m³) 10080 min Winter 0.375 0.0 43.4 0	Event	(mm/hr) Volume Volume (mins)	
10080 min Winter 0.375 0.0 43.4 0		(m ³) (m ³)	
10080 min Winter 0.375 0.0 43.4 0			
	10080 min Winter	0.375 0.0 43.4 0	
©1982-2020 Innovyze	©19	982-2020 Innovyze	

Considine Limited		Page 4
25 Hollingworth Court	5720	
Kent	ALLHALLOWS	
ME14 5PP	ATT1-P01	Micco
Date 25/07/2023 18:07	Designed by JEM	
File 5720-ATT1-P01.SRCX	Checked by MJF	Diamaye
Innovyze	Source Control 2020.1	
Ra	infall Details	
Rainfall Mode Return Period (year	el s)	FEH 2
FEH Rainfall Versio	on	2013
Site Location	on GB 583814 178717 TQ 83814	78717
Data Ty	ре	Point
Summer Storn	ms	Yes
Winter Stor	ms r)	res 0 750
Cv (Vinte	r)	0.840
Shortest Storm (min	s)	15
Longest Storm (min	s)	10080
Climate Change	0	+0
Tri-	no Aros Disgram	
	ne Alea Diagian	
Tot	al Area (ha) 0.082	
Time (mins)	Area Time (mins) Area	
FIOM: 10:		
0 4	4 0.041 4 8 0.041	
©198	82-2020 Innovyze	

Considine Limited		Page 5
25 Hollingworth Court	5720	
Kent	ALLHALLOWS	
ME14 5PP	ATT1-P01	Micro
Date 25/07/2023 18:07	Designed by JEM	
File 5720-ATT1-P01.SRCX	Checked by MJF	Diamage
Innovyze	Source Control 2020.1	

Model Details

Storage is Online Cover Level (m) 100.000

Infiltration Trench Structure

Infiltration Coefficient Base (m/hr)0.00000Trench Width (m)3.0Infiltration Coefficient Side (m/hr)0.00000Trench Length (m)9.0Safety Factor2.0Slope (1:X)0.0Porosity0.95Cap Volume Depth (m)1.200Invert Level (m)98.000Cap Infiltration Depth (m)1.200

Pump Outflow Control

Invert Level (m) 98.000

Depth (m) Flow (1/s)

0.001 3.5000

©1982-2020 Innovyze

Considine Limited		Page 1
25 Hollingworth Court	5720	
Kent	ALLHALLOWS	
ME14 5PP	ATT1-P01	Micro
Date 25/07/2023 18:08	Designed by JEM	
File 5720-ATT1-P01.SRCX	Checked by MJF	Diamage
Innovyze	Source Control 2020.1	

Summary of Results for 30 year Return Period

Storm Max Max Max Max Max Max Status Event Level Depth Infiltration Control Σ Outflow Volume (m) (l/s) (l/s) (l/s) (m³) (m) 15 min Summer 98.352 0.352 0.0 3.5 3.5 9.0 ОК 30 min Summer 98.397 0.397 0.0 3.5 3.5 10.2 ОК 60 min Summer 98.389 0.389 0.0 3.5 3.5 10.0 ΟΚ 0.0 3.5 120 min Summer 98.361 0.361 3.5 9.2 ОК 0.0 3.5 7.9 180 min Summer 98.310 0.310 3.5 ОК 240 min Summer 98.250 0.250 0.0 3.5 3.5 6.4 ОК 360 min Summer 98.147 0.147 0.0 3.5 3.5 3.8 ОК 480 min Summer 98.068 0.068 0.0 3.5 3.5 1.7 ОК 600 min Summer 98.021 0.021 0.0 3.5 3.5 0.5 ОК 720 min Summer 98.004 0.004 0.0 3.5 3.5 0.1 ΟΚ 960 min Summer 98.001 0.001 0.0 3.5 3.5 0.1 ОК 1440 min Summer 98.001 0.001 0.0 3.5 3.5 0.1 ОК 2160 min Summer 98.000 0.000 0.0 1.4 1.4 0.1 ΟΚ 2880 min Summer 98.000 0.000 0.0 1.1 1.1 0.1 ОК 4320 min Summer 98.000 0.000 0.0 0.8 0.8 0.0 ΟК 5760 min Summer 98.000 0.000 0.0 0.6 0.6 0.0 ΟК 7200 min Summer 98.000 0.000 0.0 0.6 0.6 0.0 ΟК 8640 min Summer 98.000 0.000 0.0 0.5 0.5 0.0 ОК

	Stor Ever	rm nt	Rain (mm/hr)	Flooded Volume (m³)	Discharge Volume (m³)	Time-Peak (mins)
15	min	Summer	82.868	0.0	12.8	18
30	min	Summer	53.277	0.0	16.4	30
60	min	Summer	32.875	0.0	20.4	48
120	min	Summer	20.668	0.0	25.2	82
180	min	Summer	15.451	0.0	28.2	116
240	min	Summer	12.461	0.0	30.3	148
360	min	Summer	9.085	0.0	33.3	208
480	min	Summer	7.187	0.0	34.9	264
600	min	Summer	5.970	0.0	36.1	316
720	min	Summer	5.121	0.0	37.5	360
960	min	Summer	4.012	0.0	38.7	532
1440	min	Summer	2.840	0.0	40.4	736
2160	min	Summer	2.024	0.0	42.9	1196
2880	min	Summer	1.604	0.0	46.6	1528
4320	min	Summer	1.178	0.0	52.2	0
5760	min	Summer	0.961	0.0	56.7	0
7200	min	Summer	0.829	0.0	61.2	0
8640	min	Summer	0.741	0.0	65.6	0
		C	1982-20	20 Inno	ovyze	

Half Drain Time : 34 minutes.

Considine Limited		Page 2
25 Hollingworth Court	5720	
Kent	ALLHALLOWS	
ME14 5PP	ATT1-P01	Micro
Date 25/07/2023 18:08	Designed by JEM	
File 5720-ATT1-P01.SRCX	Checked by MJF	Drainage
Innovyze	Source Control 2020.1	

	Storm		Max	Max	Max	Max	Max	Max	Status
	Even	t	Level	Depth	Infiltration	Control	Σ Outflow	Volume	
			(m)	(m)	(1/s)	(1/s)	(1/s)	(m³)	
10080	min	Summer	98.000	0.000	0.0	0.5	0.5	0.0	0 F
15	min	Winter	98.409	0.409	0.0	3.5	3.5	10.5	Οŀ
30	min	Winter	98.472	0.472	0.0	3.5	3.5	12.1	Οŀ
60	min	Winter	98.455	0.455	0.0	3.5	3.5	11.7	Οŀ
120	min	Winter	98.407	0.407	0.0	3.5	3.5	10.4	Οŀ
180	min	Winter	98.321	0.321	0.0	3.5	3.5	8.2	Οŀ
240	min	Winter	98.226	0.226	0.0	3.5	3.5	5.8	O F
360	min	Winter	98.076	0.076	0.0	3.5	3.5	2.0	O F
480	min	Winter	98.004	0.004	0.0	3.5	3.5	0.1	Οŀ
600	min	Winter	98.002	0.002	0.0	3.5	3.5	0.1	O F
720	min	Winter	98.001	0.001	0.0	3.5	3.5	0.1	O F
960	min	Winter	98.001	0.001	0.0	3.5	3.5	0.1	O F
1440	min	Winter	98.001	0.001	0.0	2.6	2.6	0.1	Οŀ
2160	min	Winter	98.000	0.000	0.0	1.0	1.0	0.1	Οŀ
2880	min	Winter	98.000	0.000	0.0	0.8	0.8	0.0	Οŀ
4320	min	Winter	98.000	0.000	0.0	0.6	0.6	0.0	Οŀ
5760	min	Winter	98.000	0.000	0.0	0.5	0.5	0.0	O F
7200	min	Winter	98.000	0.000	0.0	0.4	0.4	0.0	Οŀ
8640	min	Winter	98.000	0.000	0.0	0.4	0.4	0.0	Οŀ

	Storm	Rain	Flooded	Discharge	Time-Peak	
	Event	(mm/hr)	Volume	Volume	(mins)	
			(m³)	(m³)		
10080	min Summer	0.677	0.0	70.0	0	
15	min Winter	82.868	0.0	14.3	19	
30	min Winter	53.277	0.0	18.3	31	
60	min Winter	32.875	0.0	22.8	52	
120	min Winter	20.668	0.0	28.4	88	
180	min Winter	15.451	0.0	31.7	124	
240	min Winter	12.461	0.0	33.9	156	
360	min Winter	9.085	0.0	37.0	214	
480	min Winter	7.187	0.0	39.4	254	
600	min Winter	5.970	0.0	40.6	320	
720	min Winter	5.121	0.0	41.6	298	
960	min Winter	4.012	0.0	42.9	506	
1440	min Winter	2.840	0.0	43.6	572	
2160	min Winter	2.024	0.0	49.5	1160	
2880	min Winter	1 604	0 0	53 0	0	
4320	min Winter	1 178	0.0	58 4	0	
5760	min Winter	0 961	0.0	63 5	0	
7200	min Winter	0.901	0.0	69 5	0	
7200	min Winter	0.029	0.0	72 5	0	
8640	min winter	0./41	0.0	/3.5	0	
	©1	982-20	20 Inno	vyze		

Considine Limited		Page 3
25 Hollingworth Court	5720	
Kent	ALLHALLOWS	
ME14 5PP	ATT1-P01	Micco
Date 25/07/2023 18:08	Designed by JEM	
File 5720-ATT1-P01.SRCX	Checked by MJF	Digiliga
Innovyze	Source Control 2020.1	
Summary of Resul	<u>ts for 30 year Return Period</u>	
Storm Max Max	Max Max Max Max St	atus
Event Level Depth	Infiltration Control Σ Outflow Volume	
(m) (m)	(1/S) (1/S) (1/S) (m ³)	
10080 min Winter 98.000 0.000	0.0 0.3 0.3 0.0	ОК
Storm I	Rain Flooded Discharge Time-Peak	
Event (i	(m^3) (m^3)	
10080 min Winter	0.677 0.0 78.4 0	
©19	32-2020 Innovyze	

Considine Limited		Page 4
25 Hollingworth Court	5720	
Kent	ALLHALLOWS	
ME14 5PP	ATT1-P01	Micco
Date 25/07/2023 18:08	Designed by JEM	
File 5720-ATT1-P01.SRCX	Checked by MJF	Dialitatje
Innovyze	Source Control 2020.1	
Ra	infall Details	
Deinfell Med		
Return Period (years	=⊥ s)	30
FEH Rainfall Versio	on	2013
Site Locatio	on GB 583814 178717 TQ 83814	78717
Data Ty	pe	Point
Summer Storn	ms	Yes
Cv (Summe	r)	0.750
Cv (Winte:	r)	0.840
Shortest Storm (min	s)	15
Longest Storm (min:	s)	10080
Climate Change	8	+0
Tir	ne Area Diagram	
Tot	al Area (ha) 0.082	
Time (mins)	Area Time (mins) Area	
From: To:	(ha) From: To: (ha)	
0 4	4 0.041 4 8 0.041	
	1	
<u></u>	$R^2 = 2020$ Transverse	
0135	sz-zuzu innovyze	

Considine Limited					
25 Hollingworth Court	5720				
Kent	ALLHALLOWS				
ME14 5PP	ATT1-P01	Mirro			
Date 25/07/2023 18:08	Designed by JEM				
File 5720-ATT1-P01.SRCX	Checked by MJF	Diamage			
Innovyze	Source Control 2020.1				

Model Details

Storage is Online Cover Level (m) 100.000

Infiltration Trench Structure

Infiltration Coefficient Base (m/hr)0.00000Trench Width (m)3.0Infiltration Coefficient Side (m/hr)0.00000Trench Length (m)9.0Safety Factor2.0Slope (1:X)0.0Porosity0.95Cap Volume Depth (m)1.200Invert Level (m)98.000Cap Infiltration Depth (m)1.200

Pump Outflow Control

Invert Level (m) 98.000

Depth (m) Flow (1/s)

0.001 3.5000

©1982-2020 Innovyze

Considine Limited					
25 Hollingworth Court	5720				
Kent	ALLHALLOWS				
ME14 5PP	ATT1-P01	Micro			
Date 25/07/2023 18:07	Designed by JEM				
File 5720-ATT1-P01.SRCX	Checked by MJF	Diamage			
Innovyze	Source Control 2020.1				

Summary of Results for 30 year Return Period (+35%)

	Stor Even	rm it	Max Level (m)	Max Depth (m)	Max Infiltration (1/s)	Max Control (l/s)	Max Σ Outflow (1/s)	Max Volume (m³)	Status
15	min	Summer	98.517	0.517	0.0	3.5	3.5	13.3	ΟK
30	min	Summer	98.605	0.605	0.0	3.5	3.5	15.5	ΟK
60	min	Summer	98.609	0.609	0.0	3.5	3.5	15.6	ΟK
120	min	Summer	98.603	0.603	0.0	3.5	3.5	15.5	ΟK
180	min	Summer	98.552	0.552	0.0	3.5	3.5	14.1	ΟK
240	min	Summer	98.491	0.491	0.0	3.5	3.5	12.6	ΟK
360	min	Summer	98.365	0.365	0.0	3.5	3.5	9.4	ΟK
480	min	Summer	98.243	0.243	0.0	3.5	3.5	6.2	ΟK
600	min	Summer	98.150	0.150	0.0	3.5	3.5	3.9	ΟK
720	min	Summer	98.080	0.080	0.0	3.5	3.5	2.1	ΟK
960	min	Summer	98.009	0.009	0.0	3.5	3.5	0.2	ΟK
1440	min	Summer	98.001	0.001	0.0	3.5	3.5	0.1	ΟK
2160	min	Summer	98.001	0.001	0.0	3.5	3.5	0.1	ΟK
2880	min	Summer	98.000	0.000	0.0	1.5	1.5	0.1	ΟK
4320	min	Summer	98.000	0.000	0.0	1.1	1.1	0.1	ΟK
5760	min	Summer	98.000	0.000	0.0	0.9	0.9	0.0	ΟK
7200	min	Summer	98.000	0.000	0.0	0.7	0.7	0.0	ΟK
8640	min	Summer	98.000	0.000	0.0	0.7	0.7	0.0	ΟK

Half Drain Time : 54 minutes.

	Stoi Ever	rm nt	Rain (mm/hr)	Flooded Volume (m³)	Discharge Volume (m³)	Time-Peak (mins)
15	min	Summer	111.872	0.0	17.3	19
30	min	Summer	71.925	0.0	22.1	32
60	min	Summer	44.381	0.0	27.5	52
120	min	Summer	27.902	0.0	34.3	86
180	min	Summer	20.859	0.0	38.1	120
240	min	Summer	16.822	0.0	41.3	154
360	min	Summer	12.265	0.0	45.0	218
480	min	Summer	9.702	0.0	47.4	280
600	min	Summer	8.060	0.0	48.8	336
720	min	Summer	6.914	0.0	50.5	390
960	min	Summer	5.417	0.0	52.6	492
1440	min	Summer	3.834	0.0	55.9	668
2160	min	Summer	2.733	0.0	58.5	1104
2880	min	Summer	2.166	0.0	60.5	1576
4320	min	Summer	1.591	0.0	69.3	2192
5760	min	Summer	1.297	0.0	76.6	0
7200	min	Summer	1.119	0.0	82.6	0
8640	min	Summer	1.000	0.0	88.5	0
		C	1982-20	20 Inno	ovyze	

Considine Limited					
25 Hollingworth Court	5720				
Kent	ALLHALLOWS				
ME14 5PP	ATT1-P01	Micro			
Date 25/07/2023 18:07	Designed by JEM				
File 5720-ATT1-P01.SRCX	Checked by MJF	Diamage			
Innovyze	Source Control 2020.1				

Summary of Results for 30 year Return Period (+35%) Max Max Storm Max Max Max Max Status Event Level Depth Infiltration Control Σ Outflow Volume (l/s) (m) (m) (1/s) (1/s) (m³) 10080 min Summer 98.000 0.000 0.0 0.6 0.6 0.0 οк 15 min Winter 98.595 0.595 0.0 3.5 3.5 15.3 ОК 30 min Winter 98.709 0.709 0.0 3.5 3.5 18.2 ΟК 60 min Winter 98.727 0.727 0.0 3.5 3.5 18.6 ОК 120 min Winter 98.701 0.701 0.0 3.5 3.5 18.0 ОК 180 min Winter 98.621 0.621 0.0 15.9 3.5 3.5 ОК 240 min Winter 98.524 0.524 0.0 3.5 3.5 13.4 ОК 0.0 3.5 3.5 360 min Winter 98.326 0.326 8.4 ОК 3.5 0.0 480 min Winter 98.155 0.155 3.5 4.0 ОК 600 min Winter 98.037 0.037 0.0 3.5 3.5 1.0 ОК 720 min Winter 98.004 0.004 0.0 3.5 3.5 0.1 ΟК 0.0 960 min Winter 98.001 0.001 3.5 3.5 0.1 ΟK 0.0 1440 min Winter 98.001 0.001 2.6 2.6 0.1 ОК 2160 min Winter 98.000 0.000 0.0 1.3 1.3 0.1 ΟК 0.0 ΟK 2880 min Winter 98.000 0.000 1.0 1.0 0.1 0.0 4320 min Winter 98.000 0.000 0.8 0.8 0.0 ОК 5760 min Winter 98.000 0.000 0.0 0.6 0.6 0.0 ОК 7200 min Winter 98.000 0.000 0.0 0.5 0.5 0.0 ΟК 8640 min Winter 98.000 0.000 0.0 0.5 0.5 0.0 ΟК

	Storm	Rain	Flooded	Discharge	Time-Peak	
:	Event	(mm/hr)	Volume	Volume	(mins)	
			(m³)	(m³)		
10000		0 01 4		0.4 5	0	
10080	min Summer	0.914	0.0	94.5	0	
15	min Winter	111.872	0.0	19.2	20	
30	min Winter	71.925	0.0	24.8	32	
60	min Winter	44.381	0.0	30.5	58	
120	min Winter	27.902	0.0	38.5	94	
180	min Winter	20.859	0.0	43.1	132	
240	min Winter	16.822	0.0	46.0	166	
360	min Winter	12.265	0.0	49.8	232	
480	min Winter	9.702	0.0	53.0	290	
600	min Winter	8.060	0.0	54.9	336	
720	min Winter	6.914	0.0	56.3	370	
960	min Winter	5.417	0.0	58.7	588	
1440	min Winter	3.834	0.0	61.4	716	
2160	min Winter	2.733	0.0	63.2	1316	
2880	min Winter	2.166	0.0	69.7	1516	
4320	min Winter	1.591	0.0	78.9	0	
5760	min Winter	1.297	0.0	85.8	0	
7200	min Winter	1.119	0.0	92.5	0	
8640	min Winter	1.000	0.0	99.2	0	
	C	L982-202	20 Inno	vyze		

Considine Limited								Page 3	
25 Hollingworth Court			5720						
Kent			ALLH	ALLOWS					
ME14 5PP			ATT1	-P01				Micco	
Date 25/07/2023 18:07			Desi	qned by	JEM				
File 5720-ATT1-P01.SRG	CX		Chec	ked by	MJF			Drainage	
Innovyze	-		Sour	ce Cont	rol 2020	. 1			
Summary	Summary of Results for 30 year Return Period (+35%)								
							<u> </u>		
Storm	Max	Max	м	lax	Max	Max	Max	Status	
Event	Level D	epth	Infilt	tration (Control S	Outflow	Volume		
	(m)	(m)	(1	/s)	(1/s)	(1/s)	(m³)		
10080 min Winter	98.000 C	0.000		0.0	0.4	0.4	0.0	ОК	
	Storm		Rain	Flooded	Discharge	Time-Pe	ak		
	Event	(1	nm/hr)	Volume	Volume	(mins)			
				(m°)	(m°)				
10080	min Wint	er	0.914	0.0	105.8		0		
		©19	82-20	20 Inno	vvze				

Considine Limited		Page 4
25 Hollingworth Court	5720	
Kent	ALLHALLOWS	
ME14 5PP	ATT1-P01	Micco
Date 25/07/2023 18:07	Designed by JEM	
File 5720-ATT1-P01.SRCX	Checked by MJF	Dialitatje
Innovyze	Source Control 2020.1	
Ra	infall Details	
Rainiali Mod Return Period (vear	el s)	<u>ген</u> 30
FEH Rainfall Versi	on	2013
Site Locati	on GB 583814 178717 TQ 83814	78717
Data Ty	pe	Point
Summer Stor	ms	Yes
Cv (Summe	n.ə r)	0.750
Cv (Winte	r)	0.840
Shortest Storm (min	s)	15
Longest Storm (min	s)	10080
Climate Change		+35
Tir	n <u>e Area Diagram</u>	
Tot	al Area (ha) 0.082	
Time (mins)) Area Time (mins) Area	
From: To:	(ha) From: To: (ha)	
0	4 0.041 4 8 0.041	
	I	
©199	82-2020 Innovyze	

Considine Limited					
25 Hollingworth Court	5720				
Kent	ALLHALLOWS				
ME14 5PP	ATT1-P01	Micro			
Date 25/07/2023 18:07	Designed by JEM				
File 5720-ATT1-P01.SRCX	Checked by MJF	Diamage			
Innovyze	Source Control 2020.1				

Model Details

Storage is Online Cover Level (m) 100.000

Infiltration Trench Structure

Infiltration Coefficient Base (m/hr)0.00000Trench Width (m)3.0Infiltration Coefficient Side (m/hr)0.00000Trench Length (m)9.0Safety Factor2.0Slope (1:X)0.0Porosity0.95Cap Volume Depth (m)1.200Invert Level (m)98.000Cap Infiltration Depth (m)1.200

Pump Outflow Control

Invert Level (m) 98.000

Depth (m) Flow (1/s)

0.001 3.5000

©1982-2020 Innovyze

Considine Limited		Page 1
25 Hollingworth Court	5720	
Kent	ALLHALLOWS	
ME14 5PP	ATT1-P01	Micro
Date 25/07/2023 18:06	Designed by JEM	
File 5720-ATT1-P01.SRCX	Checked by MJF	Diamage
Innovyze	Source Control 2020.1	

Summary of Results for 100 year Return Period (+45%)

Status
e
6 ОК
о к
7 ОК
0 ОК
3 ОК
2 O K
4 ОК
1 ОК
8 O K
7 ОК
6 O K
8 O K
1 ОК
1 ОК
1 ОК
2 ОК
2 ОК
2 ОК

Half Drain Time : 82 minutes.

	Sto: Ever	rm nt	Rain (mm/hr)	Flooded Volume (m³)	Discharge Volume (m³)	Time-Peak (mins)
15	min	Summer	154.658	0.0	23.8	20
30	min	Summer	100.663	0.0	31.0	33
60	min	Summer	62.393	0.0	38.4	60
120	min	Summer	39.141	0.0	48.2	94
180	min	Summer	29.532	0.0	54.6	128
240	min	Summer	24.066	0.0	59.2	164
360	min	Summer	17.884	0.0	65.5	232
480	min	Summer	14.359	0.0	70.0	298
600	min	Summer	12.046	0.0	73.6	360
720	min	Summer	10.401	0.0	76.2	422
960	min	Summer	8.197	0.0	79.7	536
1440	min	Summer	5.806	0.0	84.8	750
2160	min	Summer	4.089	0.0	88.8	1196
2880	min	Summer	3.195	0.0	91.8	1508
4320	min	Summer	2.276	0.0	97.3	1920
5760	min	Summer	1.807	0.0	103.4	2944
7200	min	Summer	1.530	0.0	111.6	3520
8640	min	Summer	1.347	0.0	119.0	4376
		C	1982-20	20 Innc	ovyze	

Considine Limited		Page 2
25 Hollingworth Court	5720	
Kent	ALLHALLOWS	
ME14 5PP	ATT1-P01	Micro
Date 25/07/2023 18:06	Designed by JEM	
File 5720-ATT1-P01.SRCX	Checked by MJF	Diamage
Innovyze	Source Control 2020.1	

	<u>Sum</u>	mary o	of Resu	<u>ilts f</u>	for 100 yea:	r Return	Period	(+45%)	-
	Storn Event	n t	Max Level (m)	Max Depth (m)	Max Infiltration (1/s)	Max Control X (1/s)	Max E Outflow (1/s)	Max Volume (m ³)	Status
10080	min	Summer	98 000	0 000	0 0	0.8	0.8	0 0	ОК
15	min	Winter	98.876	0.876	0.0	3.5	3.5	22.5	ОК
30	min	Winter	99.083	1.083	0.0	3.5	3.5	27.8	O K
60	min	Winter	99.193	1.193	0.0	3.5	3.5	30.6	ОК
120	min	Winter	99.200	1.200	0.0	3.5	3.5	30.8	ОК
180	min	Winter	99.156	1.156	0.0	3.5	3.5	29.7	ОК
240	min	Winter	99.085	1.085	0.0	3.5	3.5	27.8	ΟK
360	min	Winter	98.903	0.903	0.0	3.5	3.5	23.2	ΟK
480	min	Winter	98.700	0.700	0.0	3.5	3.5	17.9	ΟK
600	min	Winter	98.507	0.507	0.0	3.5	3.5	13.0	ΟK
720	min	Winter	98.334	0.334	0.0	3.5	3.5	8.6	ΟK
960	min	Winter	98.077	0.077	0.0	3.5	3.5	2.0	ΟK
1440	min	Winter	98.002	0.002	0.0	3.5	3.5	0.1	ΟK
2160	min	Winter	98.001	0.001	0.0	3.5	3.5	0.1	ΟK
2880	min	Winter	98.001	0.001	0.0	2.6	2.6	0.1	ΟK
4320	min	Winter	98.000	0.000	0.0	1.1	1.1	0.1	ΟK
5760	min	Winter	98.000	0.000	0.0	0.9	0.9	0.0	ΟK
7200 8640	min min	Winter Winter	98.000	0.000	0.0	0.7	0.7	0.0	ОК

Storm	Rain	Flooded	Discharge	Time-Peak	
Event	(mm/hr)	Volume	Volume	(mins)	
		(m³)	(m³)		
10080 min Summe	r = 1.217	0 0	125 7	0	
15 min Winte	r 154 658	0.0	26.6	20	
30 min Winte	r 100.663	0.0	34.6	31	
60 min Winte	r = 62.393	0.0	43 0	60	
120 min Winte	r 39 1/1	0.0	54 0	102	
180 min Winte	r 29532	0.0	61 1	140	
240 min Winte	r 24.066	0.0	66 4	179	
240 min Winte	x 17 000	0.0	72 0	170	
180 min Winte	x 14 250	0.0	75.9	202	
480 min Wince	14.339	0.0	/8.4	320	
600 min Winte	r 12.046	0.0	81./	384	
720 min Winte	r 10.401	0.0	85.0	440	
960 min Winte	r 8.197	0.0	89.3	538	
1440 min Winte	r 5.806	0.0	94.5	704	
2160 min Winte	r 4.089	0.0	98.6	1188	
2880 min Winte	r 3.195	0.0	101.8	1704	
4320 min Winte	r 2.276	0.0	108.7	1952	
5760 min Winte	r 1.807	0.0	119.5	0	
7200 min Winte	r 1.530	0.0	126.5	0	
8640 min Winte	r 1.347	0.0	133.6	0	
	©1982-20	20 Inno	vyze		

Considine Limited							Page 3
25 Hollingworth Court		5720					
Kent		ALLH	ALLOWS				
ME14 5PP		ATT1	-P01				Micco
Date 25/07/2023 18:06		Desi	gned by	JEM			
File 5720-ATT1-P01.SRC	CX	Chec	ked bv	MJF			Urainage
Innovyze		Sour	ce Cont	rol 2020	.1		
- 2 -					-		
Summary of	of Results	for 10)0 year	Return H	Period	(+45%)	
Storm	Max Max	Ν	lax	Max	Max	Max	Status
Event	Level Dept	h Infil	tration (Control Σ	Outflow	Volume	
	(m) (m)	(1	./s)	(1/5)	(1/5)	(m-)	
10080 min Winter	98.000 0.00	0	0.0	0.6	0.6	0.0	O K
	6 to	Dein		Diestan	m im - F	- 1-	
	Storm	Rain (mm/hr)	Flooded	Volume	(mins)	ак	
		(/	(m ³)	(m ³)	(
10080	min Winter	1.217	0.0	140.8		0	
	@1	982-20	20 Tnnc	00070			

Considine Limited		Page 4
25 Hollingworth Court	5720	
Kent	ALLHALLOWS	
ME14 5PP	ATT1-P01	Micco
Date 25/07/2023 18:06	Designed by JEM	
File 5720-ATT1-P01.SRCX	Checked by MJF	Drainage
Innovvze	Source Control 2020.1	
Ra	<u>infall Details</u>	
Rainfall Mode	el	FEH
FEH Bainfall Versi	s) on	2013
Site Location	on GB 583814 178717 TQ 83814 7	8717
Data Ty	pe P	oint
Summer Store	ms	Yes
Winter Stor	ms	Yes
CV (Summe	r) 0	840
Shortest Storm (min.	s)	15
Longest Storm (min.	s) 1	0080
Climate Change	8	+45
<u>'l'11</u>	<u>ne Area Diagram</u>	
Tot	al Area (ha) 0.082	
Time (mins)	Area Time (mins) Area	
From: To:	(ha) From: To: (ha)	
0 4	4 0.041 4 8 0.041	
	I	
©198	82-2020 Innovyze	

Considine Limited		Page 5
25 Hollingworth Court	5720	
Kent	ALLHALLOWS	
ME14 5PP	ATT1-P01	Mirro
Date 25/07/2023 18:06	Designed by JEM	
File 5720-ATT1-P01.SRCX	Checked by MJF	Diamage
Innovyze	Source Control 2020.1	

Model Details

Storage is Online Cover Level (m) 100.000

Infiltration Trench Structure

Infiltration Coefficient Base (m/hr)0.00000Trench Width (m)3.0Infiltration Coefficient Side (m/hr)0.00000Trench Length (m)9.0Safety Factor2.0Slope (1:X)0.0Porosity0.95Cap Volume Depth (m)1.200Invert Level (m)98.000Cap Infiltration Depth (m)1.200

Pump Outflow Control

Invert Level (m) 98.000

Depth (m) Flow (1/s)

0.001 3.5000

©1982-2020 Innovyze

Appendix 7 – Brownfield Runoff Rates

Civil + Structural Engineers

Title	Haven Holiday Parks, Allhallows	Job No:	5720-P02
Decription :	Estimate of Existing and Proposed	By:	JEM
	Peak Run-Off Rate and Volume	Date:	03/08/2023
		Sheet No:	1

Climate Change Allow	ance	45%			
Existing Site					
Pre-Developed Site: Esti	imate Surface Water Run	-Off Using the Mo	dified Rational I	Vethod	
Site Area =		694 m ²			
Existing Impermeable	Area =	628 m ²			
Average Rate of Rainf	all (Obtained from Mici	roDrainage using	<u>; FEH data)</u>		
2 Year 15 Minute Ever	nt (M5-15D) = 35.29	91 mm/hr (i)	+ 45%	51.172	mm/hr (i)
30 Year 15 Minute Eve	ent (M5-15D) = 82.86	58 mm/hr (i)	+ 45%	120.16	mm/hr (i)
100 Year 15 Minute E	vent (M5-15D) = 106.66	51 mm/hr (i)	+ 45%	154.66	mm/hr (i)
FEH Rainfall data sour	ce: a Set Site: GB 583814	178717 (Point)			
Peak Rate of Run-Off	(O ₂)	1, 0, 1, (i oint)			
$0 = 0$ λ i Where					
$Q_p = C \cdot A_p \cdot \Gamma$ where	$c = c_V \cdot c_R$				
$C_V = 0.75$ (Volumetric $C_R = 1.3$ (Routing Co-e	Co-efficient) efficient)				
Q _{P2} = 6.00	2 I/s		+ 45%	8.7035	l/s
Q _{P30} = 14.09	4 l/s		+ 45%	20.437	l/s
Q _{P100} = 18.14	1 l/s		+ 45%	26.305	l/s

Considine Limited • 25 Hollingworth Court • Turkey Mill • Ashford Road • Maidstone • Kent ME14 5PP

t: 01622 919918 e: info@considine.co.uk www.considine.co.uk

Company Registered in England and Wales. Registered Number 6895573

Consulting Civil + Structural Engineers

Title	Haven Holiday Parks, Allhallows	Job No:	5720-P02
Decription :	Estimate of Existing and Proposed	By:	JEM
	Peak Run-Off Rate and Volume	Date:	03/08/2023
		Sheet No:	2

Proposed Development							
Total Impermeable Area =	694 m ²						
Adjust Average Rainfall for Climate Change in Accordance with National Planning Policy, for the upper end of the epoch that the development is designed for:							
M2 - 15D + 45% = 51.	51.172 mm/hr (i)						
M30 - 15D + 45% = 120.159 mm/hr (i)							
M100 - 15D + 45% = 154.658 mm/hr (i)							
Proposed Peak Rate of Run-Off (Q _P)							
Q _{P2} = 6.633 l/s		+ 45% 9.6182 l/s					
Q _{P30} = 15.576 l/s		+ 45% 22.585 l/s					
Q _{P100} = 20.048 l/s		+ 45% 29.069 l/s					
Peak Volume Run-Off							
This is calculated using the 100 Year return period, 360 minute storm event							
Average rainfall (M100-360D) =	12.334 mm/hr	+ 45% 17.884 mm/hr					
Average depth of rainfall =	74.004 mm (i _d)	107.31 mm (i _d)					
Existing Volume Run-Off							
V = C . A _p . i	$V = 45.31 \text{ m}^3$	+ 45% 65.70 m ³					

Considine Limited • South Suite, 1st Floor • 1 James Whatman Court • Turkey Mill • Ashford Road • Maidstone • Kent ME14 5PP

t: 01622 919918 e: info@considine.co.uk www.considine.co.uk

Company Registered in England and Wales. Registered Number 6895573

Consulting Civil + Structural Engineers

Title	Haven Holiday Parks, Allhallows	Job No:	5720-P02
Decription :	Estimate of Existing and Proposed	By:	JEM
	Peak Run-Off Rate and Volume	Date:	03/08/2023
		Sheet No:	3

Proposed Volume Run-Off			
Allowance for Climate Change = 45%			
Average Rainfall (M100-360D) + 45%	= 17.884 mm/hr		
Average Depth of Rainfall =	107.306 mm(i _d)		
Proposed Volume Run-Off			
V = C . AP . i = 50.07 m ³		+ 45%	72.61 m ³
Additonal Volume_			
V _{add} = V(Proposed) - V(Existing)			
$V_{add} = 4.76 m^3$			

Considine Limited • South Suite, 1st Floor • 1 James Whatman Court • Turkey Mill • Ashford Road • Maidstone • Kent ME14 5PP

t: 01622 919918 e: info@considine.co.uk www.considine.co.uk

Company Registered in England and Wales. Registered Number 6895573