

Ampney Park

Surface and Foul Water Drainage Strategy

Project Number: 12005 Issue Date: 25 September 2023 Revision: P1 Suitability: S4 (Approval)

Contents

1.0	Intro	duction	1
2.0	Site I	Location & Setting	1
3.0	Exist	ing Site, Ground Conditions, Infiltration Characteristics	2
4.0	Exist	ing Development	5
	4.1	Existing buildings - General	5
	4.2	Existing buildings – Main House	5
5.0	Prop	osed Development	5
	5.1	Proposed buildings – Wedding Venue & Parking	5
6.0	Surfa	ace Water Drainage	7
	6.1	Site wide strategy	7
7.0	Exce	edance flows	8
8.0	Foul	Drainage	9
9.0	Mana	agement & Maintenance	9
	9.2	Permeable Paving	9
10.0	Conc	lusions	10
11.0	Glos	sary	11

Appendices

- Appendix 1 Soakaway for $4255m^2$ and $398m^2$
- Appendix 2 Topographical Survey
- Appendix 3 Greenfield Runoff Calculator
- Appendix 4 British Water Foul Loads & Flows

Quality Assurance

File Name: 12005-MNW-XX-XX-RP-D-0451-S2-P1_Ampney Park - Drainage Strategy.docx

Document Issue Details:

Revision	Issue Date	Issue Status	Distribution
P1	25 Sept 2023	S4 - Approval	DTM
Prepared	Checked	Approved	Date
Prepared JP	Checked DJ	Approved DJ	Date 25 Sept 2023

© Mann Williams Ltd. All rights reserved. Mann Williams assert (unless otherwise agreed in writing) their rights under Sections 77 to 89 of the Copyright, Designs and Patents Act 1988.

This document has been prepared in good faith, with all reasonable skill, care and diligence, based on information provided or available at the time of its preparation and in the possession of Mann Williams all within the scope of work agreement with the client. Any information provided by third parties and referred to herein has not been checked or verified by Mann Williams unless otherwise expressly stated in the document.

We disclaim any responsibility to the client and others in respect of any matters outside the scope of the above. The document is provided for the sole use and information of the named client. No third party may rely upon this document without the prior and express written agreement of Mann Williams. This report shall not be construed as investment or financial advice.

1.0 Introduction

- 1.1.1 Mann Williams have been appointed by Simon Morray Jones to advise on a surface water and foul water drainage strategy to serve the development located at Ampney Park, Ampney Crucis. The strategy will consider the requirements of the National Planning Policy Framework (NPPF) and the policies in the Cotswold District Councils Local Plan.
- 1.1.2 In line with good practice the proposed drainage design has been made to develop a scheme which targets the most sustainable disposal techniques identified in the sustainable drainage hierarchy relevant to this site.

2.0 Site Location & Setting

2.1.1 The site is located at Ampney Park, London Road, Ampney Crucis, GL7 5RY.

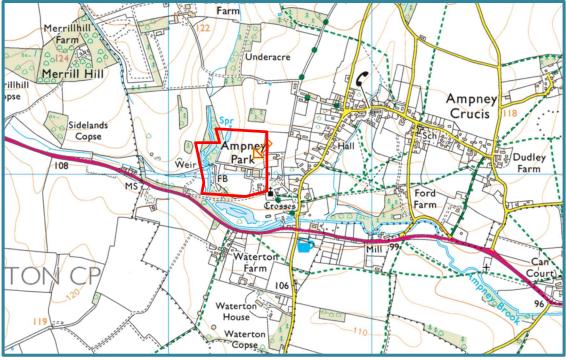


Figure 1 Ampney Park location within the wider landholding and context with Ampney Crucis (Streetmap).

- 2.1.2 The Ampney Park site is in the following setting:
 - To the north landform rises into extended parkland and meadows, and a spring situated outside the development boundary to the north west.
 - To the west, land falls away to Ampney Brook which flows southwards before changing to an easterly direction adjacent to London Road.
 - South of the site is London Road, Ampney Brook and further meadows and mixed agricultural use.
 - East of the site is village of Ampney Crucis with mixed residential and commercial buildings with rear gardens at a similar elevation.
- 2.1.3 Generally, the site falls from the North East to the South West towards Ampney Brook and a connected lake which lies with the property redline boundary.

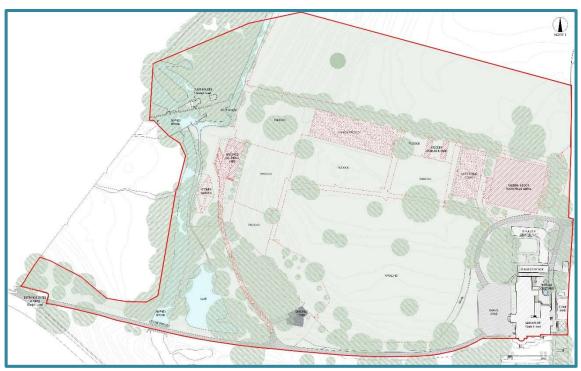


Figure 2 Existing site plan showing full extents of the redline boundary.

3.0 Existing Site, Ground Conditions, Infiltration Characteristics

- 3.1.1 The Ampney Park site comprises an historic Grade II listed Main House, Stone Barn, Service building, Stables Cottage, Stables and Grooms Flat, Modern indoor equestrian arena, Paddocks, Tennis court, Wooden Stables and yards and a Grounds building kitchen and yard.
- 3.1.2 The stables, arena and menage paddock indicate previous equestrian use within the grounds.
- 3.1.3 Topographic surveys have been undertaken and show that the site has the highest levels towards the North and West of the redline boundary. The land then declines to the west and to the south. Before falling sharply immediately before Ampney Brook
- 3.1.4 To the west of the main house is an extensive gravel drive which then connects the main house to the rest of the property via an existing tarmac track.
- 3.1.5 Other than the existing structures, other areas of hard landscaping comprise of tarmac, gravel and rubber chippings.
- 3.1.6 Further west of the main house and gravel track is an area of meadowlands which slopes gently away from the property towards Ampney Brook and the connected Lake.
- 3.1.7 Existing records indicate that the Main house, Stables Cottage and Stables and Grooms Flats are connected to a below ground surface water drainage network that discharges unattenuated into the Lake and further onto Ampney brook, this has been illustrated in Figure 3.

Mann Williams Consulting Civil and Structural Engineers 12005 Ampney Park – Drainage Strategy 03

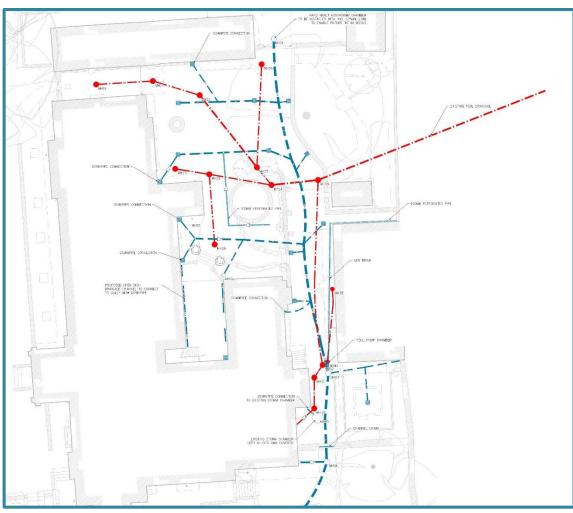


Figure 3 Existing drainage layout (Ridge)

Mann Williams Consulting Civil and Structural Engineers 12005 Ampney Park – Drainage Strategy 04

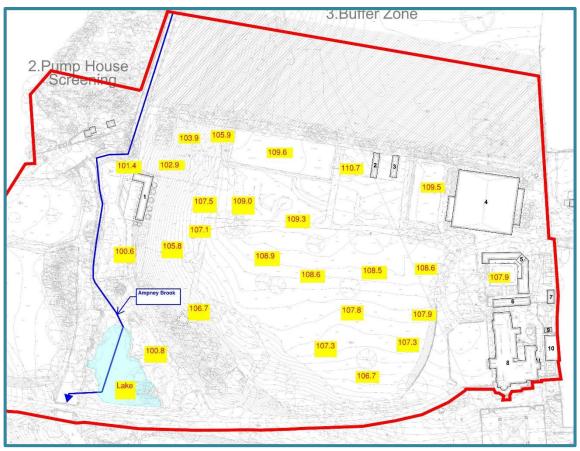


Figure 4 The Ampney Park topographic survey with red line boundary, key features and annotated levels All to m AOD.

- 3.1.8 The total site area is approximately 7.2ha.
- 3.1.9 The location of the Ampney Park development will be located on previously developed (brownfield) land.
- 3.1.10 The superficial geology is not recorded on the British Geology Survey Viewer, but the underlying geology is Forest Marble Formation Limestone. The Cranfield University Soilscapes Viewer shows the soils to be loamy and freely draining, surface water is recorded to drain to the stream network.
- 3.1.11 Infiltration testing has not been undertaken at the site, however the proposals for collecting and discharging surface water will assume that infiltration is currently achievable.
- 3.1.12 The greenfield run-off rate has been estimated using the uksuds.com 'Greenfield runoff tool' (Refer to Appendix 3) and is shown to be as follows for a notional 0.1ha (1000m²) site:
 - a) 1 in 1yr 0.27 l/s
 - b) Q_{BAR} 0.31 l/s
 - c) 1 in 30yr 0.72 l/s
 - d) 1 in 100yr 1 l/s
- 3.1.13 The rates above are used for comparison and adjusted according to the size of the development being considered.
- 3.1.14 At present all surface water that is generated by the site freely discharges unattenuated via the existing below ground drainage network into the lake then onwards into the Ampney Brook river network or through infiltration.

04

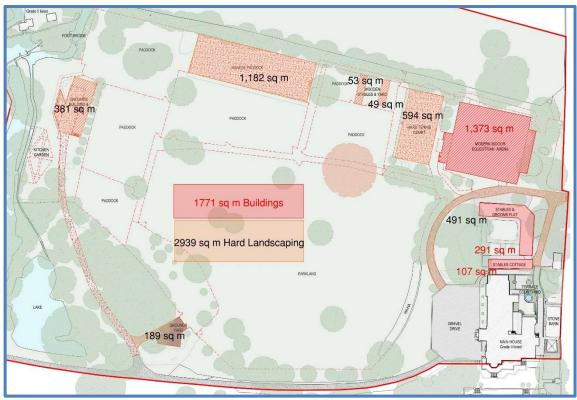


Figure 5 Existing impermeable surfaces.

4.0 Existing Development

4.1 Existing buildings - General

4.1.1 It is proposed to remove various existing outbuildings along with associated existing hard landscaping. All existing drainage infrastructure will either be grubbed out or removed to allow for a new system to be installed site wide apart from the system serving the Main House.

4.2 Existing buildings – Main House

- 4.2.1 Above ground management of surface water will remain as existing, with repairs carried out as necessary. Traditional gutters and rainwater pipes convey surface water from existing building roofs to the existing below ground network which will remain in situ.
- 4.2.2 The existing below ground drainage network will continue to operate as at present.

5.0 Proposed Development

5.1 Proposed buildings – Wedding Venue & Parking

- 5.1.1 It is proposed to construct a new wedding venue and associated parking.
- 5.1.2 The wedding venue will be of modern construction with tall sloping impermeable roof. The parking and associated access paths will be permeable hard landscaping with intertwined with soft landscaping for amenity benefit. Where possible green infrastructure e.g swales and bio-retention swale will be used for conveyance providing enhanced biodiversity and water quality improvement.
- 5.1.3 The proposed impermeable surfaces for the site have been calculated as 4741m² and have been illustrated in Figure 6.

- 5.1.4 It is approximated that 4255m² of impermeable surfaces will be directed to the proposed soakaway within the car park.
- 5.1.5 As is good practice it is recommended that all new buildings are designed with finished floor levels 150mm above the surrounding external ground.

	Boundary Area (m²)	Existing Impermeable (m²)	Proposed Impermeable (m²)	Percentage Difference
Buildings		1771	1140	-36%
Hard Landscaping		2939	3737	+27.2%
Total		4710	4877	+3.5%

Table 1

Existing & Proposed Impermeable surfaces comparison.

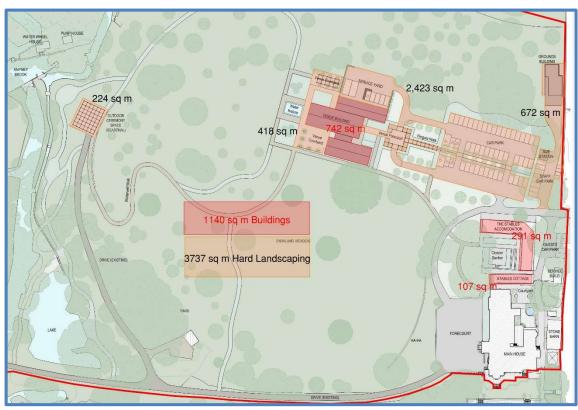


Figure 6 Proposed impermeable surfaces.

6.0 Surface Water Drainage

6.1 Site wide strategy

- 6.1.1 Defra and the SuDS manual recommend a sustainable approach to managing runoff from impermeable areas.
- 6.1.2 Surface water is to be discharge at source the most sustainable method identified in the drainage hierarchy and preferred by the Lead Local Flood Authority (LLFA), minimising the risk of flooding.
- 6.1.3 Runoff from the proposed wedding venue and parking area will be discharged to the proposed soakaway via a combination of traditional and sustainable drainage features. A permeable paving system is proposed for the parking area which is to be underlain by crate attenuation to provide adequate volume to store run-off from the development prior to infiltration.
- 6.1.4 The extents of the proposed soakaway is illustrated in Figure 7.
- 6.1.5 The pavement system proposed will be type A total infiltration with additional crate storage. The final depth of attenuation crates is to be determined based on the rate of infiltration to be confirmed.

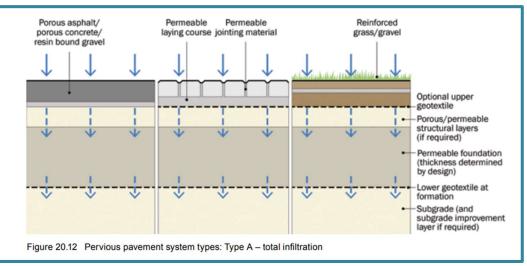


Figure 7 Permeable pavement system Type A – total infiltration (CIRIA SuDS manual)

- 6.1.6 Inlets and outlets from green drainage infrastructure will utilise large ballast filled mesh baskets to prevent erosion and minimise the risk of blockage from debris.
- 6.1.7 Based on the desk study and understanding of the ground likely to be encountered at the development site, an infiltration rate of 7.0x10⁻⁵ m/s is assumed.
- 6.1.8 With reference to Appendix 1 the required storage volume of approximately 360m³ can be adequately located within the proposed car park area with an assumed depth of approximately 0.6m. This is proposed to take all the surface water runoff from the Wedding venue, associated areas of hard landscaping and the car park as illustrated in Figure 8.
- 6.1.9 This has been calculated to account for the 1 in 100 year + 45% climate change event.
- 6.1.10 The strategy also seeks to improve the current drainage infrastructure for the existing building at the site. A second soakaway to infiltrate surface water from the Stables Cottage and Stables accommodation which had previously discharged unattenuated into the existing below ground drainage network is proposed. It is estimated that a further volume of 10-15m³ will be required, located to the West of the refurbished buildings within the landscape gardens. Upon confirmation of the infiltration rate the storage volumes within the soakaways can be adjusted without detrimental impact.

Mann Williams Consulting Civil and Structural Engineers 12005 Ampney Park – Drainage Strategy 08

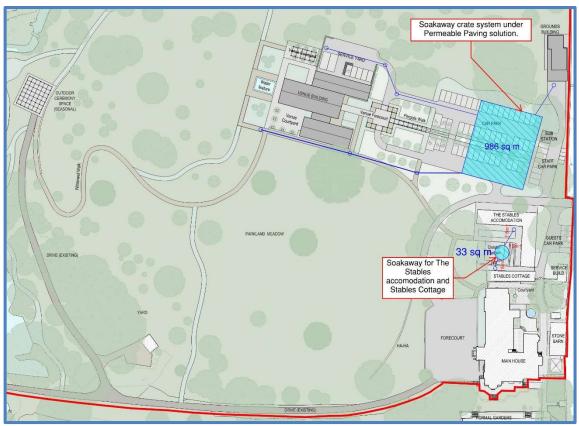


Figure 8 Proposed drainage strategy

7.0 Exceedance flows

7.1.1 In the event of site exceedance, flows will follow the landscaped and natural topography directing the storm water away from the proposed development, towards the West of the site and Ampney Brook. Given the large surrounding landscaped areas, surface water from exceedance events will be given every opportunity to infiltrate if conditions are favourable, otherwise they will follow their natural overground flow paths towards Ampney Brook.

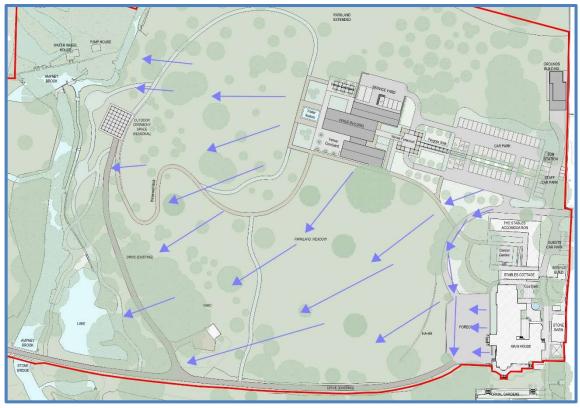


Figure 9 Exceedance flows

8.0 Foul Drainage

- 8.1.1 A pre-planning enquiry application has been sent to Thames Water to confirm the capacity of the foul sewer connection point.
- 8.1.2 A foul drainage assessment has been undertaken for the site using The British Waters Table of Loadings for Sewage Treatment Systems. The foul drainage strategy has been designed assuming that Thames Water confirms that the development will not cause or increase local sewer flooding.
- 8.1.3 A copy of the anticipated flows and loads calculation can be found in Appendix 4.

9.0 Management & Maintenance

- 9.1.1 The owners of Ampney Park will be responsible for the maintenance and operation of the drainage systems at the proposed development site.
- 9.1.2 The surface water drainage system comprises various elements including conventional rainwater goods, rainwater pipes and gullies. The volumes and flows will be controlled through a combination of green infrastructure and flow control devices prior to discharge.
- 9.1.3 A maintenance schedule will be prepared to identify the maintenance intervals for the various elements and identify the maintenance requirements dependant on the specific products installed.

9.2 Permeable Paving

9.2.1 The permeable pavements are intended to be water quality and attenuation storage features. These features are intended to be dry except during rainfall events. The permeable pavements may also be utilised as an infiltration area or soakaway for other areas of the development (where permissible).

9.2.2 The surface has been designed to be porous or to contain gaps where rain can flow through the upper construction layers into the voided stone / specialist void former which makes up the subbase. Where these features are intended to be used as infiltration devices or soakaways any capping also needs to be permeable to permit the flows to the formation.

10.0 Conclusions

- 10.1.1 It is proposed to construct a new wedding venue and associated parking as well as redeveloping existing buildings and infrastructure within the planning boundary.
- 10.1.2 In line with good practice the proposed drainage design has been made to develop a scheme which targets the most sustainable disposal techniques identified in the sustainable drainage hierarchy relevant to this site.
- 10.1.3 Green SuDS infrastructure is proposed to ensure that surface water implements the biodiversity and amenity, water quantity and water quality aims of the SuDS 4 pillars of design objectives.
- 10.1.4 This proposal is based on a site-specific assessment and targets the most sustainable options available in the SuDS hierarchy for this development. The proposal delivers a sustainable solution to minimise the rate and volume of run-off for the lifetime of the development. The prosed development will not increase flood risk off site and therefore complies with the NPPF and Cotswold District Councils Local Plan.

11.0 Glossary

General terms	
BGS	British Geological Survey
EA	Environmental Agency
Flood risk	A combination of the probability and the potential consequences of flooding.
Flood Zone 1	The zone has less than 0.1% annual probability of river flooding
Flood Zone 2	The zone has between 0.1% and 1% annual probability of river flooding and between 0.1% and 0.5% annual probability of sea flooding
Flood Zone 3	This zone has more than 1% annual probability of river flooding and between 0.1% and 0.5% annual probability sea flooding
SFRA	Strategic Flood Risk Assessment, a strategic document provided by the local council which assesses and maps all forms of flood risk from tidal, river, groundwater, surface water and sewer sources, considering future climate change predictions.
SuDS	Sustainable drainage systems (SuDS) are drainage solutions that provide an alternative to the direct channelling of surface water through networks of pipes and sewers to nearby watercourses
NNAMS	Nutrient Neutrality Assessment and Mitigation Strategy
DEFRA	Department for Environment, Food & Rural Affairs
NPPF terms	
Exception test	Applied once sequential test has been passed. For the exception test to be passed it must demonstrate that the development provides wider sustainability benefits to the community that outweigh flood risk. A site- specific FRA must demonstrate the development will be safe for its lifetime taking account of the vulnerability of its users, without increasing flood risk elsewhere and where possible reduce flood risk overall.
Sequential test	Aims to steer new developments into areas with the lowest probability of flooding.
Less vulnerable	Less vulnerable land uses include police/ambulance/fire stations which are not required to be operational during flooding and buildings used for shops/financial/professional/other services.
More vulnerable	More vulnerable land uses include hospitals, residential institutions, buildings used for dwelling houses/student halls/drinking establishments/hotels and sites used for holiday or short-let caravans and camping.
Highly vulnerable	Highly vulnerable land uses include police/ambulance/fire stations which are required to be operational during flooding, basement dwellings and caravans/mobile homes/park homes intended for permanent residential use.

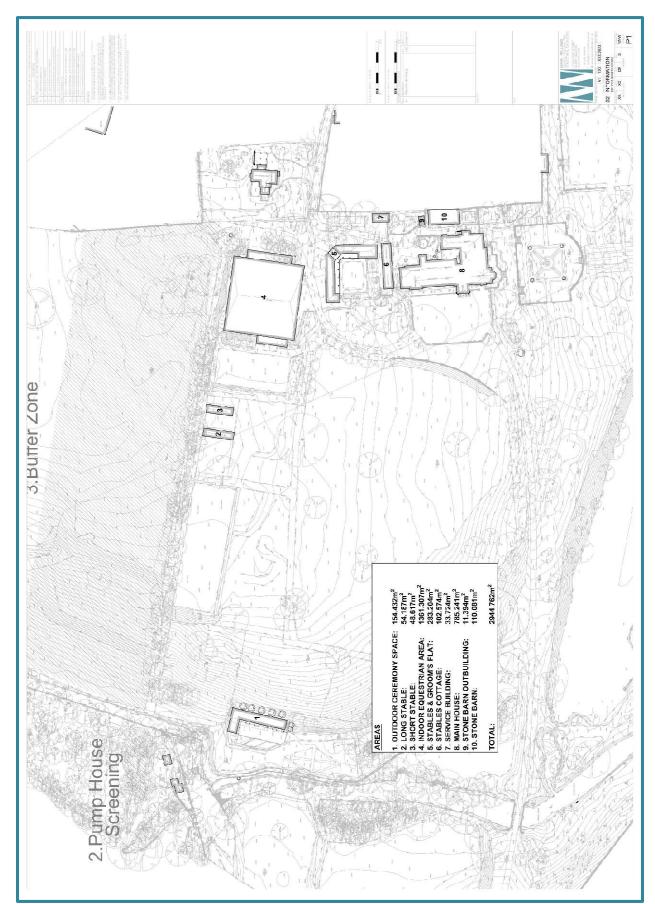
Appendix 1 – Soakaway for $4255m^2$ and $398m^2$

	la Tedds						
		Calcs for				Start	page no./Revisi 1
		Calcs by J	Calcs date 26/09/2	D23 Checked I	by Checke	d date Appro	oved by Ap
SOAKAWA	www.collarsons		35 828 Z				
n accordar	ice with BRE L	ligest 365 - So	akaway design			Tec	Ids calculation v
Design rain	fall intensity						
	catchment area		Bristo				
	e area drained	to the system		255.0 m ²			
Return perio	n to 2 day rainfa	ll of 5 vr roturn		l = 100 yr			
			duration M5_6		m		
an easily and becaution			warming p _{climate}		165		
Soakaway /	infiltration tre	nch details					
Soakaway t				ngular			
	pth of pit (below	v incoming inve					
Vidth of pit	2			000 mm			
ength of pi	t free volume		= 21 V _{free} =	000 mm 95 %			
oil infiltratio				0×10 ⁻⁶ m/s			
33573233 - 22	of pit 50% full				30600000 mr	n ²	
Dutflow (cl.3 Storage (cl.3			S = I -	0			
Ouration, D (min)	Growth factor Z1	M5 rainfalls (mm)	Growth factor Z2	100 year rainfall, M100 (mm)	Inflow (m³)	Outflow (m ³)	Storag require (m ³)
5	0.36;	10.3;	1.92;	19.8;	84.30;	0.64;	83.66
5	SON COMPANY OF A				0.51 (0.50 (D+D+C)*).	10.000	00.00
10	0.51;	14.7;	1.99;	29.2;	124.11;	1.29;	a second second
10 Internet	0.51; 0.62;	14.7; 17.9;	1.99; 2.01;	29.2; 36.0;	124.11; 153.18;	100 Sec. 50	122.82
10						1.29;	122.8
10 15	0.62;	17.9;	2.01;	36.0;	153.18;	1.29; 1.93;	122.82 151.29 192.1
10 15 30	0.62; 0.79;	17.9; 22.8;	2.01; 2.02;	36.0; 46.1;	153.18; 195.96;	1.29; 1.93; 3.86;	122.83 151.29 192.1 ¹ 236.30
10 15 30 60	0.62; 0.79; 1.00;	17.9; 22.8; 29.0;	2.01; 2.02; 1.98;	36.0; 46.1; 57.4;	153.18; 195.96; 244.08;	1.29; 1.93; 3.86; 7.71;	122.82 151.22 192.11 236.30 275.34
10 15 30 60 120	0.62; 0.79; 1.00; 1.22;	17.9; 22.8; 29.0; 35.5;	2.01; 2.02; 1.98; 1.93;	36.0; 46.1; 57.4; 68.3;	153.18; 195.96; 244.08; 290.76;	1.29; 1.93; 3.86; 7.71; 15.42;	122.82 151.22 192.1 ⁻¹ 236.30 275.3 ⁴ 313.1 ⁻¹ 332.8 ⁴
10 15 30 60 120 240	0.62; 0.79; 1.00; 1.22; 1.50;	17.9; 22.8; 29.0; 35.5; 43.4;	2.01; 2.02; 1.98; 1.93; 1.86;	36.0; 46.1; 57.4; 68.3; 80.9;	153.18; 195.96; 244.08; 290.76; 344.02;	1.29; 1.93; 3.86; 7.71; 15.42; 30.84;	122.8 151.2 192.1 236.3 275.3 313.1 332.8
10 15 30 60 120 240 360 600 1440	0.62; 0.79; 1.00; 1.22; 1.50; 1.69; 1.95; 2.48;	17.9; 22.8; 29.0; 35.5; 43.4; 49.0;	2.01; 2.02; 1.98; 1.93; 1.86; 1.82; 1.77; 1.66;	36.0; 46.1; 57.4; 68.3; 80.9; 89.1; 99.7; 119.5;	153.18; 195.96; 244.08; 290.76; 344.02; 379.10;	1.29; 1.93; 3.86; 7.71; 15.42; 30.84; 46.27;	122.83 151.23 192.1 236.34 275.3 313.1 332.8 347.13
10 15 30 60 120 240 360 600 1440 Required sto	0.62; 0.79; 1.00; 1.22; 1.50; 1.69; 1.95; 2.48; parage volume	17.9; 22.8; 29.0; 35.5; 43.4; 49.0; 56.5;	2.01; 2.02; 1.98; 1.93; 1.86; 1.82; 1.77; 1.66; Sreq =	36.0; 46.1; 57.4; 68.3; 80.9; 89.1; 99.7; 119.5; 347.13 m ³	153.18; 195.96; 244.08; 290.76; 344.02; 379.10; 424.24; 508.28;	1.29; 1.93; 3.86; 7.71; 15.42; 30.84; 46.27; 77.11;	122.82 151.24 192.1 236.30 275.3 313.1
10 15 30 60 120 240 360 600 1440 Required sto	0.62; 0.79; 1.00; 1.22; 1.50; 1.69; 1.95; 2.48;	17.9; 22.8; 29.0; 35.5; 43.4; 49.0; 56.5;	2.01; 2.02; 1.98; 1.93; 1.86; 1.82; 1.77; 1.66; Sreq =	36.0; 46.1; 57.4; 68.3; 80.9; 89.1; 99.7; 119.5; 347.13 m ³	153.18; 195.96; 244.08; 290.76; 344.02; 379.10; 424.24; 508.28; e = 359.10 m ³	1.29; 1.93; 3.86; 7.71; 15.42; 30.84; 46.27; 77.11; 185.07;	122.83 151.24 192.1 236.34 275.34 313.1 332.8 347.13 323.2
10 15 30 60 120 240 360 600 1440 Required sto Soakaway s	0.62; 0.79; 1.00; 1.22; 1.50; 1.69; 1.95; 2.48; parage volume	17.9; 22.8; 29.0; 35.5; 43.4; 49.0; 56.5; 71.9;	2.01; 2.02; 1.98; 1.93; 1.86; 1.82; 1.77; 1.66; S _{req} = S _{act} =	36.0; 46.1; 57.4; 68.3; 80.9; 89.1; 99.7; 119.5; 347.13 m ³ I× d× w× V _{fre}	153.18; 195.96; 244.08; 290.76; 344.02; 379.10; 424.24; 508.28; e = 359.10 m ³	1.29; 1.93; 3.86; 7.71; 15.42; 30.84; 46.27; 77.11; 185.07; PASS - Soaka	122.83 151.24 192.1 236.34 275.34 313.1 332.8 347.13 323.2

- Iek	la Tedds	Project						Job no.		
		Calcs for						Start page no./Revision 1		
		Calcs by J	Calcs da 25/09	te 0/2023	hecked by	Checke	ed date	Approved by	Approv	
SOAKAWA	Y DESIGN									
In accordan	ce with BRE D	igest 365 - Sc	akaway desi	ign				Tedds calcul	lation yors	
Design rain	fall intensity							redus calcul		
Location of o	catchment area		Bris	stol						
Impermeable	e area drained t	o the system	A =	398.0 m ²						
Return perio				riod = 100	yr					
	to 2 day rainfal		and the second s	0.350						
Star and a second s	n period rainfall (rainfall intensity		narun Maran (* 1984)	_60min = 1						
			warming Polin	_{nate} = 45 %						
Soakaway / Soakaway ty	infiltration tren	ich details	Po	ctangular						
	pe pth of pit (below	incoming inve		800 mm						
Width of pit	put of pit (below	incoming inve	501 V	5700 mm	n					
Length of pit				5700 mm						
Percentage			Vfre	e = 95 %						
				00 10						
Soil infiltration	on rate		f =	70.0×10 ⁻⁶	m/s					
	on rate of pit 50% full			70.0×10 ⁻⁶		20000 mm	2			
	of pit 50% full			70.0×10 ⁻⁶		20000 mm	2			
Wetted area	of pit 50% full tions		a s5(70.0×10 ⁻⁶		20000 mm	2			
Wetted area	of pit 50% full t ions 8.1)		a _{s50} =	70.0×10 ⁻⁶ o = I × d + v	w×d = 91	20000 mm	2			
Wetted area Table equat Inflow (cl.3.3	of pit 50% full t ions 3.1) 3.3.2)		a _{s50} I = O =	70.0×10⁻⁶ 0 = I × d + v M100 × A	w×d = 91	20000 mm	2			
Wetted area Table equat Inflow (cl.3.3 Outflow (cl.3	of pit 50% full t ions 3.1) 3.3.2)	M5 rainfalls (mm)	a _{s50} I = O =	70.0 ×10 ⁻⁶ $_{0} = I \times d + v$ M100 × A $_{s50} \times f \times v$	w×d = 91 D ear all, 00	20000 mm Inflow (m ³)	2 Outflo (m ³)	req	orage juired (m ³)	
Wetted area Table equat Inflow (cl.3.3 Outflow (cl.3 Storage (cl.3 Duration,	of pit 50% full tions 3.1) 3.3.2) 3.3.3) Growth	rainfalls	a₅sc I = O = S = Growth	70.0×10 ⁻⁶ = I × d + 1 M100 × A = a _{s50} × f × : I - O 100 y rainf M10	w × d = 91 D ear all, 00 n)	Inflow	Outflo) req (uired	
Wetted area Table equat Inflow (cl.3.3 Outflow (cl.3 Storage (cl.3 Duration, D (min)	of pit 50% full tions 3.1) 3.3.2) 3.3.3) Growth factor Z1	rainfalls (mm)	a _{s50} I = O = S = Growth factor Z2	70.0 ×10 ⁻⁶ $p = \times d + y$ M100 × A $= a_{s50} \times f \times z$ = 1 - O 100 y rainf M10 (mr	w × d = 91 D ear all, 00 n) 8;	Inflow (m³)	Outflo (m ³)) req (quired (m ³)	
Wetted area Table equat Inflow (cl.3.3 Outflow (cl.3 Storage (cl.3 Storage (cl.3 Duration, D (min)	of pit 50% full tions 3.1) 3.3.2) 3.3.3) Growth factor Z1 0.36;	rainfalls (mm) 10.3;	a ₅₅₀ = 0 = S = Growth factor Z2 1.92;	70.0×10 ⁻⁶ = × d + 1 M100 × A = a₅50 × f × = - O 100 y rainf M10 (mr 19.	w × d = 91 D ear all, 00 n) 8; 2;	Inflow (m³) 7.89;	Outflo (m ³) 0.19) req (; 7 ; 1	uired (m ³) 7.69	
Wetted area Table equat Inflow (cl.3.3 Outflow (cl.3 Storage (cl.3 Duration, D (min) 5 10	of pit 50% full tions 8.1) 3.3.2) 3.3.3) Growth factor Z1 0.36; 0.51;	rainfalls (mm) 10.3; 14.7;	a _{s50} I = O = S = Growth factor Z2 1.92; 1.99;	70.0×10 ⁻⁶ D = I × d + 1 M100 × A = a₅50 × f × : I - O 100 y rainf M10 (mr 19. 29.	w × d = 91 D ear all, 00 n) 8; 2; 2; 0;	Inflow (m ³) 7.89; 11.61;	Outflo (m ³) 0.19 0.38) req (; 7 ; 1 ; 1	(m ³) 7.69 1.23	
Wetted area Table equat Inflow (cl.3.3 Outflow (cl.3 Storage (cl.3 Duration, D (min) 5 10 15	Growth factor Z1 0.36; 0.51; 0.62;	rainfalls (mm) 10.3; 14.7; 17.9;	a _{s50} I = O = S = Growth factor Z2 1.92; 1.99; 2.01;	70.0×10 ⁻⁶ = × d + 1 M100 × A = a _{s50} × f × = l - O 100 y rainf M10 (mr 19. 29. 36.	w × d = 91 D ear all, 00 n) 8; 2; 0; 1;	Inflow (m ³) 7.89; 11.61; 14.33;	Outflo (m ³) 0.19 0.38 0.57) req (; 7 ; 1 ; 1 ; 1	(m ³) 7.69 1.23 3.75	
Wetted area Table equat Inflow (cl.3.3 Outflow (cl.3 Storage (cl.3 Duration, D (min) 5 10 15 30	of pit 50% full tions 3.1) 3.2) 3.3.3) Growth factor Z1 0.36; 0.51; 0.62; 0.79;	rainfalls (mm) 10.3; 14.7; 17.9; 22.8;	a ₅₅₀ I = O = S = Growth factor Z2 1.92; 1.99; 2.01; 2.02;	70.0×10 ⁻⁶ = × d + 1 M100 × A = a₅50 × f × = - O 100 y rainf M10 (mr 19. 29. 36. 46.	w × d = 91 D ear all, 00 n) 8; 2; 0; 1; 4;	Inflow (m ³) 7.89; 11.61; 14.33; 18.33;	Outflo (m ³) 0.19 0.38 0.57 1.15) req (; 7 ; 1 ; 1 ; 1 ; 2	(m ³) 7.69 1.23 3.75 7.18	
Wetted area Table equat Inflow (cl.3.3 Outflow (cl.3 Storage (cl.3 Storage (cl.3 Duration, D (min) 5 10 15 30 60	of pit 50% full tions 8.1) 3.3.2) 3.3.3) Growth factor Z1 0.36; 0.51; 0.62; 0.79; 1.00;	rainfalls (mm) 10.3; 14.7; 17.9; 22.8; 29.0;	a ₅₅₀ I = O = S = Growth factor Z2 1.92; 1.99; 2.01; 2.02; 1.98;	70.0 ×10 ⁻⁶ $0 = 1 \times d + 1$ M100 × A $= a_{s50} \times f \times s$ $= 1 - O$ 100 y rainf M10 19. 29. 36. 46. 57.	w × d = 91 D ear all, 00 n) 8; 2; 0; 1; 4; 3;	Inflow (m ³) 7.89; 11.61; 14.33; 18.33; 22.83;	Outflo (m ³) 0.19 0.38 0.57 1.15 2.30) req (; 7 ; 1 ; 1 ; 1 ; 1 ; 2 ; 2	(m ³) 7.69 1.23 3.75 7.18 0.53	
Wetted area Table equat Inflow (cl.3.3 Outflow (cl.3 Storage (cl.3 Duration, D (min) 5 10 15 30 60 120	Growth factor Z1 0.36; 0.51; 0.62; 0.79; 1.00; 1.22;	rainfalls (mm) 10.3; 14.7; 17.9; 22.8; 29.0; 35.5;	a _{s50} I = O = S = Growth factor Z2 1.92; 1.99; 2.01; 2.02; 1.98; 1.93;	70.0×10 ⁻⁶ = × d + 1 M100 × A = a ₅₅₀ × f × = l - O 100 y rainf M10 (mr 19. 29. 36. 46. 57. 68.	w × d = 91 D ear all, 00 n) 8; 2; 0; 1; 4; 3; 9; 0 0 0; 1; 0; 0; 0; 0; 0; 0; 0; 0; 0; 0	Inflow (m ³) 7.89; 11.61; 14.33; 18.33; 22.83; 27.20;	Outflo (m ³) 0.19 0.38 0.57 1.15 2.30 4.60) req (; 7 ; 1 ; 1 ; 1 ; 2 ; 2 ; 2	(m ³) 7.69 1.23 3.75 7.18 0.53 2.60	
Wetted area Table equat Inflow (cl.3.3 Outflow (cl.3 Storage (cl.3 Duration, D (min) 5 10 15 30 60 120 240	Growth factor Z1 0.36; 0.51; 0.62; 0.79; 1.00; 1.22; 1.50;	rainfalls (mm) 10.3; 14.7; 17.9; 22.8; 29.0; 35.5; 43.4;	a _{s50} I = O = S = Growth factor Z2 1.92; 1.99; 2.01; 2.02; 1.93; 1.93; 1.86;	70.0×10 ⁻⁶ p = l × d + 1 M100 × A = a _{s50} × f × : l - O 100 y rainf M10 (mr 19. 29. 36. 46. 57. 68. 80.	w × d = 91 D 2; 0; 1; 4; 9; 1; 1;	Inflow (m ³) 7.89; 11.61; 14.33; 18.33; 22.83; 27.20; 32.18;	Outflo (m ³) 0.19 0.38 0.57 1.15 2.30 4.60 9.19) req (; 7 ; 1 ; 1 ; 1 ; 2 ; 2 ; 2 ; 2 ; 2 ; 2	juired (m³) 7.69 1.23 3.75 7.18 00.53 2.60 2.99	

Required storage volume Soakaway storage volume

Sreq = 22.99 m³


 $S_{act} = I \times d \times w \times V_{free} = \textbf{24.69} \text{ m}^3$

Time for emptying soakaway to half volume

 $t_{s50} = S_{req} \times 0.5 \ / \ (a_{s50} \times f) \ = 5hr \ 6s$

PASS - Soakaway discharge time less than or equal to 24 hours

PASS - Soakaway storage volume

Appendix 2 – Topographical Survey

Appendix 3 – Greenfield Runoff Calculator

brwellingfor	d			est	imation for site
hrwallingfor	u			www.uksuds	.com Greenfield runoff t
Calculated by: Jam	nes Par	ker		Site Details	
Site name: Amp	oney Pa	ark	_	Latitude:	51.71774° N
Site location: Amp	oney C	rucis		Longitude:	1.9072° W
his is an estimation of the criteria in line with Environr levelopments", SC030219 (standards for SuDS (Defra, or setting consents for th	nent Ag 2013) , t 2015). Ti	ency guidance "Ra he SuDS Manual C7 his information on	ainfall runoff man 753 (Ciria, 2015) ar greenfield runof	nd the non-statutory frates may be the basis Date:	1541976127 Sep 06 2023 13:55
Runoff estimat	ion a	approach	IH124		
Site characteri	stic	3		Notes	
otal site area (ha): ⁽	0.1			(1) Is Q _{BAR} < 2.0 l/s/ha?	
Methodology					
_{BAR} estimation metho	d: C	alculate from S	PR and SAAR	When Q _{BAR} is < 2.0 l/s/ha then lin rates are set at 2.0 l/s/ha.	niting discharge
PR estimation metho	d: C	alculate from S	OIL type		
Soil characteri	stics	Default	Edited	(2) Are flow rates < 5.0 l/s	\$?
SOIL type:		3	3		
lOST class:		N/A	N/A	Where flow rates are less than 5 for discharge is usually set at 5.	
PR/SPRHOST:		0.37	0.37	from vegetation and other mate	
Hydrological characteristics	6	Default	Edited	blockage risk is addressed by us drainage elements.	
SAAR (mm):		753	753		
lydrological region:		6	6	(3) Is SPR/SPRHOST ≤ 0.3?	
Growth curve factor 1	/ear.	0.85	0.85	Where groundwater levels are lo	ow enough the
Frowth curve factor 30 ears:)	2.3	2.3	use of soakaways to avoid disch would normally be preferred for	
rowth curve factor 10 ears:	0	3.19	3.19	surface water runoff.	
Frowth curve factor 20	00	3.74	3.74		

Greenfield runoff rates

Edited

Default

Q _{BAR} (I/s):	0.31	0.31		
1 in 1 year (l/s):	0.27	0.27		
1 in 30 years (l/s):	0.72	0.72		
1 in 100 year (l/s):	1	1	1	
1 in 200 years (l/s):	1.17	1.17		

This report was produced using the greenfield runoff tool developed by HR Wallingford and available at www.uksuds.com. The use of this tool is subject to the UK SuDS terms and conditions and licence agreement, which can both be found at www.uksuds.com/terms-and-conditions.htm. The outputs from this tool are estimates of greenfield runoff rates. The use of these results is the responsibility of the users of this tool. No liability will be accepted by HR Wallingford, the Environment Agency, CEH, Hydrosolutions or any other organisation for the use of this data in the design or operational characteristics of any drainage scheme.

Appendix 4 – British Water Foul Loads & Flows

	Ampney Park	nquiry Sizinរ្	,				WV
Project N Sheet:	o: 12005					1	
Site:	Ampney Park						
Site Sumr	mary						
Proposed	Development Foul Water						
In accorda	ance with British Water Flows and Load	is the anticipa	ated flow	s directed to			
Design Po	op Activity	Flo (Litre		BO (Grams		Ammoni (Grams	
		· · · · · · · · · · · · · · · · · · ·	1 1 1 1 1 1 1 1	Per Head		Per Head	
150	HOTELS, PUBS & CLUBS - Events Venue	s 60	9000	N/A	N/A	N/A	N/A
12 1	Hotel Guests (Prestige Hotels) Bride & Groom Suite	300 300	3600 300	N/A N/A	N/A N/A	N/A N/A	N/A N/A
5	Full time Day Staff	90	450 <u>13350</u>	N/A	<u>0</u>	N/A	<u>0</u>
Calculate	average flow leaving the development	for purposes	of public	sewer conn	ection a	pplication.	
		for purposes				pplication.	
Daily Tot	al	for purposes	13350) Litres/day		pplication.	
Daily Tot Average	ral Flow Rate: 13350 / (8 x 60 x 60) Factor: x 6		13350 0.46 2.78) Litres/day 5 l/s 5 l/s		pplication.	
Daily Tot Average	al Flow Rate: 13350 / (8 x 60 x 60)		13350 0.46 2.78) Litres/day 5 l/s 5 l/s		pplication.	
Daily Tot Average	ral Flow Rate: 13350 / (8 x 60 x 60) Factor: x 6		13350 0.46 2.78) Litres/day 5 l/s 5 l/s		pplication.	
Daily Tot Average	al Flow Rate: 13350 / (8 x 60 x 60) Factor: x 6 <u>Peak discharge rate to</u>		13350 0.46 2.78) Litres/day 5 l/s 5 l/s		pplication.	
Daily Tot Average Peaking	al Flow Rate: 13350 / (8 x 60 x 60) Factor: x 6 <u>Peak discharge rate to</u>		13350 0.46 2.78) Litres/day 5 l/s 5 l/s		pplication.	
Daily Tot Average Peaking	al Flow Rate: 13350 / (8 x 60 x 60) Factor: x 6 <u>Peak discharge rate to</u>		13350 0.46 2.78) Litres/day 5 l/s 5 l/s		pplication.	
Daily Tot Average Peaking	al Flow Rate: 13350 / (8 x 60 x 60) Factor: x 6 <u>Peak discharge rate to</u>		13350 0.46 2.78) Litres/day 5 l/s 5 l/s		pplication.	
Daily Tot Average Peaking	al Flow Rate: 13350 / (8 x 60 x 60) Factor: x 6 <u>Peak discharge rate to</u>		13350 0.46 2.78) Litres/day 5 l/s 5 l/s		pplication.	
Daily Tot Average Peaking	al Flow Rate: 13350 / (8 x 60 x 60) Factor: x 6 <u>Peak discharge rate to</u>		13350 0.46 2.78) Litres/day 5 l/s 5 l/s		pplication.	ed: JP

alculation Spreadsheet PTP Enquiry Sizing Shee oject: Ampney Park oject No: 12005	-			W
leet:				
BRITISH WATER				
expertise worldwide				
Table of Loadings for Sewage Treatment Systems				
Per person / activity / day (unless otherwise specified)	FLOW	BOD	Ammonia as N	
DOMESTIC DWELLINGS	(Litres)	(Grams)	0011	
(Grams) Standard residential	150	60	8	
Mobile home type caravans with full services	150	60	8	
INDUSTRIAL				
Office / Factory without canteen Office / Factory with canteen	50 100	25 38	5 5	
Open industrial site, e.g. construction, quarry, without canteen	60	25	5	
*Full-time Day Staff	90	38	5	
*Part-time Staff (4 hr shift)	45	25	3	
SCHOOLS Non-residential with canteen cooking on site	90	38	5	
Non-residential without a canteen	50	25	5	
Boarding school (i) residents	175	60	8	
(ii) day staff (inc. mid-day meal)	90	38	5	
HOTELS, PUBS & CLUBS Hotel Guests (Prestige hotels)	300	105	12	
Hotel Guests (* earlier hotels)	250	94	10	
Guests (Bedroom only - no meals)	80	50	6	
Residential Training/Conference Guest (inclusive all meals)	350	150	15	
Non residential Conference Guest Drinkers	60 12	25 15	2.5	
Holiday camp chalet resident	150	94	10	
Resident Staff	180	75	10	
Restaurants - Full Meals - luxury catering	30 25	38 30	4 2.5	
- pre-prepared catering - Snack Bars & bar meals	15	19	2.5	
- Function Rooms including buffets	15	19	2.5	
- Fast Food i.e. (roadside restaurants)	12	12	2.5	
- Fast Food Meal (burger chain and similar) Students (Accommodation only)	12	15 60	4 B	
AMENITY SITES	100		0	
Toilet Blocks (per use)	10	12	2.5	
Toilet (WG) (per use)	10	12	2.5	
Toilet (Urinal) (per use) Toilet Blocks in long stay car parks/lony parks (per use)	5 10	12 19	2.5 4	
Shower (per use)	40	19	2	
Golf Club	20	19	5	
Local community sports club, e.g. squash, rugby & football	40	25	6	
Swimming (where a separate pool exists without an associated sports centre)	10 50	12 19	2.5 4	
Health Club/Sports Centre Tent sites	75	44	8	
Caravan Sites - (i) Touring not serviced	100	44	8	
(ii) Static not serviced	100	44	8	
(iii) Static fully serviced	150	60	8	
HOSPITALS & RESIDENTIAL CARE HOMES Residential old people / nursing	350	110	13	
Small hospitals	450	140	Assess	
Large hospitals		Assess individua		

Prepared: JP

Checked: DJ

Mann Williams Consulting Civil and Structural Engineers 7 Old King St. Queen Square Bath BA1 2JW T 01225 464419 E bath@mannwilliams.co.uk