	Project				Job no.	
	Rio House, High Street, Ripley				22094	
	Calcs for				Start page no./Revision	
CP Structural Engineering Ltd	Timber lintel			1		
Pyrford, Woking	Calcs by	Calcs date	Checked by	Checked date	Approved by	Approved date
Surrey. GU22 8XP	CP	12/05/2023				

Load combinations		
Load combination 1	Support A	$\text{Dead} \times 1.00$
Imposed × 1.00		
Span 1	$Dead \times 1.00$	
Imposed × 1.00		
Support B	$Dead \times 1.00$	
Imposed \times 1.00		
Analysis results		
Maximum moment	M _{max} = 0.292 kNm	M _{min} = 0.000 kNm
Design moment	$M = max(abs(M_{max}), abs(M_{min})) = 0$.292 kNm
Maximum shear	F _{max} = 1.167 kN	F _{min} = -1.167 kN
Design shear	$F = max(abs(F_{max}), abs(F_{min})) = 1.1$	1 67 kN

structural	Project Rio House, High Street, Ripley			Job no. 22094				
	Calcs for				Start page no./Revision			
CP Structural Engineering Ltd		Timbe	er lintel		2			
High Reach, 2 Old Acre Pvrford, Woking	Calcs by	Calcs date	Checked by	Checked date	Approved by	Approved date		
Surrey. GU22 8XP	CP	12/05/2023						
Total load on boom		\\/ _ 2 22	2 LNI					
Reactions at support A		$R_{1} = 1.33$	67 kN	R ₄ min =	1 167 kN			
Unfactored dead load reaction a	at support A	$R_{A_{max}} = 1.07 \text{ kN}$ $R_{A_{min}} = 1.07 \text{ kN}$						
Unfactored imposed load reaction	on at support A	R_{A} Imposed =	0.150 kN					
Reactions at support B		R _{B max} = 1.1	67 kN	R _{B min} =	1.167 kN			
Unfactored dead load reaction a	at support B	$R_{B_{Dead}} = 1.$	017 kN	_				
Unfactored imposed load reaction	on at support B	R _{B_Imposed} =	0.150 kN					
\uparrow \land \land \land								
				\leq				
	\bowtie							
	← 50- >							
Timber contion details								
Broadth of soctions		h – 11 mm						
Depth of sections		b = 147 mn	n					
Number of sections in member		N = 2	•					
Overall breadth of member		$b_{\rm b} = N \times b =$	= 88 mm					
Timber strength class	Timber strength class		C24					
Member details								
Service class of timber		1						
Load duration		Long term						
Length of span	Length of span		L _{s1} = 1000 mm					
Length of bearing		L _b = 50 mm	ı					
Section properties								
Cross sectional area of membe	r	$A = N \times b \times$	h = 12936 mm	n²				
Section modulus		$Z_x = N \times b$	< h² / 6 = 3169	32 mm³				
$Z_y = h \times (N \times b)^2 / 6 = 189728 \text{ m}$	nm³							
Second moment of area		$I_x = N \times b \times$	h ³ / 12 = 2329	4502 mm⁴				
I _v = h × (N × b) ³ / 12 = 8348032	mm⁴							
Radius of gyration		$i_x = \sqrt{(I_x / A)}$	= 42.4 mm					
$i_v = \sqrt{(I_v / A)} = 25.4 \text{ mm}$								
Modification factors								
Duration of loading - Table 17		K ₃ = 1.00						
Bearing stress - Table 18		K ₄ = 1.00						
Total depth of member - cl.2.10.6		K ₇ = (300 mm / h) ^{0.11} = 1.08						
Load sharing - cl.2.10.11		K ₈ = 1.10	-					
Minimum modulus of elasticity	- Table 20	K ₉ = 1.14						
Lateral support - cl.2.10.8								
No lateral support								
Permissible depth-to-breadth ratio - Table 19		2.00						
Actual depth-to-breadth ratio		h / (N × b) =	= 1.67					
				PASS - L	ateral suppor	t is adequate		

	Project				Job no.	
CO structural engineering	Rio House, High Street, Ripley				22094	
	Calcs for				Start page no./Revision	
CP Structural Engineering Ltd	Timber lintel				3	
Pyrford, Woking Surrey, GU22 8XP	Calcs by CP	Calcs date 12/05/2023	Checked by	Checked date	Approved by	Approved date

Compression perpendicular to grain	
Permissible bearing stress (no wane)	$\sigma_{c_adm} = \sigma_{cp1} \times K_3 \times K_4 \times K_8 = \textbf{2.640} \text{ N/mm}^2$
Applied bearing stress	$\sigma_{c_a} = R_{A_max} / (N \times b \times L_b) = 0.265 \text{ N/mm}^2$
$\sigma_{c_a} / \sigma_{c_adm} = 0.100$	
PASS - Applied	compressive stress is less than permissible compressive stress at bearing
Bending parallel to grain	
Permissible bending stress	$\sigma_{m_adm} = \sigma_m \times K_3 \times K_7 \times K_8 = 8.923 \text{ N/mm}^2$
Applied bending stress	$\sigma_{m_a} = M / Z_x = 0.920 \text{ N/mm}^2$
$\sigma_{m_a} / \sigma_{m_adm} = 0.103$	
	PASS - Applied bending stress is less than permissible bending stress
Shear parallel to grain	
Permissible shear stress	$\tau_{adm} = \tau \times K_3 \times K_8 = 0.781 \text{ N/mm}^2$
Applied shear stress	$\tau_a = 3 \times F / (2 \times A) = 0.135 \text{ N/mm}^2$
$\tau_{a} / \tau_{adm} = 0.173$	
	PASS - Applied shear stress is less than permissible shear stress
Deflection	
Modulus of elasticity for deflection	$E = E_{min} \times K_9 = 8208 \text{ N/mm}^2$
Permissible deflection	δ_{adm} = min(0.551 in, 0.003 \times $L_{s1})$ = 3.000 mm
Bending deflection	δ _{b_s1} = 0.159 mm
Shear deflection	δ _{v_s1} = 0.053 mm
Total deflection	$\delta_a = \delta_{b_s1} + \delta_{v_s1} = 0.212 \text{ mm}$
$\delta_a / \delta_{adm} = 0.071$	

PASS - Total deflection is less than permissible deflection