engineering CP Structural Engineering Ltd High Reach, 2 Old Acre Pyrford, Woking Surrey. GU22 8XP	Project Rio House, High Street, Ripley				$\begin{array}{\|ll\|} \hline \text { Job no. } & \\ \hline \end{array}$	
	Calcs for			Timber lintel	Start page no./Revision 1	
	Calcs by CP	$\begin{aligned} & \text { Calcs date } \\ & 12 / 05 / 2023 \end{aligned}$	Checked by	Checked date	Approved by	Approved date

TIMBER BEAM ANALYSIS \& DESIGN TO BS5268-2:2002

Applied loading

Beam loads

Dead self weight of beam $\times 1$

Timber stud wall
Roof (nom)
Roof (nom)
Load combinations
Load combination 1
Imposed $\times 1.00$
Span 1
Imposed $\times 1.00$
Support B
Imposed $\times 1.00$

Analysis results

Maximum moment
Design moment
Maximum shear
Design shear

Dead $\times 1.00$

Dead $\times 1.00$
Dead full UDL $1.500 \mathrm{kN} / \mathrm{m}$
Dead full UDL $0.480 \mathrm{kN} / \mathrm{m}$
Imposed full UDL $0.300 \mathrm{kN} / \mathrm{m}$

Support A
Dead $\times 1.00$
$\mathrm{M}_{\text {max }}=\mathbf{0 . 2 9 2} \mathrm{kNm} \quad \mathrm{M}_{\text {min }}=\mathbf{0 . 0 0 0} \mathrm{kNm}$
$M=\max \left(\operatorname{abs}\left(M_{\text {max }}\right), \operatorname{abs}\left(M_{\text {min }}\right)\right)=0.292 \mathrm{kNm}$
$F_{\text {max }}=1.167 \mathrm{kN}$
$F_{\text {min }}=-1.167 \mathrm{kN}$
$\mathrm{F}=\max \left(\operatorname{abs}\left(\mathrm{F}_{\max }\right), \mathrm{abs}\left(\mathrm{F}_{\text {min }}\right)\right)=1.167 \mathrm{kN}$

CP Structural Engineering Ltd High Reach, 2 Old Acre Pyrford, Woking	Project Rio House, High Street, Ripley				22094	
	Timber lintel				Start page no	vision 2
	Calcs by	$\begin{array}{\|l\|} \hline \text { Calcs date } \\ 12 / 05 / 2023 \\ \hline \end{array}$	Checked by	Checked date	Approved by	Approved date

Timber section details

Breadth of sections
Depth of sections
Number of sections in member
Overall breadth of member
Timber strength class

Member details

Service class of timber
Load duration
Length of span
Length of bearing

Section properties

Cross sectional area of member
Section modulus
$Z_{y}=h \times(N \times b)^{2} / 6=189728 \mathrm{~mm}^{3}$
Second moment of area
$\mathrm{I}_{\mathrm{y}}=\mathrm{h} \times(\mathrm{N} \times \mathrm{b})^{3} / 12=8348032 \mathrm{~mm}^{4}$
Radius of gyration
$\mathrm{i}_{\mathrm{y}}=\sqrt{ }\left(\mathrm{I}_{\mathrm{y}} / \mathrm{A}\right)=\mathbf{2 5 . 4} \mathrm{mm}$

Modification factors

Duration of loading - Table 17
Bearing stress - Table 18
Total depth of member - cl.2.10.6
Load sharing - cl.2.10.11
Minimum modulus of elasticity - Table 20

Lateral support - cl.2.10.8

No lateral support
Permissible depth-to-breadth ratio - Table 19
Actual depth-to-breadth ratio
$\mathrm{b}=44 \mathrm{~mm}$
$\mathrm{h}=147 \mathrm{~mm}$
$\mathrm{N}=2$
$\mathrm{b}_{\mathrm{b}}=\mathrm{N} \times \mathrm{b}=88 \mathrm{~mm}$
C24

1
Long term
$\mathrm{L}_{\mathrm{s} 1}=\mathbf{1 0 0 0} \mathrm{mm}$
$\mathrm{L}_{\mathrm{b}}=50 \mathrm{~mm}$
$\mathrm{A}=\mathrm{N} \times \mathrm{b} \times \mathrm{h}=12936 \mathrm{~mm}^{2}$
$Z_{x}=N \times b \times h^{2} / 6=316932 \mathrm{~mm}^{3}$
$\mathrm{I}_{\mathrm{x}}=\mathrm{N} \times \mathrm{b} \times \mathrm{h}^{3} / 12=\mathbf{2 3 2 9 4 5 0 2} \mathrm{mm}^{4}$
$i_{x}=\sqrt{ }\left(I_{x} / A\right)=42.4 \mathrm{~mm}$
$\mathrm{K}_{3}=1.00$
$\mathrm{K}_{4}=1.00$
$\mathrm{K}_{7}=(300 \mathrm{~mm} / \mathrm{h})^{0.11}=1.08$
$\mathrm{K}_{8}=1.10$
$K_{9}=1.14$
$h /(N \times b)=1.67$

engineering CP Structural Engineering Ltd High Reach, 2 Old Acre Pyrford, Woking Surrey. GU22 8XP	Project Rio House, High Street, Ripley				$\begin{array}{\|ll\|} \hline \text { Job no. } & \\ \hline \end{array}$	
	Calcs for				Start page no./Revision 3	
	Calcs by CP	$\begin{array}{\|l\|} \hline \text { Calcs date } \\ 12 / 05 / 2023 \\ \hline \end{array}$	Checked by	Checked date	Approved by	Approved date

Compression perpendicular to grain

Permissible bearing stress (no wane)
Applied bearing stress
$\sigma_{c _ \text {adm }}=\sigma_{c p 1} \times \mathrm{K}_{3} \times \mathrm{K}_{4} \times \mathrm{K}_{8}=2.640 \mathrm{~N} / \mathrm{mm}^{2}$
$\sigma_{c _a} / \sigma_{c _a d m}=\mathbf{0 . 1 0 0}$
PASS - Applied compressive stress is less than permissible compressive stress at bearing

Bending parallel to grain

Permissible bending stress
Applied bending stress
$\sigma_{\mathrm{m} _\mathrm{a}} / \sigma_{\mathrm{m} _ \text {adm }}=0.103$
$\sigma_{\mathrm{m} _ \text {adm }}=\sigma_{\mathrm{m}} \times \mathrm{K}_{3} \times \mathrm{K}_{7} \times \mathrm{K}_{8}=8.923 \mathrm{~N} / \mathrm{mm}^{2}$
$\sigma_{\mathrm{m} _a}=\mathrm{M} / \mathrm{Z}_{\mathrm{x}}=0.920 \mathrm{~N} / \mathrm{mm}^{2}$

PASS - Applied bending stress is less than permissible bending stress

Shear parallel to grain

Permissible shear stress
Applied shear stress
$\tau_{\mathrm{a}} / \tau_{\mathrm{adm}}=0.173$

Deflection

Modulus of elasticity for deflection
Permissible deflection
Bending deflection
Shear deflection
Total deflection
$\delta_{a} / \delta_{\text {adm }}=0.071$
$\tau_{\text {adm }}=\tau \times \mathrm{K}_{3} \times \mathrm{K}_{8}=0.781 \mathrm{~N} / \mathrm{mm}^{2}$
$\tau_{\mathrm{a}}=3 \times \mathrm{F} /(2 \times \mathrm{A})=0.135 \mathrm{~N} / \mathrm{mm}^{2}$

PASS - Applied shear stress is less than permissible shear stress
$\mathrm{E}=\mathrm{E}_{\text {min }} \times \mathrm{K}_{9}=8208 \mathrm{~N} / \mathrm{mm}^{2}$
$\delta_{\text {adm }}=\min \left(0.551 \mathrm{in}, 0.003 \times \mathrm{L}_{\mathrm{s} 1}\right)=3.000 \mathrm{~mm}$
$\delta_{\mathrm{b} _\mathrm{s} 1}=0.159 \mathrm{~mm}$
$\delta_{v_{-} 1}=0.053 \mathrm{~mm}$
$\delta_{\mathrm{a}}=\delta_{\mathrm{b} _s 1}+\delta_{\mathrm{v} _s}=0.212 \mathrm{~mm}$

PASS - Total deflection is less than permissible deflection

