
					Vorks yard					
				Concrete Forecourt						UK Pow 'Pot End
				PO					SUB STATION K-K-K- CO CO CO CO CO CO CO CO CO CO CO CO CO	the new for 18 Please disconne th m WFM
								Core 1.4	Core 95mm WFM	ink Boxes Adopted) Id by DIS tion Straight Joint arth rod to be installe
								10 Way 1J MSDB feeding 4 plots		sition joint and bonde
								BLO		+ +
								ore 1.3		
				Core 1.1 10 Way 1J MSDB feeding 6 plots	BLOCK 1	Core 1.2 10 Way 1J MSDB feeding 4 plots + Landlord supply	fe	5 Way 1J MSDB beding 14 plots		
L	JDN APPROVED N	MATERIALS LIST	e Street		3	G-G		Feeder Pillar 1		
Description/ Application	Specification	Preferred Suppliers	Comments			5 (12		11	VVC-C	
35mm ² aluminium single-phase split concentric service cable with solid aluminium conductor, XPLE insulation and insulated copper concentric seperate neutral and bare copper earth conductor and orange LSOH sheath	BS 7870 (Part 3.12)	Wolseley UK Limited T/A Utility Power Systems, Carrwood Road, Chesterfield Trading Estate, Chesterfield, Derbyshire. S41 9QB	Single-phase 100A rsing or lateral main domestic/commercial SNE Supply						3no. PVC-LS0H transition joints. Joint numbers	
35mm ² aluminium three-phase split concentric service cable with solid aluminium conductor, XPLE insulation and insulated copper concentric seperate neutral and bare copper earth conductor and orange LSOH sheath LV Mains Cables	BS 7870 (Part 3.12)	Wolseley UK Limited T/A Utility Power Systems, Carrwood Road, Chesterfield Trading Estate, Chesterfield, Derbyshire. S41 9QB	Three-phase 100A rising or lateral main domestic/commercial SNE Supply	Core 3.1 10 Way 1J MSDB				<u>Core 3.3</u>	6,8 & 9 6 L-L D-D	
95mm ² aluminium waveform mains cable with solid aluminium conductor, XPLE insulation and copper concentric separate neutral/ earth conductor with a black PVC sheath	BS 7870 (Part 3 - 40)	Wolseley UK Limited T/A Utility Power Systems, Carrwood Road, Chesterfield Trading Estate, Chesterfield, Derbyshire. S41 9QB Wolseley UK Limited T/A	SNE 4 Core Cable PVC	feeding 8 plots		Core 3. 3way S	12	15 Way 2J MSDB feeding 9 plots		24 26 28
95mm ² four-core aluminium waveform mains cable with solid aluminium conductor, XPLE insulation and copper concentric separate neutral/ earth conductor with an orange LSOH sheath	BS 7870 (Part 3 - 40)	Wolseley UK Limited T/A Utility Power Systems, Carrwood Road, Chesterfield Trading Estate, Chesterfield, Derbyshire. S41 9QB Wolseley UK Limited T/A	SNE 4 Core Cable LSOH; Internal Use	01 02 03 04 05	06 07	08 09 10	▼ E-E	13	2 VEL E SPACES	23 25 27
Waveform Mains service joint 70 to 300mm ²	ENA ER C79, ENA ER C81 BS 6910	Voiseley UK Limited T/A Utility Power Systems, Carrwood Road, Chesterfield Trading Estate, Chesterfield, Derbyshire. S41 9QB Wolseley UK Limited T/A	Joint to be filled with 2 part polyeurathane resin	92 91 90 89 88	87 86	85 84	3	103		
Waveform to Waveform Mains Branch Joint Cut- Outs	ENA ER C79, ENA ER C81 BS 6910	Utility Power Systems, Carrwood Road, Chesterfield Trading Estate, Chesterfield, Derbyshire. S41 9QB	Joint to be filled with 2 part polyeurathane resin				2 94 1 95	104		
100A SNE Single Pole Cut-out KIT	BS 7657	Wolseley UK Limited T/A Utility Power Systems, Carrwood Road, Chesterfield Trading Estate, Chesterfield, Derbyshire. S41 9QB Wolseley UK Limited T/A	1 x SPN + E cut-out, 1 x protection chamber, phase label				96 97 97 98	106	116	128 128
100A SNE Triple Pole Cut-out KIT Multi Service Distibution Boards and assoicated connec Lucy 10 Way GPF10 Multiway Horitontal Service	BS 7657	Utility Power Systems, Carrwood Road, Chesterfield Trading Estate, Chesterfield, Derbyshire. S41 9QB	Kit contains 2xSP 100A cut-out, 1xSPN + E cut- out, 1xprotection chamber, phase For PME supplies with removable link to convert to			Core 3.4 15 Way 2J MSDB feeding 10 plots. 24 way 1J MSDB on 3th floor feeding 21 plots	99 8 100	109	119 120	*
Distribution Boards; J Type BS88 incoming fuse; 715hx622wx220d Lucy 15Way 1J Multiway Service Distribution Boards	BS EN 60438 BS EN 60438	Howland Road, Thame, Oxfordshire. OX9 3UJ Lucy Electric UK Limited, Howland Road, Thame,	For PME supplies with removable link to convert to SNE with additional 4 core Kit; Accepts incoming Cables 95-185 For PME supplies with removable link to convert to SNE with additional 4 core Kit; Accepts incoming				7 <u>101</u> 3 102	111	121	
1000hx503wx250d THM0003715 Lucy 15Way 2J Multiway Service Distribution Boards 1000hx710wx250d THM0003715	BS EN 60438	Oxfordshire. OX9 3UJ Lucy Electric UK Limited, Howland Road, Thame, Oxfordshire. OX9 3UJ	Cables 95-300 For PME supplies with removable link to convert to SNE with additional 4 core Kit; Accepts incoming Cables 95-300			74			6 ¹	Core 24 W 19 pk
Lucy 24Way J1 Multiway Service Distribution Boards 1000hx642wx250d THM0003715	BS EN 60438	Lucy Electric UK Limited, Howland Road, Thame, Oxfordshire. OX9 3UJ	For PME supplies with removable link to convert to SNE with additional 4 core Kit; Accepts incoming Cables 95-300			73 72 71	89 69 WIC X 07	67 66 65	64 63 62 ×	30 wa floor
Lucy 24Way J2 Multiway Service Distribution Boards 1000hx849wx250d THM0003715 Lucy 30Way 1J Multiway Service Distribution Boards	BS EN 60438	Lucy Electric UK Limited, Howland Road, Thame, Oxfordshire. OX9 3UJ Lucy Electric UK Limited,	For PME supplies with removable link to convert to SNE with additional 4 core Kit; Accepts incoming Cables 95-300 For PME supplies with removable link to convert to	5						
Lucy 30Way 1J Multiway Service Distribution Boards 1000hx735wx250d THM0003715 Lucy 30Way J2 Multiway Service Distribution Boards 1000hx942wx250d THM0003715 82mm Industrial fuse-links for use in Cut-Outs	BS EN 60438 BS EN 60438	Howland Road, Thame, Oxfordshire. OX9 3UJ Lucy Electric UK Limited, Howland Road, Thame, Oxfordshire. OX9 3UJ	SNE with additional 4 core Kit; Accepts incoming Cables 95-300 For PME supplies with removable link to convert to SNE with additional 4 core Kit; Accepts incoming Cables 95-300							
100A Cartridge Fuse BS1361 415V (5.0W) 33kA 57mm x 30.2mm	BS1361	Cooper Bussmann, Melton Road, Burton-on-the-worlds, Leicestershire. LE12 5TH	Part Number: 100LR85							// //
200A BS 88-2:2007 Table 905 (82mm Centres) 92mm Industrial fuse links for use in Transformer Mount	BS88 Sec 3 BS1361 ted Fuse Cabinets	Wolseley UK Limited T/A Utility Power Systems, Carrwood Road, Chesterfield Trading Estate, Chesterfield, Derbyshire. S41 9QB	Maximum Power Dissipation Dimensions to BS 88- 5: 1988 Table 2 82mm centre For use on Radial Network and Services Close Tag							
160A BS-2:2007 Table 905 (92mm Centres)	BS88 Sec 3 BS1361	Wolseley UK Limited T/A Utility Power Systems, Carrwood Road, Chesterfield Trading Estate, Chesterfield, Derbyshire. S41 9QB	Maximum Power Dissipation Dimensions to BS 88- 5: 1988 Table 2 82mm centre For use on Radial Network and Services Close Tag	This plan (or the attached p					cted and owned by Energy Asso	
200A BS-2:2007 Table 905 (92mm Centres) Meter Boards, Boxes and Accessories	BS88 Sec 3 BS1361	Wolseley UK Limited T/A Utility Power Systems, Carrwood Road, Chesterfield Trading Estate, Chesterfield, Derbyshire. S41 9QB	Maximum Power Dissipation Dimensions to BS 88- 5: 1988 Table 2 82mm centre For use on Radial Network and Services Open Tag	third parties may also be parties from the relevant owners.	resent in No warra	n this area but are anties are given v	e not shown or vith regard to	n this plan. Info the accuracy o	ectric cables owned by other d ormation with regards to such o f the information shown on thi pility of any kind whatsoever is	cables shou is plan. Serv
Single Phase Internal Meter Board 350mmx350mmx12mm		Wolseley UK Limited T/A Utility Power Systems, Carrwood Road, Chesterfield Trading Estate, Chesterfield, Derbyshire. S41 9QB	SP&N House services internal meter board 12mm Fire Rated	agents, servants or sub-cor be used to verify and estab your responsibility to ensur	ntractors lish the a re that pl	for any error or actual position of lant location info	omission conta Cables, servio rmation is pro	ained herein. S ces and other a vided to all per	afe digging practices, in accord pparatus on site before any me rsons (whether direct labour of ot be referred to beyond a per	dance with echanical p r sub-contra
Three Phase Internal Meter Board; 650mm (h)x460mm (w)x12mm Miscellaneous		Wolseley UK Limited T/A Utility Power Systems, Carrwood Road, Chesterfield Trading Estate, Chesterfield, Derbyshire. S41 9QB	Three phase 100A supplies 12mm meter board for mounting electrical service equipment such as cut- outs - Fired Rated		are clos	e to EAN apparat		•	ot be referred to beyond a per	
SNE Cut Out Label		Wolseley UK Limited T/A Utility Power Systems, Carrwood Road, Chesterfield Trading Estate, Chesterfield, Derbyshire, S41 90B	Self Adhesive	UNTININAI						
Civils LV and HV Cable Warning Marker Tape	ENA TS 12-23	Derbvshire. S41 9QB Wolseley UK Limited T/A Utility Power Systems, Carrwood Road, Chesterfield Trading Estate, Chesterfield, Derbvshire. S41 9QB	Marked with Utility Distribution Networks	Description/ Application	rippiored	Manufacturers Model/ Type Reference or Drawing No.	Approved Supplier Cooper Bussman, Burton-on-the-Wolds Loughborough	Approval Document Number	Maximum Power Dissipation Dimensions to BS 88-5:	SAP Number
50mm coilable service duct (50m) 125mm INTERNAL Twinwall rigiduct (6m length)	ENA TS 12-24 BSEN12613 ENA TS 12-24 BSEN12613	Plas Tec (Southern) Ltd, Plaspipes Ltd Plas Tec (Southern) Ltd, Plaspipes Ltd	Used for three-phase 100A service cables LV, 11kV and 22kV mains cables	200A BS 88-2:2007 Table 905 (82mm Centres)	UKPN	200MJ30-7	Leicestershire United Kingdom LE12 5TH Tel: 01509 882 691 Prysmain Cables &	EA 05-4005	1988 Table 2 82mm centre For use on Radial Network and Services Close Tag	11928U
125mm INTERNAL diameter steel pipe	BSEN12613 BS1387 (1985)	Plaspipes Ltd Plas Tec (Southern) Ltd, Plaspipes Ltd	Thread coupled; end of pipes to be bevelled on internal edge, finished clean and smooth, free from rough edges burrs and sharp projections, no welded joints	300mm ² aluminium waveform mains cable with solid aluminium conductor, XPLE insulation and copper waveform combined neutral/ earth conductor with a black PVC sheath	UKPN	VLBA3L30BA0ABK	Prysmain Cables & Systems Limited, ChickenHall Lane, Bishopstoke, Eastleigh SO50 6YU	N/A		05588H

	and the second	Network Design.	10101a			No. of the second se		the second s	and the second se	network besig				the state of the second s	
Main	s Design Pressure and V	Velocity	and a second	Mains	Lengths (m) a	nd Diameters	Main	s Design Pres	sure and Velocity			Main	s Lengths (m)	and Diameters	
	LP	MP			Pe	N		LP		MP		Pe			
Source Pressure	25 mBar	mBar		.Р	MP	IP (HDPE100)	Source Pressure	24 mBar		mBar	1	P	MP	IP (HDPE100)	
Source Pressure	23 IIBai	IIIbai	63mm	210	63mm	63mm	Source Pressure	24 mbar		mbar	63mm		63mm	63mm	
Peak Flow	216.4 m3/hr	m3/hr	90mm	132	90mm	90mm	Pook Flow					75	90mm	90mm	
FEARTION	210.4 110/11	movin	125mm	68	125mm	125mm	Peak Flow 37.2 m3/hr		m3/hr	125mm	3	125mm	125mm		
Maximum Velocity	5.12 m/s	m/s	180mm	29	180mm	180mm	Maximum Velocity	5 m/s		m/s	180mm	12	180mm	180mm	
Minimum Pressure		mBar	250mm		250mm	250mm	Minimum Pressure	23.26 mBar	On combi test	mBar	250mm	2	250mm	250mm	
Pressure Drop	2.58 mBar	0 mBar	315mm		315mm	315mm	Pressure Drop	0.74 mBar		0 mBar	315mm		315mm	315mm	
	Connection		355mm		355mm	355mm		Conne	ction		355mm		355mm	355mm	
arent Main Operator	Scotia Gas		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	-	Steel		Parent Main Operator	Scotia Gas Networks			Steel				
Parent Main Dia	180r	nm		P	MP	P	Parent Main Dia		125mm	NACE OF THE OWNER OF		P	MP	P	
Parent Main Material	PE		11/2"	139.4	1 - T-	· · · · · · · · · · · · · · · · · · ·	Parent Main Material		PE		1 1/2"	21	100	1100	
Connection	Cut Ou	rt Tee	2"	99.8	1		Connection	Bra	anch Saddle Conne	ection	2"	16.6		1	
POC Coordinates	554293.	174499					POC Coordinates		554385, 174500)					
Downstream Main	180mr						Downstream Main		90mm PE						

From:	Enquiries, Unit <enquiries@environment-agency.gov.uk></enquiries@environment-agency.gov.uk>
Sent:	02 August 2023 17:32
То:	Utility Solutions GDC Requests
Subject:	FW: Plant Enquiry - 208638 - Site off Hythe Street, Dartford - Please respond by 10/08/2023
Attachments:	SiteBoundary208638.pdf

Dear Customer,

You may need an environmental permit if you intend to carry out work in, under, over or near to a main river flood or sea defence. You can find more information about this at:

https://www.gov.uk/guidance/flood-risk-activities-environmental-permits

Although the Environment Agency is classed as a statutory undertaker for certain purposes, we do not generally have plant equipment or pipelines situated in the public highway.

We have drafted this reply without conducting a specific search of our records. We ask that you make the necessary checks and if you have reason to think that your proposal will affect land or equipment which we own or is close to a watercourse as defined above, please resubmit your enquiry making this clear in your reply.

Kind regards

Vanessa Incident Communication Service Operations: Regulation, Monitoring and Customer Environment Agency

🖀 External number: 0800 80 70 60

Web Site: www.gov.uk/environment-agency

Click an icon to keep in touch with us:-

From: Utility Solutions Orders <requests.utilitysolutions@atkinsglobal.com>
Sent: 01 August 2023 07:13
To: Enquiries, Unit <enquiries@environment-agency.gov.uk>
Subject: Plant Enquiry - 208638 - Site off Hythe Street, Dartford - Please respond by 10/08/2023

Our Reference: 208638 Site Name: Site off Hythe Street, Dartford Works Description: BoringVertical Site Grid References: 554208 174565

To whom it may concern,

Standard notice [not for use with Special Data, Personal Data or unlicensed 3rd party rights]

Information warning

We (The Environment Agency) do not promise that the Information supplied to You will always be accurate, free from viruses and other malicious or damaging code (if electronic), complete or up to date or that the Information will provide any particular facilities or functions or be suitable for any particular purpose. You must ensure that the Information meets your needs and are entirely responsible for the consequences of using the Information. Please also note any specific information warning or guidance supplied to you.

Permitted use

- The Information is protected by intellectual property rights and whilst you have certain statutory rights which include the right to read the Information, you are granted no additional use rights whatsoever unless you agree to the licence set out below.
- Commercial use of anything except EA OpenData is subject to payment of a £50 licence fee (+VAT) for each person seeking the benefit of the licence, except for use as an Environment Agency contractor or for approved media use.
- To activate this licence you do not need to contact us (unless you need to pay us a Commercial licence fee) but if you make any use in excess of your statutory rights you are deemed to accept the terms below.

Licence

We grant you a worldwide, royalty-free (apart from the £50 licence fee for commercial use), perpetual, non-exclusive licence to use the Information subject to the conditions below.

You are free to:

copy, publish, distribute and transmit the Information

adapt the Information

exploit the Information commercially, for example, by combining it with other Information, or by including it in your own product or application

You must (where you do any of the above):

acknowledge the source of the Information by including the following attribution statement: "Contains Environment Agency information © Environment Agency and database right"

ensure that you do not use the Information in a way that suggests any official status or that We endorse you or your use of the Information

ensure that you do not mislead others or misrepresent the Information or its source or use the Information in a way that is detrimental to the environment, including the risk of reduced future enhancement

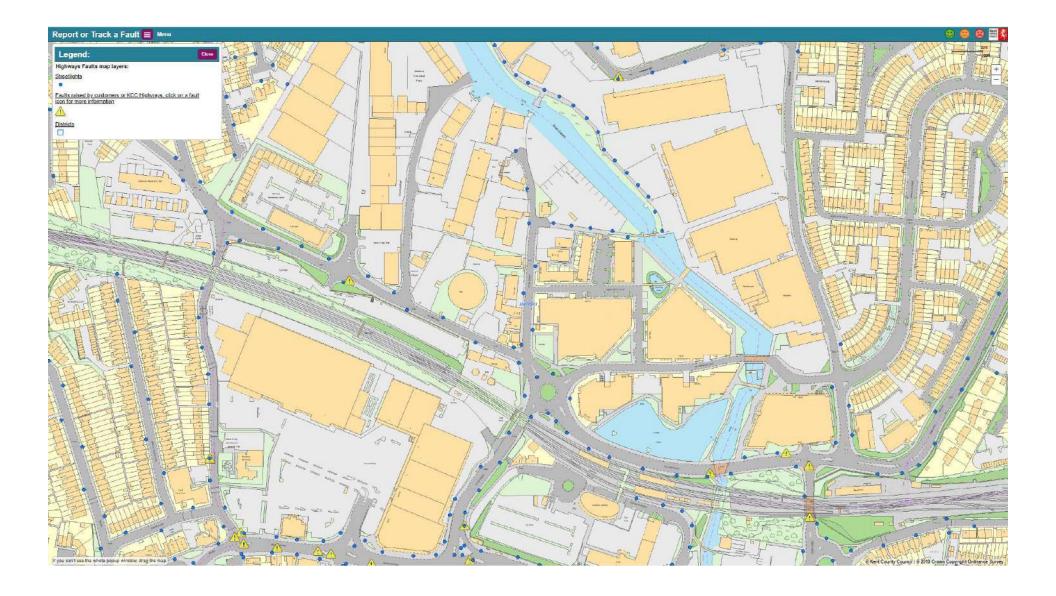
ensure that your use of the Information does not breach the Data Protection Act 1998 or the Privacy and Electronic Communications (EC Directive) Regulations 2003

These are important conditions and if you fail to comply with them the rights granted to you under this licence, or any similar licence granted by us will end automatically.

No warranty

The Information is licensed 'as is' and We exclude all representations, warranties, obligations and liabilities in relation to the Information to the maximum extent permitted by law. We are not liable for any errors or omissions in the Information and shall not be liable for any loss, injury or damage of any kind caused by its use. We do not guarantee the continued supply of the Information.

Governing Law


This licence is governed by the laws of England and Wales.

Definitions

"Information" means the information that is protected by copyright or by database right (for example, literary and artistic works, content, data and source code) offered for use under the terms of this licence.

"Commercial" means:

- offering a product or service containing the Information, or any adaptation of it, for a charge, or
- internal use for any purpose, or offering a product or service based on the Information for indirect commercial advantage, by an organisation that is primarily engaged in trade, commerce or a profession.

We have checked Kent County Council's website and in this instance your area is not affected for CCTV.

Enquiry Confirmation LSBUD Ref: 30352943

Date of enquiry: 01/08/2023 Time of enquiry: 06:43

Enquirer									
Name	Mr Ben Evans	Phone	01454662086						
Company	Atkins - Utility Solutions	Mobile	Not Supplied						
Address	The Hub, 500 Park Avenue, Aztec West Almondsbury B	The Hub, 500 Park Avenue, Aztec West Almondsbury BS32 4RZ							
Email	searches.utilitysolutions@atkinsglobal.com								

	Site Map
Initial Enquiry	
Utility Works	UPS Dartford
Single excavations site (deeper than 1.5m)	Basepoint Business
50 metres	Centre (Dartford)
02/08/2023	Halfords Autocentre Dartford
02/08/2023	
LM 208638/KaY	A2026 Victoria Road Gas Works
XY= 554208, 174565	Sales Sales
554201 174555	B&Q Dartford
5927 metres square	/↑ The Duke, Oldfield Place
Not Supplied	Asda Living Dartford
Not Supplied	TK Maxx @ Path
	Please note that the above map only displays the location of the proposed work site and will not display any of the Members' pipes and cables. It is imperative that this area accurately reflects the proposed work site.
	Utility Works Single excavations site (deeper than 1.5m) 50 metres 02/08/2023 02/08/2023 LM 208638/KaY XY = 554208, 174565 554201 174555 5927 metres square Not Supplied

* The WORK TYPE BUFFER is a distance added to your search area based on the Work type you have chosen.

Affected LSBUD members												
(LSBUD Members who have assets registered on LSBUD within the vicinity of your search area.)												
Asset Owner	Phone/Email	Emergency Only	Status									
Energy Assets Networks	Gas 01506425362 Electricity 03336662008	Gas 0800111999 Electricity 03338002016	Await response									
ESP Utilities Group	01372227560	01372227560	Await response									
National Grid Electricity Transmission	08000014282	0800404090	Await response									
SGN	08009121722	0800111999	Await response									
UK Power Networks	08000565866	08000565866	Await response									
Zayo Group UK Ltd c/o JSM Group Ltd	01992 655 919	0800 169 1646	Await response									

Status explanation

Await Response means that the asset owner will contact you. This is typically by sending the plan response but they may ask for further information before being able to do so, particularly if any payments or authorisations are required.

Email Additional Info means that the asset owner needs further information about your works to assess your enquiry before providing a response. Please provide any details you have available including plans, method statements etc. if available.

Important notices

It is very important that you correctly understand what the service does and the procedures in order for you to work safely. Please refer to the LSBUD Support Page (www.lsbud.co.uk/linesearchbeforeudig-support) for further guidance. This information includes how to provide additional information to the LSBUD Members who request it to provide a response to your enquiry.

Validity and search criteria. The results of this enquiry are based on the confirmed information you entered and are valid only as at the date and time of the enquiry. It is your responsibility to ensure that the Enquiry Details are correct, and LinesearchbeforeUdig (LSBUD) accepts no responsibility for any errors or omissions in the Enquiry Details or any consequences thereof. LSBUD Members update their asset information on a regular basis so you are advised to consider this when undertaking any works. It is your responsibility to choose the period of time after which you need to resubmit any enquiry but the maximum time (after which your enquiry will no longer be dealt with by the LSBUD Helpdesk and LSBUD Members) is 28 days. If any details of the enquiry change, particularly including, but not limited to, the location of the work, then a further enquiry must be made.

Terms and Conditions. Please note that this enquiry is subject always to our standard terms and conditions available at <u>www.lsbud.co.uk</u> ("Terms of Use") and the disclaimer at the end of this document. Please note that in the event of any conflict or ambiguity between the terms of this Enquiry Confirmation and the Terms of Use, the Terms of Use shall take precedence.

List of not affected LSBUD members

(LSBUD Members who do not have assets registered on the LSBUD service within the vicinity of your search area.)

area.)		
Angus Energy	AWE Pipeline	B & D Energy Limited
Balfour Beatty Investments Limited	BOC Limited (A Member of the Linde Group)	Box Broadband
BP Exploration Operating Company Limited	ВРА	Cadent Gas
Cambridgeshire County Council Climate Change and Energy Services	CATS Pipeline c/o Wood Group PSN	Cemex
Centrica Storage Ltd	CNG Services Ltd	Concept Solutions People Ltd
ConocoPhillips (UK) Teesside Operator Ltd	D.S.Smith	Diamond Transmission Corporation
DIO (MOD Abandoned Pipelines)	DIO (MOD Live Pipelines)	E.ON UK CHP Limited
EDF Energy Renewables Ltd	EirGrid	Eleclink Limited
Electricity North West Limited	ENI & Himor c/o Penspen Ltd	EnQuest NNS Limited
EP Langage Limited	ESB CCGT Power station (Carrington Gas Pipeline)	ESSAR
Esso Petroleum Company Limited	euNetworks Fiber UK Ltd	EXA Infrastructure
Exolum Pipeline System	Fulcrum Electricity Assets Limited	Fulcrum Pipelines Limited
Gamma	Gas Networks Ireland (UK)	Gateshead Energy Company
Gigaclear Ltd	Harbour Energy	Heathrow Airport LTD
Humbly Grove Energy	IGas Energy	INEOS FPS Pipelines
INEOS Manufacturing (Scotland and TSEP)	INOVYN ChlorVinyls Limited	INOVYN Enterprises Limited
Intergen (Coryton Energy or Spalding Energy)	Jurassic Fibre Ltd	Kensa Utilities
Last Mile	Mainline Pipelines Limited	Manchester Jetline Limited
Manx Cable Company	Marchwood Power Ltd (Gas Pipeline)	Melbourn Solar Limited
Moray East Offshore Windfarm	MUA Group Limited	National Gas Transmission
National Grid Electricity Distribution	Neos Networks	Northern Gas Networks Limited
Northumbrian Water Group	NPower CHP Pipelines	NTT Global Data Centers EMEA UK Ltd
NYnet Ltd	Ogi	Oikos Storage Limited
Ørsted	Palm Paper Ltd	Perenco UK Limited (Purbeck Southampton Pipeline)
Petroineos	Phillips 66	Portsmouth Water
Premier Transmission Ltd (SNIP)	Redundant Pipelines - LPDA	RWE - Great Yarmouth Pipeline (Bacton to Great Yarmouth Power Station)
RWEnpower (Little Barford and South Haven)	SABIC UK Petrochemicals	SAS Utility Services Ltd
Scottish and Southern Electricity Networks	Scottish Power Generation	Seabank Power Ltd
SES Water	Shell	Shell NOP
SP Energy Networks	Squire Energy Networks	SSE Generation Ltd
SSE Transmission	SSE Utility Solutions Limited	Storengy

Enquiry Confirmation LSBUD Ref: 30352943

Tata Communications (c/o JSM Construction Ltd)	Total Colnbrook Pipelines	Total Finaline Pipelines
Transmission Capital	Uniper UK Ltd	University of Cambridge Granta Backbone Network
Vattenfall	Veolia ES SELCHP Limited	Veolia ES Sheffield Ltd
Voneus Limited	VPI Power Limited	Wales and West Utilities
West of Duddon Sands Transmission Ltd	Westminster City Council	

Non-LSBUD members (Asset owners not registered on LSBUD)

(The following Non-LSBUD Members may have assets in your search area. It is YOUR RESPONSIBILITY to contact them before proceeding.

Please be aware this list is not exhaustive and it is your responsibility to identify and contact all asset owners within your search area.)

Preferred contact method	Phone	Status
http://www.digdat.co.uk	01480323891	Not Notified
https://www.swns.bt.com/pls/mbe/welcome.home	08000232023	Not Notified
asset.team@cityfibre.com	033 3150 7282	Not Notified
plantenquiries@catelecomuk.com	01227768427	Not Notified
nrswa.uk@equans.com	0800 130 3600	Not Notified
https://pe.gtc-uk.co.uk/PlantEnqMembership	01359240363	Not Notified
plantenquiries@ocugroup.com	02087314613	Not Notified
mbnl.plant.enquiries@turntown.com	01212 621 100	Not Notified
nrswa@sky.uk	02070323234	Not Notified
sota.plantenquiries@ocugroup.com		Not Notified
http://www.digdat.co.uk	08450709145	Not Notified
assetrecords@utilityassets.co.uk		Not Notified
osp-team@uk.verizonbusiness.com	01293611736	Not Notified
http://www.digdat.co.uk	08708883116	Not Notified
osm.enquiries@atkinsglobal.com	01454662881	Not Notified
	http://www.digdat.co.uk https://www.swns.bt.com/pls/mbe/welcome.home asset.team@cityfibre.com plantenquiries@catelecomuk.com nrswa.uk@equans.com https://pe.gtc-uk.co.uk/PlantEnqMembership plantenquiries@ocugroup.com mbnl.plant.enquiries@turntown.com nrswa@sky.uk sota.plantenquiries@ocugroup.com http://www.digdat.co.uk assetrecords@utilityassets.co.uk osp-team@uk.verizonbusiness.com http://www.digdat.co.uk	http://www.digdat.co.uk01480323891https://www.swns.bt.com/pls/mbe/welcome.home08000232023asset.team@cityfibre.com033 3150 7282plantenquiries@catelecomuk.com01227768427nrswa.uk@equans.com0800 130 3600https://pe.gtc-uk.co.uk/PlantEnqMembership01359240363plantenquiries@ocugroup.com02087314613mbnl.plant.enquiries@turntown.com01212 621 100nrswa@sky.uk02070323234sota.plantenquiries@ocugroup.com08450709145assetrecords@utilityassets.co.uk01293611736http://www.digdat.co.uk08708883116

Disclaimer

Please refer to LSBUD's Terms of Use for full terms of use available at www.lsbud.co.uk

The results of this Enquiry are personal to the Enquirer and shall not be shared with or relied upon by any other party. The asset information on which the Enquiry results are based has been provided by LSBUD Members, therefore LSBUD will provide no guarantee that such information is accurate or reliable nor does it monitor such asset information for accuracy and reliability going forward. There may also be asset owners which do not participate in the enquiry service operated by LSBUD, including but not exclusively those set out above. Therefore, LSBUD cannot make any representation or give any guarantee or warranty as to the completeness of the information contained in the enquiry results or accept any responsibility for the accuracy of the mapping images used. LSBUD and its employees, agents and consultants accept no liability (save that nothing in this Enquiry Confirmation excludes or limits our liability for death or personal injury arising from our negligence, or our fraud or fraudulent misrepresentation, or any other liability that cannot be excluded or limited by English law) arising in respect thereof or in any other way for errors or omissions including responsibility to any person by reason of negligence.

Appendix D

Exploratory Hole Records

During						BO	REHOI	LE LO	G	ene	quiries@se	venoaksenv		
Project	F		G .4	T		114 120	T				1DN	BOR	EHOI	LE No
Job No	-Environ	Date		Investig		Ground Lev	Lower Hy		rdinates ()	ord, DAI	IBN	— V	VS0	1
54'	77	Date		-08-23			(III)		fulliates ()					
Contractor	//		10	-00-23								Sheet		
	enoaks Ei	nvironm	nenta	al Const	ultancv	Ltd							l of	1
SAMPL					<u>_</u>			STRA	АТА					
	Туре	Test	Water	Reduce	4	Depth				IPTION			logy	ume ckfil
Depth	No	Result	м	Level	Legend	Depth (Thick- ness)	MADE G	ROUND					Geology	Instrument/ Backfill
0.15	D					- (0.20) 0.20								
						×	MADE G	ROUND: 1	Soft to firm	dark brow	n slightly gr Loomprised	avelly occasional		
0.30	D D D					(1.80)	fine to me rare sub-a @0.20-0 Medium c comprised flint fragn	dium sub- ngular to s).30m bgl lense to de l abundant nents and r	angular to s sub-rounded flint boulde	ub-rounded I fine to me rs noted. own sandy rse sub-ang s of flint.	I flint fragm dium brick : GRAVEL. 0 ular to sub-1	ents and fragments.		
	ng Progre Date	ess and Time		ter Obs Casing pth D	ervatio	-	From	<u>To</u>	g Hours	Water From	Added To		NER/ MARI er enco	KS
All dimensi Scal	ions in met le 1:25	res Cli	ient	Keith	Mullne	r	Metho		CI	DS		Logged By	AK	

D						201	REHO		<u> </u>		quiries@se			
Project	- ·		~	. .				1 9		1		BORI	EHOI	LE No
	-Environ			Investig						ord, DA1	1BN	— v	VS0	2
Job No		Date		00.00		Ground Lev	rel (m)	Co-Oi	dinates ()			-		-
54	11		18-	-08-23								<u> </u>		
Contractor				10	-14	τ1						Sheet		1
	enoaks E		ienta			Lta							of	
SAMPL	ES & TH	ESTS	er					STRA					No.	fill
Depth	Type No	Test Result	Water	Reduced Level	Legend	Depth (Thick- ness)				IPTION			Geology	Instrument/ Backfill
0.05	D D D					(1.80)	MADE C Sand. San coarse su and rare f chalk frag Chalk frag Medium c comprise flint frag	Id is fine to b-angular to fine to med gments. dense to de d abundant nents. Sand	Soft to firm o medium. C o sub-rounc ium sub-ang nse light br sub-angula d was mediu	Gravel comp led brick ar gular to sub	andy GRAV unded fine t se.	TEL. Gravel		
	ng Progra Date	ess and Time		ter Obs Casing pth D	ervatio	ns Water Depth	From	Chisellin, To	g Hours	Water From	Added To		NER/ /ARJ er enco	KS
			_				Meth							

Project						BO	REHOI	LE LO	G	enc	quiries@se	venoaksenvi		LE No
-	-Environ	mental	Site	Investig	ration -	114-130	Lower Hy	the Stre	et. Dartfo	ord. DA1	1BN			
Job No		Date				Ground Lev		-	dinates ()	,		- V	VS0	3
54	77		18-	-08-23										
Contractor												Sheet		
Sev	enoaks E	nvironn	nenta	ıl Consı	ultancy	Ltd						1	of	1
SAMPI	ES & T	ESTS						STRA	TA			1		ent/ II
Depth	Type No	Test Result	Water	Reduced Level	Legend	Depth (Thick-			DESCR	IPTION			Geology	Instrument/ Backfill
						ness)	MADE GI	ROUND: A	Ashphalt				9	
0.05 0.15	D D					0.20	MADE GI comprised sub-round MADE GI Gravel cor	ROUND: 1 abundant ed limesto ROUND: 1 nprised ab	Loose grey medium to ne fragmen Medium deb undant med	coarse sub ts. Sand is t nse light bro dium to coa	fine to coars own sandy (rse sub-ang	se/ Gravel. ular to		
0.50	D					(1.20)	sub-round sub-round fragments.	ed flint fra	nd sandstor gments. W	ie fragment: ith cobbles	s and rare n of brick and	iedium I snadstone		
1.50						<u>1.40</u> 1.50	MADE GO	ORUND: 9	Sandstone o	obble				
2.50	D					(2.50)	comprised flint fragm	abundant nents. Sand	sub-angula l was fine to	r to sub-rou	GRAVEL. (inded fine to	Gravel o coarse		
						Ł								
	ng Progr		Wat	ter Obs	ervatio		C	hiselling	3	Water			NER/	
Depth	Date	Time	De	Casing pth Di	a. mm	Water Depth	From	To	Hours	From	То	REN Groundwate 2.0m bgl.	MARI er enco	
All dimens	ions in me	tres Cli	ient	Keith	Mullne	 r	Metho	od/				Logged By		
	le 1:25					-	Plant		CI	DS			AK	

						BO	REHO	LE LO	G	ene	quiries@se	venoaksenvi		
Project												BORI	EHO	LE No
	-Environ			Investig						ord, DA1	1BN	— v	VSO	4
Job No		Date				Ground Lev	vel (m)	Co-O	rdinates ()			-		•
	77		18	-08-23										
Contractor												Sheet		
Sev	enoaks E	nvironn	nenta	al Cons	ultancy	Ltd]	l of	
SAMPL	ES & TI	ESTS	L.					STRA	ATA				>	ent/ ill
Depth	Type No	Test Result	Water	Reduced Level	^d Legend	Depth (Thick- ness)			DESCR	IPTION			Geology	Instrument/ Backfill
						- (0.20)	MADE G	ROUND:	Concrete					D.
						- (0.20) 0.20	MADEC		Soft to firm	doult heave	n aliahtlu an	av.allv		N _ /
0.30	D					-	sandy Cla	y. Sand is	fine to med	lium. Grave	l comprised	avelly occasional		
						*	fine to me	edium sub-	angular to s	sub-rounded	l flint fragm dium brick :	ents and		
						<u> </u>		0				iruginents.		
	_					(1.00)	@0.20-	0.30m bgl	flint boulde	ers noted.				P.F
0.70	D													b 文目
						\$								比目
						<u>}</u>								OB
						1.20								b¶
					0.00		Medium o	lense to de	nse light br	own sandy	GRAVEL.	Gravel		[0]
					00.0	4	flint fragr	nents and i	are cobbles	s of flint.	ular to sub-	ounded		k CE
.50	D				0.00	ł	-		d from 3m t					LOE
.50					000	-	Borenoi	e conapsed	1 110111 5111 1	.0 2111 Ugi.				ίČΕ
					000	4								POLE
					000									
					0000									
					0.00	(1.80)								
					0.00	-								
					0.0 0 0]								
					0000	†								
2.50	D				0.00									
					.000									
					0.00	4								
					0.00	Ł								
					0 0	3.00								FILLE
						-								
						-								
						-								
						-								
						-								
						-								
		1	<u> </u>					71.:11:		WZ-4				<u> </u>
	ng Progr		wat	Casing	ervatio			<u>Chisellin</u>	Ŭ		Added		NER/ MAR	
Depth	Date	Time	De	Casing pth D	ia. mm	Water Depth	From	То	Hours	From	То			
												Groundwate 2.2m bgl.	er enco	ountered
All dimens	ions in me	tres Cli	ient	Keith	Mullne	r	Meth					Logged By		
Sca	le 1:25						Plant	Used	CI	DS			AK	

		JULI				BO	REHO	LE LO	G	ene	quiries@se	venoaksenvi		
Project												BORI	EHOI	LE No
Ge	eo-Enviro	nmental	Site	Investig	gation -	114-130	Lower H	ythe Stre	et, Dartfo	ord, DA1	1BN	- v	Ven	5
Job No		Date			(Ground Lev	vel (m)	Co-Oı	dinates ()			_ V	VS0	5
5	5477		18	-08-23										
Contracto	r											Sheet		
Se	venoaks I	Environn	nenta	al Consi	ıltancy	Ltd						1	of	1
SAMP	LES & T	ESTS						STRA	ATA				Ŷ	ent/ ill
Depth	Type No	Test Result	Water	Reduced Level	Legend	Depth (Thick- ness)			DESCR	IPTION			Geology	Instrument/ Backfill
-						(0.20)		ROUND:	Concrete.					
0.23	D					0.25	comprise	d abundant	medium to	coarse sub	vel (MOT). -angualr to	/		
0.70	D					(1.25)	MADE C sandy Cla fine to ma rare sub-a	ROUND: ay. Sand is edium sub- angular to s	Soft to firm fine to med angular to s	dark brown ium. Grave ub-rounded l fine to me	fine to coars n slightly gr l comprised l flint fragm dium brick :	avelly occasional ents and		
1.30	D					1.50								
- - - - - - -	D						comprise flint frag	d abundant nents and r	nse light br fine to coa are cobbles l from 3m t	rse sub-ang of flint.	GRAVEL. (ular to sub-	Gravel rounded		
2.50	D													
2.50 2.50 						- - - - - - -								
Bo	ring Prog	ress and	Wa	ter Obse	ervatio		(Chisellin	g	Water	Added		NER/	
Depth	Date	Time	De	Casing	a. mm	Water Depth	From	То	Hours	From	То		/IARI	
						ł						Groundwate 2.2m bgl.	er enco	untered at
All dimer	nsions in mo cale 1:25	etres Cli	ient	Keith	Mullne	r	Meth Plant	od/ Used	CI	DS		Logged By	AK	

Appendix E

Chemical Laboratory Results

Damian Jones Sevenoaks Environmental Consultancy Ltd 145a Hastings Road Pembury Tunbridge Wells Kent TN2 4JU

Derwentside Environmental Testing Services Ltd Unit 1 Rose Lane Industrial Estate Rose Lane Lenham Heath Kent ME17 2JN t: 01622 850410

DETS Report No: 23-11195

Site Reference:	Dartford
Project / Job Ref:	5477
Order No:	None Supplied
Sample Receipt Date:	04/09/2023
Sample Scheduled Date:	05/09/2023
Report Issue Number:	1
Reporting Date:	11/09/2023

Authorised by:

Mul

Dave Ashworth Technical Manager

Dates of laboratory activities for each tested analyte are available upon request.

Opinions and interpretations are outside the laboratory's scope of ISO 17025 accreditation. This certificate is issued in accordance with the accreditation requirements of the United Kingdom Accreditation Service. The results reported herein relate only to the material supplied to the laboratory. This certificate shall not be reproduced except in full, without the prior written approval of the laboratory.

Water Analysis Certificate									
DETS Report No: 23-11195	Date Sampled	01/09/23	01/09/23						
Sevenoaks Environmental Consultancy Ltd	Time Sampled	0930	1000						
Site Reference: Dartford	TP / BH No	WS01	WS05						
Project / Job Ref: 5477	Additional Refs	Pre	Post						
Order No: None Supplied	Depth (m)	None Supplied	None Supplied						
Reporting Date: 11/09/2023	DETS Sample No	673115	673116						

Determinand	Unit	RL	Accreditation				
pH	pH Units	N/a	IS017025	7.7	7.6		
Total Cyanide	ug/l	< 5	IS017025	141	125		
Free Cyanide	ug/l	< 5	IS017025	9	< 5		
Thiocyanate as SCN	ug/l	< 10	NONE	< 10	< 10		
Sulphate as SO ₄	mg/l	< 1	IS017025	139	108		
Sulphide	mg/l	< 0.1	NONE	< 0.1	< 0.1		
Ammonia as NH ₄	ug/l	< 50	IS017025	1540	955		
Total Organic Carbon (TOC)	mg/l	< 1.0	IS017025	14.1	12.6		
Arsenic (dissolved)	ug/l	< 5	IS017025	< 5	< 5		
Boron (dissolved)	ug/l	< 5	IS017025	508	371		
Cadmium (dissolved)	ug/l	< 0.4	IS017025	< 0.4	< 0.4		
Chromium (dissolved)	ug/l	< 5	IS017025	< 5	< 5		
Chromium (hexavalent)	ug/l	< 20	NONE	< 20	< 20		
Copper (dissolved)	ug/l	< 5	IS017025	16	12		
Lead (dissolved)	ug/l	< 5	IS017025	< 5	< 5		
Mercury (dissolved)	ug/l	< 0.05	IS017025	0.15	0.06		
Nickel (dissolved)	ug/l	< 5	IS017025	12	8		
Selenium (dissolved)	ug/l	< 5	IS017025	6	< 5		
Zinc (dissolved)	ug/l	< 2	IS017025	34	20		
Total Phenols (monohydric)	ug/l	< 10	IS017025	< 10	< 10		

Subcontracted analysis ^(S) Insufficient sample ^{I/S} Unsuitable Sample ^{U/S}

Total EPA-16 PAHs

DETS Ltd Unit 1, Rose Lane Industrial Estate **Rose Lane** Lenham Heath Maidstone Kent ME17 2JN Tel : 01622 850410

Water Analysis Certificate - Speciated PAH									
DETS Report No: 23-1119	95		Date Sampled	01/09/23	01/09/23				
Sevenoaks Environmenta	I Consultancy Ltd		Time Sampled	0930	1000				
Site Reference: Dartford			TP / BH No	WS01	WS05				
Project / Job Ref: 5477			Additional Refs	Pre	Post				
Order No: None Supplied			Depth (m)	None Supplied	None Supplied				
Reporting Date: 11/09/2	2023	D	ETS Sample No	673115	673116				
Determinand		RL							
Naphthalene	ug/l	< 0.01	NONE	0.51	< 0.01				
Acenaphthylene	ug/l	< 0.01	NONE	< 0.01	< 0.01				
Acenaphthene	ug/l	< 0.01	NONE	< 0.01	< 0.01				
Fluorene	ug/l	< 0.01	NONE	< 0.01	< 0.01				
Phenanthrene	ug/l	< 0.01	NONE	0.24	< 0.01				
Anthracene		< 0.01		< 0.01	< 0.01				
Fluoranthene	ug/l	< 0.01	NONE	1.23	0.02				
Pyrene	ug/l	< 0.01	NONE	1.30	0.03				
Benzo(a)anthracene	ug/l	< 0.01	NONE	0.43	< 0.01				
Chrysene	ug/l	< 0.01	NONE	0.45	< 0.01				
Benzo(b)fluoranthene	ug/l	< 0.01	NONE	0.46	< 0.01				
Benzo(k)fluoranthene	ug/l	< 0.01	NONE	0.25	< 0.01				
Benzo(a)pyrene	ug/l	< 0.01	NONE	< 0.01	< 0.01				
Indeno(1,2,3-cd)pyrene	ug/l	< 0.01	NONE	< 0.01	< 0.01				
Dibenz(a,h)anthracene	ug/l	< 0.01	NONE	< 0.01	< 0.01				
Benzo(ghi)perylene	ug/l	: 0.008	NONE	< 0.008	< 0.008				
				0.16	0.16				

< 0.16

< 0.16

NONE

ug/l < 0.16

Mater Analysis Castificate EDU Taura Dandad											
	Water Analysis Certificate - EPH Texas Banded										
DETS Report No: 23-1119	95		Date Sampled	01/09/23	01/09/23						
Sevenoaks Environmenta	Consultancy Ltd		Time Sampled	0930	1000						
Site Reference: Dartford			TP / BH No	WS01	WS05						
Project / Job Ref: 5477			Additional Refs	Pre	Post						
Order No: None Supplied			Depth (m)	None Supplied	None Supplied						
Reporting Date: 11/09/2	023	D	ETS Sample No	673115	673116						
Determinand	Unit	RL	Accreditation								
EPH Texas (C6 - C8) :		< 10	NONE	< 10							
HS_1D_MS _Total	ug/l	< 10	NONL	< 10	< 10						
EPH Texas (>C8 - C10) :	ug/l	< 10	NONE								
EH_1D_Total	ug/i	< 10		< 10	< 10						
EPH Texas (>C10 - C12) :	ug/l	< 10	< 10 NONE	< 10	< 10						
EH_1D_Total	ug/i	< 10		< 10	< 10						
EPH Texas (>C12 - C16) :	ug/l	< 10	NONE	10	< 10						
EH_1D_Total	ug/i	< 10	NONE	10	< 10						
EPH Texas (>C16 - C21) :	ug/l	< 10	NONE	50	25						
EH_1D_Total	ug/i	< 10	NONE	50	25						
EPH Texas (>C21 - C40) :	ug/l	< 10	NONE	104	83						
EH 1D Total	ug/i	× 10	NONE	104	05						
EPH Texas (C6 - C40) :	ug/l	< 10	NONE	165	109						
HS_1D_MS+EH_1D_Total	ug/l	< 10	NONE	105	109						

/ater Analysis Certificate - Methodology & Miscellaneous Information
ETS Report No: 23-11195
evenoaks Environmental Consultancy Ltd
te Reference: Dartford
roject / Job Ref: 5477
rder No: None Supplied
eporting Date: 11/09/2023

Water UF Alkalains/ point Determination of alkalainty by titration against hydrochloric add using bromocresol green as the end water E103 Water F Annoniacal Nitrogen Determination of attroty by hardspace GC-MS E104 Water F Chornal Oxygen Demark (COD) Determination of attroty by hardspace GC-MS E101 Water F Chornal Oxygen Demark (COD) Determination of attroty by colorimetry E112 Water F Chornal - Complex Determination of chords by filtration followed by colorimetry E113 Water UF Chornal - Response Determination of complex cyanale by distilation followed by colorimetry E113 Water UF Cychobarane Entractable Natter (CEM) Commercially addits (CM) distribution followed by colorimetry E113 Water F Disosked Organic Canter (DOC) Determination of addits (CM) distribution followed by colorimetry E114 Water F Disosked Organic Canter (DOC) Determination of addits (CM) distribution followed by colorimetry E113 Water F Disosked Organic Canter (DOC) Determination of addits (CM) distribution followed by CG-FID E114 Wat	Matrix	Analysed On	Determinand	Brief Method Description	Method No
Water UF BTEX Determination of BTEX by headspace CAMS E101 Water F Chanical Determination of BTEX by headspace CAMS E102 Water UF Chanical Determination of Cations Determination of Cations by filtration followed by colorimetry E113 Water F Chonical Determination of new packent by filtration analysed by ion chromatography E114 Water F Chonical Determination of new packent by colorimetry E115 Water UF Cycanide - Free Determination of free cyanide by distillation followed by colorimetry E115 Water UF Cycanide - Tree Determination of free cyanide by distillation followed by colorimetry E115 Water UF Cycanide - Tree Determination of free cyanide by distillation followed by colorimetry E114 Water UF Desolvand Cranic Context (DOC) Determination of fold-ciliquid extraction with hexane followed by CG-FID E104 Water F Desolvand Cranic Context (DOC) Determination of fluid-liquid extraction with hexane followed by CG-FID E104 Water F Desolvand Cranic Context (DOC) Determination of fluid-liquid extraction with hexane followed by CG-FID E104 Water	Water	•••		point	
Water F Cations Determination of cations by filtration followed by CMMS E102 Water F Cherical Oxygen Demand (COD) Cherical Determination of a Color Pack of Diolowed by colorimetry E103 Water F Chordue Determination of color Pack of Diolowed by colorimetry E104 Water F Chordue - Texavalent Determination of complex syanide by distillation followed by colorimetry E115 Water UF Cycanide - Complex Determination of total cyanide by distillation followed by colorimetry E115 Water UF Cycanide - Texa Determination of total cyanide by distillation followed by colorimetry E111 Water UF Cycanide - Texa Determination of total cyanide by distillation followed by colorimetry E111 Water F Dissel Range Organics (C10 - C40) Determination of laud-diguid extraction with hexane followed by CoR-IDD E104 Water F E104 (C10 - C40) Determination of laud-diguid extraction with hexane followed by CGFID E104 Water F E104 (C10 - C40) Determination of laud-diguid extraction with hexane followed by CGFID for C8 to C40. C6 to C8 by E104 E104 Water F Lexchate Preparation - NKB Based on Nationa Rivers A					
Water UF Chemical Oxygen Demand (COD) Estermination of childred by fittation & analysed by ion chromatography E112 Water F Chronium - Hexavalent Determination of childred by fittation & analysed by ion chromatography E103 Water UF Chronium - Hexavalent Determination of on prevalent chromium by addification, addition of L3, dipherylcarbazide followed by Colorimetry E115 Water UF Cyclohexane Extractable Matter (CEM) Gravimetrically determined through liquid/situal extraction with cyclohexane E111 Water UF Cyclohexane Extractable Matter (CEM) Gravimetrically determined through liquid/situal extraction with cyclohexane E111 Water F Dises/match Color CAD Determination of Idual/situal extraction with cyclohexane E111 Water F Dises/match Color CAD Determination of Idual/situal extraction with hexane followed by GC-FID E104 Water F EPH TEXAS (CFo-R, GR-CI, CI-CC) Determination of Idual/situal extraction with hexane followed by GC-FID for CB to C40. C6 to C8 by E104 Water F CI-CI-GC-CI, CI-C21. CI-C40 Determination of Thexane Althron ty Calculation E102 Water F Leachater Preparation - NRA Based on National Revers	Water		BTEX	Determination of BTEX by headspace GC-MS	-
Water F Chording Determination of Acayalent Chronium- Nexavalent Chronium by acidification, addition of 1,5 dipendenzbrazida followed by E116 Water UF Cyanide - Complex Determination of Acayalent Chronium by acidification, addition of 1,5 dipendenzbrazida followed by E116 Water UF Cyanide - Tota Determination of recyanide by distillation followed by colorimetry E115 Water UF Cyanide - Tota Determination of tree cyanide by distillation followed by colorimetry E111 Water UF Cycohexane Extractible Matter (CEM) Gravimetrically determination of total cyanide by distillation followed by Colorimetry E111 Water P Dissole Organics (C10 - C40) Determination of 100-Cb p filtration followed by GC-FID E1104 Water F ED5000 Organics Control (DOC) Determination of 100-Cb p filtration followed by GC-FID E104 Water F Dissole Organics Control (DCC) Determination of 100-Cb p filtration followed by CG-FID E104 Water F Chronium Additiguid extraction with hexane followed by GC-FID E109 Water F Human Additiguid extraction with hexane followed by GC-FID E104 Water F Leachate Preparation - MRA Based on National Rivers Authority leaching transpa	Water	F			
Water F Chromium - Heavalent Determination of Decavalent chromium by addition of 1,5 diphery(cabacide followed by E115 Water UF Cyanide - Errel Determination of complex yandle by distillation followed by colorimetry E115 Water UF Cyanide - Trele Determination of free (yanide by distillation followed by colorimetry) E115 Water UF Cyclohearne Extractable Matter (CEM) Gravimetrically determined to rough low distillation followed by colorimetry E115 Water UF Cyclohearne Extractable Matter (CEM) Gravimetrically determined to rough low detraction with hexane followed by GC-FID E104 Water UF Dissolved Organic Context (DOC) Determination of Editical conductivity by electrometric measurement E112 Water F Dissolved Organic Context (DOC) Determination of Haudi-liquid extraction with hexane followed by GC-FID E104 Water F EPH TEXAS (CF-CG & CB + CG +	Water		Chemical Oxygen Demand (COD)	Determination using a COD reactor followed by colorimetry	E112
Water UF Cyanide - Complex Determination of complex cyanide by disillation followed by colorimetry. E115 Water UF Cyanide - rice Determination of the cyanide by disillation followed by colorimetry. E115 Water UF Cyanide - rice Determination of the cyanide by disillation followed by colorimetry. E111 Water UF Cyclohexane Extractable Matter (CEM) Grainmetrical guademined through liquid-liquid extraction with cyclohexane. E111 Water F Dissolved Organic Content (DOC) Determination of dectrical conductivity by electromictic measurement. E122 Water F EPH TEXAS (C6-C3, C3-C1, C10-C12, Determination of Filuad-liquid extraction with hexane followed by GC-FID for C8 to C40. C6 to C8 by E104 Water F EPH TEXAS (C6-C3, C3-C1, C10-C12, Determination of Filuad-liquid extraction with hexane followed by GC-FID for C8 to C40. C6 to C8 by E104 Water F Leachate Preparation - NAC Based on N8tona Nerses Authority Resch edby calculation E102 Water F Leachate Preparation - WAC Based on N8tona Nerses Authority Resch edby calculation E102 Water F Leachate Preparation - WAC Based on N8tona Nerses Authority Resch followed by collectin in E102 Wat	Water	F	Chloride	Determination of chloride by filtration & analysed by ion chromatography	E109
Water UF Cyanide - Free Determination of rec (yanide by distillation followed by colorimetry) E115 Water UF Cyalohes-Total Determination of usual cyanide by distillation followed by colorimetry E115 Water UF Cyclohexane Extractable Matter (CEM) Gravimetrically determined through liquid-liquid extraction with cyclohexane E111 Water F Dissolved Organic Conter (COC) Det (Tittation Tollowed by low heat with persubpate addition followed by IR dete E110 Water F Electrical Conductivity Determination of liquid-liquid extraction with hexane followed by GC-FID E110 Water F EPH TEXAS (C6-GS, CB-C10, C10-C12, Determination of liquid-liquid extraction with hexane followed by GC-FID E104 Water F F Floride Determination of Inguid-liquid extraction with hexane followed by GC-FID E102 Water F F Floride Determination of CB-VPK Sollowed by calculation E102 Water F Leachate Preparation - NRA Based on SE NL 1257 Ptl. 2, 3 E302 E302 Water F Leachate Preparation - WAR Based on SE NL 1257 Ptl. 2, 3 E302 E302 Water F Mineral OI (C10 - C40) Determination of Ind	Water	F	Chromium - Hexavalent	Determination of hexavalent chromium by acidification, addition of 1,5 diphenylcarbazide followed by	E116
Water UF Cyclande - Total Determination of total cyanide by distillation followed by colorimetry E111 Water UF Cyclobrane Extractable Matter (CEM) Garwinetrically determined through liquid-liquid extraction with cyclobreane and the state followed by GC-FID E111 Water F Dissolved Organic Contert (DOC Determination of Idquid-liquid extraction with hexane followed by GC-FID E104 Water UF Electrical Conductivity Determination of Idquid-liquid extraction with hexane followed by GC-FID for C8 to C40. C6 to C8 by E104 E104 Water F EPH TEXAS (C6-C8, C8 - C10, C10-C12, Determination of Idquid-liquid extraction with hexane followed by GC-FID for C8 to C40. C6 to C8 by E104 E104 Water F C12-C16, C16-C21, C21-C401, beadsace GC-MS E104 Water F Hurdne Determination of Ca and Ng by ICP-MS followed by calculation E102 Water F Leachate Preparation - WAG Based on RS IN 12457 P11, 2, 3 E301 Leachate FF Metral Based on National Rivers Autority leaching text state with personal states of National States on National Natestate P1111 National Natestate P11	Water	UF	Cyanide - Complex	Determination of complex cyanide by distillation followed by colorimetry	E115
Water F Cyclohexane Extractable Matter (CEM) Gravimetrically determined through liquid-liquid extraction with hexane followed by CG-FID E110 Water F Dissolved Organic Content (DOC) Determination of DOC by filtration followed by GC-FID E104 Water F Electrical Conductivity Determination of Pacht of pathotic measurement. E123 Water F EPH TEXAS (GC-GR, CS-C10, C10-C12, Determination of liquid-liquid extraction with hexane followed by GC-FID for C8 to C40. C6 to C8 by C12-C16, C16-C21, C21-C40, headspace GC-MS E104 Water F EPH TEXAS (GC-GR, CS-C10, C10-C12, Determination of liquid-liquid extraction with hexane followed by GC-FID for C8 to C40. C6 to C8 by C12-C16, C16-C21, C21-C40, headspace GC-MS E104 Water F PH TEXAS (GC-GR, CS-C10, Determination of Ca and Mg by ICP-MS followed by calculation E102 Leachate Preparation - NRA Based on National Rivers Authority teaching text 1994 E302 Water F Leachate Preparation - NRA Based on National Rivers Authority teaching text 1994 E104 Water F Mineral OIIC10 - C40) Determination of Initication guid analysed by ion chromatography E103 Water F Leachate Preparation - NRA Based on Start 12457 PH 2, 27 followedby CG-FID E104	Water	UF			E115
Water F Cyclohexane Extractable Matter (CEM) Gravimetrically determined through liquid-liquid extraction with hexane followed by CG-FID E110 Water F Dissolved Organic Content (DOC) Determination of DOC by filtration followed by GC-FID E104 Water F Electrical Conductivity Determination of Pacht of pathotic measurement. E123 Water F EPH TEXAS (GC-GR, CS-C10, C10-C12, Determination of liquid-liquid extraction with hexane followed by GC-FID for C8 to C40. C6 to C8 by C12-C16, C16-C21, C21-C40, headspace GC-MS E104 Water F EPH TEXAS (GC-GR, CS-C10, C10-C12, Determination of liquid-liquid extraction with hexane followed by GC-FID for C8 to C40. C6 to C8 by C12-C16, C16-C21, C21-C40, headspace GC-MS E104 Water F PH TEXAS (GC-GR, CS-C10, Determination of Ca and Mg by ICP-MS followed by calculation E102 Leachate Preparation - NRA Based on National Rivers Authority teaching text 1994 E302 Water F Leachate Preparation - NRA Based on National Rivers Authority teaching text 1994 E104 Water F Mineral OIIC10 - C40) Determination of Initication guid analysed by ion chromatography E103 Water F Leachate Preparation - NRA Based on Start 12457 PH 2, 27 followedby CG-FID E104	Water	UF	Cyanide - Total	Determination of total cyanide by distillation followed by colorimetry	E115
Water F Dissolved organic Content (DOC) Determination of DOC by filtration followed by low heat with persuphate addition followed by IR dete E110 Water UF Electrical Conductivity by electrination of idudid. Electrical Conductivity by electrination of Conductivity by electrinating conditivity conductity conditivity conductity conducti	Water	UF			E111
Water F Dissolved Organic Content (DOC) Determination of DOC by filtration followed by Un heat with persulphate addition followed by IR dete E110 Water F EPH (CIO - C40) Determination of electrical conductivity by electrometric measurement. E123 Water F EPH TEXAS (C6-C8, C8-C10, C10-C12, Determination of liquidiliquid extraction with hexane followed by GC-FID for C8 to C40. C6 to C8 by E104 Water F C12-C16, C16-C21, C21-C40 betermination of liquidiliquid extraction with hexane followed by GC-FID for C8 to C40. C6 to C8 by E104 Water F Leachate Preparation - NRA Based on National Rivers Authority leaching test 1994 E501 Leachate F Leachate Preparation - NRA Based on National Rivers Authority leaching test 1994 E501 Leachate F Leachate Preparation - NRA Based on National Rivers Authority leaching test 1994 E501 Leachate F Metaria Determination of liquid-liquid extraction with hexane followed by G1-FID E104 Water F Micra Determination of liquid-liquid extraction with hexane followed by G1-FID E104 Water F Metasi Determination of plausi diguid extraction with neckane followed by G1-FID E104 <t< td=""><td>Water</td><td>F</td><td>Diesel Range Organics (C10 - C24)</td><td>Determination of liquid:liquid extraction with hexane followed by GC-FID</td><td>E104</td></t<>	Water	F	Diesel Range Organics (C10 - C24)	Determination of liquid:liquid extraction with hexane followed by GC-FID	E104
Water UF Electrical Conductivity Determination of electrical conductivity by electrometric measurement. E123 Water F EPH TEXAS (C6-C8, C8-C10, C10-C12, Determination of liquid-liquid extraction with hexane followed by GC-FID for C8 to C40. C6 to C8 by C12-C16, C16-C21, C21-C40, Ineadspace GC-MS E104 Water F EPH TEXAS (C6-C8, C8-C10, C10-C12, Determination of Fluoride by filtration & analysed by ion chromatography E109 Water F Handress Determination of Fluoride by filtration & analysed by ion chromatography E101 Leachate F Leachate Preparation - NK & Based on National Rivers Authority leaching test 1994 E501 Leachate F Leachate Preparation - NK & Based on National Rivers Authority leaching test 1994 E502 Water F Mineral OII (C10 - C40) Determination of Initiation followed by ICP-MS E102 Water F Mineral OII (C10 - C40) Determination of PAH compounds by conclination through SPE cartridge, collection in dichioromethane followed by colorimetry E104 Water F PAH - Speciated (PA 16) Determination of PAH compounds by concentration through SPE cartridge, collection in dichioromethane followed by C3-MS E103 Water F PAH - Speciated (PA 16) Determination of PAH compo	Water	F			E110
Water F EPH TEXAS (5G-68, G8-C10, C10-C40) Determination of liquid:liquid extraction with hexane followed by GC-FID for C8 to C40. C6 to C8 by E104 Water F EPH TEXAS (5G-68, G8-C10, C10-C12) Determination of liquid:liquid extraction with hexane followed by GC-FID for C8 to C40. C6 to C8 by E104 Water F Hardness Determination of Ca and Mg by ICP-MS followed by calculation E102 Leachate F Leachate Preparation - WAR Based on SE NI 1457 PTL, 2, 3 E302 Water F Metala Determination of nutrate by filtration followed by ICP-MS E104 Water F Metala Determination of nutrate by filtration followed by ICP-MS E104 Water F Mineral 01 (C10 - C40) Determination of nutrate by filtration followed by ICP-MS E104 Water F Mineral 01 (C10 - C40) Determination of nutrate by GMIstang Based by Ion chromatography E109 Water F PAH - Speciated (EPA 16) Determination of Phenos by GS-HIBA PS Cartrodge, collection in dichoromethane E107 Water F PAH - Speciated (EPA 16) Determination of Phenos by GS-HIBA PS Cartrodge, collection in dichoromethane E107 Water	Water	UF			E123
Water F EPH TEXAS (CS-C8, C3-C10, C10-C12, Determination of Equid:Equ		F			E104
Water F C12-C16, C16-C21, C21-C40) headspace GC-MS Leuk Marriantess Determination of Ca and Mg by ICP-MS followed by calculation E109 Leachate F Leachate Preparation - NRA Based on National Rivers Authority leaching test 1994 E301 Leachate F Leachate Preparation - NRA Based on SE IN 1267 PTL, 2, 3 E1302 Water F Mineral Oil (C10 - C40) Determination of Initrate by filtration followed by ICP-MS E104 Water F Mineral Oil (C10 - C40) Determination of PAI compounds by distillation followed by GC-FID E111 Water F PAH - Speciated (FPA 16) Determination of PAI compounds by concentration through SPE cartridge, collection in dichloromethan E1002 Water UF PAH - Speciated (FEE) Gravimetrically determined through Iguid/Biguid extraction with petroleum ether E113 Water UF Petroleum Ether Ext					
Water F Fluoride Determination of Fluoride by filtration & analysed by ion chromatography E102 Water F Leachate Preparation - NRA Based on National Rivers Authority leaching test 1994 E301 Leachate F Leachate Preparation - NRA Based on SE EN 12457 Ft1, 2, 3 E302 Water F Leachate Preparation - NRA Based on National Rivers Authority leaching test 1994 E301 Water F Leachate Preparation - NRA Based on National Rivers Authority leaching test 1994 E301 Water F Leachate Preparation - WAC Based on National Rivers Authority leaching test 1994 E302 Water F Mineral Oil (C10 - C40) Determination of phenols by filtration & analysed by ion chromatography E109 Water F Monohydric Pheno Determination of PAH compounds by concentration through SPE cartridge, collection in dichloromethare followed by C4-MS E103 Water UF PAH - Speciated (EPA 16) Getermination of PLB velocument through SPE cartridge, collection in dichloromethare followed by concentration through SPE cartridge, collection in dichloromethare followed by concentration through SPE cartridge, collection in dichloromethare followed by concentration through SPE cartridge, collection in dichloromethare followed by concentration stuphate by filtration & analysed by ion chromatography </td <td>Water</td> <td>F</td> <td></td> <td></td> <td>E104</td>	Water	F			E104
Water F Hardness Determination of Ca and Mg by ICP-M5 followed by Calculation E102 Leachate F Leachate Preparation - WAR Based on National Rivers Authority leaching test 1994 E301 Leachate F Leachate Preparation - WAR Based on BS EN 12457 Pt1, 2, 3 E302 Water F Mineral OII (C10 - C40) Determination of matals by filtration followed by ICP-M5 E102 Water F Mineral OII (C10 - C40) Determination of nuicil-fluid-	Water	F			F109
Leachate F Leachate Preparation - NRA Based on NStional Rivers Authority leaching test 1994 E301 Leachate F Leachate Preparation - NRA Based on BS EN 12457 Pt1, 2, 3 E302 Water F Mineral Oil (C10 - C40) Determination of metals by filtration sanalysed by ion chromatography E102 Water F Mineral Oil (C10 - C40) Determination of metals by filtration & analysed by ion chromatography E109 Water F Mineral Oil (C10 - C40) Determination of phenols by clorimetry E101 Water F PAH - Speciated (PA 16) Determination of PAH compounds by concentration through SPE cartridge, collection in dichloromethane followed by GC-MS E101 Water F PAH - Speciated (PE) Gravimetrically determined through fluid:liquid extraction with peroleum ether E111 Water F PCB - 7 Congeners Determination of pelse ophyste by ion chromatography E109 Water UF Peroleum Ether Extract (PE) Gravimetrically determined through fluid:liquid extraction with peroleum ether E111 Water F Phosphate Determination of redx potential by electrometric measurement E109 <					
LeachateFLeachate Preparation - WACBased on BS EN 12457 Pt1, 2, 3E302WaterFMetalDetermination of intrale by filtration followed by ICP-MSE102WaterFMineral OII (CIO - C40) Determination of intrale by filtration shanes followed by GI-FIDE104WaterFMonohydric Phenol Determination of intrale by filtration & analysed by ion chromatographyE109WaterFPAH - Speciated (EPA 16)Determination of PAH compounds by concentration through SPE cartridge, collection in dichloromethane followed by CC-MSE105WaterFPAH - Speciated (EPA 16)Determination of PAH compounds by concentration through SPE cartridge, collection in dichloromethane followed by CC-MSE108WaterVFPetroleum Ether Extract (PEE)Gravimetrically determined through liquid.ilguid extraction with petroleum etherE111WaterVFPhosphate Determination of Phosphate by filtration & analysed by ion chromatographyE109WaterVFPhosphate Determination of rodox potentic measurementE111WaterFPhosphate Determination of rodox potentic Masaudy bi on chromatographyE109WaterFSOUC for SOUPhate by filtration & analysed by ion chromatographyE110WaterFOutput Souphate by climation of subphate by filtration & analysed by ion chromatographyE110WaterFSOUC for Souphate by filtration & analysed by ion chromatographyE110WaterFClock Co.					
WaterFMetalDetermination of metals by filtration followed by ICP-MSE102WaterFMineral Oil (C10 - C40)Determination of liquid:liquid extraction with hexane followed by GI-FIDE104WaterFMonohydric PhenolDetermination of nitrate by filtration & analysed by ion chromatographyE112WaterFPAH - Speciated (EPA 16)Determination of phenols by distillation followed by colorimetryE121WaterFPAH - Speciated (EPA 16)Determination of PAH compounds by concentration through SPE cartridge, collection inE105WaterUFPetroleum Ether Extract (PEE)Gravimetrically determined through liquid:liquid extraction with petroleum etherE111WaterUFPetroleum Ether Extract (PEE)Gravimetrically determined through liquid:liquid extraction with petroleum etherE113WaterUFPhosphate Determination of phosphate by filtration & analysed by ion chromatographyE109WaterUFRedox Potential Determination of sulphate by filtration & analysed by ion chromatographyE109WaterUFSulphate (as SO4)Determination of sulphate by filtration & analysed by ion chromatographyE113WaterUFSulphate (as SO4)Determination of sulphate by filtration & analysed by ion chromatographyE118WaterUFToluene Extractable Matter (TEM)Gravimetrically determined through liquid:liquid extraction with hexane, fractionation through SPE cartridge, collection in dichloromethane followed by GC-MSE110WaterUFToluene Extractable Matter (TEM)Gravime					
WaterFMineral Oil (C10 - C40)Determination of liquid:liquid extraction with hexane followed by GI-FIDE104WaterVFMonohydirCPhenolDetermination of nitrate by filtration & analysed by ion chromatographyE109WaterVFPAH - Speciated (EPA 16)Determination of PAH compounds by concentration through SPE cartridge, collection in dichloromethaneE101WaterVFPCB - 7 CongenersDetermination of PCB compounds by concentration through SPE cartridge, collection in dichloromethaneE108WaterUFPetroleum Ether Extract (PEE)Gravimetrically determined through liquid:liquid extraction with petroleum etherE111WaterUFPhotsphateDetermination of pAB by electrometric measurementE109WaterVFPhotsphateDetermination of redox potential by electrometric measurementE109WaterVFSulphate (as SO4)Determination of sulphate by filtration & analysed by ion chromatographyE109WaterVFSulphate (as SO4)Determination of sulphate by filtration & analysed by ion chromatographyE109WaterVFSulphate (as SO4)Determination of sulphate by filtration & analysed by ion chromatographyE111WaterVFToluene Extractable Matter (TEM)Gravimetrically determined frough liquid:liquid extraction with housenE111WaterVFToluene Extractable Matter (TEM)Gravimetrical versition of sulphate by filtration & analysed by ion chromatographyE118WaterVFToluene Extractable Matter (TEM)Gravimetrical versition of sulphate by f					
WaterFNitrateDetermination of nitrate by filtration & analysed by ion chromatographyF109WaterUFMonohydric PhenoDetermination of PAH compounds by concentration through SPE cartridge, collection in dichloromethane followed by CC-MSE101WaterFPCB - 7 CongenesDetermination of PAH compounds by concentration through SPE cartridge, collection in dichloromethaneE108WaterUFPetroleum Ether Extract (PEE) Gravimetrically determined through liquid:liquid extraction with petroleum etherE111WaterUFPetroleum Ether Extract (PEE) Gravimetrically determined through liquid:liquid extraction with petroleum etherE110WaterFPhosphateDetermination of reldx petcrometric measurementE109WaterFSulphate (as SO4)Determination of sulphide by distillation followed by concentration through SPE cartridge, collectionE110WaterFSulphate (as SO4)Determination of sulphide by distillation followed by concentration through SPE cartridge, collectionE110WaterFSulphate (as SO4)Determination of sulphide by distillation followed by concentration through SPE cartridge, collectionE110WaterFSulphate (as SO4)Determination of sulphide by distillation followed by CR-MSE110WaterFTolucene Extractable Matter (TEM) (ariorchardar) (determined through liquid:liquid extraction with toluceneE111WaterUFTolucene Extractable Matter (TEM) (ariorchardar) (clicic) (determined through liquid:liquid extraction with hexane, fractionating with SPE followed by GC-FID for <br< td=""><td></td><td></td><td></td><td></td><td>-</td></br<>					-
WaterUFMonohydric PhenolDetermination of phenols by distillation followed by colorimetryE121WaterFPAH - Speciated (EPA 16)Determination of PAH compounds by concentration through SPE cartridge, collection inE105WaterFPCB - 7 CongenersDetermination of PCB compounds by concentration through SPE cartridge, collection in dichloromethalE108WaterUFPetroleum Ether Extract (PEE)Gravimetrically determined through liquid:liquid extraction with petroleum etherE110WaterUFPhosphateDetermination of phosphate by filtration & analysed by ion chromatographyE109WaterUFRedox Potential Determination of sulphate by filtration & analysed by ion chromatographyE109WaterUFSulphate as SO41Determination of sulphate by filtration & analysed by ion chromatographyE109WaterUFSulphate as SO41Determination of sulphate by distillation followed by colorimetryE113WaterUFSulphateSulphate betramination of sulphate by distillation followed by concentration through SPE cartridge, collectionE109WaterUFSulphate as SO41Determination of sulphate by distillation followed by colorimetryE118WaterUFTolucene Extractable Matter (TEM)Gravimetrically determined through liquid:liquid extraction with toluceneE111WaterUFTolucene Extractable Matter (TEM)Gravimetrically determined through liquid:liquid extraction with hexane, fractionating with SPE followed by GC-FID for C12-C12, C12-C16, C16-C21, C21-C34, Determination of liquid:liquid extraction					
Water F PAH - Speciated (EPA 16) dichloromethane followed by GC-MS E105 Water F PCB - 7 Congeners Determination of PCB compounds by concentration through SPE cartridge, collection in dichloromethane followed by GC-MS E108 Water UF Petroleum Ether Extract (PEE) Gravimetrically determined through liquid:liquid extraction with petroleum ether E111 Water UF Petroleum Ether Extract (PEE) Gravimetrically determined through liquid:liquid extraction with petroleum ether E107 Water UF Phosphate Determination of phosphate by filtration & analysed by ion chromatography E109 Water F Sulphate (as SO4) Determination of sulphate by filtration & analysed by ion chromatography E109 Water F Sulphate (as SO4) Determination of sulphate by filtration & analysed by ion chromatography E108 Water F Sulphate (as SO4) Determination of sulphate by distillation followed by colorimetry E118 Water F Sulphate (as SO4) Determination of sulphate by distillation followed by concentration through SPE cartridge, collection in dichoromethane followed by GC-MS E108 Water F Tolucene Extractable Matter (TEM) G					
WaterFPCB - 7 CongenersDetermination of PCB compounds by concentration through SPE cartridge, collection in dichloromethalE108WaterUFPetroleum Ether Extract (PEE) Gravimetrically determined through liquid:liquid extraction with petroleum etherE111WaterUFPhosphateDetermination of ph by electrometric measurementE107WaterFOphosphateDetermination of phosphate by filtration & analysed by ion chromatographyE109WaterFSulphate (as SO4)Determination of sulphate by filtration & analysed by ion chromatographyE113WaterFSulphate (as SO4)Determination of sulphate by filtration & analysed by ion chromatographyE113WaterWaterUFSulphate (as SO4)Determination of sulphate by filtration & analysed by ion chromatographyE118WaterUFSulphate (as SO4)Determination of sulphate by filtration & analysed by ion chromatographyE116WaterUFToluene Extractable Matter (TEM)Gravimetrically determined through liquid:liquid extraction with tolueneE111WaterUFToluene Extractable Matter (TEM)Gravimetrically determined through liquid:liquid extraction with spe followed by GC-FID for c10-C12, C12-C16, C16-C21, C21-C34, C12-C16, C16-C21, C21-C34, 				Determination of PAH compounds by concentration through SPE cartridge, collection in	
WaterUFPetroleum Ether Extract (PEE)Gravimetrically determined through liquid:liquid extraction with petroleum etherE111WaterUFDFDetermination of pH by electrometric measurementE107WaterFRedox PotentialDetermination of phosphate by filtration & analysed by ion chromatographyE109WaterUFSulphate (as SO4)Determination of sulphate by distillation followed by colorimetryE113WaterUFSulphate (as SO4)Determination of sulphate by distillation followed by colorimetryE118WaterUFSulphate (as SO4)Determination of semi-volatile organic compounds by concentration through SPE cartridge, collection in dichloromethane followed by GC-MSE110WaterUFToluene Extractable Matter (TEM)Gravimetrically determined through liquid:liquid extraction with tolueneE111WaterUFToluene Extractable Matter (TEM)Gravimetrically determined through liquid:liquid extraction with tolueneE111WaterUFToluene Extractable Matter (TEM)Gravimetrically determined through liquid:liquid extraction with hexane, fractionating with SPE followed by GC-FID for C10-C12, C12-C16, C16-C21, C21-C35,E104WaterFTPH CWG (ali: C5-C6, C6-C8, C8-C10, C10-C12, C12-C16, C16-C21, C21-C35, C35-C44, aro: C5-C7, C7-C8, C8-C10, C10-C12, C12-C16, C16-C21, C21-C35, C35-C44, aro: C5-C7, C7-C8, C8-C10, C10-C12, C12-C16	Wator	E	PCB - 7 Congonors		E109
WaterUFDetermination of pH by electrometric measurementE107WaterFPhosphateDetermination of phosphate by filtration & analysed by ion chromatographyE109WaterUFRedox PotentialDetermination of redox potential by electrometric measurementE113WaterFSulphate (as SO4)Determination of sulphate by filtration & analysed by ion chromatographyE109WaterUFSulphate (as SO4)Determination of sulphate by filtration & analysed by ion chromatographyE109WaterUFSulphate (as SO4)Determination of sulphate by filtration & analysed by ion chromatographyE109WaterUFSulphate (as SO4)Determination of sulphate by filtration & analysed by ion chromatographyE109WaterUFToluene Extractable Matter (TEM)Determination of sulphate by distillation followed by colorimetryE118WaterUFToluene Extractable Matter (TEM)Gravimetrically determined through liquid:liquid extraction with tolueneE111WaterUFTotal Organic Carbon (TOC)Low heat with persulphate addition followed by IR detectionE110WaterFTPH CWG (ali: C5-C6, C6-C8, C8-C10, C10-C12, C12-C16, C16-C21, C21-C34, C3-C35, C3-C44, arc: C5-C7, C7-C8, C8-C10, C10-C12, C3-C35, C3-C44Determination of liquid:liquid extraction with hexane, fractionating with SPE followed by GC-FID for C10-C12, C12-C16, C16-C21, C21-C35, C3-C44, C3-C35, C3-C44Etermination of liquid:liquid extraction with hexane, fractionating with SPE followed by GC-FID for C12-C16, C16-C21, C21-C35, C3-C44Etermination of liquid:liquid extraction with hexane, fraction					
WaterFPhosphateDetermination of phosphate by filtration & analysed by ion chromatographyE109WaterUFRedox PotentialDetermination of redox potential by electrometric measurementE113WaterFSulphate (as SO4)Determination of sulphate by filtration & analysed by ion chromatographyE109WaterUFSulphate (as SO4)Determination of sulphate by filtration & analysed by ion chromatographyE109WaterUFSulphateDetermination of sulphate by filtration & analysed by ion chromatographyE109WaterUFSulphateDetermination of semi-volatile organic compounds by concentration through SPE cartridge, collection in dichloromethane followed by GC-MSE110WaterUFToluene Extractable Matter (TEM)Gravimetrically determined through liquid:liquid extraction with tolueneE111WaterUFTotal Organic Carbon (TOC)Low heat with persulphate addition followed by IR detectionE110WaterFC10-C12, C12-C16, C16-C21, C21-C34, aro: C5-C7, C7-C8, C8-C10, C10-C12, C12-C16, C16-C21, C21-C35,Determination of liquid:liquid extraction with hexane, fractionating with SPE followed by GC-FID for aro: C5-C7, C7-C8, C8-C10, C10-C12, C12-C16, C16-C21, C21-C35,E104WaterFTPH LQM (ali: C5-C6, C6-C8, C8-C10, C12-C16, C16-C21, C21-C35, C35-C44, aro: C5-C7, C7-C8, C8-C10, C10-C12, C12-C16, C16-C21, C21-C35, C35-C44, aro: C5-C7, C7-C8, C8-C10, C10-C12, C12-C16, C16-C21, C21-C35, C35-C44, aro: C5-C7, C7-C8, C8-C10, C10-C12, C12-C16, C16-C21, C21-C35, C35-C44, c12-C16, C16-C21, C21-C35, C35-C44, c12-C16, C16-C21, C21-C35, C35-C44					
WaterUFRedox PotentialDetermination of redox potential by electrometric measurementE113WaterFSulphate (as SO4)Determination of sulphate by filtration & analysed by ion chromatographyE109WaterUFSulphate (as SO4)Determination of sulphate by filtration & analysed by ion chromatographyE118WaterUFSulphate (as SO4)Determination of sulphate by filtration & analysed by colorimetryE118WaterFSVOCDetermination of semi-volatile organic compounds by concentration through SPE cartridge, collection in dichloromethane followed by GC-MSE106WaterUFToluene Extractable Matter (TEM)Gravimetrically determined through liquid:liquid extraction with tolueneE111WaterUFToluene Extractable Matter (TEM)Gravimetrically determined through liquid:liquid extractionE110WaterUFToluene Extractable Matter (TEM)Gravimetrically determined through liquid:liquid extraction with hexane, fractionating with SPE followed by GC-FID for c12-C16, C16-C21, C21-C34, Determination of liquid:liquid extraction with hexane, fractionating with SPE followed by GC-FID for c12-C16, C16-C21, C21-C35, C35-C44, Determination of liquid:liquid extraction with hexane, fractionating with SPE followed by GC-FID for aro: C5-C7, C7-C8, C8-C10, C10-C12, C8 to C44. C5 to C8 by headspace GC-MSE104WaterUFVOCsDetermination of volatile organic compounds by headspace GC-MSE104					
WaterFSulphate (as SO4)Determination of sulphate by filtration & analysed by ion chromatographyE109WaterUFSulphideDetermination of sulphate by distillation followed by colorimetryE118WaterFSVOCDetermination of sulphate by gC-MSE106WaterUFToluene Extractable Matter (TEM)Gravimetrically determined through liquid:liquid extraction with tolueneE111WaterUFToluone Extractable Matter (TEM)Gravimetrically determined through liquid:liquid extraction with tolueneE110WaterUFTotal Organic Carbon (TOC)Low heat with persulphate addition followed by IR detectionE110WaterUFTotal Organic Carbon (TOC)Low heat with persulphate addition followed by IR detectionE110WaterFC10-C12, C12-C16, C16-C21, C21-C34, aro: C5-C7, C7-C8, C8-C10, C10-C12, C12-C16, C16-C21, C21-C235, C3-C5 to C8 by headspace GC-MSE104WaterFTPH LQM (ali: C5-C6, C6-C8, C8-C10, C10-C12, C12-C16, C16-C21, C21-C35, C3-C5 to C8 by headspace GC-MSE104WaterFTPH LQM (ali: C5-C6, C6-C8, C8-C10, C10-C12, C12-C16, C16-C21, C21-C35, C3-C44, aro: C5-C7, C7-C8, C8-C10, C10-C12, C12-C16, C16-C23, C3-C5+C44, aro: C5-C7, C7-C8, C8-C10, C10-C12, C12-C16, C16-C23, C3-C5+C44, aro: C5-C7, C7-C8, C8-C10, C10-C12, C12-C16, C16-C21, C21-C35, C3-C44, c5 to C8 by headspace GC-MSE104WaterUFVOCsDetermination of volatile organic compounds by headspace GC-MSE101					
Water UF Sulphide Determination of sulphide by distillation followed by colorimetry E118 Water F SVOC Determination of semi-volatile organic compounds by concentration through SPE cartridge, collection in dichloromethane followed by GC-MS E106 Water UF Toluene Extractable Matter (TEM) Gravimetrically determined through liquid:liquid extraction with toluene E111 Water UF Toluene Extractable Matter (TEM) Gravimetrically determined through liquid:liquid extraction with toluene E111 Water UF Toluene Extractable Matter (TEM) Gravimetrically determined through liquid:liquid extraction with toluene E111 Water UF Total Organic Carbon (TOC) Low heat with persulphate addition followed by IR detection E110 Water F TPH CWG (ali: C5-C6, C6-C8, C8-C10, C10-C12, C12-C16, C16-C21, C21-C34, Determination of liquid:liquid extraction with hexane, fractionating with SPE followed by GC-FID for C12-C12, C12-C16, C16-C21, C21-C35 C8 to C35. C5 to C8 by headspace GC-MS E104 Water F TPH LQM (ali: C5-C6, C6-C8, C8-C10, C10-C12, C12-C16, C16-C35, C35-C44, aro: C5-C7, C7-C8, C8-C10, C10-C12, C12-C16, C16-C35, C35-C44, aro: C5-C7, C7-C8, C8-C10, C10-C12, C21-C35, C35-C44, c5 to C8 by headspace GC-MS E104 Water UF VOCs Determination of volatil		-			
WaterFSVOCDetermination of semi-volatile organic compounds by concentration through SPE cartridge, collection in dichloromethane followed by GC-MSE106WaterUFToluene Extractable Matter (TEM) Gravimetrically determined through liquid:liquid extraction with tolueneE111WaterUFTotal Organic Carbon (TOC) Low heat with persulphate addition followed by IR detectionE110WaterUFTotal Organic Carbon (TOC) Low heat with persulphate addition followed by IR detectionE110WaterFTPH CWG (ali: C5-C6, C6-C8, C8-C10, C10-C12, C12-C16, C16-C21, C21-C34, aro: C5-C7, C7-C8, C8-C10, C10-C12, C12-C16, C16-C21, C21-C35Determination of liquid:liquid extraction with hexane, fractionating with SPE followed by GC-FID for C8 to C35. C5 to C8 by headspace GC-MSE104WaterFTPH LQM (ali: C5-C6, C6-C8, C8-C10, C10-C12, C12-C16, C16-C21, C21-C35, C35-C44, aro: C5-C7, C7-C8, C8-C10, C10-C12, C12-C16, C16-C21, C21-C35, C35-C44, aro: C5-C7, C7-C8, C8-C10, C10-C12, C12-C16, C16-C21, C21-C35, C35-C44, C12-C16, C16-C21, C21-C35, C35-C44, C10-C12, C12-C16, C16-C21, C21-C35, C35-C44, C12-C16, C16-C21, C21-C35, C35-C44, C10-C12, C12-C16, C16-C21, C21-C35, C35-C44, C12-C16, C16-C21, C21-C35, C35-C44,E104WaterUFVOCsDetermination of volatile organic compounds by headspace GC-MSE101					
WaterFControl of the control of				Determination of coming latile eventia compounds by concentration through CDE contridge collection	
Water UF Total Organic Carbon (TOC) Low heat with persulphate addition followed by IR detection E110 Water F TPH CWG (ali: C5-C6, C6-C8, C8-C10, C10-C12, C12-C16, C16-C21, C21-C34, aro: C5-C7, C7-C8, C8-C10, C10-C12, C12-C16, C16-C21, C21-C35, C35-C5 to C8 by headspace GC-MS Determination of liquid:liquid extraction with hexane, fractionating with SPE followed by GC-FID for C12-C16, C16-C21, C21-C35, C35-C5 to C8 by headspace GC-MS E104 Water F TPH LQM (ali: C5-C6, C6-C8, C8-C10, C10-C12, C12-C16, C16-C21, C21-C35, C35-C44, aro: C5-C7, C7-C8, C8-C10, C10-C12, C12-C16, C16-C35, C35-C44, aro: C5-C7, C7-C8, C8-C10, C10-C12, C12-C16, C16-C35, C35-C44, C5 to C8 by headspace GC-MS E104 Water UF VOCs Determination of volatile organic compounds by headspace GC-MS E101		-		in dichloromethane followed by GC-MS	
WaterFTPH CWG (ali: C5-C6, C6-C8, C8-C10, C10-C12, C12-C16, C16-C21, C21-C34, aro: C5-C7, C7-C8, C8-C10, C10-C12, C12-C16, C16-C21, C21-C35Determination of liquid:liquid extraction with hexane, fractionating with SPE followed by GC-FID for C8 to C35. C5 to C8 by headspace GC-MSE104WaterFTPH LQM (ali: C5-C6, C6-C8, C8-C10, C10-C12, C12-C16, C16-C35, C35-C44, aro: C5-C7, C7-C8, C8-C10, C10-C12, C12-C16, C16-C21, C21-C35, C35-C44, C12-C16, C16-C21, C21-C35, C35-C44, C10-C12, C12-C16, C1	Water	UF	Toluene Extractable Matter (TEM)	Gravimetrically determined through liquid:liquid extraction with toluene	E111
Water F C10-C12, C12-C16, C16-C21, C21-C34, arcs (C10-C12, C21-C34, C10-C12, C12-C16, C16-C21, C21-C34, C10-C12, C12-C16, C16-C21, C21-C35) Determination of liquid:liquid extraction with hexane, fractionating with SPE followed by GC-FID for C12-C16, C16-C21, C21-C35) E104 Water F TPH LQM (ali: C5-C6, C6-C8, C8-C10, C10-C12, C12-C16, C16-C35, C35-C44, arcs (C5-C7, C7-C8, C8-C10, C10-C12, C12-C16, C16-C35, C35-C44, C5 to C8 by headspace GC-MS Determination of liquid:liquid extraction with hexane, fractionating with SPE followed by GC-FID for C10-C12, C12-C16, C16-C21, C21-C35, C35-C44, arcs (C5-C7, C7-C8, C8-C10, C10-C12, C12-C16, C16-C21, C21-C35, C35-C44, C5 to C8 by headspace GC-MS E104 Water UF VOCs Determination of volatile organic compounds by headspace GC-MS E101	Water	UF	Total Organic Carbon (TOC)	Low heat with persulphate addition followed by IR detection	E110
Water F C10-C12, C12-C16, C16-C35, C35-C44, Determination of liquid:liquid extraction with hexane, fractionating with SPE followed by GC-FID for C12-C16, C16-C21, C21-C35, C35-C44) E104 Water UF VOCs Determination of volatile organic compounds by headspace GC-MS E101	Water	F	C10-C12, C12-C16, C16-C21, C21-C34, aro: C5-C7, C7-C8, C8-C10, C10-C12,	Determination of liquid:liquid extraction with hexane, fractionating with SPE followed by GC-FID for	E104
		-	C10-C12, C12-C16, C16-C35, C35-C44, aro: C5-C7, C7-C8, C8-C10, C10-C12, C12-C16, C16-C21, C21-C35, C35-C44)	C8 to C44. C5 to C8 by headspace GC-MS	
Water UF VPH (C6-C8 & C8-C10) Determination of hydrocarbons C6-C8 by headspace GC-MS & C8-C10 by GC-FID E101	Water				
	Water	UF	VPH (C6-C8 & C8-C10)	Determination of hydrocarbons C6-C8 by headspace GC-MS & C8-C10 by GC-FID	E101

F Filtered UF Unfiltered

List of HWOL Acronyms and Operators

Acronym	Description
HS	Headspace analysis
EH	Extractable Hydrocarbons - i.e. everything extracted by the solvent
CU	Clean-up - e.g. by florisil, silica gel
1D	GC - Single coil gas chromatography
2D	GC-GC - Double coil gas chromatography
Total	Aliphatics & Aromatics
AL	Aliphatics only
AR	Aromatics only
#1	EH_2D_Total but with humics mathematically subtracted
#2	EH_2D_Total but with fatty acids mathematically subtracted
	Operator - underscore to separate acronyms (exception for +)
+	Operator to indicate cumulative eg. EH+HS_Total or EH_CU+HS_Total
	Det - Acronym

 Det - Acronym

 EPH Texas (C10 - C12) - EH_1D_Total

 EPH Texas (C12 - C16) - EH_1D_Total

 EPH Texas (C16 - C21) - EH_1D_Total

 EPH Texas (C21 - C40) - EH_1D_Total

 EPH Texas (C6 - C40) - HS_1D_MS+EH_1D_Total

 EPH Texas (C6 - C8) - HS_1D_MS_ETotal

 EPH Texas (C8 - C10) - EH_1D_Total

Damian Jones Sevenoaks Environmental Consultancy Ltd 145a Hastings Road Pembury Tunbridge Wells Kent TN2 4JU

Derwentside Environmental Testing Services Ltd Unit 1 Rose Lane Industrial Estate Rose Lane Lenham Heath Kent ME17 2JN t: 01622 850410

DETS Report No: 23-10842

Site Reference:	Dartford
Project / Job Ref:	5477
Order No:	5477
Sample Receipt Date:	23/08/2023
Sample Scheduled Date:	23/08/2023
Report Issue Number:	1
Reporting Date:	30/08/2023

Authorised by:

Mus

Dave Ashworth Technical Manager

Dates of laboratory activities for each tested analyte are available upon request.

Opinions and interpretations are outside the laboratory's scope of ISO 17025 accreditation. This certificate is issued in accordance with the accreditation requirements of the United Kingdom Accreditation Service. The results reported herein relate only to the material supplied to the laboratory. This certificate shall not be reproduced except in full, without the prior written approval of the laboratory.

Soil Analysis Certificate											
DETS Report No: 23-10842	Date Sampled	18/08/23	18/08/23	18/08/23	18/08/23	18/08/23					
Sevenoaks Environmental Consultancy Ltd	Time Sampled	None Supplied									
Site Reference: Dartford	TP / BH No	WS01	WS02	WS02	WS03	WS03					
Project / Job Ref: 5477	Additional Refs	MG	TMAC	MG	MG	MG					
Order No: 5477	Depth (m)	0.30	0.05	0.70	0.15	0.50					
Reporting Date: 30/08/2023	DETS Sample No	671546	671547	671548	671549	671550					

Determinand	Unit	RL	Accreditation	(n)	(n)			
Asbestos Screen (S)	N/a	N/a	ISO17025	Not Detected		Not Detected	Not Detected	Not Detected
pH	pH Units	N/a	MCERTS	10.0		8.5		8.8
Total Cyanide	mg/kg	< 1	NONE	< 1		< 1		< 1
Free Cyanide	mg/kg	< 1	NONE	< 1		< 1		< 1
Thiocyanate as SCN	mg/kg	< 3		< 3		< 3		< 3
Total Sulphate as SO ₄	mg/kg	< 200	MCERTS	3636		1874		1345
Total Sulphate as SO ₄	%	< 0.02	MCERTS	0.36		0.19		0.13
Sulphide	mg/kg	< 5	NONE	< 5		< 5		< 5
Organic Matter (SOM)	%	< 0.1	MCERTS	18.4		2		0.8
TOC (Total Organic Carbon)	%	< 0.1	MCERTS	10.7		1.2		0.5
Ammonia as NH ₄	mg/kg	< 0.5	MCERTS					
Antimony (Sb)	mg/kg	< 1	NONE	7.2		2.4		2.1
Arsenic (As)	mg/kg	< 2	MCERTS	50		11		8
Barium (Ba)	mg/kg	< 2.5	MCERTS	574		90		51
W/S Boron	mg/kg	< 1	NONE	1.7		< 1		< 1
Cadmium (Cd)	mg/kg	< 0.2	MCERTS	0.2		0.2		< 0.2
Chromium (Cr)	mg/kg	< 2	MCERTS	27		13		14
Chromium (hexavalent)	mg/kg	< 2	NONE	< 2		< 2		< 2
Copper (Cu)	mg/kg	< 4	MCERTS	449		27		13
Lead (Pb)	mg/kg	< 3	MCERTS	451		103		46
Mercury (Hg)	mg/kg	< 1	MCERTS	< 1		< 1		< 1
Nickel (Ni)	mg/kg	< 3		52		11		11
Selenium (Se)	mg/kg	< 2	MCERTS	< 2		< 2		< 2
Zinc (Zn)	mg/kg	< 3	MCERTS	241		71		59
Total Phenols (monohydric)	mg/kg	< 2	NONE	< 2		< 2		< 2

Analytical results are expressed on a dry weight basis where samples are assisted-dried at less than 30°C. The Method Description page describes if the test is performed on the dried or as-received portion

Subcontracted analysis (S) (n) Please note we are only MCERTS accredited (UK soils only) for sand, loam and clay and any other matrix is outside our scope of accreditation

Soil Analysis Certificate						
DETS Report No: 23-10842	Date Sampled	18/08/23	18/08/23	18/08/23	18/08/23	
Sevenoaks Environmental Consultancy Ltd	Time Sampled	None Supplied	None Supplied	None Supplied	None Supplied	
Site Reference: Dartford	TP / BH No	WS03	WS04	WS05	WS05	
Project / Job Ref: 5477	Additional Refs	NAT	MG	MG	MG	
Order No: 5477	Depth (m)	3.50	0.30	0.23	0.70	
Reporting Date: 30/08/2023	DETS Sample No	671551	671552	671553	671554	

Determinand	Unit	RL	Accreditation					
Asbestos Screen ^(S)	N/a	N/a		Not Detected	Not Detected	Not Detected	Not Detected	
pH	pH Units	N/a	MCERTS	8.2	9.4		7.5	
Total Cyanide	mg/kg	< 1	NONE	< 1	9		4	
Free Cyanide	mg/kg	< 1	NONE	< 1	< 1		< 1	
Thiocyanate as SCN	mg/kg	< 3	NONE	< 3	< 3		< 3	
Total Sulphate as SO₄	mg/kg	< 200	MCERTS	< 200	3083		2223	
Total Sulphate as SO₄	%	< 0.02	MCERTS	< 0.02	0.31		0.22	
Sulphide	mg/kg	< 5	NONE	< 5	< 5		< 5	
Organic Matter (SOM)	%	< 0.1	MCERTS	0.2	6.3		26.5	
TOC (Total Organic Carbon)	%	< 0.1	MCERTS	0.1	3.7		15.4	
Ammonia as NH ₄	mg/kg	< 0.5	MCERTS	5.3				
Antimony (Sb)	mg/kg	< 1	NONE	< 1	8.1		11.7	
Arsenic (As)	mg/kg	< 2	MCERTS	< 2	27		77	
Barium (Ba)	mg/kg	< 2.5	MCERTS	5	371		601	
W/S Boron	mg/kg	< 1	NONE	< 1	< 1		2.8	
Cadmium (Cd)	mg/kg	< 0.2	MCERTS	< 0.2	1.4		1.3	
Chromium (Cr)	mg/kg	< 2	MCERTS	4	30		31	
Chromium (hexavalent)	mg/kg	< 2	NONE	< 2	< 2		< 2	
Copper (Cu)	mg/kg	< 4	MCERTS	< 4	141		360	
Lead (Pb)	mg/kg	< 3	MCERTS	< 3	409		1470	
Mercury (Hg)	mg/kg	< 1	MCERTS	< 1	< 1		4.5	
Nickel (Ni)	mg/kg	< 3	MCERTS	< 3	48		60	
Selenium (Se)	mg/kg	< 2	MCERTS	< 2	< 2		< 2	
Zinc (Zn)	mg/kg	< 3	MCERTS	6	1210		639	
Total Phenols (monohydric)	mg/kg	< 2	NONE	< 2	< 2		< 2	

Analytical results are expressed on a dry weight basis where samples are assisted-dried at less than 30°C. The Method Description page describes if the test is performed on the dried or as-received portion Subcontracted analysis (S)

Soil Analysis Certificate	Soil Analysis Certificate - Speciated PAHs								
DETS Report No: 23-1084	42		Date Sampled	18/08/23	18/08/23	18/08/23	18/08/23	18/08/23	
Sevenoaks Environmenta	Consultancy Ltd		Time Sampled	None Supplied					
Site Reference: Dartford			TP / BH No	WS01	WS02	WS03	WS03	WS04	
Project / Job Ref: 5477			Additional Refs	MG	MG	MG	NAT	MG	
Order No: 5477			Depth (m)	0.30	0.70	0.50	3.50	0.30	
Reporting Date: 30/08/2	023	D	ETS Sample No	671546	671548	671550	671551	671552	
Determinand	Unit	RL	Accreditation	(n)					
Naphthalene	mg/kg	< 0.1		< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	
Acenaphthylene		< 0.1		< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	
Acenaphthene	mg/kg	< 0.1	MCERTS	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	
Fluorene	mg/kg	< 0.1	MCERTS	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	
Phenanthrene	mg/kg	< 0.1	MCERTS	0.18	< 0.1	< 0.1	< 0.1	1.34	
Anthracene	mg/kg	< 0.1	MCERTS	< 0.1	< 0.1	< 0.1	< 0.1	0.35	
Fluoranthene	mg/kg	< 0.1	MCERTS	0.24	0.15	< 0.1	< 0.1	3.90	
Pyrene	mg/kg	< 0.1	MCERTS	0.21	0.14	< 0.1	< 0.1	3.54	
Benzo(a)anthracene	mg/kg	< 0.1	MCERTS	0.13	0.12	< 0.1	< 0.1	1.76	
Chrysene	mg/kg	< 0.1	MCERTS	< 0.1	0.11	< 0.1	< 0.1	1.52	
Benzo(b)fluoranthene	mg/kg	< 0.1	MCERTS	0.16	0.16	< 0.1	< 0.1	1.51	
Benzo(k)fluoranthene	mg/kg	< 0.1	MCERTS	< 0.1	< 0.1	< 0.1	< 0.1	0.51	
Benzo(a)pyrene	mg/kg	< 0.1	MCERTS	< 0.1	0.14	< 0.1	< 0.1	1.21	
Indeno(1,2,3-cd)pyrene	mg/kg	< 0.1	MCERTS	< 0.1	< 0.1	< 0.1	< 0.1	0.74	
Dibenz(a,h)anthracene	mg/kg	< 0.1	MCERTS	< 0.1	< 0.1	< 0.1	< 0.1	0.14	
Benzo(ghi)perylene	mg/kg	< 0.1	MCERTS	< 0.1	< 0.1	< 0.1	< 0.1	0.60	
Total EPA-16 PAHs	mg/kg	< 1.6	MCERTS	< 1.6	< 1.6	< 1.6	< 1.6	17.1	

(n) Please note we are only MCERTS accredited (UK soils only) for sand, loam and clay and any other matrix is outside our scope of accreditation

Soil Analysis Certificate	Soil Analysis Certificate - Speciated PAHs								
DETS Report No: 23-1084	12		Date Sampled	18/08/23					
Sevenoaks Environmenta	Consultancy Ltd		Time Sampled	None Supplied					
Site Reference: Dartford			TP / BH No	WS05					
Project / Job Ref: 5477			Additional Refs	MG					
Order No: 5477			Depth (m)	0.70					
Reporting Date: 30/08/2	023	D	ETS Sample No	671554					
Determinand	Unit	RL	Accreditation						
Naphthalene			MCERTS	0.16					
Acenaphthylene				< 0.1					
Acenaphthene	mg/kg	< 0.1	MCERTS	< 0.1					
Fluorene	mg/kg	< 0.1	MCERTS	< 0.1					
Phenanthrene	mg/kg	< 0.1	MCERTS	1.73					
Anthracene	mg/kg	< 0.1	MCERTS	0.34					
Fluoranthene	mg/kg	< 0.1	MCERTS	4.01					
Pyrene	mg/kg	< 0.1	MCERTS	3.60					
Benzo(a)anthracene	mg/kg	< 0.1	MCERTS	2.06					
Chrysene	mg/kg	< 0.1	MCERTS	2.35					
Benzo(b)fluoranthene	mg/kg	< 0.1	MCERTS	2.75					
Benzo(k)fluoranthene	mg/kg	< 0.1	MCERTS	0.90					
Benzo(a)pyrene	mg/kg	< 0.1	MCERTS	2.01					
Indeno(1,2,3-cd)pyrene	mg/kg	< 0.1	MCERTS	1.09					
Dibenz(a,h)anthracene	mg/kg	< 0.1	MCERTS	0.28					
Benzo(ghi)perylene	mg/kg	< 0.1	MCERTS	0.93					
Total EPA-16 PAHs	mg/kg	< 1.6	MCERTS	22.2					

-		10/00/00				
-		, ,				
_						
D	ETS Sample No	671547				
	A					
		-				
g < 0.1		< 0.1				
g < 0.1	MCERTS	< 0.1				
g < 0.1	MCERTS	< 0.1				
g < 0.1	MCERTS	< 0.1				
g < 0.1	MCERTS	< 0.1				
g < 0.1	MCERTS	< 0.1				
g < 0.1	MCERTS	< 0.1				
g < 0.1	MCERTS	< 0.1				
g < 0.1	MCERTS	< 0.1				
g < 0.1	MCERTS	< 0.1				
g < 0.1	MCERTS	< 0.1				
g < 0.1	MCERTS	< 0.1				
g < 0.1	NONE	< 0.1				
g < 1	MCERTS	< 1				
	MCERTS	< 1				
g < 1.6	MCERTS	< 1.6				
	NONE	< 1.7				
		Date Sampled Time Sampled TP / BH No Additional Refs Depth (m) DETS Sample No it RL Accreditation g < 0.1	Date Sampled 18/08/23 Time Sampled None Supplied TP / BH No WS02 Additional Refs TMAC Depth (m) 0.05 DETS Sample No 671547 it RL Accreditation g < 0.1	Date Sampled 18/08/23 Time Sampled None Supplied TP / BH No WS02 Additional Refs TMAC Depth (m) 0.05 DETS Sample No 671547 it RL Accreditation (n) g < 0.1	Date Sampled 18/08/23 Time Sampled None Supplied TP / BH No WS02 Additional Refs TMAC Depth (m) 0.05 DETS Sample No 671547 it RL Accreditation (n) g < 0.1	Date Sampled 18/08/23 Time Sampled None Supplied TP / BH No WS02 Additional Refs TMAC Depth (m) 0.05 DETS Sample No 671547 t RL Accreditation (n) g < 0.1 MCERTS < 0.1 g g < 0.1 MCERTS

(n) Please note we are only MCERTS accredited (UK soils only) for sand, loam and clay and any other matrix is outside our scope of accreditation

Soil Analysis Certificate ·	· EPH Texas Bande	ed						
DETS Report No: 23-10842	2		Date Sampled	18/08/23	18/08/23	18/08/23	18/08/23	18/08/23
Sevenoaks Environmental	Consultancy Ltd		Time Sampled	None Supplied				
Site Reference: Dartford			TP / BH No	WS01	WS02	WS02	WS03	WS03
Project / Job Ref: 5477			Additional Refs	MG	TMAC	MG	MG	NAT
Order No: 5477			Depth (m)	0.30	0.05	0.70	0.50	3.50
Reporting Date: 30/08/20	23	D	ETS Sample No	671546	671547	671548	671550	671551
Determinand	Unit	RL	Accreditation	(n)	(n)			
EPH Texas (C6 - C8) :	ma/ka	< 0.05	NONE					
HS_1D_MS_Total		. 0.05		< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
EPH Texas (>C8 - C10) :	mg/kg	< 1	MCERTS					
EH_1D_Total	5, 5			< 1	< 1	< 1	< 1	< 1
EPH Texas (>C10 - C12) :	mg/kg	< 1	MCERTS	< 1	< 1	< 1	< 1	< 1
EH_1D_Total								
EPH Texas (>C12 - C16) : EH 1D Total	mg/kg	< 1	MCERTS	3	< 1	< 1	< 1	< 1
EPH Texas (>C16 - C21) :								
EFIT Texas (>CIO - C2I). EH 1D Total	mg/kg	< 1	MCERTS	14	2	2	2	< 1
EPH Texas (>C21 - C40) :							-	
EH 1D Total	mg/kg	< 6	MCERTS	54	225	34	100	< 6
EPH Texas (C6 - C40) :								
HS 1D MS+EH 1D Total	mg/kg	< 6	NONE	71	227	37	102	< 6

(n) Please note we are only MCERTS accredited (UK soils only) for sand, loam and clay and any other matrix is outside our scope of accreditation

Soil Analysis Certificate	- EPH Texas Bande	ed					
DETS Report No: 23-1084	12		Date Sampled	18/08/23	18/08/23		
Sevenoaks Environmenta	Consultancy Ltd		Time Sampled	None Supplied	None Supplied		
Site Reference: Dartford			TP / BH No	WS04	WS05		
Project / Job Ref: 5477			Additional Refs	MG	MG		
Order No: 5477			Depth (m)	0.30	0.70		
Reporting Date: 30/08/2	023	D	ETS Sample No	671552	671554		
Determinand	Unit	RL	Accreditation				
EPH Texas (C6 - C8) :	ma/ka	< 0.05	NONE				
HS_1D_MS _Total	5	. 0.00		< 0.05	0.85		
EPH Texas (>C8 - C10) :		< 1	MCERTS		_		
EH_1D_Total	5, 5			< 1	/		
EPH Texas (>C10 - C12) :	mg/kg	< 1	MCERTS	< 1	< 1		
EH_1D_Total	5, 5						
EPH Texas (>C12 - C16) :	mg/kg	< 1	MCERTS	< 1	3		
EH_1D_Total							
EPH Texas (>C16 - C21) :	mg/kg	< 1	MCERTS	20	21		
EH_1D_Total							
EPH Texas (>C21 - C40) :	mg/kg	< 6	MCERTS	55	57		
EH 1D Total							
EPH Texas (C6 - C40) :	ma/ka	< 6	NONE	75	88		
HS 1D MS+EH 1D Total	5. 5					1	

DFTS Report No: 23-10842 Det Sampled Non Suppled Non Suppled Site Actinges: Dartford TP / MH Wite Suppled Image: Suppled in the suppled in	Soil Analysis Certificate	ioil Analysis Certificate - Volatile Organic Compounds (VOC)								
Site Reference: DartGod TP / Bit No W000 Image: Constraint of the constraint of th					18/08/23					
Project J. Dak Ref. 5477 Additional Refs Nat Image: Control of the sector of the s		Consultancy Ltd			None Supplied					
Order No: 5477 Depth (m) 3.50 Image: constraint of the second of the										
Reporting Date: 30/08/2023 DETS Sample No 6/1551 Determinand Unit RL Acceditation Determinand Unit RL Acceditation Determinand Unit RL Acceditation Unit Choirde Unit C MCRRTS < 5 Otheroditation Unit C MCRRTS < 1 Chioroditation Unit MCRRTS < 10 MCRRTS < 10 Trikthoroditation Unit C MCRRTS < 5 < 1 I. Debitoriditation Unit C MCRRTS < 5 < 1 I. Debitoriditation Unit C MCRRTS < 5 < 1 I. Debitoroditation Unit C MCRRTS < 5 < 1 I. Debitoroditation Unit C MCRRTS < 5 < 1 I. Debitoroditation Unit C MCRRTS < 5 < < 1 I. Debitoroophame										
Determinand Unit RL Accredition Delicodfluconnethane up/kg < 5										
Dicklondifucomethane up/g < S	Reporting Date: 30/08/2	023	D	ETS Sample No	671551					
Dicklondifucomethane up/g < S	Determinand	Unit	DI	Accreditation						
Vind Chloride u/kg <					- 5					
Chloromethane u/kg < 10 MCERTS < 10 Okromethane u/kg < 10		5,5								
		5 15								
Bromomethane u/p/G < 10 Tinchiorationemethane u/p/G <										
$\begin{tabular}{lllllllllllllllllllllllllllllllllll$										
$\begin{array}{c c c c c c c c c c c c c c c c c c c $										
MTRE ug/kg < S MCERTS < S 1.1.Delvionethme ug/kg < S										
1.1-Dichlorestheneug/kg< SMCERTS< S $(3:1,2)$ -Dichlorestheneug/kg< S	MTBE	ug/kg	< 5	MCERTS						
cb:1-2-bichlorgepane ug/kg <5	trans-1,2-Dichloroethene	ug/kg	< 5	MCERTS	< 5					
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	1,1-Dichloroethane	ug/kg	< 5	MCERTS	< 5					
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	cis-1,2-Dichloroethene	ug/kg	< 5							
$\begin{tabular}{lllllllllllllllllllllllllllllllllll$	<i>.</i>									
$\begin{array}{c c c c c c c c c c c c c c c c c c c $										
$\begin{array}{c c c c c c c c c c c c c c c c c c c $										
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$										
1,2-Dichloreptaneug/kg< 5MCERTS< 5Benzeneug/kg< 5										
Berzereug/kg<2MCERTS<21,2-Dichloropropaneug/kg<5										
1.2-Dichloropropane u_g/kg < SMCERTS< SBromodichloromethane u_g/kg < S	1									
$\begin{array}{c c c c c c c c c c c c c c c c c c c $										
Bromodichloromethane g/kg < S MCERTS < S Dibromomethane ug/kg < S										
Dibromomethane ug/kg < 5 MCERTS < 5 TAME ug/kg < 5										
$\begin{array}{c c c c c c c c c c c c c c c c c c c $										
$\begin{array}{c c c c c c c c c c c c c c c c c c c $										
Toluene ug/kg < 5 MCERTS < 5 trans-1,3-Dichloropropene ug/kg < 5		5,5								
$\begin{array}{c c c c c c c c c c c c c c c c c c c $										
1,1,2-Trichloroethaneug/kg< 10MCERTS< 101,3-Dichloropropaneug/kg< 5		5, 5								
1,3-Dichloropropaneug/kg< 5MCERTS< 5Tetrachloroethaneug/kg< 5										
Tetrachloroethene ug/kg < 5 MCERTS < 5 Dibromochloromethane ug/kg < 5 MCERTS < 5 $1,2$ -Dibromethane ug/kg < 5 MCERTS < 5 Chlorobenzene ug/kg < 5 MCERTS < 5 $1,1,1,2$ -Tetrachloroethane ug/kg < 5 MCERTS < 5 Ethyl Benzene ug/kg < 2 MCERTS < 2 m,p -Xylene ug/kg < 2 MCERTS < 2 0 -Xylene ug/kg < 5 MCERTS < 5 $1,1,2,2$ -Tetrachloroethane ug/kg < 5 MCERTS < 5 $1,2,2$ -Trichloropropane ug/kg < 5 MCERTS < 5 $1,2,2$ -Trichloropropane ug/kg < 5 MCERTS < 5 $1,2,2$ -Trinothorophene ug/kg < 5 MCERTS < 5 $1,2,3$ -Trindhorophene ug/kg < 5 MCERTS < 5 2 -Chlorobluene ug/kg < 5 MCERTS < 5 $1,3,5$ -Trimethylbenzene ug/kg < 5 MCERTS < 5 $1,2,4$ -Trimethylben		5,5								
1,2-Dibromoethaneug/kg< 5MCERTS< 5Chlorobenzeneug/kg< 5										
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	Dibromochloromethane	ug/kg	< 5	MCERTS	< 5					
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	1,2-Dibromoethane	ug/kg	< 5	MCERTS	< 5					
Ethyl Benzene ug/kg <2	Chlorobenzene	ug/kg								
$\begin{array}{c c c c c c c c c c c c c c c c c c c $					< 5					
o-Xyleneug/kg< 2MCERTS< 2Styreneug/kg< 5										
Styreneug/kg< 5MCERTS< 5Bromoformug/kg< 10										
Bromoformug/kg< 10MCERTS< 10Image: constraint of the sec set of the set of t										
Isopropylbenzene ug/kg < 5 MCERTS < 5 1,1,2,2-Tetrachloroethane ug/kg < 5										
1,1,2,2-Tetrachloroethaneug/kg< 5MCERTS< 51,2,3-Trichloropropaneug/kg< 5									ļ	
1,2,3-Trichloropropane ug/kg < 5MCERTS< 5n-Propylbenzene ug/kg < 5										
n-Propylbenzene ug/kg < 5 MCERTS < 5 Image: Model and State and Stat										
Bromobenzene ug/kg < 5 MCERTS < 5 Image: constraint of the system 2-Chlorotoluene ug/kg < 5										
2-Chlorotoluene ug/kg < 5MCERTS< 51,3,5-Trimethylbenzene ug/kg < 5										
1,3,5-Trimethylbenzene ug/kg < 5										
4-Chlorotoluene ug/kg < 5										
tert-Butylbenzene ug/kg < 5 MCERTS < 5 Image: Constraint of the system Image: Constraint of the system MCERTS < 5 Image: Constraint of the system Image: Constresystem Image: Constrainton system										
1,2,4-Trimethylbenzene ug/kg < 5									1	
sec-Butylbenzene ug/kg < 5 MCERTS < 5 Image: Constraint of the state of the sta									1	
p-Isopropyltoluene ug/kg < 5 MCERTS < 5 1,3-Dichlorobenzene ug/kg < 5									1	
1,3-Dichlorobenzene ug/kg < 5	/								1	
1,4-Dichlorobenzene ug/kg < 5										
n-Butylbenzene ug/kg < 5 MCERTS < 5 1,2-Dichlorobenzene ug/kg < 5			< 5	MCERTS					1	
1,2-Dichlorobenzene ug/kg < 5 MCERTS < 5 .,2-Dibromo-3-chloropropane ug/kg < 10									1	
,2-Dibromo-3-chloropropane ug/kg < 10 MCERTS < 10										
	.,2-Dibromo-3-chloropropane	ug/kg	< 10	MCERTS						
	Hexachlorobutadiene	ug/kg	< 5		< 5					

Soil Analysis Certificate - Sample Descriptions	
DETS Report No: 23-10842	
Sevenoaks Environmental Consultancy Ltd	
Site Reference: Dartford	
Project / Job Ref: 5477	
Order No: 5477	
Reporting Date: 30/08/2023	

DETS Sample No	TP / BH No	Additional Refs	Depth (m)	Moisture Content (%)	Sample Matrix Description
671546	WS01	MG	0.30	23.6	Black sludge with stones
671547	WS02	TMAC	0.05	< 0.1	Black tar
671548	WS02	MG	0.70	11.8	Brown gravelly sand with stones and concrete
671550	WS03	MG	0.50	8.5	Brown gravelly sand with stones and concrete
671551	WS03	NAT	3.50	6.2	Brown gravelly sand with stones
671552	WS04	MG	0.30	17.2	Black sandy clay with stones
671554	WS05	MG	0.70	20	Black sandy clay with stones

Moisture content is part of procedure E003 & is not an accredited test Insufficient Sample $^{\rm US}$ Unsuitable Sample $^{\rm US}$

oil Analysis Certificate - Methodology & Miscellaneous Information
ETS Report No: 23-10842
evenoaks Environmental Consultancy Ltd
te Reference: Dartford
roject / Job Ref: 5477
rder No: 5477
eporting Date: 30/08/2023

Sail D Born : Mark Stubils Determination of state: souble born in all ty 21 by sature soutist (Stubies by 12-0ES) DD12 Sail D Cattors Betermination of Table by sature-seal direction failowed by ICP-0ES E000 Sail D Chonde - Water Souble (2) bits betermination of the ty sature-resist direction failowed by ICP-0ES E000 Sail AR Chonde - Water Souble (2) bits betermination of those with a chone in all by 21 by sature-resist direction failowed by colorimetry. E001 Sail AR Chonde - Water Souble (2) bits and the south south the south the south south the south the south the	Matrix	Analysed On	Determinand	Brief Method Description	Method No
Gel AR ITEX Determination of direct in sole to gene middle of an end by gene middle of an	Soil		Boron - Water Soluble	Determination of water soluble boron in soil by 2:1 bot water extract followed by ICP-OES	
Soil D Cations Determination of cations is not by anal-read adjustion followed by CRCSS 6000 Soil AR Orborida - Valars Sublide 2(2) Determination of holds by starticiton in water that adjustation, adjustion of followed by contents. 6000 6000 Soil AR Cronicle - These Determination of holds by starticiton in water that by adjustation, adjustion of the context by determination of the context by adjustation followed by colormatry. 6015 Soil AR Contexts - Free Determination of the context by determination of the context by redetermination of the context by redetermination of advect by determination of the context by redetermination of advect by determination of advecture by adve					-
Soil D Chloride - Water Soluble (2): Determination of chloride by extraction with water & analysed by ion chromatography E009 Soil AR Chromian - Hocarwigh Determination of bearkeit chromin in soil by extraction in water then by additionation. E001 Soil AR Chromian - Hocarwigh Determination of bearkeit chromin in soil by extraction with youthermapy E003 Soil AR Cycloweit - Total Determination of bear advect for diministion followed by colorinetry E013 Soil AR Cycloweit - Total Determination of bear advection with youthorabin by CA-FID E002 Soil AR Electrical Conductively Determination of electrical conductively by addition of water followed by clearment; measurement E023 Soil AR Electrical Conductively Determination of advectraction with youthorabin by CA-FID E024 Soil AR Electrical Conductively Determination of advectraction with water followed by clearmenter in electractical endycloarbane by CA-FID E004 Soil AR Electrical Conductively Determination of advector/electrical beneficicandamic by CA-FID E004 Soil AR Electrical Conductively Color advector betraction with water followed by CA-FID E004 Soil AR <th< td=""><td></td><td></td><td></td><td></td><td></td></th<>					
Sol AR Chromum - Housweler Determination of housweler drammin in sol by cardition in water that by accellication, addition of solid AR Controls Ends Solid AR Caradia - Complex Determination of complex caradia by doblination followed by colorimetry EDIS Solid AR Caradia - Trick Statismitiation of three scales by doblination followed by colorimetry EDIS Solid AR Dised Brance Complex Operations (DI - CARADIA) EDIS EDIS Solid AR Dised Brance Complex Operations (DI - CARADIA) EDIS EDIS Solid AR Electrical Conductive proteinistics of electrical condu					
Soli AR Cynamics - Complex Determination of complex cynamic by destillation followed by colorimetry EDIS Soli AR Cyclothexame EnzyLation Hafter (CS) EDIS Complex - Total Determination of total cynamics in which cyclothexame EDIS Soli AR Detect Range Digensis (C) - C20 Detect Complex - Total Determination of total cynamics in which cyclothexame EDIS Soli AR Detect Conductive Potentiation of total cynamics of electrical conductively by addition of water followed by electrometric measurement EDI3 Soli AR Electrical Conductive Potentiation of electrical conductively by addition of water followed by electrometric measurement EDI3 Soli AR Electrical Conductive Potentiation of electrical conductively by addition of water followed by electrometric measurement EDI3 Soli AR Electrical Conductive Potentiation of acotom/brane excitable hydrocarbons by GC-FID EDD4 Soli AR Electrical Conductive Potentiation of Conductive Potentiation of Potence Child Divers Potentiation of Potence Child Divers Potentiation and Potentiation and Potentiation of Potence Child Divers Potentiation and Potentiation and Potentiation of Potence Child Divers Potentiation and Potentiation and Potentiation of Potence Child Divers Potentiation and Potentiation and Potentiation and Potentiation and Potentiation and Potentiation and Potentiatiation and				Determination of hexavalent chromium in soil by extraction in water then by acidification, addition of	
Soil AR Cynothe - Tree Determination of the cynolic by colorimetry E015 Soil D Cyclobeams Extractable Matter (CB) General Carlos E014 Soil AR Bestinacion E014 E015 Soil AR Bestinacion E014 E015 Soil AR Bestinacion E014 E015 Soil AR Bestinacion Folder Statuste E023 Soil AR Bestinacion Determination of exempticabulticity by soluticitoris foldowed by electrometric measurement E023 Soil AR EPH TUSK (CFG, CFG CIDI CIDI Mermination of electronical conductivity by soluticitoris foldowed by GC-FB E004 Soil AR EPH TUSK (CFG, CFG CIDI CIDI Mermination of electronical conductivity by soluticitoris foldowed by GC-FB E004 Soil D Fraction Organic Carbon (FOC) Bestinacion of Floadowed Science with weak analysed by an chronatograph E027 Soil D Fraction Organic Carbon (FOC) Bestinacion (FOC) Bestinacion (FOC) Bestinacion (FOC) Bestinacion (FOC) Bestinacion (FOC) Bestinacion (FOC)	Soil	٨P	Cyanida - Complex		E015
Soil AR Cyclobase Experiments on fotod opande by desiliation followed by colormetry. E011 Soil AR Deser Range Organics (C10 - C4) Determination of hexan question with extraction with colorabors by CC-100 E004 Soil AR Electrical Conductivity Determination of hexan question with the stature dial multiple followed by electrometric measurement. E023 Soil AR Electrical Conductivity Determination of electrical conductivity by addition of water followed by electrometric measurement. E023 Soil D Electrical Conductivity Determination of electrical conductivity by addition of water followed by electrometric measurement. E023 Soil AR EPH TEWAS (C4-C3, C3, C10, C10-C10 Determination of action phesene avarizable hydrocorbors by CC-HD E004 Soil D C12-C10, C16-C10, C12, C12-C10 Determination of action phesene avarizable hydrocorbors by CC-HD E004 Soil D FPH Todue Determination of accomphesene avarizable hydrocorbors by CC-HD E004 Soil D FPH Todue Determination of TCC by combustion analyser. E027 Soil D FPH Todue Determination of TCC by combustion analyser. E027					
Soil D Cyclobeane Extractable Matter (CEM) Granutz					
Soil AR Desel Range Organics (CID - C24) Determination of hexanglexations extractable hydrocathors by CC-FID E004 Soil AR Electrical Conductivity Determination of electrical conductivity by addition of subured radium subpate followed by electrometric measurement E022 Soil AR Electrical Conductivity Determination of electrical conductivity by addition of water followed by electrometric measurement E023 Soil AR Electrical Conductivity Determination of electrical conductivity by addition of water followed by electrometric measurement E023 Soil AR EPH TEXS (CS, GR-LG), CL (C4) betermination of actorum/hexane extractable hydrocarbons by CC-FID E004 Soil AR EPH TEXS (CS, GR-LG), CL (C4) betermination of actorum/hexane extractable hydrocarbons by CC-FID E004 Soil D Fraction Deganic Carbon To CA Deganic Carbon E007 Soil D Fraction Deganic Carbon Determination of ToC December actaon by addition analyzer. E007 Soil D Fraction Deganic Carbon Determination of ToC December actaon by addition analyzer. E007 Soil D Fractin Deganic Carbon Betermination of ToC December a					
Sol AR Electrical Conductively electrometric measurement ED22 Gol AR Electrical Conductively electrometric measurement ED23 Gol D Electrical Conductively electrometric measurement ED33 Gol D Electrical Conductively electrometrical electrometrical electrometric					-
Sol AR Electrical Conductivity Determination of electrical conductivity by addition of water followed by electronetric measurement, E023 E023 Sol D Elemental Sulptur Determination of electrical conductivity by addition of water followed by GC-MS E023 Sol AR EPH Froduct 1D Elemination of accomplexame extraction followeath by GC-FID E004 Sol AR EPH TRADA (GC-Q), GC-LiD Clear and the second presence extraction followeath by GC-FID for GS to C40, C5 to C8 by C400 E004 Sol D Fraction Organic Canhon (GC) Elemination of accord presence extraction followeath by GC-FID for GS to C40, C5 to C8 by C400 E003 Sol D Fraction Organic Canhon (GC) Elemination of TCC by combustion analyser. E023 Sol D TOC (Fraction Organic Canhon) Determination of TCC by combustion analyser. E023 Sol D DSC (Fraction Organic Canhon) Determination of factoria organic canhon by oxiding with potassium dichromate followed by CP-OES E023 Sol D Loss on Ignition # Sol Determination of factoria organic canhon by oxiding with potassium dichromate followed by CP-OES E023 Sol D Mitate Mitater soluble				Determination of electrical conductivity by addition of saturated calcium sulphate followed by	
Soli AR EPH (C10 – C40) Determination of accome/hearne extratable hydrocarbons by C3-F1D E004 Soli AR EPH FDAS (C3-C8, C3-C10, C10-C12) E004 Soli AR EPH FDAS (C3-C8, C3-C10, C10-C12) E004 Soli D Fluctude - Water Soluble Determination of accome/hearne extractable hydrocarbons by C3-F1D for C8 to C40. C5 to C8 by C10-C13 E004 Soli D Fluctude - Water Soluble Determination of T0C by combustion analyser. E027 Soli D TOC (Tatal Organic Carbon) Determination of T0C by combustion analyser. E027 Soli D FOC (Fraction Organic Carbon) Determination of T0C by combustion analyser. E027 Soli D FOC (Fraction Organic Carbon) Determination of T0C by combustion analyser. E027 Soli D FOC (Fraction Organic Carbon) Determination of T0C by combustion analyser. E027 Soli D FOC (Fraction Organic Carbon) Determination of T0C by combustion analyser. E027 Soli D Loss on Ignition (0) 450C E004 E004 Soli D Magnesium - Water Soluble Determination of mater by acadisin followed by (C-OES E002	Soil	AR	Electrical Conductivity		E023
Soli AR EPH (C10 – C40) Determination of accome/hearne extratable hydrocarbons by C3-F1D E004 Soli AR EPH FDAS (C3-C8, C3-C10, C10-C12) E004 Soli AR EPH FDAS (C3-C8, C3-C10, C10-C12) E004 Soli D Fluctude - Water Soluble Determination of accome/hearne extractable hydrocarbons by C3-F1D for C8 to C40. C5 to C8 by C10-C13 E004 Soli D Fluctude - Water Soluble Determination of T0C by combustion analyser. E027 Soli D TOC (Tatal Organic Carbon) Determination of T0C by combustion analyser. E027 Soli D FOC (Fraction Organic Carbon) Determination of T0C by combustion analyser. E027 Soli D FOC (Fraction Organic Carbon) Determination of T0C by combustion analyser. E027 Soli D FOC (Fraction Organic Carbon) Determination of T0C by combustion analyser. E027 Soli D FOC (Fraction Organic Carbon) Determination of T0C by combustion analyser. E027 Soli D Loss on Ignition (0) 450C E004 E004 Soli D Magnesium - Water Soluble Determination of mater by acadisin followed by (C-OES E002	Soil	D	Elemental Sulphur	Determination of elemental sulphur by solvent extraction followed by GC-MS	E020
Soil AR EPH Product ID Determination of acctom/brane extractable hydrocarbons by GC-FID E004 Soil AR EPH TEXS (SC-G3, GS-C1, DC1-D2, Determination of acctom/brane extractable hydrocarbons by GC-FID for G8 to C40. C6 to C8 by C12-C16, C16-C21, C12-C30 E004 Soil D Fraction Organic Carbon (FOC) Determination of TOC by combustion analyser. E027 Soil D Organic Matter (SOM) Determination of TOC by combustion analyser. E027 Soil D TOC (Total Organic Carbon (FOC) Determination of TOC by combustion analyser. E029 Soil D TOC (Total Organic Carbon Determination of ToC by combustion analyser. E029 Soil D FOC (Fraction Organic Carbon Determination of arganic carbon by oxidising with potassium dichromate followed by CPOES E022 Soil D Mass on Ignition @ 4500C Determination of hoses on guintion in soil by gravimetrically with the sample being lighted in a numfle E004 Soil AR Mineral Oil (C10 - C40 Determination of intrace by extraction with water & analysed by CPOES E002 Soil D Organic Areb notassition analyser. E004 E004 Soil AR					
Soli AR EPH TEXAS (C6-C8, C8-C10, C10-C12, Determination of acetone/hexane extractable hydrocarbons by GC-FID for C8 to C40, C6 to C8 by E004 Soli D Flucride - Water Soluble Determination of ToC by combustion analyser. E027 Soli D Flucride - Water Soluble Determination of TOC by combustion analyser. E027 Soli D Organic Matter (SOM) Determination of TOC by combustion analyser. E027 Soli D TOCC (Total Organic Carbon Determination of TOC by combustion analyser. E027 Soli D TOCC (Fraction Organic Carbon Determination of organic Carbon by oddising with potassium dichromate followed by tratton with internation of organic carbon by oddising with potassium dichromate followed by tratton with internation of organic Carbon Determination of organic carbon by oddising with potassium dichromate followed by thratton with internation of metals by aqua-regia digeston followed by t0P-OES E025 Soli D Matter Soluble Determination of metals by aqua-regia digeston followed by t0P-OES E004 Soli A Mineral Di (1.0c40) Determination of notice by extraction with water & analysed by ion chromatography. E003 Soli D Nitter Solub E(11) Determination of notice by extraction with water & analysed by ion chromatography. E003 Soli					
Soli AR C12:C16, C12, C12-C10 headspace GC-MS EU004 Soli D Fluoride - Visco Toucine Carbon (FOC) Determination of TOC by combustion analyser. E007 Soli D Fluoride - Visco Toucine Carbon (FOC) Determination of TOC by combustion analyser. E007 Soli D TOC (Total Organic Carbon (FOC) Determination of TOC by combustion analyser. E027 Soli D TOC (Total Organic Carbon (FOC) Determination of TOC by combustion analyser. E029 Soli D FOC (Fraction Organic Carbon Total Use analyser. E029 Soli D Loss on Ignition (# 4500 Entermination of fraction of organic carbon by oxicinal with the sample being ignited in a muffle E019 Soli D Magnesium - Water Soluble Difference by ICP-OES E002 Soli AR Mineral OII (C10 - C40) Metamination of metan arequia disection followable by ICP-OES E002 Soli AR Mineral OII (C10 - C40) Antidge E004 E004 Soli AR Mineral OII (C10 - C40) Antidge E004 E004 E005 E005 E002 E004 E004 <t< td=""><td></td><td></td><td></td><td></td><td></td></t<>					
Soli D Fluoride - Water Soluble Determination of Fluoride by extraction with water Sanalysed by lon chromatography E000 Soli D Floration Organic Carlon (FGO) Determination of TOC by combustion analyser. E027 Soli D TOC (Total Organic Carlon (FGO) Determination of TOC by combustion analyser. E027 Soli AR Exchangeable Ammonium Determination of TOC by combustion analyser. E023 Soli D FOC (Fraction Organic Carlon Determination of a ammonium by discrete analyser. E023 Soli D Loss on lopinto @ 4500 Determination of ammonium by discrete analyser. E025 Soli D Magnesium - Water Soluble Determination of readic Soluble magnesium by extraction with water followed by ICP-OES E005 Soli D Magnesium - Water Soluble Determination of metals by aqua-requa digetsion followed by ICP-OES E003 Soli AR Mineral OII (CI - C40) Determination of metals by aqua-requa digetsion followed by ICP-OES E004 Soli AR Mineral OII (CI - C40) Determination of PAIC compounds by extraction with water & analysed by ion chromatography E003 Soli AR PAI- Speciated (EFA 10 Soci Tor	Soil	AR			E004
Soil D Fraction Organic Carbon (FOC) Determination of TOC by combustion analyser. EE27 Soil D TOC (Total Organic Carbon) Determination of TOC by combustion analyser. E027 Soil D FOC (Fraction Organic Carbon) Determination of TOC by combustion analyser. E023 Soil D FOC (Fraction Organic Carbon) Determination of fraction of organic carbon by oxidiany with potassium dichromate followed by E010 E010 Soil D Loss on Ignition (@ 4500 Determination of faction of organic carbon by oxidiany with potassium dichromate followed by ICP-OES E012 Soil D Magnesium - Water Soluble Determination of hexane/acetone extractable hydrocarbons by GC-FID fractionating with SPE E000 Soil AR Mineral OII (C10 - C40) Pattermination of ratic by oxiding with potassium dichromate followed by ICP-OES E002 Soil D Ntrate - Water Soluble C21) Determination of organic matter by oxiding with potassium dichromate followed by tratain with SPE E004 Soil AR PAH - Speciated (PA 116) Pattermination of PAH carbon with water & analysed by ion chromatography E003 Soil AR PAH - Speciated (PA 16)	Soil	D			E009
Soil D Organic Matter (SOM) Determination of TOC by combustion analyser. E027 Soil AR Exchangeable Ammonium Determination of ToC by combustion analyser. E023 Soil D TOC (Total Organic Carbon) Determination of faction of opanic corbon by oxiding with potassium dichromate followed by the potentiation of the potentiatino the poteninati potentiation of the potentiation of the potentiat					
Soil D TOC (Total Organic Carbon) Determination of monitomic production analyser. E027 Soil D FOC (Fraction Organic Carbon) Determination of manonium by discrete analyser. E029 Soil D FOC (Fraction Organic Carbon) Determination of manonium by discrete analyser. E029 Soil D Loss on Ignition @ 450cc Determination of mater soluble magnesium by extraction with water followed by ICP-OES E025 Soil D Magnesium - Water Soluble Determination of mater soluble magnesium by extraction with water followed by ICP-OES E002 Soil AR Mineral OII (C10 - C40) Petermination of network/sectone extractable hydrocarbons by GC-FID fractionating with SPE E004 Soil AR Moisture Content; determined gravimetrically E003 Soil D Organic Mater Petermination of Parce by extraction with water & analysed by ion chromatoraphy E003 Soil AR PAH - Speciated (EPA 16) Determination of PAH compounds by extraction with water followed by GC-MS with the Use of surroadia and internation and incord induce of parce and standards E003 Soil AR PCE - 7 Congener Determination of Parce Toolan with a carbon					
Soil AR Exchangeable Ammonium Determination of raminonium by discrete analyser. ED23 Soil D FOC (Fraction Organic Carbon, Dietermination of ration of organic carbon by oxidising with potassium dichromate followed by IDP-OES ED10 Soil D Magnesium - Water Soluble Etermination of water soluble manesium by extraction with water followed by IDP-OES ED02 Soil AR Mineral Oil (CI) - C40) Metals be advance/acetone extractable hydrocarbons by CC-FID fractionating with SPE ED04 Soil AR Mineral Oil (CI) - C40) Etermination of metals by advance/acetone extractable hydrocarbons by CC-FID fractionating with SPE ED04 Soil AR Mineral Oil (CI) - C40) Etermination of mitate by extraction with water followed by UDP-OES ED03 Soil AR Mineral Oil (CI) - C40) Etermination of fracta by extraction with water followed by UDP-OES ED04 Soil D Nitrate - Water Solubile (21) Determination of fracta by extraction with water followed by UDP-OES ED04 Soil AR PAH - Speciated (EPA 16) Etermination of TAB by extraction with water followed by UDP-OES ED03 Soil AR PCB-7 - Totageresro Eterminat					-
Soil D FOC (Fraction Organic Carbon) Determination of fraction of organic carbon by oxidising with potassium dichromate followed by E010 Soil D Loss on Ignition @ 4500C Determination of nosis on ignition is oil by gravimetrically with the sample being ignited in a muffle E019 Soil D Magnesium - Water Soluble Determination of nearlab ty adureting idigestion followed by ICP-OES E002 Soil AR Mineral OII (C10 - C40) Determination of nearlab ty adureting idigestion followed by ICP-OES E003 Soil AR Moisture Content Moisture content; determined gravimetrically E003 Soil D Nitrate - Water Soluble (21) Determination of nearlab ty aduretion with water & analysed by ion chromatography E003 Soil AR PAH - Speciated (EPA 16) Determination of PAH compounds by extraction in actione and hexane followed by GC-MS E008 Soil AR PEE - 7. Conget (PEE) Determination of PAH compounds by extraction with water & analysed by ion chromatography E001 Soil AR Peroleum Ether Evtact and thread standards E001 Soil AR Peroleum Ether Evtact and thread stanalards E001					
Soil D Loss on Ignition @ 450c Determination of loss on ignition in soil by gravimetrically with the sample being ignited in a muffle E019 Soil D Magnesium - Water Soluble Determination of nearles by quarregic algestion followed by ICP-OES E002 Soil AR Mineral Oil (C10 - C40 Garridge Determination of hexane/acetone extractable hydrocarbons by GC-FID fractionating with SPE arridge E004 Soil AR Moisture Content Moisture content; determined gravimetrically E003 Soil D Nitrate - Water Soluble (2:1) Determination of nearles by quarregic and the same followed by GC-MS with the get gravimetrical determined throny advandards E003 Soil AR PAH - Speciated (PA 16) Determination of PAH compounds by extraction with water followed by GC-MS with the get gravimetrical determined throny advandards E005 Soil AR Petroleum Ether Extract (PEE) E004 E007 Soil AR Phenols - TCangeners Determination of PAH compounds by extraction with water followed by GC-MS E004 Soil AR Phenols - TCangeners Determination of phenols by distilistion followed by ico-MS E001 Soil AR <t< td=""><td></td><td></td><td></td><td>Determination of fraction of organic carbon by oxidising with potassium dichromate followed by</td><td></td></t<>				Determination of fraction of organic carbon by oxidising with potassium dichromate followed by	
Soil D Magnesium - Water Soluble Determination of water soluble magnesium by extraction with water followed by ICP-OES E002 Soil AR Mineral Oil (C10 - C40) Determination of metals by aura-regia digestion followed by ICP-OES E003 Soil AR Moisture Content Moisture Content, determination of metals by aura-regia digestion followed by ICP-OES E003 Soil AR Moisture Content, determination of mate by extraction with are 8 analysed by ion chromatography E003 Soil D Nitrate - Water Soluble (2:1) Determination of organic matter by oxidising with potassium dichromate followed by tractom with E010 E010 Soil AR PAH - Speciated (EPA 16) Determination of PAH compounds by extraction in acetone and hexane followed by GC-MS E008 Soil AR PAH - Speciated (PEB 16) Determination of PAH compounds by extraction with acetone and hexane followed by GC-MS E003 Soil AR PAH - Speciated (PEB 16) Determination of PAH compounds by extraction with acetone and hexane followed by GC-MS E003 Soil AR Phenols - Tod (monohydric) Determination of avater followed by (C10 (CMS) E004 Soil AR Pheno	Soil	D	Loss on Ignition @ 450oC	Determination of loss on ignition in soil by gravimetrically with the sample being ignited in a muffle	E019
Soil D Metals Determination of metals by aqua-regid digestion followed by ICP-OES E002 Soil AR Mineral Oil (C10 - C40) Determination of hexane/acetone extractable hydrocarbons by GC-HD fractionating with SPE cartifage E003 Soil AR Moisture Content, Moisture content; determined gravimetrically E003 Soil D Nitrate - Water Soluble (2:1) Determination of rurate by extraction with water & analysed by ion chromatography E009 Soil AR PAH - Speciated (EPA 16) Determination of organic matter by oxidising with potassium dichromate followed by GC-MS E003 Soil AR PAH - Speciated (EPA 16) Determination of PAE to compounds by extraction with acetone and hexane followed by GC-MS E003 Soil AR PCI0-2 Congeners Determination of PAE by extraction with acetone and hexane followed by GC-MS E003 Soil AR PHoenobi-7 Congeners Determination of puble detartion with aceton and hexane followed by GC-MS E003 Soil AR Phenols - Total (monbydric) Detartination of buoyabide by extraction with acet & analysed by ion chromatography E003 Soil D Sulphate (as SO4) - Total Determination of buoyabid by extract	Soil	D	Magnesium - Water Soluble		F025
Soil AR Mineral OII (C10 - C40) articidag Determination of hexane/actione extractable hydrocarbons by GC-FID fractionating with SPE articidag E003 Soil AR Moisture Content Moisture Content; determination of intrate by extraction with water & analysed by ion chromatography E003 Soil D Nitrate - Water Soluble (2:1) Determination of organic matter by oxidising with potassium dichromate followed by titration with performance of organic matter by oxidising with potassium dichromate followed by GC-MS with the use of surrogate and internal standards. E003 Soil AR PAH - Speciated (EPA 16) Determination of PLB to extraction with actone and hexane followed by GC-MS E006 Soil AR PAH - Speciated (EPA 16) Determination of PLB to extraction with actone and hexane followed by GC-MS E008 Soil AR PAH - Speciated (EPA 16) Determination of PLB to extraction with actone mather memory to the solub of c2:10 E001 Soil AR Phenols - Total (monohydric) Determination of phenols by distillation followed by colorimetry E001 Soil D Sulphate (as SO4) - Total Determination of sulphate by extraction with water & analysed by ion chromatography E003 Soil D Sulphate (as SO4) - Water Soluble					
Soil AR Moisture Content Moisture content, determined gravinetically. E003 Soil D Nitrate - Water Soluble (2:1) Determination of intrate by extraction with water & analysed by ion chromatography. E009 Soil AR PAH - Speciated (EPA 16) Determination of PAB by extraction in acetone and hexane followed by GC-MS E008 Soil AR PAH - Speciated (EPA 16) Determination of PAB by extraction with petroleum ether E003 Soil AR PAH - Speciated (EPA 16) Determination of PAB by extraction with acetone and hexane followed by GC-MS E008 Soil AR PHenols - Total (monohydric) Determination of PAB by addition of water followed by electrometric measurement. E007 Soil D Phosphate (as SO4) - Total (monohydric) Determination of topsophate by extraction with aver & analysed by ion chromatography E003 Soil D Sulphate (as SO4) - Water Soluble (2:1) Determination of topsophate by extraction with aver followed by ICP-OES E013 Soil D Sulphate (as SO4) - Water Soluble (2:1) Determination of sulphate by extraction with aver followed by ICP-OES E014 Soil D Sulphate (as SO4) - Water Soluble				Determination of hexane/acetone extractable hydrocarbons by GC-FID fractionating with SPE	
Soil D Nitrate - Water Soluble (2:1) Determination of nitrate by extraction with water & analysed by ion chromatography E009 Soil D Organic Matter Determination of organic matter by oxidising with potassium dichromate followed by GC-MS with the use of surrogate and internal standards E001 Soil AR PAH - Speciated (EPA 16) Determination of PAH compounds by extraction with acetone and hexane followed by GC-MS with the use of surrogate and internal standards E005 Soil AR PRE-7 Congeners Determination of PAH compounds by extraction with acetone and hexane followed by GC-MS E008 Soil AR PRetroleum Ether Extract (PEE by extraction with acetone and hexane followed by CC-MS E009 Soil AR Phenols - Total (monohydric) Determination of pH by addition of water followed by clorimetry E009 Soil D Sulphate (as SO4) - Water Soluble (2:1) Determination of sulphate by extraction with water & analysed by ion chromatography E009 Soil D Sulphate (as SO4) - Water Soluble (2:1) Determination of sulphate by extraction with water & analysed by ion chromatography E009 Soil D Sulphate (as SO4) - Water Soluble (2:1) Determination of sulphate by extraction with water &	Soil	AR	Moisture Content		F003
SoilDOrganic Math Ion (11) subpate ion (11) subpate ion (12) subpate ion (12) subpateExternination of organic matter by oxidising with potassium dichomate followed by titration with ion (11) subpate ion (11) subpateExternination of PAH compounds by extraction in acetone and hexane followed by GC-MS with the ice of surroagte and internal standardsExternination of PAH compounds by extraction with acetone and hexane followed by GC-MS with the ice of surroagte and internal standardsExternination of PAH compounds by extraction with acetone and hexane followed by GC-MSEtonsSoilARPheroleum Ether Extract (PEE) Gravimetrically determined through extraction with acetone and hexane followed by ICP-OESEtonsSoilARPhenols - Total (monohydric) Determination of phenols by distillation followed by colorimetryEtonsSoilDPhenols - Total (monohydric) Determination of subpate by extraction with water & analysed by ion chromatographyEtonsSoilDSulphate (as SO4) - Vater Soluble (21) Determination of sulphate by extraction with water & analysed by ion chromatographyEtonsSoilARSulphiteDetermination of sulphate by extraction with water followed by ICP-OESEto14SoilARSulphiteDetermination of soulphate by extraction with acater gioflowed by ICP-OESEto14SoilARSulphiteDetermination of soulphate by extraction with acater gioflowed by ICP-OESEto14SoilARSulphiteDetermination of soulphate by extraction with acater gioflowed by ICP-OESEto14SoilARTotal Organic Carbon (TOC)Determination of fer					
SoilARPAH - Speciated (EPA 16)Determination of PAH compounds by extraction in acetone and hexane followed by GC-MS with the use of surrogate and internal standardsE005SoilARPCB - 7 CongenersDetermination of PCB by extraction with acetone and hexane followed by GC-MSE008SoilDPetroleum Ether Extract (PEE)Gravimetrically determined through extraction with petroleum etherE011SoilARPhenols - Total (monohydric)Determination of PLB by extraction with petroleum etherE007SoilDSulphate - Water Soluble (21)Determination of phons by distillation followed by colorimetryE009SoilDSulphate (as SO4) - Total Determination of sulphate by extraction with Nwater & analysed by ion chromatographyE009SoilDSulphate (as SO4) - Total Determination of sulphate by extraction with Nwater & analysed by ion chromatographyE009SoilDSulphate (as SO4) - Water Soluble (21)Determination of sulphate by extraction with aver & analysed by ion chromatographyE009SoilARSulphate (as SO4) - Water Soluble (21)Determination of sulphate by extraction with aver & analysed by ion chromatographyE008SoilARSulphate (as SO4) - Water Soluble (21)Determination of sulphide by distillation followed by colorimetryE018SoilARSulphate (as SON)Determination of sulphide by extraction with aver-regia followed by ICP-OESE014SoilDSulphate (as SON)Determination of feric nitrate followed by colorimetryE017SoilDTotal Organic				Determination of organic matter by oxidising with potassium dichromate followed by titration with	
SoilARPCB - 7 CongenersDetermination of PCB by extraction with actone and hexane followed by GC-MSE008SoilDPetroleum Ether Extract (PEE)Gravimetrically determined through extraction with actone with petroleum etherE011SoilARPhenols - Total (monohydric)Determination of pit by addition of water followed by colorimetryE021SoilDPhosphate - Water Soluble (2:1)Determination of posphate by extraction with water & analysed by ion chromatographyE009SoilDSulphate (as SO4) - TotalDetermination of sulphate by extraction with water & analysed by ion chromatographyE009SoilDSulphate (as SO4) - Water Soluble (2:1)Determination of sulphate by extraction with water followed by ICP-OESE013SoilDSulphate (as SO4) - Water Soluble (2:1)Determination of sulphate by extraction with water followed by ICP-OESE014SoilDSulphate (as SO4) - Water Soluble (2:1)Determination of sulphate by extraction with water followed by ICP-OESE014SoilARSulphate (as SO4) - Water Soluble (2:1)Determination of sulphate by extraction with water followed by ICP-OESE014SoilARSulphate (as SO4) - Water Soluble (2:1)Determination of sulphate by extraction with aqua-regia followed by ICP-OESE014SoilARSulphate (as SCN)Determination of sulphate by extraction with aqua-regia followed by ICP-OESE014SoilARThiocyanate (as SCN)Determination of sulphate by extraction in acustic soda followed by acidification followed byE007 <td< td=""><td>Soil</td><td>AR</td><td>PAH - Speciated (EPA 16)</td><td>Determination of PAH compounds by extraction in acetone and hexane followed by GC-MS with the</td><td>E005</td></td<>	Soil	AR	PAH - Speciated (EPA 16)	Determination of PAH compounds by extraction in acetone and hexane followed by GC-MS with the	E005
SoilDPetroleum Ether Extract (PEE)Gravimetrically determined through extraction with petroleum etherE011SoilARPhenols - Total (monohydric)Determination of phenols by distillation followed by colorimetryE021SoilDPhosphate - Water Soluble (2:1)Determination of phenols by distillation followed by colorimetryE003SoilDSulphate (as SO4) - TotalDetermination of phosphate by extraction with water & analysed by ion chromatographyE009SoilDSulphate (as SO4) - Water Soluble (2:1)Determination of sulphate by extraction with water & analysed by ion chromatographyE009SoilDSulphate (as SO4) - Water Soluble (2:1)Determination of sulphate by extraction with water & analysed by ion chromatographyE009SoilDSulphate (as SO4) - Water Soluble (2:1)Determination of sulphate by extraction with water & analysed by ion chromatographyE008SoilARSulphate (as SO4) - Water Soluble (2:1)Determination of sulphate by extraction with water & analysed by ion chromatographyE008SoilARSulphate (as SO4)Determination of sulphate by extraction with aqua-regia followed by ICP-OESE014SoilARChrocyanate (as SCH)Determination of semi-volatile organic compounds by extraction in acetone and hexane followed by addition of ferric nitrate followed by colorimetryE017SoilDToluene Extractable Matter (TEM)Gravimetric determination of organic matter by oxidising with potassium dichromate followed by titration with iron (III) sulphateE011SoilDTol	Soil	AR	PCB - 7 Congeners		E008
SoilARphDetermination of pH by addition of water followed by electrometric measurementE007SoilARPhenols - Total (mondydric)Determination of phenos by distillation followed by colorimetryE001SoilDPhosphate - Water Soluble (2:1)Determination of phosphate by extraction with water & analysed by ion chromatographyE009SoilDSulphate (as SO4) - Water Soluble (2:1)Determination of sulphate by extraction with water & analysed by ion chromatographyE009SoilDSulphate (as SO4) - Water Soluble (2:1)Determination of sulphate by extraction with water & analysed by ion chromatographyE009SoilARSulphate (as SO4) - Water Soluble (2:1)Determination of sulphate by extraction with water followed by ICP-OESE014SoilARSulphateSulphate (as SO4) - Water Soluble (2:1)Determination of semi-volatile organic compounds by extraction with water followed by ICP-OESE018SoilARSulphate (as SO4) - Water Soluble (2:1)Determination of fotal sulphur by extraction with aqu-regia followed by ICP-OESE024SoilARSulphate (as SON)Determination of semi-volatile organic compounds by extraction in acetone and hexane followed by GC-MSE006SoilARThiocyanate (as SCN) Total Organic Carbon (TOC)Determination of fuercy anter followed by colorimetryE011SoilDTotal Organic Carbon (TOC) (10-C12, C12-C16, C16-C21, C21-C34, C12-C16, C16-C21, C21-C34, C12-C16, C16-C21, C21-C34, C12-C16, C16-C21, C21-C35, C35-C44, C12-C16, C16-C21, C21-C35, C35-C44, C12-C16, C16-C21, C21-C35					
SoilARPhenols - Total (monohydric) Determination of phenols by distillation followed by colorimetryE021SoilDPhosphate - Water Soluble (2:1) Determination of total sulphate by extraction with water & analysed by ion chromatographyE009SoilDSulphate (as SO4) - Total Determination of sulphate by extraction with 10% HCI followed by ICP-OESE013SoilDSulphate (as SO4) - Water Soluble (2:1)Determination of sulphate by extraction with water & analysed by ion chromatographyE009SoilDSulphate (as SO4) - Water Soluble (2:1)Determination of sulphate by extraction with water & analysed by ion chromatographyE018SoilARSulphate (as SO4) - Water Soluble (2:1)Determination of sulphate by extraction with avater followed by ICP-OESE014SoilARSulphate (as SO4) - Water Soluble (2:1)Determination of total sulphate by extraction with avater followed by ICP-OESE013SoilARSulphate (as SO4) - Water Soluble (2:1)Determination of sulphide by distillation followed by colorimetryE018SoilARSulphate (as SO4) - Water Soluble (2:1)Determination of sulphide by extraction in caustic soda followed by acidification followed by colorimetryE014SoilDToluene Extractable Matter (TEM) Gravimetrically determined through extraction with tolueneE017SoilDTotal Organic Carbon (TOC) C10-C12, C12-C16, C16-C21, C21-C34, C12-C16, C16-C21, C21-C34, C12-C16, C16-C21, C21-C34, C12-C16, C16-C21, C21-C35, C35-C44,Determination of hexane/acetone extractable hydrocarbons by GC-FID fractionating with SPE 					
SoilDPhosphate - Water Soluble (2:1)Determination of phosphate by extraction with water & analysed by ion chromatographyE009SoilDSulphate (as SO4) - Total Determination of subphate by extraction with 10% HCI followed by ICP-OESE013SoilDSulphate (as SO4) - Water Soluble (2:1)Determination of subphate by extraction with water & analysed by ion chromatographyE009SoilDSulphate (as SO4) - Water Soluble (2:1)Determination of subphate by extraction with water followed by ICP-OESE014SoilARSulphate (as SO4) - Votate Soluble (2:1)Determination of subphate by extraction with aquar-engla followed by ICP-OESE014SoilDSulphate (as SO4) - Votate Soluble (2:1)Determination of semi-volatile organic compounds by extraction in acetone and hexane followed by CC-MSE009SoilARSVOCDetermination of thiocyanate by extraction in caustic soda followed by acidification followed by addition of function of organic matter by oxidising with potassium dichromate followed by didition of function of uniphete action of acetone extractable hydrocarbons by GC-FID fractionating with SPE arc: C5-C7, C7-C8, C8-C10, C10-C12, C3-C34, C3-C3					
SoilDSulphate (as SO4) - TotalDetermination of total sulphate by extraction with 10% HCl followed by ICP-OESE013SoilDSulphate (as SO4) - Water Soluble (2:1)Determination of sulphate by extraction with water & analysed by ion chromatographyE009SoilARSulphate (as SO4) - Water Soluble (2:1)Determination of sulphate by extraction with water & analysed by ion chromatographyE003SoilARSulphate (as SO4) - Water Soluble (2:1)Determination of sulphate by extraction with aqua-regia followed by ICP-OESE014SoilDSulphate (as SO4) - TotalDetermination of sulphate by extraction with aqua-regia followed by ICP-OESE024SoilARSvOCDetermination of semi-volatile organic compounds by extraction in acetone and hexane followed by GC-MSE006SoilARThiocyanate (as SCN)Determination of organic compounds by extraction with tolueneE017SoilDToluene Extractable Matter (TEM) Gravimetrically determined through extraction with tolueneE011SoilDTotal Organic Carbon (TOC) C10-C12, C12-C16, C16-C21, C21-C34, arc: C5-C7, C7-C8, C8-C10, C10-C12, C12-C16, C16-C21, C21-C34, c12-C16, C16-C21, C21-C35,Determination of hexane/acetone extractable hydrocarbons by GC-FID fractionating with SPE cartridge for C8 to C35. C5 to C8 by headspace GC-MSE004SoilARTPH LQM (ali: C5-C6, C6-C8, C8-C10, C10-C12, C12-C16, C16-C21, C35, C35-C44, arc: C5-C7, C7-C8, C8-C10, C10-C12, c35, C35-C44, cartridge for C8 to C44. C5 to C8 by headspace GC-MSE004SoilARVPH (C6-C8 & C8-C10)Determinatio					-
SoilDSulphate (as S04) - Water Soluble (2:1)Determination of sulphate by extraction with water & analysed by ion chromatographyE009SoilDSulphate (as S04) - Water Soluble (2:1)Determination of sulphate by extraction with water followed by ICP-OESE014SoilARSulphate (as S04) - Water Soluble (2:1)Determination of sulphate by distillation followed by colorimetryE018SoilDSulphate (as S04) - Water Soluble (2:1)Determination of sulphate by extraction with aqua-regia followed by ICP-OESE014SoilARSulphate (as S04) - Water Soluble)Determination of total sulphur by extraction in acetone and hexane followed by GC-MSE006SoilARThiocyanate (as SCN)Determination of thiccyanate by extraction in caustic soda followed by acidification followed by addition of ferric intrate followed by colorimetryE017SoilDTotal organic Carbon (TOC)Determination of organic matter by oxidising with potassium dichromate followed by titration with iron (11) sulphateE010SoilARTPH CWG (ali: C5- C6, C6-C8, C8-C10, C10-C12, C12-C16, C16-C21, C21-C34, arc: C5-C7, C7-C8, C8-C10, C10-C12, C12-C16, C16-C21, C21-C35, C35-C44, arc: C5-C7, C7-C8, C8-C10, C10-C12, C12-C16, C16-C21, C21-C36, C35-C44, arc: C5-C7, C7-C8, C8-C10, C10-C12, C12-C16, C16-C21, C21-C35, C35-C44, arc: C5-C7, C7-C8, C8-C10, C10-C12, C12-C16, C16-C21, C21-C36, C35-C44, arc: C5-C7, C7-C8, C8-C10, C10-C12, C12-C16, C16-C21, C21-C36, C35-C44, arc: C5-C7, C7-C8, C8-C10, C10-C12, C12-C16, C16-C21, C21-C35, C35-C44, arc: C5-C7, C7-C8, C8-C10, C10-C12, C12-C16, C16-C21, C21-C35, C35-C44, arc: C5-C7, C7-C8, C8-C10, C10-C1					
SoilDSulphate (as SO4) - Water Soluble (2:1)Determination of water soluble sulphate by extraction with water followed by ICP-OESE018SoilARSulphur - TotalDetermination of sulphur by extraction with aqua-reqia followed by ICP-OESE024SoilARCMCCSCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC			Sulphate (as SO4) - Water Soluble (2:1)	Determination of suphate by extraction with water & analysed by ion chromatography	
SoilARImage: AREndition of sulphideDetermination of sulphide by distillation followed by colorimetryE018SoilDSulphur - TotalDetermination of total sulphur by extraction with aqua-regia followed by ICP-OESE024SoilARComparity of semi-volatile organic compounds by extraction in acetone and hexane followed by addition of ferric nitrate followed by colorimetryE016SoilARThiocyanate (as SCN)Determination of thiocyanate by extraction in caustic soda followed by acidification followed by addition of ferric nitrate followed by colorimetryE017SoilDTotal organic Carbon (TCO)Betermination of organic matter by oxidising with potassium dichromate followed by titration with iron (II) sulphateE011SoilDTotal Organic Carbon (TCO)Determination of hexane/acetone extractable hydrocarbons by GC-FID fractionating with SPE arc: C5-C7, C7-C8, C8-C10, C10-C12, C12-C16, C16-C21, C21-C34, arc: C5-C7, C7-C8, C8-C10, C10-C12, C12-C16, C16-C21, C21-C24, cartridge for C8 to C35. C5 to C8 by headspace GC-MSE004SoilARTPH LQM (ali: C5-C6, C6-C8, C8-C10, c12-C16, C16-C21, C21-C35, C35-C44, arc: C5-C7, C7-C8, C8-C10, C10-C12, C12-C16, C16-C21, C21-C35, C35-C44, arc: C5-C7, C7-C8, C8-C10, C10-C12, C12-C16, C16-C21, C21-C35, C35-C44, arc: C5-C7, C7-C8, C8-C10, C10-C12, C12-C16, C16-C21, C21-C35, C35-C44, SoilDetermination of hexane/acetone extractab					
SoilDSulphur - TotalDetermination of total sulphur by extraction with aqua-regia followed by ICP-OESE024SoilARCCMSDetermination of semi-volatile organic compounds by extraction in acetone and hexane followed by GC-MSE006SoilARThiocyanate (as SCN)Determination of thiocyanate by extraction in caustic soda followed by acidification followed by addition of ferric nitrate followed by colorimetryE017SoilDToluene Extractable Matter (TEM)Gravimetrically determination of organic matter by oxidising with potassium dichromate followed by titration with ion (II) sulphateE010SoilDTotal Organic Carbon (TOC)Determination of hexane/acetone extractable hydrocarbons by GC-FID fractionating with SPE arridge for C8 to C35. C5 to C8 by headspace GC-MSE004SoilARTPH CWG (ali: C5-C6, C6-C8, C8-C10, C10-C12, C12-C16, C16-C21, C21-C34, aro: C5-C7, C7-C8, C8-C10, C10-C12, C12-C16, C16-C21, C21-C35, C12-C16, C16-C21, C21-C34, aro: C5-C7, C7-C8, C8-C10, C10-C12, C12-C16, C16-C21, C21-C34, C12-C16, C					
SoilARContent of the semination of semi-volatile organic compounds by extraction in acetone and hexane followed by GC-MSE006SoilARThiocyanate (as SC)Determination of thiocyanate by extraction in caustic soda followed by acidification followed byE017SoilDToluene Extractable Matter (TEM)Gravimetrically determined through extraction with tolueneE011SoilDTotal Organic Carbon (TCO)Determination of organic matter by oxidising with potassium dichromate followed by titration with iron (II) sulphateE010SoilARTPH CWG (ali: C5- C6, C6-C8, C8-C10, C10-C12, C12-C16, C16-C21, C21-C34)Determination of hexane/acetone extractable hydrocarbons by GC-FID fractionating with SPE arc: C5-C7, C7-C8, C8-C10, C10-C12, C12-C16, C16-C21, C21-C35)E004SoilARTPH LQM (ali: C5-C6, C6-C8, C8-C10, C10-C12, C12-C16, C16-C21, C21-C34)Determination of hexane/acetone extractable hydrocarbons by GC-FID fractionating with SPE arc: C5-C7, C7-C8, C8-C10, C10-C12, C12-C16, C16-C21, C21-C35)E004SoilARTPH LQM (ali: C5-C6, C6-C8, C8-C10, C10-C12, C12-C16, C16-C21, C21-C35, C35-C44)Determination of hexane/acetone extractable hydrocarbons by GC-FID fractionating with SPE arc: C5-C7, C7-C8, C8-C10, C10-C12, C12-C16, C16-C21, C21-C35)Determination of hexane/acetone extractable hydrocarbons by GC-FID fractionating with SPE arc: C5-C7, C7-C8, C8-C10, C10-C12, C12-C16, C16-C21, C21-C35, C35-C44Determination of hexane/acetone extractable hydrocarbons by GC-FID fractionating with SPE arc: C5-C7, C7-C8, C8-C10, C10-C12, C12-C16, C16-C21, C21-C35, C35-C44E004SoilARTPH LQM (ali: C5-C6, C6-C8, C8-C10, C10-C12, C12-C16, C16-C21, C21-C35, C35-C44)De					
SoilARThiocyanate (as SCN)Determination of thiocyanate by extraction in caustic soda followed by acidification followed by addition of ferric nitrate followed by colorimetryE017SoilDToluene Extractable Matter (TEM)Gravimetrically determined through extraction with tolueneE011SoilDTotal Organic Carbon (TOC)Determination of organic matter by oxidising with potassium dichromate followed by titration with iron (II) sulphateE010SoilARTPH CWG (ali: C5- C6, C6-C8, C8-C10, C10-C12, C12-C16, C16-C21, C21-C34, aro: C5-C7, C7-C8, C8-C10, C10-C12, C12-C16, C16-C21, C21-C35Determination of hexane/acetone extractable hydrocarbons by GC-FID fractionating with SPE cartridge for C8 to C35. C5 to C8 by headspace GC-MSE004SoilARTPH LQM (ali: C5-C6, C6-C8, C8-C10, C10-C12, C12-C16, C16-C21, C21-C34, C12-C16, C16-C21, C21-C35, C35-C44, cartridge for C8 to C44. C5 to C8 by headspace GC-MSE004SoilARVPH (C6-C8 & C8-C10) VOCSDetermination of volatile organic compounds by headspace GC-MS & C8-C10 by GC-FIDE001				Determination of semi-volatile organic compounds by extraction in acetone and hexane followed by	
SoilDToluene Extractable Matter (TEM) Gravimetrically determined through extraction with tolueneE011SoilDTotal Organic Carbon (TCC)Determination of organic matter by oxidising with potassium dichromate followed by titration with iron (II) sulphateE010SoilARTPH CWG (ali: C5- C6, C6-C8, C8-C10, C10-C12, C12-C16, C16-C21, C21-C34, aro: C5-C7, C7-C8, C8-C10, C10-C12, C12-C16, C16-C21, C21-C35betermination of hexane/acetone extractable hydrocarbons by GC-FID fractionating with SPE artridge for C8 to C35. C5 to C8 by headspace GC-MSE004SoilARTPH LQM (ali: C5-C6, C6-C8, C8-C10, C10-C12, C12-C16, C16-C21, C21-C35, C12-C16, C16-C21, C21-C35betermination of hexane/acetone extractable hydrocarbons by GC-FID fractionating with SPE artridge for C8 to C35. C5 to C8 by headspace GC-MSE004SoilARTPH LQM (ali: C5-C6, C6-C8, C8-C10, C10-C12, C12-C16, C16-C35, C35-C44, arc: C5-C7, C7-C8, C8-C10, C10-C12, C12-C16, C16-C21, C21-C35, C35-C44, artridge for C8 to C44. C5 to C8 by headspace GC-MSE004SoilARC10-C12, C12-C13, C13-C34, artridge for C8 to C44. C5 to C8 by headspace GC-MSE001SoilARVPH (C6-C8 & C8-C10) Determination of hydrocarbons C6-C8 by headspace GC-MSE001	Soil	AR	Thiocyanate (as SCN)	Determination of thiocyanate by extraction in caustic soda followed by acidification followed by	E017
SoilDTotal Organic Carbon (TOC)Determination of organic matter by oxidising with potassium dichromate followed by titration with iron (II) sulphateE010SoilARTPH CWG (ali: C5- C6, C6-C8, C8-C10, C10-C12, C12-C16, C16-C21, C21-C34, aro: C5-C7, C7-C8, C8-C10, C10-C12, C12-C16, C16-C21, C21-C35Determination of hexane/acetone extractable hydrocarbons by GC-FID fractionating with SPE cartridge for C8 to C35. C5 to C8 by headspace GC-MSE004SoilARTPH LQM (ali: C5-C6, C6-C8, C8-C10, C10-C12, C12-C16, C16-C21, C21-C35, C35-C44, aro: C5-C7, C7-C8, C8-C10, C10-C12, C12-C16, C16-C21, C21-C35, C35-C44, aro: C5-C7, C7-C8, C8-C10, C10-C12, C12-C16, C16-C21, C21-C35, C35-C44, aro: C5-C7, C7-C8, C8-C10, C10-C12, C12-C16, C16-C21, C21-C35, C35-C44, cartridge for C8 to C44. C5 to C8 by headspace GC-MSE004SoilARVPH (C6-C8 & C8-C10) Determination of hydrocarbons C6-C8 by headspace GC-MSE001	Soil	D	Toluene Extractable Matter (TFM)		E011
SoilARTPH LQM (ali: C5-C6, C6-C8, C8-C10, C10-C12, C12-C16, C16-C21, C21-C34, aro: C5-C7, C7-C8, C8-C10, C10-C12, C12-C16, C16-C21, C21-C35Determination of hexane/acetone extractable hydrocarbons by GC-FID fractionating with SPE artridge for C8 to C35. C5 to C8 by headspace GC-MSE004SoilARTPH LQM (ali: C5-C6, C6-C8, C8-C10, C10-C12, C12-C16, C16-C21, C21-C35, C35-C44, aro: C5-C7, C7-C8, C8-C10, C10-C12, C12-C16, C16-C21, C21-C35, C35-C44, C12-C16, C16-C21, C21-C35, C35-C44, cartridge for C8 to C44. C5 to C8 by headspace GC-MSE004SoilARVPH (C6-C8 & C8-C10) Determination of hydrocarbons C6-C8 by headspace GC-MSE001				Determination of organic matter by oxidising with potassium dichromate followed by titration with	
SoilARC10-C12, C12-C16, C16-C35, C35-C44, aro: C5-C7, C7-C8, C8-C10, C10-C12, C12-C16, C16-C21, C21-C35, C35-C44)Determination of hexane/acetone extractable hydrocarbons by GC-FID fractionating with SPE cartridge for C8 to C44. C5 to C8 by headspace GC-MSE004SoilARVOCsDetermination of volatile organic compounds by headspace GC-MSE001SoilARVPH (C6-C8 & C8-C10)Determination of hydrocarbons C6-C8 by headspace GC-MS & C8-C10 by GC-FIDE001			TPH CWG (ali: C5- C6, C6-C8, C8-C10, C10-C12, C12-C16, C16-C21, C21-C34, aro: C5-C7, C7-C8, C8-C10, C10-C12,	Determination of hexane/acetone extractable hydrocarbons by GC-FID fractionating with SPE	
Soil AR VPH (C6-C8 & C8-C10) Determination of hydrocarbons C6-C8 by headspace GC-MS & C8-C10 by GC-FID E001			C10-C12, C12-C16, C16-C35, C35-C44, aro: C5-C7, C7-C8, C8-C10, C10-C12, C12-C16, C16-C21, C21-C35, C35-C44)	cartridge for C8 to C44. C5 to C8 by headspace GC-MS	
	Soil	AR	VPH (C6-C8 & C8-C10)	Determination of hydrocarbons C6-C8 by headspace GC-MS & C8-C10 by GC-FID	E001

AR As Received

List of HWOL Acronyms and Operators
DETS Report No: 23-10842
Sevenoaks Environmental Consultancy Ltd
Site Reference: Dartford
Project / Job Ref: 5477
Order No: 5477
Reporting Date: 30/08/2023

Acronym	Description	
HS	Headspace analysis	
EH	Extractable Hydrocarbons - i.e. everything extracted by the solvent	
CU	Clean-up - e.g. by florisil, silica gel	
1D	GC - Single coil gas chromatography	
2D	GC-GC - Double coil gas chromatography	
Total	Aliphatics & Aromatics	
AL	Aliphatics only	
AR	Aromatics only	
#1	EH_2D_Total but with humics mathematically subtracted	
#2	EH_2D_Total but with fatty acids mathematically subtracted	
_	Operator - underscore to separate acronyms (exception for +)	
+	Operator to indicate cumulative eg. EH+HS_Total or EH_CU+HS_Total	

Det - Acronym
EPH Texas (C10 - C12) - EH_1D_Total
EPH Texas (C12 - C16) - EH_1D_Total
EPH Texas (C16 - C21) - EH_1D_Total
EPH Texas (C21 - C40) - EH_1D_Total
EPH Texas (C6 - C40) - HS_1D_MS+EH_1D_Total
EPH Texas (C6 - C8) - HS_1D_MS_Total
EPH Texas (C8 - C10) - EH_1D_Total

Appendix F

Qualitative Risk Assessment Definitions

Definitions

Defining Severity of Impact

The terms Severe, Medium, Mild and Minor are used to describe the severity of impact of a given source upon a given receptor in the event of a Source-Pathway-Receptor (SPR) Linkage being realised. These terms are defined as follows:

Severe	Acute risks to human health, catastrophic damage to buildings / properties, major pollution of controlled waters, adverse change to a habitat protected under UK or EC law;	
Medium	Chronic non-fatal harm (recoverable), minor harm, ill-health or impairment of humans, livestock or crops, flora and fauna, pollution of sensitive controlled waters, impact on sensitive ecosystems or species, significant damage to buildings / properties;	
Mild	Pollution of non-sensitive waters, minor damage to buildings or structures	
Minor	Requirement for protective equipment during site works to mitigate "normal" risks / health effects, impact to non-sensitive ecosystems or species, no groundwater / surface water contamination above (background) levels.	

Defining Probability of an Exposure being realised

The terms High Likelihood, Likely, Low Likelihood and Unlikely are used to describe the probability of impact of a given source upon a given receptor in the event of a SPR Linkage being realised. These terms are defined as follows:

High Likelihood	There is already evidence of a impact to the receptor, the pollutant linkage may be realised and risk is certain to occur in the long term.
Likely	A pollutant linkage may already be present or it is probable that an event will occur in the long term.
Low Likelihood	A pollution linkage may be present and under certain circumstances it is possible that the risk could occur although there is no certainty.
Unlikely	A pollution linkage may be present but the circumstances under which harm would occur are improbable.

Defining Risk

Standard Risk Matrix – The potential severity of impact and the probability of the risk occurring have been combined according to the risk matrix below to provide a level of risk for each hazard

			Severity of Impact		
		Severe	Medium	Mild	Minor
/ of e	High Likelihood	Very High	High	Moderate	Low/ Moderate
bability xposure	Likely	High	Moderate	Low / Moderate	Low
robab Expo	Low Likelihood	Moderate	Low / Moderate	Low	Very Low
- L	Unlikely	Low / Moderate	Low	Very Low	Very Low

Descriptions of the risks and actions likely to be required:

Very High Risk	Indicates of a high probability that severe harm could occur to a identified receptor from an identified hazard or there is evidence that severe harm to an indicated receptor is currently being realized. Urgent investigation and remediation are likely to be required. This level of risk if realised, is likely to result in a substantial liability.
High Risk	Indicates harm is likely to occur to an identified receptor from an identified hazard. Urgent investigation is required, and remedial works may be necessary in the short term and are likely over the longer term. Realisation of the risk is likely to present a substantial liability.
Moderate Risk	Indicates that it is possible that harm could occur to a designated receptor from an identified hazard, however it is either relatively unlikely that any such harm would be severe, or if any harm were to occur it is more likely that the harm would be relatively mild. Investigation is normally required to clarify the risk and to determine the potential liability. Some remedial works may be required in the longer term.
Low Risk	Indicates that it is possible that harm could arise to a designated receptor from an identified hazard, but is most likely that this harm if realized, would be at worst normally be mild.
Very Low Risk	Indicates there is a low possibility that harm could arise to a receptor. In the event of such harm being realized it is not likely to be severe.